* language.h (struct language_defn): Remove SYMTAB parameter from
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1
DJ
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4f2aea11 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "bfd.h"
26#include "symtab.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "expression.h"
31#include "language.h"
32#include "target.h"
33#include "value.h"
34#include "demangle.h"
35#include "complaints.h"
36#include "gdbcmd.h"
c91ecb25 37#include "wrapper.h"
015a42b4 38#include "cp-abi.h"
a02fd225 39#include "gdb_assert.h"
ae5a43e0 40#include "hashtab.h"
c906108c
SS
41
42/* These variables point to the objects
43 representing the predefined C data types. */
44
449a5da4 45struct type *builtin_type_int0;
c906108c
SS
46struct type *builtin_type_int8;
47struct type *builtin_type_uint8;
48struct type *builtin_type_int16;
49struct type *builtin_type_uint16;
50struct type *builtin_type_int32;
51struct type *builtin_type_uint32;
52struct type *builtin_type_int64;
53struct type *builtin_type_uint64;
8b982acf
EZ
54struct type *builtin_type_int128;
55struct type *builtin_type_uint128;
ac3aafc7 56
8da61cc4
DJ
57/* Floatformat pairs. */
58const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61};
62const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65};
66const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69};
70const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73};
74const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77};
78const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81};
82const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85};
86const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89};
90const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93};
94const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97};
b14d30e1
JM
98const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ibm_long_double,
100 &floatformat_ibm_long_double
101};
8da61cc4
DJ
102
103struct type *builtin_type_ieee_single;
104struct type *builtin_type_ieee_double;
598f52df
AC
105struct type *builtin_type_i387_ext;
106struct type *builtin_type_m68881_ext;
8da61cc4
DJ
107struct type *builtin_type_arm_ext;
108struct type *builtin_type_ia64_spill;
109struct type *builtin_type_ia64_quad;
110
c906108c
SS
111
112int opaque_type_resolution = 1;
920d2a44
AC
113static void
114show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
115 struct cmd_list_element *c,
116 const char *value)
920d2a44
AC
117{
118 fprintf_filtered (file, _("\
119Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
120 value);
121}
122
5d161b24 123int overload_debug = 0;
920d2a44
AC
124static void
125show_overload_debug (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c, const char *value)
127{
7ba81444
MS
128 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
129 value);
920d2a44 130}
c906108c 131
c5aa993b
JM
132struct extra
133 {
134 char str[128];
135 int len;
7ba81444 136 }; /* Maximum extension is 128! FIXME */
c906108c 137
a14ed312 138static void print_bit_vector (B_TYPE *, int);
ad2f7632 139static void print_arg_types (struct field *, int, int);
a14ed312
KB
140static void dump_fn_fieldlists (struct type *, int);
141static void print_cplus_stuff (struct type *, int);
7a292a7a 142
c906108c
SS
143
144/* Alloc a new type structure and fill it with some defaults. If
145 OBJFILE is non-NULL, then allocate the space for the type structure
7ba81444
MS
146 in that objfile's objfile_obstack. Otherwise allocate the new type
147 structure by xmalloc () (for permanent types). */
c906108c
SS
148
149struct type *
fba45db2 150alloc_type (struct objfile *objfile)
c906108c 151{
52f0bd74 152 struct type *type;
c906108c 153
7ba81444 154 /* Alloc the structure and start off with all fields zeroed. */
c906108c
SS
155
156 if (objfile == NULL)
157 {
2fdde8f8
DJ
158 type = xmalloc (sizeof (struct type));
159 memset (type, 0, sizeof (struct type));
160 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
c906108c
SS
161 }
162 else
163 {
b99607ea 164 type = obstack_alloc (&objfile->objfile_obstack,
2fdde8f8
DJ
165 sizeof (struct type));
166 memset (type, 0, sizeof (struct type));
b99607ea 167 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
2fdde8f8 168 sizeof (struct main_type));
c906108c
SS
169 OBJSTAT (objfile, n_types++);
170 }
2fdde8f8 171 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
c906108c 172
7ba81444 173 /* Initialize the fields that might not be zero. */
c906108c
SS
174
175 TYPE_CODE (type) = TYPE_CODE_UNDEF;
176 TYPE_OBJFILE (type) = objfile;
177 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 178 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c
SS
179
180 return (type);
181}
182
2fdde8f8
DJ
183/* Alloc a new type instance structure, fill it with some defaults,
184 and point it at OLDTYPE. Allocate the new type instance from the
185 same place as OLDTYPE. */
186
187static struct type *
188alloc_type_instance (struct type *oldtype)
189{
190 struct type *type;
191
192 /* Allocate the structure. */
193
194 if (TYPE_OBJFILE (oldtype) == NULL)
195 {
196 type = xmalloc (sizeof (struct type));
197 memset (type, 0, sizeof (struct type));
198 }
199 else
200 {
b99607ea 201 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
2fdde8f8
DJ
202 sizeof (struct type));
203 memset (type, 0, sizeof (struct type));
204 }
205 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
206
207 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
208
209 return (type);
210}
211
212/* Clear all remnants of the previous type at TYPE, in preparation for
213 replacing it with something else. */
214static void
215smash_type (struct type *type)
216{
217 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
218
219 /* For now, delete the rings. */
220 TYPE_CHAIN (type) = type;
221
222 /* For now, leave the pointer/reference types alone. */
223}
224
c906108c
SS
225/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
226 to a pointer to memory where the pointer type should be stored.
227 If *TYPEPTR is zero, update it to point to the pointer type we return.
228 We allocate new memory if needed. */
229
230struct type *
fba45db2 231make_pointer_type (struct type *type, struct type **typeptr)
c906108c 232{
52f0bd74 233 struct type *ntype; /* New type */
c906108c 234 struct objfile *objfile;
053cb41b 235 struct type *chain;
c906108c
SS
236
237 ntype = TYPE_POINTER_TYPE (type);
238
c5aa993b 239 if (ntype)
c906108c 240 {
c5aa993b 241 if (typeptr == 0)
7ba81444
MS
242 return ntype; /* Don't care about alloc,
243 and have new type. */
c906108c 244 else if (*typeptr == 0)
c5aa993b 245 {
7ba81444 246 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 247 return ntype;
c5aa993b 248 }
c906108c
SS
249 }
250
251 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
252 {
253 ntype = alloc_type (TYPE_OBJFILE (type));
254 if (typeptr)
255 *typeptr = ntype;
256 }
7ba81444 257 else /* We have storage, but need to reset it. */
c906108c
SS
258 {
259 ntype = *typeptr;
260 objfile = TYPE_OBJFILE (ntype);
053cb41b 261 chain = TYPE_CHAIN (ntype);
2fdde8f8 262 smash_type (ntype);
053cb41b 263 TYPE_CHAIN (ntype) = chain;
c906108c
SS
264 TYPE_OBJFILE (ntype) = objfile;
265 }
266
267 TYPE_TARGET_TYPE (ntype) = type;
268 TYPE_POINTER_TYPE (type) = ntype;
269
7ba81444
MS
270 /* FIXME! Assume the machine has only one representation for
271 pointers! */
c906108c 272
7ba81444
MS
273 TYPE_LENGTH (ntype) =
274 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
c906108c
SS
275 TYPE_CODE (ntype) = TYPE_CODE_PTR;
276
67b2adb2 277 /* Mark pointers as unsigned. The target converts between pointers
76e71323 278 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 279 gdbarch_address_to_pointer. */
c906108c 280 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
c5aa993b 281
c906108c
SS
282 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
283 TYPE_POINTER_TYPE (type) = ntype;
284
053cb41b
JB
285 /* Update the length of all the other variants of this type. */
286 chain = TYPE_CHAIN (ntype);
287 while (chain != ntype)
288 {
289 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
290 chain = TYPE_CHAIN (chain);
291 }
292
c906108c
SS
293 return ntype;
294}
295
296/* Given a type TYPE, return a type of pointers to that type.
297 May need to construct such a type if this is the first use. */
298
299struct type *
fba45db2 300lookup_pointer_type (struct type *type)
c906108c 301{
c5aa993b 302 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
303}
304
7ba81444
MS
305/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
306 points to a pointer to memory where the reference type should be
307 stored. If *TYPEPTR is zero, update it to point to the reference
308 type we return. We allocate new memory if needed. */
c906108c
SS
309
310struct type *
fba45db2 311make_reference_type (struct type *type, struct type **typeptr)
c906108c 312{
52f0bd74 313 struct type *ntype; /* New type */
c906108c 314 struct objfile *objfile;
1e98b326 315 struct type *chain;
c906108c
SS
316
317 ntype = TYPE_REFERENCE_TYPE (type);
318
c5aa993b 319 if (ntype)
c906108c 320 {
c5aa993b 321 if (typeptr == 0)
7ba81444
MS
322 return ntype; /* Don't care about alloc,
323 and have new type. */
c906108c 324 else if (*typeptr == 0)
c5aa993b 325 {
7ba81444 326 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 327 return ntype;
c5aa993b 328 }
c906108c
SS
329 }
330
331 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
332 {
333 ntype = alloc_type (TYPE_OBJFILE (type));
334 if (typeptr)
335 *typeptr = ntype;
336 }
7ba81444 337 else /* We have storage, but need to reset it. */
c906108c
SS
338 {
339 ntype = *typeptr;
340 objfile = TYPE_OBJFILE (ntype);
1e98b326 341 chain = TYPE_CHAIN (ntype);
2fdde8f8 342 smash_type (ntype);
1e98b326 343 TYPE_CHAIN (ntype) = chain;
c906108c
SS
344 TYPE_OBJFILE (ntype) = objfile;
345 }
346
347 TYPE_TARGET_TYPE (ntype) = type;
348 TYPE_REFERENCE_TYPE (type) = ntype;
349
7ba81444
MS
350 /* FIXME! Assume the machine has only one representation for
351 references, and that it matches the (only) representation for
352 pointers! */
c906108c 353
819844ad 354 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
c906108c 355 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 356
c906108c
SS
357 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
358 TYPE_REFERENCE_TYPE (type) = ntype;
359
1e98b326
JB
360 /* Update the length of all the other variants of this type. */
361 chain = TYPE_CHAIN (ntype);
362 while (chain != ntype)
363 {
364 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
365 chain = TYPE_CHAIN (chain);
366 }
367
c906108c
SS
368 return ntype;
369}
370
7ba81444
MS
371/* Same as above, but caller doesn't care about memory allocation
372 details. */
c906108c
SS
373
374struct type *
fba45db2 375lookup_reference_type (struct type *type)
c906108c 376{
c5aa993b 377 return make_reference_type (type, (struct type **) 0);
c906108c
SS
378}
379
7ba81444
MS
380/* Lookup a function type that returns type TYPE. TYPEPTR, if
381 nonzero, points to a pointer to memory where the function type
382 should be stored. If *TYPEPTR is zero, update it to point to the
383 function type we return. We allocate new memory if needed. */
c906108c
SS
384
385struct type *
fba45db2 386make_function_type (struct type *type, struct type **typeptr)
c906108c 387{
52f0bd74 388 struct type *ntype; /* New type */
c906108c
SS
389 struct objfile *objfile;
390
391 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
392 {
393 ntype = alloc_type (TYPE_OBJFILE (type));
394 if (typeptr)
395 *typeptr = ntype;
396 }
7ba81444 397 else /* We have storage, but need to reset it. */
c906108c
SS
398 {
399 ntype = *typeptr;
400 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 401 smash_type (ntype);
c906108c
SS
402 TYPE_OBJFILE (ntype) = objfile;
403 }
404
405 TYPE_TARGET_TYPE (ntype) = type;
406
407 TYPE_LENGTH (ntype) = 1;
408 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 409
c906108c
SS
410 return ntype;
411}
412
413
414/* Given a type TYPE, return a type of functions that return that type.
415 May need to construct such a type if this is the first use. */
416
417struct type *
fba45db2 418lookup_function_type (struct type *type)
c906108c 419{
c5aa993b 420 return make_function_type (type, (struct type **) 0);
c906108c
SS
421}
422
47663de5
MS
423/* Identify address space identifier by name --
424 return the integer flag defined in gdbtypes.h. */
425extern int
426address_space_name_to_int (char *space_identifier)
427{
5f11f355 428 struct gdbarch *gdbarch = current_gdbarch;
8b2dbe47 429 int type_flags;
7ba81444 430 /* Check for known address space delimiters. */
47663de5
MS
431 if (!strcmp (space_identifier, "code"))
432 return TYPE_FLAG_CODE_SPACE;
433 else if (!strcmp (space_identifier, "data"))
434 return TYPE_FLAG_DATA_SPACE;
5f11f355
AC
435 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
436 && gdbarch_address_class_name_to_type_flags (gdbarch,
437 space_identifier,
438 &type_flags))
8b2dbe47 439 return type_flags;
47663de5 440 else
8a3fe4f8 441 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
442}
443
444/* Identify address space identifier by integer flag as defined in
7ba81444 445 gdbtypes.h -- return the string version of the adress space name. */
47663de5 446
321432c0 447const char *
47663de5
MS
448address_space_int_to_name (int space_flag)
449{
5f11f355 450 struct gdbarch *gdbarch = current_gdbarch;
47663de5
MS
451 if (space_flag & TYPE_FLAG_CODE_SPACE)
452 return "code";
453 else if (space_flag & TYPE_FLAG_DATA_SPACE)
454 return "data";
8b2dbe47 455 else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
456 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
457 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
458 else
459 return NULL;
460}
461
2fdde8f8 462/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
463
464 If STORAGE is non-NULL, create the new type instance there.
465 STORAGE must be in the same obstack as TYPE. */
47663de5 466
b9362cc7 467static struct type *
2fdde8f8
DJ
468make_qualified_type (struct type *type, int new_flags,
469 struct type *storage)
47663de5
MS
470{
471 struct type *ntype;
472
473 ntype = type;
474 do {
2fdde8f8 475 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
47663de5 476 return ntype;
2fdde8f8 477 ntype = TYPE_CHAIN (ntype);
47663de5
MS
478 } while (ntype != type);
479
2fdde8f8
DJ
480 /* Create a new type instance. */
481 if (storage == NULL)
482 ntype = alloc_type_instance (type);
483 else
484 {
7ba81444
MS
485 /* If STORAGE was provided, it had better be in the same objfile
486 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
487 if one objfile is freed and the other kept, we'd have
488 dangling pointers. */
ad766c0a
JB
489 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
490
2fdde8f8
DJ
491 ntype = storage;
492 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
493 TYPE_CHAIN (ntype) = ntype;
494 }
47663de5
MS
495
496 /* Pointers or references to the original type are not relevant to
2fdde8f8 497 the new type. */
47663de5
MS
498 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
499 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 500
2fdde8f8
DJ
501 /* Chain the new qualified type to the old type. */
502 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
503 TYPE_CHAIN (type) = ntype;
504
505 /* Now set the instance flags and return the new type. */
506 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 507
ab5d3da6
KB
508 /* Set length of new type to that of the original type. */
509 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
510
47663de5
MS
511 return ntype;
512}
513
2fdde8f8
DJ
514/* Make an address-space-delimited variant of a type -- a type that
515 is identical to the one supplied except that it has an address
516 space attribute attached to it (such as "code" or "data").
