* gdb.stabs/weird.exp: Remove directory-checking code. Use
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
0b302171 3 Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
ac3aafc7 40
6403aeea
SW
41/* Initialize BADNESS constants. */
42
a9d5ef47 43const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 44
a9d5ef47
SW
45const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 47
a9d5ef47 48const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 49
a9d5ef47
SW
50const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
57const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
58const struct rank BASE_CONVERSION_BADNESS = {2,0};
59const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 60const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 61const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
6403aeea 62
8da61cc4 63/* Floatformat pairs. */
f9e9243a
UW
64const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
65 &floatformat_ieee_half_big,
66 &floatformat_ieee_half_little
67};
8da61cc4
DJ
68const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_single_big,
70 &floatformat_ieee_single_little
71};
72const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_double_big,
74 &floatformat_ieee_double_little
75};
76const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_littlebyte_bigword
79};
80const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_i387_ext,
82 &floatformat_i387_ext
83};
84const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_m68881_ext,
86 &floatformat_m68881_ext
87};
88const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_arm_ext_big,
90 &floatformat_arm_ext_littlebyte_bigword
91};
92const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_ia64_spill_big,
94 &floatformat_ia64_spill_little
95};
96const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_quad_big,
98 &floatformat_ia64_quad_little
99};
100const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_vax_f,
102 &floatformat_vax_f
103};
104const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_d,
106 &floatformat_vax_d
107};
b14d30e1
JM
108const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_ibm_long_double,
110 &floatformat_ibm_long_double
111};
8da61cc4 112
8da61cc4 113
c906108c 114int opaque_type_resolution = 1;
920d2a44
AC
115static void
116show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
117 struct cmd_list_element *c,
118 const char *value)
920d2a44 119{
3e43a32a
MS
120 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
121 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
122 value);
123}
124
5d161b24 125int overload_debug = 0;
920d2a44
AC
126static void
127show_overload_debug (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c, const char *value)
129{
7ba81444
MS
130 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
131 value);
920d2a44 132}
c906108c 133
c5aa993b
JM
134struct extra
135 {
136 char str[128];
137 int len;
7ba81444 138 }; /* Maximum extension is 128! FIXME */
c906108c 139
a14ed312 140static void print_bit_vector (B_TYPE *, int);
ad2f7632 141static void print_arg_types (struct field *, int, int);
a14ed312
KB
142static void dump_fn_fieldlists (struct type *, int);
143static void print_cplus_stuff (struct type *, int);
7a292a7a 144
c906108c 145
e9bb382b
UW
146/* Allocate a new OBJFILE-associated type structure and fill it
147 with some defaults. Space for the type structure is allocated
148 on the objfile's objfile_obstack. */
c906108c
SS
149
150struct type *
fba45db2 151alloc_type (struct objfile *objfile)
c906108c 152{
52f0bd74 153 struct type *type;
c906108c 154
e9bb382b
UW
155 gdb_assert (objfile != NULL);
156
7ba81444 157 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
158 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
159 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
160 struct main_type);
161 OBJSTAT (objfile, n_types++);
c906108c 162
e9bb382b
UW
163 TYPE_OBJFILE_OWNED (type) = 1;
164 TYPE_OWNER (type).objfile = objfile;
c906108c 165
7ba81444 166 /* Initialize the fields that might not be zero. */
c906108c
SS
167
168 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 169 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 170 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 171
c16abbde 172 return type;
c906108c
SS
173}
174
e9bb382b
UW
175/* Allocate a new GDBARCH-associated type structure and fill it
176 with some defaults. Space for the type structure is allocated
177 on the heap. */
178
179struct type *
180alloc_type_arch (struct gdbarch *gdbarch)
181{
182 struct type *type;
183
184 gdb_assert (gdbarch != NULL);
185
186 /* Alloc the structure and start off with all fields zeroed. */
187
188 type = XZALLOC (struct type);
189 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
190
191 TYPE_OBJFILE_OWNED (type) = 0;
192 TYPE_OWNER (type).gdbarch = gdbarch;
193
194 /* Initialize the fields that might not be zero. */
195
196 TYPE_CODE (type) = TYPE_CODE_UNDEF;
197 TYPE_VPTR_FIELDNO (type) = -1;
198 TYPE_CHAIN (type) = type; /* Chain back to itself. */
199
200 return type;
201}
202
203/* If TYPE is objfile-associated, allocate a new type structure
204 associated with the same objfile. If TYPE is gdbarch-associated,
205 allocate a new type structure associated with the same gdbarch. */
206
207struct type *
208alloc_type_copy (const struct type *type)
209{
210 if (TYPE_OBJFILE_OWNED (type))
211 return alloc_type (TYPE_OWNER (type).objfile);
212 else
213 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
214}
215
216/* If TYPE is gdbarch-associated, return that architecture.
217 If TYPE is objfile-associated, return that objfile's architecture. */
218
219struct gdbarch *
220get_type_arch (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return get_objfile_arch (TYPE_OWNER (type).objfile);
224 else
225 return TYPE_OWNER (type).gdbarch;
226}
227
228
2fdde8f8
DJ
229/* Alloc a new type instance structure, fill it with some defaults,
230 and point it at OLDTYPE. Allocate the new type instance from the
231 same place as OLDTYPE. */
232
233static struct type *
234alloc_type_instance (struct type *oldtype)
235{
236 struct type *type;
237
238 /* Allocate the structure. */
239
e9bb382b 240 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 241 type = XZALLOC (struct type);
2fdde8f8 242 else
1deafd4e
PA
243 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
244 struct type);
245
2fdde8f8
DJ
246 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
247
248 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
249
c16abbde 250 return type;
2fdde8f8
DJ
251}
252
253/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 254 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
255static void
256smash_type (struct type *type)
257{
e9bb382b
UW
258 int objfile_owned = TYPE_OBJFILE_OWNED (type);
259 union type_owner owner = TYPE_OWNER (type);
260
2fdde8f8
DJ
261 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
262
e9bb382b
UW
263 /* Restore owner information. */
264 TYPE_OBJFILE_OWNED (type) = objfile_owned;
265 TYPE_OWNER (type) = owner;
266
2fdde8f8
DJ
267 /* For now, delete the rings. */
268 TYPE_CHAIN (type) = type;
269
270 /* For now, leave the pointer/reference types alone. */
271}
272
c906108c
SS
273/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
274 to a pointer to memory where the pointer type should be stored.
275 If *TYPEPTR is zero, update it to point to the pointer type we return.
276 We allocate new memory if needed. */
277
278struct type *
fba45db2 279make_pointer_type (struct type *type, struct type **typeptr)
c906108c 280{
52f0bd74 281 struct type *ntype; /* New type */
053cb41b 282 struct type *chain;
c906108c
SS
283
284 ntype = TYPE_POINTER_TYPE (type);
285
c5aa993b 286 if (ntype)
c906108c 287 {
c5aa993b 288 if (typeptr == 0)
7ba81444
MS
289 return ntype; /* Don't care about alloc,
290 and have new type. */
c906108c 291 else if (*typeptr == 0)
c5aa993b 292 {
7ba81444 293 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 294 return ntype;
c5aa993b 295 }
c906108c
SS
296 }
297
298 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
299 {
e9bb382b 300 ntype = alloc_type_copy (type);
c906108c
SS
301 if (typeptr)
302 *typeptr = ntype;
303 }
7ba81444 304 else /* We have storage, but need to reset it. */
c906108c
SS
305 {
306 ntype = *typeptr;
053cb41b 307 chain = TYPE_CHAIN (ntype);
2fdde8f8 308 smash_type (ntype);
053cb41b 309 TYPE_CHAIN (ntype) = chain;
c906108c
SS
310 }
311
312 TYPE_TARGET_TYPE (ntype) = type;
313 TYPE_POINTER_TYPE (type) = ntype;
314
7ba81444
MS
315 /* FIXME! Assume the machine has only one representation for
316 pointers! */
c906108c 317
50810684
UW
318 TYPE_LENGTH (ntype)
319 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
320 TYPE_CODE (ntype) = TYPE_CODE_PTR;
321
67b2adb2 322 /* Mark pointers as unsigned. The target converts between pointers
76e71323 323 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 324 gdbarch_address_to_pointer. */
876cecd0 325 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 326
c906108c
SS
327 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
328 TYPE_POINTER_TYPE (type) = ntype;
329
053cb41b
JB
330 /* Update the length of all the other variants of this type. */
331 chain = TYPE_CHAIN (ntype);
332 while (chain != ntype)
333 {
334 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
335 chain = TYPE_CHAIN (chain);
336 }
337
c906108c
SS
338 return ntype;
339}
340
341/* Given a type TYPE, return a type of pointers to that type.
342 May need to construct such a type if this is the first use. */
343
344struct type *
fba45db2 345lookup_pointer_type (struct type *type)
c906108c 346{
c5aa993b 347 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
348}
349
7ba81444
MS
350/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
351 points to a pointer to memory where the reference type should be
352 stored. If *TYPEPTR is zero, update it to point to the reference
353 type we return. We allocate new memory if needed. */
c906108c
SS
354
355struct type *
fba45db2 356make_reference_type (struct type *type, struct type **typeptr)
c906108c 357{
52f0bd74 358 struct type *ntype; /* New type */
1e98b326 359 struct type *chain;
c906108c
SS
360
361 ntype = TYPE_REFERENCE_TYPE (type);
362
c5aa993b 363 if (ntype)
c906108c 364 {
c5aa993b 365 if (typeptr == 0)
7ba81444
MS
366 return ntype; /* Don't care about alloc,
367 and have new type. */
c906108c 368 else if (*typeptr == 0)
c5aa993b 369 {
7ba81444 370 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 371 return ntype;
c5aa993b 372 }
c906108c
SS
373 }
374
375 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
376 {
e9bb382b 377 ntype = alloc_type_copy (type);
c906108c
SS
378 if (typeptr)
379 *typeptr = ntype;
380 }
7ba81444 381 else /* We have storage, but need to reset it. */
c906108c
SS
382 {
383 ntype = *typeptr;
1e98b326 384 chain = TYPE_CHAIN (ntype);
2fdde8f8 385 smash_type (ntype);
1e98b326 386 TYPE_CHAIN (ntype) = chain;
c906108c
SS
387 }
388
389 TYPE_TARGET_TYPE (ntype) = type;
390 TYPE_REFERENCE_TYPE (type) = ntype;
391
7ba81444
MS
392 /* FIXME! Assume the machine has only one representation for
393 references, and that it matches the (only) representation for
394 pointers! */
c906108c 395
50810684
UW
396 TYPE_LENGTH (ntype) =
397 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 398 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 399
c906108c
SS
400 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
401 TYPE_REFERENCE_TYPE (type) = ntype;
402
1e98b326
JB
403 /* Update the length of all the other variants of this type. */
404 chain = TYPE_CHAIN (ntype);
405 while (chain != ntype)
406 {
407 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
408 chain = TYPE_CHAIN (chain);
409 }
410
c906108c
SS
411 return ntype;
412}
413
7ba81444
MS
414/* Same as above, but caller doesn't care about memory allocation
415 details. */
c906108c
SS
416
417struct type *
fba45db2 418lookup_reference_type (struct type *type)
c906108c 419{
c5aa993b 420 return make_reference_type (type, (struct type **) 0);
c906108c
SS
421}
422
7ba81444
MS
423/* Lookup a function type that returns type TYPE. TYPEPTR, if
424 nonzero, points to a pointer to memory where the function type
425 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 426 function type we return. We allocate new memory if needed. */
c906108c
SS
427
428struct type *
0c8b41f1 429make_function_type (struct type *type, struct type **typeptr)
c906108c 430{
52f0bd74 431 struct type *ntype; /* New type */
c906108c
SS
432
433 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
434 {
e9bb382b 435 ntype = alloc_type_copy (type);
c906108c
SS
436 if (typeptr)
437 *typeptr = ntype;
438 }
7ba81444 439 else /* We have storage, but need to reset it. */
c906108c
SS
440 {
441 ntype = *typeptr;
2fdde8f8 442 smash_type (ntype);
c906108c
SS
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446
447 TYPE_LENGTH (ntype) = 1;
448 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 449
b6cdc2c1
JK
450 INIT_FUNC_SPECIFIC (ntype);
451
c906108c
SS
452 return ntype;
453}
454
455
456/* Given a type TYPE, return a type of functions that return that type.
457 May need to construct such a type if this is the first use. */
458
459struct type *
fba45db2 460lookup_function_type (struct type *type)
c906108c 461{
0c8b41f1 462 return make_function_type (type, (struct type **) 0);
c906108c
SS
463}
464
47663de5
MS
465/* Identify address space identifier by name --
466 return the integer flag defined in gdbtypes.h. */
467extern int
50810684 468address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 469{
8b2dbe47 470 int type_flags;
d8734c88 471
7ba81444 472 /* Check for known address space delimiters. */
47663de5 473 if (!strcmp (space_identifier, "code"))
876cecd0 474 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 475 else if (!strcmp (space_identifier, "data"))
876cecd0 476 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
477 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
478 && gdbarch_address_class_name_to_type_flags (gdbarch,
479 space_identifier,
480 &type_flags))
8b2dbe47 481 return type_flags;
47663de5 482 else
8a3fe4f8 483 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
484}
485
486/* Identify address space identifier by integer flag as defined in
7ba81444 487 gdbtypes.h -- return the string version of the adress space name. */
47663de5 488
321432c0 489const char *
50810684 490address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 491{
876cecd0 492 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 493 return "code";
876cecd0 494 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 495 return "data";
876cecd0 496 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
497 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
498 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
499 else
500 return NULL;
501}
502
2fdde8f8 503/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
504
505 If STORAGE is non-NULL, create the new type instance there.
506 STORAGE must be in the same obstack as TYPE. */
47663de5 507
b9362cc7 508static struct type *
2fdde8f8
DJ
509make_qualified_type (struct type *type, int new_flags,
510 struct type *storage)
47663de5
MS
511{
512 struct type *ntype;
513
514 ntype = type;
5f61c20e
JK
515 do
516 {
517 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
518 return ntype;
519 ntype = TYPE_CHAIN (ntype);
520 }
521 while (ntype != type);
47663de5 522
2fdde8f8
DJ
523 /* Create a new type instance. */
524 if (storage == NULL)
525 ntype = alloc_type_instance (type);
526 else
527 {
7ba81444
MS
528 /* If STORAGE was provided, it had better be in the same objfile
529 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
530 if one objfile is freed and the other kept, we'd have
531 dangling pointers. */
ad766c0a
JB
532 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
533
2fdde8f8
DJ
534 ntype = storage;
535 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
536 TYPE_CHAIN (ntype) = ntype;
537 }
47663de5
MS
538
539 /* Pointers or references to the original type are not relevant to
2fdde8f8 540 the new type. */
47663de5
MS
541 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
542 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 543
2fdde8f8
DJ
544 /* Chain the new qualified type to the old type. */
545 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
546 TYPE_CHAIN (type) = ntype;
547
548 /* Now set the instance flags and return the new type. */
549 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 550
ab5d3da6
KB
551 /* Set length of new type to that of the original type. */
552 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
553
47663de5
MS
554 return ntype;
555}
556
2fdde8f8
DJ
557/* Make an address-space-delimited variant of a type -- a type that
558 is identical to the one supplied except that it has an address
559 space attribute attached to it (such as "code" or "data").
