gdb: make get_dyn_prop a method of struct type
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ef83a141 42#include <algorithm>
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 56const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 68
8da61cc4 69/* Floatformat pairs. */
f9e9243a
UW
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
8da61cc4
DJ
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
b14d30e1 114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
b14d30e1 117};
8da61cc4 118
2873700e
KS
119/* Should opaque types be resolved? */
120
491144b5 121static bool opaque_type_resolution = true;
2873700e 122
79bb1944 123/* See gdbtypes.h. */
2873700e
KS
124
125unsigned int overload_debug = 0;
126
a451cb65
KS
127/* A flag to enable strict type checking. */
128
491144b5 129static bool strict_type_checking = true;
a451cb65 130
2873700e 131/* A function to show whether opaque types are resolved. */
5212577a 132
920d2a44
AC
133static void
134show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
135 struct cmd_list_element *c,
136 const char *value)
920d2a44 137{
3e43a32a
MS
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
140 value);
141}
142
2873700e 143/* A function to show whether C++ overload debugging is enabled. */
5212577a 144
920d2a44
AC
145static void
146show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
7ba81444
MS
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
920d2a44 151}
c906108c 152
a451cb65
KS
153/* A function to show the status of strict type checking. */
154
155static void
156show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160}
161
5212577a 162\f
e9bb382b
UW
163/* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
c906108c
SS
166
167struct type *
fba45db2 168alloc_type (struct objfile *objfile)
c906108c 169{
52f0bd74 170 struct type *type;
c906108c 171
e9bb382b
UW
172 gdb_assert (objfile != NULL);
173
7ba81444 174 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
c906108c 179
e9bb382b
UW
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
c906108c 182
7ba81444 183 /* Initialize the fields that might not be zero. */
c906108c
SS
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 187
c16abbde 188 return type;
c906108c
SS
189}
190
e9bb382b
UW
191/* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
8f57eec2 193 on the obstack associated with GDBARCH. */
e9bb382b
UW
194
195struct type *
196alloc_type_arch (struct gdbarch *gdbarch)
197{
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
8f57eec2
PP
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216}
217
218/* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222struct type *
223alloc_type_copy (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229}
230
231/* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234struct gdbarch *
235get_type_arch (const struct type *type)
236{
2fabdf33
AB
237 struct gdbarch *arch;
238
e9bb382b 239 if (TYPE_OBJFILE_OWNED (type))
08feed99 240 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 241 else
2fabdf33
AB
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
e9bb382b
UW
250}
251
99ad9427
YQ
252/* See gdbtypes.h. */
253
254struct type *
255get_target_type (struct type *type)
256{
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265}
266
2e056931
SM
267/* See gdbtypes.h. */
268
269unsigned int
270type_length_units (struct type *type)
271{
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276}
277
2fdde8f8
DJ
278/* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282static struct type *
283alloc_type_instance (struct type *oldtype)
284{
285 struct type *type;
286
287 /* Allocate the structure. */
288
e9bb382b 289 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 291 else
1deafd4e
PA
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
2fdde8f8
DJ
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
c16abbde 299 return type;
2fdde8f8
DJ
300}
301
302/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 303 replacing it with something else. Preserve owner information. */
5212577a 304
2fdde8f8
DJ
305static void
306smash_type (struct type *type)
307{
e9bb382b
UW
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
2fdde8f8
DJ
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
e9bb382b
UW
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
2fdde8f8
DJ
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321}
322
c906108c
SS
323/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328struct type *
fba45db2 329make_pointer_type (struct type *type, struct type **typeptr)
c906108c 330{
52f0bd74 331 struct type *ntype; /* New type */
053cb41b 332 struct type *chain;
c906108c
SS
333
334 ntype = TYPE_POINTER_TYPE (type);
335
c5aa993b 336 if (ntype)
c906108c 337 {
c5aa993b 338 if (typeptr == 0)
7ba81444
MS
339 return ntype; /* Don't care about alloc,
340 and have new type. */
c906108c 341 else if (*typeptr == 0)
c5aa993b 342 {
7ba81444 343 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 344 return ntype;
c5aa993b 345 }
c906108c
SS
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
e9bb382b 350 ntype = alloc_type_copy (type);
c906108c
SS
351 if (typeptr)
352 *typeptr = ntype;
353 }
7ba81444 354 else /* We have storage, but need to reset it. */
c906108c
SS
355 {
356 ntype = *typeptr;
053cb41b 357 chain = TYPE_CHAIN (ntype);
2fdde8f8 358 smash_type (ntype);
053cb41b 359 TYPE_CHAIN (ntype) = chain;
c906108c
SS
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
5212577a 365 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 366
50810684
UW
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
369 TYPE_CODE (ntype) = TYPE_CODE_PTR;
370
67b2adb2 371 /* Mark pointers as unsigned. The target converts between pointers
76e71323 372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 373 gdbarch_address_to_pointer. */
876cecd0 374 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 375
053cb41b
JB
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
c906108c
SS
384 return ntype;
385}
386
387/* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390struct type *
fba45db2 391lookup_pointer_type (struct type *type)
c906108c 392{
c5aa993b 393 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
394}
395
7ba81444
MS
396/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
401
402struct type *
3b224330
AV
403make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
c906108c 405{
52f0bd74 406 struct type *ntype; /* New type */
3b224330 407 struct type **reftype;
1e98b326 408 struct type *chain;
c906108c 409
3b224330
AV
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 414
c5aa993b 415 if (ntype)
c906108c 416 {
c5aa993b 417 if (typeptr == 0)
7ba81444
MS
418 return ntype; /* Don't care about alloc,
419 and have new type. */
c906108c 420 else if (*typeptr == 0)
c5aa993b 421 {
7ba81444 422 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 423 return ntype;
c5aa993b 424 }
c906108c
SS
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
e9bb382b 429 ntype = alloc_type_copy (type);
c906108c
SS
430 if (typeptr)
431 *typeptr = ntype;
432 }
7ba81444 433 else /* We have storage, but need to reset it. */
c906108c
SS
434 {
435 ntype = *typeptr;
1e98b326 436 chain = TYPE_CHAIN (ntype);
2fdde8f8 437 smash_type (ntype);
1e98b326 438 TYPE_CHAIN (ntype) = chain;
c906108c
SS
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
c906108c 446
7ba81444
MS
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
c906108c 450
50810684
UW
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 453 TYPE_CODE (ntype) = refcode;
c5aa993b 454
3b224330 455 *reftype = ntype;
c906108c 456
1e98b326
JB
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
c906108c
SS
465 return ntype;
466}
467
7ba81444
MS
468/* Same as above, but caller doesn't care about memory allocation
469 details. */
c906108c
SS
470
471struct type *
3b224330
AV
472lookup_reference_type (struct type *type, enum type_code refcode)
473{
474 return make_reference_type (type, (struct type **) 0, refcode);
475}
476
477/* Lookup the lvalue reference type for the type TYPE. */
478
479struct type *
480lookup_lvalue_reference_type (struct type *type)
481{
482 return lookup_reference_type (type, TYPE_CODE_REF);
483}
484
485/* Lookup the rvalue reference type for the type TYPE. */
486
487struct type *
488lookup_rvalue_reference_type (struct type *type)
c906108c 489{
3b224330 490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
491}
492
7ba81444
MS
493/* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 496 function type we return. We allocate new memory if needed. */
c906108c
SS
497
498struct type *
0c8b41f1 499make_function_type (struct type *type, struct type **typeptr)
c906108c 500{
52f0bd74 501 struct type *ntype; /* New type */
c906108c
SS
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
e9bb382b 505 ntype = alloc_type_copy (type);
c906108c
SS
506 if (typeptr)
507 *typeptr = ntype;
508 }
7ba81444 509 else /* We have storage, but need to reset it. */
c906108c
SS
510 {
511 ntype = *typeptr;
2fdde8f8 512 smash_type (ntype);
c906108c
SS
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 519
b6cdc2c1
JK
520 INIT_FUNC_SPECIFIC (ntype);
521
c906108c
SS
522 return ntype;
523}
524
c906108c
SS
525/* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528struct type *
fba45db2 529lookup_function_type (struct type *type)
c906108c 530{
0c8b41f1 531 return make_function_type (type, (struct type **) 0);
c906108c
SS
532}
533
71918a86 534/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
71918a86
TT
537
538struct type *
539lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542{
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
e314d629 546 if (nparams > 0)
a6fb9c08 547 {
e314d629
TT
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
54990598
PA
561 else
562 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
563 }
564
71918a86 565 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
566 TYPE_FIELDS (fn)
567 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572}
573
47663de5
MS
574/* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
5212577a
DE
576
577int
61f4b350
TT
578address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
47663de5 580{
8b2dbe47 581 int type_flags;
d8734c88 582
7ba81444 583 /* Check for known address space delimiters. */
47663de5 584 if (!strcmp (space_identifier, "code"))
876cecd0 585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 586 else if (!strcmp (space_identifier, "data"))
876cecd0 587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
8b2dbe47 592 return type_flags;
47663de5 593 else
8a3fe4f8 594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
595}
596
597/* Identify address space identifier by integer flag as defined in
7ba81444 598 gdbtypes.h -- return the string version of the adress space name. */
47663de5 599
321432c0 600const char *
50810684 601address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 602{
876cecd0 603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 604 return "code";
876cecd0 605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 606 return "data";
876cecd0 607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
610 else
611 return NULL;
612}
613
2fdde8f8 614/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
47663de5 618
b9362cc7 619static struct type *
2fdde8f8
DJ
620make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
47663de5
MS
622{
623 struct type *ntype;
624
625 ntype = type;
5f61c20e
JK
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
47663de5 633
2fdde8f8
DJ
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
7ba81444
MS
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
ad766c0a
JB
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
2fdde8f8
DJ
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
47663de5
MS
649
650 /* Pointers or references to the original type are not relevant to
2fdde8f8 651 the new type. */
47663de5
MS
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 654
2fdde8f8
DJ
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 661
ab5d3da6
KB
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
47663de5
MS
665 return ntype;
666}
667
2fdde8f8
DJ
668/* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
7ba81444
MS
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
2fdde8f8
DJ
676
677struct type *
678make_type_with_address_space (struct type *type, int space_flag)
679{
2fdde8f8 680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687}
c906108c
SS
688
689/* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
c906108c 694
ad766c0a
JB
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
5212577a 700
c906108c 701struct type *
7ba81444
MS
702make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
c906108c 705{
52f0bd74 706 struct type *ntype; /* New type */
c906108c 707
2fdde8f8 708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 711
c906108c 712 if (cnst)
876cecd0 713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
714
715 if (voltl)
876cecd0 716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 717
2fdde8f8 718 if (typeptr && *typeptr != NULL)
a02fd225 719 {
ad766c0a
JB
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
733 }
734
7ba81444
MS
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
c906108c 737
2fdde8f8
DJ
738 if (typeptr != NULL)
739 *typeptr = ntype;
a02fd225 740
2fdde8f8 741 return ntype;
a02fd225 742}
c906108c 743
06d66ee9
TT
744/* Make a 'restrict'-qualified version of TYPE. */
745
746struct type *
747make_restrict_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753}
754
f1660027
TT
755/* Make a type without const, volatile, or restrict. */
756
757struct type *
758make_unqualified_type (struct type *type)
759{
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766}
767
a2c2acaf
MW
768/* Make a '_Atomic'-qualified version of TYPE. */
769
770struct type *
771make_atomic_type (struct type *type)
772{
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777}
778
2fdde8f8
DJ
779/* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 782
cda6c68a
JB
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
5212577a 788
dd6bda65
DJ
789void
790replace_type (struct type *ntype, struct type *type)
791{
ab5d3da6 792 struct type *chain;
dd6bda65 793
ad766c0a
JB
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 799
2fdde8f8 800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 801
7ba81444
MS
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
ab5d3da6 804 chain = ntype;
5f61c20e
JK
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
ab5d3da6 819
2fdde8f8
DJ
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
823}
824
c906108c
SS
825/* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830struct type *
0d5de010 831lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 832{
52f0bd74 833 struct type *mtype;
c906108c 834
e9bb382b 835 mtype = alloc_type_copy (type);
0d5de010 836 smash_to_memberptr_type (mtype, domain, type);
c16abbde 837 return mtype;
c906108c
SS
838}
839
0d5de010
DJ
840/* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842struct type *
843lookup_methodptr_type (struct type *to_type)
844{
845 struct type *mtype;
846
e9bb382b 847 mtype = alloc_type_copy (to_type);
0b92b5bb 848 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
849 return mtype;
850}
851
7ba81444
MS
852/* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
c906108c
SS
857
858struct type *
fba45db2 859allocate_stub_method (struct type *type)
c906108c
SS
860{
861 struct type *mtype;
862
e9bb382b
UW
863 mtype = alloc_type_copy (type);
864 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
c906108c 867 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 869 return mtype;
c906108c
SS
870}
871
0f59d5fc
PA
872/* See gdbtypes.h. */
873
874bool
875operator== (const dynamic_prop &l, const dynamic_prop &r)
876{
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
ef83a141
TT
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
0f59d5fc
PA
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897}
898
899/* See gdbtypes.h. */
900
901bool
902operator== (const range_bounds &l, const range_bounds &r)
903{
904#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
0f59d5fc
PA
911
912#undef FIELD_EQ
913}
914
729efb13
SA
915/* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
917
918struct type *
729efb13
SA
919create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
4e962e74
TT
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
c906108c 923{
b86352cf
AB
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
c906108c 929 if (result_type == NULL)
e9bb382b 930 result_type = alloc_type_copy (index_type);
c906108c
SS
931 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
932 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 933 if (TYPE_STUB (index_type))
876cecd0 934 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 937
43bbcdc2
PH
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 942 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 943
5bbd8269
AB
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
729efb13 948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 949 TYPE_UNSIGNED (result_type) = 1;
c906108c 950
45e44d27
JB
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
a05cf17a
TT
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
262452ec 961 return result_type;
c906108c
SS
962}
963
5bbd8269
AB
964/* See gdbtypes.h. */
965
966struct type *
967create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974{
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983}
984
985
986
729efb13
SA
987/* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997struct type *
998create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000{
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
4e962e74 1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1010
1011 return result_type;
1012}
1013
80180f79
SA
1014/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
5bbd8269 1017static bool
80180f79
SA
1018has_static_range (const struct range_bounds *bounds)
1019{
5bbd8269
AB
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
80180f79 1022 return (bounds->low.kind == PROP_CONST
5bbd8269
AB
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
80180f79
SA
1025}
1026
1027
7ba81444
MS
1028/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
1031
1032int
fba45db2 1033get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1034{
f168693b 1035 type = check_typedef (type);
c906108c
SS
1036 switch (TYPE_CODE (type))
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (TYPE_NFIELDS (type) > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
0963b4bd 1046 entries. */
c906108c
SS
1047 int i;
1048
14e75d8e 1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1050 for (i = 0; i < TYPE_NFIELDS (type); i++)
1051 {
14e75d8e
JK
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1056 }
1057
7ba81444 1058 /* Set unsigned indicator if warranted. */
c5aa993b 1059 if (*lowp >= 0)
c906108c 1060 {
876cecd0 1061 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
c5aa993b 1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
c5aa993b 1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
86a73007 1083 /* fall through */
c906108c
SS
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
7b83ea04 1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095}
1096
dbc98a8b
KW
1097/* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
0963b4bd 1101 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111int
1112get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113{
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139}
1140
aa715135
JG
1141/* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153*/
1154
1155int
1156discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157{
1158 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178}
1179
8dbb1375
HD
1180/* If the array TYPE has static bounds calculate and update its
1181 size, then return true. Otherwise return false and leave TYPE
1182 unchanged. */
1183
1184static bool
1185update_static_array_size (struct type *type)
1186{
1187 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1188
1189 struct type *range_type = TYPE_INDEX_TYPE (type);
1190
24e99c6c 1191 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
8dbb1375
HD
1192 && has_static_range (TYPE_RANGE_DATA (range_type))
1193 && (!type_not_associated (type)
1194 && !type_not_allocated (type)))
1195 {
1196 LONGEST low_bound, high_bound;
1197 int stride;
1198 struct type *element_type;
1199
1200 /* If the array itself doesn't provide a stride value then take
1201 whatever stride the range provides. Don't update BIT_STRIDE as
1202 we don't want to place the stride value from the range into this
1203 arrays bit size field. */
1204 stride = TYPE_FIELD_BITSIZE (type, 0);
1205 if (stride == 0)
1206 stride = TYPE_BIT_STRIDE (range_type);
1207
1208 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1209 low_bound = high_bound = 0;
1210 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1211 /* Be careful when setting the array length. Ada arrays can be
1212 empty arrays with the high_bound being smaller than the low_bound.
1213 In such cases, the array length should be zero. */
1214 if (high_bound < low_bound)
1215 TYPE_LENGTH (type) = 0;
1216 else if (stride != 0)
1217 {
1218 /* Ensure that the type length is always positive, even in the
1219 case where (for example in Fortran) we have a negative
1220 stride. It is possible to have a single element array with a
1221 negative stride in Fortran (this doesn't mean anything
1222 special, it's still just a single element array) so do
1223 consider that case when touching this code. */
1224 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1225 TYPE_LENGTH (type)
1226 = ((std::abs (stride) * element_count) + 7) / 8;
1227 }
1228 else
1229 TYPE_LENGTH (type) =
1230 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1231
1232 return true;
1233 }
1234
1235 return false;
1236}
1237
7ba81444
MS
1238/* Create an array type using either a blank type supplied in
1239 RESULT_TYPE, or creating a new type, inheriting the objfile from
1240 RANGE_TYPE.
c906108c
SS
1241
1242 Elements will be of type ELEMENT_TYPE, the indices will be of type
1243 RANGE_TYPE.
1244
a405673c
JB
1245 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1246 This byte stride property is added to the resulting array type
1247 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1248 argument can only be used to create types that are objfile-owned
1249 (see add_dyn_prop), meaning that either this function must be called
1250 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1251
1252 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1253 If BIT_STRIDE is not zero, build a packed array type whose element
1254 size is BIT_STRIDE. Otherwise, ignore this parameter.
1255
7ba81444
MS
1256 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1257 sure it is TYPE_CODE_UNDEF before we bash it into an array
1258 type? */
c906108c
SS
1259
1260struct type *
dc53a7ad
JB
1261create_array_type_with_stride (struct type *result_type,
1262 struct type *element_type,
1263 struct type *range_type,
a405673c 1264 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1265 unsigned int bit_stride)
c906108c 1266{
a405673c
JB
1267 if (byte_stride_prop != NULL
1268 && byte_stride_prop->kind == PROP_CONST)
1269 {
1270 /* The byte stride is actually not dynamic. Pretend we were
1271 called with bit_stride set instead of byte_stride_prop.
1272 This will give us the same result type, while avoiding
1273 the need to handle this as a special case. */
1274 bit_stride = byte_stride_prop->data.const_val * 8;
1275 byte_stride_prop = NULL;
1276 }
1277
c906108c 1278 if (result_type == NULL)
e9bb382b
UW
1279 result_type = alloc_type_copy (range_type);
1280
c906108c
SS
1281 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1282 TYPE_TARGET_TYPE (result_type) = element_type;
5bbd8269 1283
8dbb1375
HD
1284 TYPE_NFIELDS (result_type) = 1;
1285 TYPE_FIELDS (result_type) =
1286 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1287 TYPE_INDEX_TYPE (result_type) = range_type;
1288 if (byte_stride_prop != NULL)
1289 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1290 else if (bit_stride > 0)
1291 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
80180f79 1292
8dbb1375 1293 if (!update_static_array_size (result_type))
80180f79
SA
1294 {
1295 /* This type is dynamic and its length needs to be computed
1296 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1297 undefined by setting it to zero. Although we are not expected
1298 to trust TYPE_LENGTH in this case, setting the size to zero
1299 allows us to avoid allocating objects of random sizes in case
1300 we accidently do. */
1301 TYPE_LENGTH (result_type) = 0;
1302 }
1303
a9ff5f12 1304 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1305 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1306 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1307
c16abbde 1308 return result_type;
c906108c
SS
1309}
1310
dc53a7ad
JB
1311/* Same as create_array_type_with_stride but with no bit_stride
1312 (BIT_STRIDE = 0), thus building an unpacked array. */
1313
1314struct type *
1315create_array_type (struct type *result_type,
1316 struct type *element_type,
1317 struct type *range_type)
1318{
1319 return create_array_type_with_stride (result_type, element_type,
a405673c 1320 range_type, NULL, 0);
dc53a7ad
JB
1321}
1322
e3506a9f
UW
1323struct type *
1324lookup_array_range_type (struct type *element_type,
63375b74 1325 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1326{
929b5ad4
JB
1327 struct type *index_type;
1328 struct type *range_type;
1329
1330 if (TYPE_OBJFILE_OWNED (element_type))
1331 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1332 else
1333 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1334 range_type = create_static_range_type (NULL, index_type,
1335 low_bound, high_bound);
d8734c88 1336
e3506a9f
UW
1337 return create_array_type (NULL, element_type, range_type);
1338}
1339
7ba81444
MS
1340/* Create a string type using either a blank type supplied in
1341 RESULT_TYPE, or creating a new type. String types are similar
1342 enough to array of char types that we can use create_array_type to
1343 build the basic type and then bash it into a string type.
c906108c
SS
1344
1345 For fixed length strings, the range type contains 0 as the lower
1346 bound and the length of the string minus one as the upper bound.