517
7ba81444
MS
518 The space attributes "code" and "data" are for Harvard
519 architectures. The address space attributes are for architectures
520 which have alternately sized pointers or pointers with alternate
521 representations. */
2fdde8f8
DJ
522
523struct type *
524make_type_with_address_space (struct type *type, int space_flag)
525{
526 struct type *ntype;
527 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
8b2dbe47
KB
528 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
529 | TYPE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
530 | space_flag);
531
532 return make_qualified_type (type, new_flags, NULL);
533}
c906108c
SS
534
535/* Make a "c-v" variant of a type -- a type that is identical to the
536 one supplied except that it may have const or volatile attributes
537 CNST is a flag for setting the const attribute
538 VOLTL is a flag for setting the volatile attribute
539 TYPE is the base type whose variant we are creating.
c906108c 540
ad766c0a
JB
541 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
542 storage to hold the new qualified type; *TYPEPTR and TYPE must be
543 in the same objfile. Otherwise, allocate fresh memory for the new
544 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
545 new type we construct. */
c906108c 546struct type *
7ba81444
MS
547make_cv_type (int cnst, int voltl,
548 struct type *type,
549 struct type **typeptr)
c906108c 550{
52f0bd74
AC
551 struct type *ntype; /* New type */
552 struct type *tmp_type = type; /* tmp type */
c906108c
SS
553 struct objfile *objfile;
554
2fdde8f8
DJ
555 int new_flags = (TYPE_INSTANCE_FLAGS (type)
556 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
c906108c 557
c906108c 558 if (cnst)
2fdde8f8 559 new_flags |= TYPE_FLAG_CONST;
c906108c
SS
560
561 if (voltl)
2fdde8f8 562 new_flags |= TYPE_FLAG_VOLATILE;
a02fd225 563
2fdde8f8 564 if (typeptr && *typeptr != NULL)
a02fd225 565 {
ad766c0a
JB
566 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
567 a C-V variant chain that threads across objfiles: if one
568 objfile gets freed, then the other has a broken C-V chain.
569
570 This code used to try to copy over the main type from TYPE to
571 *TYPEPTR if they were in different objfiles, but that's
572 wrong, too: TYPE may have a field list or member function
573 lists, which refer to types of their own, etc. etc. The
574 whole shebang would need to be copied over recursively; you
575 can't have inter-objfile pointers. The only thing to do is
576 to leave stub types as stub types, and look them up afresh by
577 name each time you encounter them. */
578 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
579 }
580
7ba81444
MS
581 ntype = make_qualified_type (type, new_flags,
582 typeptr ? *typeptr : NULL);
c906108c 583
2fdde8f8
DJ
584 if (typeptr != NULL)
585 *typeptr = ntype;
a02fd225 586
2fdde8f8 587 return ntype;
a02fd225 588}
c906108c 589
2fdde8f8
DJ
590/* Replace the contents of ntype with the type *type. This changes the
591 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
592 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 593
cda6c68a
JB
594 In order to build recursive types, it's inevitable that we'll need
595 to update types in place --- but this sort of indiscriminate
596 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
597 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
598 clear if more steps are needed. */
dd6bda65
DJ
599void
600replace_type (struct type *ntype, struct type *type)
601{
ab5d3da6 602 struct type *chain;
dd6bda65 603
ad766c0a
JB
604 /* These two types had better be in the same objfile. Otherwise,
605 the assignment of one type's main type structure to the other
606 will produce a type with references to objects (names; field
607 lists; etc.) allocated on an objfile other than its own. */
608 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
609
2fdde8f8 610 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 611
7ba81444
MS
612 /* The type length is not a part of the main type. Update it for
613 each type on the variant chain. */
ab5d3da6
KB
614 chain = ntype;
615 do {
616 /* Assert that this element of the chain has no address-class bits
617 set in its flags. Such type variants might have type lengths
618 which are supposed to be different from the non-address-class
619 variants. This assertion shouldn't ever be triggered because
620 symbol readers which do construct address-class variants don't
621 call replace_type(). */
622 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
623
787cbe14 624 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
ab5d3da6
KB
625 chain = TYPE_CHAIN (chain);
626 } while (ntype != chain);
627
2fdde8f8
DJ
628 /* Assert that the two types have equivalent instance qualifiers.
629 This should be true for at least all of our debug readers. */
630 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
631}
632
c906108c
SS
633/* Implement direct support for MEMBER_TYPE in GNU C++.
634 May need to construct such a type if this is the first use.
635 The TYPE is the type of the member. The DOMAIN is the type
636 of the aggregate that the member belongs to. */
637
638struct type *
0d5de010 639lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 640{
52f0bd74 641 struct type *mtype;
c906108c
SS
642
643 mtype = alloc_type (TYPE_OBJFILE (type));
0d5de010 644 smash_to_memberptr_type (mtype, domain, type);
c906108c
SS
645 return (mtype);
646}
647
0d5de010
DJ
648/* Return a pointer-to-method type, for a method of type TO_TYPE. */
649
650struct type *
651lookup_methodptr_type (struct type *to_type)
652{
653 struct type *mtype;
654
655 mtype = alloc_type (TYPE_OBJFILE (to_type));
656 TYPE_TARGET_TYPE (mtype) = to_type;
657 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
658 TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
659 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
660 return mtype;
661}
662
7ba81444
MS
663/* Allocate a stub method whose return type is TYPE. This apparently
664 happens for speed of symbol reading, since parsing out the
665 arguments to the method is cpu-intensive, the way we are doing it.
666 So, we will fill in arguments later. This always returns a fresh
667 type. */
c906108c
SS
668
669struct type *
fba45db2 670allocate_stub_method (struct type *type)
c906108c
SS
671{
672 struct type *mtype;
673
7e956337
FF
674 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
675 TYPE_OBJFILE (type));
c906108c
SS
676 TYPE_TARGET_TYPE (mtype) = type;
677 /* _DOMAIN_TYPE (mtype) = unknown yet */
c906108c
SS
678 return (mtype);
679}
680
7ba81444
MS
681/* Create a range type using either a blank type supplied in
682 RESULT_TYPE, or creating a new type, inheriting the objfile from
683 INDEX_TYPE.
c906108c 684
7ba81444
MS
685 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
686 to HIGH_BOUND, inclusive.
c906108c 687
7ba81444
MS
688 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
689 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
690
691struct type *
fba45db2
KB
692create_range_type (struct type *result_type, struct type *index_type,
693 int low_bound, int high_bound)
c906108c
SS
694{
695 if (result_type == NULL)
696 {
697 result_type = alloc_type (TYPE_OBJFILE (index_type));
698 }
699 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
700 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 701 if (TYPE_STUB (index_type))
c906108c
SS
702 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
703 else
704 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
705 TYPE_NFIELDS (result_type) = 2;
706 TYPE_FIELDS (result_type) = (struct field *)
707 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
708 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
709 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
710 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
c906108c 711
c5aa993b 712 if (low_bound >= 0)
c906108c
SS
713 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
714
715 return (result_type);
716}
717
7ba81444
MS
718/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
719 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
720 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
721
722int
fba45db2 723get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
724{
725 CHECK_TYPEDEF (type);
726 switch (TYPE_CODE (type))
727 {
728 case TYPE_CODE_RANGE:
729 *lowp = TYPE_LOW_BOUND (type);
730 *highp = TYPE_HIGH_BOUND (type);
731 return 1;
732 case TYPE_CODE_ENUM:
733 if (TYPE_NFIELDS (type) > 0)
734 {
735 /* The enums may not be sorted by value, so search all
736 entries */
737 int i;
738
739 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
740 for (i = 0; i < TYPE_NFIELDS (type); i++)
741 {
742 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
743 *lowp = TYPE_FIELD_BITPOS (type, i);
744 if (TYPE_FIELD_BITPOS (type, i) > *highp)
745 *highp = TYPE_FIELD_BITPOS (type, i);
746 }
747
7ba81444 748 /* Set unsigned indicator if warranted. */
c5aa993b 749 if (*lowp >= 0)
c906108c
SS
750 {
751 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
752 }
753 }
754 else
755 {
756 *lowp = 0;
757 *highp = -1;
758 }
759 return 0;
760 case TYPE_CODE_BOOL:
761 *lowp = 0;
762 *highp = 1;
763 return 0;
764 case TYPE_CODE_INT:
c5aa993b 765 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
766 return -1;
767 if (!TYPE_UNSIGNED (type))
768 {
c5aa993b 769 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
770 *highp = -*lowp - 1;
771 return 0;
772 }
7ba81444 773 /* ... fall through for unsigned ints ... */
c906108c
SS
774 case TYPE_CODE_CHAR:
775 *lowp = 0;
776 /* This round-about calculation is to avoid shifting by
7b83ea04 777 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 778 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
779 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
780 *highp = (*highp - 1) | *highp;
781 return 0;
782 default:
783 return -1;
784 }
785}
786
7ba81444
MS
787/* Create an array type using either a blank type supplied in
788 RESULT_TYPE, or creating a new type, inheriting the objfile from
789 RANGE_TYPE.
c906108c
SS
790
791 Elements will be of type ELEMENT_TYPE, the indices will be of type
792 RANGE_TYPE.
793
7ba81444
MS
794 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
795 sure it is TYPE_CODE_UNDEF before we bash it into an array
796 type? */
c906108c
SS
797
798struct type *
7ba81444
MS
799create_array_type (struct type *result_type,
800 struct type *element_type,
fba45db2 801 struct type *range_type)
c906108c
SS
802{
803 LONGEST low_bound, high_bound;
804
805 if (result_type == NULL)
806 {
807 result_type = alloc_type (TYPE_OBJFILE (range_type));
808 }
809 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
810 TYPE_TARGET_TYPE (result_type) = element_type;
811 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
812 low_bound = high_bound = 0;
813 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
814 /* Be careful when setting the array length. Ada arrays can be
815 empty arrays with the high_bound being smaller than the low_bound.
816 In such cases, the array length should be zero. */
817 if (high_bound < low_bound)
818 TYPE_LENGTH (result_type) = 0;
819 else
820 TYPE_LENGTH (result_type) =
821 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
822 TYPE_NFIELDS (result_type) = 1;
823 TYPE_FIELDS (result_type) =
824 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
825 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
826 TYPE_FIELD_TYPE (result_type, 0) = range_type;
827 TYPE_VPTR_FIELDNO (result_type) = -1;
828
829 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
830 if (TYPE_LENGTH (result_type) == 0)
831 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
832
833 return (result_type);
834}
835
7ba81444
MS
836/* Create a string type using either a blank type supplied in
837 RESULT_TYPE, or creating a new type. String types are similar
838 enough to array of char types that we can use create_array_type to
839 build the basic type and then bash it into a string type.
c906108c
SS
840
841 For fixed length strings, the range type contains 0 as the lower
842 bound and the length of the string minus one as the upper bound.