560
7ba81444
MS
561 The space attributes "code" and "data" are for Harvard
562 architectures. The address space attributes are for architectures
563 which have alternately sized pointers or pointers with alternate
564 representations. */
2fdde8f8
DJ
565
566struct type *
567make_type_with_address_space (struct type *type, int space_flag)
568{
2fdde8f8 569 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
570 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
571 | TYPE_INSTANCE_FLAG_DATA_SPACE
572 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
573 | space_flag);
574
575 return make_qualified_type (type, new_flags, NULL);
576}
c906108c
SS
577
578/* Make a "c-v" variant of a type -- a type that is identical to the
579 one supplied except that it may have const or volatile attributes
580 CNST is a flag for setting the const attribute
581 VOLTL is a flag for setting the volatile attribute
582 TYPE is the base type whose variant we are creating.
c906108c 583
ad766c0a
JB
584 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
585 storage to hold the new qualified type; *TYPEPTR and TYPE must be
586 in the same objfile. Otherwise, allocate fresh memory for the new
587 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
588 new type we construct. */
c906108c 589struct type *
7ba81444
MS
590make_cv_type (int cnst, int voltl,
591 struct type *type,
592 struct type **typeptr)
c906108c 593{
52f0bd74 594 struct type *ntype; /* New type */
c906108c 595
2fdde8f8 596 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
597 & ~(TYPE_INSTANCE_FLAG_CONST
598 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 599
c906108c 600 if (cnst)
876cecd0 601 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
602
603 if (voltl)
876cecd0 604 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 605
2fdde8f8 606 if (typeptr && *typeptr != NULL)
a02fd225 607 {
ad766c0a
JB
608 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
609 a C-V variant chain that threads across objfiles: if one
610 objfile gets freed, then the other has a broken C-V chain.
611
612 This code used to try to copy over the main type from TYPE to
613 *TYPEPTR if they were in different objfiles, but that's
614 wrong, too: TYPE may have a field list or member function
615 lists, which refer to types of their own, etc. etc. The
616 whole shebang would need to be copied over recursively; you
617 can't have inter-objfile pointers. The only thing to do is
618 to leave stub types as stub types, and look them up afresh by
619 name each time you encounter them. */
620 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
621 }
622
7ba81444
MS
623 ntype = make_qualified_type (type, new_flags,
624 typeptr ? *typeptr : NULL);
c906108c 625
2fdde8f8
DJ
626 if (typeptr != NULL)
627 *typeptr = ntype;
a02fd225 628
2fdde8f8 629 return ntype;
a02fd225 630}
c906108c 631
2fdde8f8
DJ
632/* Replace the contents of ntype with the type *type. This changes the
633 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
634 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 635
cda6c68a
JB
636 In order to build recursive types, it's inevitable that we'll need
637 to update types in place --- but this sort of indiscriminate
638 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
639 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
640 clear if more steps are needed. */
dd6bda65
DJ
641void
642replace_type (struct type *ntype, struct type *type)
643{
ab5d3da6 644 struct type *chain;
dd6bda65 645
ad766c0a
JB
646 /* These two types had better be in the same objfile. Otherwise,
647 the assignment of one type's main type structure to the other
648 will produce a type with references to objects (names; field
649 lists; etc.) allocated on an objfile other than its own. */
650 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
651
2fdde8f8 652 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 653
7ba81444
MS
654 /* The type length is not a part of the main type. Update it for
655 each type on the variant chain. */
ab5d3da6 656 chain = ntype;
5f61c20e
JK
657 do
658 {
659 /* Assert that this element of the chain has no address-class bits
660 set in its flags. Such type variants might have type lengths
661 which are supposed to be different from the non-address-class
662 variants. This assertion shouldn't ever be triggered because
663 symbol readers which do construct address-class variants don't
664 call replace_type(). */
665 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
666
667 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
668 chain = TYPE_CHAIN (chain);
669 }
670 while (ntype != chain);
ab5d3da6 671
2fdde8f8
DJ
672 /* Assert that the two types have equivalent instance qualifiers.
673 This should be true for at least all of our debug readers. */
674 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
675}
676
c906108c
SS
677/* Implement direct support for MEMBER_TYPE in GNU C++.
678 May need to construct such a type if this is the first use.
679 The TYPE is the type of the member. The DOMAIN is the type
680 of the aggregate that the member belongs to. */
681
682struct type *
0d5de010 683lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 684{
52f0bd74 685 struct type *mtype;
c906108c 686
e9bb382b 687 mtype = alloc_type_copy (type);
0d5de010 688 smash_to_memberptr_type (mtype, domain, type);
c16abbde 689 return mtype;
c906108c
SS
690}
691
0d5de010
DJ
692/* Return a pointer-to-method type, for a method of type TO_TYPE. */
693
694struct type *
695lookup_methodptr_type (struct type *to_type)
696{
697 struct type *mtype;
698
e9bb382b 699 mtype = alloc_type_copy (to_type);
0b92b5bb 700 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
701 return mtype;
702}
703
7ba81444
MS
704/* Allocate a stub method whose return type is TYPE. This apparently
705 happens for speed of symbol reading, since parsing out the
706 arguments to the method is cpu-intensive, the way we are doing it.
707 So, we will fill in arguments later. This always returns a fresh
708 type. */
c906108c
SS
709
710struct type *
fba45db2 711allocate_stub_method (struct type *type)
c906108c
SS
712{
713 struct type *mtype;
714
e9bb382b
UW
715 mtype = alloc_type_copy (type);
716 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
717 TYPE_LENGTH (mtype) = 1;
718 TYPE_STUB (mtype) = 1;
c906108c
SS
719 TYPE_TARGET_TYPE (mtype) = type;
720 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 721 return mtype;
c906108c
SS
722}
723
7ba81444
MS
724/* Create a range type using either a blank type supplied in
725 RESULT_TYPE, or creating a new type, inheriting the objfile from
726 INDEX_TYPE.
c906108c 727
7ba81444
MS
728 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
729 to HIGH_BOUND, inclusive.
c906108c 730
7ba81444
MS
731 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
732 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
733
734struct type *
fba45db2 735create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 736 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
737{
738 if (result_type == NULL)
e9bb382b 739 result_type = alloc_type_copy (index_type);
c906108c
SS
740 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
741 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 742 if (TYPE_STUB (index_type))
876cecd0 743 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
744 else
745 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
746 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
747 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
748 TYPE_LOW_BOUND (result_type) = low_bound;
749 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 750
c5aa993b 751 if (low_bound >= 0)
876cecd0 752 TYPE_UNSIGNED (result_type) = 1;
c906108c 753
262452ec 754 return result_type;
c906108c
SS
755}
756
7ba81444
MS
757/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
758 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
759 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
760
761int
fba45db2 762get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
763{
764 CHECK_TYPEDEF (type);
765 switch (TYPE_CODE (type))
766 {
767 case TYPE_CODE_RANGE:
768 *lowp = TYPE_LOW_BOUND (type);
769 *highp = TYPE_HIGH_BOUND (type);
770 return 1;
771 case TYPE_CODE_ENUM:
772 if (TYPE_NFIELDS (type) > 0)
773 {
774 /* The enums may not be sorted by value, so search all
0963b4bd 775 entries. */
c906108c
SS
776 int i;
777
14e75d8e 778 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
779 for (i = 0; i < TYPE_NFIELDS (type); i++)
780 {
14e75d8e
JK
781 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
782 *lowp = TYPE_FIELD_ENUMVAL (type, i);
783 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
784 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
785 }
786
7ba81444 787 /* Set unsigned indicator if warranted. */
c5aa993b 788 if (*lowp >= 0)
c906108c 789 {
876cecd0 790 TYPE_UNSIGNED (type) = 1;
c906108c
SS
791 }
792 }
793 else
794 {
795 *lowp = 0;
796 *highp = -1;
797 }
798 return 0;
799 case TYPE_CODE_BOOL:
800 *lowp = 0;
801 *highp = 1;
802 return 0;
803 case TYPE_CODE_INT:
c5aa993b 804 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
805 return -1;
806 if (!TYPE_UNSIGNED (type))
807 {
c5aa993b 808 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
809 *highp = -*lowp - 1;
810 return 0;
811 }
7ba81444 812 /* ... fall through for unsigned ints ... */
c906108c
SS
813 case TYPE_CODE_CHAR:
814 *lowp = 0;
815 /* This round-about calculation is to avoid shifting by
7b83ea04 816 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 817 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
818 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
819 *highp = (*highp - 1) | *highp;
820 return 0;
821 default:
822 return -1;
823 }
824}
825
dbc98a8b
KW
826/* Assuming TYPE is a simple, non-empty array type, compute its upper
827 and lower bound. Save the low bound into LOW_BOUND if not NULL.
828 Save the high bound into HIGH_BOUND if not NULL.
829
0963b4bd 830 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
831 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
832
833 We now simply use get_discrete_bounds call to get the values
834 of the low and high bounds.
835 get_discrete_bounds can return three values:
836 1, meaning that index is a range,
837 0, meaning that index is a discrete type,
838 or -1 for failure. */
839
840int
841get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
842{
843 struct type *index = TYPE_INDEX_TYPE (type);
844 LONGEST low = 0;
845 LONGEST high = 0;
846 int res;
847
848 if (index == NULL)
849 return 0;
850
851 res = get_discrete_bounds (index, &low, &high);
852 if (res == -1)
853 return 0;
854
855 /* Check if the array bounds are undefined. */
856 if (res == 1
857 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
858 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
859 return 0;
860
861 if (low_bound)
862 *low_bound = low;
863
864 if (high_bound)
865 *high_bound = high;
866
867 return 1;
868}
869
7ba81444
MS
870/* Create an array type using either a blank type supplied in
871 RESULT_TYPE, or creating a new type, inheriting the objfile from
872 RANGE_TYPE.
c906108c
SS
873
874 Elements will be of type ELEMENT_TYPE, the indices will be of type
875 RANGE_TYPE.
876
7ba81444
MS
877 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
878 sure it is TYPE_CODE_UNDEF before we bash it into an array
879 type? */
c906108c
SS
880
881struct type *
7ba81444
MS
882create_array_type (struct type *result_type,
883 struct type *element_type,
fba45db2 884 struct type *range_type)
c906108c
SS
885{
886 LONGEST low_bound, high_bound;
887
888 if (result_type == NULL)
e9bb382b
UW
889 result_type = alloc_type_copy (range_type);
890
c906108c
SS
891 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
892 TYPE_TARGET_TYPE (result_type) = element_type;
893 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
894 low_bound = high_bound = 0;
895 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
896 /* Be careful when setting the array length. Ada arrays can be
897 empty arrays with the high_bound being smaller than the low_bound.
898 In such cases, the array length should be zero. */
899 if (high_bound < low_bound)
900 TYPE_LENGTH (result_type) = 0;
901 else
902 TYPE_LENGTH (result_type) =
903 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
904 TYPE_NFIELDS (result_type) = 1;
905 TYPE_FIELDS (result_type) =
1deafd4e 906 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 907 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
908 TYPE_VPTR_FIELDNO (result_type) = -1;
909
0963b4bd 910 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 911 if (TYPE_LENGTH (result_type) == 0)
876cecd0 912 TYPE_TARGET_STUB (result_type) = 1;
c906108c 913
c16abbde 914 return result_type;
c906108c
SS
915}
916
e3506a9f
UW
917struct type *
918lookup_array_range_type (struct type *element_type,
919 int low_bound, int high_bound)
920{
50810684 921 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
922 struct type *index_type = builtin_type (gdbarch)->builtin_int;
923 struct type *range_type
924 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 925
e3506a9f
UW
926 return create_array_type (NULL, element_type, range_type);
927}
928
7ba81444
MS
929/* Create a string type using either a blank type supplied in
930 RESULT_TYPE, or creating a new type. String types are similar
931 enough to array of char types that we can use create_array_type to
932 build the basic type and then bash it into a string type.
c906108c
SS
933
934 For fixed length strings, the range type contains 0 as the lower
935 bound and the length of the string minus one as the upper bound.
936
7ba81444
MS
937 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
938 sure it is TYPE_CODE_UNDEF before we bash it into a string
939 type? */
c906108c
SS
940
941struct type *
3b7538c0
UW
942create_string_type (struct type *result_type,
943 struct type *string_char_type,
7ba81444 944 struct type *range_type)
c906108c
SS
945{
946 result_type = create_array_type (result_type,
f290d38e 947 string_char_type,
c906108c
SS
948 range_type);
949 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 950 return result_type;
c906108c
SS
951}
952
e3506a9f
UW
953struct type *
954lookup_string_range_type (struct type *string_char_type,
955 int low_bound, int high_bound)
956{
957 struct type *result_type;
d8734c88 958
e3506a9f
UW
959 result_type = lookup_array_range_type (string_char_type,
960 low_bound, high_bound);
961 TYPE_CODE (result_type) = TYPE_CODE_STRING;
962 return result_type;
963}
964
c906108c 965struct type *
fba45db2 966create_set_type (struct type *result_type, struct type *domain_type)
c906108c 967{
c906108c 968 if (result_type == NULL)
e9bb382b
UW
969 result_type = alloc_type_copy (domain_type);
970
c906108c
SS
971 TYPE_CODE (result_type) = TYPE_CODE_SET;
972 TYPE_NFIELDS (result_type) = 1;
1deafd4e 973 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 974
74a9bb82 975 if (!TYPE_STUB (domain_type))
c906108c 976 {
f9780d5b 977 LONGEST low_bound, high_bound, bit_length;
d8734c88 978
c906108c
SS
979 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
980 low_bound = high_bound = 0;
981 bit_length = high_bound - low_bound + 1;
982 TYPE_LENGTH (result_type)
983 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 984 if (low_bound >= 0)
876cecd0 985 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
986 }
987 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
988
c16abbde 989 return result_type;
c906108c
SS
990}
991
ea37ba09
DJ
992/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
993 and any array types nested inside it. */
994
995void
996make_vector_type (struct type *array_type)
997{
998 struct type *inner_array, *elt_type;
999 int flags;
1000
1001 /* Find the innermost array type, in case the array is
1002 multi-dimensional. */
1003 inner_array = array_type;
1004 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1005 inner_array = TYPE_TARGET_TYPE (inner_array);
1006
1007 elt_type = TYPE_TARGET_TYPE (inner_array);
1008 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1009 {
2844d6b5 1010 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1011 elt_type = make_qualified_type (elt_type, flags, NULL);
1012 TYPE_TARGET_TYPE (inner_array) = elt_type;
1013 }
1014
876cecd0 1015 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1016}
1017
794ac428 1018struct type *
ac3aafc7
EZ
1019init_vector_type (struct type *elt_type, int n)
1020{
1021 struct type *array_type;
d8734c88 1022
e3506a9f 1023 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1024 make_vector_type (array_type);
ac3aafc7
EZ
1025 return array_type;
1026}
1027
0d5de010
DJ
1028/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1029 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1030 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1031 TYPE doesn't include the offset (that's the value of the MEMBER
1032 itself), but does include the structure type into which it points
1033 (for some reason).
c906108c 1034
7ba81444
MS
1035 When "smashing" the type, we preserve the objfile that the old type
1036 pointed to, since we aren't changing where the type is actually
c906108c
SS
1037 allocated. */
1038
1039void
0d5de010
DJ
1040smash_to_memberptr_type (struct type *type, struct type *domain,
1041 struct type *to_type)
c906108c 1042{
2fdde8f8 1043 smash_type (type);
c906108c
SS
1044 TYPE_TARGET_TYPE (type) = to_type;
1045 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1046 /* Assume that a data member pointer is the same size as a normal
1047 pointer. */
50810684
UW
1048 TYPE_LENGTH (type)
1049 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1050 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1051}
1052
0b92b5bb
TT
1053/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1054
1055 When "smashing" the type, we preserve the objfile that the old type
1056 pointed to, since we aren't changing where the type is actually
1057 allocated. */
1058
1059void
1060smash_to_methodptr_type (struct type *type, struct type *to_type)
1061{
1062 smash_type (type);
1063 TYPE_TARGET_TYPE (type) = to_type;
1064 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1065 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1066 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1067}
1068
c906108c
SS
1069/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1070 METHOD just means `function that gets an extra "this" argument'.