1347
7ba81444
MS
1348 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1349 sure it is TYPE_CODE_UNDEF before we bash it into a string
1350 type? */
c906108c
SS
1351
1352struct type *
3b7538c0
UW
1353create_string_type (struct type *result_type,
1354 struct type *string_char_type,
7ba81444 1355 struct type *range_type)
c906108c
SS
1356{
1357 result_type = create_array_type (result_type,
f290d38e 1358 string_char_type,
c906108c
SS
1359 range_type);
1360 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1361 return result_type;
c906108c
SS
1362}
1363
e3506a9f
UW
1364struct type *
1365lookup_string_range_type (struct type *string_char_type,
63375b74 1366 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1367{
1368 struct type *result_type;
d8734c88 1369
e3506a9f
UW
1370 result_type = lookup_array_range_type (string_char_type,
1371 low_bound, high_bound);
1372 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1373 return result_type;
1374}
1375
c906108c 1376struct type *
fba45db2 1377create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1378{
c906108c 1379 if (result_type == NULL)
e9bb382b
UW
1380 result_type = alloc_type_copy (domain_type);
1381
c906108c
SS
1382 TYPE_CODE (result_type) = TYPE_CODE_SET;
1383 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1384 TYPE_FIELDS (result_type)
1385 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1386
74a9bb82 1387 if (!TYPE_STUB (domain_type))
c906108c 1388 {
f9780d5b 1389 LONGEST low_bound, high_bound, bit_length;
d8734c88 1390
c906108c
SS
1391 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1392 low_bound = high_bound = 0;
1393 bit_length = high_bound - low_bound + 1;
1394 TYPE_LENGTH (result_type)
1395 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1396 if (low_bound >= 0)
876cecd0 1397 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1398 }
1399 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1400
c16abbde 1401 return result_type;
c906108c
SS
1402}
1403
ea37ba09
DJ
1404/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1405 and any array types nested inside it. */
1406
1407void
1408make_vector_type (struct type *array_type)
1409{
1410 struct type *inner_array, *elt_type;
1411 int flags;
1412
1413 /* Find the innermost array type, in case the array is
1414 multi-dimensional. */
1415 inner_array = array_type;
1416 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1417 inner_array = TYPE_TARGET_TYPE (inner_array);
1418
1419 elt_type = TYPE_TARGET_TYPE (inner_array);
1420 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1421 {
2844d6b5 1422 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1423 elt_type = make_qualified_type (elt_type, flags, NULL);
1424 TYPE_TARGET_TYPE (inner_array) = elt_type;
1425 }
1426
876cecd0 1427 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1428}
1429
794ac428 1430struct type *
ac3aafc7
EZ
1431init_vector_type (struct type *elt_type, int n)
1432{
1433 struct type *array_type;
d8734c88 1434
e3506a9f 1435 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1436 make_vector_type (array_type);
ac3aafc7
EZ
1437 return array_type;
1438}
1439
09e2d7c7
DE
1440/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1441 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1442 confusing. "self" is a common enough replacement for "this".
1443 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1444 TYPE_CODE_METHOD. */
1445
1446struct type *
1447internal_type_self_type (struct type *type)
1448{
1449 switch (TYPE_CODE (type))
1450 {
1451 case TYPE_CODE_METHODPTR:
1452 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1453 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1454 return NULL;
09e2d7c7
DE
1455 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1456 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1457 case TYPE_CODE_METHOD:
eaaf76ab
DE
1458 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1459 return NULL;
09e2d7c7
DE
1460 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1461 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1462 default:
1463 gdb_assert_not_reached ("bad type");
1464 }
1465}
1466
1467/* Set the type of the class that TYPE belongs to.
1468 In c++ this is the class of "this".
1469 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1470 TYPE_CODE_METHOD. */
1471
1472void
1473set_type_self_type (struct type *type, struct type *self_type)
1474{
1475 switch (TYPE_CODE (type))
1476 {
1477 case TYPE_CODE_METHODPTR:
1478 case TYPE_CODE_MEMBERPTR:
1479 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1480 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1481 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1482 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1483 break;
1484 case TYPE_CODE_METHOD:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 INIT_FUNC_SPECIFIC (type);
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1488 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1489 break;
1490 default:
1491 gdb_assert_not_reached ("bad type");
1492 }
1493}
1494
1495/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1496 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1497 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1498 TYPE doesn't include the offset (that's the value of the MEMBER
1499 itself), but does include the structure type into which it points
1500 (for some reason).
c906108c 1501
7ba81444
MS
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
c906108c
SS
1504 allocated. */
1505
1506void
09e2d7c7 1507smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1508 struct type *to_type)
c906108c 1509{
2fdde8f8 1510 smash_type (type);
09e2d7c7 1511 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1512 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1513 set_type_self_type (type, self_type);
0d5de010
DJ
1514 /* Assume that a data member pointer is the same size as a normal
1515 pointer. */
50810684
UW
1516 TYPE_LENGTH (type)
1517 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1518}
1519
0b92b5bb
TT
1520/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1521
1522 When "smashing" the type, we preserve the objfile that the old type
1523 pointed to, since we aren't changing where the type is actually
1524 allocated. */
1525
1526void
1527smash_to_methodptr_type (struct type *type, struct type *to_type)
1528{
1529 smash_type (type);
09e2d7c7 1530 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1531 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1532 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1533 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1534}
1535
09e2d7c7 1536/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1537 METHOD just means `function that gets an extra "this" argument'.
1538
7ba81444
MS
1539 When "smashing" the type, we preserve the objfile that the old type
1540 pointed to, since we aren't changing where the type is actually
c906108c
SS
1541 allocated. */
1542
1543void
09e2d7c7 1544smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1545 struct type *to_type, struct field *args,
1546 int nargs, int varargs)
c906108c 1547{
2fdde8f8 1548 smash_type (type);
09e2d7c7 1549 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1550 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1551 set_type_self_type (type, self_type);
ad2f7632
DJ
1552 TYPE_FIELDS (type) = args;
1553 TYPE_NFIELDS (type) = nargs;
1554 if (varargs)
876cecd0 1555 TYPE_VARARGS (type) = 1;
c906108c 1556 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1557}
1558
a737d952 1559/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1560 Since GCC PR debug/47510 DWARF provides associated information to detect the
1561 anonymous class linkage name from its typedef.
1562
1563 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1564 apply it itself. */
1565
1566const char *
a737d952 1567type_name_or_error (struct type *type)
d8228535
JK
1568{
1569 struct type *saved_type = type;
1570 const char *name;
1571 struct objfile *objfile;
1572
f168693b 1573 type = check_typedef (type);
d8228535 1574
a737d952 1575 name = TYPE_NAME (type);
d8228535
JK
1576 if (name != NULL)
1577 return name;
1578
a737d952 1579 name = TYPE_NAME (saved_type);
d8228535
JK
1580 objfile = TYPE_OBJFILE (saved_type);
1581 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1582 name ? name : "<anonymous>",
1583 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1584}
1585
7ba81444
MS
1586/* Lookup a typedef or primitive type named NAME, visible in lexical
1587 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1588 suitably defined. */
c906108c
SS
1589
1590struct type *
e6c014f2 1591lookup_typename (const struct language_defn *language,
b858499d 1592 const char *name,
34eaf542 1593 const struct block *block, int noerr)
c906108c 1594{
52f0bd74 1595 struct symbol *sym;
c906108c 1596
1994afbf 1597 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1598 language->la_language, NULL).symbol;
c51fe631
DE
1599 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1600 return SYMBOL_TYPE (sym);
1601
c51fe631
DE
1602 if (noerr)
1603 return NULL;
1604 error (_("No type named %s."), name);
c906108c
SS
1605}
1606
1607struct type *
e6c014f2 1608lookup_unsigned_typename (const struct language_defn *language,
b858499d 1609 const char *name)
c906108c 1610{
224c3ddb 1611 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1612
1613 strcpy (uns, "unsigned ");
1614 strcpy (uns + 9, name);
b858499d 1615 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1616}
1617
1618struct type *
b858499d 1619lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1620{
1621 struct type *t;
224c3ddb 1622 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1623
1624 strcpy (uns, "signed ");
1625 strcpy (uns + 7, name);
b858499d 1626 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1627 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1628 if (t != NULL)
1629 return t;
b858499d 1630 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1631}
1632
1633/* Lookup a structure type named "struct NAME",
1634 visible in lexical block BLOCK. */
1635
1636struct type *
270140bd 1637lookup_struct (const char *name, const struct block *block)
c906108c 1638{
52f0bd74 1639 struct symbol *sym;
c906108c 1640
d12307c1 1641 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1642
1643 if (sym == NULL)
1644 {
8a3fe4f8 1645 error (_("No struct type named %s."), name);
c906108c
SS
1646 }
1647 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1648 {
7ba81444
MS
1649 error (_("This context has class, union or enum %s, not a struct."),
1650 name);
c906108c
SS
1651 }
1652 return (SYMBOL_TYPE (sym));
1653}
1654
1655/* Lookup a union type named "union NAME",
1656 visible in lexical block BLOCK. */
1657
1658struct type *
270140bd 1659lookup_union (const char *name, const struct block *block)
c906108c 1660{
52f0bd74 1661 struct symbol *sym;
c5aa993b 1662 struct type *t;
c906108c 1663
d12307c1 1664 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1665
1666 if (sym == NULL)
8a3fe4f8 1667 error (_("No union type named %s."), name);
c906108c 1668
c5aa993b 1669 t = SYMBOL_TYPE (sym);
c906108c
SS
1670
1671 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1672 return t;
c906108c 1673
7ba81444
MS
1674 /* If we get here, it's not a union. */
1675 error (_("This context has class, struct or enum %s, not a union."),
1676 name);
c906108c
SS
1677}
1678
c906108c
SS
1679/* Lookup an enum type named "enum NAME",
1680 visible in lexical block BLOCK. */
1681
1682struct type *
270140bd 1683lookup_enum (const char *name, const struct block *block)
c906108c 1684{
52f0bd74 1685 struct symbol *sym;
c906108c 1686
d12307c1 1687 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1688 if (sym == NULL)
1689 {
8a3fe4f8 1690 error (_("No enum type named %s."), name);
c906108c
SS
1691 }
1692 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1693 {
7ba81444
MS
1694 error (_("This context has class, struct or union %s, not an enum."),
1695 name);
c906108c
SS
1696 }
1697 return (SYMBOL_TYPE (sym));
1698}
1699
1700/* Lookup a template type named "template NAME<TYPE>",
1701 visible in lexical block BLOCK. */
1702
1703struct type *
61f4b350 1704lookup_template_type (const char *name, struct type *type,
270140bd 1705 const struct block *block)
c906108c
SS
1706{
1707 struct symbol *sym;
7ba81444
MS
1708 char *nam = (char *)
1709 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1710
c906108c
SS
1711 strcpy (nam, name);
1712 strcat (nam, "<");
0004e5a2 1713 strcat (nam, TYPE_NAME (type));
0963b4bd 1714 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1715
d12307c1 1716 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1717
1718 if (sym == NULL)
1719 {
8a3fe4f8 1720 error (_("No template type named %s."), name);
c906108c
SS
1721 }
1722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1723 {
7ba81444
MS
1724 error (_("This context has class, union or enum %s, not a struct."),
1725 name);
c906108c
SS
1726 }
1727 return (SYMBOL_TYPE (sym));
1728}
1729
ef0bd204 1730/* See gdbtypes.h. */
c906108c 1731
ef0bd204
JB
1732struct_elt
1733lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1734{
1735 int i;
1736
1737 for (;;)
1738 {
f168693b 1739 type = check_typedef (type);
c906108c
SS
1740 if (TYPE_CODE (type) != TYPE_CODE_PTR
1741 && TYPE_CODE (type) != TYPE_CODE_REF)
1742 break;
1743 type = TYPE_TARGET_TYPE (type);
1744 }
1745
687d6395
MS
1746 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1747 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1748 {
2f408ecb
PA
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s is not a structure or union type."),
1751 type_name.c_str ());
c906108c
SS
1752 }
1753
c906108c
SS
1754 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1755 {
0d5cff50 1756 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1757
db577aea 1758 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1759 {
ef0bd204 1760 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1761 }
f5a010c0
PM
1762 else if (!t_field_name || *t_field_name == '\0')
1763 {
ef0bd204
JB
1764 struct_elt elt
1765 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1766 if (elt.field != NULL)
1767 {
1768 elt.offset += TYPE_FIELD_BITPOS (type, i);
1769 return elt;
1770 }
f5a010c0 1771 }
c906108c
SS
1772 }
1773
1774 /* OK, it's not in this class. Recursively check the baseclasses. */
1775 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1776 {
ef0bd204
JB
1777 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1778 if (elt.field != NULL)
1779 return elt;
c906108c
SS
1780 }
1781
1782 if (noerr)
ef0bd204 1783 return {nullptr, 0};
c5aa993b 1784
2f408ecb
PA
1785 std::string type_name = type_to_string (type);
1786 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1787}
1788
ef0bd204
JB
1789/* See gdbtypes.h. */
1790
1791struct type *
1792lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1793{
1794 struct_elt elt = lookup_struct_elt (type, name, noerr);
1795 if (elt.field != NULL)
1796 return FIELD_TYPE (*elt.field);
1797 else
1798 return NULL;
1799}
1800
ed3ef339
DE
1801/* Store in *MAX the largest number representable by unsigned integer type
1802 TYPE. */
1803
1804void
1805get_unsigned_type_max (struct type *type, ULONGEST *max)
1806{
1807 unsigned int n;
1808
f168693b 1809 type = check_typedef (type);
ed3ef339
DE
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1811 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1812
1813 /* Written this way to avoid overflow. */
1814 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1815 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1816}
1817
1818/* Store in *MIN, *MAX the smallest and largest numbers representable by
1819 signed integer type TYPE. */
1820
1821void
1822get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1823{
1824 unsigned int n;
1825
f168693b 1826 type = check_typedef (type);
ed3ef339
DE
1827 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1828 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1829
1830 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1831 *min = -((ULONGEST) 1 << (n - 1));
1832 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1833}
1834
ae6ae975
DE
1835/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1836 cplus_stuff.vptr_fieldno.
1837
1838 cplus_stuff is initialized to cplus_struct_default which does not
1839 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1840 designated initializers). We cope with that here. */
1841
1842int
1843internal_type_vptr_fieldno (struct type *type)
1844{
f168693b 1845 type = check_typedef (type);
ae6ae975
DE
1846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1847 || TYPE_CODE (type) == TYPE_CODE_UNION);
1848 if (!HAVE_CPLUS_STRUCT (type))
1849 return -1;
1850 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1851}
1852
1853/* Set the value of cplus_stuff.vptr_fieldno. */
1854
1855void
1856set_type_vptr_fieldno (struct type *type, int fieldno)
1857{
f168693b 1858 type = check_typedef (type);
ae6ae975
DE
1859 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1860 || TYPE_CODE (type) == TYPE_CODE_UNION);
1861 if (!HAVE_CPLUS_STRUCT (type))
1862 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1863 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1864}
1865
1866/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1867 cplus_stuff.vptr_basetype. */
1868
1869struct type *
1870internal_type_vptr_basetype (struct type *type)
1871{
f168693b 1872 type = check_typedef (type);
ae6ae975
DE
1873 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1874 || TYPE_CODE (type) == TYPE_CODE_UNION);
1875 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1876 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1877}
1878
1879/* Set the value of cplus_stuff.vptr_basetype. */
1880
1881void
1882set_type_vptr_basetype (struct type *type, struct type *basetype)
1883{
f168693b 1884 type = check_typedef (type);
ae6ae975
DE
1885 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1886 || TYPE_CODE (type) == TYPE_CODE_UNION);
1887 if (!HAVE_CPLUS_STRUCT (type))
1888 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1889 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1890}
1891
81fe8080
DE
1892/* Lookup the vptr basetype/fieldno values for TYPE.
1893 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1894 vptr_fieldno. Also, if found and basetype is from the same objfile,
1895 cache the results.
1896 If not found, return -1 and ignore BASETYPEP.
1897 Callers should be aware that in some cases (for example,
c906108c 1898 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1899 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1900 this function will not be able to find the
7ba81444 1901 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1902 vptr_basetype will remain NULL or incomplete. */
c906108c 1903
81fe8080
DE
1904int
1905get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1906{
f168693b 1907 type = check_typedef (type);
c906108c
SS
1908
1909 if (TYPE_VPTR_FIELDNO (type) < 0)
1910 {
1911 int i;
1912
7ba81444
MS
1913 /* We must start at zero in case the first (and only) baseclass
1914 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1915 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1916 {
81fe8080
DE
1917 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1918 int fieldno;
1919 struct type *basetype;
1920
1921 fieldno = get_vptr_fieldno (baseclass, &basetype);
1922 if (fieldno >= 0)
c906108c 1923 {
81fe8080 1924 /* If the type comes from a different objfile we can't cache
0963b4bd 1925 it, it may have a different lifetime. PR 2384 */
5ef73790 1926 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1927 {
ae6ae975
DE
1928 set_type_vptr_fieldno (type, fieldno);
1929 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1930 }
1931 if (basetypep)
1932 *basetypep = basetype;
1933 return fieldno;
c906108c
SS
1934 }
1935 }
81fe8080
DE
1936
1937 /* Not found. */
1938 return -1;
1939 }
1940 else
1941 {
1942 if (basetypep)
1943 *basetypep = TYPE_VPTR_BASETYPE (type);
1944 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1945 }
1946}
1947
44e1a9eb
DJ
1948static void
1949stub_noname_complaint (void)
1950{
b98664d3 1951 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1952}
1953
a405673c
JB
1954/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1955 attached to it, and that property has a non-constant value. */
1956
1957static int
1958array_type_has_dynamic_stride (struct type *type)
1959{
24e99c6c 1960 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
1961
1962 return (prop != NULL && prop->kind != PROP_CONST);
1963}
1964
d98b7a16 1965/* Worker for is_dynamic_type. */
80180f79 1966
d98b7a16 1967static int
ee715b5a 1968is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1969{
1970 type = check_typedef (type);
1971
e771e4be
PMR
1972 /* We only want to recognize references at the outermost level. */
1973 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1974 type = check_typedef (TYPE_TARGET_TYPE (type));
1975
3cdcd0ce
JB
1976 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1977 dynamic, even if the type itself is statically defined.