843
7ba81444
MS
844 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
845 sure it is TYPE_CODE_UNDEF before we bash it into a string
846 type? */
c906108c
SS
847
848struct type *
7ba81444
MS
849create_string_type (struct type *result_type,
850 struct type *range_type)
c906108c 851{
f290d38e
AC
852 struct type *string_char_type;
853
854 string_char_type = language_string_char_type (current_language,
855 current_gdbarch);
c906108c 856 result_type = create_array_type (result_type,
f290d38e 857 string_char_type,
c906108c
SS
858 range_type);
859 TYPE_CODE (result_type) = TYPE_CODE_STRING;
860 return (result_type);
861}
862
863struct type *
fba45db2 864create_set_type (struct type *result_type, struct type *domain_type)
c906108c 865{
c906108c
SS
866 if (result_type == NULL)
867 {
868 result_type = alloc_type (TYPE_OBJFILE (domain_type));
869 }
870 TYPE_CODE (result_type) = TYPE_CODE_SET;
871 TYPE_NFIELDS (result_type) = 1;
872 TYPE_FIELDS (result_type) = (struct field *)
873 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
874 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
875
74a9bb82 876 if (!TYPE_STUB (domain_type))
c906108c 877 {
f9780d5b 878 LONGEST low_bound, high_bound, bit_length;
c906108c
SS
879 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
880 low_bound = high_bound = 0;
881 bit_length = high_bound - low_bound + 1;
882 TYPE_LENGTH (result_type)
883 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b
MS
884 if (low_bound >= 0)
885 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
c906108c
SS
886 }
887 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
888
c906108c
SS
889 return (result_type);
890}
891
4f2aea11
MK
892void
893append_flags_type_flag (struct type *type, int bitpos, char *name)
894{
895 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
896 gdb_assert (bitpos < TYPE_NFIELDS (type));
897 gdb_assert (bitpos >= 0);
898
899 if (name)
900 {
901 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
902 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
903 }
904 else
905 {
906 /* Don't show this field to the user. */
907 TYPE_FIELD_BITPOS (type, bitpos) = -1;
908 }
909}
910
911struct type *
912init_flags_type (char *name, int length)
913{
914 int nfields = length * TARGET_CHAR_BIT;
915 struct type *type;
916
7ba81444
MS
917 type = init_type (TYPE_CODE_FLAGS, length,
918 TYPE_FLAG_UNSIGNED, name, NULL);
4f2aea11 919 TYPE_NFIELDS (type) = nfields;
7ba81444
MS
920 TYPE_FIELDS (type) = TYPE_ALLOC (type,
921 nfields * sizeof (struct field));
76b7178d 922 memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
4f2aea11
MK
923
924 return type;
925}
926
ea37ba09
DJ
927/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
928 and any array types nested inside it. */
929
930void
931make_vector_type (struct type *array_type)
932{
933 struct type *inner_array, *elt_type;
934 int flags;
935
936 /* Find the innermost array type, in case the array is
937 multi-dimensional. */
938 inner_array = array_type;
939 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
940 inner_array = TYPE_TARGET_TYPE (inner_array);
941
942 elt_type = TYPE_TARGET_TYPE (inner_array);
943 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
944 {
945 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
946 elt_type = make_qualified_type (elt_type, flags, NULL);
947 TYPE_TARGET_TYPE (inner_array) = elt_type;
948 }
949
950 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
951}
952
794ac428 953struct type *
ac3aafc7
EZ
954init_vector_type (struct type *elt_type, int n)
955{
956 struct type *array_type;
957
958 array_type = create_array_type (0, elt_type,
7ba81444 959 create_range_type (0,
1969d2ed 960 builtin_type_int32,
ac3aafc7 961 0, n-1));
ea37ba09 962 make_vector_type (array_type);
ac3aafc7
EZ
963 return array_type;
964}
965
0d5de010
DJ
966/* Smash TYPE to be a type of pointers to members of DOMAIN with type
967 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
968 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
969 TYPE doesn't include the offset (that's the value of the MEMBER
970 itself), but does include the structure type into which it points
971 (for some reason).
c906108c 972
7ba81444
MS
973 When "smashing" the type, we preserve the objfile that the old type
974 pointed to, since we aren't changing where the type is actually
c906108c
SS
975 allocated. */
976
977void
0d5de010
DJ
978smash_to_memberptr_type (struct type *type, struct type *domain,
979 struct type *to_type)
c906108c
SS
980{
981 struct objfile *objfile;
982
983 objfile = TYPE_OBJFILE (type);
984
2fdde8f8 985 smash_type (type);
c906108c
SS
986 TYPE_OBJFILE (type) = objfile;
987 TYPE_TARGET_TYPE (type) = to_type;
988 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
989 /* Assume that a data member pointer is the same size as a normal
990 pointer. */
819844ad 991 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
0d5de010 992 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
993}
994
995/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
996 METHOD just means `function that gets an extra "this" argument'.
997
7ba81444
MS
998 When "smashing" the type, we preserve the objfile that the old type
999 pointed to, since we aren't changing where the type is actually
c906108c
SS
1000 allocated. */
1001
1002void
fba45db2 1003smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1004 struct type *to_type, struct field *args,
1005 int nargs, int varargs)
c906108c
SS
1006{
1007 struct objfile *objfile;
1008
1009 objfile = TYPE_OBJFILE (type);
1010
2fdde8f8 1011 smash_type (type);
c906108c
SS
1012 TYPE_OBJFILE (type) = objfile;
1013 TYPE_TARGET_TYPE (type) = to_type;
1014 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1015 TYPE_FIELDS (type) = args;
1016 TYPE_NFIELDS (type) = nargs;
1017 if (varargs)
1018 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
c906108c
SS
1019 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1020 TYPE_CODE (type) = TYPE_CODE_METHOD;
1021}
1022
1023/* Return a typename for a struct/union/enum type without "struct ",
1024 "union ", or "enum ". If the type has a NULL name, return NULL. */
1025
1026char *
aa1ee363 1027type_name_no_tag (const struct type *type)
c906108c
SS
1028{
1029 if (TYPE_TAG_NAME (type) != NULL)
1030 return TYPE_TAG_NAME (type);
1031
7ba81444
MS
1032 /* Is there code which expects this to return the name if there is
1033 no tag name? My guess is that this is mainly used for C++ in
1034 cases where the two will always be the same. */
c906108c
SS
1035 return TYPE_NAME (type);
1036}
1037
7ba81444
MS
1038/* Lookup a typedef or primitive type named NAME, visible in lexical
1039 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1040 suitably defined. */
c906108c
SS
1041
1042struct type *
fba45db2 1043lookup_typename (char *name, struct block *block, int noerr)
c906108c 1044{
52f0bd74
AC
1045 struct symbol *sym;
1046 struct type *tmp;
c906108c 1047
7ba81444
MS
1048 sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
1049 (struct symtab **) NULL);
c906108c
SS
1050 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1051 {
54a5b07d
AC
1052 tmp = language_lookup_primitive_type_by_name (current_language,
1053 current_gdbarch,
1054 name);
c906108c
SS
1055 if (tmp)
1056 {
1057 return (tmp);
1058 }
1059 else if (!tmp && noerr)
1060 {
1061 return (NULL);
1062 }
1063 else
1064 {
8a3fe4f8 1065 error (_("No type named %s."), name);
c906108c
SS
1066 }
1067 }
1068 return (SYMBOL_TYPE (sym));
1069}
1070
1071struct type *
fba45db2 1072lookup_unsigned_typename (char *name)
c906108c
SS
1073{
1074 char *uns = alloca (strlen (name) + 10);
1075
1076 strcpy (uns, "unsigned ");
1077 strcpy (uns + 9, name);
1078 return (lookup_typename (uns, (struct block *) NULL, 0));
1079}
1080
1081struct type *
fba45db2 1082lookup_signed_typename (char *name)
c906108c
SS
1083{
1084 struct type *t;
1085 char *uns = alloca (strlen (name) + 8);
1086
1087 strcpy (uns, "signed ");
1088 strcpy (uns + 7, name);
1089 t = lookup_typename (uns, (struct block *) NULL, 1);
7ba81444 1090 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1091 if (t != NULL)
1092 return t;
1093 return lookup_typename (name, (struct block *) NULL, 0);
1094}
1095
1096/* Lookup a structure type named "struct NAME",
1097 visible in lexical block BLOCK. */
1098
1099struct type *
fba45db2 1100lookup_struct (char *name, struct block *block)
c906108c 1101{
52f0bd74 1102 struct symbol *sym;
c906108c 1103
176620f1 1104 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1105 (struct symtab **) NULL);
1106
1107 if (sym == NULL)
1108 {
8a3fe4f8 1109 error (_("No struct type named %s."), name);
c906108c
SS
1110 }
1111 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1112 {
7ba81444
MS
1113 error (_("This context has class, union or enum %s, not a struct."),
1114 name);
c906108c
SS
1115 }
1116 return (SYMBOL_TYPE (sym));
1117}
1118
1119/* Lookup a union type named "union NAME",
1120 visible in lexical block BLOCK. */
1121
1122struct type *
fba45db2 1123lookup_union (char *name, struct block *block)
c906108c 1124{
52f0bd74 1125 struct symbol *sym;
c5aa993b 1126 struct type *t;
c906108c 1127
176620f1 1128 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1129 (struct symtab **) NULL);
1130
1131 if (sym == NULL)
8a3fe4f8 1132 error (_("No union type named %s."), name);
c906108c 1133
c5aa993b 1134 t = SYMBOL_TYPE (sym);
c906108c
SS
1135
1136 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1137 return (t);
1138
1139 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1140 * a further "declared_type" field to discover it is really a union.
1141 */
c5aa993b
JM
1142 if (HAVE_CPLUS_STRUCT (t))
1143 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c906108c
SS
1144 return (t);
1145
7ba81444
MS
1146 /* If we get here, it's not a union. */
1147 error (_("This context has class, struct or enum %s, not a union."),
1148 name);
c906108c
SS
1149}
1150
1151
1152/* Lookup an enum type named "enum NAME",
1153 visible in lexical block BLOCK. */
1154
1155struct type *
fba45db2 1156lookup_enum (char *name, struct block *block)
c906108c 1157{
52f0bd74 1158 struct symbol *sym;
c906108c 1159
176620f1 1160 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1161 (struct symtab **) NULL);
1162 if (sym == NULL)
1163 {
8a3fe4f8 1164 error (_("No enum type named %s."), name);
c906108c
SS
1165 }
1166 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1167 {
7ba81444
MS
1168 error (_("This context has class, struct or union %s, not an enum."),
1169 name);
c906108c
SS
1170 }
1171 return (SYMBOL_TYPE (sym));
1172}
1173
1174/* Lookup a template type named "template NAME<TYPE>",
1175 visible in lexical block BLOCK. */
1176
1177struct type *
7ba81444
MS
1178lookup_template_type (char *name, struct type *type,
1179 struct block *block)
c906108c
SS
1180{
1181 struct symbol *sym;
7ba81444
MS
1182 char *nam = (char *)
1183 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1184 strcpy (nam, name);
1185 strcat (nam, "<");
0004e5a2 1186 strcat (nam, TYPE_NAME (type));
7ba81444 1187 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1188
7ba81444
MS
1189 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
1190 (struct symtab **) NULL);
c906108c
SS
1191
1192 if (sym == NULL)
1193 {
8a3fe4f8 1194 error (_("No template type named %s."), name);
c906108c
SS
1195 }
1196 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1197 {
7ba81444
MS
1198 error (_("This context has class, union or enum %s, not a struct."),
1199 name);
c906108c
SS
1200 }
1201 return (SYMBOL_TYPE (sym));
1202}
1203
7ba81444
MS
1204/* Given a type TYPE, lookup the type of the component of type named
1205 NAME.
c906108c 1206
7ba81444
MS
1207 TYPE can be either a struct or union, or a pointer or reference to
1208 a struct or union. If it is a pointer or reference, its target
1209 type is automatically used. Thus '.' and '->' are interchangable,
1210 as specified for the definitions of the expression element types
1211 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1212
1213 If NOERR is nonzero, return zero if NAME is not suitably defined.
1214 If NAME is the name of a baseclass type, return that type. */
1215
1216struct type *
fba45db2 1217lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1218{
1219 int i;
1220
1221 for (;;)
1222 {
1223 CHECK_TYPEDEF (type);
1224 if (TYPE_CODE (type) != TYPE_CODE_PTR
1225 && TYPE_CODE (type) != TYPE_CODE_REF)
1226 break;
1227 type = TYPE_TARGET_TYPE (type);
1228 }
1229
687d6395
MS
1230 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1231 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c
SS
1232 {
1233 target_terminal_ours ();
1234 gdb_flush (gdb_stdout);
1235 fprintf_unfiltered (gdb_stderr, "Type ");
1236 type_print (type, "", gdb_stderr, -1);
8a3fe4f8 1237 error (_(" is not a structure or union type."));
c906108c
SS
1238 }
1239
1240#if 0
7ba81444
MS
1241 /* FIXME: This change put in by Michael seems incorrect for the case
1242 where the structure tag name is the same as the member name.
1243 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1244 foo; } bell;" Disabled by fnf. */
c906108c
SS
1245 {
1246 char *typename;
1247
1248 typename = type_name_no_tag (type);
762f08a3 1249 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1250 return type;
1251 }
1252#endif
1253
1254 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1255 {
1256 char *t_field_name = TYPE_FIELD_NAME (type, i);
1257
db577aea 1258 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1259 {
1260 return TYPE_FIELD_TYPE (type, i);
1261 }
1262 }
1263
1264 /* OK, it's not in this class. Recursively check the baseclasses. */
1265 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1266 {
1267 struct type *t;
1268
9733fc94 1269 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1270 if (t != NULL)
1271 {
1272 return t;
1273 }
1274 }
1275
1276 if (noerr)
1277 {
1278 return NULL;
1279 }
c5aa993b 1280
c906108c
SS
1281 target_terminal_ours ();
1282 gdb_flush (gdb_stdout);
1283 fprintf_unfiltered (gdb_stderr, "Type ");
1284 type_print (type, "", gdb_stderr, -1);
1285 fprintf_unfiltered (gdb_stderr, " has no component named ");
1286 fputs_filtered (name, gdb_stderr);
8a3fe4f8 1287 error (("."));
c5aa993b 1288 return (struct type *) -1; /* For lint */
c906108c
SS
1289}
1290
81fe8080
DE
1291/* Lookup the vptr basetype/fieldno values for TYPE.
1292 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1293 vptr_fieldno. Also, if found and basetype is from the same objfile,
1294 cache the results.