1071
7ba81444
MS
1072 When "smashing" the type, we preserve the objfile that the old type
1073 pointed to, since we aren't changing where the type is actually
c906108c
SS
1074 allocated. */
1075
1076void
fba45db2 1077smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1078 struct type *to_type, struct field *args,
1079 int nargs, int varargs)
c906108c 1080{
2fdde8f8 1081 smash_type (type);
c906108c
SS
1082 TYPE_TARGET_TYPE (type) = to_type;
1083 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1084 TYPE_FIELDS (type) = args;
1085 TYPE_NFIELDS (type) = nargs;
1086 if (varargs)
876cecd0 1087 TYPE_VARARGS (type) = 1;
c906108c
SS
1088 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1089 TYPE_CODE (type) = TYPE_CODE_METHOD;
1090}
1091
1092/* Return a typename for a struct/union/enum type without "struct ",
1093 "union ", or "enum ". If the type has a NULL name, return NULL. */
1094
0d5cff50 1095const char *
aa1ee363 1096type_name_no_tag (const struct type *type)
c906108c
SS
1097{
1098 if (TYPE_TAG_NAME (type) != NULL)
1099 return TYPE_TAG_NAME (type);
1100
7ba81444
MS
1101 /* Is there code which expects this to return the name if there is
1102 no tag name? My guess is that this is mainly used for C++ in
1103 cases where the two will always be the same. */
c906108c
SS
1104 return TYPE_NAME (type);
1105}
1106
d8228535
JK
1107/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1108 Since GCC PR debug/47510 DWARF provides associated information to detect the
1109 anonymous class linkage name from its typedef.
1110
1111 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1112 apply it itself. */
1113
1114const char *
1115type_name_no_tag_or_error (struct type *type)
1116{
1117 struct type *saved_type = type;
1118 const char *name;
1119 struct objfile *objfile;
1120
1121 CHECK_TYPEDEF (type);
1122
1123 name = type_name_no_tag (type);
1124 if (name != NULL)
1125 return name;
1126
1127 name = type_name_no_tag (saved_type);
1128 objfile = TYPE_OBJFILE (saved_type);
1129 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1130 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1131}
1132
7ba81444
MS
1133/* Lookup a typedef or primitive type named NAME, visible in lexical
1134 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1135 suitably defined. */
c906108c
SS
1136
1137struct type *
e6c014f2 1138lookup_typename (const struct language_defn *language,
ddd49eee 1139 struct gdbarch *gdbarch, const char *name,
34eaf542 1140 const struct block *block, int noerr)
c906108c 1141{
52f0bd74
AC
1142 struct symbol *sym;
1143 struct type *tmp;
c906108c 1144
774b6a14 1145 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1146 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1147 return SYMBOL_TYPE (sym);
1148
1149 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1150 if (tmp)
1151 return tmp;
1152
1153 if (noerr)
1154 return NULL;
1155 error (_("No type named %s."), name);
c906108c
SS
1156}
1157
1158struct type *
e6c014f2 1159lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1160 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1161{
1162 char *uns = alloca (strlen (name) + 10);
1163
1164 strcpy (uns, "unsigned ");
1165 strcpy (uns + 9, name);
e6c014f2 1166 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1167}
1168
1169struct type *
e6c014f2 1170lookup_signed_typename (const struct language_defn *language,
0d5cff50 1171 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1172{
1173 struct type *t;
1174 char *uns = alloca (strlen (name) + 8);
1175
1176 strcpy (uns, "signed ");
1177 strcpy (uns + 7, name);
e6c014f2 1178 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1179 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1180 if (t != NULL)
1181 return t;
e6c014f2 1182 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1183}
1184
1185/* Lookup a structure type named "struct NAME",
1186 visible in lexical block BLOCK. */
1187
1188struct type *
ddd49eee 1189lookup_struct (const char *name, struct block *block)
c906108c 1190{
52f0bd74 1191 struct symbol *sym;
c906108c 1192
2570f2b7 1193 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1194
1195 if (sym == NULL)
1196 {
8a3fe4f8 1197 error (_("No struct type named %s."), name);
c906108c
SS
1198 }
1199 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1200 {
7ba81444
MS
1201 error (_("This context has class, union or enum %s, not a struct."),
1202 name);
c906108c
SS
1203 }
1204 return (SYMBOL_TYPE (sym));
1205}
1206
1207/* Lookup a union type named "union NAME",
1208 visible in lexical block BLOCK. */
1209
1210struct type *
ddd49eee 1211lookup_union (const char *name, struct block *block)
c906108c 1212{
52f0bd74 1213 struct symbol *sym;
c5aa993b 1214 struct type *t;
c906108c 1215
2570f2b7 1216 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1217
1218 if (sym == NULL)
8a3fe4f8 1219 error (_("No union type named %s."), name);
c906108c 1220
c5aa993b 1221 t = SYMBOL_TYPE (sym);
c906108c
SS
1222
1223 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1224 return t;
c906108c 1225
7ba81444
MS
1226 /* If we get here, it's not a union. */
1227 error (_("This context has class, struct or enum %s, not a union."),
1228 name);
c906108c
SS
1229}
1230
1231
1232/* Lookup an enum type named "enum NAME",
1233 visible in lexical block BLOCK. */
1234
1235struct type *
ddd49eee 1236lookup_enum (const char *name, struct block *block)
c906108c 1237{
52f0bd74 1238 struct symbol *sym;
c906108c 1239
2570f2b7 1240 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1241 if (sym == NULL)
1242 {
8a3fe4f8 1243 error (_("No enum type named %s."), name);
c906108c
SS
1244 }
1245 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1246 {
7ba81444
MS
1247 error (_("This context has class, struct or union %s, not an enum."),
1248 name);
c906108c
SS
1249 }
1250 return (SYMBOL_TYPE (sym));
1251}
1252
1253/* Lookup a template type named "template NAME<TYPE>",
1254 visible in lexical block BLOCK. */
1255
1256struct type *
7ba81444
MS
1257lookup_template_type (char *name, struct type *type,
1258 struct block *block)
c906108c
SS
1259{
1260 struct symbol *sym;
7ba81444
MS
1261 char *nam = (char *)
1262 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1263
c906108c
SS
1264 strcpy (nam, name);
1265 strcat (nam, "<");
0004e5a2 1266 strcat (nam, TYPE_NAME (type));
0963b4bd 1267 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1268
2570f2b7 1269 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1270
1271 if (sym == NULL)
1272 {
8a3fe4f8 1273 error (_("No template type named %s."), name);
c906108c
SS
1274 }
1275 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1276 {
7ba81444
MS
1277 error (_("This context has class, union or enum %s, not a struct."),
1278 name);
c906108c
SS
1279 }
1280 return (SYMBOL_TYPE (sym));
1281}
1282
7ba81444
MS
1283/* Given a type TYPE, lookup the type of the component of type named
1284 NAME.
c906108c 1285
7ba81444
MS
1286 TYPE can be either a struct or union, or a pointer or reference to
1287 a struct or union. If it is a pointer or reference, its target
1288 type is automatically used. Thus '.' and '->' are interchangable,
1289 as specified for the definitions of the expression element types
1290 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1291
1292 If NOERR is nonzero, return zero if NAME is not suitably defined.
1293 If NAME is the name of a baseclass type, return that type. */
1294
1295struct type *
fba45db2 1296lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1297{
1298 int i;
c92817ce 1299 char *typename;
c906108c
SS
1300
1301 for (;;)
1302 {
1303 CHECK_TYPEDEF (type);
1304 if (TYPE_CODE (type) != TYPE_CODE_PTR
1305 && TYPE_CODE (type) != TYPE_CODE_REF)
1306 break;
1307 type = TYPE_TARGET_TYPE (type);
1308 }
1309
687d6395
MS
1310 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1311 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1312 {
c92817ce
TT
1313 typename = type_to_string (type);
1314 make_cleanup (xfree, typename);
1315 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1316 }
1317
1318#if 0
7ba81444
MS
1319 /* FIXME: This change put in by Michael seems incorrect for the case
1320 where the structure tag name is the same as the member name.
0963b4bd 1321 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1322 foo; } bell;" Disabled by fnf. */
c906108c
SS
1323 {
1324 char *typename;
1325
1326 typename = type_name_no_tag (type);
762f08a3 1327 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1328 return type;
1329 }
1330#endif
1331
1332 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1333 {
0d5cff50 1334 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1335
db577aea 1336 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1337 {
1338 return TYPE_FIELD_TYPE (type, i);
1339 }
f5a010c0
PM
1340 else if (!t_field_name || *t_field_name == '\0')
1341 {
d8734c88
MS
1342 struct type *subtype
1343 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1344
f5a010c0
PM
1345 if (subtype != NULL)
1346 return subtype;
1347 }
c906108c
SS
1348 }
1349
1350 /* OK, it's not in this class. Recursively check the baseclasses. */
1351 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1352 {
1353 struct type *t;
1354
9733fc94 1355 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1356 if (t != NULL)
1357 {
1358 return t;
1359 }
1360 }
1361
1362 if (noerr)
1363 {
1364 return NULL;
1365 }
c5aa993b 1366
c92817ce
TT
1367 typename = type_to_string (type);
1368 make_cleanup (xfree, typename);
1369 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1370}
1371
81fe8080
DE
1372/* Lookup the vptr basetype/fieldno values for TYPE.
1373 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1374 vptr_fieldno. Also, if found and basetype is from the same objfile,
1375 cache the results.
1376 If not found, return -1 and ignore BASETYPEP.
1377 Callers should be aware that in some cases (for example,
c906108c 1378 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1379 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1380 this function will not be able to find the
7ba81444 1381 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1382 vptr_basetype will remain NULL or incomplete. */
c906108c 1383
81fe8080
DE
1384int
1385get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1386{
1387 CHECK_TYPEDEF (type);
1388
1389 if (TYPE_VPTR_FIELDNO (type) < 0)
1390 {
1391 int i;
1392
7ba81444
MS
1393 /* We must start at zero in case the first (and only) baseclass
1394 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1395 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1396 {
81fe8080
DE
1397 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1398 int fieldno;
1399 struct type *basetype;
1400
1401 fieldno = get_vptr_fieldno (baseclass, &basetype);
1402 if (fieldno >= 0)
c906108c 1403 {
81fe8080 1404 /* If the type comes from a different objfile we can't cache
0963b4bd 1405 it, it may have a different lifetime. PR 2384 */
5ef73790 1406 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1407 {
1408 TYPE_VPTR_FIELDNO (type) = fieldno;
1409 TYPE_VPTR_BASETYPE (type) = basetype;
1410 }
1411 if (basetypep)
1412 *basetypep = basetype;
1413 return fieldno;
c906108c
SS
1414 }
1415 }
81fe8080
DE
1416
1417 /* Not found. */
1418 return -1;
1419 }
1420 else
1421 {
1422 if (basetypep)
1423 *basetypep = TYPE_VPTR_BASETYPE (type);
1424 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1425 }
1426}
1427
44e1a9eb
DJ
1428static void
1429stub_noname_complaint (void)
1430{
e2e0b3e5 1431 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1432}
1433
92163a10
JK
1434/* Find the real type of TYPE. This function returns the real type,
1435 after removing all layers of typedefs, and completing opaque or stub
1436 types. Completion changes the TYPE argument, but stripping of
1437 typedefs does not.
1438
1439 Instance flags (e.g. const/volatile) are preserved as typedefs are
1440 stripped. If necessary a new qualified form of the underlying type
1441 is created.
1442
1443 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1444 not been computed and we're either in the middle of reading symbols, or
1445 there was no name for the typedef in the debug info.
1446
9bc118a5
DE
1447 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1448 QUITs in the symbol reading code can also throw.
1449 Thus this function can throw an exception.
1450
92163a10
JK
1451 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1452 the target type.
c906108c
SS
1453
1454 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1455 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1456 definition, so we can use it in future. There used to be a comment
1457 (but not any code) that if we don't find a full definition, we'd
1458 set a flag so we don't spend time in the future checking the same
1459 type. That would be a mistake, though--we might load in more
92163a10 1460 symbols which contain a full definition for the type. */
c906108c
SS
1461
1462struct type *
a02fd225 1463check_typedef (struct type *type)
c906108c
SS
1464{
1465 struct type *orig_type = type;
92163a10
JK
1466 /* While we're removing typedefs, we don't want to lose qualifiers.
1467 E.g., const/volatile. */
1468 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1469
423c0af8
MS
1470 gdb_assert (type);
1471
c906108c
SS
1472 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1473 {
1474 if (!TYPE_TARGET_TYPE (type))
1475 {
0d5cff50 1476 const char *name;
c906108c
SS
1477 struct symbol *sym;
1478
1479 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1480 reading a symtab. Infinite recursion is one danger. */
c906108c 1481 if (currently_reading_symtab)
92163a10 1482 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1483
1484 name = type_name_no_tag (type);
7ba81444
MS
1485 /* FIXME: shouldn't we separately check the TYPE_NAME and
1486 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1487 VAR_DOMAIN as appropriate? (this code was written before
1488 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1489 if (name == NULL)
1490 {
23136709 1491 stub_noname_complaint ();
92163a10 1492 return make_qualified_type (type, instance_flags, NULL);
c906108c 1493 }
2570f2b7 1494 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1495 if (sym)
1496 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1497 else /* TYPE_CODE_UNDEF */
e9bb382b 1498 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1499 }
1500 type = TYPE_TARGET_TYPE (type);
c906108c 1501
92163a10
JK
1502 /* Preserve the instance flags as we traverse down the typedef chain.
1503
1504 Handling address spaces/classes is nasty, what do we do if there's a
1505 conflict?
1506 E.g., what if an outer typedef marks the type as class_1 and an inner
1507 typedef marks the type as class_2?
1508 This is the wrong place to do such error checking. We leave it to
1509 the code that created the typedef in the first place to flag the
1510 error. We just pick the outer address space (akin to letting the
1511 outer cast in a chain of casting win), instead of assuming
1512 "it can't happen". */
1513 {
1514 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1515 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1516 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1517 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1518
1519 /* Treat code vs data spaces and address classes separately. */
1520 if ((instance_flags & ALL_SPACES) != 0)
1521 new_instance_flags &= ~ALL_SPACES;
1522 if ((instance_flags & ALL_CLASSES) != 0)
1523 new_instance_flags &= ~ALL_CLASSES;
1524
1525 instance_flags |= new_instance_flags;
1526 }
1527 }
a02fd225 1528
7ba81444
MS
1529 /* If this is a struct/class/union with no fields, then check
1530 whether a full definition exists somewhere else. This is for
1531 systems where a type definition with no fields is issued for such
1532 types, instead of identifying them as stub types in the first
1533 place. */
c5aa993b 1534
7ba81444
MS
1535 if (TYPE_IS_OPAQUE (type)
1536 && opaque_type_resolution
1537 && !currently_reading_symtab)
c906108c 1538 {
0d5cff50 1539 const char *name = type_name_no_tag (type);
c5aa993b 1540 struct type *newtype;
d8734c88 1541
c906108c
SS
1542 if (name == NULL)
1543 {
23136709 1544 stub_noname_complaint ();
92163a10 1545 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1546 }
1547 newtype = lookup_transparent_type (name);
ad766c0a 1548
c906108c 1549 if (newtype)
ad766c0a 1550 {
7ba81444
MS
1551 /* If the resolved type and the stub are in the same
1552 objfile, then replace the stub type with the real deal.