1978 From a user's point of view, this may appear counter-intuitive;
1979 but it makes sense in this context, because the point is to determine
1980 whether any part of the type needs to be resolved before it can
1981 be exploited. */
1982 if (TYPE_DATA_LOCATION (type) != NULL
1983 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1984 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1985 return 1;
1986
3f2f83dd
KB
1987 if (TYPE_ASSOCIATED_PROP (type))
1988 return 1;
1989
1990 if (TYPE_ALLOCATED_PROP (type))
1991 return 1;
1992
24e99c6c 1993 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
ef83a141
TT
1994 if (prop != nullptr && prop->kind != PROP_TYPE)
1995 return 1;
1996
f8e89861
TT
1997 if (TYPE_HAS_DYNAMIC_LENGTH (type))
1998 return 1;
1999
80180f79
SA
2000 switch (TYPE_CODE (type))
2001 {
6f8a3220 2002 case TYPE_CODE_RANGE:
ddb87a81
JB
2003 {
2004 /* A range type is obviously dynamic if it has at least one
2005 dynamic bound. But also consider the range type to be
2006 dynamic when its subtype is dynamic, even if the bounds
2007 of the range type are static. It allows us to assume that
2008 the subtype of a static range type is also static. */
2009 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 2010 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 2011 }
6f8a3220 2012
216a7e6b
AB
2013 case TYPE_CODE_STRING:
2014 /* Strings are very much like an array of characters, and can be
2015 treated as one here. */
80180f79
SA
2016 case TYPE_CODE_ARRAY:
2017 {
80180f79 2018 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 2019
a405673c 2020 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 2021 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 2022 return 1;
a405673c
JB
2023 /* ... or the elements it contains have a dynamic contents... */
2024 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2025 return 1;
2026 /* ... or if it has a dynamic stride... */
2027 if (array_type_has_dynamic_stride (type))
2028 return 1;
2029 return 0;
80180f79 2030 }
012370f6
TT
2031
2032 case TYPE_CODE_STRUCT:
2033 case TYPE_CODE_UNION:
2034 {
2035 int i;
2036
7d79de9a
TT
2037 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2038
012370f6 2039 for (i = 0; i < TYPE_NFIELDS (type); ++i)
7d79de9a
TT
2040 {
2041 /* Static fields can be ignored here. */
2042 if (field_is_static (&TYPE_FIELD (type, i)))
2043 continue;
2044 /* If the field has dynamic type, then so does TYPE. */
2045 if (is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2046 return 1;
2047 /* If the field is at a fixed offset, then it is not
2048 dynamic. */
2049 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2050 continue;
2051 /* Do not consider C++ virtual base types to be dynamic
2052 due to the field's offset being dynamic; these are
2053 handled via other means. */
2054 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2055 continue;
012370f6 2056 return 1;
7d79de9a 2057 }
012370f6
TT
2058 }
2059 break;
80180f79 2060 }
92e2a17f
TT
2061
2062 return 0;
80180f79
SA
2063}
2064
d98b7a16
TT
2065/* See gdbtypes.h. */
2066
2067int
2068is_dynamic_type (struct type *type)
2069{
ee715b5a 2070 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2071}
2072
df25ebbd 2073static struct type *resolve_dynamic_type_internal
ee715b5a 2074 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2075
df25ebbd
JB
2076/* Given a dynamic range type (dyn_range_type) and a stack of
2077 struct property_addr_info elements, return a static version
2078 of that type. */
d190df30 2079
80180f79 2080static struct type *
df25ebbd
JB
2081resolve_dynamic_range (struct type *dyn_range_type,
2082 struct property_addr_info *addr_stack)
80180f79
SA
2083{
2084 CORE_ADDR value;
ddb87a81 2085 struct type *static_range_type, *static_target_type;
80180f79 2086 const struct dynamic_prop *prop;
5bbd8269 2087 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2088
6f8a3220 2089 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 2090
6f8a3220 2091 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 2092 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2093 {
2094 low_bound.kind = PROP_CONST;
2095 low_bound.data.const_val = value;
2096 }
2097 else
2098 {
2099 low_bound.kind = PROP_UNDEFINED;
2100 low_bound.data.const_val = 0;
2101 }
2102
6f8a3220 2103 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2104 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2105 {
2106 high_bound.kind = PROP_CONST;
2107 high_bound.data.const_val = value;
c451ebe5 2108
6f8a3220 2109 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2110 high_bound.data.const_val
2111 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2112 }
2113 else
2114 {
2115 high_bound.kind = PROP_UNDEFINED;
2116 high_bound.data.const_val = 0;
2117 }
2118
5bbd8269
AB
2119 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2120 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2121 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2122 {
2123 stride.kind = PROP_CONST;
2124 stride.data.const_val = value;
2125
2126 /* If we have a bit stride that is not an exact number of bytes then
2127 I really don't think this is going to work with current GDB, the
2128 array indexing code in GDB seems to be pretty heavily tied to byte
2129 offsets right now. Assuming 8 bits in a byte. */
2130 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2131 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2132 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2133 error (_("bit strides that are not a multiple of the byte size "
2134 "are currently not supported"));
2135 }
2136 else
2137 {
2138 stride.kind = PROP_UNDEFINED;
2139 stride.data.const_val = 0;
2140 byte_stride_p = true;
2141 }
2142
ddb87a81
JB
2143 static_target_type
2144 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2145 addr_stack, 0);
4e962e74 2146 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
5bbd8269
AB
2147 static_range_type = create_range_type_with_stride
2148 (copy_type (dyn_range_type), static_target_type,
2149 &low_bound, &high_bound, bias, &stride, byte_stride_p);
6f8a3220
JB
2150 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2151 return static_range_type;
2152}
2153
216a7e6b
AB
2154/* Resolves dynamic bound values of an array or string type TYPE to static
2155 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2156 needed during the dynamic resolution. */
6f8a3220
JB
2157
2158static struct type *
216a7e6b
AB
2159resolve_dynamic_array_or_string (struct type *type,
2160 struct property_addr_info *addr_stack)
6f8a3220
JB
2161{
2162 CORE_ADDR value;
2163 struct type *elt_type;
2164 struct type *range_type;
2165 struct type *ary_dim;
3f2f83dd 2166 struct dynamic_prop *prop;
a405673c 2167 unsigned int bit_stride = 0;
6f8a3220 2168
216a7e6b
AB
2169 /* For dynamic type resolution strings can be treated like arrays of
2170 characters. */
2171 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2172 || TYPE_CODE (type) == TYPE_CODE_STRING);
6f8a3220 2173
3f2f83dd
KB
2174 type = copy_type (type);
2175
6f8a3220
JB
2176 elt_type = type;
2177 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2178 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2179
3f2f83dd
KB
2180 /* Resolve allocated/associated here before creating a new array type, which
2181 will update the length of the array accordingly. */
2182 prop = TYPE_ALLOCATED_PROP (type);
2183 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2184 {
2185 TYPE_DYN_PROP_ADDR (prop) = value;
2186 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2187 }
2188 prop = TYPE_ASSOCIATED_PROP (type);
2189 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2190 {
2191 TYPE_DYN_PROP_ADDR (prop) = value;
2192 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2193 }
2194
80180f79
SA
2195 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2196
2197 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
216a7e6b 2198 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2199 else
2200 elt_type = TYPE_TARGET_TYPE (type);
2201
24e99c6c 2202 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2203 if (prop != NULL)
2204 {
603490bf 2205 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2206 {
2207 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2208 bit_stride = (unsigned int) (value * 8);
2209 }
2210 else
2211 {
2212 /* Could be a bug in our code, but it could also happen
2213 if the DWARF info is not correct. Issue a warning,
2214 and assume no byte/bit stride (leave bit_stride = 0). */
2215 warning (_("cannot determine array stride for type %s"),
2216 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2217 }
2218 }
2219 else
2220 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2221
2222 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2223 bit_stride);
80180f79
SA
2224}
2225
012370f6 2226/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2227 bounds. ADDR_STACK is a stack of struct property_addr_info
2228 to be used if needed during the dynamic resolution. */
012370f6
TT
2229
2230static struct type *
df25ebbd
JB
2231resolve_dynamic_union (struct type *type,
2232 struct property_addr_info *addr_stack)
012370f6
TT
2233{
2234 struct type *resolved_type;
2235 int i;
2236 unsigned int max_len = 0;
2237
2238 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2239
2240 resolved_type = copy_type (type);
2241 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2242 = (struct field *) TYPE_ALLOC (resolved_type,
2243 TYPE_NFIELDS (resolved_type)
2244 * sizeof (struct field));
012370f6
TT
2245 memcpy (TYPE_FIELDS (resolved_type),
2246 TYPE_FIELDS (type),
2247 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2248 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2249 {
2250 struct type *t;
2251
2252 if (field_is_static (&TYPE_FIELD (type, i)))
2253 continue;
2254
d98b7a16 2255 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2256 addr_stack, 0);
012370f6
TT
2257 TYPE_FIELD_TYPE (resolved_type, i) = t;
2258 if (TYPE_LENGTH (t) > max_len)
2259 max_len = TYPE_LENGTH (t);
2260 }
2261
2262 TYPE_LENGTH (resolved_type) = max_len;
2263 return resolved_type;
2264}
2265
ef83a141
TT
2266/* See gdbtypes.h. */
2267
2268bool
2269variant::matches (ULONGEST value, bool is_unsigned) const
2270{
2271 for (const discriminant_range &range : discriminants)
2272 if (range.contains (value, is_unsigned))
2273 return true;
2274 return false;
2275}
2276
2277static void
2278compute_variant_fields_inner (struct type *type,
2279 struct property_addr_info *addr_stack,
2280 const variant_part &part,
2281 std::vector<bool> &flags);
2282
2283/* A helper function to determine which variant fields will be active.
2284 This handles both the variant's direct fields, and any variant
2285 parts embedded in this variant. TYPE is the type we're examining.
2286 ADDR_STACK holds information about the concrete object. VARIANT is
2287 the current variant to be handled. FLAGS is where the results are
2288 stored -- this function sets the Nth element in FLAGS if the
2289 corresponding field is enabled. ENABLED is whether this variant is
2290 enabled or not. */
2291
2292static void
2293compute_variant_fields_recurse (struct type *type,
2294 struct property_addr_info *addr_stack,
2295 const variant &variant,
2296 std::vector<bool> &flags,
2297 bool enabled)
2298{
2299 for (int field = variant.first_field; field < variant.last_field; ++field)
2300 flags[field] = enabled;
2301
2302 for (const variant_part &new_part : variant.parts)
2303 {
2304 if (enabled)
2305 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2306 else
2307 {
2308 for (const auto &sub_variant : new_part.variants)
2309 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2310 flags, enabled);
2311 }
2312 }
2313}
2314
2315/* A helper function to determine which variant fields will be active.
2316 This evaluates the discriminant, decides which variant (if any) is
2317 active, and then updates FLAGS to reflect which fields should be
2318 available. TYPE is the type we're examining. ADDR_STACK holds
2319 information about the concrete object. VARIANT is the current
2320 variant to be handled. FLAGS is where the results are stored --
2321 this function sets the Nth element in FLAGS if the corresponding
2322 field is enabled. */
2323
2324static void
2325compute_variant_fields_inner (struct type *type,
2326 struct property_addr_info *addr_stack,
2327 const variant_part &part,
2328 std::vector<bool> &flags)
2329{
2330 /* Evaluate the discriminant. */
2331 gdb::optional<ULONGEST> discr_value;
2332 if (part.discriminant_index != -1)
2333 {
2334 int idx = part.discriminant_index;
2335
2336 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2337 error (_("Cannot determine struct field location"
2338 " (invalid location kind)"));
2339
b249d2c2
TT
2340 if (addr_stack->valaddr.data () != NULL)
2341 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2342 idx);
ef83a141
TT
2343 else
2344 {
2345 CORE_ADDR addr = (addr_stack->addr
2346 + (TYPE_FIELD_BITPOS (type, idx)
2347 / TARGET_CHAR_BIT));
2348
2349 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2350 LONGEST size = bitsize / 8;
2351 if (size == 0)
2352 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2353
2354 gdb_byte bits[sizeof (ULONGEST)];
2355 read_memory (addr, bits, size);
2356
2357 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2358 % TARGET_CHAR_BIT);
2359
2360 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2361 bits, bitpos, bitsize);
2362 }
2363 }
2364
2365 /* Go through each variant and see which applies. */
2366 const variant *default_variant = nullptr;
2367 const variant *applied_variant = nullptr;
2368 for (const auto &variant : part.variants)
2369 {
2370 if (variant.is_default ())
2371 default_variant = &variant;
2372 else if (discr_value.has_value ()
2373 && variant.matches (*discr_value, part.is_unsigned))
2374 {
2375 applied_variant = &variant;
2376 break;
2377 }
2378 }
2379 if (applied_variant == nullptr)
2380 applied_variant = default_variant;
2381
2382 for (const auto &variant : part.variants)
2383 compute_variant_fields_recurse (type, addr_stack, variant,
2384 flags, applied_variant == &variant);
2385}
2386
2387/* Determine which variant fields are available in TYPE. The enabled
2388 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2389 about the concrete object. PARTS describes the top-level variant
2390 parts for this type. */
2391
2392static void
2393compute_variant_fields (struct type *type,
2394 struct type *resolved_type,
2395 struct property_addr_info *addr_stack,
2396 const gdb::array_view<variant_part> &parts)
2397{
2398 /* Assume all fields are included by default. */
2399 std::vector<bool> flags (TYPE_NFIELDS (resolved_type), true);
2400
2401 /* Now disable fields based on the variants that control them. */
2402 for (const auto &part : parts)
2403 compute_variant_fields_inner (type, addr_stack, part, flags);
2404
2405 TYPE_NFIELDS (resolved_type) = std::count (flags.begin (), flags.end (),
2406 true);
2407 TYPE_FIELDS (resolved_type)
2408 = (struct field *) TYPE_ALLOC (resolved_type,
2409 TYPE_NFIELDS (resolved_type)
2410 * sizeof (struct field));
2411 int out = 0;
2412 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
2413 {
2414 if (!flags[i])
2415 continue;
2416
2417 TYPE_FIELD (resolved_type, out) = TYPE_FIELD (type, i);
2418 ++out;
2419 }
2420}
2421
012370f6 2422/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2423 bounds. ADDR_STACK is a stack of struct property_addr_info to
2424 be used if needed during the dynamic resolution. */
012370f6
TT
2425
2426static struct type *
df25ebbd
JB
2427resolve_dynamic_struct (struct type *type,
2428 struct property_addr_info *addr_stack)
012370f6
TT
2429{
2430 struct type *resolved_type;
2431 int i;
6908c509 2432 unsigned resolved_type_bit_length = 0;
012370f6
TT
2433
2434 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2435 gdb_assert (TYPE_NFIELDS (type) > 0);
2436
2437 resolved_type = copy_type (type);
ef83a141 2438
24e99c6c 2439 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
ef83a141
TT
2440 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2441 {
2442 compute_variant_fields (type, resolved_type, addr_stack,
2443 *variant_prop->data.variant_parts);
2444 /* We want to leave the property attached, so that the Rust code
2445 can tell whether the type was originally an enum. */
2446 variant_prop->kind = PROP_TYPE;
2447 variant_prop->data.original_type = type;
2448 }
2449 else
2450 {
2451 TYPE_FIELDS (resolved_type)
2452 = (struct field *) TYPE_ALLOC (resolved_type,
2453 TYPE_NFIELDS (resolved_type)
2454 * sizeof (struct field));
2455 memcpy (TYPE_FIELDS (resolved_type),
2456 TYPE_FIELDS (type),
2457 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2458 }
2459
012370f6
TT
2460 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2461 {
6908c509 2462 unsigned new_bit_length;
df25ebbd 2463 struct property_addr_info pinfo;
012370f6 2464
ef83a141 2465 if (field_is_static (&TYPE_FIELD (resolved_type, i)))
012370f6
TT
2466 continue;
2467
7d79de9a
TT
2468 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2469 {
2470 struct dwarf2_property_baton baton;
2471 baton.property_type
2472 = lookup_pointer_type (TYPE_FIELD_TYPE (resolved_type, i));
2473 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2474
2475 struct dynamic_prop prop;
2476 prop.kind = PROP_LOCEXPR;
2477 prop.data.baton = &baton;
2478
2479 CORE_ADDR addr;
2480 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2481 true))
2482 SET_FIELD_BITPOS (TYPE_FIELD (resolved_type, i),
2483 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2484 }
2485
6908c509
JB
2486 /* As we know this field is not a static field, the field's
2487 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2488 this is the case, but only trigger a simple error rather
2489 than an internal error if that fails. While failing
2490 that verification indicates a bug in our code, the error
2491 is not severe enough to suggest to the user he stops
2492 his debugging session because of it. */
ef83a141 2493 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2494 error (_("Cannot determine struct field location"
2495 " (invalid location kind)"));
df25ebbd 2496
ef83a141 2497 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
c3345124 2498 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2499 pinfo.addr
2500 = (addr_stack->addr
2501 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2502 pinfo.next = addr_stack;
2503
2504 TYPE_FIELD_TYPE (resolved_type, i)
2505 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2506 &pinfo, 0);
df25ebbd
JB
2507 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2508 == FIELD_LOC_KIND_BITPOS);
2509
6908c509
JB
2510 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2511 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2512 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2513 else
2514 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2515 * TARGET_CHAR_BIT);
2516
2517 /* Normally, we would use the position and size of the last field
2518 to determine the size of the enclosing structure. But GCC seems
2519 to be encoding the position of some fields incorrectly when
2520 the struct contains a dynamic field that is not placed last.
2521 So we compute the struct size based on the field that has
2522 the highest position + size - probably the best we can do. */
2523 if (new_bit_length > resolved_type_bit_length)
2524 resolved_type_bit_length = new_bit_length;
012370f6
TT
2525 }
2526
9920b434
BH
2527 /* The length of a type won't change for fortran, but it does for C and Ada.
2528 For fortran the size of dynamic fields might change over time but not the
2529 type length of the structure. If we adapt it, we run into problems
2530 when calculating the element offset for arrays of structs. */
2531 if (current_language->la_language != language_fortran)
2532 TYPE_LENGTH (resolved_type)
2533 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2534
9e195661
PMR
2535 /* The Ada language uses this field as a cache for static fixed types: reset
2536 it as RESOLVED_TYPE must have its own static fixed type. */
2537 TYPE_TARGET_TYPE (resolved_type) = NULL;
2538
012370f6
TT
2539 return resolved_type;
2540}
2541
d98b7a16 2542/* Worker for resolved_dynamic_type. */
80180f79 2543
d98b7a16 2544static struct type *
df25ebbd 2545resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2546 struct property_addr_info *addr_stack,
2547 int top_level)
80180f79
SA
2548{
2549 struct type *real_type = check_typedef (type);
f8e89861 2550 struct type *resolved_type = nullptr;
d9823cbb 2551 struct dynamic_prop *prop;
3cdcd0ce 2552 CORE_ADDR value;
80180f79 2553
ee715b5a 2554 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2555 return type;
2556
f8e89861
TT
2557 gdb::optional<CORE_ADDR> type_length;
2558 prop = TYPE_DYNAMIC_LENGTH (type);
2559 if (prop != NULL
2560 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2561 type_length = value;
2562
5537b577 2563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2564 {
cac9b138
JK
2565 resolved_type = copy_type (type);
2566 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2567 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2568 top_level);
5537b577
JK
2569 }
2570 else
2571 {
2572 /* Before trying to resolve TYPE, make sure it is not a stub. */
2573 type = real_type;
012370f6 2574
5537b577
JK
2575 switch (TYPE_CODE (type))
2576 {
e771e4be
PMR
2577 case TYPE_CODE_REF:
2578 {
2579 struct property_addr_info pinfo;
2580
2581 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
b249d2c2
TT
2582 pinfo.valaddr = {};
2583 if (addr_stack->valaddr.data () != NULL)
2584 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2585 type);
c3345124
JB
2586 else
2587 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2588 pinfo.next = addr_stack;
2589
2590 resolved_type = copy_type (type);
2591 TYPE_TARGET_TYPE (resolved_type)
2592 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2593 &pinfo, top_level);
2594 break;
2595 }
2596
216a7e6b
AB
2597 case TYPE_CODE_STRING:
2598 /* Strings are very much like an array of characters, and can be
2599 treated as one here. */
5537b577 2600 case TYPE_CODE_ARRAY:
216a7e6b 2601 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2602 break;
2603
2604 case TYPE_CODE_RANGE:
df25ebbd 2605 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2606 break;
2607
2608 case TYPE_CODE_UNION:
df25ebbd 2609 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2610 break;
2611
2612 case TYPE_CODE_STRUCT:
df25ebbd 2613 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2614 break;
2615 }
6f8a3220 2616 }
80180f79 2617
f8e89861
TT
2618 if (resolved_type == nullptr)
2619 return type;
2620
2621 if (type_length.has_value ())
2622 {
2623 TYPE_LENGTH (resolved_type) = *type_length;
2624 remove_dyn_prop (DYN_PROP_BYTE_SIZE, resolved_type);
2625 }
2626
3cdcd0ce
JB
2627 /* Resolve data_location attribute. */
2628 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2629 if (prop != NULL
2630 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2631 {
d9823cbb
KB
2632 TYPE_DYN_PROP_ADDR (prop) = value;
2633 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2634 }
3cdcd0ce 2635
80180f79
SA
2636 return resolved_type;
2637}
2638
d98b7a16
TT
2639/* See gdbtypes.h */
2640
2641struct type *
b249d2c2
TT
2642resolve_dynamic_type (struct type *type,
2643 gdb::array_view<const gdb_byte> valaddr,
c3345124 2644 CORE_ADDR addr)
d98b7a16 2645{
c3345124
JB
2646 struct property_addr_info pinfo
2647 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2648
ee715b5a 2649 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2650}
2651
d9823cbb
KB
2652/* See gdbtypes.h */
2653
24e99c6c
SM
2654dynamic_prop *
2655type::dyn_prop (dynamic_prop_node_kind prop_kind) const
d9823cbb 2656{
24e99c6c 2657 dynamic_prop_list *node = TYPE_DYN_PROP_LIST (this);
d9823cbb
KB
2658
2659 while (node != NULL)
2660 {
2661 if (node->prop_kind == prop_kind)
283a9958 2662 return &node->prop;
d9823cbb
KB
2663 node = node->next;
2664 }
2665 return NULL;
2666}
2667
2668/* See gdbtypes.h */
2669
2670void
2671add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2672 struct type *type)
d9823cbb
KB
2673{
2674 struct dynamic_prop_list *temp;
2675
2676 gdb_assert (TYPE_OBJFILE_OWNED (type));
2677
50a82047
TT
2678 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2679 struct dynamic_prop_list);
d9823cbb 2680 temp->prop_kind = prop_kind;
283a9958 2681 temp->prop = prop;
d9823cbb
KB
2682 temp->next = TYPE_DYN_PROP_LIST (type);
2683
2684 TYPE_DYN_PROP_LIST (type) = temp;
2685}
2686
9920b434
BH
2687/* Remove dynamic property from TYPE in case it exists. */
2688
2689void
2690remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2691 struct type *type)
2692{
2693 struct dynamic_prop_list *prev_node, *curr_node;
2694
2695 curr_node = TYPE_DYN_PROP_LIST (type);
2696 prev_node = NULL;
2697
2698 while (NULL != curr_node)
2699 {
2700 if (curr_node->prop_kind == prop_kind)
2701 {
2702 /* Update the linked list but don't free anything.