1295 If not found, return -1 and ignore BASETYPEP.
1296 Callers should be aware that in some cases (for example,
c906108c 1297 the type or one of its baseclasses is a stub type and we are
7ba81444
MS
1298 debugging a .o file), this function will not be able to find the
1299 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1300 vptr_basetype will remain NULL or incomplete. */
c906108c 1301
81fe8080
DE
1302int
1303get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1304{
1305 CHECK_TYPEDEF (type);
1306
1307 if (TYPE_VPTR_FIELDNO (type) < 0)
1308 {
1309 int i;
1310
7ba81444
MS
1311 /* We must start at zero in case the first (and only) baseclass
1312 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1313 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1314 {
81fe8080
DE
1315 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1316 int fieldno;
1317 struct type *basetype;
1318
1319 fieldno = get_vptr_fieldno (baseclass, &basetype);
1320 if (fieldno >= 0)
c906108c 1321 {
81fe8080
DE
1322 /* If the type comes from a different objfile we can't cache
1323 it, it may have a different lifetime. PR 2384 */
1324 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (baseclass))
1325 {
1326 TYPE_VPTR_FIELDNO (type) = fieldno;
1327 TYPE_VPTR_BASETYPE (type) = basetype;
1328 }
1329 if (basetypep)
1330 *basetypep = basetype;
1331 return fieldno;
c906108c
SS
1332 }
1333 }
81fe8080
DE
1334
1335 /* Not found. */
1336 return -1;
1337 }
1338 else
1339 {
1340 if (basetypep)
1341 *basetypep = TYPE_VPTR_BASETYPE (type);
1342 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1343 }
1344}
1345
1346/* Find the method and field indices for the destructor in class type T.
1347 Return 1 if the destructor was found, otherwise, return 0. */
1348
1349int
7ba81444
MS
1350get_destructor_fn_field (struct type *t,
1351 int *method_indexp,
1352 int *field_indexp)
c906108c
SS
1353{
1354 int i;
1355
1356 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1357 {
1358 int j;
1359 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1360
1361 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1362 {
015a42b4 1363 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
c906108c
SS
1364 {
1365 *method_indexp = i;
1366 *field_indexp = j;
1367 return 1;
1368 }
1369 }
1370 }
1371 return 0;
1372}
1373
44e1a9eb
DJ
1374static void
1375stub_noname_complaint (void)
1376{
e2e0b3e5 1377 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1378}
1379
c906108c
SS
1380/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1381
1382 If this is a stubbed struct (i.e. declared as struct foo *), see if
1383 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1384 definition, so we can use it in future. There used to be a comment
1385 (but not any code) that if we don't find a full definition, we'd
1386 set a flag so we don't spend time in the future checking the same
1387 type. That would be a mistake, though--we might load in more
1388 symbols which contain a full definition for the type.
c906108c 1389
7b83ea04 1390 This used to be coded as a macro, but I don't think it is called
c906108c
SS
1391 often enough to merit such treatment. */
1392
7ba81444
MS
1393/* Find the real type of TYPE. This function returns the real type,
1394 after removing all layers of typedefs and completing opaque or stub
1395 types. Completion changes the TYPE argument, but stripping of
1396 typedefs does not. */
c906108c
SS
1397
1398struct type *
a02fd225 1399check_typedef (struct type *type)
c906108c
SS
1400{
1401 struct type *orig_type = type;
a02fd225
DJ
1402 int is_const, is_volatile;
1403
423c0af8
MS
1404 gdb_assert (type);
1405
c906108c
SS
1406 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1407 {
1408 if (!TYPE_TARGET_TYPE (type))
1409 {
c5aa993b 1410 char *name;
c906108c
SS
1411 struct symbol *sym;
1412
1413 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1414 reading a symtab. Infinite recursion is one danger. */
c906108c
SS
1415 if (currently_reading_symtab)
1416 return type;
1417
1418 name = type_name_no_tag (type);
7ba81444
MS
1419 /* FIXME: shouldn't we separately check the TYPE_NAME and
1420 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1421 VAR_DOMAIN as appropriate? (this code was written before
1422 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1423 if (name == NULL)
1424 {
23136709 1425 stub_noname_complaint ();
c906108c
SS
1426 return type;
1427 }
176620f1 1428 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
c906108c
SS
1429 (struct symtab **) NULL);
1430 if (sym)
1431 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444
MS
1432 else /* TYPE_CODE_UNDEF */
1433 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
c906108c
SS
1434 }
1435 type = TYPE_TARGET_TYPE (type);
1436 }
1437
a02fd225
DJ
1438 is_const = TYPE_CONST (type);
1439 is_volatile = TYPE_VOLATILE (type);
1440
7ba81444
MS
1441 /* If this is a struct/class/union with no fields, then check
1442 whether a full definition exists somewhere else. This is for
1443 systems where a type definition with no fields is issued for such
1444 types, instead of identifying them as stub types in the first
1445 place. */
c5aa993b 1446
7ba81444
MS
1447 if (TYPE_IS_OPAQUE (type)
1448 && opaque_type_resolution
1449 && !currently_reading_symtab)
c906108c 1450 {
c5aa993b
JM
1451 char *name = type_name_no_tag (type);
1452 struct type *newtype;
c906108c
SS
1453 if (name == NULL)
1454 {
23136709 1455 stub_noname_complaint ();
c906108c
SS
1456 return type;
1457 }
1458 newtype = lookup_transparent_type (name);
ad766c0a 1459
c906108c 1460 if (newtype)
ad766c0a 1461 {
7ba81444
MS
1462 /* If the resolved type and the stub are in the same
1463 objfile, then replace the stub type with the real deal.
1464 But if they're in separate objfiles, leave the stub
1465 alone; we'll just look up the transparent type every time
1466 we call check_typedef. We can't create pointers between
1467 types allocated to different objfiles, since they may
1468 have different lifetimes. Trying to copy NEWTYPE over to
1469 TYPE's objfile is pointless, too, since you'll have to
1470 move over any other types NEWTYPE refers to, which could
1471 be an unbounded amount of stuff. */
ad766c0a
JB
1472 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1473 make_cv_type (is_const, is_volatile, newtype, &type);
1474 else
1475 type = newtype;
1476 }
c906108c 1477 }
7ba81444
MS
1478 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1479 types. */
74a9bb82 1480 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1481 {
c5aa993b 1482 char *name = type_name_no_tag (type);
c906108c 1483 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1484 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1485 as appropriate? (this code was written before TYPE_NAME and
1486 TYPE_TAG_NAME were separate). */
c906108c
SS
1487 struct symbol *sym;
1488 if (name == NULL)
1489 {
23136709 1490 stub_noname_complaint ();
c906108c
SS
1491 return type;
1492 }
7ba81444
MS
1493 sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
1494 0, (struct symtab **) NULL);
c906108c 1495 if (sym)
c26f2453
JB
1496 {
1497 /* Same as above for opaque types, we can replace the stub
1498 with the complete type only if they are int the same
1499 objfile. */
1500 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
7ba81444
MS
1501 make_cv_type (is_const, is_volatile,
1502 SYMBOL_TYPE (sym), &type);
c26f2453
JB
1503 else
1504 type = SYMBOL_TYPE (sym);
1505 }
c906108c
SS
1506 }
1507
74a9bb82 1508 if (TYPE_TARGET_STUB (type))
c906108c
SS
1509 {
1510 struct type *range_type;
1511 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1512
74a9bb82 1513 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1514 {
7ba81444 1515 /* Empty. */
c5aa993b 1516 }
c906108c
SS
1517 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1518 && TYPE_NFIELDS (type) == 1
1519 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1520 == TYPE_CODE_RANGE))
1521 {
1522 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1523 number of elements and the target type's length.
1524 Watch out for Ada null Ada arrays where the high bound
1525 is smaller than the low bound. */
1526 const int low_bound = TYPE_FIELD_BITPOS (range_type, 0);
1527 const int high_bound = TYPE_FIELD_BITPOS (range_type, 1);
1528 int nb_elements;
1529
1530 if (high_bound < low_bound)
1531 nb_elements = 0;
1532 else
1533 nb_elements = high_bound - low_bound + 1;
1534
1535 TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
c906108c
SS
1536 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1539 {
1540 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1541 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1542 }
1543 }
7ba81444 1544 /* Cache TYPE_LENGTH for future use. */
c906108c
SS
1545 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1546 return type;
1547}
1548
7ba81444
MS
1549/* Parse a type expression in the string [P..P+LENGTH). If an error
1550 occurs, silently return builtin_type_void. */
c91ecb25 1551
b9362cc7 1552static struct type *
c91ecb25
ND
1553safe_parse_type (char *p, int length)
1554{
1555 struct ui_file *saved_gdb_stderr;
1556 struct type *type;
1557
7ba81444 1558 /* Suppress error messages. */
c91ecb25
ND
1559 saved_gdb_stderr = gdb_stderr;
1560 gdb_stderr = ui_file_new ();
1561
7ba81444 1562 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25
ND
1563 if (!gdb_parse_and_eval_type (p, length, &type))
1564 type = builtin_type_void;
1565
7ba81444 1566 /* Stop suppressing error messages. */
c91ecb25
ND
1567 ui_file_delete (gdb_stderr);
1568 gdb_stderr = saved_gdb_stderr;
1569
1570 return type;
1571}
1572
c906108c
SS
1573/* Ugly hack to convert method stubs into method types.
1574
7ba81444
MS
1575 He ain't kiddin'. This demangles the name of the method into a
1576 string including argument types, parses out each argument type,
1577 generates a string casting a zero to that type, evaluates the
1578 string, and stuffs the resulting type into an argtype vector!!!
1579 Then it knows the type of the whole function (including argument
1580 types for overloading), which info used to be in the stab's but was
1581 removed to hack back the space required for them. */
c906108c 1582
de17c821 1583static void
fba45db2 1584check_stub_method (struct type *type, int method_id, int signature_id)
c906108c
SS
1585{
1586 struct fn_field *f;
1587 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1588 char *demangled_name = cplus_demangle (mangled_name,
1589 DMGL_PARAMS | DMGL_ANSI);
1590 char *argtypetext, *p;
1591 int depth = 0, argcount = 1;
ad2f7632 1592 struct field *argtypes;
c906108c
SS
1593 struct type *mtype;
1594
1595 /* Make sure we got back a function string that we can use. */
1596 if (demangled_name)
1597 p = strchr (demangled_name, '(');
502dcf4e
AC
1598 else
1599 p = NULL;
c906108c
SS
1600
1601 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1602 error (_("Internal: Cannot demangle mangled name `%s'."),
1603 mangled_name);
c906108c
SS
1604
1605 /* Now, read in the parameters that define this type. */
1606 p += 1;
1607 argtypetext = p;
1608 while (*p)
1609 {
070ad9f0 1610 if (*p == '(' || *p == '<')
c906108c
SS
1611 {
1612 depth += 1;
1613 }
070ad9f0 1614 else if (*p == ')' || *p == '>')
c906108c
SS
1615 {
1616 depth -= 1;
1617 }
1618 else if (*p == ',' && depth == 0)
1619 {
1620 argcount += 1;
1621 }
1622
1623 p += 1;
1624 }
1625
ad2f7632
DJ
1626 /* If we read one argument and it was ``void'', don't count it. */
1627 if (strncmp (argtypetext, "(void)", 6) == 0)
1628 argcount -= 1;
c906108c 1629
ad2f7632
DJ
1630 /* We need one extra slot, for the THIS pointer. */
1631
1632 argtypes = (struct field *)
1633 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1634 p = argtypetext;
4a1970e4
DJ
1635
1636 /* Add THIS pointer for non-static methods. */
1637 f = TYPE_FN_FIELDLIST1 (type, method_id);
1638 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1639 argcount = 0;
1640 else
1641 {
ad2f7632 1642 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1643 argcount = 1;
1644 }
c906108c 1645
c5aa993b 1646 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1647 {
1648 depth = 0;
1649 while (*p)
1650 {
1651 if (depth <= 0 && (*p == ',' || *p == ')'))
1652 {
ad2f7632
DJ
1653 /* Avoid parsing of ellipsis, they will be handled below.
1654 Also avoid ``void'' as above. */
1655 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1656 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1657 {
ad2f7632 1658 argtypes[argcount].type =
c91ecb25 1659 safe_parse_type (argtypetext, p - argtypetext);
c906108c
SS
1660 argcount += 1;
1661 }
1662 argtypetext = p + 1;
1663 }
1664
070ad9f0 1665 if (*p == '(' || *p == '<')
c906108c
SS
1666 {
1667 depth += 1;
1668 }
070ad9f0 1669 else if (*p == ')' || *p == '>')
c906108c
SS
1670 {
1671 depth -= 1;
1672 }
1673
1674 p += 1;
1675 }
1676 }
1677
c906108c
SS
1678 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1679
1680 /* Now update the old "stub" type into a real type. */
1681 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1682 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1683 TYPE_FIELDS (mtype) = argtypes;
1684 TYPE_NFIELDS (mtype) = argcount;
c906108c
SS
1685 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1686 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
1687 if (p[-2] == '.')
1688 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1689
1690 xfree (demangled_name);
c906108c
SS
1691}
1692
7ba81444
MS
1693/* This is the external interface to check_stub_method, above. This
1694 function unstubs all of the signatures for TYPE's METHOD_ID method
1695 name. After calling this function TYPE_FN_FIELD_STUB will be
1696 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1697 correct.
de17c821
DJ
1698
1699 This function unfortunately can not die until stabs do. */
1700
1701void
1702check_stub_method_group (struct type *type, int method_id)
1703{
1704 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1705 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1706 int j, found_stub = 0;
de17c821
DJ
1707
1708 for (j = 0; j < len; j++)
1709 if (TYPE_FN_FIELD_STUB (f, j))
1710 {
1711 found_stub = 1;
1712 check_stub_method (type, method_id, j);
1713 }
1714
7ba81444
MS
1715 /* GNU v3 methods with incorrect names were corrected when we read
1716 in type information, because it was cheaper to do it then. The
1717 only GNU v2 methods with incorrect method names are operators and
1718 destructors; destructors were also corrected when we read in type
1719 information.
de17c821
DJ
1720
1721 Therefore the only thing we need to handle here are v2 operator
1722 names. */
1723 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1724 {
1725 int ret;
1726 char dem_opname[256];
1727
7ba81444
MS
1728 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1729 method_id),
de17c821
DJ
1730 dem_opname, DMGL_ANSI);
1731 if (!ret)
7ba81444
MS
1732 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1733 method_id),
de17c821
DJ
1734 dem_opname, 0);
1735 if (ret)
1736 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1737 }
1738}
1739
c906108c
SS
1740const struct cplus_struct_type cplus_struct_default;
1741
1742void
fba45db2 1743allocate_cplus_struct_type (struct type *type)
c906108c
SS
1744{
1745 if (!HAVE_CPLUS_STRUCT (type))
1746 {
1747 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1748 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
c5aa993b 1749 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1750 }
1751}
1752
1753/* Helper function to initialize the standard scalar types.