1553 But if they're in separate objfiles, leave the stub
1554 alone; we'll just look up the transparent type every time
1555 we call check_typedef. We can't create pointers between
1556 types allocated to different objfiles, since they may
1557 have different lifetimes. Trying to copy NEWTYPE over to
1558 TYPE's objfile is pointless, too, since you'll have to
1559 move over any other types NEWTYPE refers to, which could
1560 be an unbounded amount of stuff. */
ad766c0a 1561 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1562 type = make_qualified_type (newtype,
1563 TYPE_INSTANCE_FLAGS (type),
1564 type);
ad766c0a
JB
1565 else
1566 type = newtype;
1567 }
c906108c 1568 }
7ba81444
MS
1569 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1570 types. */
74a9bb82 1571 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1572 {
0d5cff50 1573 const char *name = type_name_no_tag (type);
c906108c 1574 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1575 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1576 as appropriate? (this code was written before TYPE_NAME and
1577 TYPE_TAG_NAME were separate). */
c906108c 1578 struct symbol *sym;
d8734c88 1579
c906108c
SS
1580 if (name == NULL)
1581 {
23136709 1582 stub_noname_complaint ();
92163a10 1583 return make_qualified_type (type, instance_flags, NULL);
c906108c 1584 }
2570f2b7 1585 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1586 if (sym)
c26f2453
JB
1587 {
1588 /* Same as above for opaque types, we can replace the stub
92163a10 1589 with the complete type only if they are in the same
c26f2453
JB
1590 objfile. */
1591 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1592 type = make_qualified_type (SYMBOL_TYPE (sym),
1593 TYPE_INSTANCE_FLAGS (type),
1594 type);
c26f2453
JB
1595 else
1596 type = SYMBOL_TYPE (sym);
1597 }
c906108c
SS
1598 }
1599
74a9bb82 1600 if (TYPE_TARGET_STUB (type))
c906108c
SS
1601 {
1602 struct type *range_type;
1603 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1604
74a9bb82 1605 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1606 {
73e2eb35 1607 /* Nothing we can do. */
c5aa993b 1608 }
c906108c
SS
1609 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1610 && TYPE_NFIELDS (type) == 1
262452ec 1611 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1612 == TYPE_CODE_RANGE))
1613 {
1614 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1615 number of elements and the target type's length.
1616 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1617 is smaller than the low bound. */
43bbcdc2
PH
1618 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1619 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1620 ULONGEST len;
1621
ab0d6e0d 1622 if (high_bound < low_bound)
43bbcdc2 1623 len = 0;
d8734c88
MS
1624 else
1625 {
1626 /* For now, we conservatively take the array length to be 0
1627 if its length exceeds UINT_MAX. The code below assumes
1628 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1629 which is technically not guaranteed by C, but is usually true
1630 (because it would be true if x were unsigned with its
0963b4bd 1631 high-order bit on). It uses the fact that
d8734c88
MS
1632 high_bound-low_bound is always representable in
1633 ULONGEST and that if high_bound-low_bound+1 overflows,
1634 it overflows to 0. We must change these tests if we
1635 decide to increase the representation of TYPE_LENGTH
0963b4bd 1636 from unsigned int to ULONGEST. */
d8734c88
MS
1637 ULONGEST ulow = low_bound, uhigh = high_bound;
1638 ULONGEST tlen = TYPE_LENGTH (target_type);
1639
1640 len = tlen * (uhigh - ulow + 1);
1641 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1642 || len > UINT_MAX)
1643 len = 0;
1644 }
43bbcdc2 1645 TYPE_LENGTH (type) = len;
876cecd0 1646 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1647 }
1648 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1649 {
1650 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1651 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1652 }
1653 }
92163a10
JK
1654
1655 type = make_qualified_type (type, instance_flags, NULL);
1656
7ba81444 1657 /* Cache TYPE_LENGTH for future use. */
c906108c 1658 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1659
c906108c
SS
1660 return type;
1661}
1662
7ba81444 1663/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1664 occurs, silently return a void type. */
c91ecb25 1665
b9362cc7 1666static struct type *
48319d1f 1667safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1668{
1669 struct ui_file *saved_gdb_stderr;
34365054 1670 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 1671 volatile struct gdb_exception except;
c91ecb25 1672
7ba81444 1673 /* Suppress error messages. */
c91ecb25
ND
1674 saved_gdb_stderr = gdb_stderr;
1675 gdb_stderr = ui_file_new ();
1676
7ba81444 1677 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
1678 TRY_CATCH (except, RETURN_MASK_ERROR)
1679 {
1680 type = parse_and_eval_type (p, length);
1681 }
1682
1683 if (except.reason < 0)
48319d1f 1684 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1685
7ba81444 1686 /* Stop suppressing error messages. */
c91ecb25
ND
1687 ui_file_delete (gdb_stderr);
1688 gdb_stderr = saved_gdb_stderr;
1689
1690 return type;
1691}
1692
c906108c
SS
1693/* Ugly hack to convert method stubs into method types.
1694
7ba81444
MS
1695 He ain't kiddin'. This demangles the name of the method into a
1696 string including argument types, parses out each argument type,
1697 generates a string casting a zero to that type, evaluates the
1698 string, and stuffs the resulting type into an argtype vector!!!
1699 Then it knows the type of the whole function (including argument
1700 types for overloading), which info used to be in the stab's but was
1701 removed to hack back the space required for them. */
c906108c 1702
de17c821 1703static void
fba45db2 1704check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1705{
50810684 1706 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1707 struct fn_field *f;
1708 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1709 char *demangled_name = cplus_demangle (mangled_name,
1710 DMGL_PARAMS | DMGL_ANSI);
1711 char *argtypetext, *p;
1712 int depth = 0, argcount = 1;
ad2f7632 1713 struct field *argtypes;
c906108c
SS
1714 struct type *mtype;
1715
1716 /* Make sure we got back a function string that we can use. */
1717 if (demangled_name)
1718 p = strchr (demangled_name, '(');
502dcf4e
AC
1719 else
1720 p = NULL;
c906108c
SS
1721
1722 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1723 error (_("Internal: Cannot demangle mangled name `%s'."),
1724 mangled_name);
c906108c
SS
1725
1726 /* Now, read in the parameters that define this type. */
1727 p += 1;
1728 argtypetext = p;
1729 while (*p)
1730 {
070ad9f0 1731 if (*p == '(' || *p == '<')
c906108c
SS
1732 {
1733 depth += 1;
1734 }
070ad9f0 1735 else if (*p == ')' || *p == '>')
c906108c
SS
1736 {
1737 depth -= 1;
1738 }
1739 else if (*p == ',' && depth == 0)
1740 {
1741 argcount += 1;
1742 }
1743
1744 p += 1;
1745 }
1746
ad2f7632
DJ
1747 /* If we read one argument and it was ``void'', don't count it. */
1748 if (strncmp (argtypetext, "(void)", 6) == 0)
1749 argcount -= 1;
c906108c 1750
ad2f7632
DJ
1751 /* We need one extra slot, for the THIS pointer. */
1752
1753 argtypes = (struct field *)
1754 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1755 p = argtypetext;
4a1970e4
DJ
1756
1757 /* Add THIS pointer for non-static methods. */
1758 f = TYPE_FN_FIELDLIST1 (type, method_id);
1759 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1760 argcount = 0;
1761 else
1762 {
ad2f7632 1763 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1764 argcount = 1;
1765 }
c906108c 1766
0963b4bd 1767 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1768 {
1769 depth = 0;
1770 while (*p)
1771 {
1772 if (depth <= 0 && (*p == ',' || *p == ')'))
1773 {
ad2f7632
DJ
1774 /* Avoid parsing of ellipsis, they will be handled below.
1775 Also avoid ``void'' as above. */
1776 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1777 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1778 {
ad2f7632 1779 argtypes[argcount].type =
48319d1f 1780 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1781 argcount += 1;
1782 }
1783 argtypetext = p + 1;
1784 }
1785
070ad9f0 1786 if (*p == '(' || *p == '<')
c906108c
SS
1787 {
1788 depth += 1;
1789 }
070ad9f0 1790 else if (*p == ')' || *p == '>')
c906108c
SS
1791 {
1792 depth -= 1;
1793 }
1794
1795 p += 1;
1796 }
1797 }
1798
c906108c
SS
1799 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1800
1801 /* Now update the old "stub" type into a real type. */
1802 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1803 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1804 TYPE_FIELDS (mtype) = argtypes;
1805 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1806 TYPE_STUB (mtype) = 0;
c906108c 1807 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1808 if (p[-2] == '.')
876cecd0 1809 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1810
1811 xfree (demangled_name);
c906108c
SS
1812}
1813
7ba81444
MS
1814/* This is the external interface to check_stub_method, above. This
1815 function unstubs all of the signatures for TYPE's METHOD_ID method
1816 name. After calling this function TYPE_FN_FIELD_STUB will be
1817 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1818 correct.
de17c821
DJ
1819
1820 This function unfortunately can not die until stabs do. */
1821
1822void
1823check_stub_method_group (struct type *type, int method_id)
1824{
1825 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1826 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1827 int j, found_stub = 0;
de17c821
DJ
1828
1829 for (j = 0; j < len; j++)
1830 if (TYPE_FN_FIELD_STUB (f, j))
1831 {
1832 found_stub = 1;
1833 check_stub_method (type, method_id, j);
1834 }
1835
7ba81444
MS
1836 /* GNU v3 methods with incorrect names were corrected when we read
1837 in type information, because it was cheaper to do it then. The
1838 only GNU v2 methods with incorrect method names are operators and
1839 destructors; destructors were also corrected when we read in type
1840 information.
de17c821
DJ
1841
1842 Therefore the only thing we need to handle here are v2 operator
1843 names. */
1844 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1845 {
1846 int ret;
1847 char dem_opname[256];
1848
7ba81444
MS
1849 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1850 method_id),
de17c821
DJ
1851 dem_opname, DMGL_ANSI);
1852 if (!ret)
7ba81444
MS
1853 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1854 method_id),
de17c821
DJ
1855 dem_opname, 0);
1856 if (ret)
1857 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1858 }
1859}
1860
9655fd1a
JK
1861/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1862const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1863
1864void
fba45db2 1865allocate_cplus_struct_type (struct type *type)
c906108c 1866{
b4ba55a1
JB
1867 if (HAVE_CPLUS_STRUCT (type))
1868 /* Structure was already allocated. Nothing more to do. */
1869 return;
1870
1871 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1872 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1873 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1874 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1875}
1876
b4ba55a1
JB
1877const struct gnat_aux_type gnat_aux_default =
1878 { NULL };
1879
1880/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1881 and allocate the associated gnat-specific data. The gnat-specific
1882 data is also initialized to gnat_aux_default. */
1883void
1884allocate_gnat_aux_type (struct type *type)
1885{
1886 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1887 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1888 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1889 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1890}
1891
1892
c906108c
SS
1893/* Helper function to initialize the standard scalar types.
1894
e9bb382b
UW
1895 If NAME is non-NULL, then we make a copy of the string pointed
1896 to by name in the objfile_obstack for that objfile, and initialize
1897 the type name to that copy. There are places (mipsread.c in particular),
1898 where init_type is called with a NULL value for NAME). */
c906108c
SS
1899
1900struct type *
7ba81444
MS
1901init_type (enum type_code code, int length, int flags,
1902 char *name, struct objfile *objfile)
c906108c 1903{
52f0bd74 1904 struct type *type;
c906108c
SS
1905
1906 type = alloc_type (objfile);
1907 TYPE_CODE (type) = code;
1908 TYPE_LENGTH (type) = length;
876cecd0
TT
1909
1910 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1911 if (flags & TYPE_FLAG_UNSIGNED)
1912 TYPE_UNSIGNED (type) = 1;
1913 if (flags & TYPE_FLAG_NOSIGN)
1914 TYPE_NOSIGN (type) = 1;
1915 if (flags & TYPE_FLAG_STUB)
1916 TYPE_STUB (type) = 1;
1917 if (flags & TYPE_FLAG_TARGET_STUB)
1918 TYPE_TARGET_STUB (type) = 1;
1919 if (flags & TYPE_FLAG_STATIC)
1920 TYPE_STATIC (type) = 1;
1921 if (flags & TYPE_FLAG_PROTOTYPED)
1922 TYPE_PROTOTYPED (type) = 1;
1923 if (flags & TYPE_FLAG_INCOMPLETE)
1924 TYPE_INCOMPLETE (type) = 1;
1925 if (flags & TYPE_FLAG_VARARGS)
1926 TYPE_VARARGS (type) = 1;
1927 if (flags & TYPE_FLAG_VECTOR)
1928 TYPE_VECTOR (type) = 1;
1929 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1930 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1931 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1932 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1933 if (flags & TYPE_FLAG_GNU_IFUNC)
1934 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1935
e9bb382b
UW
1936 if (name)
1937 TYPE_NAME (type) = obsavestring (name, strlen (name),
1938 &objfile->objfile_obstack);
c906108c
SS
1939
1940 /* C++ fancies. */
1941
973ccf8b 1942 if (name && strcmp (name, "char") == 0)
876cecd0 1943 TYPE_NOSIGN (type) = 1;
973ccf8b 1944
b4ba55a1 1945 switch (code)
c906108c 1946 {
b4ba55a1
JB
1947 case TYPE_CODE_STRUCT:
1948 case TYPE_CODE_UNION:
1949 case TYPE_CODE_NAMESPACE:
1950 INIT_CPLUS_SPECIFIC (type);
1951 break;
1952 case TYPE_CODE_FLT:
1953 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1954 break;
1955 case TYPE_CODE_FUNC:
b6cdc2c1 1956 INIT_FUNC_SPECIFIC (type);
b4ba55a1 1957 break;
c906108c 1958 }
c16abbde 1959 return type;
c906108c
SS
1960}
1961
c906108c 1962int
fba45db2 1963can_dereference (struct type *t)
c906108c 1964{
7ba81444
MS
1965 /* FIXME: Should we return true for references as well as
1966 pointers? */
c906108c
SS
1967 CHECK_TYPEDEF (t);
1968 return
1969 (t != NULL
1970 && TYPE_CODE (t) == TYPE_CODE_PTR
1971 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1972}
1973
adf40b2e 1974int
fba45db2 1975is_integral_type (struct type *t)
adf40b2e
JM
1976{
1977 CHECK_TYPEDEF (t);
1978 return
1979 ((t != NULL)
d4f3574e
SS
1980 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1981 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1982 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1983 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1984 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1985 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1986}
1987
e09342b5
TJB
1988/* Return true if TYPE is scalar. */
1989
1990static int
1991is_scalar_type (struct type *type)
1992{
1993 CHECK_TYPEDEF (type);
1994
1995 switch (TYPE_CODE (type))
1996 {
1997 case TYPE_CODE_ARRAY:
1998 case TYPE_CODE_STRUCT:
1999 case TYPE_CODE_UNION:
2000 case TYPE_CODE_SET:
2001 case TYPE_CODE_STRING:
2002 case TYPE_CODE_BITSTRING:
2003 return 0;
2004 default:
2005 return 1;
2006 }
2007}
2008
2009/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2010 the memory layout of a scalar type. E.g., an array or struct with only
2011 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2012
2013int
2014is_scalar_type_recursive (struct type *t)
2015{
2016 CHECK_TYPEDEF (t);
2017
2018 if (is_scalar_type (t))
2019 return 1;
2020 /* Are we dealing with an array or string of known dimensions? */
2021 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2022 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2023 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2024 {
2025 LONGEST low_bound, high_bound;
2026 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2027
2028 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2029
2030 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2031 }
2032 /* Are we dealing with a struct with one element? */
2033 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2034 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2035 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2036 {
2037 int i, n = TYPE_NFIELDS (t);
2038
2039 /* If all elements of the union are scalar, then the union is scalar. */
2040 for (i = 0; i < n; i++)
2041 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2042 return 0;
2043
2044 return 1;
2045 }
2046
2047 return 0;
2048}
2049
4e8f195d
TT
2050/* A helper function which returns true if types A and B represent the
2051 "same" class type. This is true if the types have the same main
2052 type, or the same name. */
2053
2054int
2055class_types_same_p (const struct type *a, const struct type *b)
2056{
2057 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2058 || (TYPE_NAME (a) && TYPE_NAME (b)
2059 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2060}
2061
a9d5ef47
SW
2062/* If BASE is an ancestor of DCLASS return the distance between them.
