gdb/copyright.py: Remove testsuite/gdb.base/step-line.{c,inp} special handling
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
99ad9427
YQ
242/* See gdbtypes.h. */
243
244struct type *
245get_target_type (struct type *type)
246{
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255}
256
2e056931
SM
257/* See gdbtypes.h. */
258
259unsigned int
260type_length_units (struct type *type)
261{
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266}
267
2fdde8f8
DJ
268/* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272static struct type *
273alloc_type_instance (struct type *oldtype)
274{
275 struct type *type;
276
277 /* Allocate the structure. */
278
e9bb382b 279 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 280 type = XCNEW (struct type);
2fdde8f8 281 else
1deafd4e
PA
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
2fdde8f8
DJ
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
c16abbde 289 return type;
2fdde8f8
DJ
290}
291
292/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 293 replacing it with something else. Preserve owner information. */
5212577a 294
2fdde8f8
DJ
295static void
296smash_type (struct type *type)
297{
e9bb382b
UW
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
2fdde8f8
DJ
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
e9bb382b
UW
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
2fdde8f8
DJ
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311}
312
c906108c
SS
313/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318struct type *
fba45db2 319make_pointer_type (struct type *type, struct type **typeptr)
c906108c 320{
52f0bd74 321 struct type *ntype; /* New type */
053cb41b 322 struct type *chain;
c906108c
SS
323
324 ntype = TYPE_POINTER_TYPE (type);
325
c5aa993b 326 if (ntype)
c906108c 327 {
c5aa993b 328 if (typeptr == 0)
7ba81444
MS
329 return ntype; /* Don't care about alloc,
330 and have new type. */
c906108c 331 else if (*typeptr == 0)
c5aa993b 332 {
7ba81444 333 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 334 return ntype;
c5aa993b 335 }
c906108c
SS
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
e9bb382b 340 ntype = alloc_type_copy (type);
c906108c
SS
341 if (typeptr)
342 *typeptr = ntype;
343 }
7ba81444 344 else /* We have storage, but need to reset it. */
c906108c
SS
345 {
346 ntype = *typeptr;
053cb41b 347 chain = TYPE_CHAIN (ntype);
2fdde8f8 348 smash_type (ntype);
053cb41b 349 TYPE_CHAIN (ntype) = chain;
c906108c
SS
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
5212577a 355 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 356
50810684
UW
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
67b2adb2 361 /* Mark pointers as unsigned. The target converts between pointers
76e71323 362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 363 gdbarch_address_to_pointer. */
876cecd0 364 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 365
053cb41b
JB
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
c906108c
SS
374 return ntype;
375}
376
377/* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380struct type *
fba45db2 381lookup_pointer_type (struct type *type)
c906108c 382{
c5aa993b 383 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
384}
385
7ba81444
MS
386/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
391
392struct type *
3b224330
AV
393make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
c906108c 395{
52f0bd74 396 struct type *ntype; /* New type */
3b224330 397 struct type **reftype;
1e98b326 398 struct type *chain;
c906108c 399
3b224330
AV
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 404
c5aa993b 405 if (ntype)
c906108c 406 {
c5aa993b 407 if (typeptr == 0)
7ba81444
MS
408 return ntype; /* Don't care about alloc,
409 and have new type. */
c906108c 410 else if (*typeptr == 0)
c5aa993b 411 {
7ba81444 412 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 413 return ntype;
c5aa993b 414 }
c906108c
SS
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
e9bb382b 419 ntype = alloc_type_copy (type);
c906108c
SS
420 if (typeptr)
421 *typeptr = ntype;
422 }
7ba81444 423 else /* We have storage, but need to reset it. */
c906108c
SS
424 {
425 ntype = *typeptr;
1e98b326 426 chain = TYPE_CHAIN (ntype);
2fdde8f8 427 smash_type (ntype);
1e98b326 428 TYPE_CHAIN (ntype) = chain;
c906108c
SS
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
c906108c 436
7ba81444
MS
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
c906108c 440
50810684
UW
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 443 TYPE_CODE (ntype) = refcode;
c5aa993b 444
3b224330 445 *reftype = ntype;
c906108c 446
1e98b326
JB
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
c906108c
SS
455 return ntype;
456}
457
7ba81444
MS
458/* Same as above, but caller doesn't care about memory allocation
459 details. */
c906108c
SS
460
461struct type *
3b224330
AV
462lookup_reference_type (struct type *type, enum type_code refcode)
463{
464 return make_reference_type (type, (struct type **) 0, refcode);
465}
466
467/* Lookup the lvalue reference type for the type TYPE. */
468
469struct type *
470lookup_lvalue_reference_type (struct type *type)
471{
472 return lookup_reference_type (type, TYPE_CODE_REF);
473}
474
475/* Lookup the rvalue reference type for the type TYPE. */
476
477struct type *
478lookup_rvalue_reference_type (struct type *type)
c906108c 479{
3b224330 480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
481}
482
7ba81444
MS
483/* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 486 function type we return. We allocate new memory if needed. */
c906108c
SS
487
488struct type *
0c8b41f1 489make_function_type (struct type *type, struct type **typeptr)
c906108c 490{
52f0bd74 491 struct type *ntype; /* New type */
c906108c
SS
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
e9bb382b 495 ntype = alloc_type_copy (type);
c906108c
SS
496 if (typeptr)
497 *typeptr = ntype;
498 }
7ba81444 499 else /* We have storage, but need to reset it. */
c906108c
SS
500 {
501 ntype = *typeptr;
2fdde8f8 502 smash_type (ntype);
c906108c
SS
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 509
b6cdc2c1
JK
510 INIT_FUNC_SPECIFIC (ntype);
511
c906108c
SS
512 return ntype;
513}
514
c906108c
SS
515/* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518struct type *
fba45db2 519lookup_function_type (struct type *type)
c906108c 520{
0c8b41f1 521 return make_function_type (type, (struct type **) 0);
c906108c
SS
522}
523
71918a86 524/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
71918a86
TT
527
528struct type *
529lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532{
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
e314d629 536 if (nparams > 0)
a6fb9c08 537 {
e314d629
TT
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
54990598
PA
551 else
552 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
553 }
554
71918a86 555 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562}
563
47663de5
MS
564/* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
5212577a
DE
566
567int
50810684 568address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 569{
8b2dbe47 570 int type_flags;
d8734c88 571
7ba81444 572 /* Check for known address space delimiters. */
47663de5 573 if (!strcmp (space_identifier, "code"))
876cecd0 574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 575 else if (!strcmp (space_identifier, "data"))
876cecd0 576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
8b2dbe47 581 return type_flags;
47663de5 582 else
8a3fe4f8 583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
584}
585
586/* Identify address space identifier by integer flag as defined in
7ba81444 587 gdbtypes.h -- return the string version of the adress space name. */
47663de5 588
321432c0 589const char *
50810684 590address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 591{
876cecd0 592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 593 return "code";
876cecd0 594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 595 return "data";
876cecd0 596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
599 else
600 return NULL;
601}
602
2fdde8f8 603/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
47663de5 607
b9362cc7 608static struct type *
2fdde8f8
DJ
609make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
47663de5
MS
611{
612 struct type *ntype;
613
614 ntype = type;
5f61c20e
JK
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
47663de5 622
2fdde8f8
DJ
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
7ba81444
MS
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
ad766c0a
JB
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
2fdde8f8
DJ
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
47663de5
MS
638
639 /* Pointers or references to the original type are not relevant to
2fdde8f8 640 the new type. */
47663de5
MS
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 643
2fdde8f8
DJ
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 650
ab5d3da6
KB
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
47663de5
MS
654 return ntype;
655}
656
2fdde8f8
DJ
657/* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
7ba81444
MS
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
2fdde8f8
DJ
665
666struct type *
667make_type_with_address_space (struct type *type, int space_flag)
668{
2fdde8f8 669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676}
c906108c
SS
677
678/* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
c906108c 683
ad766c0a
JB
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
5212577a 689
c906108c 690struct type *
7ba81444
MS
691make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
c906108c 694{
52f0bd74 695 struct type *ntype; /* New type */
c906108c 696
2fdde8f8 697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 700
c906108c 701 if (cnst)
876cecd0 702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
703
704 if (voltl)
876cecd0 705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 706
2fdde8f8 707 if (typeptr && *typeptr != NULL)
a02fd225 708 {
ad766c0a
JB
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
722 }
723
7ba81444
MS
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
c906108c 726
2fdde8f8
DJ
727 if (typeptr != NULL)
728 *typeptr = ntype;
a02fd225 729
2fdde8f8 730 return ntype;
a02fd225 731}
c906108c 732
06d66ee9
TT
733/* Make a 'restrict'-qualified version of TYPE. */
734
735struct type *
736make_restrict_type (struct type *type)
737{
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742}
743
f1660027
TT
744/* Make a type without const, volatile, or restrict. */
745
746struct type *
747make_unqualified_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755}
756
a2c2acaf
MW
757/* Make a '_Atomic'-qualified version of TYPE. */
758
759struct type *
760make_atomic_type (struct type *type)
761{
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766}
767
2fdde8f8
DJ
768/* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 771
cda6c68a
JB
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
5212577a 777
dd6bda65
DJ
778void
779replace_type (struct type *ntype, struct type *type)
780{
ab5d3da6 781 struct type *chain;
dd6bda65 782
ad766c0a
JB
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 788
2fdde8f8 789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 790
7ba81444
MS
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
ab5d3da6 793 chain = ntype;
5f61c20e
JK
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
ab5d3da6 808
2fdde8f8
DJ
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
812}
813
c906108c
SS
814/* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819struct type *
0d5de010 820lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 821{
52f0bd74 822 struct type *mtype;
c906108c 823
e9bb382b 824 mtype = alloc_type_copy (type);
0d5de010 825 smash_to_memberptr_type (mtype, domain, type);
c16abbde 826 return mtype;
c906108c
SS
827}
828
0d5de010
DJ
829/* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831struct type *
832lookup_methodptr_type (struct type *to_type)
833{
834 struct type *mtype;
835
e9bb382b 836 mtype = alloc_type_copy (to_type);
0b92b5bb 837 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
838 return mtype;
839}
840
7ba81444
MS
841/* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
c906108c
SS
846
847struct type *
fba45db2 848allocate_stub_method (struct type *type)
c906108c
SS
849{
850 struct type *mtype;
851
e9bb382b
UW
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
c906108c 856 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 858 return mtype;
c906108c
SS
859}
860
729efb13
SA
861/* Create a range type with a dynamic range from LOW_BOUND to
862 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
863
864struct type *
729efb13
SA
865create_range_type (struct type *result_type, struct type *index_type,
866 const struct dynamic_prop *low_bound,
867 const struct dynamic_prop *high_bound)
c906108c
SS
868{
869 if (result_type == NULL)
e9bb382b 870 result_type = alloc_type_copy (index_type);
c906108c
SS
871 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
872 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 873 if (TYPE_STUB (index_type))
876cecd0 874 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
875 else
876 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 877
43bbcdc2
PH
878 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
879 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
880 TYPE_RANGE_DATA (result_type)->low = *low_bound;
881 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 882
729efb13 883 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 884 TYPE_UNSIGNED (result_type) = 1;
c906108c 885
45e44d27
JB
886 /* Ada allows the declaration of range types whose upper bound is
887 less than the lower bound, so checking the lower bound is not
888 enough. Make sure we do not mark a range type whose upper bound
889 is negative as unsigned. */
890 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
891 TYPE_UNSIGNED (result_type) = 0;
892
262452ec 893 return result_type;
c906108c
SS
894}
895
729efb13
SA
896/* Create a range type using either a blank type supplied in
897 RESULT_TYPE, or creating a new type, inheriting the objfile from
898 INDEX_TYPE.
899
900 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
901 to HIGH_BOUND, inclusive.
902
903 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
904 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
905
906struct type *
907create_static_range_type (struct type *result_type, struct type *index_type,
908 LONGEST low_bound, LONGEST high_bound)
909{
910 struct dynamic_prop low, high;
911
912 low.kind = PROP_CONST;
913 low.data.const_val = low_bound;
914
915 high.kind = PROP_CONST;
916 high.data.const_val = high_bound;
917
918 result_type = create_range_type (result_type, index_type, &low, &high);
919
920 return result_type;
921}
922
80180f79
SA
923/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
924 are static, otherwise returns 0. */
925
926static int
927has_static_range (const struct range_bounds *bounds)
928{
929 return (bounds->low.kind == PROP_CONST
930 && bounds->high.kind == PROP_CONST);
931}
932
933
7ba81444
MS
934/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
935 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
936 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
937
938int
fba45db2 939get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 940{
f168693b 941 type = check_typedef (type);
c906108c
SS
942 switch (TYPE_CODE (type))
943 {
944 case TYPE_CODE_RANGE:
945 *lowp = TYPE_LOW_BOUND (type);
946 *highp = TYPE_HIGH_BOUND (type);
947 return 1;
948 case TYPE_CODE_ENUM:
949 if (TYPE_NFIELDS (type) > 0)
950 {
951 /* The enums may not be sorted by value, so search all
0963b4bd 952 entries. */
c906108c
SS
953 int i;
954
14e75d8e 955 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
956 for (i = 0; i < TYPE_NFIELDS (type); i++)
957 {
14e75d8e
JK
958 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
959 *lowp = TYPE_FIELD_ENUMVAL (type, i);
960 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
961 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
962 }
963
7ba81444 964 /* Set unsigned indicator if warranted. */
c5aa993b 965 if (*lowp >= 0)
c906108c 966 {
876cecd0 967 TYPE_UNSIGNED (type) = 1;
c906108c
SS
968 }
969 }
970 else
971 {
972 *lowp = 0;
973 *highp = -1;
974 }
975 return 0;
976 case TYPE_CODE_BOOL:
977 *lowp = 0;
978 *highp = 1;
979 return 0;
980 case TYPE_CODE_INT:
c5aa993b 981 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
982 return -1;
983 if (!TYPE_UNSIGNED (type))
984 {
c5aa993b 985 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
986 *highp = -*lowp - 1;
987 return 0;
988 }
7ba81444 989 /* ... fall through for unsigned ints ... */
c906108c
SS
990 case TYPE_CODE_CHAR:
991 *lowp = 0;
992 /* This round-about calculation is to avoid shifting by
7b83ea04 993 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 994 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
995 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
996 *highp = (*highp - 1) | *highp;
997 return 0;
998 default:
999 return -1;
1000 }
1001}
1002
dbc98a8b
KW
1003/* Assuming TYPE is a simple, non-empty array type, compute its upper
1004 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1005 Save the high bound into HIGH_BOUND if not NULL.
1006
0963b4bd 1007 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1008 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1009
1010 We now simply use get_discrete_bounds call to get the values
1011 of the low and high bounds.
1012 get_discrete_bounds can return three values:
1013 1, meaning that index is a range,
1014 0, meaning that index is a discrete type,
1015 or -1 for failure. */
1016
1017int
1018get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1019{
1020 struct type *index = TYPE_INDEX_TYPE (type);
1021 LONGEST low = 0;
1022 LONGEST high = 0;
1023 int res;
1024
1025 if (index == NULL)
1026 return 0;
1027
1028 res = get_discrete_bounds (index, &low, &high);
1029 if (res == -1)
1030 return 0;
1031
1032 /* Check if the array bounds are undefined. */
1033 if (res == 1
1034 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1035 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1036 return 0;
1037
1038 if (low_bound)
1039 *low_bound = low;
1040
1041 if (high_bound)
1042 *high_bound = high;
1043
1044 return 1;
1045}
1046
aa715135
JG
1047/* Assuming that TYPE is a discrete type and VAL is a valid integer
1048 representation of a value of this type, save the corresponding
1049 position number in POS.
1050
1051 Its differs from VAL only in the case of enumeration types. In
1052 this case, the position number of the value of the first listed
1053 enumeration literal is zero; the position number of the value of
1054 each subsequent enumeration literal is one more than that of its
1055 predecessor in the list.
1056
1057 Return 1 if the operation was successful. Return zero otherwise,
1058 in which case the value of POS is unmodified.
1059*/
1060
1061int
1062discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1063{
1064 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1065 {
1066 int i;
1067
1068 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1069 {
1070 if (val == TYPE_FIELD_ENUMVAL (type, i))
1071 {
1072 *pos = i;
1073 return 1;
1074 }
1075 }
1076 /* Invalid enumeration value. */
1077 return 0;
1078 }
1079 else
1080 {
1081 *pos = val;
1082 return 1;
1083 }
1084}
1085
7ba81444
MS
1086/* Create an array type using either a blank type supplied in
1087 RESULT_TYPE, or creating a new type, inheriting the objfile from
1088 RANGE_TYPE.
c906108c
SS
1089
1090 Elements will be of type ELEMENT_TYPE, the indices will be of type
1091 RANGE_TYPE.
1092
dc53a7ad
JB
1093 If BIT_STRIDE is not zero, build a packed array type whose element
1094 size is BIT_STRIDE. Otherwise, ignore this parameter.
1095
7ba81444
MS
1096 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1097 sure it is TYPE_CODE_UNDEF before we bash it into an array
1098 type? */
c906108c
SS
1099
1100struct type *
dc53a7ad
JB
1101create_array_type_with_stride (struct type *result_type,
1102 struct type *element_type,
1103 struct type *range_type,
1104 unsigned int bit_stride)
c906108c 1105{
c906108c 1106 if (result_type == NULL)
e9bb382b
UW
1107 result_type = alloc_type_copy (range_type);
1108
c906108c
SS
1109 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1110 TYPE_TARGET_TYPE (result_type) = element_type;
3f2f83dd 1111 if (has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1112 && (!type_not_associated (result_type)
1113 && !type_not_allocated (result_type)))
80180f79
SA
1114 {
1115 LONGEST low_bound, high_bound;
1116
1117 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1118 low_bound = high_bound = 0;
f168693b 1119 element_type = check_typedef (element_type);
80180f79
SA
1120 /* Be careful when setting the array length. Ada arrays can be
1121 empty arrays with the high_bound being smaller than the low_bound.