1754
7ba81444
MS
1755 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1756 the string pointed to by name in the objfile_obstack for that
1757 objfile, and initialize the type name to that copy. There are
1758 places (mipsread.c in particular, where init_type is called with a
1759 NULL value for NAME). */
c906108c
SS
1760
1761struct type *
7ba81444
MS
1762init_type (enum type_code code, int length, int flags,
1763 char *name, struct objfile *objfile)
c906108c 1764{
52f0bd74 1765 struct type *type;
c906108c
SS
1766
1767 type = alloc_type (objfile);
1768 TYPE_CODE (type) = code;
1769 TYPE_LENGTH (type) = length;
1770 TYPE_FLAGS (type) |= flags;
1771 if ((name != NULL) && (objfile != NULL))
1772 {
7ba81444
MS
1773 TYPE_NAME (type) = obsavestring (name, strlen (name),
1774 &objfile->objfile_obstack);
c906108c
SS
1775 }
1776 else
1777 {
1778 TYPE_NAME (type) = name;
1779 }
1780
1781 /* C++ fancies. */
1782
973ccf8b
DJ
1783 if (name && strcmp (name, "char") == 0)
1784 TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1785
5c4e30ca
DC
1786 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1787 || code == TYPE_CODE_NAMESPACE)
c906108c
SS
1788 {
1789 INIT_CPLUS_SPECIFIC (type);
1790 }
1791 return (type);
1792}
1793
0e101458
AC
1794/* Helper function. Create an empty composite type. */
1795
1796struct type *
1797init_composite_type (char *name, enum type_code code)
1798{
1799 struct type *t;
1800 gdb_assert (code == TYPE_CODE_STRUCT
1801 || code == TYPE_CODE_UNION);
1802 t = init_type (code, 0, 0, NULL, NULL);
1803 TYPE_TAG_NAME (t) = name;
1804 return t;
1805}
1806
1807/* Helper function. Append a field to a composite type. */
1808
1809void
7ba81444
MS
1810append_composite_type_field (struct type *t, char *name,
1811 struct type *field)
0e101458
AC
1812{
1813 struct field *f;
1814 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1815 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1816 sizeof (struct field) * TYPE_NFIELDS (t));
1817 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1818 memset (f, 0, sizeof f[0]);
1819 FIELD_TYPE (f[0]) = field;
1820 FIELD_NAME (f[0]) = name;
1821 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1822 {
73d322b1 1823 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
0e101458
AC
1824 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1825 }
1826 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1827 {
1828 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1829 if (TYPE_NFIELDS (t) > 1)
1830 {
1831 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1832 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1833 }
1834 }
1835}
1836
c906108c 1837int
fba45db2 1838can_dereference (struct type *t)
c906108c 1839{
7ba81444
MS
1840 /* FIXME: Should we return true for references as well as
1841 pointers? */
c906108c
SS
1842 CHECK_TYPEDEF (t);
1843 return
1844 (t != NULL
1845 && TYPE_CODE (t) == TYPE_CODE_PTR
1846 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1847}
1848
adf40b2e 1849int
fba45db2 1850is_integral_type (struct type *t)
adf40b2e
JM
1851{
1852 CHECK_TYPEDEF (t);
1853 return
1854 ((t != NULL)
d4f3574e
SS
1855 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1856 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1857 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1858 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1859 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1860 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1861}
1862
7b83ea04 1863/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1864 Return 1 if so, and 0 if not.
1865 Note: callers may want to check for identity of the types before
1866 calling this function -- identical types are considered to satisfy
7ba81444 1867 the ancestor relationship even if they're identical. */
c906108c
SS
1868
1869int
fba45db2 1870is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1871{
1872 int i;
c5aa993b 1873
c906108c
SS
1874 CHECK_TYPEDEF (base);
1875 CHECK_TYPEDEF (dclass);
1876
1877 if (base == dclass)
1878 return 1;
687d6395
MS
1879 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1880 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
6b1ba9a0 1881 return 1;
c906108c
SS
1882
1883 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1884 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1885 return 1;
1886
1887 return 0;
1888}
c906108c
SS
1889\f
1890
c5aa993b 1891
c906108c
SS
1892/* Functions for overload resolution begin here */
1893
1894/* Compare two badness vectors A and B and return the result.
7ba81444
MS
1895 0 => A and B are identical
1896 1 => A and B are incomparable
1897 2 => A is better than B
1898 3 => A is worse than B */
c906108c
SS
1899
1900int
fba45db2 1901compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
1902{
1903 int i;
1904 int tmp;
c5aa993b
JM
1905 short found_pos = 0; /* any positives in c? */
1906 short found_neg = 0; /* any negatives in c? */
1907
1908 /* differing lengths => incomparable */
c906108c
SS
1909 if (a->length != b->length)
1910 return 1;
1911
c5aa993b
JM
1912 /* Subtract b from a */
1913 for (i = 0; i < a->length; i++)
c906108c
SS
1914 {
1915 tmp = a->rank[i] - b->rank[i];
1916 if (tmp > 0)
c5aa993b 1917 found_pos = 1;
c906108c 1918 else if (tmp < 0)
c5aa993b 1919 found_neg = 1;
c906108c
SS
1920 }
1921
1922 if (found_pos)
1923 {
1924 if (found_neg)
c5aa993b 1925 return 1; /* incomparable */
c906108c 1926 else
c5aa993b 1927 return 3; /* A > B */
c906108c 1928 }
c5aa993b
JM
1929 else
1930 /* no positives */
c906108c
SS
1931 {
1932 if (found_neg)
c5aa993b 1933 return 2; /* A < B */
c906108c 1934 else
c5aa993b 1935 return 0; /* A == B */
c906108c
SS
1936 }
1937}
1938
7ba81444
MS
1939/* Rank a function by comparing its parameter types (PARMS, length
1940 NPARMS), to the types of an argument list (ARGS, length NARGS).
1941 Return a pointer to a badness vector. This has NARGS + 1
1942 entries. */
c906108c
SS
1943
1944struct badness_vector *
7ba81444
MS
1945rank_function (struct type **parms, int nparms,
1946 struct type **args, int nargs)
c906108c
SS
1947{
1948 int i;
c5aa993b 1949 struct badness_vector *bv;
c906108c
SS
1950 int min_len = nparms < nargs ? nparms : nargs;
1951
1952 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 1953 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
1954 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1955
1956 /* First compare the lengths of the supplied lists.
7ba81444 1957 If there is a mismatch, set it to a high value. */
c5aa993b 1958
c906108c 1959 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
1960 arguments and ellipsis parameter lists, we should consider those
1961 and rank the length-match more finely. */
c906108c
SS
1962
1963 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1964
1965 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
1966 for (i = 1; i <= min_len; i++)
1967 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 1968
c5aa993b
JM
1969 /* If more arguments than parameters, add dummy entries */
1970 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
1971 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1972
1973 return bv;
1974}
1975
973ccf8b
DJ
1976/* Compare the names of two integer types, assuming that any sign
1977 qualifiers have been checked already. We do it this way because
1978 there may be an "int" in the name of one of the types. */
1979
1980static int
1981integer_types_same_name_p (const char *first, const char *second)
1982{
1983 int first_p, second_p;
1984
7ba81444
MS
1985 /* If both are shorts, return 1; if neither is a short, keep
1986 checking. */
973ccf8b
DJ
1987 first_p = (strstr (first, "short") != NULL);
1988 second_p = (strstr (second, "short") != NULL);
1989 if (first_p && second_p)
1990 return 1;
1991 if (first_p || second_p)
1992 return 0;
1993
1994 /* Likewise for long. */
1995 first_p = (strstr (first, "long") != NULL);
1996 second_p = (strstr (second, "long") != NULL);
1997 if (first_p && second_p)
1998 return 1;
1999 if (first_p || second_p)
2000 return 0;
2001
2002 /* Likewise for char. */
2003 first_p = (strstr (first, "char") != NULL);
2004 second_p = (strstr (second, "char") != NULL);
2005 if (first_p && second_p)
2006 return 1;
2007 if (first_p || second_p)
2008 return 0;
2009
2010 /* They must both be ints. */
2011 return 1;
2012}
2013
c906108c
SS
2014/* Compare one type (PARM) for compatibility with another (ARG).
2015 * PARM is intended to be the parameter type of a function; and
2016 * ARG is the supplied argument's type. This function tests if
2017 * the latter can be converted to the former.
2018 *
2019 * Return 0 if they are identical types;
2020 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2021 * PARM is to ARG. The higher the return value, the worse the match.
2022 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c
SS
2023
2024int
fba45db2 2025rank_one_type (struct type *parm, struct type *arg)
c906108c 2026{
7ba81444 2027 /* Identical type pointers. */
c906108c 2028 /* However, this still doesn't catch all cases of same type for arg
7ba81444
MS
2029 and param. The reason is that builtin types are different from
2030 the same ones constructed from the object. */
c906108c
SS
2031 if (parm == arg)
2032 return 0;
2033
2034 /* Resolve typedefs */
2035 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2036 parm = check_typedef (parm);
2037 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2038 arg = check_typedef (arg);
2039
070ad9f0 2040 /*
7ba81444
MS
2041 Well, damnit, if the names are exactly the same, I'll say they
2042 are exactly the same. This happens when we generate method
2043 stubs. The types won't point to the same address, but they
070ad9f0
DB
2044 really are the same.