2063 otherwise return -1;
2064 eg:
2065
2066 class A {};
2067 class B: public A {};
2068 class C: public B {};
2069 class D: C {};
2070
2071 distance_to_ancestor (A, A, 0) = 0
2072 distance_to_ancestor (A, B, 0) = 1
2073 distance_to_ancestor (A, C, 0) = 2
2074 distance_to_ancestor (A, D, 0) = 3
2075
2076 If PUBLIC is 1 then only public ancestors are considered,
2077 and the function returns the distance only if BASE is a public ancestor
2078 of DCLASS.
2079 Eg:
2080
0963b4bd 2081 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2082
0526b37a 2083static int
a9d5ef47 2084distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2085{
2086 int i;
a9d5ef47 2087 int d;
c5aa993b 2088
c906108c
SS
2089 CHECK_TYPEDEF (base);
2090 CHECK_TYPEDEF (dclass);
2091
4e8f195d 2092 if (class_types_same_p (base, dclass))
a9d5ef47 2093 return 0;
c906108c
SS
2094
2095 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2096 {
0526b37a
SW
2097 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2098 continue;
2099
a9d5ef47
SW
2100 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2101 if (d >= 0)
2102 return 1 + d;
4e8f195d 2103 }
c906108c 2104
a9d5ef47 2105 return -1;
c906108c 2106}
4e8f195d 2107
0526b37a
SW
2108/* Check whether BASE is an ancestor or base class or DCLASS
2109 Return 1 if so, and 0 if not.
2110 Note: If BASE and DCLASS are of the same type, this function
2111 will return 1. So for some class A, is_ancestor (A, A) will
2112 return 1. */
2113
2114int
2115is_ancestor (struct type *base, struct type *dclass)
2116{
a9d5ef47 2117 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2118}
2119
4e8f195d
TT
2120/* Like is_ancestor, but only returns true when BASE is a public
2121 ancestor of DCLASS. */
2122
2123int
2124is_public_ancestor (struct type *base, struct type *dclass)
2125{
a9d5ef47 2126 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2127}
2128
2129/* A helper function for is_unique_ancestor. */
2130
2131static int
2132is_unique_ancestor_worker (struct type *base, struct type *dclass,
2133 int *offset,
8af8e3bc
PA
2134 const gdb_byte *valaddr, int embedded_offset,
2135 CORE_ADDR address, struct value *val)
4e8f195d
TT
2136{
2137 int i, count = 0;
2138
2139 CHECK_TYPEDEF (base);
2140 CHECK_TYPEDEF (dclass);
2141
2142 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2143 {
8af8e3bc
PA
2144 struct type *iter;
2145 int this_offset;
4e8f195d 2146
8af8e3bc
PA
2147 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2148
2149 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2150 address, val);
4e8f195d
TT
2151
2152 if (class_types_same_p (base, iter))
2153 {
2154 /* If this is the first subclass, set *OFFSET and set count
2155 to 1. Otherwise, if this is at the same offset as
2156 previous instances, do nothing. Otherwise, increment
2157 count. */
2158 if (*offset == -1)
2159 {
2160 *offset = this_offset;
2161 count = 1;
2162 }
2163 else if (this_offset == *offset)
2164 {
2165 /* Nothing. */
2166 }
2167 else
2168 ++count;
2169 }
2170 else
2171 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2172 valaddr,
2173 embedded_offset + this_offset,
2174 address, val);
4e8f195d
TT
2175 }
2176
2177 return count;
2178}
2179
2180/* Like is_ancestor, but only returns true if BASE is a unique base
2181 class of the type of VAL. */
2182
2183int
2184is_unique_ancestor (struct type *base, struct value *val)
2185{
2186 int offset = -1;
2187
2188 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2189 value_contents_for_printing (val),
2190 value_embedded_offset (val),
2191 value_address (val), val) == 1;
4e8f195d
TT
2192}
2193
c906108c
SS
2194\f
2195
6403aeea
SW
2196/* Return the sum of the rank of A with the rank of B. */
2197
2198struct rank
2199sum_ranks (struct rank a, struct rank b)
2200{
2201 struct rank c;
2202 c.rank = a.rank + b.rank;
a9d5ef47 2203 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2204 return c;
2205}
2206
2207/* Compare rank A and B and return:
2208 0 if a = b
2209 1 if a is better than b
2210 -1 if b is better than a. */
2211
2212int
2213compare_ranks (struct rank a, struct rank b)
2214{
2215 if (a.rank == b.rank)
a9d5ef47
SW
2216 {
2217 if (a.subrank == b.subrank)
2218 return 0;
2219 if (a.subrank < b.subrank)
2220 return 1;
2221 if (a.subrank > b.subrank)
2222 return -1;
2223 }
6403aeea
SW
2224
2225 if (a.rank < b.rank)
2226 return 1;
2227
0963b4bd 2228 /* a.rank > b.rank */
6403aeea
SW
2229 return -1;
2230}
c5aa993b 2231
0963b4bd 2232/* Functions for overload resolution begin here. */
c906108c
SS
2233
2234/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2235 0 => A and B are identical
2236 1 => A and B are incomparable
2237 2 => A is better than B
2238 3 => A is worse than B */
c906108c
SS
2239
2240int
fba45db2 2241compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2242{
2243 int i;
2244 int tmp;
c5aa993b
JM
2245 short found_pos = 0; /* any positives in c? */
2246 short found_neg = 0; /* any negatives in c? */
2247
2248 /* differing lengths => incomparable */
c906108c
SS
2249 if (a->length != b->length)
2250 return 1;
2251
c5aa993b
JM
2252 /* Subtract b from a */
2253 for (i = 0; i < a->length; i++)
c906108c 2254 {
6403aeea 2255 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2256 if (tmp > 0)
c5aa993b 2257 found_pos = 1;
c906108c 2258 else if (tmp < 0)
c5aa993b 2259 found_neg = 1;
c906108c
SS
2260 }
2261
2262 if (found_pos)
2263 {
2264 if (found_neg)
c5aa993b 2265 return 1; /* incomparable */
c906108c 2266 else
c5aa993b 2267 return 3; /* A > B */
c906108c 2268 }
c5aa993b
JM
2269 else
2270 /* no positives */
c906108c
SS
2271 {
2272 if (found_neg)
c5aa993b 2273 return 2; /* A < B */
c906108c 2274 else
c5aa993b 2275 return 0; /* A == B */
c906108c
SS
2276 }
2277}
2278
7ba81444
MS
2279/* Rank a function by comparing its parameter types (PARMS, length
2280 NPARMS), to the types of an argument list (ARGS, length NARGS).
2281 Return a pointer to a badness vector. This has NARGS + 1
2282 entries. */
c906108c
SS
2283
2284struct badness_vector *
7ba81444 2285rank_function (struct type **parms, int nparms,
da096638 2286 struct value **args, int nargs)
c906108c
SS
2287{
2288 int i;
c5aa993b 2289 struct badness_vector *bv;
c906108c
SS
2290 int min_len = nparms < nargs ? nparms : nargs;
2291
2292 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2293 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2294 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2295
2296 /* First compare the lengths of the supplied lists.
7ba81444 2297 If there is a mismatch, set it to a high value. */
c5aa993b 2298
c906108c 2299 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2300 arguments and ellipsis parameter lists, we should consider those
2301 and rank the length-match more finely. */
c906108c 2302
6403aeea
SW
2303 LENGTH_MATCH (bv) = (nargs != nparms)
2304 ? LENGTH_MISMATCH_BADNESS
2305 : EXACT_MATCH_BADNESS;
c906108c 2306
0963b4bd 2307 /* Now rank all the parameters of the candidate function. */
74cc24b0 2308 for (i = 1; i <= min_len; i++)
da096638
KS
2309 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2310 args[i - 1]);
c906108c 2311
0963b4bd 2312 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2313 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2314 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2315
2316 return bv;
2317}
2318
973ccf8b
DJ
2319/* Compare the names of two integer types, assuming that any sign
2320 qualifiers have been checked already. We do it this way because
2321 there may be an "int" in the name of one of the types. */
2322
2323static int
2324integer_types_same_name_p (const char *first, const char *second)
2325{
2326 int first_p, second_p;
2327
7ba81444
MS
2328 /* If both are shorts, return 1; if neither is a short, keep
2329 checking. */
973ccf8b
DJ
2330 first_p = (strstr (first, "short") != NULL);
2331 second_p = (strstr (second, "short") != NULL);
2332 if (first_p && second_p)
2333 return 1;
2334 if (first_p || second_p)
2335 return 0;
2336
2337 /* Likewise for long. */
2338 first_p = (strstr (first, "long") != NULL);
2339 second_p = (strstr (second, "long") != NULL);
2340 if (first_p && second_p)
2341 return 1;
2342 if (first_p || second_p)
2343 return 0;
2344
2345 /* Likewise for char. */
2346 first_p = (strstr (first, "char") != NULL);
2347 second_p = (strstr (second, "char") != NULL);
2348 if (first_p && second_p)
2349 return 1;
2350 if (first_p || second_p)
2351 return 0;
2352
2353 /* They must both be ints. */
2354 return 1;
2355}
2356
7062b0a0
SW
2357/* Compares type A to type B returns 1 if the represent the same type
2358 0 otherwise. */
2359
2360static int
2361types_equal (struct type *a, struct type *b)
2362{
2363 /* Identical type pointers. */
2364 /* However, this still doesn't catch all cases of same type for b
2365 and a. The reason is that builtin types are different from
2366 the same ones constructed from the object. */
2367 if (a == b)
2368 return 1;
2369
2370 /* Resolve typedefs */
2371 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2372 a = check_typedef (a);
2373 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2374 b = check_typedef (b);
2375
2376 /* If after resolving typedefs a and b are not of the same type
2377 code then they are not equal. */
2378 if (TYPE_CODE (a) != TYPE_CODE (b))
2379 return 0;
2380
2381 /* If a and b are both pointers types or both reference types then
2382 they are equal of the same type iff the objects they refer to are
2383 of the same type. */
2384 if (TYPE_CODE (a) == TYPE_CODE_PTR
2385 || TYPE_CODE (a) == TYPE_CODE_REF)
2386 return types_equal (TYPE_TARGET_TYPE (a),
2387 TYPE_TARGET_TYPE (b));
2388
0963b4bd 2389 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2390 are exactly the same. This happens when we generate method
2391 stubs. The types won't point to the same address, but they
0963b4bd 2392 really are the same. */
7062b0a0
SW
2393
2394 if (TYPE_NAME (a) && TYPE_NAME (b)
2395 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2396 return 1;
2397
2398 /* Check if identical after resolving typedefs. */
2399 if (a == b)
2400 return 1;
2401
2402 return 0;
2403}
2404
c906108c
SS
2405/* Compare one type (PARM) for compatibility with another (ARG).
2406 * PARM is intended to be the parameter type of a function; and
2407 * ARG is the supplied argument's type. This function tests if
2408 * the latter can be converted to the former.
da096638 2409 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2410 *
2411 * Return 0 if they are identical types;
2412 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2413 * PARM is to ARG. The higher the return value, the worse the match.
2414 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2415
6403aeea 2416struct rank
da096638 2417rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2418{
a9d5ef47 2419 struct rank rank = {0,0};
7062b0a0
SW
2420
2421 if (types_equal (parm, arg))
6403aeea 2422 return EXACT_MATCH_BADNESS;
c906108c
SS
2423
2424 /* Resolve typedefs */
2425 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2426 parm = check_typedef (parm);
2427 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2428 arg = check_typedef (arg);
2429
db577aea 2430 /* See through references, since we can almost make non-references
7ba81444 2431 references. */
db577aea 2432 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2433 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2434 REFERENCE_CONVERSION_BADNESS));
db577aea 2435 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2436 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2437 REFERENCE_CONVERSION_BADNESS));
5d161b24 2438 if (overload_debug)
7ba81444
MS
2439 /* Debugging only. */
2440 fprintf_filtered (gdb_stderr,
2441 "------ Arg is %s [%d], parm is %s [%d]\n",
2442 TYPE_NAME (arg), TYPE_CODE (arg),
2443 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2444
0963b4bd 2445 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2446
2447 switch (TYPE_CODE (parm))
2448 {
c5aa993b
JM
2449 case TYPE_CODE_PTR:
2450 switch (TYPE_CODE (arg))
2451 {
2452 case TYPE_CODE_PTR:
7062b0a0
SW
2453
2454 /* Allowed pointer conversions are:
2455 (a) pointer to void-pointer conversion. */
2456 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2457 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2458
2459 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2460 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2461 TYPE_TARGET_TYPE (arg),
2462 0);
2463 if (rank.subrank >= 0)
2464 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2465
2466 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2467 case TYPE_CODE_ARRAY:
7062b0a0
SW
2468 if (types_equal (TYPE_TARGET_TYPE (parm),
2469 TYPE_TARGET_TYPE (arg)))
6403aeea 2470 return EXACT_MATCH_BADNESS;
7062b0a0 2471 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2472 case TYPE_CODE_FUNC:
da096638 2473 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2474 case TYPE_CODE_INT:
da096638
KS
2475 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2476 && value_as_long (value) == 0)
2477 {
2478 /* Null pointer conversion: allow it to be cast to a pointer.