1122 In such cases, the array length should be zero. */
1123 if (high_bound < low_bound)
1124 TYPE_LENGTH (result_type) = 0;
1125 else if (bit_stride > 0)
1126 TYPE_LENGTH (result_type) =
1127 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1128 else
1129 TYPE_LENGTH (result_type) =
1130 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1131 }
ab0d6e0d 1132 else
80180f79
SA
1133 {
1134 /* This type is dynamic and its length needs to be computed
1135 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1136 undefined by setting it to zero. Although we are not expected
1137 to trust TYPE_LENGTH in this case, setting the size to zero
1138 allows us to avoid allocating objects of random sizes in case
1139 we accidently do. */
1140 TYPE_LENGTH (result_type) = 0;
1141 }
1142
c906108c
SS
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) =
1deafd4e 1145 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1146 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1147 if (bit_stride > 0)
1148 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1149
a9ff5f12 1150 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1151 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1152 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1153
c16abbde 1154 return result_type;
c906108c
SS
1155}
1156
dc53a7ad
JB
1157/* Same as create_array_type_with_stride but with no bit_stride
1158 (BIT_STRIDE = 0), thus building an unpacked array. */
1159
1160struct type *
1161create_array_type (struct type *result_type,
1162 struct type *element_type,
1163 struct type *range_type)
1164{
1165 return create_array_type_with_stride (result_type, element_type,
1166 range_type, 0);
1167}
1168
e3506a9f
UW
1169struct type *
1170lookup_array_range_type (struct type *element_type,
63375b74 1171 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1172{
50810684 1173 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1174 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1175 struct type *range_type
0c9c3474 1176 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1177
e3506a9f
UW
1178 return create_array_type (NULL, element_type, range_type);
1179}
1180
7ba81444
MS
1181/* Create a string type using either a blank type supplied in
1182 RESULT_TYPE, or creating a new type. String types are similar
1183 enough to array of char types that we can use create_array_type to
1184 build the basic type and then bash it into a string type.
c906108c
SS
1185
1186 For fixed length strings, the range type contains 0 as the lower
1187 bound and the length of the string minus one as the upper bound.
1188
7ba81444
MS
1189 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1190 sure it is TYPE_CODE_UNDEF before we bash it into a string
1191 type? */
c906108c
SS
1192
1193struct type *
3b7538c0
UW
1194create_string_type (struct type *result_type,
1195 struct type *string_char_type,
7ba81444 1196 struct type *range_type)
c906108c
SS
1197{
1198 result_type = create_array_type (result_type,
f290d38e 1199 string_char_type,
c906108c
SS
1200 range_type);
1201 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1202 return result_type;
c906108c
SS
1203}
1204
e3506a9f
UW
1205struct type *
1206lookup_string_range_type (struct type *string_char_type,
63375b74 1207 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1208{
1209 struct type *result_type;
d8734c88 1210
e3506a9f
UW
1211 result_type = lookup_array_range_type (string_char_type,
1212 low_bound, high_bound);
1213 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1214 return result_type;
1215}
1216
c906108c 1217struct type *
fba45db2 1218create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1219{
c906108c 1220 if (result_type == NULL)
e9bb382b
UW
1221 result_type = alloc_type_copy (domain_type);
1222
c906108c
SS
1223 TYPE_CODE (result_type) = TYPE_CODE_SET;
1224 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1225 TYPE_FIELDS (result_type)
1226 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1227
74a9bb82 1228 if (!TYPE_STUB (domain_type))
c906108c 1229 {
f9780d5b 1230 LONGEST low_bound, high_bound, bit_length;
d8734c88 1231
c906108c
SS
1232 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1233 low_bound = high_bound = 0;
1234 bit_length = high_bound - low_bound + 1;
1235 TYPE_LENGTH (result_type)
1236 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1237 if (low_bound >= 0)
876cecd0 1238 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1239 }
1240 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1241
c16abbde 1242 return result_type;
c906108c
SS
1243}
1244
ea37ba09
DJ
1245/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1246 and any array types nested inside it. */
1247
1248void
1249make_vector_type (struct type *array_type)
1250{
1251 struct type *inner_array, *elt_type;
1252 int flags;
1253
1254 /* Find the innermost array type, in case the array is
1255 multi-dimensional. */
1256 inner_array = array_type;
1257 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1258 inner_array = TYPE_TARGET_TYPE (inner_array);
1259
1260 elt_type = TYPE_TARGET_TYPE (inner_array);
1261 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1262 {
2844d6b5 1263 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1264 elt_type = make_qualified_type (elt_type, flags, NULL);
1265 TYPE_TARGET_TYPE (inner_array) = elt_type;
1266 }
1267
876cecd0 1268 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1269}
1270
794ac428 1271struct type *
ac3aafc7
EZ
1272init_vector_type (struct type *elt_type, int n)
1273{
1274 struct type *array_type;
d8734c88 1275
e3506a9f 1276 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1277 make_vector_type (array_type);
ac3aafc7
EZ
1278 return array_type;
1279}
1280
09e2d7c7
DE
1281/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1282 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1283 confusing. "self" is a common enough replacement for "this".
1284 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1285 TYPE_CODE_METHOD. */
1286
1287struct type *
1288internal_type_self_type (struct type *type)
1289{
1290 switch (TYPE_CODE (type))
1291 {
1292 case TYPE_CODE_METHODPTR:
1293 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1294 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1295 return NULL;
09e2d7c7
DE
1296 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1297 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1298 case TYPE_CODE_METHOD:
eaaf76ab
DE
1299 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1300 return NULL;
09e2d7c7
DE
1301 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1302 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306}
1307
1308/* Set the type of the class that TYPE belongs to.
1309 In c++ this is the class of "this".
1310 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1311 TYPE_CODE_METHOD. */
1312
1313void
1314set_type_self_type (struct type *type, struct type *self_type)
1315{
1316 switch (TYPE_CODE (type))
1317 {
1318 case TYPE_CODE_METHODPTR:
1319 case TYPE_CODE_MEMBERPTR:
1320 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1321 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1322 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1323 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1324 break;
1325 case TYPE_CODE_METHOD:
1326 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1327 INIT_FUNC_SPECIFIC (type);
1328 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1329 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1330 break;
1331 default:
1332 gdb_assert_not_reached ("bad type");
1333 }
1334}
1335
1336/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1337 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1338 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1339 TYPE doesn't include the offset (that's the value of the MEMBER
1340 itself), but does include the structure type into which it points
1341 (for some reason).
c906108c 1342
7ba81444
MS
1343 When "smashing" the type, we preserve the objfile that the old type
1344 pointed to, since we aren't changing where the type is actually
c906108c
SS
1345 allocated. */
1346
1347void
09e2d7c7 1348smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1349 struct type *to_type)
c906108c 1350{
2fdde8f8 1351 smash_type (type);
09e2d7c7 1352 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1353 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1354 set_type_self_type (type, self_type);
0d5de010
DJ
1355 /* Assume that a data member pointer is the same size as a normal
1356 pointer. */
50810684
UW
1357 TYPE_LENGTH (type)
1358 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1359}
1360
0b92b5bb
TT
1361/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1362
1363 When "smashing" the type, we preserve the objfile that the old type
1364 pointed to, since we aren't changing where the type is actually
1365 allocated. */
1366
1367void
1368smash_to_methodptr_type (struct type *type, struct type *to_type)
1369{
1370 smash_type (type);
09e2d7c7 1371 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1372 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1373 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1374 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1375}
1376
09e2d7c7 1377/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1378 METHOD just means `function that gets an extra "this" argument'.
1379
7ba81444
MS
1380 When "smashing" the type, we preserve the objfile that the old type
1381 pointed to, since we aren't changing where the type is actually
c906108c
SS
1382 allocated. */
1383
1384void
09e2d7c7 1385smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1386 struct type *to_type, struct field *args,
1387 int nargs, int varargs)
c906108c 1388{
2fdde8f8 1389 smash_type (type);
09e2d7c7 1390 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1391 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1392 set_type_self_type (type, self_type);
ad2f7632
DJ
1393 TYPE_FIELDS (type) = args;
1394 TYPE_NFIELDS (type) = nargs;
1395 if (varargs)
876cecd0 1396 TYPE_VARARGS (type) = 1;
c906108c 1397 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1398}
1399
1400/* Return a typename for a struct/union/enum type without "struct ",
1401 "union ", or "enum ". If the type has a NULL name, return NULL. */
1402
0d5cff50 1403const char *
aa1ee363 1404type_name_no_tag (const struct type *type)
c906108c
SS
1405{
1406 if (TYPE_TAG_NAME (type) != NULL)
1407 return TYPE_TAG_NAME (type);
1408
7ba81444
MS
1409 /* Is there code which expects this to return the name if there is
1410 no tag name? My guess is that this is mainly used for C++ in
1411 cases where the two will always be the same. */
c906108c
SS
1412 return TYPE_NAME (type);
1413}
1414
d8228535
JK
1415/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1416 Since GCC PR debug/47510 DWARF provides associated information to detect the
1417 anonymous class linkage name from its typedef.
1418
1419 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1420 apply it itself. */
1421
1422const char *
1423type_name_no_tag_or_error (struct type *type)
1424{
1425 struct type *saved_type = type;
1426 const char *name;
1427 struct objfile *objfile;
1428
f168693b 1429 type = check_typedef (type);
d8228535
JK
1430
1431 name = type_name_no_tag (type);
1432 if (name != NULL)
1433 return name;
1434
1435 name = type_name_no_tag (saved_type);
1436 objfile = TYPE_OBJFILE (saved_type);
1437 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1438 name ? name : "<anonymous>",
1439 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1440}
1441
7ba81444
MS
1442/* Lookup a typedef or primitive type named NAME, visible in lexical
1443 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1444 suitably defined. */
c906108c
SS
1445
1446struct type *
e6c014f2 1447lookup_typename (const struct language_defn *language,
ddd49eee 1448 struct gdbarch *gdbarch, const char *name,
34eaf542 1449 const struct block *block, int noerr)
c906108c 1450{
52f0bd74 1451 struct symbol *sym;
c906108c 1452
1994afbf 1453 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1454 language->la_language, NULL).symbol;
c51fe631
DE
1455 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1456 return SYMBOL_TYPE (sym);
1457
c51fe631
DE
1458 if (noerr)
1459 return NULL;
1460 error (_("No type named %s."), name);
c906108c
SS
1461}
1462
1463struct type *
e6c014f2 1464lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1465 struct gdbarch *gdbarch, const char *name)
c906108c 1466{
224c3ddb 1467 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1468
1469 strcpy (uns, "unsigned ");
1470 strcpy (uns + 9, name);
e6c014f2 1471 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1472}
1473
1474struct type *
e6c014f2 1475lookup_signed_typename (const struct language_defn *language,
0d5cff50 1476 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1477{
1478 struct type *t;
224c3ddb 1479 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1480
1481 strcpy (uns, "signed ");
1482 strcpy (uns + 7, name);
e6c014f2 1483 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1484 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1485 if (t != NULL)
1486 return t;
e6c014f2 1487 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1488}
1489
1490/* Lookup a structure type named "struct NAME",
1491 visible in lexical block BLOCK. */
1492
1493struct type *
270140bd 1494lookup_struct (const char *name, const struct block *block)
c906108c 1495{
52f0bd74 1496 struct symbol *sym;
c906108c 1497
d12307c1 1498 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1499
1500 if (sym == NULL)
1501 {
8a3fe4f8 1502 error (_("No struct type named %s."), name);
c906108c
SS
1503 }
1504 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1505 {
7ba81444
MS
1506 error (_("This context has class, union or enum %s, not a struct."),
1507 name);
c906108c
SS
1508 }
1509 return (SYMBOL_TYPE (sym));
1510}
1511
1512/* Lookup a union type named "union NAME",
1513 visible in lexical block BLOCK. */
1514
1515struct type *
270140bd 1516lookup_union (const char *name, const struct block *block)
c906108c 1517{
52f0bd74 1518 struct symbol *sym;
c5aa993b 1519 struct type *t;
c906108c 1520
d12307c1 1521 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1522
1523 if (sym == NULL)
8a3fe4f8 1524 error (_("No union type named %s."), name);
c906108c 1525
c5aa993b 1526 t = SYMBOL_TYPE (sym);
c906108c
SS
1527
1528 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1529 return t;
c906108c 1530
7ba81444
MS
1531 /* If we get here, it's not a union. */
1532 error (_("This context has class, struct or enum %s, not a union."),
1533 name);
c906108c
SS
1534}
1535
c906108c
SS
1536/* Lookup an enum type named "enum NAME",
1537 visible in lexical block BLOCK. */
1538
1539struct type *
270140bd 1540lookup_enum (const char *name, const struct block *block)
c906108c 1541{
52f0bd74 1542 struct symbol *sym;
c906108c 1543
d12307c1 1544 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1545 if (sym == NULL)
1546 {
8a3fe4f8 1547 error (_("No enum type named %s."), name);
c906108c
SS
1548 }
1549 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1550 {
7ba81444
MS
1551 error (_("This context has class, struct or union %s, not an enum."),
1552 name);
c906108c
SS
1553 }
1554 return (SYMBOL_TYPE (sym));
1555}
1556
1557/* Lookup a template type named "template NAME<TYPE>",
1558 visible in lexical block BLOCK. */
1559
1560struct type *
7ba81444 1561lookup_template_type (char *name, struct type *type,
270140bd 1562 const struct block *block)
c906108c
SS
1563{
1564 struct symbol *sym;
7ba81444
MS
1565 char *nam = (char *)
1566 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1567
c906108c
SS
1568 strcpy (nam, name);
1569 strcat (nam, "<");
0004e5a2 1570 strcat (nam, TYPE_NAME (type));
0963b4bd 1571 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1572
d12307c1 1573 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1574
1575 if (sym == NULL)
1576 {
8a3fe4f8 1577 error (_("No template type named %s."), name);
c906108c
SS
1578 }
1579 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1580 {
7ba81444
MS
1581 error (_("This context has class, union or enum %s, not a struct."),
1582 name);
c906108c
SS
1583 }
1584 return (SYMBOL_TYPE (sym));
1585}
1586
7ba81444
MS
1587/* Given a type TYPE, lookup the type of the component of type named
1588 NAME.
c906108c 1589
7ba81444
MS
1590 TYPE can be either a struct or union, or a pointer or reference to
1591 a struct or union. If it is a pointer or reference, its target
1592 type is automatically used. Thus '.' and '->' are interchangable,
1593 as specified for the definitions of the expression element types
1594 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1595
1596 If NOERR is nonzero, return zero if NAME is not suitably defined.
1597 If NAME is the name of a baseclass type, return that type. */
1598
1599struct type *
d7561cbb 1600lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1601{
1602 int i;
1603
1604 for (;;)
1605 {
f168693b 1606 type = check_typedef (type);
c906108c
SS
1607 if (TYPE_CODE (type) != TYPE_CODE_PTR
1608 && TYPE_CODE (type) != TYPE_CODE_REF)
1609 break;
1610 type = TYPE_TARGET_TYPE (type);
1611 }
1612
687d6395
MS
1613 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1614 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1615 {
2f408ecb
PA
1616 std::string type_name = type_to_string (type);
1617 error (_("Type %s is not a structure or union type."),
1618 type_name.c_str ());
c906108c
SS
1619 }
1620
1621#if 0
7ba81444
MS
1622 /* FIXME: This change put in by Michael seems incorrect for the case
1623 where the structure tag name is the same as the member name.
0963b4bd 1624 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1625 foo; } bell;" Disabled by fnf. */
c906108c 1626 {
fe978cb0 1627 char *type_name;
c906108c 1628
fe978cb0
PA
1629 type_name = type_name_no_tag (type);
1630 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1631 return type;
1632 }
1633#endif
1634
1635 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1636 {
0d5cff50 1637 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1638
db577aea 1639 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1640 {
1641 return TYPE_FIELD_TYPE (type, i);
1642 }
f5a010c0
PM
1643 else if (!t_field_name || *t_field_name == '\0')
1644 {
d8734c88
MS
1645 struct type *subtype
1646 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1647
f5a010c0
PM
1648 if (subtype != NULL)
1649 return subtype;
1650 }
c906108c
SS
1651 }
1652
1653 /* OK, it's not in this class. Recursively check the baseclasses. */
1654 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1655 {
1656 struct type *t;
1657
9733fc94 1658 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1659 if (t != NULL)
1660 {
1661 return t;
1662 }
1663 }
1664
1665 if (noerr)
1666 {
1667 return NULL;
1668 }
c5aa993b 1669
2f408ecb
PA
1670 std::string type_name = type_to_string (type);
1671 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1672}
1673
ed3ef339
DE
1674/* Store in *MAX the largest number representable by unsigned integer type
1675 TYPE. */
1676
1677void
1678get_unsigned_type_max (struct type *type, ULONGEST *max)
1679{
1680 unsigned int n;
1681
f168693b 1682 type = check_typedef (type);
ed3ef339
DE
1683 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1684 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1685
1686 /* Written this way to avoid overflow. */
1687 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1688 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1689}
1690
1691/* Store in *MIN, *MAX the smallest and largest numbers representable by
1692 signed integer type TYPE. */
1693
1694void
1695get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1696{
1697 unsigned int n;
1698
f168693b 1699 type = check_typedef (type);
ed3ef339
DE
1700 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1701 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1702
1703 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1704 *min = -((ULONGEST) 1 << (n - 1));
1705 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1706}
1707
ae6ae975
DE
1708/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1709 cplus_stuff.vptr_fieldno.
1710
1711 cplus_stuff is initialized to cplus_struct_default which does not
1712 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1713 designated initializers). We cope with that here. */
1714
1715int
1716internal_type_vptr_fieldno (struct type *type)
1717{
f168693b 1718 type = check_typedef (type);
ae6ae975
DE
1719 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1720 || TYPE_CODE (type) == TYPE_CODE_UNION);
1721 if (!HAVE_CPLUS_STRUCT (type))
1722 return -1;
1723 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1724}
1725
1726/* Set the value of cplus_stuff.vptr_fieldno. */
1727
1728void
1729set_type_vptr_fieldno (struct type *type, int fieldno)
1730{
f168693b 1731 type = check_typedef (type);
ae6ae975
DE
1732 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1733 || TYPE_CODE (type) == TYPE_CODE_UNION);
1734 if (!HAVE_CPLUS_STRUCT (type))
1735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1736 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1737}
1738
1739/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1740 cplus_stuff.vptr_basetype. */
1741
1742struct type *
1743internal_type_vptr_basetype (struct type *type)
1744{
f168693b 1745 type = check_typedef (type);
ae6ae975
DE
1746 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1747 || TYPE_CODE (type) == TYPE_CODE_UNION);
1748 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1749 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1750}
1751
1752/* Set the value of cplus_stuff.vptr_basetype. */
1753
1754void
1755set_type_vptr_basetype (struct type *type, struct type *basetype)
1756{
f168693b 1757 type = check_typedef (type);
ae6ae975
DE
1758 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1759 || TYPE_CODE (type) == TYPE_CODE_UNION);
1760 if (!HAVE_CPLUS_STRUCT (type))
1761 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1762 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1763}
1764
81fe8080
DE
1765/* Lookup the vptr basetype/fieldno values for TYPE.
1766 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1767 vptr_fieldno. Also, if found and basetype is from the same objfile,
1768 cache the results.