2703 The property was allocated on objstack and it is not known
2704 if we are on top of it. Nevertheless, everything is released
2705 when the complete objstack is freed. */
2706 if (NULL == prev_node)
2707 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2708 else
2709 prev_node->next = curr_node->next;
2710
2711 return;
2712 }
2713
2714 prev_node = curr_node;
2715 curr_node = curr_node->next;
2716 }
2717}
d9823cbb 2718
92163a10
JK
2719/* Find the real type of TYPE. This function returns the real type,
2720 after removing all layers of typedefs, and completing opaque or stub
2721 types. Completion changes the TYPE argument, but stripping of
2722 typedefs does not.
2723
2724 Instance flags (e.g. const/volatile) are preserved as typedefs are
2725 stripped. If necessary a new qualified form of the underlying type
2726 is created.
2727
2728 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2729 not been computed and we're either in the middle of reading symbols, or
2730 there was no name for the typedef in the debug info.
2731
9bc118a5
DE
2732 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2733 QUITs in the symbol reading code can also throw.
2734 Thus this function can throw an exception.
2735
92163a10
JK
2736 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2737 the target type.
c906108c
SS
2738
2739 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2740 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2741 definition, so we can use it in future. There used to be a comment
2742 (but not any code) that if we don't find a full definition, we'd
2743 set a flag so we don't spend time in the future checking the same
2744 type. That would be a mistake, though--we might load in more
92163a10 2745 symbols which contain a full definition for the type. */
c906108c
SS
2746
2747struct type *
a02fd225 2748check_typedef (struct type *type)
c906108c
SS
2749{
2750 struct type *orig_type = type;
92163a10
JK
2751 /* While we're removing typedefs, we don't want to lose qualifiers.
2752 E.g., const/volatile. */
2753 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2754
423c0af8
MS
2755 gdb_assert (type);
2756
c906108c
SS
2757 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2758 {
2759 if (!TYPE_TARGET_TYPE (type))
2760 {
0d5cff50 2761 const char *name;
c906108c
SS
2762 struct symbol *sym;
2763
2764 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2765 reading a symtab. Infinite recursion is one danger. */
c906108c 2766 if (currently_reading_symtab)
92163a10 2767 return make_qualified_type (type, instance_flags, NULL);
c906108c 2768
a737d952 2769 name = TYPE_NAME (type);
e86ca25f
TT
2770 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2771 VAR_DOMAIN as appropriate? */
c906108c
SS
2772 if (name == NULL)
2773 {
23136709 2774 stub_noname_complaint ();
92163a10 2775 return make_qualified_type (type, instance_flags, NULL);
c906108c 2776 }
d12307c1 2777 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2778 if (sym)
2779 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2780 else /* TYPE_CODE_UNDEF */
e9bb382b 2781 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2782 }
2783 type = TYPE_TARGET_TYPE (type);
c906108c 2784
92163a10
JK
2785 /* Preserve the instance flags as we traverse down the typedef chain.
2786
2787 Handling address spaces/classes is nasty, what do we do if there's a
2788 conflict?
2789 E.g., what if an outer typedef marks the type as class_1 and an inner
2790 typedef marks the type as class_2?
2791 This is the wrong place to do such error checking. We leave it to
2792 the code that created the typedef in the first place to flag the
2793 error. We just pick the outer address space (akin to letting the
2794 outer cast in a chain of casting win), instead of assuming
2795 "it can't happen". */
2796 {
2797 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2798 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2799 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2800 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2801
2802 /* Treat code vs data spaces and address classes separately. */
2803 if ((instance_flags & ALL_SPACES) != 0)
2804 new_instance_flags &= ~ALL_SPACES;
2805 if ((instance_flags & ALL_CLASSES) != 0)
2806 new_instance_flags &= ~ALL_CLASSES;
2807
2808 instance_flags |= new_instance_flags;
2809 }
2810 }
a02fd225 2811
7ba81444
MS
2812 /* If this is a struct/class/union with no fields, then check
2813 whether a full definition exists somewhere else. This is for
2814 systems where a type definition with no fields is issued for such
2815 types, instead of identifying them as stub types in the first
2816 place. */
c5aa993b 2817
7ba81444
MS
2818 if (TYPE_IS_OPAQUE (type)
2819 && opaque_type_resolution
2820 && !currently_reading_symtab)
c906108c 2821 {
a737d952 2822 const char *name = TYPE_NAME (type);
c5aa993b 2823 struct type *newtype;
d8734c88 2824
c906108c
SS
2825 if (name == NULL)
2826 {
23136709 2827 stub_noname_complaint ();
92163a10 2828 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2829 }
2830 newtype = lookup_transparent_type (name);
ad766c0a 2831
c906108c 2832 if (newtype)
ad766c0a 2833 {
7ba81444
MS
2834 /* If the resolved type and the stub are in the same
2835 objfile, then replace the stub type with the real deal.
2836 But if they're in separate objfiles, leave the stub
2837 alone; we'll just look up the transparent type every time
2838 we call check_typedef. We can't create pointers between
2839 types allocated to different objfiles, since they may
2840 have different lifetimes. Trying to copy NEWTYPE over to
2841 TYPE's objfile is pointless, too, since you'll have to
2842 move over any other types NEWTYPE refers to, which could
2843 be an unbounded amount of stuff. */
ad766c0a 2844 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2845 type = make_qualified_type (newtype,
2846 TYPE_INSTANCE_FLAGS (type),
2847 type);
ad766c0a
JB
2848 else
2849 type = newtype;
2850 }
c906108c 2851 }
7ba81444
MS
2852 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2853 types. */
74a9bb82 2854 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2855 {
a737d952 2856 const char *name = TYPE_NAME (type);
e86ca25f
TT
2857 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2858 as appropriate? */
c906108c 2859 struct symbol *sym;
d8734c88 2860
c906108c
SS
2861 if (name == NULL)
2862 {
23136709 2863 stub_noname_complaint ();
92163a10 2864 return make_qualified_type (type, instance_flags, NULL);
c906108c 2865 }
d12307c1 2866 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2867 if (sym)
c26f2453
JB
2868 {
2869 /* Same as above for opaque types, we can replace the stub
92163a10 2870 with the complete type only if they are in the same
c26f2453
JB
2871 objfile. */
2872 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2873 type = make_qualified_type (SYMBOL_TYPE (sym),
2874 TYPE_INSTANCE_FLAGS (type),
2875 type);
c26f2453
JB
2876 else
2877 type = SYMBOL_TYPE (sym);
2878 }
c906108c
SS
2879 }
2880
74a9bb82 2881 if (TYPE_TARGET_STUB (type))
c906108c 2882 {
c906108c
SS
2883 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2884
74a9bb82 2885 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2886 {
73e2eb35 2887 /* Nothing we can do. */
c5aa993b 2888 }
c906108c
SS
2889 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2890 {
2891 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2892 TYPE_TARGET_STUB (type) = 0;
c906108c 2893 }
8dbb1375
HD
2894 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2895 && update_static_array_size (type))
2896 TYPE_TARGET_STUB (type) = 0;
c906108c 2897 }
92163a10
JK
2898
2899 type = make_qualified_type (type, instance_flags, NULL);
2900
7ba81444 2901 /* Cache TYPE_LENGTH for future use. */
c906108c 2902 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2903
c906108c
SS
2904 return type;
2905}
2906
7ba81444 2907/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2908 occurs, silently return a void type. */
c91ecb25 2909
b9362cc7 2910static struct type *
48319d1f 2911safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2912{
2913 struct ui_file *saved_gdb_stderr;
34365054 2914 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2915
7ba81444 2916 /* Suppress error messages. */
c91ecb25 2917 saved_gdb_stderr = gdb_stderr;
d7e74731 2918 gdb_stderr = &null_stream;
c91ecb25 2919
7ba81444 2920 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2921 try
8e7b59a5
KS
2922 {
2923 type = parse_and_eval_type (p, length);
2924 }
230d2906 2925 catch (const gdb_exception_error &except)
492d29ea
PA
2926 {
2927 type = builtin_type (gdbarch)->builtin_void;
2928 }
c91ecb25 2929
7ba81444 2930 /* Stop suppressing error messages. */
c91ecb25
ND
2931 gdb_stderr = saved_gdb_stderr;
2932
2933 return type;
2934}
2935
c906108c
SS
2936/* Ugly hack to convert method stubs into method types.
2937
7ba81444
MS
2938 He ain't kiddin'. This demangles the name of the method into a
2939 string including argument types, parses out each argument type,
2940 generates a string casting a zero to that type, evaluates the
2941 string, and stuffs the resulting type into an argtype vector!!!
2942 Then it knows the type of the whole function (including argument
2943 types for overloading), which info used to be in the stab's but was
2944 removed to hack back the space required for them. */
c906108c 2945
de17c821 2946static void
fba45db2 2947check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2948{
50810684 2949 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2950 struct fn_field *f;
2951 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2952 char *demangled_name = gdb_demangle (mangled_name,
2953 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2954 char *argtypetext, *p;
2955 int depth = 0, argcount = 1;
ad2f7632 2956 struct field *argtypes;
c906108c
SS
2957 struct type *mtype;
2958
2959 /* Make sure we got back a function string that we can use. */
2960 if (demangled_name)
2961 p = strchr (demangled_name, '(');
502dcf4e
AC
2962 else
2963 p = NULL;
c906108c
SS
2964
2965 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2966 error (_("Internal: Cannot demangle mangled name `%s'."),
2967 mangled_name);
c906108c
SS
2968
2969 /* Now, read in the parameters that define this type. */
2970 p += 1;
2971 argtypetext = p;
2972 while (*p)
2973 {
070ad9f0 2974 if (*p == '(' || *p == '<')
c906108c
SS
2975 {
2976 depth += 1;
2977 }
070ad9f0 2978 else if (*p == ')' || *p == '>')
c906108c
SS
2979 {
2980 depth -= 1;
2981 }
2982 else if (*p == ',' && depth == 0)
2983 {
2984 argcount += 1;
2985 }
2986
2987 p += 1;
2988 }
2989
ad2f7632 2990 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2991 if (startswith (argtypetext, "(void)"))
ad2f7632 2992 argcount -= 1;
c906108c 2993
ad2f7632
DJ
2994 /* We need one extra slot, for the THIS pointer. */
2995
2996 argtypes = (struct field *)
2997 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2998 p = argtypetext;
4a1970e4
DJ
2999
3000 /* Add THIS pointer for non-static methods. */
3001 f = TYPE_FN_FIELDLIST1 (type, method_id);
3002 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3003 argcount = 0;
3004 else
3005 {
ad2f7632 3006 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
3007 argcount = 1;
3008 }
c906108c 3009
0963b4bd 3010 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
3011 {
3012 depth = 0;
3013 while (*p)
3014 {
3015 if (depth <= 0 && (*p == ',' || *p == ')'))
3016 {
ad2f7632
DJ
3017 /* Avoid parsing of ellipsis, they will be handled below.
3018 Also avoid ``void'' as above. */
3019 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3020 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 3021 {
ad2f7632 3022 argtypes[argcount].type =
48319d1f 3023 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
3024 argcount += 1;
3025 }
3026 argtypetext = p + 1;
3027 }
3028
070ad9f0 3029 if (*p == '(' || *p == '<')
c906108c
SS
3030 {
3031 depth += 1;
3032 }
070ad9f0 3033 else if (*p == ')' || *p == '>')
c906108c
SS
3034 {
3035 depth -= 1;
3036 }
3037
3038 p += 1;
3039 }
3040 }
3041
c906108c
SS
3042 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3043
3044 /* Now update the old "stub" type into a real type. */
3045 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
3046 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3047 We want a method (TYPE_CODE_METHOD). */
3048 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3049 argtypes, argcount, p[-2] == '.');
876cecd0 3050 TYPE_STUB (mtype) = 0;
c906108c 3051 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
3052
3053 xfree (demangled_name);
c906108c
SS
3054}
3055
7ba81444
MS
3056/* This is the external interface to check_stub_method, above. This
3057 function unstubs all of the signatures for TYPE's METHOD_ID method
3058 name. After calling this function TYPE_FN_FIELD_STUB will be
3059 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3060 correct.
de17c821
DJ
3061
3062 This function unfortunately can not die until stabs do. */
3063
3064void
3065check_stub_method_group (struct type *type, int method_id)
3066{
3067 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3068 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 3069
041be526
SM
3070 for (int j = 0; j < len; j++)
3071 {
3072 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 3073 check_stub_method (type, method_id, j);
de17c821
DJ
3074 }
3075}
3076
405feb71 3077/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 3078const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
3079
3080void
fba45db2 3081allocate_cplus_struct_type (struct type *type)
c906108c 3082{
b4ba55a1
JB
3083 if (HAVE_CPLUS_STRUCT (type))
3084 /* Structure was already allocated. Nothing more to do. */
3085 return;
3086
3087 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3088 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3089 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3090 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 3091 set_type_vptr_fieldno (type, -1);
c906108c
SS
3092}
3093
b4ba55a1
JB
3094const struct gnat_aux_type gnat_aux_default =
3095 { NULL };
3096
3097/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3098 and allocate the associated gnat-specific data. The gnat-specific
3099 data is also initialized to gnat_aux_default. */
5212577a 3100
b4ba55a1
JB
3101void
3102allocate_gnat_aux_type (struct type *type)
3103{
3104 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3105 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3106 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3107 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3108}
3109
ae438bc5
UW
3110/* Helper function to initialize a newly allocated type. Set type code
3111 to CODE and initialize the type-specific fields accordingly. */
3112
3113static void
3114set_type_code (struct type *type, enum type_code code)
3115{
3116 TYPE_CODE (type) = code;
3117
3118 switch (code)
3119 {
3120 case TYPE_CODE_STRUCT:
3121 case TYPE_CODE_UNION:
3122 case TYPE_CODE_NAMESPACE:
3123 INIT_CPLUS_SPECIFIC (type);
3124 break;
3125 case TYPE_CODE_FLT:
3126 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3127 break;
3128 case TYPE_CODE_FUNC:
3129 INIT_FUNC_SPECIFIC (type);
3130 break;
3131 }
3132}
3133
19f392bc
UW
3134/* Helper function to verify floating-point format and size.
3135 BIT is the type size in bits; if BIT equals -1, the size is
3136 determined by the floatformat. Returns size to be used. */
3137
3138static int
0db7851f 3139verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 3140{
0db7851f 3141 gdb_assert (floatformat != NULL);
9b790ce7 3142
19f392bc 3143 if (bit == -1)
0db7851f 3144 bit = floatformat->totalsize;
19f392bc 3145
0db7851f
UW
3146 gdb_assert (bit >= 0);
3147 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
3148
3149 return bit;
3150}
3151
0db7851f
UW
3152/* Return the floating-point format for a floating-point variable of
3153 type TYPE. */
3154
3155const struct floatformat *
3156floatformat_from_type (const struct type *type)
3157{
3158 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3159 gdb_assert (TYPE_FLOATFORMAT (type));
3160 return TYPE_FLOATFORMAT (type);
3161}
3162
c906108c
SS
3163/* Helper function to initialize the standard scalar types.
3164
86f62fd7
TT
3165 If NAME is non-NULL, then it is used to initialize the type name.
3166 Note that NAME is not copied; it is required to have a lifetime at
3167 least as long as OBJFILE. */
c906108c
SS
3168
3169struct type *
77b7c781 3170init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 3171 const char *name)
c906108c 3172{
52f0bd74 3173 struct type *type;
c906108c
SS
3174
3175 type = alloc_type (objfile);
ae438bc5 3176 set_type_code (type, code);
77b7c781
UW
3177 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3178 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 3179 TYPE_NAME (type) = name;
c906108c 3180
c16abbde 3181 return type;
c906108c 3182}
19f392bc 3183
46a4882b
PA
3184/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3185 to use with variables that have no debug info. NAME is the type
3186 name. */
3187
3188static struct type *
3189init_nodebug_var_type (struct objfile *objfile, const char *name)
3190{
3191 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3192}
3193
19f392bc
UW
3194/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3195 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3196 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3197
3198struct type *
3199init_integer_type (struct objfile *objfile,
3200 int bit, int unsigned_p, const char *name)
3201{
3202 struct type *t;
3203
77b7c781 3204 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
3205 if (unsigned_p)
3206 TYPE_UNSIGNED (t) = 1;
3207
3208 return t;
3209}
3210
3211/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3212 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3213 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3214
3215struct type *
3216init_character_type (struct objfile *objfile,
3217 int bit, int unsigned_p, const char *name)
3218{
3219 struct type *t;
3220
77b7c781 3221 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
3222 if (unsigned_p)
3223 TYPE_UNSIGNED (t) = 1;
3224
3225 return t;
3226}
3227
3228/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3229 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3230 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3231
3232struct type *
3233init_boolean_type (struct objfile *objfile,
3234 int bit, int unsigned_p, const char *name)
3235{
3236 struct type *t;
3237
77b7c781 3238 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
3239 if (unsigned_p)
3240 TYPE_UNSIGNED (t) = 1;
3241
3242 return t;
3243}
3244
3245/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3246 BIT is the type size in bits; if BIT equals -1, the size is
3247 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
3248 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3249 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3250 order of the objfile's architecture is used. */
19f392bc
UW
3251
3252struct type *
3253init_float_type (struct objfile *objfile,
3254 int bit, const char *name,
103a685e
TT
3255 const struct floatformat **floatformats,
3256 enum bfd_endian byte_order)
19f392bc 3257{
103a685e
TT
3258 if (byte_order == BFD_ENDIAN_UNKNOWN)
3259 {
08feed99 3260 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3261 byte_order = gdbarch_byte_order (gdbarch);
3262 }
3263 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3264 struct type *t;
3265
0db7851f 3266 bit = verify_floatformat (bit, fmt);
77b7c781 3267 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3268 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3269
3270 return t;
3271}
3272
3273/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3274 BIT is the type size in bits. NAME is the type name. */
3275
3276struct type *
3277init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3278{
3279 struct type *t;
3280
77b7c781 3281 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3282 return t;
3283}
3284
5b930b45
TT
3285/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3286 name. TARGET_TYPE is the component type. */
19f392bc
UW
3287
3288struct type *
5b930b45 3289init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3290{
3291 struct type *t;
3292
5b930b45
TT
3293 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3294 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3295
3296 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3297 {
3298 if (name == nullptr)
3299 {
3300 char *new_name
3301 = (char *) TYPE_ALLOC (target_type,
3302 strlen (TYPE_NAME (target_type))
3303 + strlen ("_Complex ") + 1);
3304 strcpy (new_name, "_Complex ");
3305 strcat (new_name, TYPE_NAME (target_type));
3306 name = new_name;
3307 }
3308
3309 t = alloc_type_copy (target_type);
3310 set_type_code (t, TYPE_CODE_COMPLEX);
3311 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3312 TYPE_NAME (t) = name;
3313
3314 TYPE_TARGET_TYPE (t) = target_type;
3315 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3316 }
3317
3318 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3319}
3320
3321/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3322 BIT is the pointer type size in bits. NAME is the type name.