2479 [4.10.1 of C++ standard draft n3290] */
2480 return NULL_POINTER_CONVERSION_BADNESS;
2481 }
2482 /* fall through */
c5aa993b 2483 case TYPE_CODE_ENUM:
4f2aea11 2484 case TYPE_CODE_FLAGS:
c5aa993b
JM
2485 case TYPE_CODE_CHAR:
2486 case TYPE_CODE_RANGE:
2487 case TYPE_CODE_BOOL:
c5aa993b
JM
2488 default:
2489 return INCOMPATIBLE_TYPE_BADNESS;
2490 }
2491 case TYPE_CODE_ARRAY:
2492 switch (TYPE_CODE (arg))
2493 {
2494 case TYPE_CODE_PTR:
2495 case TYPE_CODE_ARRAY:
7ba81444 2496 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 2497 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2498 default:
2499 return INCOMPATIBLE_TYPE_BADNESS;
2500 }
2501 case TYPE_CODE_FUNC:
2502 switch (TYPE_CODE (arg))
2503 {
2504 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 2505 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2506 default:
2507 return INCOMPATIBLE_TYPE_BADNESS;
2508 }
2509 case TYPE_CODE_INT:
2510 switch (TYPE_CODE (arg))
2511 {
2512 case TYPE_CODE_INT:
2513 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2514 {
2515 /* Deal with signed, unsigned, and plain chars and
7ba81444 2516 signed and unsigned ints. */
c5aa993b
JM
2517 if (TYPE_NOSIGN (parm))
2518 {
0963b4bd 2519 /* This case only for character types. */
7ba81444 2520 if (TYPE_NOSIGN (arg))
6403aeea 2521 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2522 else /* signed/unsigned char -> plain char */
2523 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2524 }
2525 else if (TYPE_UNSIGNED (parm))
2526 {
2527 if (TYPE_UNSIGNED (arg))
2528 {
7ba81444
MS
2529 /* unsigned int -> unsigned int, or
2530 unsigned long -> unsigned long */
2531 if (integer_types_same_name_p (TYPE_NAME (parm),
2532 TYPE_NAME (arg)))
6403aeea 2533 return EXACT_MATCH_BADNESS;
7ba81444
MS
2534 else if (integer_types_same_name_p (TYPE_NAME (arg),
2535 "int")
2536 && integer_types_same_name_p (TYPE_NAME (parm),
2537 "long"))
3e43a32a
MS
2538 /* unsigned int -> unsigned long */
2539 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2540 else
3e43a32a
MS
2541 /* unsigned long -> unsigned int */
2542 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2543 }
2544 else
2545 {
7ba81444
MS
2546 if (integer_types_same_name_p (TYPE_NAME (arg),
2547 "long")
2548 && integer_types_same_name_p (TYPE_NAME (parm),
2549 "int"))
3e43a32a
MS
2550 /* signed long -> unsigned int */
2551 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2552 else
3e43a32a
MS
2553 /* signed int/long -> unsigned int/long */
2554 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2555 }
2556 }
2557 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2558 {
7ba81444
MS
2559 if (integer_types_same_name_p (TYPE_NAME (parm),
2560 TYPE_NAME (arg)))
6403aeea 2561 return EXACT_MATCH_BADNESS;
7ba81444
MS
2562 else if (integer_types_same_name_p (TYPE_NAME (arg),
2563 "int")
2564 && integer_types_same_name_p (TYPE_NAME (parm),
2565 "long"))
c5aa993b
JM
2566 return INTEGER_PROMOTION_BADNESS;
2567 else
1c5cb38e 2568 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2569 }
2570 else
1c5cb38e 2571 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2572 }
2573 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2574 return INTEGER_PROMOTION_BADNESS;
2575 else
1c5cb38e 2576 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2577 case TYPE_CODE_ENUM:
4f2aea11 2578 case TYPE_CODE_FLAGS:
c5aa993b
JM
2579 case TYPE_CODE_CHAR:
2580 case TYPE_CODE_RANGE:
2581 case TYPE_CODE_BOOL:
2582 return INTEGER_PROMOTION_BADNESS;
2583 case TYPE_CODE_FLT:
2584 return INT_FLOAT_CONVERSION_BADNESS;
2585 case TYPE_CODE_PTR:
2586 return NS_POINTER_CONVERSION_BADNESS;
2587 default:
2588 return INCOMPATIBLE_TYPE_BADNESS;
2589 }
2590 break;
2591 case TYPE_CODE_ENUM:
2592 switch (TYPE_CODE (arg))
2593 {
2594 case TYPE_CODE_INT:
2595 case TYPE_CODE_CHAR:
2596 case TYPE_CODE_RANGE:
2597 case TYPE_CODE_BOOL:
2598 case TYPE_CODE_ENUM:
1c5cb38e 2599 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2600 case TYPE_CODE_FLT:
2601 return INT_FLOAT_CONVERSION_BADNESS;
2602 default:
2603 return INCOMPATIBLE_TYPE_BADNESS;
2604 }
2605 break;
2606 case TYPE_CODE_CHAR:
2607 switch (TYPE_CODE (arg))
2608 {
2609 case TYPE_CODE_RANGE:
2610 case TYPE_CODE_BOOL:
2611 case TYPE_CODE_ENUM:
1c5cb38e 2612 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2613 case TYPE_CODE_FLT:
2614 return INT_FLOAT_CONVERSION_BADNESS;
2615 case TYPE_CODE_INT:
2616 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2617 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2618 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2619 return INTEGER_PROMOTION_BADNESS;
2620 /* >>> !! else fall through !! <<< */
2621 case TYPE_CODE_CHAR:
7ba81444
MS
2622 /* Deal with signed, unsigned, and plain chars for C++ and
2623 with int cases falling through from previous case. */
c5aa993b
JM
2624 if (TYPE_NOSIGN (parm))
2625 {
2626 if (TYPE_NOSIGN (arg))
6403aeea 2627 return EXACT_MATCH_BADNESS;
c5aa993b 2628 else
1c5cb38e 2629 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2630 }
2631 else if (TYPE_UNSIGNED (parm))
2632 {
2633 if (TYPE_UNSIGNED (arg))
6403aeea 2634 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2635 else
2636 return INTEGER_PROMOTION_BADNESS;
2637 }
2638 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2639 return EXACT_MATCH_BADNESS;
c5aa993b 2640 else
1c5cb38e 2641 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2642 default:
2643 return INCOMPATIBLE_TYPE_BADNESS;
2644 }
2645 break;
2646 case TYPE_CODE_RANGE:
2647 switch (TYPE_CODE (arg))
2648 {
2649 case TYPE_CODE_INT:
2650 case TYPE_CODE_CHAR:
2651 case TYPE_CODE_RANGE:
2652 case TYPE_CODE_BOOL:
2653 case TYPE_CODE_ENUM:
1c5cb38e 2654 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2655 case TYPE_CODE_FLT:
2656 return INT_FLOAT_CONVERSION_BADNESS;
2657 default:
2658 return INCOMPATIBLE_TYPE_BADNESS;
2659 }
2660 break;
2661 case TYPE_CODE_BOOL:
2662 switch (TYPE_CODE (arg))
2663 {
2664 case TYPE_CODE_INT:
2665 case TYPE_CODE_CHAR:
2666 case TYPE_CODE_RANGE:
2667 case TYPE_CODE_ENUM:
2668 case TYPE_CODE_FLT:
026ffab7 2669 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2670 case TYPE_CODE_PTR:
026ffab7 2671 return BOOL_PTR_CONVERSION_BADNESS;
c5aa993b 2672 case TYPE_CODE_BOOL:
6403aeea 2673 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2674 default:
2675 return INCOMPATIBLE_TYPE_BADNESS;
2676 }
2677 break;
2678 case TYPE_CODE_FLT:
2679 switch (TYPE_CODE (arg))
2680 {
2681 case TYPE_CODE_FLT:
2682 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2683 return FLOAT_PROMOTION_BADNESS;
2684 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2685 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2686 else
2687 return FLOAT_CONVERSION_BADNESS;
2688 case TYPE_CODE_INT:
2689 case TYPE_CODE_BOOL:
2690 case TYPE_CODE_ENUM:
2691 case TYPE_CODE_RANGE:
2692 case TYPE_CODE_CHAR:
2693 return INT_FLOAT_CONVERSION_BADNESS;
2694 default:
2695 return INCOMPATIBLE_TYPE_BADNESS;
2696 }
2697 break;
2698 case TYPE_CODE_COMPLEX:
2699 switch (TYPE_CODE (arg))
7ba81444 2700 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2701 case TYPE_CODE_FLT:
2702 return FLOAT_PROMOTION_BADNESS;
2703 case TYPE_CODE_COMPLEX:
6403aeea 2704 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2705 default:
2706 return INCOMPATIBLE_TYPE_BADNESS;
2707 }
2708 break;
2709 case TYPE_CODE_STRUCT:
0963b4bd 2710 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2711 switch (TYPE_CODE (arg))
2712 {
2713 case TYPE_CODE_STRUCT:
2714 /* Check for derivation */
a9d5ef47
SW
2715 rank.subrank = distance_to_ancestor (parm, arg, 0);
2716 if (rank.subrank >= 0)
2717 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2718 /* else fall through */
2719 default:
2720 return INCOMPATIBLE_TYPE_BADNESS;
2721 }
2722 break;
2723 case TYPE_CODE_UNION:
2724 switch (TYPE_CODE (arg))
2725 {
2726 case TYPE_CODE_UNION:
2727 default:
2728 return INCOMPATIBLE_TYPE_BADNESS;
2729 }
2730 break;
0d5de010 2731 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2732 switch (TYPE_CODE (arg))
2733 {
2734 default:
2735 return INCOMPATIBLE_TYPE_BADNESS;
2736 }
2737 break;
2738 case TYPE_CODE_METHOD:
2739 switch (TYPE_CODE (arg))
2740 {
2741
2742 default:
2743 return INCOMPATIBLE_TYPE_BADNESS;
2744 }
2745 break;
2746 case TYPE_CODE_REF:
2747 switch (TYPE_CODE (arg))
2748 {
2749
2750 default:
2751 return INCOMPATIBLE_TYPE_BADNESS;
2752 }
2753
2754 break;
2755 case TYPE_CODE_SET:
2756 switch (TYPE_CODE (arg))
2757 {
2758 /* Not in C++ */
2759 case TYPE_CODE_SET:
7ba81444 2760 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 2761 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
2762 default:
2763 return INCOMPATIBLE_TYPE_BADNESS;
2764 }
2765 break;
2766 case TYPE_CODE_VOID:
2767 default:
2768 return INCOMPATIBLE_TYPE_BADNESS;
2769 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2770}
2771
c5aa993b 2772
0963b4bd 2773/* End of functions for overload resolution. */
c906108c 2774
c906108c 2775static void
fba45db2 2776print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2777{
2778 int bitno;
2779
2780 for (bitno = 0; bitno < nbits; bitno++)
2781 {
2782 if ((bitno % 8) == 0)
2783 {
2784 puts_filtered (" ");
2785 }
2786 if (B_TST (bits, bitno))
a3f17187 2787 printf_filtered (("1"));
c906108c 2788 else
a3f17187 2789 printf_filtered (("0"));
c906108c
SS
2790 }
2791}
2792
ad2f7632 2793/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2794 include it since we may get into a infinitely recursive
2795 situation. */
c906108c
SS
2796
2797static void
ad2f7632 2798print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2799{
2800 if (args != NULL)
2801 {
ad2f7632
DJ
2802 int i;
2803
2804 for (i = 0; i < nargs; i++)
2805 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2806 }
2807}
2808
d6a843b5
JK
2809int
2810field_is_static (struct field *f)
2811{
2812 /* "static" fields are the fields whose location is not relative
2813 to the address of the enclosing struct. It would be nice to
2814 have a dedicated flag that would be set for static fields when
2815 the type is being created. But in practice, checking the field
254e6b9e 2816 loc_kind should give us an accurate answer. */
d6a843b5
JK
2817 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2818 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2819}
2820
c906108c 2821static void
fba45db2 2822dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2823{
2824 int method_idx;
2825 int overload_idx;
2826 struct fn_field *f;
2827
2828 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2829 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2830 printf_filtered ("\n");
2831 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2832 {
2833 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2834 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2835 method_idx,
2836 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2837 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2838 gdb_stdout);
a3f17187 2839 printf_filtered (_(") length %d\n"),
c906108c
SS
2840 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2841 for (overload_idx = 0;
2842 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2843 overload_idx++)
2844 {
2845 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2846 overload_idx,
2847 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2848 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2849 gdb_stdout);
c906108c
SS
2850 printf_filtered (")\n");
2851 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2852 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2853 gdb_stdout);
c906108c
SS
2854 printf_filtered ("\n");
2855
2856 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2857 spaces + 8 + 2);
2858
2859 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2860 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2861 gdb_stdout);
c906108c
SS
2862 printf_filtered ("\n");
2863
ad2f7632 2864 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2865 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2866 overload_idx)),
ad2f7632 2867 spaces);
c906108c 2868 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2869 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2870 gdb_stdout);
c906108c
SS
2871 printf_filtered ("\n");
2872
2873 printfi_filtered (spaces + 8, "is_const %d\n",
2874 TYPE_FN_FIELD_CONST (f, overload_idx));
2875 printfi_filtered (spaces + 8, "is_volatile %d\n",
2876 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2877 printfi_filtered (spaces + 8, "is_private %d\n",
2878 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2879 printfi_filtered (spaces + 8, "is_protected %d\n",
2880 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2881 printfi_filtered (spaces + 8, "is_stub %d\n",
2882 TYPE_FN_FIELD_STUB (f, overload_idx));
2883 printfi_filtered (spaces + 8, "voffset %u\n",
2884 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2885 }
2886 }
2887}
2888
2889static void
fba45db2 2890print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2891{
2892 printfi_filtered (spaces, "n_baseclasses %d\n",
2893 TYPE_N_BASECLASSES (type));
2894 printfi_filtered (spaces, "nfn_fields %d\n",
2895 TYPE_NFN_FIELDS (type));
c906108c
SS
2896 if (TYPE_N_BASECLASSES (type) > 0)
2897 {
2898 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2899 TYPE_N_BASECLASSES (type));
7ba81444
MS
2900 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2901 gdb_stdout);
c906108c
SS
2902 printf_filtered (")");
2903
2904 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2905 TYPE_N_BASECLASSES (type));
2906 puts_filtered ("\n");
2907 }
2908 if (TYPE_NFIELDS (type) > 0)
2909 {
2910 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2911 {
7ba81444
MS
2912 printfi_filtered (spaces,
2913 "private_field_bits (%d bits at *",
c906108c 2914 TYPE_NFIELDS (type));
7ba81444
MS
2915 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2916 gdb_stdout);
c906108c
SS
2917 printf_filtered (")");
2918 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2919 TYPE_NFIELDS (type));
2920 puts_filtered ("\n");
2921 }
2922 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2923 {
7ba81444
MS
2924 printfi_filtered (spaces,
2925 "protected_field_bits (%d bits at *",
c906108c 2926 TYPE_NFIELDS (type));
7ba81444
MS
2927 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2928 gdb_stdout);
c906108c
SS
2929 printf_filtered (")");
2930 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2931 TYPE_NFIELDS (type));
2932 puts_filtered ("\n");
2933 }
2934 }
2935 if (TYPE_NFN_FIELDS (type) > 0)
2936 {
2937 dump_fn_fieldlists (type, spaces);
2938 }
2939}
2940
b4ba55a1
JB
2941/* Print the contents of the TYPE's type_specific union, assuming that
2942 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2943
2944static void
2945print_gnat_stuff (struct type *type, int spaces)
2946{
2947 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2948
2949 recursive_dump_type (descriptive_type, spaces + 2);
2950}
2951
c906108c
SS
2952static struct obstack dont_print_type_obstack;
2953
2954void
fba45db2 2955recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2956{
2957 int idx;
2958
2959 if (spaces == 0)
2960 obstack_begin (&dont_print_type_obstack, 0);
2961
2962 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2963 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2964 {
2965 struct type **first_dont_print
7ba81444 2966 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2967
7ba81444
MS
2968 int i = (struct type **)
2969 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2970
2971 while (--i >= 0)
2972 {
2973 if (type == first_dont_print[i])
2974 {
2975 printfi_filtered (spaces, "type node ");
d4f3574e 2976 gdb_print_host_address (type, gdb_stdout);
a3f17187 2977 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2978 return;
2979 }
2980 }
2981