1769 If not found, return -1 and ignore BASETYPEP.
1770 Callers should be aware that in some cases (for example,
c906108c 1771 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1772 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1773 this function will not be able to find the
7ba81444 1774 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1775 vptr_basetype will remain NULL or incomplete. */
c906108c 1776
81fe8080
DE
1777int
1778get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1779{
f168693b 1780 type = check_typedef (type);
c906108c
SS
1781
1782 if (TYPE_VPTR_FIELDNO (type) < 0)
1783 {
1784 int i;
1785
7ba81444
MS
1786 /* We must start at zero in case the first (and only) baseclass
1787 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1788 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1789 {
81fe8080
DE
1790 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1791 int fieldno;
1792 struct type *basetype;
1793
1794 fieldno = get_vptr_fieldno (baseclass, &basetype);
1795 if (fieldno >= 0)
c906108c 1796 {
81fe8080 1797 /* If the type comes from a different objfile we can't cache
0963b4bd 1798 it, it may have a different lifetime. PR 2384 */
5ef73790 1799 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1800 {
ae6ae975
DE
1801 set_type_vptr_fieldno (type, fieldno);
1802 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1803 }
1804 if (basetypep)
1805 *basetypep = basetype;
1806 return fieldno;
c906108c
SS
1807 }
1808 }
81fe8080
DE
1809
1810 /* Not found. */
1811 return -1;
1812 }
1813 else
1814 {
1815 if (basetypep)
1816 *basetypep = TYPE_VPTR_BASETYPE (type);
1817 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1818 }
1819}
1820
44e1a9eb
DJ
1821static void
1822stub_noname_complaint (void)
1823{
e2e0b3e5 1824 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1825}
1826
d98b7a16 1827/* Worker for is_dynamic_type. */
80180f79 1828
d98b7a16 1829static int
ee715b5a 1830is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1831{
1832 type = check_typedef (type);
1833
e771e4be
PMR
1834 /* We only want to recognize references at the outermost level. */
1835 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1836 type = check_typedef (TYPE_TARGET_TYPE (type));
1837
3cdcd0ce
JB
1838 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1839 dynamic, even if the type itself is statically defined.
1840 From a user's point of view, this may appear counter-intuitive;
1841 but it makes sense in this context, because the point is to determine
1842 whether any part of the type needs to be resolved before it can
1843 be exploited. */
1844 if (TYPE_DATA_LOCATION (type) != NULL
1845 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1846 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1847 return 1;
1848
3f2f83dd
KB
1849 if (TYPE_ASSOCIATED_PROP (type))
1850 return 1;
1851
1852 if (TYPE_ALLOCATED_PROP (type))
1853 return 1;
1854
80180f79
SA
1855 switch (TYPE_CODE (type))
1856 {
6f8a3220 1857 case TYPE_CODE_RANGE:
ddb87a81
JB
1858 {
1859 /* A range type is obviously dynamic if it has at least one
1860 dynamic bound. But also consider the range type to be
1861 dynamic when its subtype is dynamic, even if the bounds
1862 of the range type are static. It allows us to assume that
1863 the subtype of a static range type is also static. */
1864 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1865 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1866 }
6f8a3220 1867
80180f79
SA
1868 case TYPE_CODE_ARRAY:
1869 {
80180f79 1870 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1871
1872 /* The array is dynamic if either the bounds are dynamic,
1873 or the elements it contains have a dynamic contents. */
ee715b5a 1874 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1875 return 1;
ee715b5a 1876 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1877 }
012370f6
TT
1878
1879 case TYPE_CODE_STRUCT:
1880 case TYPE_CODE_UNION:
1881 {
1882 int i;
1883
1884 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1885 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1886 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1887 return 1;
1888 }
1889 break;
80180f79 1890 }
92e2a17f
TT
1891
1892 return 0;
80180f79
SA
1893}
1894
d98b7a16
TT
1895/* See gdbtypes.h. */
1896
1897int
1898is_dynamic_type (struct type *type)
1899{
ee715b5a 1900 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1901}
1902
df25ebbd 1903static struct type *resolve_dynamic_type_internal
ee715b5a 1904 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1905
df25ebbd
JB
1906/* Given a dynamic range type (dyn_range_type) and a stack of
1907 struct property_addr_info elements, return a static version
1908 of that type. */
d190df30 1909
80180f79 1910static struct type *
df25ebbd
JB
1911resolve_dynamic_range (struct type *dyn_range_type,
1912 struct property_addr_info *addr_stack)
80180f79
SA
1913{
1914 CORE_ADDR value;
ddb87a81 1915 struct type *static_range_type, *static_target_type;
80180f79 1916 const struct dynamic_prop *prop;
80180f79
SA
1917 struct dynamic_prop low_bound, high_bound;
1918
6f8a3220 1919 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1920
6f8a3220 1921 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1922 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1923 {
1924 low_bound.kind = PROP_CONST;
1925 low_bound.data.const_val = value;
1926 }
1927 else
1928 {
1929 low_bound.kind = PROP_UNDEFINED;
1930 low_bound.data.const_val = 0;
1931 }
1932
6f8a3220 1933 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1934 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1935 {
1936 high_bound.kind = PROP_CONST;
1937 high_bound.data.const_val = value;
c451ebe5 1938
6f8a3220 1939 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1940 high_bound.data.const_val
1941 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1942 }
1943 else
1944 {
1945 high_bound.kind = PROP_UNDEFINED;
1946 high_bound.data.const_val = 0;
1947 }
1948
ddb87a81
JB
1949 static_target_type
1950 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 1951 addr_stack, 0);
6f8a3220 1952 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1953 static_target_type,
6f8a3220
JB
1954 &low_bound, &high_bound);
1955 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1956 return static_range_type;
1957}
1958
1959/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1960 ADDR_STACK is a stack of struct property_addr_info to be used
1961 if needed during the dynamic resolution. */
6f8a3220
JB
1962
1963static struct type *
df25ebbd
JB
1964resolve_dynamic_array (struct type *type,
1965 struct property_addr_info *addr_stack)
6f8a3220
JB
1966{
1967 CORE_ADDR value;
1968 struct type *elt_type;
1969 struct type *range_type;
1970 struct type *ary_dim;
3f2f83dd 1971 struct dynamic_prop *prop;
6f8a3220
JB
1972
1973 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1974
3f2f83dd
KB
1975 type = copy_type (type);
1976
6f8a3220
JB
1977 elt_type = type;
1978 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1979 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1980
3f2f83dd
KB
1981 /* Resolve allocated/associated here before creating a new array type, which
1982 will update the length of the array accordingly. */
1983 prop = TYPE_ALLOCATED_PROP (type);
1984 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1985 {
1986 TYPE_DYN_PROP_ADDR (prop) = value;
1987 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1988 }
1989 prop = TYPE_ASSOCIATED_PROP (type);
1990 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1991 {
1992 TYPE_DYN_PROP_ADDR (prop) = value;
1993 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1994 }
1995
80180f79
SA
1996 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1997
1998 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 1999 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2000 else
2001 elt_type = TYPE_TARGET_TYPE (type);
2002
3f2f83dd
KB
2003 return create_array_type_with_stride (type, elt_type, range_type,
2004 TYPE_FIELD_BITSIZE (type, 0));
80180f79
SA
2005}
2006
012370f6 2007/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2008 bounds. ADDR_STACK is a stack of struct property_addr_info
2009 to be used if needed during the dynamic resolution. */
012370f6
TT
2010
2011static struct type *
df25ebbd
JB
2012resolve_dynamic_union (struct type *type,
2013 struct property_addr_info *addr_stack)
012370f6
TT
2014{
2015 struct type *resolved_type;
2016 int i;
2017 unsigned int max_len = 0;
2018
2019 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2020
2021 resolved_type = copy_type (type);
2022 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2023 = (struct field *) TYPE_ALLOC (resolved_type,
2024 TYPE_NFIELDS (resolved_type)
2025 * sizeof (struct field));
012370f6
TT
2026 memcpy (TYPE_FIELDS (resolved_type),
2027 TYPE_FIELDS (type),
2028 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2029 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2030 {
2031 struct type *t;
2032
2033 if (field_is_static (&TYPE_FIELD (type, i)))
2034 continue;
2035
d98b7a16 2036 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2037 addr_stack, 0);
012370f6
TT
2038 TYPE_FIELD_TYPE (resolved_type, i) = t;
2039 if (TYPE_LENGTH (t) > max_len)
2040 max_len = TYPE_LENGTH (t);
2041 }
2042
2043 TYPE_LENGTH (resolved_type) = max_len;
2044 return resolved_type;
2045}
2046
2047/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2048 bounds. ADDR_STACK is a stack of struct property_addr_info to
2049 be used if needed during the dynamic resolution. */
012370f6
TT
2050
2051static struct type *
df25ebbd
JB
2052resolve_dynamic_struct (struct type *type,
2053 struct property_addr_info *addr_stack)
012370f6
TT
2054{
2055 struct type *resolved_type;
2056 int i;
6908c509 2057 unsigned resolved_type_bit_length = 0;
012370f6
TT
2058
2059 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2060 gdb_assert (TYPE_NFIELDS (type) > 0);
2061
2062 resolved_type = copy_type (type);
2063 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2064 = (struct field *) TYPE_ALLOC (resolved_type,
2065 TYPE_NFIELDS (resolved_type)
2066 * sizeof (struct field));
012370f6
TT
2067 memcpy (TYPE_FIELDS (resolved_type),
2068 TYPE_FIELDS (type),
2069 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2070 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2071 {
6908c509 2072 unsigned new_bit_length;
df25ebbd 2073 struct property_addr_info pinfo;
012370f6
TT
2074
2075 if (field_is_static (&TYPE_FIELD (type, i)))
2076 continue;
2077
6908c509
JB
2078 /* As we know this field is not a static field, the field's
2079 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2080 this is the case, but only trigger a simple error rather
2081 than an internal error if that fails. While failing
2082 that verification indicates a bug in our code, the error
2083 is not severe enough to suggest to the user he stops
2084 his debugging session because of it. */
df25ebbd 2085 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2086 error (_("Cannot determine struct field location"
2087 " (invalid location kind)"));
df25ebbd
JB
2088
2089 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2090 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2091 pinfo.addr
2092 = (addr_stack->addr
2093 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2094 pinfo.next = addr_stack;
2095
2096 TYPE_FIELD_TYPE (resolved_type, i)
2097 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2098 &pinfo, 0);
df25ebbd
JB
2099 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2100 == FIELD_LOC_KIND_BITPOS);
2101
6908c509
JB
2102 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2103 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2104 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2105 else
2106 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2107 * TARGET_CHAR_BIT);
2108
2109 /* Normally, we would use the position and size of the last field
2110 to determine the size of the enclosing structure. But GCC seems
2111 to be encoding the position of some fields incorrectly when
2112 the struct contains a dynamic field that is not placed last.
2113 So we compute the struct size based on the field that has
2114 the highest position + size - probably the best we can do. */
2115 if (new_bit_length > resolved_type_bit_length)
2116 resolved_type_bit_length = new_bit_length;
012370f6
TT
2117 }
2118
9920b434
BH
2119 /* The length of a type won't change for fortran, but it does for C and Ada.
2120 For fortran the size of dynamic fields might change over time but not the
2121 type length of the structure. If we adapt it, we run into problems
2122 when calculating the element offset for arrays of structs. */
2123 if (current_language->la_language != language_fortran)
2124 TYPE_LENGTH (resolved_type)
2125 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2126
9e195661
PMR
2127 /* The Ada language uses this field as a cache for static fixed types: reset
2128 it as RESOLVED_TYPE must have its own static fixed type. */
2129 TYPE_TARGET_TYPE (resolved_type) = NULL;
2130
012370f6
TT
2131 return resolved_type;
2132}
2133
d98b7a16 2134/* Worker for resolved_dynamic_type. */
80180f79 2135
d98b7a16 2136static struct type *
df25ebbd 2137resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2138 struct property_addr_info *addr_stack,
2139 int top_level)
80180f79
SA
2140{
2141 struct type *real_type = check_typedef (type);
6f8a3220 2142 struct type *resolved_type = type;
d9823cbb 2143 struct dynamic_prop *prop;
3cdcd0ce 2144 CORE_ADDR value;
80180f79 2145
ee715b5a 2146 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2147 return type;
2148
5537b577 2149 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2150 {
cac9b138
JK
2151 resolved_type = copy_type (type);
2152 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2153 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2154 top_level);
5537b577
JK
2155 }
2156 else
2157 {
2158 /* Before trying to resolve TYPE, make sure it is not a stub. */
2159 type = real_type;
012370f6 2160
5537b577
JK
2161 switch (TYPE_CODE (type))
2162 {
e771e4be
PMR
2163 case TYPE_CODE_REF:
2164 {
2165 struct property_addr_info pinfo;
2166
2167 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2168 pinfo.valaddr = NULL;
2169 if (addr_stack->valaddr != NULL)
2170 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2171 else
2172 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2173 pinfo.next = addr_stack;
2174
2175 resolved_type = copy_type (type);
2176 TYPE_TARGET_TYPE (resolved_type)
2177 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2178 &pinfo, top_level);
2179 break;
2180 }
2181
5537b577 2182 case TYPE_CODE_ARRAY:
df25ebbd 2183 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2184 break;
2185
2186 case TYPE_CODE_RANGE:
df25ebbd 2187 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2188 break;
2189
2190 case TYPE_CODE_UNION:
df25ebbd 2191 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2192 break;
2193
2194 case TYPE_CODE_STRUCT:
df25ebbd 2195 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2196 break;
2197 }
6f8a3220 2198 }
80180f79 2199
3cdcd0ce
JB
2200 /* Resolve data_location attribute. */
2201 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2202 if (prop != NULL
2203 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2204 {
d9823cbb
KB
2205 TYPE_DYN_PROP_ADDR (prop) = value;
2206 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2207 }
3cdcd0ce 2208
80180f79
SA
2209 return resolved_type;
2210}
2211
d98b7a16
TT
2212/* See gdbtypes.h */
2213
2214struct type *
c3345124
JB
2215resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2216 CORE_ADDR addr)
d98b7a16 2217{
c3345124
JB
2218 struct property_addr_info pinfo
2219 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2220
ee715b5a 2221 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2222}
2223
d9823cbb
KB
2224/* See gdbtypes.h */
2225
2226struct dynamic_prop *
2227get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2228{
2229 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2230
2231 while (node != NULL)
2232 {
2233 if (node->prop_kind == prop_kind)
283a9958 2234 return &node->prop;
d9823cbb
KB
2235 node = node->next;
2236 }
2237 return NULL;
2238}
2239
2240/* See gdbtypes.h */
2241
2242void
2243add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2244 struct type *type, struct objfile *objfile)
2245{
2246 struct dynamic_prop_list *temp;
2247
2248 gdb_assert (TYPE_OBJFILE_OWNED (type));
2249
224c3ddb 2250 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
d9823cbb 2251 temp->prop_kind = prop_kind;
283a9958 2252 temp->prop = prop;
d9823cbb
KB
2253 temp->next = TYPE_DYN_PROP_LIST (type);
2254
2255 TYPE_DYN_PROP_LIST (type) = temp;
2256}
2257
9920b434
BH
2258/* Remove dynamic property from TYPE in case it exists. */
2259
2260void
2261remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2262 struct type *type)
2263{
2264 struct dynamic_prop_list *prev_node, *curr_node;
2265
2266 curr_node = TYPE_DYN_PROP_LIST (type);
2267 prev_node = NULL;
2268
2269 while (NULL != curr_node)
2270 {
2271 if (curr_node->prop_kind == prop_kind)
2272 {
2273 /* Update the linked list but don't free anything.
2274 The property was allocated on objstack and it is not known
2275 if we are on top of it. Nevertheless, everything is released
2276 when the complete objstack is freed. */
2277 if (NULL == prev_node)
2278 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2279 else
2280 prev_node->next = curr_node->next;
2281
2282 return;
2283 }
2284
2285 prev_node = curr_node;
2286 curr_node = curr_node->next;
2287 }
2288}
d9823cbb 2289
92163a10
JK
2290/* Find the real type of TYPE. This function returns the real type,
2291 after removing all layers of typedefs, and completing opaque or stub
2292 types. Completion changes the TYPE argument, but stripping of
2293 typedefs does not.
2294
2295 Instance flags (e.g. const/volatile) are preserved as typedefs are
2296 stripped. If necessary a new qualified form of the underlying type
2297 is created.
2298
2299 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2300 not been computed and we're either in the middle of reading symbols, or
2301 there was no name for the typedef in the debug info.
2302
9bc118a5
DE
2303 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2304 QUITs in the symbol reading code can also throw.
2305 Thus this function can throw an exception.
2306
92163a10
JK
2307 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2308 the target type.
c906108c
SS
2309
2310 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2311 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2312 definition, so we can use it in future. There used to be a comment
2313 (but not any code) that if we don't find a full definition, we'd
2314 set a flag so we don't spend time in the future checking the same
2315 type. That would be a mistake, though--we might load in more
92163a10 2316 symbols which contain a full definition for the type. */
c906108c
SS
2317
2318struct type *
a02fd225 2319check_typedef (struct type *type)
c906108c
SS
2320{
2321 struct type *orig_type = type;
92163a10
JK
2322 /* While we're removing typedefs, we don't want to lose qualifiers.
2323 E.g., const/volatile. */
2324 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2325
423c0af8
MS
2326 gdb_assert (type);
2327
c906108c
SS
2328 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2329 {
2330 if (!TYPE_TARGET_TYPE (type))
2331 {
0d5cff50 2332 const char *name;
c906108c
SS
2333 struct symbol *sym;
2334
2335 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2336 reading a symtab. Infinite recursion is one danger. */
c906108c 2337 if (currently_reading_symtab)
92163a10 2338 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2339
2340 name = type_name_no_tag (type);
7ba81444
MS
2341 /* FIXME: shouldn't we separately check the TYPE_NAME and
2342 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2343 VAR_DOMAIN as appropriate? (this code was written before
2344 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2345 if (name == NULL)
2346 {
23136709 2347 stub_noname_complaint ();
92163a10 2348 return make_qualified_type (type, instance_flags, NULL);
c906108c 2349 }
d12307c1 2350 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2351 if (sym)
2352 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2353 else /* TYPE_CODE_UNDEF */
e9bb382b 2354 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2355 }
2356 type = TYPE_TARGET_TYPE (type);
c906108c 2357
92163a10
JK
2358 /* Preserve the instance flags as we traverse down the typedef chain.
2359
2360 Handling address spaces/classes is nasty, what do we do if there's a
2361 conflict?
2362 E.g., what if an outer typedef marks the type as class_1 and an inner
2363 typedef marks the type as class_2?