3323 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3324 TYPE_UNSIGNED flag. */
3325
3326struct type *
3327init_pointer_type (struct objfile *objfile,
3328 int bit, const char *name, struct type *target_type)
3329{
3330 struct type *t;
3331
77b7c781 3332 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3333 TYPE_TARGET_TYPE (t) = target_type;
3334 TYPE_UNSIGNED (t) = 1;
3335 return t;
3336}
3337
2b4424c3
TT
3338/* See gdbtypes.h. */
3339
3340unsigned
3341type_raw_align (struct type *type)
3342{
3343 if (type->align_log2 != 0)
3344 return 1 << (type->align_log2 - 1);
3345 return 0;
3346}
3347
3348/* See gdbtypes.h. */
3349
3350unsigned
3351type_align (struct type *type)
3352{
5561fc30 3353 /* Check alignment provided in the debug information. */
2b4424c3
TT
3354 unsigned raw_align = type_raw_align (type);
3355 if (raw_align != 0)
3356 return raw_align;
3357
5561fc30
AB
3358 /* Allow the architecture to provide an alignment. */
3359 struct gdbarch *arch = get_type_arch (type);
3360 ULONGEST align = gdbarch_type_align (arch, type);
3361 if (align != 0)
3362 return align;
3363
2b4424c3
TT
3364 switch (TYPE_CODE (type))
3365 {
3366 case TYPE_CODE_PTR:
3367 case TYPE_CODE_FUNC:
3368 case TYPE_CODE_FLAGS:
3369 case TYPE_CODE_INT:
75ba10dc 3370 case TYPE_CODE_RANGE:
2b4424c3
TT
3371 case TYPE_CODE_FLT:
3372 case TYPE_CODE_ENUM:
3373 case TYPE_CODE_REF:
3374 case TYPE_CODE_RVALUE_REF:
3375 case TYPE_CODE_CHAR:
3376 case TYPE_CODE_BOOL:
3377 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3378 case TYPE_CODE_METHODPTR:
3379 case TYPE_CODE_MEMBERPTR:
5561fc30 3380 align = type_length_units (check_typedef (type));
2b4424c3
TT
3381 break;
3382
3383 case TYPE_CODE_ARRAY:
3384 case TYPE_CODE_COMPLEX:
3385 case TYPE_CODE_TYPEDEF:
3386 align = type_align (TYPE_TARGET_TYPE (type));
3387 break;
3388
3389 case TYPE_CODE_STRUCT:
3390 case TYPE_CODE_UNION:
3391 {
41077b66 3392 int number_of_non_static_fields = 0;
2b4424c3
TT
3393 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3394 {
bf9a735e 3395 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3396 {
41077b66 3397 number_of_non_static_fields++;
bf9a735e
AB
3398 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3399 if (f_align == 0)
3400 {
3401 /* Don't pretend we know something we don't. */
3402 align = 0;
3403 break;
3404 }
3405 if (f_align > align)
3406 align = f_align;
2b4424c3 3407 }
2b4424c3 3408 }
41077b66
AB
3409 /* A struct with no fields, or with only static fields has an
3410 alignment of 1. */
3411 if (number_of_non_static_fields == 0)
3412 align = 1;
2b4424c3
TT
3413 }
3414 break;
3415
3416 case TYPE_CODE_SET:
2b4424c3
TT
3417 case TYPE_CODE_STRING:
3418 /* Not sure what to do here, and these can't appear in C or C++
3419 anyway. */
3420 break;
3421
2b4424c3
TT
3422 case TYPE_CODE_VOID:
3423 align = 1;
3424 break;
3425
3426 case TYPE_CODE_ERROR:
3427 case TYPE_CODE_METHOD:
3428 default:
3429 break;
3430 }
3431
3432 if ((align & (align - 1)) != 0)
3433 {
3434 /* Not a power of 2, so pass. */
3435 align = 0;
3436 }
3437
3438 return align;
3439}
3440
3441/* See gdbtypes.h. */
3442
3443bool
3444set_type_align (struct type *type, ULONGEST align)
3445{
3446 /* Must be a power of 2. Zero is ok. */
3447 gdb_assert ((align & (align - 1)) == 0);
3448
3449 unsigned result = 0;
3450 while (align != 0)
3451 {
3452 ++result;
3453 align >>= 1;
3454 }
3455
3456 if (result >= (1 << TYPE_ALIGN_BITS))
3457 return false;
3458
3459 type->align_log2 = result;
3460 return true;
3461}
3462
5212577a
DE
3463\f
3464/* Queries on types. */
c906108c 3465
c906108c 3466int
fba45db2 3467can_dereference (struct type *t)
c906108c 3468{
7ba81444
MS
3469 /* FIXME: Should we return true for references as well as
3470 pointers? */
f168693b 3471 t = check_typedef (t);
c906108c
SS
3472 return
3473 (t != NULL
3474 && TYPE_CODE (t) == TYPE_CODE_PTR
3475 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3476}
3477
adf40b2e 3478int
fba45db2 3479is_integral_type (struct type *t)
adf40b2e 3480{
f168693b 3481 t = check_typedef (t);
adf40b2e
JM
3482 return
3483 ((t != NULL)
d4f3574e
SS
3484 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3485 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3486 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3487 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3488 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3489 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3490}
3491
70100014
UW
3492int
3493is_floating_type (struct type *t)
3494{
3495 t = check_typedef (t);
3496 return
3497 ((t != NULL)
3498 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3499 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3500}
3501
e09342b5
TJB
3502/* Return true if TYPE is scalar. */
3503
220475ed 3504int
e09342b5
TJB
3505is_scalar_type (struct type *type)
3506{
f168693b 3507 type = check_typedef (type);
e09342b5
TJB
3508
3509 switch (TYPE_CODE (type))
3510 {
3511 case TYPE_CODE_ARRAY:
3512 case TYPE_CODE_STRUCT:
3513 case TYPE_CODE_UNION:
3514 case TYPE_CODE_SET:
3515 case TYPE_CODE_STRING:
e09342b5
TJB
3516 return 0;
3517 default:
3518 return 1;
3519 }
3520}
3521
3522/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3523 the memory layout of a scalar type. E.g., an array or struct with only
3524 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3525
3526int
3527is_scalar_type_recursive (struct type *t)
3528{
f168693b 3529 t = check_typedef (t);
e09342b5
TJB
3530
3531 if (is_scalar_type (t))
3532 return 1;
3533 /* Are we dealing with an array or string of known dimensions? */
3534 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3535 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3536 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3537 {
3538 LONGEST low_bound, high_bound;
3539 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3540
3541 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3542
3543 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3544 }
3545 /* Are we dealing with a struct with one element? */
3546 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3547 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3548 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3549 {
3550 int i, n = TYPE_NFIELDS (t);
3551
3552 /* If all elements of the union are scalar, then the union is scalar. */
3553 for (i = 0; i < n; i++)
3554 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3555 return 0;
3556
3557 return 1;
3558 }
3559
3560 return 0;
3561}
3562
6c659fc2
SC
3563/* Return true is T is a class or a union. False otherwise. */
3564
3565int
3566class_or_union_p (const struct type *t)
3567{
3568 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3569 || TYPE_CODE (t) == TYPE_CODE_UNION);
3570}
3571
4e8f195d
TT
3572/* A helper function which returns true if types A and B represent the
3573 "same" class type. This is true if the types have the same main
3574 type, or the same name. */
3575
3576int
3577class_types_same_p (const struct type *a, const struct type *b)
3578{
3579 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3580 || (TYPE_NAME (a) && TYPE_NAME (b)
3581 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3582}
3583
a9d5ef47
SW
3584/* If BASE is an ancestor of DCLASS return the distance between them.
3585 otherwise return -1;
3586 eg:
3587
3588 class A {};
3589 class B: public A {};
3590 class C: public B {};
3591 class D: C {};
3592
3593 distance_to_ancestor (A, A, 0) = 0
3594 distance_to_ancestor (A, B, 0) = 1
3595 distance_to_ancestor (A, C, 0) = 2
3596 distance_to_ancestor (A, D, 0) = 3
3597
3598 If PUBLIC is 1 then only public ancestors are considered,
3599 and the function returns the distance only if BASE is a public ancestor
3600 of DCLASS.
3601 Eg:
3602
0963b4bd 3603 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3604
0526b37a 3605static int
fe978cb0 3606distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3607{
3608 int i;
a9d5ef47 3609 int d;
c5aa993b 3610
f168693b
SM
3611 base = check_typedef (base);
3612 dclass = check_typedef (dclass);
c906108c 3613
4e8f195d 3614 if (class_types_same_p (base, dclass))
a9d5ef47 3615 return 0;
c906108c
SS
3616
3617 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3618 {
fe978cb0 3619 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3620 continue;
3621
fe978cb0 3622 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3623 if (d >= 0)
3624 return 1 + d;
4e8f195d 3625 }
c906108c 3626
a9d5ef47 3627 return -1;
c906108c 3628}
4e8f195d 3629
0526b37a
SW
3630/* Check whether BASE is an ancestor or base class or DCLASS
3631 Return 1 if so, and 0 if not.
3632 Note: If BASE and DCLASS are of the same type, this function
3633 will return 1. So for some class A, is_ancestor (A, A) will
3634 return 1. */
3635
3636int
3637is_ancestor (struct type *base, struct type *dclass)
3638{
a9d5ef47 3639 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3640}
3641
4e8f195d
TT
3642/* Like is_ancestor, but only returns true when BASE is a public
3643 ancestor of DCLASS. */
3644
3645int
3646is_public_ancestor (struct type *base, struct type *dclass)
3647{
a9d5ef47 3648 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3649}
3650
3651/* A helper function for is_unique_ancestor. */
3652
3653static int
3654is_unique_ancestor_worker (struct type *base, struct type *dclass,
3655 int *offset,
8af8e3bc
PA
3656 const gdb_byte *valaddr, int embedded_offset,
3657 CORE_ADDR address, struct value *val)
4e8f195d
TT
3658{
3659 int i, count = 0;
3660
f168693b
SM
3661 base = check_typedef (base);
3662 dclass = check_typedef (dclass);
4e8f195d
TT
3663
3664 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3665 {
8af8e3bc
PA
3666 struct type *iter;
3667 int this_offset;
4e8f195d 3668
8af8e3bc
PA
3669 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3670
3671 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3672 address, val);
4e8f195d
TT
3673
3674 if (class_types_same_p (base, iter))
3675 {
3676 /* If this is the first subclass, set *OFFSET and set count
3677 to 1. Otherwise, if this is at the same offset as
3678 previous instances, do nothing. Otherwise, increment
3679 count. */
3680 if (*offset == -1)
3681 {
3682 *offset = this_offset;
3683 count = 1;
3684 }
3685 else if (this_offset == *offset)
3686 {
3687 /* Nothing. */
3688 }
3689 else
3690 ++count;
3691 }
3692 else
3693 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3694 valaddr,
3695 embedded_offset + this_offset,
3696 address, val);
4e8f195d
TT
3697 }
3698
3699 return count;
3700}
3701
3702/* Like is_ancestor, but only returns true if BASE is a unique base
3703 class of the type of VAL. */
3704
3705int
3706is_unique_ancestor (struct type *base, struct value *val)
3707{
3708 int offset = -1;
3709
3710 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3711 value_contents_for_printing (val),
3712 value_embedded_offset (val),
3713 value_address (val), val) == 1;
4e8f195d
TT
3714}
3715
7ab4a236
TT
3716/* See gdbtypes.h. */
3717
3718enum bfd_endian
3719type_byte_order (const struct type *type)
3720{
3721 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3722 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3723 {
3724 if (byteorder == BFD_ENDIAN_BIG)
3725 return BFD_ENDIAN_LITTLE;
3726 else
3727 {
3728 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3729 return BFD_ENDIAN_BIG;
3730 }
3731 }
3732
3733 return byteorder;
3734}
3735
c906108c 3736\f
5212577a 3737/* Overload resolution. */
c906108c 3738
6403aeea
SW
3739/* Return the sum of the rank of A with the rank of B. */
3740
3741struct rank
3742sum_ranks (struct rank a, struct rank b)
3743{
3744 struct rank c;
3745 c.rank = a.rank + b.rank;
a9d5ef47 3746 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3747 return c;
3748}
3749
3750/* Compare rank A and B and return:
3751 0 if a = b
3752 1 if a is better than b
3753 -1 if b is better than a. */
3754
3755int
3756compare_ranks (struct rank a, struct rank b)
3757{
3758 if (a.rank == b.rank)
a9d5ef47
SW
3759 {
3760 if (a.subrank == b.subrank)
3761 return 0;
3762 if (a.subrank < b.subrank)
3763 return 1;
3764 if (a.subrank > b.subrank)
3765 return -1;
3766 }
6403aeea
SW
3767
3768 if (a.rank < b.rank)
3769 return 1;
3770
0963b4bd 3771 /* a.rank > b.rank */
6403aeea
SW
3772 return -1;
3773}
c5aa993b 3774
0963b4bd 3775/* Functions for overload resolution begin here. */
c906108c
SS
3776
3777/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3778 0 => A and B are identical
3779 1 => A and B are incomparable
3780 2 => A is better than B
3781 3 => A is worse than B */
c906108c
SS
3782
3783int
82ceee50 3784compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3785{
3786 int i;
3787 int tmp;
c5aa993b
JM
3788 short found_pos = 0; /* any positives in c? */
3789 short found_neg = 0; /* any negatives in c? */
3790
82ceee50
PA
3791 /* differing sizes => incomparable */
3792 if (a.size () != b.size ())
c906108c
SS
3793 return 1;
3794
c5aa993b 3795 /* Subtract b from a */
82ceee50 3796 for (i = 0; i < a.size (); i++)
c906108c 3797 {
82ceee50 3798 tmp = compare_ranks (b[i], a[i]);
c906108c 3799 if (tmp > 0)
c5aa993b 3800 found_pos = 1;
c906108c 3801 else if (tmp < 0)
c5aa993b 3802 found_neg = 1;
c906108c
SS
3803 }
3804
3805 if (found_pos)
3806 {
3807 if (found_neg)
c5aa993b 3808 return 1; /* incomparable */
c906108c 3809 else
c5aa993b 3810 return 3; /* A > B */
c906108c 3811 }
c5aa993b
JM
3812 else
3813 /* no positives */
c906108c
SS
3814 {
3815 if (found_neg)
c5aa993b 3816 return 2; /* A < B */
c906108c 3817 else
c5aa993b 3818 return 0; /* A == B */
c906108c
SS
3819 }
3820}
3821
6b1747cd 3822/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3823 types of an argument list (ARGS). Return the badness vector. This
3824 has ARGS.size() + 1 entries. */
c906108c 3825
82ceee50 3826badness_vector
6b1747cd
PA
3827rank_function (gdb::array_view<type *> parms,
3828 gdb::array_view<value *> args)
c906108c 3829{
82ceee50
PA
3830 /* add 1 for the length-match rank. */
3831 badness_vector bv;
3832 bv.reserve (1 + args.size ());
c906108c
SS
3833
3834 /* First compare the lengths of the supplied lists.
7ba81444 3835 If there is a mismatch, set it to a high value. */
c5aa993b 3836
c906108c 3837 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3838 arguments and ellipsis parameter lists, we should consider those
3839 and rank the length-match more finely. */
c906108c 3840
82ceee50
PA
3841 bv.push_back ((args.size () != parms.size ())
3842 ? LENGTH_MISMATCH_BADNESS
3843 : EXACT_MATCH_BADNESS);
c906108c 3844
0963b4bd 3845 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3846 size_t min_len = std::min (parms.size (), args.size ());
3847
3848 for (size_t i = 0; i < min_len; i++)
3849 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3850 args[i]));
c906108c 3851
0963b4bd 3852 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3853 for (size_t i = min_len; i < args.size (); i++)
3854 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3855
3856 return bv;
3857}
3858
973ccf8b
DJ
3859/* Compare the names of two integer types, assuming that any sign
3860 qualifiers have been checked already. We do it this way because
3861 there may be an "int" in the name of one of the types. */
3862
3863static int
3864integer_types_same_name_p (const char *first, const char *second)
3865{
3866 int first_p, second_p;
3867
7ba81444
MS
3868 /* If both are shorts, return 1; if neither is a short, keep
3869 checking. */
973ccf8b
DJ
3870 first_p = (strstr (first, "short") != NULL);
3871 second_p = (strstr (second, "short") != NULL);
3872 if (first_p && second_p)
3873 return 1;
3874 if (first_p || second_p)
3875 return 0;
3876
3877 /* Likewise for long. */
3878 first_p = (strstr (first, "long") != NULL);
3879 second_p = (strstr (second, "long") != NULL);
3880 if (first_p && second_p)
3881 return 1;
3882 if (first_p || second_p)
3883 return 0;
3884
3885 /* Likewise for char. */
3886 first_p = (strstr (first, "char") != NULL);
3887 second_p = (strstr (second, "char") != NULL);
3888 if (first_p && second_p)
3889 return 1;
3890 if (first_p || second_p)
3891 return 0;
3892
3893 /* They must both be ints. */
3894 return 1;
3895}
3896
894882e3
TT
3897/* Compares type A to type B. Returns true if they represent the same
3898 type, false otherwise. */
7062b0a0 3899
894882e3 3900bool
7062b0a0
SW
3901types_equal (struct type *a, struct type *b)
3902{
3903 /* Identical type pointers. */
3904 /* However, this still doesn't catch all cases of same type for b
3905 and a. The reason is that builtin types are different from
3906 the same ones constructed from the object. */
3907 if (a == b)
894882e3 3908 return true;
7062b0a0
SW
3909
3910 /* Resolve typedefs */
3911 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3912 a = check_typedef (a);
3913 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3914 b = check_typedef (b);
3915
3916 /* If after resolving typedefs a and b are not of the same type
3917 code then they are not equal. */
3918 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3919 return false;
7062b0a0
SW
3920
3921 /* If a and b are both pointers types or both reference types then
3922 they are equal of the same type iff the objects they refer to are
3923 of the same type. */
3924 if (TYPE_CODE (a) == TYPE_CODE_PTR
3925 || TYPE_CODE (a) == TYPE_CODE_REF)
3926 return types_equal (TYPE_TARGET_TYPE (a),
3927 TYPE_TARGET_TYPE (b));
3928
0963b4bd 3929 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3930 are exactly the same. This happens when we generate method
3931 stubs. The types won't point to the same address, but they
0963b4bd 3932 really are the same. */
7062b0a0
SW
3933
3934 if (TYPE_NAME (a) && TYPE_NAME (b)
3935 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3936 return true;
7062b0a0
SW
3937
3938 /* Check if identical after resolving typedefs. */
3939 if (a == b)
894882e3 3940 return true;
7062b0a0 3941
9ce98649
TT
3942 /* Two function types are equal if their argument and return types
3943 are equal. */
3944 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3945 {
3946 int i;
3947
3948 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3949 return false;
9ce98649
TT
3950
3951 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3952 return false;
9ce98649
TT
3953
3954 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3955 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3956 return false;
9ce98649 3957
894882e3 3958 return true;
9ce98649
TT
3959 }
3960
894882e3 3961 return false;
7062b0a0 3962}
ca092b61
DE
3963\f
3964/* Deep comparison of types. */
3965
3966/* An entry in the type-equality bcache. */
3967
894882e3 3968struct type_equality_entry
ca092b61 3969{
894882e3
TT
3970 type_equality_entry (struct type *t1, struct type *t2)
3971 : type1 (t1),
3972 type2 (t2)
3973 {
3974 }
ca092b61 3975
894882e3
TT
3976 struct type *type1, *type2;
3977};
ca092b61 3978
894882e3
TT
3979/* A helper function to compare two strings. Returns true if they are
3980 the same, false otherwise. Handles NULLs properly. */
ca092b61 3981
894882e3 3982static bool
ca092b61
DE
3983compare_maybe_null_strings (const char *s, const char *t)
3984{
894882e3
TT
3985 if (s == NULL || t == NULL)
3986 return s == t;
ca092b61
DE
3987 return strcmp (s, t) == 0;
3988}
3989
3990/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3991 "deep" equality. Returns true if the types are considered the
3992 same, false otherwise. */
ca092b61 3993
894882e3 3994static bool
ca092b61 3995check_types_equal (struct type *type1, struct type *type2,
894882e3 3996 std::vector<type_equality_entry> *worklist)
ca092b61 3997{
f168693b
SM
3998 type1 = check_typedef (type1);
3999 type2 = check_typedef (type2);
ca092b61
DE
4000
4001 if (type1 == type2)
894882e3 4002 return true;
ca092b61
DE
4003
4004 if (TYPE_CODE (type1) != TYPE_CODE (type2)
4005 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4006 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4007 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 4008 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
4009 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4010 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4011 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4012 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4013 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 4014 return false;
ca092b61 4015
e86ca25f 4016 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 4017 return false;
ca092b61 4018 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 4019 return false;
ca092b61
DE
4020
4021 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
4022 {
0f59d5fc 4023 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 4024 return false;
ca092b61
DE
4025 }
4026 else
4027 {
4028 int i;
4029
4030 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
4031 {
4032 const struct field *field1 = &TYPE_FIELD (type1, i);
4033 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
4034
4035 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4036 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4037 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 4038 return false;
ca092b61
DE
4039 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4040 FIELD_NAME (*field2)))
894882e3 4041 return false;
ca092b61
DE
4042 switch (FIELD_LOC_KIND (*field1))
4043 {
4044 case FIELD_LOC_KIND_BITPOS:
4045 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 4046 return false;
ca092b61
DE
4047 break;
4048 case FIELD_LOC_KIND_ENUMVAL:
4049 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 4050 return false;
ca092b61
DE
4051 break;
4052 case FIELD_LOC_KIND_PHYSADDR:
4053 if (FIELD_STATIC_PHYSADDR (*field1)
4054 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 4055 return false;
ca092b61
DE
4056 break;
4057 case FIELD_LOC_KIND_PHYSNAME:
4058 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4059 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 4060 return false;
ca092b61
DE
4061 break;
4062 case FIELD_LOC_KIND_DWARF_BLOCK:
4063 {
4064 struct dwarf2_locexpr_baton *block1, *block2;
4065
4066 block1 = FIELD_DWARF_BLOCK (*field1);
4067 block2 = FIELD_DWARF_BLOCK (*field2);
4068 if (block1->per_cu != block2->per_cu
4069 || block1->size != block2->size
4070 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 4071 return false;
ca092b61
DE
4072 }
4073 break;
4074 default:
4075 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4076 "%d by check_types_equal"),
4077 FIELD_LOC_KIND (*field1));
4078 }
4079
894882e3 4080 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
4081 }
4082 }
4083
4084 if (TYPE_TARGET_TYPE (type1) != NULL)
4085 {
ca092b61 4086 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 4087 return false;
ca092b61 4088
894882e3
TT
4089 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4090 TYPE_TARGET_TYPE (type2));
ca092b61
DE
4091 }
4092 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 4093 return false;
ca092b61 4094
894882e3 4095 return true;
ca092b61
DE
4096}
4097
894882e3
TT
4098/* Check types on a worklist for equality. Returns false if any pair
4099 is not equal, true if they are all considered equal. */
ca092b61 4100
894882e3
TT
4101static bool
4102check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 4103 gdb::bcache *cache)
ca092b61 4104{
894882e3 4105 while (!worklist->empty ())
ca092b61 4106 {
ca092b61
DE
4107 int added;
4108
894882e3
TT
4109 struct type_equality_entry entry = std::move (worklist->back ());
4110 worklist->pop_back ();
ca092b61
DE
4111
4112 /* If the type pair has already been visited, we know it is
4113 ok. */
25629dfd 4114 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
4115 if (!added)
4116 continue;
4117
894882e3
TT
4118 if (!check_types_equal (entry.type1, entry.type2, worklist))
4119 return false;
ca092b61 4120 }
7062b0a0 4121
894882e3 4122 return true;
ca092b61
DE
4123}
4124
894882e3
TT
4125/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4126 "deep comparison". Otherwise return false. */
ca092b61 4127
894882e3 4128bool
ca092b61
DE
4129types_deeply_equal (struct type *type1, struct type *type2)
4130{
894882e3 4131 std::vector<type_equality_entry> worklist;
ca092b61
DE
4132
4133 gdb_assert (type1 != NULL && type2 != NULL);
4134
4135 /* Early exit for the simple case. */
4136 if (type1 == type2)
894882e3 4137 return true;
ca092b61 4138
dfb65191 4139 gdb::bcache cache (nullptr, nullptr);
894882e3 4140 worklist.emplace_back (type1, type2);
25629dfd 4141 return check_types_worklist (&worklist, &cache);
ca092b61 4142}
3f2f83dd
KB
4143
4144/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4145 Otherwise return one. */
4146
4147int
4148type_not_allocated (const struct type *type)
4149{
4150 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4151
4152 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4153 && !TYPE_DYN_PROP_ADDR (prop));
4154}
4155
4156/* Associated status of type TYPE. Return zero if type TYPE is associated.