2982 obstack_ptr_grow (&dont_print_type_obstack, type);
2983 }
2984
2985 printfi_filtered (spaces, "type node ");
d4f3574e 2986 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2987 printf_filtered ("\n");
2988 printfi_filtered (spaces, "name '%s' (",
2989 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2990 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2991 printf_filtered (")\n");
e9e79dd9
FF
2992 printfi_filtered (spaces, "tagname '%s' (",
2993 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2994 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2995 printf_filtered (")\n");
c906108c
SS
2996 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2997 switch (TYPE_CODE (type))
2998 {
c5aa993b
JM
2999 case TYPE_CODE_UNDEF:
3000 printf_filtered ("(TYPE_CODE_UNDEF)");
3001 break;
3002 case TYPE_CODE_PTR:
3003 printf_filtered ("(TYPE_CODE_PTR)");
3004 break;
3005 case TYPE_CODE_ARRAY:
3006 printf_filtered ("(TYPE_CODE_ARRAY)");
3007 break;
3008 case TYPE_CODE_STRUCT:
3009 printf_filtered ("(TYPE_CODE_STRUCT)");
3010 break;
3011 case TYPE_CODE_UNION:
3012 printf_filtered ("(TYPE_CODE_UNION)");
3013 break;
3014 case TYPE_CODE_ENUM:
3015 printf_filtered ("(TYPE_CODE_ENUM)");
3016 break;
4f2aea11
MK
3017 case TYPE_CODE_FLAGS:
3018 printf_filtered ("(TYPE_CODE_FLAGS)");
3019 break;
c5aa993b
JM
3020 case TYPE_CODE_FUNC:
3021 printf_filtered ("(TYPE_CODE_FUNC)");
3022 break;
3023 case TYPE_CODE_INT:
3024 printf_filtered ("(TYPE_CODE_INT)");
3025 break;
3026 case TYPE_CODE_FLT:
3027 printf_filtered ("(TYPE_CODE_FLT)");
3028 break;
3029 case TYPE_CODE_VOID:
3030 printf_filtered ("(TYPE_CODE_VOID)");
3031 break;
3032 case TYPE_CODE_SET:
3033 printf_filtered ("(TYPE_CODE_SET)");
3034 break;
3035 case TYPE_CODE_RANGE:
3036 printf_filtered ("(TYPE_CODE_RANGE)");
3037 break;
3038 case TYPE_CODE_STRING:
3039 printf_filtered ("(TYPE_CODE_STRING)");
3040 break;
e9e79dd9
FF
3041 case TYPE_CODE_BITSTRING:
3042 printf_filtered ("(TYPE_CODE_BITSTRING)");
3043 break;
c5aa993b
JM
3044 case TYPE_CODE_ERROR:
3045 printf_filtered ("(TYPE_CODE_ERROR)");
3046 break;
0d5de010
DJ
3047 case TYPE_CODE_MEMBERPTR:
3048 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3049 break;
3050 case TYPE_CODE_METHODPTR:
3051 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3052 break;
3053 case TYPE_CODE_METHOD:
3054 printf_filtered ("(TYPE_CODE_METHOD)");
3055 break;
3056 case TYPE_CODE_REF:
3057 printf_filtered ("(TYPE_CODE_REF)");
3058 break;
3059 case TYPE_CODE_CHAR:
3060 printf_filtered ("(TYPE_CODE_CHAR)");
3061 break;
3062 case TYPE_CODE_BOOL:
3063 printf_filtered ("(TYPE_CODE_BOOL)");
3064 break;
e9e79dd9
FF
3065 case TYPE_CODE_COMPLEX:
3066 printf_filtered ("(TYPE_CODE_COMPLEX)");
3067 break;
c5aa993b
JM
3068 case TYPE_CODE_TYPEDEF:
3069 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3070 break;
5c4e30ca
DC
3071 case TYPE_CODE_NAMESPACE:
3072 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3073 break;
c5aa993b
JM
3074 default:
3075 printf_filtered ("(UNKNOWN TYPE CODE)");
3076 break;
c906108c
SS
3077 }
3078 puts_filtered ("\n");
3079 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3080 if (TYPE_OBJFILE_OWNED (type))
3081 {
3082 printfi_filtered (spaces, "objfile ");
3083 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3084 }
3085 else
3086 {
3087 printfi_filtered (spaces, "gdbarch ");
3088 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3089 }
c906108c
SS
3090 printf_filtered ("\n");
3091 printfi_filtered (spaces, "target_type ");
d4f3574e 3092 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3093 printf_filtered ("\n");
3094 if (TYPE_TARGET_TYPE (type) != NULL)
3095 {
3096 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3097 }
3098 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3099 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3100 printf_filtered ("\n");
3101 printfi_filtered (spaces, "reference_type ");
d4f3574e 3102 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3103 printf_filtered ("\n");
2fdde8f8
DJ
3104 printfi_filtered (spaces, "type_chain ");
3105 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3106 printf_filtered ("\n");
7ba81444
MS
3107 printfi_filtered (spaces, "instance_flags 0x%x",
3108 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3109 if (TYPE_CONST (type))
3110 {
3111 puts_filtered (" TYPE_FLAG_CONST");
3112 }
3113 if (TYPE_VOLATILE (type))
3114 {
3115 puts_filtered (" TYPE_FLAG_VOLATILE");
3116 }
3117 if (TYPE_CODE_SPACE (type))
3118 {
3119 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3120 }
3121 if (TYPE_DATA_SPACE (type))
3122 {
3123 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3124 }
8b2dbe47
KB
3125 if (TYPE_ADDRESS_CLASS_1 (type))
3126 {
3127 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3128 }
3129 if (TYPE_ADDRESS_CLASS_2 (type))
3130 {
3131 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3132 }
2fdde8f8 3133 puts_filtered ("\n");
876cecd0
TT
3134
3135 printfi_filtered (spaces, "flags");
762a036f 3136 if (TYPE_UNSIGNED (type))
c906108c
SS
3137 {
3138 puts_filtered (" TYPE_FLAG_UNSIGNED");
3139 }
762a036f
FF
3140 if (TYPE_NOSIGN (type))
3141 {
3142 puts_filtered (" TYPE_FLAG_NOSIGN");
3143 }
3144 if (TYPE_STUB (type))
c906108c
SS
3145 {
3146 puts_filtered (" TYPE_FLAG_STUB");
3147 }
762a036f
FF
3148 if (TYPE_TARGET_STUB (type))
3149 {
3150 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3151 }
3152 if (TYPE_STATIC (type))
3153 {
3154 puts_filtered (" TYPE_FLAG_STATIC");
3155 }
762a036f
FF
3156 if (TYPE_PROTOTYPED (type))
3157 {
3158 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3159 }
3160 if (TYPE_INCOMPLETE (type))
3161 {
3162 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3163 }
762a036f
FF
3164 if (TYPE_VARARGS (type))
3165 {
3166 puts_filtered (" TYPE_FLAG_VARARGS");
3167 }
f5f8a009
EZ
3168 /* This is used for things like AltiVec registers on ppc. Gcc emits
3169 an attribute for the array type, which tells whether or not we
3170 have a vector, instead of a regular array. */
3171 if (TYPE_VECTOR (type))
3172 {
3173 puts_filtered (" TYPE_FLAG_VECTOR");
3174 }
876cecd0
TT
3175 if (TYPE_FIXED_INSTANCE (type))
3176 {
3177 puts_filtered (" TYPE_FIXED_INSTANCE");
3178 }
3179 if (TYPE_STUB_SUPPORTED (type))
3180 {
3181 puts_filtered (" TYPE_STUB_SUPPORTED");
3182 }
3183 if (TYPE_NOTTEXT (type))
3184 {
3185 puts_filtered (" TYPE_NOTTEXT");
3186 }
c906108c
SS
3187 puts_filtered ("\n");
3188 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3189 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3190 puts_filtered ("\n");
3191 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3192 {
14e75d8e
JK
3193 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3194 printfi_filtered (spaces + 2,
3195 "[%d] enumval %s type ",
3196 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3197 else
3198 printfi_filtered (spaces + 2,
3199 "[%d] bitpos %d bitsize %d type ",
3200 idx, TYPE_FIELD_BITPOS (type, idx),
3201 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3202 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3203 printf_filtered (" name '%s' (",
3204 TYPE_FIELD_NAME (type, idx) != NULL
3205 ? TYPE_FIELD_NAME (type, idx)
3206 : "<NULL>");
d4f3574e 3207 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3208 printf_filtered (")\n");
3209 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3210 {
3211 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3212 }
3213 }
43bbcdc2
PH
3214 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3215 {
3216 printfi_filtered (spaces, "low %s%s high %s%s\n",
3217 plongest (TYPE_LOW_BOUND (type)),
3218 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3219 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3220 TYPE_HIGH_BOUND_UNDEFINED (type)
3221 ? " (undefined)" : "");
43bbcdc2 3222 }
c906108c 3223 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3224 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3225 puts_filtered ("\n");
3226 if (TYPE_VPTR_BASETYPE (type) != NULL)
3227 {
3228 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3229 }
7ba81444
MS
3230 printfi_filtered (spaces, "vptr_fieldno %d\n",
3231 TYPE_VPTR_FIELDNO (type));
c906108c 3232
b4ba55a1
JB
3233 switch (TYPE_SPECIFIC_FIELD (type))
3234 {
3235 case TYPE_SPECIFIC_CPLUS_STUFF:
3236 printfi_filtered (spaces, "cplus_stuff ");
3237 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3238 gdb_stdout);
3239 puts_filtered ("\n");
3240 print_cplus_stuff (type, spaces);
3241 break;
8da61cc4 3242
b4ba55a1
JB
3243 case TYPE_SPECIFIC_GNAT_STUFF:
3244 printfi_filtered (spaces, "gnat_stuff ");
3245 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3246 puts_filtered ("\n");
3247 print_gnat_stuff (type, spaces);
3248 break;
701c159d 3249
b4ba55a1
JB
3250 case TYPE_SPECIFIC_FLOATFORMAT:
3251 printfi_filtered (spaces, "floatformat ");
3252 if (TYPE_FLOATFORMAT (type) == NULL)
3253 puts_filtered ("(null)");
3254 else
3255 {
3256 puts_filtered ("{ ");
3257 if (TYPE_FLOATFORMAT (type)[0] == NULL
3258 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3259 puts_filtered ("(null)");
3260 else
3261 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3262
3263 puts_filtered (", ");
3264 if (TYPE_FLOATFORMAT (type)[1] == NULL
3265 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3266 puts_filtered ("(null)");
3267 else
3268 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3269
3270 puts_filtered (" }");
3271 }
3272 puts_filtered ("\n");
3273 break;
c906108c 3274
b6cdc2c1 3275 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3276 printfi_filtered (spaces, "calling_convention %d\n",
3277 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3278 /* tail_call_list is not printed. */
b4ba55a1 3279 break;
c906108c 3280 }
b4ba55a1 3281
c906108c
SS
3282 if (spaces == 0)
3283 obstack_free (&dont_print_type_obstack, NULL);
3284}
3285
ae5a43e0
DJ
3286/* Trivial helpers for the libiberty hash table, for mapping one
3287 type to another. */
3288
3289struct type_pair
3290{
3291 struct type *old, *new;
3292};
3293
3294static hashval_t
3295type_pair_hash (const void *item)
3296{
3297 const struct type_pair *pair = item;
d8734c88 3298
ae5a43e0
DJ
3299 return htab_hash_pointer (pair->old);
3300}
3301
3302static int
3303type_pair_eq (const void *item_lhs, const void *item_rhs)
3304{
3305 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3306
ae5a43e0
DJ
3307 return lhs->old == rhs->old;
3308}
3309
3310/* Allocate the hash table used by copy_type_recursive to walk
3311 types without duplicates. We use OBJFILE's obstack, because
3312 OBJFILE is about to be deleted. */
3313
3314htab_t
3315create_copied_types_hash (struct objfile *objfile)
3316{
3317 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3318 NULL, &objfile->objfile_obstack,
3319 hashtab_obstack_allocate,
3320 dummy_obstack_deallocate);
3321}
3322
7ba81444
MS
3323/* Recursively copy (deep copy) TYPE, if it is associated with
3324 OBJFILE. Return a new type allocated using malloc, a saved type if
3325 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3326 not associated with OBJFILE. */
ae5a43e0
DJ
3327
3328struct type *
7ba81444
MS
3329copy_type_recursive (struct objfile *objfile,
3330 struct type *type,
ae5a43e0
DJ
3331 htab_t copied_types)
3332{
3333 struct type_pair *stored, pair;
3334 void **slot;
3335 struct type *new_type;
3336
e9bb382b 3337 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3338 return type;
3339
7ba81444
MS
3340 /* This type shouldn't be pointing to any types in other objfiles;
3341 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3342 gdb_assert (TYPE_OBJFILE (type) == objfile);
3343
3344 pair.old = type;
3345 slot = htab_find_slot (copied_types, &pair, INSERT);
3346 if (*slot != NULL)
3347 return ((struct type_pair *) *slot)->new;
3348
e9bb382b 3349 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3350
3351 /* We must add the new type to the hash table immediately, in case
3352 we encounter this type again during a recursive call below. */
3e43a32a
MS
3353 stored
3354 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3355 stored->old = type;
3356 stored->new = new_type;
3357 *slot = stored;
3358
876cecd0
TT
3359 /* Copy the common fields of types. For the main type, we simply
3360 copy the entire thing and then update specific fields as needed. */
3361 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3362 TYPE_OBJFILE_OWNED (new_type) = 0;
3363 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3364
ae5a43e0
DJ
3365 if (TYPE_NAME (type))
3366 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3367 if (TYPE_TAG_NAME (type))
3368 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3369
3370 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3371 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3372
3373 /* Copy the fields. */
ae5a43e0
DJ
3374 if (TYPE_NFIELDS (type))
3375 {
3376 int i, nfields;
3377
3378 nfields = TYPE_NFIELDS (type);
1deafd4e 3379 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3380 for (i = 0; i < nfields; i++)
3381 {
7ba81444
MS
3382 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3383 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3384 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3385 if (TYPE_FIELD_TYPE (type, i))
3386 TYPE_FIELD_TYPE (new_type, i)
3387 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3388 copied_types);
3389 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3390 TYPE_FIELD_NAME (new_type, i) =
3391 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3392 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3393 {
d6a843b5
JK
3394 case FIELD_LOC_KIND_BITPOS:
3395 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3396 TYPE_FIELD_BITPOS (type, i));
3397 break;
14e75d8e
JK
3398 case FIELD_LOC_KIND_ENUMVAL:
3399 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3400 TYPE_FIELD_ENUMVAL (type, i));
3401 break;
d6a843b5
JK
3402 case FIELD_LOC_KIND_PHYSADDR:
3403 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3404 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3405 break;
3406 case FIELD_LOC_KIND_PHYSNAME:
3407 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3408 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3409 i)));
3410 break;
3411 default:
3412 internal_error (__FILE__, __LINE__,
3413 _("Unexpected type field location kind: %d"),
3414 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3415 }
3416 }
3417 }
3418
0963b4bd 3419 /* For range types, copy the bounds information. */
43bbcdc2
PH
3420 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3421 {
3422 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3423 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3424 }
3425
ae5a43e0
DJ
3426 /* Copy pointers to other types. */
3427 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3428 TYPE_TARGET_TYPE (new_type) =
3429 copy_type_recursive (objfile,
3430 TYPE_TARGET_TYPE (type),
3431 copied_types);
ae5a43e0 3432 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3433 TYPE_VPTR_BASETYPE (new_type) =
3434 copy_type_recursive (objfile,
3435 TYPE_VPTR_BASETYPE (type),
3436 copied_types);
ae5a43e0
DJ
3437 /* Maybe copy the type_specific bits.
3438
3439 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3440 base classes and methods. There's no fundamental reason why we
3441 can't, but at the moment it is not needed. */
3442
3443 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3444 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3445 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3446 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3447 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3448 INIT_CPLUS_SPECIFIC (new_type);
3449
3450 return new_type;
3451}
3452
4af88198
JB
3453/* Make a copy of the given TYPE, except that the pointer & reference
3454 types are not preserved.