2364 This is the wrong place to do such error checking. We leave it to
2365 the code that created the typedef in the first place to flag the
2366 error. We just pick the outer address space (akin to letting the
2367 outer cast in a chain of casting win), instead of assuming
2368 "it can't happen". */
2369 {
2370 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2371 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2372 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2373 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2374
2375 /* Treat code vs data spaces and address classes separately. */
2376 if ((instance_flags & ALL_SPACES) != 0)
2377 new_instance_flags &= ~ALL_SPACES;
2378 if ((instance_flags & ALL_CLASSES) != 0)
2379 new_instance_flags &= ~ALL_CLASSES;
2380
2381 instance_flags |= new_instance_flags;
2382 }
2383 }
a02fd225 2384
7ba81444
MS
2385 /* If this is a struct/class/union with no fields, then check
2386 whether a full definition exists somewhere else. This is for
2387 systems where a type definition with no fields is issued for such
2388 types, instead of identifying them as stub types in the first
2389 place. */
c5aa993b 2390
7ba81444
MS
2391 if (TYPE_IS_OPAQUE (type)
2392 && opaque_type_resolution
2393 && !currently_reading_symtab)
c906108c 2394 {
0d5cff50 2395 const char *name = type_name_no_tag (type);
c5aa993b 2396 struct type *newtype;
d8734c88 2397
c906108c
SS
2398 if (name == NULL)
2399 {
23136709 2400 stub_noname_complaint ();
92163a10 2401 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2402 }
2403 newtype = lookup_transparent_type (name);
ad766c0a 2404
c906108c 2405 if (newtype)
ad766c0a 2406 {
7ba81444
MS
2407 /* If the resolved type and the stub are in the same
2408 objfile, then replace the stub type with the real deal.
2409 But if they're in separate objfiles, leave the stub
2410 alone; we'll just look up the transparent type every time
2411 we call check_typedef. We can't create pointers between
2412 types allocated to different objfiles, since they may
2413 have different lifetimes. Trying to copy NEWTYPE over to
2414 TYPE's objfile is pointless, too, since you'll have to
2415 move over any other types NEWTYPE refers to, which could
2416 be an unbounded amount of stuff. */
ad766c0a 2417 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2418 type = make_qualified_type (newtype,
2419 TYPE_INSTANCE_FLAGS (type),
2420 type);
ad766c0a
JB
2421 else
2422 type = newtype;
2423 }
c906108c 2424 }
7ba81444
MS
2425 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2426 types. */
74a9bb82 2427 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2428 {
0d5cff50 2429 const char *name = type_name_no_tag (type);
c906108c 2430 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2431 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2432 as appropriate? (this code was written before TYPE_NAME and
2433 TYPE_TAG_NAME were separate). */
c906108c 2434 struct symbol *sym;
d8734c88 2435
c906108c
SS
2436 if (name == NULL)
2437 {
23136709 2438 stub_noname_complaint ();
92163a10 2439 return make_qualified_type (type, instance_flags, NULL);
c906108c 2440 }
d12307c1 2441 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2442 if (sym)
c26f2453
JB
2443 {
2444 /* Same as above for opaque types, we can replace the stub
92163a10 2445 with the complete type only if they are in the same
c26f2453
JB
2446 objfile. */
2447 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2448 type = make_qualified_type (SYMBOL_TYPE (sym),
2449 TYPE_INSTANCE_FLAGS (type),
2450 type);
c26f2453
JB
2451 else
2452 type = SYMBOL_TYPE (sym);
2453 }
c906108c
SS
2454 }
2455
74a9bb82 2456 if (TYPE_TARGET_STUB (type))
c906108c 2457 {
c906108c
SS
2458 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2459
74a9bb82 2460 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2461 {
73e2eb35 2462 /* Nothing we can do. */
c5aa993b 2463 }
c906108c
SS
2464 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2465 {
2466 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2467 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2468 }
2469 }
92163a10
JK
2470
2471 type = make_qualified_type (type, instance_flags, NULL);
2472
7ba81444 2473 /* Cache TYPE_LENGTH for future use. */
c906108c 2474 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2475
c906108c
SS
2476 return type;
2477}
2478
7ba81444 2479/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2480 occurs, silently return a void type. */
c91ecb25 2481
b9362cc7 2482static struct type *
48319d1f 2483safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2484{
2485 struct ui_file *saved_gdb_stderr;
34365054 2486 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2487
7ba81444 2488 /* Suppress error messages. */
c91ecb25 2489 saved_gdb_stderr = gdb_stderr;
d7e74731 2490 gdb_stderr = &null_stream;
c91ecb25 2491
7ba81444 2492 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2493 TRY
8e7b59a5
KS
2494 {
2495 type = parse_and_eval_type (p, length);
2496 }
492d29ea
PA
2497 CATCH (except, RETURN_MASK_ERROR)
2498 {
2499 type = builtin_type (gdbarch)->builtin_void;
2500 }
2501 END_CATCH
c91ecb25 2502
7ba81444 2503 /* Stop suppressing error messages. */
c91ecb25
ND
2504 gdb_stderr = saved_gdb_stderr;
2505
2506 return type;
2507}
2508
c906108c
SS
2509/* Ugly hack to convert method stubs into method types.
2510
7ba81444
MS
2511 He ain't kiddin'. This demangles the name of the method into a
2512 string including argument types, parses out each argument type,
2513 generates a string casting a zero to that type, evaluates the
2514 string, and stuffs the resulting type into an argtype vector!!!
2515 Then it knows the type of the whole function (including argument
2516 types for overloading), which info used to be in the stab's but was
2517 removed to hack back the space required for them. */
c906108c 2518
de17c821 2519static void
fba45db2 2520check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2521{
50810684 2522 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2523 struct fn_field *f;
2524 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2525 char *demangled_name = gdb_demangle (mangled_name,
2526 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2527 char *argtypetext, *p;
2528 int depth = 0, argcount = 1;
ad2f7632 2529 struct field *argtypes;
c906108c
SS
2530 struct type *mtype;
2531
2532 /* Make sure we got back a function string that we can use. */
2533 if (demangled_name)
2534 p = strchr (demangled_name, '(');
502dcf4e
AC
2535 else
2536 p = NULL;
c906108c
SS
2537
2538 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2539 error (_("Internal: Cannot demangle mangled name `%s'."),
2540 mangled_name);
c906108c
SS
2541
2542 /* Now, read in the parameters that define this type. */
2543 p += 1;
2544 argtypetext = p;
2545 while (*p)
2546 {
070ad9f0 2547 if (*p == '(' || *p == '<')
c906108c
SS
2548 {
2549 depth += 1;
2550 }
070ad9f0 2551 else if (*p == ')' || *p == '>')
c906108c
SS
2552 {
2553 depth -= 1;
2554 }
2555 else if (*p == ',' && depth == 0)
2556 {
2557 argcount += 1;
2558 }
2559
2560 p += 1;
2561 }
2562
ad2f7632 2563 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2564 if (startswith (argtypetext, "(void)"))
ad2f7632 2565 argcount -= 1;
c906108c 2566
ad2f7632
DJ
2567 /* We need one extra slot, for the THIS pointer. */
2568
2569 argtypes = (struct field *)
2570 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2571 p = argtypetext;
4a1970e4
DJ
2572
2573 /* Add THIS pointer for non-static methods. */
2574 f = TYPE_FN_FIELDLIST1 (type, method_id);
2575 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2576 argcount = 0;
2577 else
2578 {
ad2f7632 2579 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2580 argcount = 1;
2581 }
c906108c 2582
0963b4bd 2583 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2584 {
2585 depth = 0;
2586 while (*p)
2587 {
2588 if (depth <= 0 && (*p == ',' || *p == ')'))
2589 {
ad2f7632
DJ
2590 /* Avoid parsing of ellipsis, they will be handled below.
2591 Also avoid ``void'' as above. */
2592 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2593 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2594 {
ad2f7632 2595 argtypes[argcount].type =
48319d1f 2596 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2597 argcount += 1;
2598 }
2599 argtypetext = p + 1;
2600 }
2601
070ad9f0 2602 if (*p == '(' || *p == '<')
c906108c
SS
2603 {
2604 depth += 1;
2605 }
070ad9f0 2606 else if (*p == ')' || *p == '>')
c906108c
SS
2607 {
2608 depth -= 1;
2609 }
2610
2611 p += 1;
2612 }
2613 }
2614
c906108c
SS
2615 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2616
2617 /* Now update the old "stub" type into a real type. */
2618 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2619 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2620 We want a method (TYPE_CODE_METHOD). */
2621 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2622 argtypes, argcount, p[-2] == '.');
876cecd0 2623 TYPE_STUB (mtype) = 0;
c906108c 2624 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2625
2626 xfree (demangled_name);
c906108c
SS
2627}
2628
7ba81444
MS
2629/* This is the external interface to check_stub_method, above. This
2630 function unstubs all of the signatures for TYPE's METHOD_ID method
2631 name. After calling this function TYPE_FN_FIELD_STUB will be
2632 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2633 correct.
de17c821
DJ
2634
2635 This function unfortunately can not die until stabs do. */
2636
2637void
2638check_stub_method_group (struct type *type, int method_id)
2639{
2640 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2641 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2642 int j, found_stub = 0;
de17c821
DJ
2643
2644 for (j = 0; j < len; j++)
2645 if (TYPE_FN_FIELD_STUB (f, j))
2646 {
2647 found_stub = 1;
2648 check_stub_method (type, method_id, j);
2649 }
2650
7ba81444
MS
2651 /* GNU v3 methods with incorrect names were corrected when we read
2652 in type information, because it was cheaper to do it then. The
2653 only GNU v2 methods with incorrect method names are operators and
2654 destructors; destructors were also corrected when we read in type
2655 information.
de17c821
DJ
2656
2657 Therefore the only thing we need to handle here are v2 operator
2658 names. */
61012eef 2659 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2660 {
2661 int ret;
2662 char dem_opname[256];
2663
7ba81444
MS
2664 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2665 method_id),
de17c821
DJ
2666 dem_opname, DMGL_ANSI);
2667 if (!ret)
7ba81444
MS
2668 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2669 method_id),
de17c821
DJ
2670 dem_opname, 0);
2671 if (ret)
2672 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2673 }
2674}
2675
9655fd1a
JK
2676/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2677const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2678
2679void
fba45db2 2680allocate_cplus_struct_type (struct type *type)
c906108c 2681{
b4ba55a1
JB
2682 if (HAVE_CPLUS_STRUCT (type))
2683 /* Structure was already allocated. Nothing more to do. */
2684 return;
2685
2686 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2687 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2688 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2689 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2690 set_type_vptr_fieldno (type, -1);
c906108c
SS
2691}
2692
b4ba55a1
JB
2693const struct gnat_aux_type gnat_aux_default =
2694 { NULL };
2695
2696/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2697 and allocate the associated gnat-specific data. The gnat-specific
2698 data is also initialized to gnat_aux_default. */
5212577a 2699
b4ba55a1
JB
2700void
2701allocate_gnat_aux_type (struct type *type)
2702{
2703 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2704 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2705 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2706 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2707}
2708
ae438bc5
UW
2709/* Helper function to initialize a newly allocated type. Set type code
2710 to CODE and initialize the type-specific fields accordingly. */
2711
2712static void
2713set_type_code (struct type *type, enum type_code code)
2714{
2715 TYPE_CODE (type) = code;
2716
2717 switch (code)
2718 {
2719 case TYPE_CODE_STRUCT:
2720 case TYPE_CODE_UNION:
2721 case TYPE_CODE_NAMESPACE:
2722 INIT_CPLUS_SPECIFIC (type);
2723 break;
2724 case TYPE_CODE_FLT:
2725 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2726 break;
2727 case TYPE_CODE_FUNC:
2728 INIT_FUNC_SPECIFIC (type);
2729 break;
2730 }
2731}
2732
19f392bc
UW
2733/* Helper function to verify floating-point format and size.
2734 BIT is the type size in bits; if BIT equals -1, the size is
2735 determined by the floatformat. Returns size to be used. */
2736
2737static int
0db7851f 2738verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2739{
0db7851f 2740 gdb_assert (floatformat != NULL);
9b790ce7 2741
19f392bc 2742 if (bit == -1)
0db7851f 2743 bit = floatformat->totalsize;
19f392bc 2744
0db7851f
UW
2745 gdb_assert (bit >= 0);
2746 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2747
2748 return bit;
2749}
2750
0db7851f
UW
2751/* Return the floating-point format for a floating-point variable of
2752 type TYPE. */
2753
2754const struct floatformat *
2755floatformat_from_type (const struct type *type)
2756{
2757 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2758 gdb_assert (TYPE_FLOATFORMAT (type));
2759 return TYPE_FLOATFORMAT (type);
2760}
2761
c906108c
SS
2762/* Helper function to initialize the standard scalar types.
2763
86f62fd7
TT
2764 If NAME is non-NULL, then it is used to initialize the type name.
2765 Note that NAME is not copied; it is required to have a lifetime at
2766 least as long as OBJFILE. */
c906108c
SS
2767
2768struct type *
77b7c781 2769init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2770 const char *name)
c906108c 2771{
52f0bd74 2772 struct type *type;
c906108c
SS
2773
2774 type = alloc_type (objfile);
ae438bc5 2775 set_type_code (type, code);
77b7c781
UW
2776 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2777 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2778 TYPE_NAME (type) = name;
c906108c 2779
c16abbde 2780 return type;
c906108c 2781}
19f392bc 2782
46a4882b
PA
2783/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2784 to use with variables that have no debug info. NAME is the type
2785 name. */
2786
2787static struct type *
2788init_nodebug_var_type (struct objfile *objfile, const char *name)
2789{
2790 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2791}
2792
19f392bc
UW
2793/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2794 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2795 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2796
2797struct type *
2798init_integer_type (struct objfile *objfile,
2799 int bit, int unsigned_p, const char *name)
2800{
2801 struct type *t;
2802
77b7c781 2803 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2804 if (unsigned_p)
2805 TYPE_UNSIGNED (t) = 1;
2806
2807 return t;
2808}
2809
2810/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2811 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2812 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2813
2814struct type *
2815init_character_type (struct objfile *objfile,
2816 int bit, int unsigned_p, const char *name)
2817{
2818 struct type *t;
2819
77b7c781 2820 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2821 if (unsigned_p)
2822 TYPE_UNSIGNED (t) = 1;
2823
2824 return t;
2825}
2826
2827/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2828 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2829 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2830
2831struct type *
2832init_boolean_type (struct objfile *objfile,
2833 int bit, int unsigned_p, const char *name)
2834{
2835 struct type *t;
2836
77b7c781 2837 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2838 if (unsigned_p)
2839 TYPE_UNSIGNED (t) = 1;
2840
2841 return t;
2842}
2843
2844/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2845 BIT is the type size in bits; if BIT equals -1, the size is
2846 determined by the floatformat. NAME is the type name. Set the
2847 TYPE_FLOATFORMAT from FLOATFORMATS. */
2848
2849struct type *
2850init_float_type (struct objfile *objfile,
2851 int bit, const char *name,
2852 const struct floatformat **floatformats)
2853{
0db7851f
UW
2854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2855 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2856 struct type *t;
2857
0db7851f 2858 bit = verify_floatformat (bit, fmt);
77b7c781 2859 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2860 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2861
2862 return t;
2863}
2864
2865/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2866 BIT is the type size in bits. NAME is the type name. */
2867
2868struct type *
2869init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2870{
2871 struct type *t;
2872
77b7c781 2873 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2874 return t;
2875}
2876
2877/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2878 NAME is the type name. TARGET_TYPE is the component float type. */
2879
2880struct type *
2881init_complex_type (struct objfile *objfile,
2882 const char *name, struct type *target_type)
2883{
2884 struct type *t;
2885
2886 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2887 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2888 TYPE_TARGET_TYPE (t) = target_type;
2889 return t;
2890}
2891
2892/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2893 BIT is the pointer type size in bits. NAME is the type name.
2894 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2895 TYPE_UNSIGNED flag. */
2896
2897struct type *
2898init_pointer_type (struct objfile *objfile,
2899 int bit, const char *name, struct type *target_type)
2900{
2901 struct type *t;
2902
77b7c781 2903 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2904 TYPE_TARGET_TYPE (t) = target_type;
2905 TYPE_UNSIGNED (t) = 1;
2906 return t;
2907}
2908
5212577a
DE
2909\f
2910/* Queries on types. */
c906108c 2911
c906108c 2912int
fba45db2 2913can_dereference (struct type *t)
c906108c 2914{
7ba81444
MS
2915 /* FIXME: Should we return true for references as well as
2916 pointers? */
f168693b 2917 t = check_typedef (t);
c906108c
SS
2918 return
2919 (t != NULL
2920 && TYPE_CODE (t) == TYPE_CODE_PTR
2921 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2922}
2923
adf40b2e 2924int
fba45db2 2925is_integral_type (struct type *t)
adf40b2e 2926{
f168693b 2927 t = check_typedef (t);
adf40b2e
JM
2928 return
2929 ((t != NULL)
d4f3574e
SS
2930 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2931 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2932 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2933 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2934 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2935 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2936}
2937
70100014
UW
2938int
2939is_floating_type (struct type *t)
2940{
2941 t = check_typedef (t);
2942 return
2943 ((t != NULL)
2944 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
2945 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
2946}
2947
e09342b5
TJB
2948/* Return true if TYPE is scalar. */
2949
220475ed 2950int
e09342b5
TJB
2951is_scalar_type (struct type *type)
2952{
f168693b 2953 type = check_typedef (type);
e09342b5
TJB
2954
2955 switch (TYPE_CODE (type))
2956 {
2957 case TYPE_CODE_ARRAY:
2958 case TYPE_CODE_STRUCT:
2959 case TYPE_CODE_UNION:
2960 case TYPE_CODE_SET:
2961 case TYPE_CODE_STRING:
e09342b5
TJB
2962 return 0;
2963 default:
2964 return 1;
2965 }
2966}
2967
2968/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2969 the memory layout of a scalar type. E.g., an array or struct with only
2970 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2971
2972int
2973is_scalar_type_recursive (struct type *t)
2974{
f168693b 2975 t = check_typedef (t);
e09342b5
TJB
2976
2977 if (is_scalar_type (t))
2978 return 1;
2979 /* Are we dealing with an array or string of known dimensions? */
2980 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2981 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2982 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2983 {
2984 LONGEST low_bound, high_bound;
2985 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2986
2987 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2988
2989 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2990 }
2991 /* Are we dealing with a struct with one element? */
2992 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2993 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2994 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2995 {
2996 int i, n = TYPE_NFIELDS (t);
2997
2998 /* If all elements of the union are scalar, then the union is scalar. */
2999 for (i = 0; i < n; i++)
3000 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3001 return 0;
3002
3003 return 1;
3004 }
3005
3006 return 0;
3007}
3008
6c659fc2
SC
3009/* Return true is T is a class or a union. False otherwise. */
3010
3011int
3012class_or_union_p (const struct type *t)
3013{
3014 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3015 || TYPE_CODE (t) == TYPE_CODE_UNION);
3016}
3017
4e8f195d
TT
3018/* A helper function which returns true if types A and B represent the
3019 "same" class type. This is true if the types have the same main
3020 type, or the same name. */
3021
3022int
3023class_types_same_p (const struct type *a, const struct type *b)
3024{
3025 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3026 || (TYPE_NAME (a) && TYPE_NAME (b)
3027 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3028}
3029
a9d5ef47
SW
3030/* If BASE is an ancestor of DCLASS return the distance between them.