4157 Otherwise return one. */
4158
4159int
4160type_not_associated (const struct type *type)
4161{
4162 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4163
4164 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4165 && !TYPE_DYN_PROP_ADDR (prop));
4166}
9293fc63
SM
4167
4168/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4169
4170static struct rank
4171rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4172{
4173 struct rank rank = {0,0};
4174
4175 switch (TYPE_CODE (arg))
4176 {
4177 case TYPE_CODE_PTR:
4178
4179 /* Allowed pointer conversions are:
4180 (a) pointer to void-pointer conversion. */
4181 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
4182 return VOID_PTR_CONVERSION_BADNESS;
4183
4184 /* (b) pointer to ancestor-pointer conversion. */
4185 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4186 TYPE_TARGET_TYPE (arg),
4187 0);
4188 if (rank.subrank >= 0)
4189 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4190
4191 return INCOMPATIBLE_TYPE_BADNESS;
4192 case TYPE_CODE_ARRAY:
4193 {
4194 struct type *t1 = TYPE_TARGET_TYPE (parm);
4195 struct type *t2 = TYPE_TARGET_TYPE (arg);
4196
4197 if (types_equal (t1, t2))
4198 {
4199 /* Make sure they are CV equal. */
4200 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4201 rank.subrank |= CV_CONVERSION_CONST;
4202 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4203 rank.subrank |= CV_CONVERSION_VOLATILE;
4204 if (rank.subrank != 0)
4205 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4206 return EXACT_MATCH_BADNESS;
4207 }
4208 return INCOMPATIBLE_TYPE_BADNESS;
4209 }
4210 case TYPE_CODE_FUNC:
4211 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4212 case TYPE_CODE_INT:
4213 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
4214 {
4215 if (value_as_long (value) == 0)
4216 {
4217 /* Null pointer conversion: allow it to be cast to a pointer.
4218 [4.10.1 of C++ standard draft n3290] */
4219 return NULL_POINTER_CONVERSION_BADNESS;
4220 }
4221 else
4222 {
4223 /* If type checking is disabled, allow the conversion. */
4224 if (!strict_type_checking)
4225 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4226 }
4227 }
4228 /* fall through */
4229 case TYPE_CODE_ENUM:
4230 case TYPE_CODE_FLAGS:
4231 case TYPE_CODE_CHAR:
4232 case TYPE_CODE_RANGE:
4233 case TYPE_CODE_BOOL:
4234 default:
4235 return INCOMPATIBLE_TYPE_BADNESS;
4236 }
4237}
4238
b9f4512f
SM
4239/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4240
4241static struct rank
4242rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4243{
4244 switch (TYPE_CODE (arg))
4245 {
4246 case TYPE_CODE_PTR:
4247 case TYPE_CODE_ARRAY:
4248 return rank_one_type (TYPE_TARGET_TYPE (parm),
4249 TYPE_TARGET_TYPE (arg), NULL);
4250 default:
4251 return INCOMPATIBLE_TYPE_BADNESS;
4252 }
4253}
4254
f1f832d6
SM
4255/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4256
4257static struct rank
4258rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4259{
4260 switch (TYPE_CODE (arg))
4261 {
4262 case TYPE_CODE_PTR: /* funcptr -> func */
4263 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4264 default:
4265 return INCOMPATIBLE_TYPE_BADNESS;
4266 }
4267}
4268
34910087
SM
4269/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4270
4271static struct rank
4272rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4273{
4274 switch (TYPE_CODE (arg))
4275 {
4276 case TYPE_CODE_INT:
4277 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4278 {
4279 /* Deal with signed, unsigned, and plain chars and
4280 signed and unsigned ints. */
4281 if (TYPE_NOSIGN (parm))
4282 {
4283 /* This case only for character types. */
4284 if (TYPE_NOSIGN (arg))
4285 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4286 else /* signed/unsigned char -> plain char */
4287 return INTEGER_CONVERSION_BADNESS;
4288 }
4289 else if (TYPE_UNSIGNED (parm))
4290 {
4291 if (TYPE_UNSIGNED (arg))
4292 {
4293 /* unsigned int -> unsigned int, or
4294 unsigned long -> unsigned long */
4295 if (integer_types_same_name_p (TYPE_NAME (parm),
4296 TYPE_NAME (arg)))
4297 return EXACT_MATCH_BADNESS;
4298 else if (integer_types_same_name_p (TYPE_NAME (arg),
4299 "int")
4300 && integer_types_same_name_p (TYPE_NAME (parm),
4301 "long"))
4302 /* unsigned int -> unsigned long */
4303 return INTEGER_PROMOTION_BADNESS;
4304 else
4305 /* unsigned long -> unsigned int */
4306 return INTEGER_CONVERSION_BADNESS;
4307 }
4308 else
4309 {
4310 if (integer_types_same_name_p (TYPE_NAME (arg),
4311 "long")
4312 && integer_types_same_name_p (TYPE_NAME (parm),
4313 "int"))
4314 /* signed long -> unsigned int */
4315 return INTEGER_CONVERSION_BADNESS;
4316 else
4317 /* signed int/long -> unsigned int/long */
4318 return INTEGER_CONVERSION_BADNESS;
4319 }
4320 }
4321 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4322 {
4323 if (integer_types_same_name_p (TYPE_NAME (parm),
4324 TYPE_NAME (arg)))
4325 return EXACT_MATCH_BADNESS;
4326 else if (integer_types_same_name_p (TYPE_NAME (arg),
4327 "int")
4328 && integer_types_same_name_p (TYPE_NAME (parm),
4329 "long"))
4330 return INTEGER_PROMOTION_BADNESS;
4331 else
4332 return INTEGER_CONVERSION_BADNESS;
4333 }
4334 else
4335 return INTEGER_CONVERSION_BADNESS;
4336 }
4337 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4338 return INTEGER_PROMOTION_BADNESS;
4339 else
4340 return INTEGER_CONVERSION_BADNESS;
4341 case TYPE_CODE_ENUM:
4342 case TYPE_CODE_FLAGS:
4343 case TYPE_CODE_CHAR:
4344 case TYPE_CODE_RANGE:
4345 case TYPE_CODE_BOOL:
4346 if (TYPE_DECLARED_CLASS (arg))
4347 return INCOMPATIBLE_TYPE_BADNESS;
4348 return INTEGER_PROMOTION_BADNESS;
4349 case TYPE_CODE_FLT:
4350 return INT_FLOAT_CONVERSION_BADNESS;
4351 case TYPE_CODE_PTR:
4352 return NS_POINTER_CONVERSION_BADNESS;
4353 default:
4354 return INCOMPATIBLE_TYPE_BADNESS;
4355 }
4356}
4357
793cd1d2
SM
4358/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4359
4360static struct rank
4361rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4362{
4363 switch (TYPE_CODE (arg))
4364 {
4365 case TYPE_CODE_INT:
4366 case TYPE_CODE_CHAR:
4367 case TYPE_CODE_RANGE:
4368 case TYPE_CODE_BOOL:
4369 case TYPE_CODE_ENUM:
4370 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4371 return INCOMPATIBLE_TYPE_BADNESS;
4372 return INTEGER_CONVERSION_BADNESS;
4373 case TYPE_CODE_FLT:
4374 return INT_FLOAT_CONVERSION_BADNESS;
4375 default:
4376 return INCOMPATIBLE_TYPE_BADNESS;
4377 }
4378}
4379
41ea4728
SM
4380/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4381
4382static struct rank
4383rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4384{
4385 switch (TYPE_CODE (arg))
4386 {
4387 case TYPE_CODE_RANGE:
4388 case TYPE_CODE_BOOL:
4389 case TYPE_CODE_ENUM:
4390 if (TYPE_DECLARED_CLASS (arg))
4391 return INCOMPATIBLE_TYPE_BADNESS;
4392 return INTEGER_CONVERSION_BADNESS;
4393 case TYPE_CODE_FLT:
4394 return INT_FLOAT_CONVERSION_BADNESS;
4395 case TYPE_CODE_INT:
4396 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4397 return INTEGER_CONVERSION_BADNESS;
4398 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4399 return INTEGER_PROMOTION_BADNESS;
4400 /* fall through */
4401 case TYPE_CODE_CHAR:
4402 /* Deal with signed, unsigned, and plain chars for C++ and
4403 with int cases falling through from previous case. */
4404 if (TYPE_NOSIGN (parm))
4405 {
4406 if (TYPE_NOSIGN (arg))
4407 return EXACT_MATCH_BADNESS;
4408 else
4409 return INTEGER_CONVERSION_BADNESS;
4410 }
4411 else if (TYPE_UNSIGNED (parm))
4412 {
4413 if (TYPE_UNSIGNED (arg))
4414 return EXACT_MATCH_BADNESS;
4415 else
4416 return INTEGER_PROMOTION_BADNESS;
4417 }
4418 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4419 return EXACT_MATCH_BADNESS;
4420 else
4421 return INTEGER_CONVERSION_BADNESS;
4422 default:
4423 return INCOMPATIBLE_TYPE_BADNESS;
4424 }
4425}
4426
0dd322dc
SM
4427/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4428
4429static struct rank
4430rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4431{
4432 switch (TYPE_CODE (arg))
4433 {
4434 case TYPE_CODE_INT:
4435 case TYPE_CODE_CHAR:
4436 case TYPE_CODE_RANGE:
4437 case TYPE_CODE_BOOL:
4438 case TYPE_CODE_ENUM:
4439 return INTEGER_CONVERSION_BADNESS;
4440 case TYPE_CODE_FLT:
4441 return INT_FLOAT_CONVERSION_BADNESS;
4442 default:
4443 return INCOMPATIBLE_TYPE_BADNESS;
4444 }
4445}
4446
2c509035
SM
4447/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4448
4449static struct rank
4450rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4451{
4452 switch (TYPE_CODE (arg))
4453 {
4454 /* n3290 draft, section 4.12.1 (conv.bool):
4455
4456 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4457 pointer to member type can be converted to a prvalue of type
4458 bool. A zero value, null pointer value, or null member pointer
4459 value is converted to false; any other value is converted to
4460 true. A prvalue of type std::nullptr_t can be converted to a
4461 prvalue of type bool; the resulting value is false." */
4462 case TYPE_CODE_INT:
4463 case TYPE_CODE_CHAR:
4464 case TYPE_CODE_ENUM:
4465 case TYPE_CODE_FLT:
4466 case TYPE_CODE_MEMBERPTR:
4467 case TYPE_CODE_PTR:
4468 return BOOL_CONVERSION_BADNESS;
4469 case TYPE_CODE_RANGE:
4470 return INCOMPATIBLE_TYPE_BADNESS;
4471 case TYPE_CODE_BOOL:
4472 return EXACT_MATCH_BADNESS;
4473 default:
4474 return INCOMPATIBLE_TYPE_BADNESS;
4475 }
4476}
4477
7f17b20d
SM
4478/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4479
4480static struct rank
4481rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4482{
4483 switch (TYPE_CODE (arg))
4484 {
4485 case TYPE_CODE_FLT:
4486 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4487 return FLOAT_PROMOTION_BADNESS;
4488 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4489 return EXACT_MATCH_BADNESS;
4490 else
4491 return FLOAT_CONVERSION_BADNESS;
4492 case TYPE_CODE_INT:
4493 case TYPE_CODE_BOOL:
4494 case TYPE_CODE_ENUM:
4495 case TYPE_CODE_RANGE:
4496 case TYPE_CODE_CHAR:
4497 return INT_FLOAT_CONVERSION_BADNESS;
4498 default:
4499 return INCOMPATIBLE_TYPE_BADNESS;
4500 }
4501}
4502
2598a94b
SM
4503/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4504
4505static struct rank
4506rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4507{
4508 switch (TYPE_CODE (arg))
4509 { /* Strictly not needed for C++, but... */
4510 case TYPE_CODE_FLT:
4511 return FLOAT_PROMOTION_BADNESS;
4512 case TYPE_CODE_COMPLEX:
4513 return EXACT_MATCH_BADNESS;
4514 default:
4515 return INCOMPATIBLE_TYPE_BADNESS;
4516 }
4517}
4518
595f96a9
SM
4519/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4520
4521static struct rank
4522rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4523{
4524 struct rank rank = {0, 0};
4525
4526 switch (TYPE_CODE (arg))
4527 {
4528 case TYPE_CODE_STRUCT:
4529 /* Check for derivation */
4530 rank.subrank = distance_to_ancestor (parm, arg, 0);
4531 if (rank.subrank >= 0)
4532 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4533 /* fall through */
4534 default:
4535 return INCOMPATIBLE_TYPE_BADNESS;
4536 }
4537}
4538
f09ce22d
SM
4539/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4540
4541static struct rank
4542rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4543{
4544 switch (TYPE_CODE (arg))
4545 {
4546 /* Not in C++ */
4547 case TYPE_CODE_SET:
4548 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4549 TYPE_FIELD_TYPE (arg, 0), NULL);
4550 default:
4551 return INCOMPATIBLE_TYPE_BADNESS;
4552 }
4553}
4554
c906108c
SS
4555/* Compare one type (PARM) for compatibility with another (ARG).
4556 * PARM is intended to be the parameter type of a function; and
4557 * ARG is the supplied argument's type. This function tests if
4558 * the latter can be converted to the former.
da096638 4559 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4560 *
4561 * Return 0 if they are identical types;
4562 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4563 * PARM is to ARG. The higher the return value, the worse the match.