2045 */
2046
687d6395
MS
2047 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2048 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
7ba81444 2049 return 0;
070ad9f0 2050
7ba81444 2051 /* Check if identical after resolving typedefs. */
c906108c
SS
2052 if (parm == arg)
2053 return 0;
2054
db577aea 2055 /* See through references, since we can almost make non-references
7ba81444 2056 references. */
db577aea 2057 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2058 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2059 + REFERENCE_CONVERSION_BADNESS);
2060 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2061 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2062 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2063 if (overload_debug)
7ba81444
MS
2064 /* Debugging only. */
2065 fprintf_filtered (gdb_stderr,
2066 "------ Arg is %s [%d], parm is %s [%d]\n",
2067 TYPE_NAME (arg), TYPE_CODE (arg),
2068 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2069
2070 /* x -> y means arg of type x being supplied for parameter of type y */
2071
2072 switch (TYPE_CODE (parm))
2073 {
c5aa993b
JM
2074 case TYPE_CODE_PTR:
2075 switch (TYPE_CODE (arg))
2076 {
2077 case TYPE_CODE_PTR:
2078 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2079 return VOID_PTR_CONVERSION_BADNESS;
2080 else
7ba81444
MS
2081 return rank_one_type (TYPE_TARGET_TYPE (parm),
2082 TYPE_TARGET_TYPE (arg));
c5aa993b 2083 case TYPE_CODE_ARRAY:
7ba81444
MS
2084 return rank_one_type (TYPE_TARGET_TYPE (parm),
2085 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2086 case TYPE_CODE_FUNC:
2087 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2088 case TYPE_CODE_INT:
2089 case TYPE_CODE_ENUM:
4f2aea11 2090 case TYPE_CODE_FLAGS:
c5aa993b
JM
2091 case TYPE_CODE_CHAR:
2092 case TYPE_CODE_RANGE:
2093 case TYPE_CODE_BOOL:
2094 return POINTER_CONVERSION_BADNESS;
2095 default:
2096 return INCOMPATIBLE_TYPE_BADNESS;
2097 }
2098 case TYPE_CODE_ARRAY:
2099 switch (TYPE_CODE (arg))
2100 {
2101 case TYPE_CODE_PTR:
2102 case TYPE_CODE_ARRAY:
7ba81444
MS
2103 return rank_one_type (TYPE_TARGET_TYPE (parm),
2104 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2105 default:
2106 return INCOMPATIBLE_TYPE_BADNESS;
2107 }
2108 case TYPE_CODE_FUNC:
2109 switch (TYPE_CODE (arg))
2110 {
2111 case TYPE_CODE_PTR: /* funcptr -> func */
2112 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2113 default:
2114 return INCOMPATIBLE_TYPE_BADNESS;
2115 }
2116 case TYPE_CODE_INT:
2117 switch (TYPE_CODE (arg))
2118 {
2119 case TYPE_CODE_INT:
2120 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2121 {
2122 /* Deal with signed, unsigned, and plain chars and
7ba81444 2123 signed and unsigned ints. */
c5aa993b
JM
2124 if (TYPE_NOSIGN (parm))
2125 {
2126 /* This case only for character types */
7ba81444
MS
2127 if (TYPE_NOSIGN (arg))
2128 return 0; /* plain char -> plain char */
2129 else /* signed/unsigned char -> plain char */
2130 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2131 }
2132 else if (TYPE_UNSIGNED (parm))
2133 {
2134 if (TYPE_UNSIGNED (arg))
2135 {
7ba81444
MS
2136 /* unsigned int -> unsigned int, or
2137 unsigned long -> unsigned long */
2138 if (integer_types_same_name_p (TYPE_NAME (parm),
2139 TYPE_NAME (arg)))
973ccf8b 2140 return 0;
7ba81444
MS
2141 else if (integer_types_same_name_p (TYPE_NAME (arg),
2142 "int")
2143 && integer_types_same_name_p (TYPE_NAME (parm),
2144 "long"))
c5aa993b
JM
2145 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2146 else
1c5cb38e 2147 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2148 }
2149 else
2150 {
7ba81444
MS
2151 if (integer_types_same_name_p (TYPE_NAME (arg),
2152 "long")
2153 && integer_types_same_name_p (TYPE_NAME (parm),
2154 "int"))
1c5cb38e 2155 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2156 else
2157 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2158 }
2159 }
2160 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2161 {
7ba81444
MS
2162 if (integer_types_same_name_p (TYPE_NAME (parm),
2163 TYPE_NAME (arg)))
c5aa993b 2164 return 0;
7ba81444
MS
2165 else if (integer_types_same_name_p (TYPE_NAME (arg),
2166 "int")
2167 && integer_types_same_name_p (TYPE_NAME (parm),
2168 "long"))
c5aa993b
JM
2169 return INTEGER_PROMOTION_BADNESS;
2170 else
1c5cb38e 2171 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2172 }
2173 else
1c5cb38e 2174 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2175 }
2176 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2177 return INTEGER_PROMOTION_BADNESS;
2178 else
1c5cb38e 2179 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2180 case TYPE_CODE_ENUM:
4f2aea11 2181 case TYPE_CODE_FLAGS:
c5aa993b
JM
2182 case TYPE_CODE_CHAR:
2183 case TYPE_CODE_RANGE:
2184 case TYPE_CODE_BOOL:
2185 return INTEGER_PROMOTION_BADNESS;
2186 case TYPE_CODE_FLT:
2187 return INT_FLOAT_CONVERSION_BADNESS;
2188 case TYPE_CODE_PTR:
2189 return NS_POINTER_CONVERSION_BADNESS;
2190 default:
2191 return INCOMPATIBLE_TYPE_BADNESS;
2192 }
2193 break;
2194 case TYPE_CODE_ENUM:
2195 switch (TYPE_CODE (arg))
2196 {
2197 case TYPE_CODE_INT:
2198 case TYPE_CODE_CHAR:
2199 case TYPE_CODE_RANGE:
2200 case TYPE_CODE_BOOL:
2201 case TYPE_CODE_ENUM:
1c5cb38e 2202 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2203 case TYPE_CODE_FLT:
2204 return INT_FLOAT_CONVERSION_BADNESS;
2205 default:
2206 return INCOMPATIBLE_TYPE_BADNESS;
2207 }
2208 break;
2209 case TYPE_CODE_CHAR:
2210 switch (TYPE_CODE (arg))
2211 {
2212 case TYPE_CODE_RANGE:
2213 case TYPE_CODE_BOOL:
2214 case TYPE_CODE_ENUM:
1c5cb38e 2215 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2216 case TYPE_CODE_FLT:
2217 return INT_FLOAT_CONVERSION_BADNESS;
2218 case TYPE_CODE_INT:
2219 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2220 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2221 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2222 return INTEGER_PROMOTION_BADNESS;
2223 /* >>> !! else fall through !! <<< */
2224 case TYPE_CODE_CHAR:
7ba81444
MS
2225 /* Deal with signed, unsigned, and plain chars for C++ and
2226 with int cases falling through from previous case. */
c5aa993b
JM
2227 if (TYPE_NOSIGN (parm))
2228 {
2229 if (TYPE_NOSIGN (arg))
2230 return 0;
2231 else
1c5cb38e 2232 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2233 }
2234 else if (TYPE_UNSIGNED (parm))
2235 {
2236 if (TYPE_UNSIGNED (arg))
2237 return 0;
2238 else
2239 return INTEGER_PROMOTION_BADNESS;
2240 }
2241 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2242 return 0;
2243 else
1c5cb38e 2244 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2245 default:
2246 return INCOMPATIBLE_TYPE_BADNESS;
2247 }
2248 break;
2249 case TYPE_CODE_RANGE:
2250 switch (TYPE_CODE (arg))
2251 {
2252 case TYPE_CODE_INT:
2253 case TYPE_CODE_CHAR:
2254 case TYPE_CODE_RANGE:
2255 case TYPE_CODE_BOOL:
2256 case TYPE_CODE_ENUM:
1c5cb38e 2257 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2258 case TYPE_CODE_FLT:
2259 return INT_FLOAT_CONVERSION_BADNESS;
2260 default:
2261 return INCOMPATIBLE_TYPE_BADNESS;
2262 }
2263 break;
2264 case TYPE_CODE_BOOL:
2265 switch (TYPE_CODE (arg))
2266 {
2267 case TYPE_CODE_INT:
2268 case TYPE_CODE_CHAR:
2269 case TYPE_CODE_RANGE:
2270 case TYPE_CODE_ENUM:
2271 case TYPE_CODE_FLT:
2272 case TYPE_CODE_PTR:
2273 return BOOLEAN_CONVERSION_BADNESS;
2274 case TYPE_CODE_BOOL:
2275 return 0;
2276 default:
2277 return INCOMPATIBLE_TYPE_BADNESS;
2278 }
2279 break;
2280 case TYPE_CODE_FLT:
2281 switch (TYPE_CODE (arg))
2282 {
2283 case TYPE_CODE_FLT:
2284 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2285 return FLOAT_PROMOTION_BADNESS;
2286 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2287 return 0;
2288 else
2289 return FLOAT_CONVERSION_BADNESS;
2290 case TYPE_CODE_INT:
2291 case TYPE_CODE_BOOL:
2292 case TYPE_CODE_ENUM:
2293 case TYPE_CODE_RANGE:
2294 case TYPE_CODE_CHAR:
2295 return INT_FLOAT_CONVERSION_BADNESS;
2296 default:
2297 return INCOMPATIBLE_TYPE_BADNESS;
2298 }
2299 break;
2300 case TYPE_CODE_COMPLEX:
2301 switch (TYPE_CODE (arg))
7ba81444 2302 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2303 case TYPE_CODE_FLT:
2304 return FLOAT_PROMOTION_BADNESS;
2305 case TYPE_CODE_COMPLEX:
2306 return 0;
2307 default:
2308 return INCOMPATIBLE_TYPE_BADNESS;
2309 }
2310 break;
2311 case TYPE_CODE_STRUCT:
c906108c 2312 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2313 switch (TYPE_CODE (arg))
2314 {
2315 case TYPE_CODE_STRUCT:
2316 /* Check for derivation */
2317 if (is_ancestor (parm, arg))
2318 return BASE_CONVERSION_BADNESS;
2319 /* else fall through */
2320 default:
2321 return INCOMPATIBLE_TYPE_BADNESS;
2322 }
2323 break;
2324 case TYPE_CODE_UNION:
2325 switch (TYPE_CODE (arg))
2326 {
2327 case TYPE_CODE_UNION:
2328 default:
2329 return INCOMPATIBLE_TYPE_BADNESS;
2330 }
2331 break;
0d5de010 2332 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2333 switch (TYPE_CODE (arg))
2334 {
2335 default:
2336 return INCOMPATIBLE_TYPE_BADNESS;
2337 }
2338 break;
2339 case TYPE_CODE_METHOD:
2340 switch (TYPE_CODE (arg))
2341 {
2342
2343 default:
2344 return INCOMPATIBLE_TYPE_BADNESS;
2345 }
2346 break;
2347 case TYPE_CODE_REF:
2348 switch (TYPE_CODE (arg))
2349 {
2350
2351 default:
2352 return INCOMPATIBLE_TYPE_BADNESS;
2353 }
2354
2355 break;
2356 case TYPE_CODE_SET:
2357 switch (TYPE_CODE (arg))
2358 {
2359 /* Not in C++ */
2360 case TYPE_CODE_SET:
7ba81444
MS
2361 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2362 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2363 default:
2364 return INCOMPATIBLE_TYPE_BADNESS;
2365 }
2366 break;
2367 case TYPE_CODE_VOID:
2368 default:
2369 return INCOMPATIBLE_TYPE_BADNESS;
2370 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2371}
2372
c5aa993b
JM
2373
2374/* End of functions for overload resolution */
c906108c 2375
c906108c 2376static void
fba45db2 2377print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2378{
2379 int bitno;
2380
2381 for (bitno = 0; bitno < nbits; bitno++)
2382 {
2383 if ((bitno % 8) == 0)
2384 {
2385 puts_filtered (" ");
2386 }
2387 if (B_TST (bits, bitno))
a3f17187 2388 printf_filtered (("1"));
c906108c 2389 else
a3f17187 2390 printf_filtered (("0"));
c906108c
SS
2391 }
2392}
2393
ad2f7632 2394/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2395 include it since we may get into a infinitely recursive
2396 situation. */
c906108c
SS
2397
2398static void
ad2f7632 2399print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2400{
2401 if (args != NULL)
2402 {
ad2f7632
DJ
2403 int i;
2404
2405 for (i = 0; i < nargs; i++)
2406 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2407 }
2408}
2409
2410static void
fba45db2 2411dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2412{
2413 int method_idx;
2414 int overload_idx;
2415 struct fn_field *f;
2416
2417 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2418 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2419 printf_filtered ("\n");
2420 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2421 {
2422 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2423 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2424 method_idx,
2425 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2426 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2427 gdb_stdout);
a3f17187 2428 printf_filtered (_(") length %d\n"),
c906108c
SS
2429 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2430 for (overload_idx = 0;
2431 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2432 overload_idx++)
2433 {
2434 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2435 overload_idx,
2436 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2437 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2438 gdb_stdout);
c906108c
SS
2439 printf_filtered (")\n");
2440 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2441 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2442 gdb_stdout);
c906108c
SS
2443 printf_filtered ("\n");
2444
2445 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2446 spaces + 8 + 2);
2447
2448 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2449 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2450 gdb_stdout);
c906108c
SS
2451 printf_filtered ("\n");
2452
ad2f7632 2453 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2454 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2455 overload_idx)),
ad2f7632 2456 spaces);
c906108c 2457 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2458 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2459 gdb_stdout);
c906108c
SS
2460 printf_filtered ("\n");
2461
2462 printfi_filtered (spaces + 8, "is_const %d\n",
2463 TYPE_FN_FIELD_CONST (f, overload_idx));
2464 printfi_filtered (spaces + 8, "is_volatile %d\n",
2465 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2466 printfi_filtered (spaces + 8, "is_private %d\n",
2467 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2468 printfi_filtered (spaces + 8, "is_protected %d\n",
2469 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2470 printfi_filtered (spaces + 8, "is_stub %d\n",
2471 TYPE_FN_FIELD_STUB (f, overload_idx));
2472 printfi_filtered (spaces + 8, "voffset %u\n",
2473 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2474 }
2475 }
2476}
2477
2478static void
fba45db2 2479print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2480{
2481 printfi_filtered (spaces, "n_baseclasses %d\n",
2482 TYPE_N_BASECLASSES (type));
2483 printfi_filtered (spaces, "nfn_fields %d\n",
2484 TYPE_NFN_FIELDS (type));
2485 printfi_filtered (spaces, "nfn_fields_total %d\n",
2486 TYPE_NFN_FIELDS_TOTAL (type));
2487 if (TYPE_N_BASECLASSES (type) > 0)
2488 {
2489 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2490 TYPE_N_BASECLASSES (type));
7ba81444
MS
2491 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2492 gdb_stdout);
c906108c
SS
2493 printf_filtered (")");
2494
2495 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2496 TYPE_N_BASECLASSES (type));
2497 puts_filtered ("\n");
2498 }
2499 if (TYPE_NFIELDS (type) > 0)
2500 {
2501 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2502 {
7ba81444
MS
2503 printfi_filtered (spaces,
2504 "private_field_bits (%d bits at *",
c906108c 2505 TYPE_NFIELDS (type));
7ba81444
MS
2506 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2507 gdb_stdout);
c906108c
SS
2508 printf_filtered (")");
2509 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2510 TYPE_NFIELDS (type));
2511 puts_filtered ("\n");
2512 }
2513 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2514 {
7ba81444
MS
2515 printfi_filtered (spaces,
2516 "protected_field_bits (%d bits at *",
c906108c 2517 TYPE_NFIELDS (type));
7ba81444
MS
2518 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2519 gdb_stdout);
c906108c
SS
2520 printf_filtered (")");
2521 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2522 TYPE_NFIELDS (type));
2523 puts_filtered ("\n");
2524 }
2525 }
2526 if (TYPE_NFN_FIELDS (type) > 0)
2527 {
2528 dump_fn_fieldlists (type, spaces);
2529 }
2530}
2531
e9e79dd9
FF
2532static void
2533print_bound_type (int bt)
2534{
2535 switch (bt)
2536 {
2537 case BOUND_CANNOT_BE_DETERMINED:
2538 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2539 break;
2540 case BOUND_BY_REF_ON_STACK:
2541 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2542 break;
2543 case BOUND_BY_VALUE_ON_STACK:
2544 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2545 break;
2546 case BOUND_BY_REF_IN_REG:
2547 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2548 break;
2549 case BOUND_BY_VALUE_IN_REG:
2550 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2551 break;
2552 case BOUND_SIMPLE:
2553 printf_filtered ("(BOUND_SIMPLE)");
2554 break;
2555 default:
a3f17187 2556 printf_filtered (_("(unknown bound type)"));
e9e79dd9
FF
2557 break;
2558 }
2559}
2560
c906108c
SS
2561static struct obstack dont_print_type_obstack;
2562
2563void
fba45db2 2564recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2565{
2566 int idx;
2567
2568 if (spaces == 0)
2569 obstack_begin (&dont_print_type_obstack, 0);
2570
2571 if (TYPE_NFIELDS (type) > 0
2572 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2573 {
2574 struct type **first_dont_print
7ba81444 2575 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2576
7ba81444
MS
2577 int i = (struct type **)
2578 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2579
2580 while (--i >= 0)
2581 {
2582 if (type == first_dont_print[i])
2583 {
2584 printfi_filtered (spaces, "type node ");
d4f3574e 2585 gdb_print_host_address (type, gdb_stdout);
a3f17187 2586 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2587 return;
2588 }
2589 }
2590
2591 obstack_ptr_grow (&dont_print_type_obstack, type);
2592 }
2593
2594 printfi_filtered (spaces, "type node ");
d4f3574e 2595 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2596 printf_filtered ("\n");
2597 printfi_filtered (spaces, "name '%s' (",
2598 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2599 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2600 printf_filtered (")\n");
e9e79dd9
FF
2601 printfi_filtered (spaces, "tagname '%s' (",
2602 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2603 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2604 printf_filtered (")\n");
c906108c
SS
2605 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2606 switch (TYPE_CODE (type))
2607 {
c5aa993b
JM
2608 case TYPE_CODE_UNDEF:
2609 printf_filtered ("(TYPE_CODE_UNDEF)");
2610 break;
2611 case TYPE_CODE_PTR:
2612 printf_filtered ("(TYPE_CODE_PTR)");
2613 break;
2614 case TYPE_CODE_ARRAY:
2615 printf_filtered ("(TYPE_CODE_ARRAY)");
2616 break;
2617 case TYPE_CODE_STRUCT:
2618 printf_filtered ("(TYPE_CODE_STRUCT)");
2619 break;
2620 case TYPE_CODE_UNION:
2621 printf_filtered ("(TYPE_CODE_UNION)");
2622 break;
2623 case TYPE_CODE_ENUM:
2624 printf_filtered ("(TYPE_CODE_ENUM)");
2625 break;
4f2aea11
MK
2626 case TYPE_CODE_FLAGS:
2627 printf_filtered ("(TYPE_CODE_FLAGS)");
2628 break;
c5aa993b
JM
2629 case TYPE_CODE_FUNC:
2630 printf_filtered ("(TYPE_CODE_FUNC)");
2631 break;
2632 case TYPE_CODE_INT:
2633 printf_filtered ("(TYPE_CODE_INT)");
2634 break;
2635 case TYPE_CODE_FLT:
2636 printf_filtered ("(TYPE_CODE_FLT)");
2637 break;
2638 case TYPE_CODE_VOID:
2639 printf_filtered ("(TYPE_CODE_VOID)");
2640 break;
2641 case TYPE_CODE_SET:
2642 printf_filtered ("(TYPE_CODE_SET)");
2643 break;
2644 case TYPE_CODE_RANGE:
2645 printf_filtered ("(TYPE_CODE_RANGE)");
2646 break;
2647 case TYPE_CODE_STRING:
2648 printf_filtered ("(TYPE_CODE_STRING)");
2649 break;
e9e79dd9
FF
2650 case TYPE_CODE_BITSTRING:
2651 printf_filtered ("(TYPE_CODE_BITSTRING)");
2652 break;
c5aa993b
JM
2653 case TYPE_CODE_ERROR:
2654 printf_filtered ("(TYPE_CODE_ERROR)");
2655 break;
0d5de010
DJ
2656 case TYPE_CODE_MEMBERPTR:
2657 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2658 break;
2659 case TYPE_CODE_METHODPTR:
2660 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2661 break;
2662 case TYPE_CODE_METHOD:
2663 printf_filtered ("(TYPE_CODE_METHOD)");
2664 break;
2665 case TYPE_CODE_REF:
2666 printf_filtered ("(TYPE_CODE_REF)");
2667 break;
2668 case TYPE_CODE_CHAR:
2669 printf_filtered ("(TYPE_CODE_CHAR)");
2670 break;
2671 case TYPE_CODE_BOOL:
2672 printf_filtered ("(TYPE_CODE_BOOL)");
2673 break;
e9e79dd9
FF
2674 case TYPE_CODE_COMPLEX:
2675 printf_filtered ("(TYPE_CODE_COMPLEX)");
2676 break;
c5aa993b
JM
2677 case TYPE_CODE_TYPEDEF:
2678 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2679 break;
e9e79dd9
FF
2680 case TYPE_CODE_TEMPLATE:
2681 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2682 break;
2683 case TYPE_CODE_TEMPLATE_ARG:
2684 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2685 break;
5c4e30ca
DC
2686 case TYPE_CODE_NAMESPACE:
2687 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2688 break;
c5aa993b
JM
2689 default:
2690 printf_filtered ("(UNKNOWN TYPE CODE)");
2691 break;
c906108c
SS
2692 }
2693 puts_filtered ("\n");
2694 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9e79dd9
FF
2695 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2696 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2697 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2698 puts_filtered ("\n");
2699 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2700 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2701 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2702 puts_filtered ("\n");
c906108c 2703 printfi_filtered (spaces, "objfile ");
d4f3574e 2704 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
c906108c
SS
2705 printf_filtered ("\n");
2706 printfi_filtered (spaces, "target_type ");
d4f3574e 2707 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2708 printf_filtered ("\n");
2709 if (TYPE_TARGET_TYPE (type) != NULL)
2710 {
2711 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2712 }
2713 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2714 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2715 printf_filtered ("\n");
2716 printfi_filtered (spaces, "reference_type ");
d4f3574e 2717 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2718 printf_filtered ("\n");
2fdde8f8
DJ
2719 printfi_filtered (spaces, "type_chain ");
2720 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2721 printf_filtered ("\n");
7ba81444
MS
2722 printfi_filtered (spaces, "instance_flags 0x%x",
2723 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2724 if (TYPE_CONST (type))
2725 {
2726 puts_filtered (" TYPE_FLAG_CONST");
2727 }
2728 if (TYPE_VOLATILE (type))
2729 {
2730 puts_filtered (" TYPE_FLAG_VOLATILE");
2731 }
2732 if (TYPE_CODE_SPACE (type))
2733 {
2734 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2735 }
2736 if (TYPE_DATA_SPACE (type))
2737 {
2738 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2739 }
8b2dbe47
KB
2740 if (TYPE_ADDRESS_CLASS_1 (type))
2741 {
2742 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2743 }
2744 if (TYPE_ADDRESS_CLASS_2 (type))
2745 {
2746 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2747 }
2fdde8f8 2748 puts_filtered ("\n");
c906108c 2749 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
762a036f 2750 if (TYPE_UNSIGNED (type))
c906108c
SS
2751 {
2752 puts_filtered (" TYPE_FLAG_UNSIGNED");
2753 }
762a036f
FF
2754 if (TYPE_NOSIGN (type))
2755 {
2756 puts_filtered (" TYPE_FLAG_NOSIGN");
2757 }
2758 if (TYPE_STUB (type))
c906108c
SS
2759 {
2760 puts_filtered (" TYPE_FLAG_STUB");
2761 }
762a036f
FF
2762 if (TYPE_TARGET_STUB (type))
2763 {
2764 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2765 }
2766 if (TYPE_STATIC (type))
2767 {
2768 puts_filtered (" TYPE_FLAG_STATIC");
2769 }
762a036f
FF
2770 if (TYPE_PROTOTYPED (type))
2771 {
2772 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2773 }
2774 if (TYPE_INCOMPLETE (type))
2775 {
2776 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2777 }
762a036f
FF
2778 if (TYPE_VARARGS (type))
2779 {
2780 puts_filtered (" TYPE_FLAG_VARARGS");
2781 }
f5f8a009
EZ
2782 /* This is used for things like AltiVec registers on ppc. Gcc emits
2783 an attribute for the array type, which tells whether or not we
2784 have a vector, instead of a regular array. */
2785 if (TYPE_VECTOR (type))
2786 {
2787 puts_filtered (" TYPE_FLAG_VECTOR");
2788 }
c906108c
SS
2789 puts_filtered ("\n");
2790 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 2791 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
2792 puts_filtered ("\n");
2793 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2794 {
2795 printfi_filtered (spaces + 2,
2796 "[%d] bitpos %d bitsize %d type ",
2797 idx, TYPE_FIELD_BITPOS (type, idx),
2798 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 2799 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
2800 printf_filtered (" name '%s' (",
2801 TYPE_FIELD_NAME (type, idx) != NULL
2802 ? TYPE_FIELD_NAME (type, idx)
2803 : "<NULL>");
d4f3574e 2804 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
2805 printf_filtered (")\n");
2806 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2807 {
2808 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2809 }
2810 }
2811 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 2812 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
2813 puts_filtered ("\n");
2814 if (TYPE_VPTR_BASETYPE (type) != NULL)
2815 {
2816 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2817 }
7ba81444
MS
2818 printfi_filtered (spaces, "vptr_fieldno %d\n",
2819 TYPE_VPTR_FIELDNO (type));
c906108c
SS
2820 switch (TYPE_CODE (type))
2821 {
c5aa993b
JM
2822 case TYPE_CODE_STRUCT:
2823 printfi_filtered (spaces, "cplus_stuff ");
7ba81444
MS
2824 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2825 gdb_stdout);
c5aa993b
JM
2826 puts_filtered ("\n");
2827 print_cplus_stuff (type, spaces);
2828 break;
c906108c 2829
701c159d
AC
2830 case TYPE_CODE_FLT:
2831 printfi_filtered (spaces, "floatformat ");
8da61cc4 2832 if (TYPE_FLOATFORMAT (type) == NULL)
701c159d
AC
2833 puts_filtered ("(null)");
2834 else
8da61cc4
DJ
2835 {
2836 puts_filtered ("{ ");
2837 if (TYPE_FLOATFORMAT (type)[0] == NULL
2838 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2839 puts_filtered ("(null)");
2840 else
2841 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2842
2843 puts_filtered (", ");
2844 if (TYPE_FLOATFORMAT (type)[1] == NULL
2845 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2846 puts_filtered ("(null)");
2847 else
2848 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2849
2850 puts_filtered (" }");
2851 }
701c159d
AC
2852 puts_filtered ("\n");
2853 break;
2854
c5aa993b 2855 default:
7ba81444
MS
2856 /* We have to pick one of the union types to be able print and
2857 test the value. Pick cplus_struct_type, even though we know
2858 it isn't any particular one. */
c5aa993b 2859 printfi_filtered (spaces, "type_specific ");
d4f3574e 2860 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
2861 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2862 {
a3f17187 2863 printf_filtered (_(" (unknown data form)"));
c5aa993b
JM
2864 }
2865 printf_filtered ("\n");
2866 break;
c906108c
SS
2867
2868 }
2869 if (spaces == 0)
2870 obstack_free (&dont_print_type_obstack, NULL);
2871}
2872
ae5a43e0
DJ
2873/* Trivial helpers for the libiberty hash table, for mapping one
2874 type to another. */
2875
2876struct type_pair
2877{
2878 struct type *old, *new;
2879};
2880
2881static hashval_t
2882type_pair_hash (const void *item)
2883{
2884 const struct type_pair *pair = item;
2885 return htab_hash_pointer (pair->old);
2886}
2887
2888static int
2889type_pair_eq (const void *item_lhs, const void *item_rhs)
2890{
2891 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2892 return lhs->old == rhs->old;
2893}
2894
2895/* Allocate the hash table used by copy_type_recursive to walk
2896 types without duplicates. We use OBJFILE's obstack, because
2897 OBJFILE is about to be deleted. */
2898
2899htab_t
2900create_copied_types_hash (struct objfile *objfile)
2901{
2902 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2903 NULL, &objfile->objfile_obstack,
2904 hashtab_obstack_allocate,
2905 dummy_obstack_deallocate);
2906}
2907
7ba81444
MS
2908/* Recursively copy (deep copy) TYPE, if it is associated with
2909 OBJFILE. Return a new type allocated using malloc, a saved type if
2910 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2911 not associated with OBJFILE. */
ae5a43e0
DJ
2912
2913struct type *
7ba81444
MS
2914copy_type_recursive (struct objfile *objfile,
2915 struct type *type,
ae5a43e0
DJ
2916 htab_t copied_types)
2917{
2918 struct type_pair *stored, pair;
2919 void **slot;
2920 struct type *new_type;
2921
2922 if (TYPE_OBJFILE (type) == NULL)
2923 return type;
2924
7ba81444
MS
2925 /* This type shouldn't be pointing to any types in other objfiles;
2926 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
2927 gdb_assert (TYPE_OBJFILE (type) == objfile);
2928
2929 pair.old = type;
2930 slot = htab_find_slot (copied_types, &pair, INSERT);
2931 if (*slot != NULL)
2932 return ((struct type_pair *) *slot)->new;
2933
2934 new_type = alloc_type (NULL);
2935
2936 /* We must add the new type to the hash table immediately, in case
2937 we encounter this type again during a recursive call below. */
2938 stored = xmalloc (sizeof (struct type_pair));
2939 stored->old = type;
2940 stored->new = new_type;
2941 *slot = stored;
2942
2943 /* Copy the common fields of types. */
2944 TYPE_CODE (new_type) = TYPE_CODE (type);
7ba81444
MS
2945 TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
2946 TYPE_ARRAY_UPPER_BOUND_TYPE (type);
2947 TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
2948 TYPE_ARRAY_LOWER_BOUND_TYPE (type);
ae5a43e0
DJ
2949 if (TYPE_NAME (type))
2950 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2951 if (TYPE_TAG_NAME (type))
2952 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2953 TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
2954 TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
2955
2956 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2957 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2958
2959 /* Copy the fields. */
2960 TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
2961 if (TYPE_NFIELDS (type))
2962 {
2963 int i, nfields;
2964
2965 nfields = TYPE_NFIELDS (type);
2966 TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
2967 for (i = 0; i < nfields; i++)
2968 {
7ba81444
MS
2969 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2970 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
2971 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2972 if (TYPE_FIELD_TYPE (type, i))
2973 TYPE_FIELD_TYPE (new_type, i)
2974 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2975 copied_types);
2976 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
2977 TYPE_FIELD_NAME (new_type, i) =
2978 xstrdup (TYPE_FIELD_NAME (type, i));
ae5a43e0
DJ
2979 if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
2980 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
2981 TYPE_FIELD_STATIC_PHYSADDR (type, i));
2982 else if (TYPE_FIELD_STATIC (type, i))
2983 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
7ba81444
MS
2984 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
2985 i)));
ae5a43e0
DJ
2986 else
2987 {
7ba81444
MS
2988 TYPE_FIELD_BITPOS (new_type, i) =
2989 TYPE_FIELD_BITPOS (type, i);
ae5a43e0
DJ
2990 TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
2991 }
2992 }
2993 }
2994
2995 /* Copy pointers to other types. */
2996 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
2997 TYPE_TARGET_TYPE (new_type) =
2998 copy_type_recursive (objfile,
2999 TYPE_TARGET_TYPE (type),
3000 copied_types);
ae5a43e0 3001 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3002 TYPE_VPTR_BASETYPE (new_type) =
3003 copy_type_recursive (objfile,
3004 TYPE_VPTR_BASETYPE (type),
3005 copied_types);
ae5a43e0
DJ
3006 /* Maybe copy the type_specific bits.