3031 otherwise return -1;
3032 eg:
3033
3034 class A {};
3035 class B: public A {};
3036 class C: public B {};
3037 class D: C {};
3038
3039 distance_to_ancestor (A, A, 0) = 0
3040 distance_to_ancestor (A, B, 0) = 1
3041 distance_to_ancestor (A, C, 0) = 2
3042 distance_to_ancestor (A, D, 0) = 3
3043
3044 If PUBLIC is 1 then only public ancestors are considered,
3045 and the function returns the distance only if BASE is a public ancestor
3046 of DCLASS.
3047 Eg:
3048
0963b4bd 3049 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3050
0526b37a 3051static int
fe978cb0 3052distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3053{
3054 int i;
a9d5ef47 3055 int d;
c5aa993b 3056
f168693b
SM
3057 base = check_typedef (base);
3058 dclass = check_typedef (dclass);
c906108c 3059
4e8f195d 3060 if (class_types_same_p (base, dclass))
a9d5ef47 3061 return 0;
c906108c
SS
3062
3063 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3064 {
fe978cb0 3065 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3066 continue;
3067
fe978cb0 3068 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3069 if (d >= 0)
3070 return 1 + d;
4e8f195d 3071 }
c906108c 3072
a9d5ef47 3073 return -1;
c906108c 3074}
4e8f195d 3075
0526b37a
SW
3076/* Check whether BASE is an ancestor or base class or DCLASS
3077 Return 1 if so, and 0 if not.
3078 Note: If BASE and DCLASS are of the same type, this function
3079 will return 1. So for some class A, is_ancestor (A, A) will
3080 return 1. */
3081
3082int
3083is_ancestor (struct type *base, struct type *dclass)
3084{
a9d5ef47 3085 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3086}
3087
4e8f195d
TT
3088/* Like is_ancestor, but only returns true when BASE is a public
3089 ancestor of DCLASS. */
3090
3091int
3092is_public_ancestor (struct type *base, struct type *dclass)
3093{
a9d5ef47 3094 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3095}
3096
3097/* A helper function for is_unique_ancestor. */
3098
3099static int
3100is_unique_ancestor_worker (struct type *base, struct type *dclass,
3101 int *offset,
8af8e3bc
PA
3102 const gdb_byte *valaddr, int embedded_offset,
3103 CORE_ADDR address, struct value *val)
4e8f195d
TT
3104{
3105 int i, count = 0;
3106
f168693b
SM
3107 base = check_typedef (base);
3108 dclass = check_typedef (dclass);
4e8f195d
TT
3109
3110 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3111 {
8af8e3bc
PA
3112 struct type *iter;
3113 int this_offset;
4e8f195d 3114
8af8e3bc
PA
3115 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3116
3117 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3118 address, val);
4e8f195d
TT
3119
3120 if (class_types_same_p (base, iter))
3121 {
3122 /* If this is the first subclass, set *OFFSET and set count
3123 to 1. Otherwise, if this is at the same offset as
3124 previous instances, do nothing. Otherwise, increment
3125 count. */
3126 if (*offset == -1)
3127 {
3128 *offset = this_offset;
3129 count = 1;
3130 }
3131 else if (this_offset == *offset)
3132 {
3133 /* Nothing. */
3134 }
3135 else
3136 ++count;
3137 }
3138 else
3139 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3140 valaddr,
3141 embedded_offset + this_offset,
3142 address, val);
4e8f195d
TT
3143 }
3144
3145 return count;
3146}
3147
3148/* Like is_ancestor, but only returns true if BASE is a unique base
3149 class of the type of VAL. */
3150
3151int
3152is_unique_ancestor (struct type *base, struct value *val)
3153{
3154 int offset = -1;
3155
3156 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3157 value_contents_for_printing (val),
3158 value_embedded_offset (val),
3159 value_address (val), val) == 1;
4e8f195d
TT
3160}
3161
c906108c 3162\f
5212577a 3163/* Overload resolution. */
c906108c 3164
6403aeea
SW
3165/* Return the sum of the rank of A with the rank of B. */
3166
3167struct rank
3168sum_ranks (struct rank a, struct rank b)
3169{
3170 struct rank c;
3171 c.rank = a.rank + b.rank;
a9d5ef47 3172 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3173 return c;
3174}
3175
3176/* Compare rank A and B and return:
3177 0 if a = b
3178 1 if a is better than b
3179 -1 if b is better than a. */
3180
3181int
3182compare_ranks (struct rank a, struct rank b)
3183{
3184 if (a.rank == b.rank)
a9d5ef47
SW
3185 {
3186 if (a.subrank == b.subrank)
3187 return 0;
3188 if (a.subrank < b.subrank)
3189 return 1;
3190 if (a.subrank > b.subrank)
3191 return -1;
3192 }
6403aeea
SW
3193
3194 if (a.rank < b.rank)
3195 return 1;
3196
0963b4bd 3197 /* a.rank > b.rank */
6403aeea
SW
3198 return -1;
3199}
c5aa993b 3200
0963b4bd 3201/* Functions for overload resolution begin here. */
c906108c
SS
3202
3203/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3204 0 => A and B are identical
3205 1 => A and B are incomparable
3206 2 => A is better than B
3207 3 => A is worse than B */
c906108c
SS
3208
3209int
fba45db2 3210compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3211{
3212 int i;
3213 int tmp;
c5aa993b
JM
3214 short found_pos = 0; /* any positives in c? */
3215 short found_neg = 0; /* any negatives in c? */
3216
3217 /* differing lengths => incomparable */
c906108c
SS
3218 if (a->length != b->length)
3219 return 1;
3220
c5aa993b
JM
3221 /* Subtract b from a */
3222 for (i = 0; i < a->length; i++)
c906108c 3223 {
6403aeea 3224 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3225 if (tmp > 0)
c5aa993b 3226 found_pos = 1;
c906108c 3227 else if (tmp < 0)
c5aa993b 3228 found_neg = 1;
c906108c
SS
3229 }
3230
3231 if (found_pos)
3232 {
3233 if (found_neg)
c5aa993b 3234 return 1; /* incomparable */
c906108c 3235 else
c5aa993b 3236 return 3; /* A > B */
c906108c 3237 }
c5aa993b
JM
3238 else
3239 /* no positives */
c906108c
SS
3240 {
3241 if (found_neg)
c5aa993b 3242 return 2; /* A < B */
c906108c 3243 else
c5aa993b 3244 return 0; /* A == B */
c906108c
SS
3245 }
3246}
3247
7ba81444
MS
3248/* Rank a function by comparing its parameter types (PARMS, length
3249 NPARMS), to the types of an argument list (ARGS, length NARGS).
3250 Return a pointer to a badness vector. This has NARGS + 1
3251 entries. */
c906108c
SS
3252
3253struct badness_vector *
7ba81444 3254rank_function (struct type **parms, int nparms,
da096638 3255 struct value **args, int nargs)
c906108c
SS
3256{
3257 int i;
8d749320 3258 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3259 int min_len = nparms < nargs ? nparms : nargs;
3260
0963b4bd 3261 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3262 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3263
3264 /* First compare the lengths of the supplied lists.
7ba81444 3265 If there is a mismatch, set it to a high value. */
c5aa993b 3266
c906108c 3267 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3268 arguments and ellipsis parameter lists, we should consider those
3269 and rank the length-match more finely. */
c906108c 3270
6403aeea
SW
3271 LENGTH_MATCH (bv) = (nargs != nparms)
3272 ? LENGTH_MISMATCH_BADNESS
3273 : EXACT_MATCH_BADNESS;
c906108c 3274
0963b4bd 3275 /* Now rank all the parameters of the candidate function. */
74cc24b0 3276 for (i = 1; i <= min_len; i++)
da096638
KS
3277 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3278 args[i - 1]);
c906108c 3279
0963b4bd 3280 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3281 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3282 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3283
3284 return bv;
3285}
3286
973ccf8b
DJ
3287/* Compare the names of two integer types, assuming that any sign
3288 qualifiers have been checked already. We do it this way because
3289 there may be an "int" in the name of one of the types. */
3290
3291static int
3292integer_types_same_name_p (const char *first, const char *second)
3293{
3294 int first_p, second_p;
3295
7ba81444
MS
3296 /* If both are shorts, return 1; if neither is a short, keep
3297 checking. */
973ccf8b
DJ
3298 first_p = (strstr (first, "short") != NULL);
3299 second_p = (strstr (second, "short") != NULL);
3300 if (first_p && second_p)
3301 return 1;
3302 if (first_p || second_p)
3303 return 0;
3304
3305 /* Likewise for long. */
3306 first_p = (strstr (first, "long") != NULL);
3307 second_p = (strstr (second, "long") != NULL);
3308 if (first_p && second_p)
3309 return 1;
3310 if (first_p || second_p)
3311 return 0;
3312
3313 /* Likewise for char. */
3314 first_p = (strstr (first, "char") != NULL);
3315 second_p = (strstr (second, "char") != NULL);
3316 if (first_p && second_p)
3317 return 1;
3318 if (first_p || second_p)
3319 return 0;
3320
3321 /* They must both be ints. */
3322 return 1;
3323}
3324
7062b0a0
SW
3325/* Compares type A to type B returns 1 if the represent the same type
3326 0 otherwise. */
3327
bd69fc68 3328int
7062b0a0
SW
3329types_equal (struct type *a, struct type *b)
3330{
3331 /* Identical type pointers. */
3332 /* However, this still doesn't catch all cases of same type for b
3333 and a. The reason is that builtin types are different from
3334 the same ones constructed from the object. */
3335 if (a == b)
3336 return 1;
3337
3338 /* Resolve typedefs */
3339 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3340 a = check_typedef (a);
3341 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3342 b = check_typedef (b);
3343
3344 /* If after resolving typedefs a and b are not of the same type
3345 code then they are not equal. */
3346 if (TYPE_CODE (a) != TYPE_CODE (b))
3347 return 0;
3348
3349 /* If a and b are both pointers types or both reference types then
3350 they are equal of the same type iff the objects they refer to are
3351 of the same type. */
3352 if (TYPE_CODE (a) == TYPE_CODE_PTR
3353 || TYPE_CODE (a) == TYPE_CODE_REF)
3354 return types_equal (TYPE_TARGET_TYPE (a),
3355 TYPE_TARGET_TYPE (b));
3356
0963b4bd 3357 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3358 are exactly the same. This happens when we generate method
3359 stubs. The types won't point to the same address, but they
0963b4bd 3360 really are the same. */
7062b0a0
SW
3361
3362 if (TYPE_NAME (a) && TYPE_NAME (b)
3363 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3364 return 1;
3365
3366 /* Check if identical after resolving typedefs. */
3367 if (a == b)
3368 return 1;
3369
9ce98649
TT
3370 /* Two function types are equal if their argument and return types
3371 are equal. */
3372 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3373 {
3374 int i;
3375
3376 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3377 return 0;
3378
3379 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3380 return 0;
3381
3382 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3383 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3384 return 0;
3385
3386 return 1;
3387 }
3388
7062b0a0
SW
3389 return 0;
3390}
ca092b61
DE
3391\f
3392/* Deep comparison of types. */
3393
3394/* An entry in the type-equality bcache. */
3395
3396typedef struct type_equality_entry
3397{
3398 struct type *type1, *type2;
3399} type_equality_entry_d;
3400
3401DEF_VEC_O (type_equality_entry_d);
3402
3403/* A helper function to compare two strings. Returns 1 if they are
3404 the same, 0 otherwise. Handles NULLs properly. */
3405
3406static int
3407compare_maybe_null_strings (const char *s, const char *t)
3408{
3409 if (s == NULL && t != NULL)
3410 return 0;
3411 else if (s != NULL && t == NULL)
3412 return 0;
3413 else if (s == NULL && t== NULL)
3414 return 1;
3415 return strcmp (s, t) == 0;
3416}
3417
3418/* A helper function for check_types_worklist that checks two types for
3419 "deep" equality. Returns non-zero if the types are considered the
3420 same, zero otherwise. */
3421
3422static int
3423check_types_equal (struct type *type1, struct type *type2,
3424 VEC (type_equality_entry_d) **worklist)
3425{
f168693b
SM
3426 type1 = check_typedef (type1);
3427 type2 = check_typedef (type2);
ca092b61
DE
3428
3429 if (type1 == type2)
3430 return 1;
3431
3432 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3433 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3434 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3435 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3436 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3437 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3438 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3439 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3440 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3441 return 0;
3442
3443 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3444 TYPE_TAG_NAME (type2)))
3445 return 0;
3446 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3447 return 0;
3448
3449 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3450 {
3451 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3452 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3453 return 0;
3454 }
3455 else
3456 {
3457 int i;
3458
3459 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3460 {
3461 const struct field *field1 = &TYPE_FIELD (type1, i);
3462 const struct field *field2 = &TYPE_FIELD (type2, i);
3463 struct type_equality_entry entry;
3464
3465 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3466 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3467 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3468 return 0;
3469 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3470 FIELD_NAME (*field2)))
3471 return 0;
3472 switch (FIELD_LOC_KIND (*field1))
3473 {
3474 case FIELD_LOC_KIND_BITPOS:
3475 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3476 return 0;
3477 break;
3478 case FIELD_LOC_KIND_ENUMVAL:
3479 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3480 return 0;
3481 break;
3482 case FIELD_LOC_KIND_PHYSADDR:
3483 if (FIELD_STATIC_PHYSADDR (*field1)
3484 != FIELD_STATIC_PHYSADDR (*field2))
3485 return 0;
3486 break;
3487 case FIELD_LOC_KIND_PHYSNAME:
3488 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3489 FIELD_STATIC_PHYSNAME (*field2)))
3490 return 0;
3491 break;
3492 case FIELD_LOC_KIND_DWARF_BLOCK:
3493 {
3494 struct dwarf2_locexpr_baton *block1, *block2;
3495
3496 block1 = FIELD_DWARF_BLOCK (*field1);
3497 block2 = FIELD_DWARF_BLOCK (*field2);
3498 if (block1->per_cu != block2->per_cu
3499 || block1->size != block2->size
3500 || memcmp (block1->data, block2->data, block1->size) != 0)
3501 return 0;
3502 }
3503 break;
3504 default:
3505 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3506 "%d by check_types_equal"),
3507 FIELD_LOC_KIND (*field1));
3508 }
3509
3510 entry.type1 = FIELD_TYPE (*field1);
3511 entry.type2 = FIELD_TYPE (*field2);
3512 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3513 }
3514 }
3515
3516 if (TYPE_TARGET_TYPE (type1) != NULL)
3517 {
3518 struct type_equality_entry entry;
3519
3520 if (TYPE_TARGET_TYPE (type2) == NULL)
3521 return 0;
3522
3523 entry.type1 = TYPE_TARGET_TYPE (type1);
3524 entry.type2 = TYPE_TARGET_TYPE (type2);
3525 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3526 }
3527 else if (TYPE_TARGET_TYPE (type2) != NULL)
3528 return 0;
3529
3530 return 1;
3531}
3532
3533/* Check types on a worklist for equality. Returns zero if any pair
3534 is not equal, non-zero if they are all considered equal. */
3535
3536static int
3537check_types_worklist (VEC (type_equality_entry_d) **worklist,
3538 struct bcache *cache)
3539{
3540 while (!VEC_empty (type_equality_entry_d, *worklist))
3541 {
3542 struct type_equality_entry entry;
3543 int added;
3544
3545 entry = *VEC_last (type_equality_entry_d, *worklist);
3546 VEC_pop (type_equality_entry_d, *worklist);
3547
3548 /* If the type pair has already been visited, we know it is
3549 ok. */
3550 bcache_full (&entry, sizeof (entry), cache, &added);
3551 if (!added)
3552 continue;
3553
3554 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3555 return 0;
3556 }
7062b0a0 3557
ca092b61
DE
3558 return 1;
3559}
3560
3561/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3562 "deep comparison". Otherwise return zero. */
3563
3564int
3565types_deeply_equal (struct type *type1, struct type *type2)
3566{
6c63c96a 3567 struct gdb_exception except = exception_none;
ca092b61
DE
3568 int result = 0;
3569 struct bcache *cache;
3570 VEC (type_equality_entry_d) *worklist = NULL;
3571 struct type_equality_entry entry;
3572
3573 gdb_assert (type1 != NULL && type2 != NULL);
3574
3575 /* Early exit for the simple case. */
3576 if (type1 == type2)
3577 return 1;
3578
3579 cache = bcache_xmalloc (NULL, NULL);
3580
3581 entry.type1 = type1;
3582 entry.type2 = type2;
3583 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3584
6c63c96a
PA
3585 /* check_types_worklist calls several nested helper functions, some
3586 of which can raise a GDB exception, so we just check and rethrow
3587 here. If there is a GDB exception, a comparison is not capable
3588 (or trusted), so exit. */
492d29ea 3589 TRY
ca092b61
DE
3590 {
3591 result = check_types_worklist (&worklist, cache);
3592 }
6c63c96a 3593 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3594 {
6c63c96a 3595 except = ex;
492d29ea
PA
3596 }
3597 END_CATCH
ca092b61 3598
6c63c96a
PA
3599 bcache_xfree (cache);
3600 VEC_free (type_equality_entry_d, worklist);
3601
3602 /* Rethrow if there was a problem. */
3603 if (except.reason < 0)
3604 throw_exception (except);
3605
ca092b61
DE
3606 return result;
3607}
3f2f83dd
KB
3608
3609/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3610 Otherwise return one. */
3611
3612int
3613type_not_allocated (const struct type *type)
3614{
3615 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3616
3617 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3618 && !TYPE_DYN_PROP_ADDR (prop));
3619}
3620
3621/* Associated status of type TYPE. Return zero if type TYPE is associated.
3622 Otherwise return one. */
3623
3624int
3625type_not_associated (const struct type *type)
3626{
3627 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3628
3629 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3630 && !TYPE_DYN_PROP_ADDR (prop));
3631}
ca092b61 3632\f
c906108c
SS
3633/* Compare one type (PARM) for compatibility with another (ARG).
3634 * PARM is intended to be the parameter type of a function; and
3635 * ARG is the supplied argument's type. This function tests if
3636 * the latter can be converted to the former.
da096638 3637 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3638 *
3639 * Return 0 if they are identical types;
3640 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3641 * PARM is to ARG. The higher the return value, the worse the match.