4564 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4565
6403aeea 4566struct rank
da096638 4567rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4568{
a9d5ef47 4569 struct rank rank = {0,0};
7062b0a0 4570
c906108c
SS
4571 /* Resolve typedefs */
4572 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4573 parm = check_typedef (parm);
4574 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4575 arg = check_typedef (arg);
4576
e15c3eb4 4577 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4578 {
e15c3eb4
KS
4579 if (VALUE_LVAL (value) == not_lval)
4580 {
4581 /* Rvalues should preferably bind to rvalue references or const
4582 lvalue references. */
4583 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4584 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4585 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4586 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4587 else
4588 return INCOMPATIBLE_TYPE_BADNESS;
4589 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4590 }
4591 else
4592 {
330f1d38 4593 /* It's illegal to pass an lvalue as an rvalue. */
e15c3eb4 4594 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
330f1d38 4595 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4596 }
15c0a2a9
AV
4597 }
4598
4599 if (types_equal (parm, arg))
15c0a2a9 4600 {
e15c3eb4
KS
4601 struct type *t1 = parm;
4602 struct type *t2 = arg;
15c0a2a9 4603
e15c3eb4
KS
4604 /* For pointers and references, compare target type. */
4605 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4606 {
4607 t1 = TYPE_TARGET_TYPE (parm);
4608 t2 = TYPE_TARGET_TYPE (arg);
4609 }
15c0a2a9 4610
e15c3eb4
KS
4611 /* Make sure they are CV equal, too. */
4612 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4613 rank.subrank |= CV_CONVERSION_CONST;
4614 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4615 rank.subrank |= CV_CONVERSION_VOLATILE;
4616 if (rank.subrank != 0)
4617 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4618 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4619 }
4620
db577aea 4621 /* See through references, since we can almost make non-references
7ba81444 4622 references. */
aa006118
AV
4623
4624 if (TYPE_IS_REFERENCE (arg))
da096638 4625 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4626 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4627 if (TYPE_IS_REFERENCE (parm))
da096638 4628 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4629 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4630 if (overload_debug)
7ba81444
MS
4631 /* Debugging only. */
4632 fprintf_filtered (gdb_stderr,
4633 "------ Arg is %s [%d], parm is %s [%d]\n",
4634 TYPE_NAME (arg), TYPE_CODE (arg),
4635 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4636
0963b4bd 4637 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4638
4639 switch (TYPE_CODE (parm))
4640 {
c5aa993b 4641 case TYPE_CODE_PTR:
9293fc63 4642 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4643 case TYPE_CODE_ARRAY:
b9f4512f 4644 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4645 case TYPE_CODE_FUNC:
f1f832d6 4646 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4647 case TYPE_CODE_INT:
34910087 4648 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4649 case TYPE_CODE_ENUM:
793cd1d2 4650 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4651 case TYPE_CODE_CHAR:
41ea4728 4652 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4653 case TYPE_CODE_RANGE:
0dd322dc 4654 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4655 case TYPE_CODE_BOOL:
2c509035 4656 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4657 case TYPE_CODE_FLT:
7f17b20d 4658 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4659 case TYPE_CODE_COMPLEX:
2598a94b 4660 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4661 case TYPE_CODE_STRUCT:
595f96a9 4662 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4663 case TYPE_CODE_SET:
f09ce22d 4664 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4665 default:
4666 return INCOMPATIBLE_TYPE_BADNESS;
4667 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4668}
4669
0963b4bd 4670/* End of functions for overload resolution. */
5212577a
DE
4671\f
4672/* Routines to pretty-print types. */
c906108c 4673
c906108c 4674static void
fba45db2 4675print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4676{
4677 int bitno;
4678
4679 for (bitno = 0; bitno < nbits; bitno++)
4680 {
4681 if ((bitno % 8) == 0)
4682 {
4683 puts_filtered (" ");
4684 }
4685 if (B_TST (bits, bitno))
a3f17187 4686 printf_filtered (("1"));
c906108c 4687 else
a3f17187 4688 printf_filtered (("0"));
c906108c
SS
4689 }
4690}
4691
ad2f7632 4692/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4693 include it since we may get into a infinitely recursive
4694 situation. */
c906108c
SS
4695
4696static void
4c9e8482 4697print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4698{
4699 if (args != NULL)
4700 {
ad2f7632
DJ
4701 int i;
4702
4703 for (i = 0; i < nargs; i++)
4c9e8482
DE
4704 {
4705 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4706 args[i].name != NULL ? args[i].name : "<NULL>");
4707 recursive_dump_type (args[i].type, spaces + 2);
4708 }
c906108c
SS
4709 }
4710}
4711
d6a843b5
JK
4712int
4713field_is_static (struct field *f)
4714{
4715 /* "static" fields are the fields whose location is not relative
4716 to the address of the enclosing struct. It would be nice to
4717 have a dedicated flag that would be set for static fields when
4718 the type is being created. But in practice, checking the field
254e6b9e 4719 loc_kind should give us an accurate answer. */
d6a843b5
JK
4720 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4721 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4722}
4723
c906108c 4724static void
fba45db2 4725dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4726{
4727 int method_idx;
4728 int overload_idx;
4729 struct fn_field *f;
4730
4731 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4732 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4733 printf_filtered ("\n");
4734 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4735 {
4736 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4737 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4738 method_idx,
4739 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4740 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4741 gdb_stdout);
a3f17187 4742 printf_filtered (_(") length %d\n"),
c906108c
SS
4743 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4744 for (overload_idx = 0;
4745 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4746 overload_idx++)
4747 {
4748 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4749 overload_idx,
4750 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4751 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4752 gdb_stdout);
c906108c
SS
4753 printf_filtered (")\n");
4754 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4755 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4756 gdb_stdout);
c906108c
SS
4757 printf_filtered ("\n");
4758
4759 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4760 spaces + 8 + 2);
4761
4762 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4763 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4764 gdb_stdout);
c906108c 4765 printf_filtered ("\n");
4c9e8482
DE
4766 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4767 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4768 spaces + 8 + 2);
c906108c 4769 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4770 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4771 gdb_stdout);
c906108c
SS
4772 printf_filtered ("\n");
4773
4774 printfi_filtered (spaces + 8, "is_const %d\n",
4775 TYPE_FN_FIELD_CONST (f, overload_idx));
4776 printfi_filtered (spaces + 8, "is_volatile %d\n",
4777 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4778 printfi_filtered (spaces + 8, "is_private %d\n",
4779 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4780 printfi_filtered (spaces + 8, "is_protected %d\n",
4781 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4782 printfi_filtered (spaces + 8, "is_stub %d\n",
4783 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4784 printfi_filtered (spaces + 8, "defaulted %d\n",
4785 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4786 printfi_filtered (spaces + 8, "is_deleted %d\n",
4787 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4788 printfi_filtered (spaces + 8, "voffset %u\n",
4789 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4790 }
4791 }
4792}
4793
4794static void
fba45db2 4795print_cplus_stuff (struct type *type, int spaces)
c906108c 4796{
ae6ae975
DE
4797 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4798 printfi_filtered (spaces, "vptr_basetype ");
4799 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4800 puts_filtered ("\n");
4801 if (TYPE_VPTR_BASETYPE (type) != NULL)
4802 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4803
c906108c
SS
4804 printfi_filtered (spaces, "n_baseclasses %d\n",
4805 TYPE_N_BASECLASSES (type));
4806 printfi_filtered (spaces, "nfn_fields %d\n",
4807 TYPE_NFN_FIELDS (type));
c906108c
SS
4808 if (TYPE_N_BASECLASSES (type) > 0)
4809 {
4810 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4811 TYPE_N_BASECLASSES (type));
7ba81444
MS
4812 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4813 gdb_stdout);
c906108c
SS
4814 printf_filtered (")");
4815
4816 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4817 TYPE_N_BASECLASSES (type));
4818 puts_filtered ("\n");
4819 }
4820 if (TYPE_NFIELDS (type) > 0)
4821 {
4822 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4823 {
7ba81444
MS
4824 printfi_filtered (spaces,
4825 "private_field_bits (%d bits at *",
c906108c 4826 TYPE_NFIELDS (type));
7ba81444
MS
4827 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4828 gdb_stdout);
c906108c
SS
4829 printf_filtered (")");
4830 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4831 TYPE_NFIELDS (type));
4832 puts_filtered ("\n");
4833 }
4834 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4835 {
7ba81444
MS
4836 printfi_filtered (spaces,
4837 "protected_field_bits (%d bits at *",
c906108c 4838 TYPE_NFIELDS (type));
7ba81444
MS
4839 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4840 gdb_stdout);
c906108c
SS
4841 printf_filtered (")");
4842 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4843 TYPE_NFIELDS (type));
4844 puts_filtered ("\n");
4845 }
4846 }
4847 if (TYPE_NFN_FIELDS (type) > 0)
4848 {
4849 dump_fn_fieldlists (type, spaces);
4850 }
e35000a7
TBA
4851
4852 printfi_filtered (spaces, "calling_convention %d\n",
4853 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4854}
4855
b4ba55a1
JB
4856/* Print the contents of the TYPE's type_specific union, assuming that
4857 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4858
4859static void
4860print_gnat_stuff (struct type *type, int spaces)
4861{
4862 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4863
8cd00c59
PMR
4864 if (descriptive_type == NULL)
4865 printfi_filtered (spaces + 2, "no descriptive type\n");
4866 else
4867 {
4868 printfi_filtered (spaces + 2, "descriptive type\n");
4869 recursive_dump_type (descriptive_type, spaces + 4);
4870 }
b4ba55a1
JB
4871}
4872
c906108c
SS
4873static struct obstack dont_print_type_obstack;
4874
4875void
fba45db2 4876recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4877{
4878 int idx;
4879
4880 if (spaces == 0)
4881 obstack_begin (&dont_print_type_obstack, 0);
4882
4883 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4884 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4885 {
4886 struct type **first_dont_print
7ba81444 4887 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4888
7ba81444
MS
4889 int i = (struct type **)
4890 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4891
4892 while (--i >= 0)
4893 {
4894 if (type == first_dont_print[i])
4895 {
4896 printfi_filtered (spaces, "type node ");
d4f3574e 4897 gdb_print_host_address (type, gdb_stdout);
a3f17187 4898 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4899 return;
4900 }
4901 }
4902
4903 obstack_ptr_grow (&dont_print_type_obstack, type);
4904 }
4905
4906 printfi_filtered (spaces, "type node ");
d4f3574e 4907 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4908 printf_filtered ("\n");
4909 printfi_filtered (spaces, "name '%s' (",
4910 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4911 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4912 printf_filtered (")\n");
c906108c
SS
4913 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4914 switch (TYPE_CODE (type))
4915 {
c5aa993b
JM
4916 case TYPE_CODE_UNDEF:
4917 printf_filtered ("(TYPE_CODE_UNDEF)");
4918 break;
4919 case TYPE_CODE_PTR:
4920 printf_filtered ("(TYPE_CODE_PTR)");
4921 break;
4922 case TYPE_CODE_ARRAY:
4923 printf_filtered ("(TYPE_CODE_ARRAY)");
4924 break;
4925 case TYPE_CODE_STRUCT:
4926 printf_filtered ("(TYPE_CODE_STRUCT)");
4927 break;
4928 case TYPE_CODE_UNION:
4929 printf_filtered ("(TYPE_CODE_UNION)");
4930 break;
4931 case TYPE_CODE_ENUM:
4932 printf_filtered ("(TYPE_CODE_ENUM)");
4933 break;
4f2aea11
MK
4934 case TYPE_CODE_FLAGS:
4935 printf_filtered ("(TYPE_CODE_FLAGS)");
4936 break;
c5aa993b
JM
4937 case TYPE_CODE_FUNC:
4938 printf_filtered ("(TYPE_CODE_FUNC)");
4939 break;
4940 case TYPE_CODE_INT:
4941 printf_filtered ("(TYPE_CODE_INT)");
4942 break;
4943 case TYPE_CODE_FLT:
4944 printf_filtered ("(TYPE_CODE_FLT)");
4945 break;
4946 case TYPE_CODE_VOID:
4947 printf_filtered ("(TYPE_CODE_VOID)");
4948 break;
4949 case TYPE_CODE_SET:
4950 printf_filtered ("(TYPE_CODE_SET)");
4951 break;
4952 case TYPE_CODE_RANGE:
4953 printf_filtered ("(TYPE_CODE_RANGE)");
4954 break;
4955 case TYPE_CODE_STRING:
4956 printf_filtered ("(TYPE_CODE_STRING)");
4957 break;
4958 case TYPE_CODE_ERROR:
4959 printf_filtered ("(TYPE_CODE_ERROR)");
4960 break;
0d5de010
DJ
4961 case TYPE_CODE_MEMBERPTR:
4962 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4963 break;
4964 case TYPE_CODE_METHODPTR:
4965 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4966 break;
4967 case TYPE_CODE_METHOD:
4968 printf_filtered ("(TYPE_CODE_METHOD)");
4969 break;
4970 case TYPE_CODE_REF:
4971 printf_filtered ("(TYPE_CODE_REF)");
4972 break;
4973 case TYPE_CODE_CHAR:
4974 printf_filtered ("(TYPE_CODE_CHAR)");
4975 break;
4976 case TYPE_CODE_BOOL:
4977 printf_filtered ("(TYPE_CODE_BOOL)");
4978 break;
e9e79dd9
FF
4979 case TYPE_CODE_COMPLEX:
4980 printf_filtered ("(TYPE_CODE_COMPLEX)");
4981 break;
c5aa993b
JM
4982 case TYPE_CODE_TYPEDEF:
4983 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4984 break;
5c4e30ca
DC
4985 case TYPE_CODE_NAMESPACE:
4986 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4987 break;
c5aa993b
JM
4988 default:
4989 printf_filtered ("(UNKNOWN TYPE CODE)");
4990 break;
c906108c
SS
4991 }
4992 puts_filtered ("\n");
cc1defb1 4993 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4994 if (TYPE_OBJFILE_OWNED (type))
4995 {
4996 printfi_filtered (spaces, "objfile ");
4997 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4998 }
4999 else
5000 {
5001 printfi_filtered (spaces, "gdbarch ");
5002 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5003 }
c906108c
SS
5004 printf_filtered ("\n");
5005 printfi_filtered (spaces, "target_type ");
d4f3574e 5006 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
5007 printf_filtered ("\n");
5008 if (TYPE_TARGET_TYPE (type) != NULL)
5009 {
5010 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5011 }
5012 printfi_filtered (spaces, "pointer_type ");
d4f3574e 5013 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
5014 printf_filtered ("\n");
5015 printfi_filtered (spaces, "reference_type ");
d4f3574e 5016 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 5017 printf_filtered ("\n");
2fdde8f8
DJ
5018 printfi_filtered (spaces, "type_chain ");
5019 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 5020 printf_filtered ("\n");
7ba81444
MS
5021 printfi_filtered (spaces, "instance_flags 0x%x",
5022 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
5023 if (TYPE_CONST (type))
5024 {
a9ff5f12 5025 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
5026 }
5027 if (TYPE_VOLATILE (type))
5028 {
a9ff5f12 5029 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
5030 }
5031 if (TYPE_CODE_SPACE (type))
5032 {
a9ff5f12 5033 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
5034 }
5035 if (TYPE_DATA_SPACE (type))
5036 {
a9ff5f12 5037 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 5038 }
8b2dbe47
KB
5039 if (TYPE_ADDRESS_CLASS_1 (type))
5040 {
a9ff5f12 5041 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
5042 }
5043 if (TYPE_ADDRESS_CLASS_2 (type))
5044 {
a9ff5f12 5045 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 5046 }
06d66ee9
TT
5047 if (TYPE_RESTRICT (type))
5048 {
a9ff5f12 5049 puts_filtered (" TYPE_RESTRICT");
06d66ee9 5050 }
a2c2acaf
MW
5051 if (TYPE_ATOMIC (type))
5052 {
a9ff5f12 5053 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 5054 }
2fdde8f8 5055 puts_filtered ("\n");
876cecd0
TT
5056
5057 printfi_filtered (spaces, "flags");
762a036f 5058 if (TYPE_UNSIGNED (type))
c906108c 5059 {
a9ff5f12 5060 puts_filtered (" TYPE_UNSIGNED");
c906108c 5061 }
762a036f
FF
5062 if (TYPE_NOSIGN (type))
5063 {
a9ff5f12 5064 puts_filtered (" TYPE_NOSIGN");
762a036f 5065 }
34877895
PJ
5066 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5067 {
5068 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5069 }
762a036f 5070 if (TYPE_STUB (type))
c906108c 5071 {
a9ff5f12 5072 puts_filtered (" TYPE_STUB");
c906108c 5073 }
762a036f
FF
5074 if (TYPE_TARGET_STUB (type))
5075 {
a9ff5f12 5076 puts_filtered (" TYPE_TARGET_STUB");
762a036f 5077 }
762a036f
FF
5078 if (TYPE_PROTOTYPED (type))
5079 {
a9ff5f12 5080 puts_filtered (" TYPE_PROTOTYPED");
762a036f 5081 }
762a036f
FF
5082 if (TYPE_VARARGS (type))
5083 {
a9ff5f12 5084 puts_filtered (" TYPE_VARARGS");
762a036f 5085 }
f5f8a009
EZ
5086 /* This is used for things like AltiVec registers on ppc. Gcc emits
5087 an attribute for the array type, which tells whether or not we
5088 have a vector, instead of a regular array. */
5089 if (TYPE_VECTOR (type))
5090 {
a9ff5f12 5091 puts_filtered (" TYPE_VECTOR");
f5f8a009 5092 }
876cecd0
TT
5093 if (TYPE_FIXED_INSTANCE (type))
5094 {
5095 puts_filtered (" TYPE_FIXED_INSTANCE");
5096 }
5097 if (TYPE_STUB_SUPPORTED (type))
5098 {
5099 puts_filtered (" TYPE_STUB_SUPPORTED");
5100 }
5101 if (TYPE_NOTTEXT (type))
5102 {
5103 puts_filtered (" TYPE_NOTTEXT");
5104 }
c906108c
SS
5105 puts_filtered ("\n");
5106 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 5107 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
5108 puts_filtered ("\n");
5109 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
5110 {
14e75d8e
JK
5111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
5112 printfi_filtered (spaces + 2,
5113 "[%d] enumval %s type ",
5114 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5115 else
5116 printfi_filtered (spaces + 2,
6b850546
DT
5117 "[%d] bitpos %s bitsize %d type ",
5118 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 5119 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 5120 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
5121 printf_filtered (" name '%s' (",
5122 TYPE_FIELD_NAME (type, idx) != NULL
5123 ? TYPE_FIELD_NAME (type, idx)
5124 : "<NULL>");
d4f3574e 5125 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
5126 printf_filtered (")\n");
5127 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5128 {
5129 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5130 }
5131 }
43bbcdc2
PH
5132 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5133 {
5134 printfi_filtered (spaces, "low %s%s high %s%s\n",
5135 plongest (TYPE_LOW_BOUND (type)),
5136 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5137 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
5138 TYPE_HIGH_BOUND_UNDEFINED (type)
5139 ? " (undefined)" : "");
43bbcdc2 5140 }
c906108c 5141
b4ba55a1
JB
5142 switch (TYPE_SPECIFIC_FIELD (type))
5143 {
5144 case TYPE_SPECIFIC_CPLUS_STUFF:
5145 printfi_filtered (spaces, "cplus_stuff ");
5146 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5147 gdb_stdout);
5148 puts_filtered ("\n");
5149 print_cplus_stuff (type, spaces);
5150 break;
8da61cc4 5151
b4ba55a1
JB
5152 case TYPE_SPECIFIC_GNAT_STUFF:
5153 printfi_filtered (spaces, "gnat_stuff ");
5154 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5155 puts_filtered ("\n");
5156 print_gnat_stuff (type, spaces);
5157 break;
701c159d 5158
b4ba55a1
JB
5159 case TYPE_SPECIFIC_FLOATFORMAT:
5160 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
5161 if (TYPE_FLOATFORMAT (type) == NULL
5162 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
5163 puts_filtered ("(null)");
5164 else
0db7851f 5165 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
5166 puts_filtered ("\n");
5167 break;
c906108c 5168
b6cdc2c1 5169 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
5170 printfi_filtered (spaces, "calling_convention %d\n",
5171 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 5172 /* tail_call_list is not printed. */
b4ba55a1 5173 break;
09e2d7c7
DE
5174
5175 case TYPE_SPECIFIC_SELF_TYPE:
5176 printfi_filtered (spaces, "self_type ");
5177 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5178 puts_filtered ("\n");
5179 break;
c906108c 5180 }
b4ba55a1 5181
c906108c
SS
5182 if (spaces == 0)
5183 obstack_free (&dont_print_type_obstack, NULL);
5184}
5212577a 5185\f
ae5a43e0
DJ
5186/* Trivial helpers for the libiberty hash table, for mapping one
5187 type to another. */
5188
fd90ace4 5189struct type_pair : public allocate_on_obstack
ae5a43e0 5190{
fd90ace4
YQ
5191 type_pair (struct type *old_, struct type *newobj_)
5192 : old (old_), newobj (newobj_)
5193 {}
5194
5195 struct type * const old, * const newobj;
ae5a43e0
DJ
5196};
5197
5198static hashval_t
5199type_pair_hash (const void *item)
5200{
9a3c8263 5201 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 5202
ae5a43e0
DJ
5203 return htab_hash_pointer (pair->old);
5204}
5205
5206static int
5207type_pair_eq (const void *item_lhs, const void *item_rhs)
5208{
9a3c8263
SM
5209 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5210 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 5211
ae5a43e0
DJ
5212 return lhs->old == rhs->old;
5213}
5214
5215/* Allocate the hash table used by copy_type_recursive to walk
5216 types without duplicates. We use OBJFILE's obstack, because
5217 OBJFILE is about to be deleted. */
5218
5219htab_t
5220create_copied_types_hash (struct objfile *objfile)
5221{
5222 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5223 NULL, &objfile->objfile_obstack,
5224 hashtab_obstack_allocate,
5225 dummy_obstack_deallocate);
5226}
5227
d9823cbb
KB
5228/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5229
5230static struct dynamic_prop_list *
5231copy_dynamic_prop_list (struct obstack *objfile_obstack,
5232 struct dynamic_prop_list *list)
5233{
5234 struct dynamic_prop_list *copy = list;
5235 struct dynamic_prop_list **node_ptr = &copy;
5236
5237 while (*node_ptr != NULL)
5238 {
5239 struct dynamic_prop_list *node_copy;
5240
224c3ddb
SM
5241 node_copy = ((struct dynamic_prop_list *)
5242 obstack_copy (objfile_obstack, *node_ptr,
5243 sizeof (struct dynamic_prop_list)));
283a9958 5244 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
5245 *node_ptr = node_copy;
5246
5247 node_ptr = &node_copy->next;
5248 }
5249
5250 return copy;
5251}
5252
7ba81444 5253/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5254 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5255 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5256 it is not associated with OBJFILE. */
ae5a43e0
DJ
5257
5258struct type *
7ba81444
MS
5259copy_type_recursive (struct objfile *objfile,
5260 struct type *type,
ae5a43e0
DJ
5261 htab_t copied_types)
5262{
ae5a43e0
DJ
5263 void **slot;
5264 struct type *new_type;
5265
e9bb382b 5266 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5267 return type;
5268
7ba81444
MS
5269 /* This type shouldn't be pointing to any types in other objfiles;
5270 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5271 gdb_assert (TYPE_OBJFILE (type) == objfile);
5272
fd90ace4
YQ
5273 struct type_pair pair (type, nullptr);
5274
ae5a43e0
DJ
5275 slot = htab_find_slot (copied_types, &pair, INSERT);
5276 if (*slot != NULL)
fe978cb0 5277 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5278
e9bb382b 5279 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5280
5281 /* We must add the new type to the hash table immediately, in case
5282 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5283 struct type_pair *stored
5284 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5285
ae5a43e0
DJ
5286 *slot = stored;
5287
876cecd0
TT
5288 /* Copy the common fields of types. For the main type, we simply
5289 copy the entire thing and then update specific fields as needed. */
5290 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5291 TYPE_OBJFILE_OWNED (new_type) = 0;
5292 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5293
ae5a43e0
DJ
5294 if (TYPE_NAME (type))
5295 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
5296
5297 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5298 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5299
5300 /* Copy the fields. */
ae5a43e0
DJ
5301 if (TYPE_NFIELDS (type))
5302 {
5303 int i, nfields;
5304
5305 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
5306 TYPE_FIELDS (new_type) = (struct field *)
5307 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
5308 for (i = 0; i < nfields; i++)
5309 {
7ba81444
MS
5310 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5311 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
5312 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5313 if (TYPE_FIELD_TYPE (type, i))
5314 TYPE_FIELD_TYPE (new_type, i)
5315 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5316 copied_types);
5317 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5318 TYPE_FIELD_NAME (new_type, i) =
5319 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5320 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5321 {
d6a843b5
JK
5322 case FIELD_LOC_KIND_BITPOS:
5323 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5324 TYPE_FIELD_BITPOS (type, i));
5325 break;
14e75d8e
JK
5326 case FIELD_LOC_KIND_ENUMVAL:
5327 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5328 TYPE_FIELD_ENUMVAL (type, i));
5329 break;
d6a843b5
JK
5330 case FIELD_LOC_KIND_PHYSADDR:
5331 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5332 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5333 break;
5334 case FIELD_LOC_KIND_PHYSNAME:
5335 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5336 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5337 i)));
5338 break;
5339 default:
5340 internal_error (__FILE__, __LINE__,
5341 _("Unexpected type field location kind: %d"),
5342 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5343 }
5344 }
5345 }
5346
0963b4bd 5347 /* For range types, copy the bounds information. */
43bbcdc2
PH
5348 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5349 {
2fabdf33
AB
5350 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5351 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
5352 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5353 }
5354
d9823cbb
KB
5355 if (TYPE_DYN_PROP_LIST (type) != NULL)
5356 TYPE_DYN_PROP_LIST (new_type)
5357 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5358 TYPE_DYN_PROP_LIST (type));
5359
3cdcd0ce 5360
ae5a43e0
DJ
5361 /* Copy pointers to other types. */
5362 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5363 TYPE_TARGET_TYPE (new_type) =
5364 copy_type_recursive (objfile,
5365 TYPE_TARGET_TYPE (type),
5366 copied_types);
f6b3afbf 5367
ae5a43e0
DJ
5368 /* Maybe copy the type_specific bits.