3455
3456 This function assumes that the given type has an associated objfile.
3457 This objfile is used to allocate the new type. */
3458
3459struct type *
3460copy_type (const struct type *type)
3461{
3462 struct type *new_type;
3463
e9bb382b 3464 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3465
e9bb382b 3466 new_type = alloc_type_copy (type);
4af88198
JB
3467 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3468 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3469 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3470 sizeof (struct main_type));
3471
3472 return new_type;
3473}
3474
e9bb382b
UW
3475
3476/* Helper functions to initialize architecture-specific types. */
3477
3478/* Allocate a type structure associated with GDBARCH and set its
3479 CODE, LENGTH, and NAME fields. */
3480struct type *
3481arch_type (struct gdbarch *gdbarch,
3482 enum type_code code, int length, char *name)
3483{
3484 struct type *type;
3485
3486 type = alloc_type_arch (gdbarch);
3487 TYPE_CODE (type) = code;
3488 TYPE_LENGTH (type) = length;
3489
3490 if (name)
3491 TYPE_NAME (type) = xstrdup (name);
3492
3493 return type;
3494}
3495
3496/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3497 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3498 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3499struct type *
3500arch_integer_type (struct gdbarch *gdbarch,
3501 int bit, int unsigned_p, char *name)
3502{
3503 struct type *t;
3504
3505 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3506 if (unsigned_p)
3507 TYPE_UNSIGNED (t) = 1;
3508 if (name && strcmp (name, "char") == 0)
3509 TYPE_NOSIGN (t) = 1;
3510
3511 return t;
3512}
3513
3514/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3515 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3516 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3517struct type *
3518arch_character_type (struct gdbarch *gdbarch,
3519 int bit, int unsigned_p, char *name)
3520{
3521 struct type *t;
3522
3523 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3524 if (unsigned_p)
3525 TYPE_UNSIGNED (t) = 1;
3526
3527 return t;
3528}
3529
3530/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3531 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3532 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3533struct type *
3534arch_boolean_type (struct gdbarch *gdbarch,
3535 int bit, int unsigned_p, char *name)
3536{
3537 struct type *t;
3538
3539 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3540 if (unsigned_p)
3541 TYPE_UNSIGNED (t) = 1;
3542
3543 return t;
3544}
3545
3546/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3547 BIT is the type size in bits; if BIT equals -1, the size is
3548 determined by the floatformat. NAME is the type name. Set the
3549 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3550struct type *
e9bb382b
UW
3551arch_float_type (struct gdbarch *gdbarch,
3552 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3553{
3554 struct type *t;
3555
3556 if (bit == -1)
3557 {
3558 gdb_assert (floatformats != NULL);
3559 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3560 bit = floatformats[0]->totalsize;
3561 }
3562 gdb_assert (bit >= 0);
3563
e9bb382b 3564 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3565 TYPE_FLOATFORMAT (t) = floatformats;
3566 return t;
3567}
3568
e9bb382b
UW
3569/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3570 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3571struct type *
e9bb382b
UW
3572arch_complex_type (struct gdbarch *gdbarch,
3573 char *name, struct type *target_type)
27067745
UW
3574{
3575 struct type *t;
d8734c88 3576
e9bb382b
UW
3577 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3578 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3579 TYPE_TARGET_TYPE (t) = target_type;
3580 return t;
3581}
3582
e9bb382b 3583/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3584 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3585struct type *
3586arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3587{
3588 int nfields = length * TARGET_CHAR_BIT;
3589 struct type *type;
3590
3591 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3592 TYPE_UNSIGNED (type) = 1;
3593 TYPE_NFIELDS (type) = nfields;
3594 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3595
3596 return type;
3597}
3598
3599/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3600 position BITPOS is called NAME. */
3601void
3602append_flags_type_flag (struct type *type, int bitpos, char *name)
3603{
3604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3605 gdb_assert (bitpos < TYPE_NFIELDS (type));
3606 gdb_assert (bitpos >= 0);
3607
3608 if (name)
3609 {
3610 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 3611 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
3612 }
3613 else
3614 {
3615 /* Don't show this field to the user. */
945b3a32 3616 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
3617 }
3618}
3619
3620/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3621 specified by CODE) associated with GDBARCH. NAME is the type name. */
3622struct type *
3623arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3624{
3625 struct type *t;
d8734c88 3626
e9bb382b
UW
3627 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3628 t = arch_type (gdbarch, code, 0, NULL);
3629 TYPE_TAG_NAME (t) = name;
3630 INIT_CPLUS_SPECIFIC (t);
3631 return t;
3632}
3633
3634/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3635 Do not set the field's position or adjust the type's length;
3636 the caller should do so. Return the new field. */
3637struct field *
3638append_composite_type_field_raw (struct type *t, char *name,
3639 struct type *field)
e9bb382b
UW
3640{
3641 struct field *f;
d8734c88 3642
e9bb382b
UW
3643 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3644 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3645 sizeof (struct field) * TYPE_NFIELDS (t));
3646 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3647 memset (f, 0, sizeof f[0]);
3648 FIELD_TYPE (f[0]) = field;
3649 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3650 return f;
3651}
3652
3653/* Add new field with name NAME and type FIELD to composite type T.
3654 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3655void
3656append_composite_type_field_aligned (struct type *t, char *name,
3657 struct type *field, int alignment)
3658{
3659 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3660
e9bb382b
UW
3661 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3662 {
3663 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3664 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3665 }
3666 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3667 {
3668 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3669 if (TYPE_NFIELDS (t) > 1)
3670 {
f41f5e61
PA
3671 SET_FIELD_BITPOS (f[0],
3672 (FIELD_BITPOS (f[-1])
3673 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3674 * TARGET_CHAR_BIT)));
e9bb382b
UW
3675
3676 if (alignment)
3677 {
86c3c1fc
AB
3678 int left;
3679
3680 alignment *= TARGET_CHAR_BIT;
3681 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3682
e9bb382b
UW
3683 if (left)
3684 {
f41f5e61 3685 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 3686 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3687 }
3688 }
3689 }
3690 }
3691}
3692
3693/* Add new field with name NAME and type FIELD to composite type T. */
3694void
3695append_composite_type_field (struct type *t, char *name,
3696 struct type *field)
3697{
3698 append_composite_type_field_aligned (t, name, field, 0);
3699}
3700
3701
000177f0
AC
3702static struct gdbarch_data *gdbtypes_data;
3703
3704const struct builtin_type *
3705builtin_type (struct gdbarch *gdbarch)
3706{
3707 return gdbarch_data (gdbarch, gdbtypes_data);
3708}
3709
3710static void *
3711gdbtypes_post_init (struct gdbarch *gdbarch)
3712{
3713 struct builtin_type *builtin_type
3714 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3715
46bf5051 3716 /* Basic types. */
e9bb382b
UW
3717 builtin_type->builtin_void
3718 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3719 builtin_type->builtin_char
3720 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3721 !gdbarch_char_signed (gdbarch), "char");
3722 builtin_type->builtin_signed_char
3723 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3724 0, "signed char");
3725 builtin_type->builtin_unsigned_char
3726 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3727 1, "unsigned char");
3728 builtin_type->builtin_short
3729 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3730 0, "short");
3731 builtin_type->builtin_unsigned_short
3732 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3733 1, "unsigned short");
3734 builtin_type->builtin_int
3735 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3736 0, "int");
3737 builtin_type->builtin_unsigned_int
3738 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3739 1, "unsigned int");
3740 builtin_type->builtin_long
3741 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3742 0, "long");
3743 builtin_type->builtin_unsigned_long
3744 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3745 1, "unsigned long");
3746 builtin_type->builtin_long_long
3747 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3748 0, "long long");
3749 builtin_type->builtin_unsigned_long_long
3750 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3751 1, "unsigned long long");
70bd8e24 3752 builtin_type->builtin_float
e9bb382b 3753 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3754 "float", gdbarch_float_format (gdbarch));
70bd8e24 3755 builtin_type->builtin_double
e9bb382b 3756 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3757 "double", gdbarch_double_format (gdbarch));
70bd8e24 3758 builtin_type->builtin_long_double
e9bb382b 3759 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3760 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3761 builtin_type->builtin_complex
e9bb382b
UW
3762 = arch_complex_type (gdbarch, "complex",
3763 builtin_type->builtin_float);
70bd8e24 3764 builtin_type->builtin_double_complex
e9bb382b
UW
3765 = arch_complex_type (gdbarch, "double complex",
3766 builtin_type->builtin_double);
3767 builtin_type->builtin_string
3768 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3769 builtin_type->builtin_bool
3770 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3771
7678ef8f
TJB
3772 /* The following three are about decimal floating point types, which
3773 are 32-bits, 64-bits and 128-bits respectively. */
3774 builtin_type->builtin_decfloat
e9bb382b 3775 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3776 builtin_type->builtin_decdouble
e9bb382b 3777 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3778 builtin_type->builtin_declong
e9bb382b 3779 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3780
69feb676 3781 /* "True" character types. */
e9bb382b
UW
3782 builtin_type->builtin_true_char
3783 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3784 builtin_type->builtin_true_unsigned_char
3785 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3786
df4df182 3787 /* Fixed-size integer types. */
e9bb382b
UW
3788 builtin_type->builtin_int0
3789 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3790 builtin_type->builtin_int8
3791 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3792 builtin_type->builtin_uint8
3793 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3794 builtin_type->builtin_int16
3795 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3796 builtin_type->builtin_uint16
3797 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3798 builtin_type->builtin_int32
3799 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3800 builtin_type->builtin_uint32
3801 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3802 builtin_type->builtin_int64
3803 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3804 builtin_type->builtin_uint64
3805 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3806 builtin_type->builtin_int128
3807 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3808 builtin_type->builtin_uint128
3809 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3810 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3811 TYPE_INSTANCE_FLAG_NOTTEXT;
3812 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3813 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3814
9a22f0d0
PM
3815 /* Wide character types. */
3816 builtin_type->builtin_char16
3817 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3818 builtin_type->builtin_char32
3819 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3820
3821
46bf5051 3822 /* Default data/code pointer types. */
e9bb382b
UW
3823 builtin_type->builtin_data_ptr
3824 = lookup_pointer_type (builtin_type->builtin_void);
3825 builtin_type->builtin_func_ptr
3826 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3827 builtin_type->builtin_func_func
3828 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3829
78267919 3830 /* This type represents a GDB internal function. */
e9bb382b
UW
3831 builtin_type->internal_fn
3832 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3833 "<internal function>");
78267919 3834
46bf5051
UW
3835 return builtin_type;
3836}
3837
3838
3839/* This set of objfile-based types is intended to be used by symbol
3840 readers as basic types. */
3841
3842static const struct objfile_data *objfile_type_data;
3843
3844const struct objfile_type *
3845objfile_type (struct objfile *objfile)
3846{
3847 struct gdbarch *gdbarch;
3848 struct objfile_type *objfile_type
3849 = objfile_data (objfile, objfile_type_data);
3850
3851 if (objfile_type)
3852 return objfile_type;
3853
3854 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3855 1, struct objfile_type);
3856
3857 /* Use the objfile architecture to determine basic type properties. */
3858 gdbarch = get_objfile_arch (objfile);
3859
3860 /* Basic types. */
3861 objfile_type->builtin_void
3862 = init_type (TYPE_CODE_VOID, 1,
3863 0,
3864 "void", objfile);
3865
3866 objfile_type->builtin_char
3867 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3868 (TYPE_FLAG_NOSIGN
3869 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3870 "char", objfile);
3871 objfile_type->builtin_signed_char
3872 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3873 0,
3874 "signed char", objfile);
3875 objfile_type->builtin_unsigned_char
3876 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3877 TYPE_FLAG_UNSIGNED,
3878 "unsigned char", objfile);
3879 objfile_type->builtin_short
3880 = init_type (TYPE_CODE_INT,
3881 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3882 0, "short", objfile);
3883 objfile_type->builtin_unsigned_short
3884 = init_type (TYPE_CODE_INT,
3885 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3886 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3887 objfile_type->builtin_int
3888 = init_type (TYPE_CODE_INT,
3889 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3890 0, "int", objfile);
3891 objfile_type->builtin_unsigned_int
3892 = init_type (TYPE_CODE_INT,
3893 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3894 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3895 objfile_type->builtin_long
3896 = init_type (TYPE_CODE_INT,
3897 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3898 0, "long", objfile);
3899 objfile_type->builtin_unsigned_long
3900 = init_type (TYPE_CODE_INT,
3901 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3902 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3903 objfile_type->builtin_long_long
3904 = init_type (TYPE_CODE_INT,
3905 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3906 0, "long long", objfile);
3907 objfile_type->builtin_unsigned_long_long
3908 = init_type (TYPE_CODE_INT,
3909 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3910 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3911
3912 objfile_type->builtin_float
3913 = init_type (TYPE_CODE_FLT,
3914 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3915 0, "float", objfile);
3916 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3917 = gdbarch_float_format (gdbarch);
3918 objfile_type->builtin_double
3919 = init_type (TYPE_CODE_FLT,
3920 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3921 0, "double", objfile);
3922 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3923 = gdbarch_double_format (gdbarch);
3924 objfile_type->builtin_long_double
3925 = init_type (TYPE_CODE_FLT,
3926 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3927 0, "long double", objfile);
3928 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3929 = gdbarch_long_double_format (gdbarch);
3930
3931 /* This type represents a type that was unrecognized in symbol read-in. */
3932 objfile_type->builtin_error
3933 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3934
3935 /* The following set of types is used for symbols with no
3936 debug information. */
3937 objfile_type->nodebug_text_symbol
3938 = init_type (TYPE_CODE_FUNC, 1, 0,
3939 "<text variable, no debug info>", objfile);
3940 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3941 = objfile_type->builtin_int;
0875794a
JK
3942 objfile_type->nodebug_text_gnu_ifunc_symbol
3943 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3944 "<text gnu-indirect-function variable, no debug info>",
3945 objfile);
3946 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3947 = objfile_type->nodebug_text_symbol;
3948 objfile_type->nodebug_got_plt_symbol
3949 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3950 "<text from jump slot in .got.plt, no debug info>",
3951 objfile);
3952 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3953 = objfile_type->nodebug_text_symbol;
46bf5051
UW
3954 objfile_type->nodebug_data_symbol
3955 = init_type (TYPE_CODE_INT,
3956 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3957 "<data variable, no debug info>", objfile);
3958 objfile_type->nodebug_unknown_symbol
3959 = init_type (TYPE_CODE_INT, 1, 0,
3960 "<variable (not text or data), no debug info>", objfile);
3961 objfile_type->nodebug_tls_symbol
3962 = init_type (TYPE_CODE_INT,
3963 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3964 "<thread local variable, no debug info>", objfile);
000177f0
AC
3965
3966 /* NOTE: on some targets, addresses and pointers are not necessarily
3967 the same --- for example, on the D10V, pointers are 16 bits long,
3968 but addresses are 32 bits long. See doc/gdbint.texinfo,
3969 ``Pointers Are Not Always Addresses''.
3970
3971 The upshot is:
3972 - gdb's `struct type' always describes the target's
3973 representation.
3974 - gdb's `struct value' objects should always hold values in
3975 target form.
3976 - gdb's CORE_ADDR values are addresses in the unified virtual
3977 address space that the assembler and linker work with. Thus,
3978 since target_read_memory takes a CORE_ADDR as an argument, it
3979 can access any memory on the target, even if the processor has
3980 separate code and data address spaces.
3981
3982 So, for example:
3983 - If v is a value holding a D10V code pointer, its contents are
3984 in target form: a big-endian address left-shifted two bits.
3985 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3986 sizeof (void *) == 2 on the target.
3987
46bf5051
UW
3988 In this context, objfile_type->builtin_core_addr is a bit odd:
3989 it's a target type for a value the target will never see. It's
3990 only used to hold the values of (typeless) linker symbols, which
3991 are indeed in the unified virtual address space. */
000177f0 3992
46bf5051
UW
3993 objfile_type->builtin_core_addr
3994 = init_type (TYPE_CODE_INT,
3995 gdbarch_addr_bit (gdbarch) / 8,
3996 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3997
46bf5051
UW
3998 set_objfile_data (objfile, objfile_type_data, objfile_type);
3999 return objfile_type;
000177f0
AC
4000}
4001
46bf5051 4002
a14ed312 4003extern void _initialize_gdbtypes (void);
c906108c 4004void
fba45db2 4005_initialize_gdbtypes (void)
c906108c 4006{
5674de60 4007 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4008 objfile_type_data = register_objfile_data ();
5674de60 4009
3e43a32a
MS
4010 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
4011 _("Set debugging of C++ overloading."),
4012 _("Show debugging of C++ overloading."),
4013 _("When enabled, ranking of the "
4014 "functions is displayed."),
85c07804 4015 NULL,
920d2a44 4016 show_overload_debug,
85c07804 4017 &setdebuglist, &showdebuglist);
5674de60 4018
7ba81444 4019 /* Add user knob for controlling resolution of opaque types. */
5674de60 4020 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4021 &opaque_type_resolution,
4022 _("Set resolution of opaque struct/class/union"
4023 " types (if set before loading symbols)."),
4024 _("Show resolution of opaque struct/class/union"
4025 " types (if set before loading symbols)."),
4026 NULL, NULL,
5674de60
UW
4027 show_opaque_type_resolution,
4028 &setlist, &showlist);
c906108c 4029}
This page took 1.156188 seconds and 4 git commands to generate.