3642 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3643
6403aeea 3644struct rank
da096638 3645rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3646{
a9d5ef47 3647 struct rank rank = {0,0};
7062b0a0 3648
c906108c
SS
3649 /* Resolve typedefs */
3650 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3651 parm = check_typedef (parm);
3652 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3653 arg = check_typedef (arg);
3654
e15c3eb4 3655 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 3656 {
e15c3eb4
KS
3657 if (VALUE_LVAL (value) == not_lval)
3658 {
3659 /* Rvalues should preferably bind to rvalue references or const
3660 lvalue references. */
3661 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3662 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3663 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3664 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3665 else
3666 return INCOMPATIBLE_TYPE_BADNESS;
3667 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3668 }
3669 else
3670 {
3671 /* Lvalues should prefer lvalue overloads. */
3672 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3673 {
3674 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3675 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3676 }
3677 }
15c0a2a9
AV
3678 }
3679
3680 if (types_equal (parm, arg))
15c0a2a9 3681 {
e15c3eb4
KS
3682 struct type *t1 = parm;
3683 struct type *t2 = arg;
15c0a2a9 3684
e15c3eb4
KS
3685 /* For pointers and references, compare target type. */
3686 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3687 {
3688 t1 = TYPE_TARGET_TYPE (parm);
3689 t2 = TYPE_TARGET_TYPE (arg);
3690 }
15c0a2a9 3691
e15c3eb4
KS
3692 /* Make sure they are CV equal, too. */
3693 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3694 rank.subrank |= CV_CONVERSION_CONST;
3695 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3696 rank.subrank |= CV_CONVERSION_VOLATILE;
3697 if (rank.subrank != 0)
3698 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3699 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
3700 }
3701
db577aea 3702 /* See through references, since we can almost make non-references
7ba81444 3703 references. */
aa006118
AV
3704
3705 if (TYPE_IS_REFERENCE (arg))
da096638 3706 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3707 REFERENCE_CONVERSION_BADNESS));
aa006118 3708 if (TYPE_IS_REFERENCE (parm))
da096638 3709 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3710 REFERENCE_CONVERSION_BADNESS));
5d161b24 3711 if (overload_debug)
7ba81444
MS
3712 /* Debugging only. */
3713 fprintf_filtered (gdb_stderr,
3714 "------ Arg is %s [%d], parm is %s [%d]\n",
3715 TYPE_NAME (arg), TYPE_CODE (arg),
3716 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3717
0963b4bd 3718 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3719
3720 switch (TYPE_CODE (parm))
3721 {
c5aa993b
JM
3722 case TYPE_CODE_PTR:
3723 switch (TYPE_CODE (arg))
3724 {
3725 case TYPE_CODE_PTR:
7062b0a0
SW
3726
3727 /* Allowed pointer conversions are:
3728 (a) pointer to void-pointer conversion. */
3729 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3730 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3731
3732 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3733 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3734 TYPE_TARGET_TYPE (arg),
3735 0);
3736 if (rank.subrank >= 0)
3737 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3738
3739 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3740 case TYPE_CODE_ARRAY:
e15c3eb4
KS
3741 {
3742 struct type *t1 = TYPE_TARGET_TYPE (parm);
3743 struct type *t2 = TYPE_TARGET_TYPE (arg);
3744
3745 if (types_equal (t1, t2))
3746 {
3747 /* Make sure they are CV equal. */
3748 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3749 rank.subrank |= CV_CONVERSION_CONST;
3750 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3751 rank.subrank |= CV_CONVERSION_VOLATILE;
3752 if (rank.subrank != 0)
3753 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3754 return EXACT_MATCH_BADNESS;
3755 }
3756 return INCOMPATIBLE_TYPE_BADNESS;
3757 }
c5aa993b 3758 case TYPE_CODE_FUNC:
da096638 3759 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3760 case TYPE_CODE_INT:
a451cb65 3761 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3762 {
a451cb65
KS
3763 if (value_as_long (value) == 0)
3764 {
3765 /* Null pointer conversion: allow it to be cast to a pointer.
3766 [4.10.1 of C++ standard draft n3290] */
3767 return NULL_POINTER_CONVERSION_BADNESS;
3768 }
3769 else
3770 {
3771 /* If type checking is disabled, allow the conversion. */
3772 if (!strict_type_checking)
3773 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3774 }
da096638
KS
3775 }
3776 /* fall through */
c5aa993b 3777 case TYPE_CODE_ENUM:
4f2aea11 3778 case TYPE_CODE_FLAGS:
c5aa993b
JM
3779 case TYPE_CODE_CHAR:
3780 case TYPE_CODE_RANGE:
3781 case TYPE_CODE_BOOL:
c5aa993b
JM
3782 default:
3783 return INCOMPATIBLE_TYPE_BADNESS;
3784 }
3785 case TYPE_CODE_ARRAY:
3786 switch (TYPE_CODE (arg))
3787 {
3788 case TYPE_CODE_PTR:
3789 case TYPE_CODE_ARRAY:
7ba81444 3790 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3791 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3792 default:
3793 return INCOMPATIBLE_TYPE_BADNESS;
3794 }
3795 case TYPE_CODE_FUNC:
3796 switch (TYPE_CODE (arg))
3797 {
3798 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3799 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3800 default:
3801 return INCOMPATIBLE_TYPE_BADNESS;
3802 }
3803 case TYPE_CODE_INT:
3804 switch (TYPE_CODE (arg))
3805 {
3806 case TYPE_CODE_INT:
3807 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3808 {
3809 /* Deal with signed, unsigned, and plain chars and
7ba81444 3810 signed and unsigned ints. */
c5aa993b
JM
3811 if (TYPE_NOSIGN (parm))
3812 {
0963b4bd 3813 /* This case only for character types. */
7ba81444 3814 if (TYPE_NOSIGN (arg))
6403aeea 3815 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3816 else /* signed/unsigned char -> plain char */
3817 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3818 }
3819 else if (TYPE_UNSIGNED (parm))
3820 {
3821 if (TYPE_UNSIGNED (arg))
3822 {
7ba81444
MS
3823 /* unsigned int -> unsigned int, or
3824 unsigned long -> unsigned long */
3825 if (integer_types_same_name_p (TYPE_NAME (parm),
3826 TYPE_NAME (arg)))
6403aeea 3827 return EXACT_MATCH_BADNESS;
7ba81444
MS
3828 else if (integer_types_same_name_p (TYPE_NAME (arg),
3829 "int")
3830 && integer_types_same_name_p (TYPE_NAME (parm),
3831 "long"))
3e43a32a
MS
3832 /* unsigned int -> unsigned long */
3833 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3834 else
3e43a32a
MS
3835 /* unsigned long -> unsigned int */
3836 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3837 }
3838 else
3839 {
7ba81444
MS
3840 if (integer_types_same_name_p (TYPE_NAME (arg),
3841 "long")
3842 && integer_types_same_name_p (TYPE_NAME (parm),
3843 "int"))
3e43a32a
MS
3844 /* signed long -> unsigned int */
3845 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3846 else
3e43a32a
MS
3847 /* signed int/long -> unsigned int/long */
3848 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3849 }
3850 }
3851 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3852 {
7ba81444
MS
3853 if (integer_types_same_name_p (TYPE_NAME (parm),
3854 TYPE_NAME (arg)))
6403aeea 3855 return EXACT_MATCH_BADNESS;
7ba81444
MS
3856 else if (integer_types_same_name_p (TYPE_NAME (arg),
3857 "int")
3858 && integer_types_same_name_p (TYPE_NAME (parm),
3859 "long"))
c5aa993b
JM
3860 return INTEGER_PROMOTION_BADNESS;
3861 else
1c5cb38e 3862 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3863 }
3864 else
1c5cb38e 3865 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3866 }
3867 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3868 return INTEGER_PROMOTION_BADNESS;
3869 else
1c5cb38e 3870 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3871 case TYPE_CODE_ENUM:
4f2aea11 3872 case TYPE_CODE_FLAGS:
c5aa993b
JM
3873 case TYPE_CODE_CHAR:
3874 case TYPE_CODE_RANGE:
3875 case TYPE_CODE_BOOL:
3d567982
TT
3876 if (TYPE_DECLARED_CLASS (arg))
3877 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3878 return INTEGER_PROMOTION_BADNESS;
3879 case TYPE_CODE_FLT:
3880 return INT_FLOAT_CONVERSION_BADNESS;
3881 case TYPE_CODE_PTR:
3882 return NS_POINTER_CONVERSION_BADNESS;
3883 default:
3884 return INCOMPATIBLE_TYPE_BADNESS;
3885 }
3886 break;
3887 case TYPE_CODE_ENUM:
3888 switch (TYPE_CODE (arg))
3889 {
3890 case TYPE_CODE_INT:
3891 case TYPE_CODE_CHAR:
3892 case TYPE_CODE_RANGE:
3893 case TYPE_CODE_BOOL:
3894 case TYPE_CODE_ENUM:
3d567982
TT
3895 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3896 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3897 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3898 case TYPE_CODE_FLT:
3899 return INT_FLOAT_CONVERSION_BADNESS;
3900 default:
3901 return INCOMPATIBLE_TYPE_BADNESS;
3902 }
3903 break;
3904 case TYPE_CODE_CHAR:
3905 switch (TYPE_CODE (arg))
3906 {
3907 case TYPE_CODE_RANGE:
3908 case TYPE_CODE_BOOL:
3909 case TYPE_CODE_ENUM:
3d567982
TT
3910 if (TYPE_DECLARED_CLASS (arg))
3911 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3912 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3913 case TYPE_CODE_FLT:
3914 return INT_FLOAT_CONVERSION_BADNESS;
3915 case TYPE_CODE_INT:
3916 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3917 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3918 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3919 return INTEGER_PROMOTION_BADNESS;
3920 /* >>> !! else fall through !! <<< */
3921 case TYPE_CODE_CHAR:
7ba81444
MS
3922 /* Deal with signed, unsigned, and plain chars for C++ and
3923 with int cases falling through from previous case. */
c5aa993b
JM
3924 if (TYPE_NOSIGN (parm))
3925 {
3926 if (TYPE_NOSIGN (arg))
6403aeea 3927 return EXACT_MATCH_BADNESS;
c5aa993b 3928 else
1c5cb38e 3929 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3930 }
3931 else if (TYPE_UNSIGNED (parm))
3932 {
3933 if (TYPE_UNSIGNED (arg))
6403aeea 3934 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3935 else
3936 return INTEGER_PROMOTION_BADNESS;
3937 }
3938 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3939 return EXACT_MATCH_BADNESS;
c5aa993b 3940 else
1c5cb38e 3941 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3942 default:
3943 return INCOMPATIBLE_TYPE_BADNESS;
3944 }
3945 break;
3946 case TYPE_CODE_RANGE:
3947 switch (TYPE_CODE (arg))
3948 {
3949 case TYPE_CODE_INT:
3950 case TYPE_CODE_CHAR:
3951 case TYPE_CODE_RANGE:
3952 case TYPE_CODE_BOOL:
3953 case TYPE_CODE_ENUM:
1c5cb38e 3954 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3955 case TYPE_CODE_FLT:
3956 return INT_FLOAT_CONVERSION_BADNESS;
3957 default:
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 }
3960 break;
3961 case TYPE_CODE_BOOL:
3962 switch (TYPE_CODE (arg))
3963 {
5b4f6e25
KS
3964 /* n3290 draft, section 4.12.1 (conv.bool):
3965
3966 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3967 pointer to member type can be converted to a prvalue of type
3968 bool. A zero value, null pointer value, or null member pointer
3969 value is converted to false; any other value is converted to
3970 true. A prvalue of type std::nullptr_t can be converted to a
3971 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3972 case TYPE_CODE_INT:
3973 case TYPE_CODE_CHAR:
c5aa993b
JM
3974 case TYPE_CODE_ENUM:
3975 case TYPE_CODE_FLT:
5b4f6e25 3976 case TYPE_CODE_MEMBERPTR:
c5aa993b 3977 case TYPE_CODE_PTR:
5b4f6e25
KS
3978 return BOOL_CONVERSION_BADNESS;
3979 case TYPE_CODE_RANGE:
3980 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3981 case TYPE_CODE_BOOL:
6403aeea 3982 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3983 default:
3984 return INCOMPATIBLE_TYPE_BADNESS;
3985 }
3986 break;
3987 case TYPE_CODE_FLT:
3988 switch (TYPE_CODE (arg))
3989 {
3990 case TYPE_CODE_FLT:
3991 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3992 return FLOAT_PROMOTION_BADNESS;
3993 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3994 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3995 else
3996 return FLOAT_CONVERSION_BADNESS;
3997 case TYPE_CODE_INT:
3998 case TYPE_CODE_BOOL:
3999 case TYPE_CODE_ENUM:
4000 case TYPE_CODE_RANGE:
4001 case TYPE_CODE_CHAR:
4002 return INT_FLOAT_CONVERSION_BADNESS;
4003 default:
4004 return INCOMPATIBLE_TYPE_BADNESS;
4005 }
4006 break;
4007 case TYPE_CODE_COMPLEX:
4008 switch (TYPE_CODE (arg))
7ba81444 4009 { /* Strictly not needed for C++, but... */
c5aa993b
JM
4010 case TYPE_CODE_FLT:
4011 return FLOAT_PROMOTION_BADNESS;
4012 case TYPE_CODE_COMPLEX:
6403aeea 4013 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4014 default:
4015 return INCOMPATIBLE_TYPE_BADNESS;
4016 }
4017 break;
4018 case TYPE_CODE_STRUCT:
c5aa993b
JM
4019 switch (TYPE_CODE (arg))
4020 {
4021 case TYPE_CODE_STRUCT:
4022 /* Check for derivation */
a9d5ef47
SW
4023 rank.subrank = distance_to_ancestor (parm, arg, 0);
4024 if (rank.subrank >= 0)
4025 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
4026 /* else fall through */
4027 default:
4028 return INCOMPATIBLE_TYPE_BADNESS;
4029 }
4030 break;
4031 case TYPE_CODE_UNION:
4032 switch (TYPE_CODE (arg))
4033 {
4034 case TYPE_CODE_UNION:
4035 default:
4036 return INCOMPATIBLE_TYPE_BADNESS;
4037 }
4038 break;
0d5de010 4039 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
4040 switch (TYPE_CODE (arg))
4041 {
4042 default:
4043 return INCOMPATIBLE_TYPE_BADNESS;
4044 }
4045 break;
4046 case TYPE_CODE_METHOD:
4047 switch (TYPE_CODE (arg))
4048 {
4049
4050 default:
4051 return INCOMPATIBLE_TYPE_BADNESS;
4052 }
4053 break;
4054 case TYPE_CODE_REF:
4055 switch (TYPE_CODE (arg))
4056 {
4057
4058 default:
4059 return INCOMPATIBLE_TYPE_BADNESS;
4060 }
4061
4062 break;
4063 case TYPE_CODE_SET:
4064 switch (TYPE_CODE (arg))
4065 {
4066 /* Not in C++ */
4067 case TYPE_CODE_SET:
7ba81444 4068 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 4069 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
4070 default:
4071 return INCOMPATIBLE_TYPE_BADNESS;
4072 }
4073 break;
4074 case TYPE_CODE_VOID:
4075 default:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4078}
4079
0963b4bd 4080/* End of functions for overload resolution. */
5212577a
DE
4081\f
4082/* Routines to pretty-print types. */
c906108c 4083
c906108c 4084static void
fba45db2 4085print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4086{
4087 int bitno;
4088
4089 for (bitno = 0; bitno < nbits; bitno++)
4090 {
4091 if ((bitno % 8) == 0)
4092 {
4093 puts_filtered (" ");
4094 }
4095 if (B_TST (bits, bitno))
a3f17187 4096 printf_filtered (("1"));
c906108c 4097 else
a3f17187 4098 printf_filtered (("0"));
c906108c
SS
4099 }
4100}
4101
ad2f7632 4102/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4103 include it since we may get into a infinitely recursive
4104 situation. */
c906108c
SS
4105
4106static void
4c9e8482 4107print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4108{
4109 if (args != NULL)
4110 {
ad2f7632
DJ
4111 int i;
4112
4113 for (i = 0; i < nargs; i++)
4c9e8482
DE
4114 {
4115 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4116 args[i].name != NULL ? args[i].name : "<NULL>");
4117 recursive_dump_type (args[i].type, spaces + 2);
4118 }
c906108c
SS
4119 }
4120}
4121
d6a843b5
JK
4122int
4123field_is_static (struct field *f)
4124{
4125 /* "static" fields are the fields whose location is not relative
4126 to the address of the enclosing struct. It would be nice to
4127 have a dedicated flag that would be set for static fields when
4128 the type is being created. But in practice, checking the field
254e6b9e 4129 loc_kind should give us an accurate answer. */
d6a843b5
JK
4130 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4131 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4132}
4133
c906108c 4134static void
fba45db2 4135dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4136{
4137 int method_idx;
4138 int overload_idx;
4139 struct fn_field *f;
4140
4141 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4142 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4143 printf_filtered ("\n");
4144 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4145 {
4146 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4147 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4148 method_idx,
4149 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4150 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4151 gdb_stdout);
a3f17187 4152 printf_filtered (_(") length %d\n"),
c906108c
SS
4153 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4154 for (overload_idx = 0;
4155 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4156 overload_idx++)
4157 {
4158 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4159 overload_idx,
4160 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4161 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4162 gdb_stdout);
c906108c
SS
4163 printf_filtered (")\n");
4164 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4165 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4166 gdb_stdout);
c906108c
SS
4167 printf_filtered ("\n");
4168
4169 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4170 spaces + 8 + 2);
4171
4172 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4173 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4174 gdb_stdout);
c906108c 4175 printf_filtered ("\n");
4c9e8482
DE
4176 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4177 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4178 spaces + 8 + 2);
c906108c 4179 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4180 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4181 gdb_stdout);
c906108c
SS
4182 printf_filtered ("\n");
4183
4184 printfi_filtered (spaces + 8, "is_const %d\n",
4185 TYPE_FN_FIELD_CONST (f, overload_idx));
4186 printfi_filtered (spaces + 8, "is_volatile %d\n",
4187 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4188 printfi_filtered (spaces + 8, "is_private %d\n",
4189 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4190 printfi_filtered (spaces + 8, "is_protected %d\n",
4191 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4192 printfi_filtered (spaces + 8, "is_stub %d\n",
4193 TYPE_FN_FIELD_STUB (f, overload_idx));
4194 printfi_filtered (spaces + 8, "voffset %u\n",
4195 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4196 }
4197 }
4198}
4199
4200static void
fba45db2 4201print_cplus_stuff (struct type *type, int spaces)
c906108c 4202{
ae6ae975
DE
4203 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4204 printfi_filtered (spaces, "vptr_basetype ");
4205 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4206 puts_filtered ("\n");
4207 if (TYPE_VPTR_BASETYPE (type) != NULL)
4208 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4209