5369
5370 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5371 base classes and methods. There's no fundamental reason why we
5372 can't, but at the moment it is not needed. */
5373
f6b3afbf
DE
5374 switch (TYPE_SPECIFIC_FIELD (type))
5375 {
5376 case TYPE_SPECIFIC_NONE:
5377 break;
5378 case TYPE_SPECIFIC_FUNC:
5379 INIT_FUNC_SPECIFIC (new_type);
5380 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5381 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5382 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5383 break;
5384 case TYPE_SPECIFIC_FLOATFORMAT:
5385 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5386 break;
5387 case TYPE_SPECIFIC_CPLUS_STUFF:
5388 INIT_CPLUS_SPECIFIC (new_type);
5389 break;
5390 case TYPE_SPECIFIC_GNAT_STUFF:
5391 INIT_GNAT_SPECIFIC (new_type);
5392 break;
09e2d7c7
DE
5393 case TYPE_SPECIFIC_SELF_TYPE:
5394 set_type_self_type (new_type,
5395 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5396 copied_types));
5397 break;
f6b3afbf
DE
5398 default:
5399 gdb_assert_not_reached ("bad type_specific_kind");
5400 }
ae5a43e0
DJ
5401
5402 return new_type;
5403}
5404
4af88198
JB
5405/* Make a copy of the given TYPE, except that the pointer & reference
5406 types are not preserved.
5407
5408 This function assumes that the given type has an associated objfile.
5409 This objfile is used to allocate the new type. */
5410
5411struct type *
5412copy_type (const struct type *type)
5413{
5414 struct type *new_type;
5415
e9bb382b 5416 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5417
e9bb382b 5418 new_type = alloc_type_copy (type);
4af88198
JB
5419 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5420 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5421 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5422 sizeof (struct main_type));
d9823cbb
KB
5423 if (TYPE_DYN_PROP_LIST (type) != NULL)
5424 TYPE_DYN_PROP_LIST (new_type)
5425 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5426 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5427
5428 return new_type;
5429}
5212577a 5430\f
e9bb382b
UW
5431/* Helper functions to initialize architecture-specific types. */
5432
5433/* Allocate a type structure associated with GDBARCH and set its
5434 CODE, LENGTH, and NAME fields. */
5212577a 5435
e9bb382b
UW
5436struct type *
5437arch_type (struct gdbarch *gdbarch,
77b7c781 5438 enum type_code code, int bit, const char *name)
e9bb382b
UW
5439{
5440 struct type *type;
5441
5442 type = alloc_type_arch (gdbarch);
ae438bc5 5443 set_type_code (type, code);
77b7c781
UW
5444 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5445 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5446
5447 if (name)
6c214e7c 5448 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5449
5450 return type;
5451}
5452
5453/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5454 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5455 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5456
e9bb382b
UW
5457struct type *
5458arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5459 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5460{
5461 struct type *t;
5462
77b7c781 5463 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5464 if (unsigned_p)
5465 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5466
5467 return t;
5468}
5469
5470/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5471 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5472 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5473
e9bb382b
UW
5474struct type *
5475arch_character_type (struct gdbarch *gdbarch,
695bfa52 5476 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5477{
5478 struct type *t;
5479
77b7c781 5480 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5481 if (unsigned_p)
5482 TYPE_UNSIGNED (t) = 1;
5483
5484 return t;
5485}
5486
5487/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5488 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5489 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5490
e9bb382b
UW
5491struct type *
5492arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5493 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5494{
5495 struct type *t;
5496
77b7c781 5497 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5498 if (unsigned_p)
5499 TYPE_UNSIGNED (t) = 1;
5500
5501 return t;
5502}
5503
5504/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5505 BIT is the type size in bits; if BIT equals -1, the size is
5506 determined by the floatformat. NAME is the type name. Set the
5507 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5508
27067745 5509struct type *
e9bb382b 5510arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5511 int bit, const char *name,
5512 const struct floatformat **floatformats)
8da61cc4 5513{
0db7851f 5514 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5515 struct type *t;
5516
0db7851f 5517 bit = verify_floatformat (bit, fmt);
77b7c781 5518 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5519 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5520
8da61cc4
DJ
5521 return t;
5522}
5523
88dfca6c
UW
5524/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5525 BIT is the type size in bits. NAME is the type name. */
5526
5527struct type *
5528arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5529{
5530 struct type *t;
5531
77b7c781 5532 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5533 return t;
5534}
5535
88dfca6c
UW
5536/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5537 BIT is the pointer type size in bits. NAME is the type name.
5538 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5539 TYPE_UNSIGNED flag. */
5540
5541struct type *
5542arch_pointer_type (struct gdbarch *gdbarch,
5543 int bit, const char *name, struct type *target_type)
5544{
5545 struct type *t;
5546
77b7c781 5547 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5548 TYPE_TARGET_TYPE (t) = target_type;
5549 TYPE_UNSIGNED (t) = 1;
5550 return t;
5551}
5552
e9bb382b 5553/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5554 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5555
e9bb382b 5556struct type *
77b7c781 5557arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5558{
e9bb382b
UW
5559 struct type *type;
5560
77b7c781 5561 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5562 TYPE_UNSIGNED (type) = 1;
81516450
DE
5563 TYPE_NFIELDS (type) = 0;
5564 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5565 TYPE_FIELDS (type)
77b7c781 5566 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5567
5568 return type;
5569}
5570
5571/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5572 position BITPOS is called NAME. Pass NAME as "" for fields that
5573 should not be printed. */
5574
5575void
5576append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5577 struct type *field_type, const char *name)
81516450
DE
5578{
5579 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5580 int field_nr = TYPE_NFIELDS (type);
5581
5582 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5583 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5584 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5585 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5586 gdb_assert (name != NULL);
5587
5588 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5589 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5590 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5591 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5592 ++TYPE_NFIELDS (type);
5593}
5594
5595/* Special version of append_flags_type_field to add a flag field.
5596 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5597 position BITPOS is called NAME. */
5212577a 5598
e9bb382b 5599void
695bfa52 5600append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5601{
81516450 5602 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5603
81516450
DE
5604 append_flags_type_field (type, bitpos, 1,
5605 builtin_type (gdbarch)->builtin_bool,
5606 name);
e9bb382b
UW
5607}
5608
5609/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5610 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5611
e9bb382b 5612struct type *
695bfa52
TT
5613arch_composite_type (struct gdbarch *gdbarch, const char *name,
5614 enum type_code code)
e9bb382b
UW
5615{
5616 struct type *t;
d8734c88 5617
e9bb382b
UW
5618 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5619 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5620 TYPE_NAME (t) = name;
e9bb382b
UW
5621 INIT_CPLUS_SPECIFIC (t);
5622 return t;
5623}
5624
5625/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5626 Do not set the field's position or adjust the type's length;
5627 the caller should do so. Return the new field. */
5212577a 5628
f5dff777 5629struct field *
695bfa52 5630append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5631 struct type *field)
e9bb382b
UW
5632{
5633 struct field *f;
d8734c88 5634
e9bb382b 5635 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5636 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5637 TYPE_NFIELDS (t));
e9bb382b
UW
5638 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5639 memset (f, 0, sizeof f[0]);
5640 FIELD_TYPE (f[0]) = field;
5641 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5642 return f;
5643}
5644
5645/* Add new field with name NAME and type FIELD to composite type T.
5646 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5647
f5dff777 5648void
695bfa52 5649append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5650 struct type *field, int alignment)
5651{
5652 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5653
e9bb382b
UW
5654 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5655 {
5656 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5657 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5658 }
5659 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5660 {
5661 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5662 if (TYPE_NFIELDS (t) > 1)
5663 {
f41f5e61
PA
5664 SET_FIELD_BITPOS (f[0],
5665 (FIELD_BITPOS (f[-1])
5666 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5667 * TARGET_CHAR_BIT)));
e9bb382b
UW
5668
5669 if (alignment)
5670 {
86c3c1fc
AB
5671 int left;
5672
5673 alignment *= TARGET_CHAR_BIT;
5674 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5675
e9bb382b
UW
5676 if (left)
5677 {
f41f5e61 5678 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5679 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5680 }
5681 }
5682 }
5683 }
5684}
5685
5686/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5687
e9bb382b 5688void
695bfa52 5689append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5690 struct type *field)
5691{
5692 append_composite_type_field_aligned (t, name, field, 0);
5693}
5694
000177f0
AC
5695static struct gdbarch_data *gdbtypes_data;
5696
5697const struct builtin_type *
5698builtin_type (struct gdbarch *gdbarch)
5699{
9a3c8263 5700 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5701}
5702
5703static void *
5704gdbtypes_post_init (struct gdbarch *gdbarch)
5705{
5706 struct builtin_type *builtin_type
5707 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5708
46bf5051 5709 /* Basic types. */
e9bb382b 5710 builtin_type->builtin_void
77b7c781 5711 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5712 builtin_type->builtin_char
5713 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5714 !gdbarch_char_signed (gdbarch), "char");
c413c448 5715 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5716 builtin_type->builtin_signed_char
5717 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5718 0, "signed char");
5719 builtin_type->builtin_unsigned_char
5720 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5721 1, "unsigned char");
5722 builtin_type->builtin_short
5723 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5724 0, "short");
5725 builtin_type->builtin_unsigned_short
5726 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5727 1, "unsigned short");
5728 builtin_type->builtin_int
5729 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5730 0, "int");
5731 builtin_type->builtin_unsigned_int
5732 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5733 1, "unsigned int");
5734 builtin_type->builtin_long
5735 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5736 0, "long");
5737 builtin_type->builtin_unsigned_long
5738 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5739 1, "unsigned long");
5740 builtin_type->builtin_long_long
5741 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5742 0, "long long");
5743 builtin_type->builtin_unsigned_long_long
5744 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5745 1, "unsigned long long");
a6d0f249
AH
5746 builtin_type->builtin_half
5747 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5748 "half", gdbarch_half_format (gdbarch));
70bd8e24 5749 builtin_type->builtin_float
e9bb382b 5750 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5751 "float", gdbarch_float_format (gdbarch));
70bd8e24 5752 builtin_type->builtin_double
e9bb382b 5753 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5754 "double", gdbarch_double_format (gdbarch));
70bd8e24 5755 builtin_type->builtin_long_double
e9bb382b 5756 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5757 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5758 builtin_type->builtin_complex
5b930b45 5759 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5760 builtin_type->builtin_double_complex
5b930b45 5761 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5762 builtin_type->builtin_string
77b7c781 5763 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5764 builtin_type->builtin_bool
77b7c781 5765 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5766
7678ef8f
TJB
5767 /* The following three are about decimal floating point types, which
5768 are 32-bits, 64-bits and 128-bits respectively. */
5769 builtin_type->builtin_decfloat
88dfca6c 5770 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5771 builtin_type->builtin_decdouble
88dfca6c 5772 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5773 builtin_type->builtin_declong
88dfca6c 5774 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5775
69feb676 5776 /* "True" character types. */
e9bb382b
UW
5777 builtin_type->builtin_true_char
5778 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5779 builtin_type->builtin_true_unsigned_char
5780 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5781
df4df182 5782 /* Fixed-size integer types. */
e9bb382b
UW
5783 builtin_type->builtin_int0
5784 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5785 builtin_type->builtin_int8
5786 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5787 builtin_type->builtin_uint8
5788 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5789 builtin_type->builtin_int16
5790 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5791 builtin_type->builtin_uint16
5792 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5793 builtin_type->builtin_int24
5794 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5795 builtin_type->builtin_uint24
5796 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5797 builtin_type->builtin_int32
5798 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5799 builtin_type->builtin_uint32
5800 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5801 builtin_type->builtin_int64
5802 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5803 builtin_type->builtin_uint64
5804 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5805 builtin_type->builtin_int128
5806 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5807 builtin_type->builtin_uint128
5808 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5809 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5810 TYPE_INSTANCE_FLAG_NOTTEXT;
5811 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5812 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5813
9a22f0d0
PM
5814 /* Wide character types. */
5815 builtin_type->builtin_char16
53e710ac 5816 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5817 builtin_type->builtin_char32
53e710ac 5818 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5819 builtin_type->builtin_wchar
5820 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5821 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5822
46bf5051 5823 /* Default data/code pointer types. */
e9bb382b
UW
5824 builtin_type->builtin_data_ptr
5825 = lookup_pointer_type (builtin_type->builtin_void);
5826 builtin_type->builtin_func_ptr
5827 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5828 builtin_type->builtin_func_func
5829 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5830
78267919 5831 /* This type represents a GDB internal function. */
e9bb382b
UW
5832 builtin_type->internal_fn
5833 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5834 "<internal function>");
78267919 5835
e81e7f5e
SC
5836 /* This type represents an xmethod. */
5837 builtin_type->xmethod
5838 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5839
46bf5051
UW
5840 return builtin_type;
5841}
5842
46bf5051
UW
5843/* This set of objfile-based types is intended to be used by symbol
5844 readers as basic types. */
5845
7a102139
TT
5846static const struct objfile_key<struct objfile_type,
5847 gdb::noop_deleter<struct objfile_type>>
5848 objfile_type_data;
46bf5051
UW
5849
5850const struct objfile_type *
5851objfile_type (struct objfile *objfile)
5852{
5853 struct gdbarch *gdbarch;
7a102139 5854 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5855
5856 if (objfile_type)
5857 return objfile_type;
5858
5859 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5860 1, struct objfile_type);
5861
5862 /* Use the objfile architecture to determine basic type properties. */
08feed99 5863 gdbarch = objfile->arch ();
46bf5051
UW
5864
5865 /* Basic types. */
5866 objfile_type->builtin_void
77b7c781 5867 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5868 objfile_type->builtin_char
19f392bc
UW
5869 = init_integer_type (objfile, TARGET_CHAR_BIT,
5870 !gdbarch_char_signed (gdbarch), "char");
c413c448 5871 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5872 objfile_type->builtin_signed_char
19f392bc
UW
5873 = init_integer_type (objfile, TARGET_CHAR_BIT,
5874 0, "signed char");
46bf5051 5875 objfile_type->builtin_unsigned_char
19f392bc
UW
5876 = init_integer_type (objfile, TARGET_CHAR_BIT,
5877 1, "unsigned char");
46bf5051 5878 objfile_type->builtin_short
19f392bc
UW
5879 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5880 0, "short");
46bf5051 5881 objfile_type->builtin_unsigned_short
19f392bc
UW
5882 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5883 1, "unsigned short");
46bf5051 5884 objfile_type->builtin_int
19f392bc
UW
5885 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5886 0, "int");
46bf5051 5887 objfile_type->builtin_unsigned_int
19f392bc
UW
5888 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5889 1, "unsigned int");
46bf5051 5890 objfile_type->builtin_long
19f392bc
UW
5891 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5892 0, "long");
46bf5051 5893 objfile_type->builtin_unsigned_long
19f392bc
UW
5894 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5895 1, "unsigned long");
46bf5051 5896 objfile_type->builtin_long_long
19f392bc
UW
5897 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5898 0, "long long");
46bf5051 5899 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5900 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5901 1, "unsigned long long");
46bf5051 5902 objfile_type->builtin_float
19f392bc
UW
5903 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5904 "float", gdbarch_float_format (gdbarch));
46bf5051 5905 objfile_type->builtin_double
19f392bc
UW
5906 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5907 "double", gdbarch_double_format (gdbarch));
46bf5051 5908 objfile_type->builtin_long_double
19f392bc
UW
5909 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5910 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5911
5912 /* This type represents a type that was unrecognized in symbol read-in. */
5913 objfile_type->builtin_error
19f392bc 5914 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5915
5916 /* The following set of types is used for symbols with no
5917 debug information. */
5918 objfile_type->nodebug_text_symbol
77b7c781 5919 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5920 "<text variable, no debug info>");
0875794a 5921 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5922 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5923 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5924 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5925 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5926 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5927 "<text from jump slot in .got.plt, no debug info>",
5928 objfile_type->nodebug_text_symbol);
46bf5051 5929 objfile_type->nodebug_data_symbol
46a4882b 5930 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5931 objfile_type->nodebug_unknown_symbol
46a4882b 5932 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5933 objfile_type->nodebug_tls_symbol
46a4882b 5934 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5935
5936 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5937 the same.
000177f0
AC
5938
5939 The upshot is:
5940 - gdb's `struct type' always describes the target's
5941 representation.
5942 - gdb's `struct value' objects should always hold values in
5943 target form.
5944 - gdb's CORE_ADDR values are addresses in the unified virtual
5945 address space that the assembler and linker work with. Thus,
5946 since target_read_memory takes a CORE_ADDR as an argument, it
5947 can access any memory on the target, even if the processor has
5948 separate code and data address spaces.
5949
46bf5051
UW
5950 In this context, objfile_type->builtin_core_addr is a bit odd:
5951 it's a target type for a value the target will never see. It's
5952 only used to hold the values of (typeless) linker symbols, which
5953 are indeed in the unified virtual address space. */
000177f0 5954
46bf5051 5955 objfile_type->builtin_core_addr
19f392bc
UW
5956 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5957 "__CORE_ADDR");
64c50499 5958
7a102139 5959 objfile_type_data.set (objfile, objfile_type);
46bf5051 5960 return objfile_type;
000177f0
AC
5961}
5962
6c265988 5963void _initialize_gdbtypes ();
c906108c 5964void
6c265988 5965_initialize_gdbtypes ()
c906108c 5966{
5674de60
UW
5967 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5968
ccce17b0
YQ
5969 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5970 _("Set debugging of C++ overloading."),
5971 _("Show debugging of C++ overloading."),
5972 _("When enabled, ranking of the "
5973 "functions is displayed."),
5974 NULL,
5975 show_overload_debug,
5976 &setdebuglist, &showdebuglist);
5674de60 5977
7ba81444 5978 /* Add user knob for controlling resolution of opaque types. */
5674de60 5979 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5980 &opaque_type_resolution,
5981 _("Set resolution of opaque struct/class/union"
5982 " types (if set before loading symbols)."),
5983 _("Show resolution of opaque struct/class/union"
5984 " types (if set before loading symbols)."),
5985 NULL, NULL,
5674de60
UW
5986 show_opaque_type_resolution,
5987 &setlist, &showlist);
a451cb65
KS
5988
5989 /* Add an option to permit non-strict type checking. */
5990 add_setshow_boolean_cmd ("type", class_support,
5991 &strict_type_checking,
5992 _("Set strict type checking."),
5993 _("Show strict type checking."),
5994 NULL, NULL,
5995 show_strict_type_checking,
5996 &setchecklist, &showchecklist);
c906108c 5997}
This page took 2.257843 seconds and 4 git commands to generate.