3007
3008 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3009 base classes and methods. There's no fundamental reason why we
3010 can't, but at the moment it is not needed. */
3011
3012 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3013 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3014 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3015 || TYPE_CODE (type) == TYPE_CODE_UNION
3016 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3017 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3018 INIT_CPLUS_SPECIFIC (new_type);
3019
3020 return new_type;
3021}
3022
8da61cc4
DJ
3023static struct type *
3024build_flt (int bit, char *name, const struct floatformat **floatformats)
3025{
3026 struct type *t;
3027
3028 if (bit == -1)
3029 {
3030 gdb_assert (floatformats != NULL);
3031 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3032 bit = floatformats[0]->totalsize;
3033 }
3034 gdb_assert (bit >= 0);
3035
3036 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3037 TYPE_FLOATFORMAT (t) = floatformats;
3038 return t;
3039}
3040
000177f0
AC
3041static struct gdbarch_data *gdbtypes_data;
3042
3043const struct builtin_type *
3044builtin_type (struct gdbarch *gdbarch)
3045{
3046 return gdbarch_data (gdbarch, gdbtypes_data);
3047}
3048
70bd8e24 3049
70bd8e24
AC
3050static struct type *
3051build_complex (int bit, char *name, struct type *target_type)
3052{
3053 struct type *t;
3054 if (bit <= 0 || target_type == builtin_type_error)
3055 {
3056 gdb_assert (builtin_type_error != NULL);
3057 return builtin_type_error;
3058 }
3059 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3060 0, name, (struct objfile *) NULL);
3061 TYPE_TARGET_TYPE (t) = target_type;
3062 return t;
3063}
3064
000177f0
AC
3065static void *
3066gdbtypes_post_init (struct gdbarch *gdbarch)
3067{
3068 struct builtin_type *builtin_type
3069 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3070
3071 builtin_type->builtin_void =
3072 init_type (TYPE_CODE_VOID, 1,
3073 0,
3074 "void", (struct objfile *) NULL);
3075 builtin_type->builtin_char =
3076 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3077 (TYPE_FLAG_NOSIGN
8a7e34d8 3078 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
000177f0 3079 "char", (struct objfile *) NULL);
685419e2 3080 builtin_type->builtin_true_char =
000177f0
AC
3081 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3082 0,
3083 "true character", (struct objfile *) NULL);
ea37ba09
DJ
3084 builtin_type->builtin_true_unsigned_char =
3085 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3086 TYPE_FLAG_UNSIGNED,
3087 "true character", (struct objfile *) NULL);
000177f0
AC
3088 builtin_type->builtin_signed_char =
3089 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3090 0,
3091 "signed char", (struct objfile *) NULL);
3092 builtin_type->builtin_unsigned_char =
3093 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3094 TYPE_FLAG_UNSIGNED,
3095 "unsigned char", (struct objfile *) NULL);
3096 builtin_type->builtin_short =
7ba81444 3097 init_type (TYPE_CODE_INT,
8a7e34d8 3098 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3099 0, "short", (struct objfile *) NULL);
000177f0 3100 builtin_type->builtin_unsigned_short =
7ba81444 3101 init_type (TYPE_CODE_INT,
8a7e34d8 3102 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3103 TYPE_FLAG_UNSIGNED, "unsigned short",
3104 (struct objfile *) NULL);
000177f0 3105 builtin_type->builtin_int =
7ba81444 3106 init_type (TYPE_CODE_INT,
8a7e34d8 3107 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3108 0, "int", (struct objfile *) NULL);
000177f0 3109 builtin_type->builtin_unsigned_int =
7ba81444 3110 init_type (TYPE_CODE_INT,
8a7e34d8 3111 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3112 TYPE_FLAG_UNSIGNED, "unsigned int",
3113 (struct objfile *) NULL);
000177f0 3114 builtin_type->builtin_long =
7ba81444 3115 init_type (TYPE_CODE_INT,
8a7e34d8 3116 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3117 0, "long", (struct objfile *) NULL);
000177f0 3118 builtin_type->builtin_unsigned_long =
7ba81444 3119 init_type (TYPE_CODE_INT,
8a7e34d8 3120 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3121 TYPE_FLAG_UNSIGNED, "unsigned long",
3122 (struct objfile *) NULL);
000177f0 3123 builtin_type->builtin_long_long =
9a76efb6 3124 init_type (TYPE_CODE_INT,
8a7e34d8 3125 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 3126 0, "long long", (struct objfile *) NULL);
000177f0 3127 builtin_type->builtin_unsigned_long_long =
9a76efb6 3128 init_type (TYPE_CODE_INT,
8a7e34d8 3129 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6
UW
3130 TYPE_FLAG_UNSIGNED, "unsigned long long",
3131 (struct objfile *) NULL);
70bd8e24
AC
3132 builtin_type->builtin_float
3133 = build_flt (gdbarch_float_bit (gdbarch), "float",
3134 gdbarch_float_format (gdbarch));
3135 builtin_type->builtin_double
3136 = build_flt (gdbarch_double_bit (gdbarch), "double",
3137 gdbarch_double_format (gdbarch));
3138 builtin_type->builtin_long_double
3139 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3140 gdbarch_long_double_format (gdbarch));
3141 builtin_type->builtin_complex
3142 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3143 builtin_type->builtin_float);
3144 builtin_type->builtin_double_complex
3145 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3146 builtin_type->builtin_double);
000177f0
AC
3147 builtin_type->builtin_string =
3148 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3149 0,
3150 "string", (struct objfile *) NULL);
000177f0
AC
3151 builtin_type->builtin_bool =
3152 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3153 0,
3154 "bool", (struct objfile *) NULL);
3155
7678ef8f
TJB
3156 /* The following three are about decimal floating point types, which
3157 are 32-bits, 64-bits and 128-bits respectively. */
3158 builtin_type->builtin_decfloat
3159 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3160 0,
213e4dc2 3161 "_Decimal32", (struct objfile *) NULL);
7678ef8f
TJB
3162 builtin_type->builtin_decdouble
3163 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3164 0,
213e4dc2 3165 "_Decimal64", (struct objfile *) NULL);
7678ef8f
TJB
3166 builtin_type->builtin_declong
3167 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3168 0,
213e4dc2 3169 "_Decimal128", (struct objfile *) NULL);
7678ef8f 3170
7ba81444 3171 /* Pointer/Address types. */
000177f0
AC
3172
3173 /* NOTE: on some targets, addresses and pointers are not necessarily
3174 the same --- for example, on the D10V, pointers are 16 bits long,
3175 but addresses are 32 bits long. See doc/gdbint.texinfo,
3176 ``Pointers Are Not Always Addresses''.
3177
3178 The upshot is:
3179 - gdb's `struct type' always describes the target's
3180 representation.
3181 - gdb's `struct value' objects should always hold values in
3182 target form.
3183 - gdb's CORE_ADDR values are addresses in the unified virtual
3184 address space that the assembler and linker work with. Thus,
3185 since target_read_memory takes a CORE_ADDR as an argument, it
3186 can access any memory on the target, even if the processor has
3187 separate code and data address spaces.
3188
3189 So, for example:
3190 - If v is a value holding a D10V code pointer, its contents are
3191 in target form: a big-endian address left-shifted two bits.
3192 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3193 sizeof (void *) == 2 on the target.
3194
3195 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3196 target type for a value the target will never see. It's only
3197 used to hold the values of (typeless) linker symbols, which are
3198 indeed in the unified virtual address space. */
7ba81444
MS
3199
3200 builtin_type->builtin_data_ptr =
3201 make_pointer_type (builtin_type->builtin_void, NULL);
3202 builtin_type->builtin_func_ptr =
3203 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
000177f0 3204 builtin_type->builtin_core_addr =
7ba81444 3205 init_type (TYPE_CODE_INT,
8a7e34d8 3206 gdbarch_addr_bit (gdbarch) / 8,
000177f0
AC
3207 TYPE_FLAG_UNSIGNED,
3208 "__CORE_ADDR", (struct objfile *) NULL);
3209
64c50499
UW
3210
3211 /* The following set of types is used for symbols with no
3212 debug information. */
7ba81444
MS
3213 builtin_type->nodebug_text_symbol =
3214 init_type (TYPE_CODE_FUNC, 1, 0,
3215 "<text variable, no debug info>", NULL);
3216 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3217 builtin_type->builtin_int;
3218 builtin_type->nodebug_data_symbol =
3219 init_type (TYPE_CODE_INT,
3220 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3221 "<data variable, no debug info>", NULL);
3222 builtin_type->nodebug_unknown_symbol =
3223 init_type (TYPE_CODE_INT, 1, 0,
3224 "<variable (not text or data), no debug info>", NULL);
3225 builtin_type->nodebug_tls_symbol =
3226 init_type (TYPE_CODE_INT,
3227 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3228 "<thread local variable, no debug info>", NULL);
64c50499 3229
000177f0
AC
3230 return builtin_type;
3231}
3232
a14ed312 3233extern void _initialize_gdbtypes (void);
c906108c 3234void
fba45db2 3235_initialize_gdbtypes (void)
c906108c 3236{
5674de60
UW
3237 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3238
7ba81444
MS
3239 /* FIXME: The following types are architecture-neutral. However,
3240 they contain pointer_type and reference_type fields potentially
3241 caching pointer or reference types that *are* architecture
3242 dependent. */
7ad6570d
AC
3243
3244 builtin_type_int0 =
3245 init_type (TYPE_CODE_INT, 0 / 8,
3246 0,
3247 "int0_t", (struct objfile *) NULL);
3248 builtin_type_int8 =
3249 init_type (TYPE_CODE_INT, 8 / 8,
ea37ba09 3250 TYPE_FLAG_NOTTEXT,
7ad6570d
AC
3251 "int8_t", (struct objfile *) NULL);
3252 builtin_type_uint8 =
3253 init_type (TYPE_CODE_INT, 8 / 8,
ea37ba09 3254 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
7ad6570d
AC
3255 "uint8_t", (struct objfile *) NULL);
3256 builtin_type_int16 =
3257 init_type (TYPE_CODE_INT, 16 / 8,
3258 0,
3259 "int16_t", (struct objfile *) NULL);
3260 builtin_type_uint16 =
3261 init_type (TYPE_CODE_INT, 16 / 8,
3262 TYPE_FLAG_UNSIGNED,
3263 "uint16_t", (struct objfile *) NULL);
3264 builtin_type_int32 =
3265 init_type (TYPE_CODE_INT, 32 / 8,
3266 0,
3267 "int32_t", (struct objfile *) NULL);
3268 builtin_type_uint32 =
3269 init_type (TYPE_CODE_INT, 32 / 8,
3270 TYPE_FLAG_UNSIGNED,
3271 "uint32_t", (struct objfile *) NULL);
3272 builtin_type_int64 =
3273 init_type (TYPE_CODE_INT, 64 / 8,
3274 0,
3275 "int64_t", (struct objfile *) NULL);
3276 builtin_type_uint64 =
3277 init_type (TYPE_CODE_INT, 64 / 8,
3278 TYPE_FLAG_UNSIGNED,
3279 "uint64_t", (struct objfile *) NULL);
3280 builtin_type_int128 =
3281 init_type (TYPE_CODE_INT, 128 / 8,
3282 0,
3283 "int128_t", (struct objfile *) NULL);
3284 builtin_type_uint128 =
3285 init_type (TYPE_CODE_INT, 128 / 8,
3286 TYPE_FLAG_UNSIGNED,
3287 "uint128_t", (struct objfile *) NULL);
3288
7ba81444
MS
3289 builtin_type_ieee_single =
3290 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3291 builtin_type_ieee_double =
3292 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3293 builtin_type_i387_ext =
3294 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3295 builtin_type_m68881_ext =
3296 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3297 builtin_type_arm_ext =
3298 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3299 builtin_type_ia64_spill =
3300 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3301 builtin_type_ia64_quad =
3302 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
598f52df 3303
85c07804
AC
3304 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3305Set debugging of C++ overloading."), _("\
3306Show debugging of C++ overloading."), _("\
3307When enabled, ranking of the functions is displayed."),
3308 NULL,
920d2a44 3309 show_overload_debug,
85c07804 3310 &setdebuglist, &showdebuglist);
5674de60 3311
7ba81444 3312 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3313 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3314 &opaque_type_resolution, _("\
3315Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3316Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3317 NULL,
3318 show_opaque_type_resolution,
3319 &setlist, &showlist);
c906108c 3320}
This page took 0.805021 seconds and 4 git commands to generate.