c906108c
SS
4210 printfi_filtered (spaces, "n_baseclasses %d\n",
4211 TYPE_N_BASECLASSES (type));
4212 printfi_filtered (spaces, "nfn_fields %d\n",
4213 TYPE_NFN_FIELDS (type));
c906108c
SS
4214 if (TYPE_N_BASECLASSES (type) > 0)
4215 {
4216 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4217 TYPE_N_BASECLASSES (type));
7ba81444
MS
4218 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4219 gdb_stdout);
c906108c
SS
4220 printf_filtered (")");
4221
4222 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4223 TYPE_N_BASECLASSES (type));
4224 puts_filtered ("\n");
4225 }
4226 if (TYPE_NFIELDS (type) > 0)
4227 {
4228 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4229 {
7ba81444
MS
4230 printfi_filtered (spaces,
4231 "private_field_bits (%d bits at *",
c906108c 4232 TYPE_NFIELDS (type));
7ba81444
MS
4233 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4234 gdb_stdout);
c906108c
SS
4235 printf_filtered (")");
4236 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4237 TYPE_NFIELDS (type));
4238 puts_filtered ("\n");
4239 }
4240 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4241 {
7ba81444
MS
4242 printfi_filtered (spaces,
4243 "protected_field_bits (%d bits at *",
c906108c 4244 TYPE_NFIELDS (type));
7ba81444
MS
4245 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4246 gdb_stdout);
c906108c
SS
4247 printf_filtered (")");
4248 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4249 TYPE_NFIELDS (type));
4250 puts_filtered ("\n");
4251 }
4252 }
4253 if (TYPE_NFN_FIELDS (type) > 0)
4254 {
4255 dump_fn_fieldlists (type, spaces);
4256 }
4257}
4258
b4ba55a1
JB
4259/* Print the contents of the TYPE's type_specific union, assuming that
4260 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4261
4262static void
4263print_gnat_stuff (struct type *type, int spaces)
4264{
4265 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4266
8cd00c59
PMR
4267 if (descriptive_type == NULL)
4268 printfi_filtered (spaces + 2, "no descriptive type\n");
4269 else
4270 {
4271 printfi_filtered (spaces + 2, "descriptive type\n");
4272 recursive_dump_type (descriptive_type, spaces + 4);
4273 }
b4ba55a1
JB
4274}
4275
c906108c
SS
4276static struct obstack dont_print_type_obstack;
4277
4278void
fba45db2 4279recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4280{
4281 int idx;
4282
4283 if (spaces == 0)
4284 obstack_begin (&dont_print_type_obstack, 0);
4285
4286 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4287 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4288 {
4289 struct type **first_dont_print
7ba81444 4290 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4291
7ba81444
MS
4292 int i = (struct type **)
4293 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4294
4295 while (--i >= 0)
4296 {
4297 if (type == first_dont_print[i])
4298 {
4299 printfi_filtered (spaces, "type node ");
d4f3574e 4300 gdb_print_host_address (type, gdb_stdout);
a3f17187 4301 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4302 return;
4303 }
4304 }
4305
4306 obstack_ptr_grow (&dont_print_type_obstack, type);
4307 }
4308
4309 printfi_filtered (spaces, "type node ");
d4f3574e 4310 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4311 printf_filtered ("\n");
4312 printfi_filtered (spaces, "name '%s' (",
4313 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4314 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4315 printf_filtered (")\n");
e9e79dd9
FF
4316 printfi_filtered (spaces, "tagname '%s' (",
4317 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4318 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4319 printf_filtered (")\n");
c906108c
SS
4320 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4321 switch (TYPE_CODE (type))
4322 {
c5aa993b
JM
4323 case TYPE_CODE_UNDEF:
4324 printf_filtered ("(TYPE_CODE_UNDEF)");
4325 break;
4326 case TYPE_CODE_PTR:
4327 printf_filtered ("(TYPE_CODE_PTR)");
4328 break;
4329 case TYPE_CODE_ARRAY:
4330 printf_filtered ("(TYPE_CODE_ARRAY)");
4331 break;
4332 case TYPE_CODE_STRUCT:
4333 printf_filtered ("(TYPE_CODE_STRUCT)");
4334 break;
4335 case TYPE_CODE_UNION:
4336 printf_filtered ("(TYPE_CODE_UNION)");
4337 break;
4338 case TYPE_CODE_ENUM:
4339 printf_filtered ("(TYPE_CODE_ENUM)");
4340 break;
4f2aea11
MK
4341 case TYPE_CODE_FLAGS:
4342 printf_filtered ("(TYPE_CODE_FLAGS)");
4343 break;
c5aa993b
JM
4344 case TYPE_CODE_FUNC:
4345 printf_filtered ("(TYPE_CODE_FUNC)");
4346 break;
4347 case TYPE_CODE_INT:
4348 printf_filtered ("(TYPE_CODE_INT)");
4349 break;
4350 case TYPE_CODE_FLT:
4351 printf_filtered ("(TYPE_CODE_FLT)");
4352 break;
4353 case TYPE_CODE_VOID:
4354 printf_filtered ("(TYPE_CODE_VOID)");
4355 break;
4356 case TYPE_CODE_SET:
4357 printf_filtered ("(TYPE_CODE_SET)");
4358 break;
4359 case TYPE_CODE_RANGE:
4360 printf_filtered ("(TYPE_CODE_RANGE)");
4361 break;
4362 case TYPE_CODE_STRING:
4363 printf_filtered ("(TYPE_CODE_STRING)");
4364 break;
4365 case TYPE_CODE_ERROR:
4366 printf_filtered ("(TYPE_CODE_ERROR)");
4367 break;
0d5de010
DJ
4368 case TYPE_CODE_MEMBERPTR:
4369 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4370 break;
4371 case TYPE_CODE_METHODPTR:
4372 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4373 break;
4374 case TYPE_CODE_METHOD:
4375 printf_filtered ("(TYPE_CODE_METHOD)");
4376 break;
4377 case TYPE_CODE_REF:
4378 printf_filtered ("(TYPE_CODE_REF)");
4379 break;
4380 case TYPE_CODE_CHAR:
4381 printf_filtered ("(TYPE_CODE_CHAR)");
4382 break;
4383 case TYPE_CODE_BOOL:
4384 printf_filtered ("(TYPE_CODE_BOOL)");
4385 break;
e9e79dd9
FF
4386 case TYPE_CODE_COMPLEX:
4387 printf_filtered ("(TYPE_CODE_COMPLEX)");
4388 break;
c5aa993b
JM
4389 case TYPE_CODE_TYPEDEF:
4390 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4391 break;
5c4e30ca
DC
4392 case TYPE_CODE_NAMESPACE:
4393 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4394 break;
c5aa993b
JM
4395 default:
4396 printf_filtered ("(UNKNOWN TYPE CODE)");
4397 break;
c906108c
SS
4398 }
4399 puts_filtered ("\n");
4400 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4401 if (TYPE_OBJFILE_OWNED (type))
4402 {
4403 printfi_filtered (spaces, "objfile ");
4404 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4405 }
4406 else
4407 {
4408 printfi_filtered (spaces, "gdbarch ");
4409 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4410 }
c906108c
SS
4411 printf_filtered ("\n");
4412 printfi_filtered (spaces, "target_type ");
d4f3574e 4413 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4414 printf_filtered ("\n");
4415 if (TYPE_TARGET_TYPE (type) != NULL)
4416 {
4417 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4418 }
4419 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4420 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4421 printf_filtered ("\n");
4422 printfi_filtered (spaces, "reference_type ");
d4f3574e 4423 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4424 printf_filtered ("\n");
2fdde8f8
DJ
4425 printfi_filtered (spaces, "type_chain ");
4426 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4427 printf_filtered ("\n");
7ba81444
MS
4428 printfi_filtered (spaces, "instance_flags 0x%x",
4429 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4430 if (TYPE_CONST (type))
4431 {
a9ff5f12 4432 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4433 }
4434 if (TYPE_VOLATILE (type))
4435 {
a9ff5f12 4436 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4437 }
4438 if (TYPE_CODE_SPACE (type))
4439 {
a9ff5f12 4440 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4441 }
4442 if (TYPE_DATA_SPACE (type))
4443 {
a9ff5f12 4444 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4445 }
8b2dbe47
KB
4446 if (TYPE_ADDRESS_CLASS_1 (type))
4447 {
a9ff5f12 4448 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4449 }
4450 if (TYPE_ADDRESS_CLASS_2 (type))
4451 {
a9ff5f12 4452 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4453 }
06d66ee9
TT
4454 if (TYPE_RESTRICT (type))
4455 {
a9ff5f12 4456 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4457 }
a2c2acaf
MW
4458 if (TYPE_ATOMIC (type))
4459 {
a9ff5f12 4460 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4461 }
2fdde8f8 4462 puts_filtered ("\n");
876cecd0
TT
4463
4464 printfi_filtered (spaces, "flags");
762a036f 4465 if (TYPE_UNSIGNED (type))
c906108c 4466 {
a9ff5f12 4467 puts_filtered (" TYPE_UNSIGNED");
c906108c 4468 }
762a036f
FF
4469 if (TYPE_NOSIGN (type))
4470 {
a9ff5f12 4471 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4472 }
4473 if (TYPE_STUB (type))
c906108c 4474 {
a9ff5f12 4475 puts_filtered (" TYPE_STUB");
c906108c 4476 }
762a036f
FF
4477 if (TYPE_TARGET_STUB (type))
4478 {
a9ff5f12 4479 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4480 }
762a036f
FF
4481 if (TYPE_PROTOTYPED (type))
4482 {
a9ff5f12 4483 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4484 }
4485 if (TYPE_INCOMPLETE (type))
4486 {
a9ff5f12 4487 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4488 }
762a036f
FF
4489 if (TYPE_VARARGS (type))
4490 {
a9ff5f12 4491 puts_filtered (" TYPE_VARARGS");
762a036f 4492 }
f5f8a009
EZ
4493 /* This is used for things like AltiVec registers on ppc. Gcc emits
4494 an attribute for the array type, which tells whether or not we
4495 have a vector, instead of a regular array. */
4496 if (TYPE_VECTOR (type))
4497 {
a9ff5f12 4498 puts_filtered (" TYPE_VECTOR");
f5f8a009 4499 }
876cecd0
TT
4500 if (TYPE_FIXED_INSTANCE (type))
4501 {
4502 puts_filtered (" TYPE_FIXED_INSTANCE");
4503 }
4504 if (TYPE_STUB_SUPPORTED (type))
4505 {
4506 puts_filtered (" TYPE_STUB_SUPPORTED");
4507 }
4508 if (TYPE_NOTTEXT (type))
4509 {
4510 puts_filtered (" TYPE_NOTTEXT");
4511 }
c906108c
SS
4512 puts_filtered ("\n");
4513 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4514 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4515 puts_filtered ("\n");
4516 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4517 {
14e75d8e
JK
4518 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4519 printfi_filtered (spaces + 2,
4520 "[%d] enumval %s type ",
4521 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4522 else
4523 printfi_filtered (spaces + 2,
6b850546
DT
4524 "[%d] bitpos %s bitsize %d type ",
4525 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4526 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4527 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4528 printf_filtered (" name '%s' (",
4529 TYPE_FIELD_NAME (type, idx) != NULL
4530 ? TYPE_FIELD_NAME (type, idx)
4531 : "<NULL>");
d4f3574e 4532 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4533 printf_filtered (")\n");
4534 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4535 {
4536 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4537 }
4538 }
43bbcdc2
PH
4539 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4540 {
4541 printfi_filtered (spaces, "low %s%s high %s%s\n",
4542 plongest (TYPE_LOW_BOUND (type)),
4543 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4544 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4545 TYPE_HIGH_BOUND_UNDEFINED (type)
4546 ? " (undefined)" : "");
43bbcdc2 4547 }
c906108c 4548
b4ba55a1
JB
4549 switch (TYPE_SPECIFIC_FIELD (type))
4550 {
4551 case TYPE_SPECIFIC_CPLUS_STUFF:
4552 printfi_filtered (spaces, "cplus_stuff ");
4553 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4554 gdb_stdout);
4555 puts_filtered ("\n");
4556 print_cplus_stuff (type, spaces);
4557 break;
8da61cc4 4558
b4ba55a1
JB
4559 case TYPE_SPECIFIC_GNAT_STUFF:
4560 printfi_filtered (spaces, "gnat_stuff ");
4561 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4562 puts_filtered ("\n");
4563 print_gnat_stuff (type, spaces);
4564 break;
701c159d 4565
b4ba55a1
JB
4566 case TYPE_SPECIFIC_FLOATFORMAT:
4567 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4568 if (TYPE_FLOATFORMAT (type) == NULL
4569 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4570 puts_filtered ("(null)");
4571 else
0db7851f 4572 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4573 puts_filtered ("\n");
4574 break;
c906108c 4575
b6cdc2c1 4576 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4577 printfi_filtered (spaces, "calling_convention %d\n",
4578 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4579 /* tail_call_list is not printed. */
b4ba55a1 4580 break;
09e2d7c7
DE
4581
4582 case TYPE_SPECIFIC_SELF_TYPE:
4583 printfi_filtered (spaces, "self_type ");
4584 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4585 puts_filtered ("\n");
4586 break;
c906108c 4587 }
b4ba55a1 4588
c906108c
SS
4589 if (spaces == 0)
4590 obstack_free (&dont_print_type_obstack, NULL);
4591}
5212577a 4592\f
ae5a43e0
DJ
4593/* Trivial helpers for the libiberty hash table, for mapping one
4594 type to another. */
4595
4596struct type_pair
4597{
fe978cb0 4598 struct type *old, *newobj;
ae5a43e0
DJ
4599};
4600
4601static hashval_t
4602type_pair_hash (const void *item)
4603{
9a3c8263 4604 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4605
ae5a43e0
DJ
4606 return htab_hash_pointer (pair->old);
4607}
4608
4609static int
4610type_pair_eq (const void *item_lhs, const void *item_rhs)
4611{
9a3c8263
SM
4612 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4613 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4614
ae5a43e0
DJ
4615 return lhs->old == rhs->old;
4616}
4617
4618/* Allocate the hash table used by copy_type_recursive to walk
4619 types without duplicates. We use OBJFILE's obstack, because
4620 OBJFILE is about to be deleted. */
4621
4622htab_t
4623create_copied_types_hash (struct objfile *objfile)
4624{
4625 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4626 NULL, &objfile->objfile_obstack,
4627 hashtab_obstack_allocate,
4628 dummy_obstack_deallocate);
4629}
4630
d9823cbb
KB
4631/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4632
4633static struct dynamic_prop_list *
4634copy_dynamic_prop_list (struct obstack *objfile_obstack,
4635 struct dynamic_prop_list *list)
4636{
4637 struct dynamic_prop_list *copy = list;
4638 struct dynamic_prop_list **node_ptr = &copy;
4639
4640 while (*node_ptr != NULL)
4641 {
4642 struct dynamic_prop_list *node_copy;
4643
224c3ddb
SM
4644 node_copy = ((struct dynamic_prop_list *)
4645 obstack_copy (objfile_obstack, *node_ptr,
4646 sizeof (struct dynamic_prop_list)));
283a9958 4647 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4648 *node_ptr = node_copy;
4649
4650 node_ptr = &node_copy->next;
4651 }
4652
4653 return copy;
4654}
4655
7ba81444 4656/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4657 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4658 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4659 it is not associated with OBJFILE. */
ae5a43e0
DJ
4660
4661struct type *
7ba81444
MS
4662copy_type_recursive (struct objfile *objfile,
4663 struct type *type,
ae5a43e0
DJ
4664 htab_t copied_types)
4665{
4666 struct type_pair *stored, pair;
4667 void **slot;
4668 struct type *new_type;
4669
e9bb382b 4670 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4671 return type;
4672
7ba81444
MS
4673 /* This type shouldn't be pointing to any types in other objfiles;
4674 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4675 gdb_assert (TYPE_OBJFILE (type) == objfile);
4676
4677 pair.old = type;
4678 slot = htab_find_slot (copied_types, &pair, INSERT);
4679 if (*slot != NULL)
fe978cb0 4680 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4681
e9bb382b 4682 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4683
4684 /* We must add the new type to the hash table immediately, in case
4685 we encounter this type again during a recursive call below. */
8d749320 4686 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
ae5a43e0 4687 stored->old = type;
fe978cb0 4688 stored->newobj = new_type;
ae5a43e0
DJ
4689 *slot = stored;
4690
876cecd0
TT
4691 /* Copy the common fields of types. For the main type, we simply
4692 copy the entire thing and then update specific fields as needed. */
4693 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4694 TYPE_OBJFILE_OWNED (new_type) = 0;
4695 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4696
ae5a43e0
DJ
4697 if (TYPE_NAME (type))
4698 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4699 if (TYPE_TAG_NAME (type))
4700 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4701
4702 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4703 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4704
4705 /* Copy the fields. */
ae5a43e0
DJ
4706 if (TYPE_NFIELDS (type))
4707 {
4708 int i, nfields;
4709
4710 nfields = TYPE_NFIELDS (type);
fc270c35 4711 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4712 for (i = 0; i < nfields; i++)
4713 {
7ba81444
MS
4714 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4715 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4716 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4717 if (TYPE_FIELD_TYPE (type, i))
4718 TYPE_FIELD_TYPE (new_type, i)
4719 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4720 copied_types);
4721 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4722 TYPE_FIELD_NAME (new_type, i) =
4723 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4724 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4725 {
d6a843b5
JK
4726 case FIELD_LOC_KIND_BITPOS:
4727 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4728 TYPE_FIELD_BITPOS (type, i));
4729 break;
14e75d8e
JK
4730 case FIELD_LOC_KIND_ENUMVAL:
4731 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4732 TYPE_FIELD_ENUMVAL (type, i));
4733 break;
d6a843b5
JK
4734 case FIELD_LOC_KIND_PHYSADDR:
4735 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4736 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4737 break;
4738 case FIELD_LOC_KIND_PHYSNAME:
4739 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4740 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4741 i)));
4742 break;
4743 default:
4744 internal_error (__FILE__, __LINE__,
4745 _("Unexpected type field location kind: %d"),
4746 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4747 }
4748 }
4749 }
4750
0963b4bd 4751 /* For range types, copy the bounds information. */
43bbcdc2
PH
4752 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4753 {
8d749320 4754 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4755 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4756 }
4757
d9823cbb
KB
4758 if (TYPE_DYN_PROP_LIST (type) != NULL)
4759 TYPE_DYN_PROP_LIST (new_type)
4760 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4761 TYPE_DYN_PROP_LIST (type));
4762
3cdcd0ce 4763
ae5a43e0
DJ
4764 /* Copy pointers to other types. */
4765 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4766 TYPE_TARGET_TYPE (new_type) =
4767 copy_type_recursive (objfile,
4768 TYPE_TARGET_TYPE (type),
4769 copied_types);
f6b3afbf 4770
ae5a43e0
DJ
4771 /* Maybe copy the type_specific bits.
4772
4773 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4774 base classes and methods. There's no fundamental reason why we
4775 can't, but at the moment it is not needed. */
4776
f6b3afbf
DE
4777 switch (TYPE_SPECIFIC_FIELD (type))
4778 {
4779 case TYPE_SPECIFIC_NONE:
4780 break;
4781 case TYPE_SPECIFIC_FUNC:
4782 INIT_FUNC_SPECIFIC (new_type);
4783 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4784 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4785 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4786 break;
4787 case TYPE_SPECIFIC_FLOATFORMAT:
4788 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4789 break;
4790 case TYPE_SPECIFIC_CPLUS_STUFF:
4791 INIT_CPLUS_SPECIFIC (new_type);
4792 break;
4793 case TYPE_SPECIFIC_GNAT_STUFF:
4794 INIT_GNAT_SPECIFIC (new_type);
4795 break;
09e2d7c7
DE
4796 case TYPE_SPECIFIC_SELF_TYPE:
4797 set_type_self_type (new_type,
4798 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4799 copied_types));
4800 break;
f6b3afbf
DE
4801 default:
4802 gdb_assert_not_reached ("bad type_specific_kind");
4803 }
ae5a43e0
DJ
4804
4805 return new_type;
4806}
4807
4af88198
JB
4808/* Make a copy of the given TYPE, except that the pointer & reference
4809 types are not preserved.
4810
4811 This function assumes that the given type has an associated objfile.
4812 This objfile is used to allocate the new type. */
4813
4814struct type *
4815copy_type (const struct type *type)
4816{
4817 struct type *new_type;
4818
e9bb382b 4819 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4820
e9bb382b 4821 new_type = alloc_type_copy (type);
4af88198
JB
4822 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4823 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4824 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4825 sizeof (struct main_type));
d9823cbb
KB
4826 if (TYPE_DYN_PROP_LIST (type) != NULL)
4827 TYPE_DYN_PROP_LIST (new_type)
4828 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4829 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4830
4831 return new_type;
4832}
5212577a 4833\f
e9bb382b
UW
4834/* Helper functions to initialize architecture-specific types. */
4835
4836/* Allocate a type structure associated with GDBARCH and set its
4837 CODE, LENGTH, and NAME fields. */
5212577a 4838
e9bb382b
UW
4839struct type *
4840arch_type (struct gdbarch *gdbarch,
77b7c781 4841 enum type_code code, int bit, const char *name)
e9bb382b
UW
4842{
4843 struct type *type;
4844
4845 type = alloc_type_arch (gdbarch);
ae438bc5 4846 set_type_code (type, code);
77b7c781
UW
4847 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
4848 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
4849
4850 if (name)
6c214e7c 4851 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
4852
4853 return type;
4854}
4855
4856/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4857 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4858 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4859
e9bb382b
UW
4860struct type *
4861arch_integer_type (struct gdbarch *gdbarch,
695bfa52 4862 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4863{
4864 struct type *t;
4865
77b7c781 4866 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
4867 if (unsigned_p)
4868 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
4869
4870 return t;
4871}
4872
4873/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4874 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4875 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4876
e9bb382b
UW
4877struct type *
4878arch_character_type (struct gdbarch *gdbarch,
695bfa52 4879 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4880{
4881 struct type *t;
4882
77b7c781 4883 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
4884 if (unsigned_p)
4885 TYPE_UNSIGNED (t) = 1;
4886
4887 return t;
4888}
4889
4890/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4891 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4892 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4893
e9bb382b
UW
4894struct type *
4895arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 4896 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4897{
4898 struct type *t;
4899
77b7c781 4900 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
4901 if (unsigned_p)
4902 TYPE_UNSIGNED (t) = 1;
4903
4904 return t;
4905}
4906
4907/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4908 BIT is the type size in bits; if BIT equals -1, the size is
4909 determined by the floatformat. NAME is the type name. Set the
4910 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4911
27067745 4912struct type *
e9bb382b 4913arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
4914 int bit, const char *name,
4915 const struct floatformat **floatformats)
8da61cc4 4916{
0db7851f 4917 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
4918 struct type *t;
4919
0db7851f 4920 bit = verify_floatformat (bit, fmt);
77b7c781 4921 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 4922 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 4923
8da61cc4
DJ
4924 return t;
4925}
4926
88dfca6c
UW
4927/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4928 BIT is the type size in bits. NAME is the type name. */
4929
4930struct type *
4931arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4932{
4933 struct type *t;
4934
77b7c781 4935 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
4936 return t;
4937}
4938
e9bb382b
UW
4939/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4940 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4941
27067745 4942struct type *
e9bb382b 4943arch_complex_type (struct gdbarch *gdbarch,
695bfa52 4944 const char *name, struct type *target_type)
27067745
UW
4945{
4946 struct type *t;
d8734c88 4947
e9bb382b 4948 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 4949 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
4950 TYPE_TARGET_TYPE (t) = target_type;
4951 return t;
4952}
4953
88dfca6c
UW
4954/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4955 BIT is the pointer type size in bits. NAME is the type name.
4956 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4957 TYPE_UNSIGNED flag. */
4958
4959struct type *
4960arch_pointer_type (struct gdbarch *gdbarch,
4961 int bit, const char *name, struct type *target_type)
4962{
4963 struct type *t;
4964
77b7c781 4965 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
4966 TYPE_TARGET_TYPE (t) = target_type;
4967 TYPE_UNSIGNED (t) = 1;
4968 return t;
4969}
4970
e9bb382b 4971/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 4972 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 4973
e9bb382b 4974struct type *
77b7c781 4975arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 4976{
e9bb382b
UW
4977 struct type *type;
4978
77b7c781 4979 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 4980 TYPE_UNSIGNED (type) = 1;
81516450
DE
4981 TYPE_NFIELDS (type) = 0;
4982 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 4983 TYPE_FIELDS (type)
77b7c781 4984 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
4985
4986 return type;
4987}
4988
4989/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
4990 position BITPOS is called NAME. Pass NAME as "" for fields that
4991 should not be printed. */
4992
4993void
4994append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 4995 struct type *field_type, const char *name)
81516450
DE
4996{
4997 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4998 int field_nr = TYPE_NFIELDS (type);
4999
5000 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5001 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5002 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5003 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5004 gdb_assert (name != NULL);
5005
5006 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5007 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5008 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5009 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5010 ++TYPE_NFIELDS (type);
5011}
5012
5013/* Special version of append_flags_type_field to add a flag field.
5014 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5015 position BITPOS is called NAME. */
5212577a 5016
e9bb382b 5017void
695bfa52 5018append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5019{
81516450 5020 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5021
81516450
DE
5022 append_flags_type_field (type, bitpos, 1,
5023 builtin_type (gdbarch)->builtin_bool,
5024 name);
e9bb382b
UW
5025}
5026
5027/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5028 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5029
e9bb382b 5030struct type *
695bfa52
TT
5031arch_composite_type (struct gdbarch *gdbarch, const char *name,
5032 enum type_code code)
e9bb382b
UW
5033{
5034 struct type *t;
d8734c88 5035
e9bb382b
UW
5036 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5037 t = arch_type (gdbarch, code, 0, NULL);
5038 TYPE_TAG_NAME (t) = name;
5039 INIT_CPLUS_SPECIFIC (t);
5040 return t;
5041}
5042
5043/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5044 Do not set the field's position or adjust the type's length;
5045 the caller should do so. Return the new field. */
5212577a 5046
f5dff777 5047struct field *
695bfa52 5048append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5049 struct type *field)
e9bb382b
UW
5050{
5051 struct field *f;
d8734c88 5052
e9bb382b 5053 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5054 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5055 TYPE_NFIELDS (t));
e9bb382b
UW
5056 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5057 memset (f, 0, sizeof f[0]);
5058 FIELD_TYPE (f[0]) = field;
5059 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5060 return f;
5061}
5062
5063/* Add new field with name NAME and type FIELD to composite type T.
5064 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5065
f5dff777 5066void
695bfa52 5067append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5068 struct type *field, int alignment)
5069{
5070 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5071
e9bb382b
UW
5072 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5073 {
5074 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5075 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5076 }
5077 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5078 {
5079 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5080 if (TYPE_NFIELDS (t) > 1)
5081 {
f41f5e61
PA
5082 SET_FIELD_BITPOS (f[0],
5083 (FIELD_BITPOS (f[-1])
5084 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5085 * TARGET_CHAR_BIT)));
e9bb382b
UW
5086
5087 if (alignment)
5088 {
86c3c1fc
AB
5089 int left;
5090
5091 alignment *= TARGET_CHAR_BIT;
5092 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5093
e9bb382b
UW
5094 if (left)
5095 {
f41f5e61 5096 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5097 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5098 }
5099 }
5100 }
5101 }
5102}
5103
5104/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5105
e9bb382b 5106void
695bfa52 5107append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5108 struct type *field)
5109{
5110 append_composite_type_field_aligned (t, name, field, 0);
5111}
5112
000177f0
AC
5113static struct gdbarch_data *gdbtypes_data;
5114
5115const struct builtin_type *
5116builtin_type (struct gdbarch *gdbarch)
5117{
9a3c8263 5118 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5119}
5120
5121static void *
5122gdbtypes_post_init (struct gdbarch *gdbarch)
5123{
5124 struct builtin_type *builtin_type
5125 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5126
46bf5051 5127 /* Basic types. */
e9bb382b 5128 builtin_type->builtin_void
77b7c781 5129 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5130 builtin_type->builtin_char
5131 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5132 !gdbarch_char_signed (gdbarch), "char");
c413c448 5133 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5134 builtin_type->builtin_signed_char
5135 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5136 0, "signed char");
5137 builtin_type->builtin_unsigned_char
5138 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5139 1, "unsigned char");
5140 builtin_type->builtin_short
5141 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5142 0, "short");
5143 builtin_type->builtin_unsigned_short
5144 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5145 1, "unsigned short");
5146 builtin_type->builtin_int
5147 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5148 0, "int");
5149 builtin_type->builtin_unsigned_int
5150 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5151 1, "unsigned int");
5152 builtin_type->builtin_long
5153 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5154 0, "long");
5155 builtin_type->builtin_unsigned_long
5156 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5157 1, "unsigned long");
5158 builtin_type->builtin_long_long
5159 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5160 0, "long long");
5161 builtin_type->builtin_unsigned_long_long
5162 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5163 1, "unsigned long long");
70bd8e24 5164 builtin_type->builtin_float
e9bb382b 5165 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5166 "float", gdbarch_float_format (gdbarch));
70bd8e24 5167 builtin_type->builtin_double
e9bb382b 5168 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5169 "double", gdbarch_double_format (gdbarch));
70bd8e24 5170 builtin_type->builtin_long_double
e9bb382b 5171 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5172 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5173 builtin_type->builtin_complex
e9bb382b
UW
5174 = arch_complex_type (gdbarch, "complex",
5175 builtin_type->builtin_float);
70bd8e24 5176 builtin_type->builtin_double_complex
e9bb382b
UW
5177 = arch_complex_type (gdbarch, "double complex",
5178 builtin_type->builtin_double);
5179 builtin_type->builtin_string
77b7c781 5180 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5181 builtin_type->builtin_bool
77b7c781 5182 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5183
7678ef8f
TJB
5184 /* The following three are about decimal floating point types, which
5185 are 32-bits, 64-bits and 128-bits respectively. */
5186 builtin_type->builtin_decfloat
88dfca6c 5187 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5188 builtin_type->builtin_decdouble
88dfca6c 5189 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5190 builtin_type->builtin_declong
88dfca6c 5191 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5192
69feb676 5193 /* "True" character types. */
e9bb382b
UW
5194 builtin_type->builtin_true_char
5195 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5196 builtin_type->builtin_true_unsigned_char
5197 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5198
df4df182 5199 /* Fixed-size integer types. */
e9bb382b
UW
5200 builtin_type->builtin_int0
5201 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5202 builtin_type->builtin_int8
5203 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5204 builtin_type->builtin_uint8
5205 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5206 builtin_type->builtin_int16
5207 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5208 builtin_type->builtin_uint16
5209 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5210 builtin_type->builtin_int32
5211 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5212 builtin_type->builtin_uint32
5213 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5214 builtin_type->builtin_int64
5215 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5216 builtin_type->builtin_uint64
5217 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5218 builtin_type->builtin_int128
5219 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5220 builtin_type->builtin_uint128
5221 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5222 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5223 TYPE_INSTANCE_FLAG_NOTTEXT;
5224 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5225 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5226
9a22f0d0
PM
5227 /* Wide character types. */
5228 builtin_type->builtin_char16
53e710ac 5229 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5230 builtin_type->builtin_char32
53e710ac 5231 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5232 builtin_type->builtin_wchar
5233 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5234 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5235
46bf5051 5236 /* Default data/code pointer types. */
e9bb382b
UW
5237 builtin_type->builtin_data_ptr
5238 = lookup_pointer_type (builtin_type->builtin_void);
5239 builtin_type->builtin_func_ptr
5240 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5241 builtin_type->builtin_func_func
5242 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5243
78267919 5244 /* This type represents a GDB internal function. */
e9bb382b
UW
5245 builtin_type->internal_fn
5246 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5247 "<internal function>");
78267919 5248
e81e7f5e
SC
5249 /* This type represents an xmethod. */
5250 builtin_type->xmethod
5251 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5252
46bf5051
UW
5253 return builtin_type;
5254}
5255
46bf5051
UW
5256/* This set of objfile-based types is intended to be used by symbol
5257 readers as basic types. */
5258
5259static const struct objfile_data *objfile_type_data;
5260
5261const struct objfile_type *
5262objfile_type (struct objfile *objfile)
5263{
5264 struct gdbarch *gdbarch;
5265 struct objfile_type *objfile_type
9a3c8263 5266 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5267
5268 if (objfile_type)
5269 return objfile_type;
5270
5271 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5272 1, struct objfile_type);
5273
5274 /* Use the objfile architecture to determine basic type properties. */
5275 gdbarch = get_objfile_arch (objfile);
5276
5277 /* Basic types. */
5278 objfile_type->builtin_void
77b7c781 5279 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5280 objfile_type->builtin_char
19f392bc
UW
5281 = init_integer_type (objfile, TARGET_CHAR_BIT,
5282 !gdbarch_char_signed (gdbarch), "char");
c413c448 5283 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5284 objfile_type->builtin_signed_char
19f392bc
UW
5285 = init_integer_type (objfile, TARGET_CHAR_BIT,
5286 0, "signed char");
46bf5051 5287 objfile_type->builtin_unsigned_char
19f392bc
UW
5288 = init_integer_type (objfile, TARGET_CHAR_BIT,
5289 1, "unsigned char");
46bf5051 5290 objfile_type->builtin_short
19f392bc
UW
5291 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5292 0, "short");
46bf5051 5293 objfile_type->builtin_unsigned_short
19f392bc
UW
5294 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5295 1, "unsigned short");
46bf5051 5296 objfile_type->builtin_int
19f392bc
UW
5297 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5298 0, "int");
46bf5051 5299 objfile_type->builtin_unsigned_int
19f392bc
UW
5300 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5301 1, "unsigned int");
46bf5051 5302 objfile_type->builtin_long
19f392bc
UW
5303 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5304 0, "long");
46bf5051 5305 objfile_type->builtin_unsigned_long
19f392bc
UW
5306 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5307 1, "unsigned long");
46bf5051 5308 objfile_type->builtin_long_long
19f392bc
UW
5309 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5310 0, "long long");
46bf5051 5311 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5312 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5313 1, "unsigned long long");
46bf5051 5314 objfile_type->builtin_float
19f392bc
UW
5315 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5316 "float", gdbarch_float_format (gdbarch));
46bf5051 5317 objfile_type->builtin_double
19f392bc
UW
5318 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5319 "double", gdbarch_double_format (gdbarch));
46bf5051 5320 objfile_type->builtin_long_double
19f392bc
UW
5321 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5322 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5323
5324 /* This type represents a type that was unrecognized in symbol read-in. */
5325 objfile_type->builtin_error
19f392bc 5326 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5327
5328 /* The following set of types is used for symbols with no
5329 debug information. */
5330 objfile_type->nodebug_text_symbol
77b7c781 5331 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5332 "<text variable, no debug info>");
0875794a 5333 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5334 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5335 "<text gnu-indirect-function variable, no debug info>");
7022349d 5336 /* Ifunc resolvers return a function address. */
0875794a 5337 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
7022349d
PA
5338 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5339 "__IFUNC_RESOLVER_RET");
19f392bc 5340 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5341 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5342 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5343 "<text from jump slot in .got.plt, no debug info>",
5344 objfile_type->nodebug_text_symbol);
46bf5051 5345 objfile_type->nodebug_data_symbol
46a4882b 5346 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5347 objfile_type->nodebug_unknown_symbol
46a4882b 5348 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5349 objfile_type->nodebug_tls_symbol
46a4882b 5350 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5351
5352 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5353 the same.
000177f0
AC
5354
5355 The upshot is:
5356 - gdb's `struct type' always describes the target's
5357 representation.
5358 - gdb's `struct value' objects should always hold values in
5359 target form.
5360 - gdb's CORE_ADDR values are addresses in the unified virtual
5361 address space that the assembler and linker work with. Thus,
5362 since target_read_memory takes a CORE_ADDR as an argument, it
5363 can access any memory on the target, even if the processor has
5364 separate code and data address spaces.
5365
46bf5051
UW
5366 In this context, objfile_type->builtin_core_addr is a bit odd:
5367 it's a target type for a value the target will never see. It's
5368 only used to hold the values of (typeless) linker symbols, which
5369 are indeed in the unified virtual address space. */
000177f0 5370
46bf5051 5371 objfile_type->builtin_core_addr
19f392bc
UW
5372 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5373 "__CORE_ADDR");
64c50499 5374
46bf5051
UW
5375 set_objfile_data (objfile, objfile_type_data, objfile_type);
5376 return objfile_type;
000177f0
AC
5377}
5378
c906108c 5379void
fba45db2 5380_initialize_gdbtypes (void)
c906108c 5381{
5674de60 5382 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5383 objfile_type_data = register_objfile_data ();
5674de60 5384
ccce17b0
YQ
5385 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5386 _("Set debugging of C++ overloading."),
5387 _("Show debugging of C++ overloading."),
5388 _("When enabled, ranking of the "
5389 "functions is displayed."),
5390 NULL,
5391 show_overload_debug,
5392 &setdebuglist, &showdebuglist);
5674de60 5393
7ba81444 5394 /* Add user knob for controlling resolution of opaque types. */
5674de60 5395 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5396 &opaque_type_resolution,
5397 _("Set resolution of opaque struct/class/union"
5398 " types (if set before loading symbols)."),
5399 _("Show resolution of opaque struct/class/union"
5400 " types (if set before loading symbols)."),
5401 NULL, NULL,
5674de60
UW
5402 show_opaque_type_resolution,
5403 &setlist, &showlist);
a451cb65
KS
5404
5405 /* Add an option to permit non-strict type checking. */
5406 add_setshow_boolean_cmd ("type", class_support,
5407 &strict_type_checking,
5408 _("Set strict type checking."),
5409 _("Show strict type checking."),
5410 NULL, NULL,
5411 show_strict_type_checking,
5412 &setchecklist, &showchecklist);
c906108c 5413}
This page took 2.044338 seconds and 4 git commands to generate.