2011-11-09 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
7b6bb8da 4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4c38e0a4 5 Free Software Foundation, Inc.
4f2aea11 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
c91ecb25 38#include "wrapper.h"
015a42b4 39#include "cp-abi.h"
a02fd225 40#include "gdb_assert.h"
ae5a43e0 41#include "hashtab.h"
c906108c 42
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
6403aeea 65
8da61cc4 66/* Floatformat pairs. */
f9e9243a
UW
67const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70};
8da61cc4
DJ
71const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74};
75const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78};
79const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82};
83const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86};
87const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90};
91const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94};
95const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98};
99const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102};
103const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106};
107const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110};
b14d30e1
JM
111const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114};
8da61cc4 115
8da61cc4 116
c906108c 117int opaque_type_resolution = 1;
920d2a44
AC
118static void
119show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
120 struct cmd_list_element *c,
121 const char *value)
920d2a44 122{
3e43a32a
MS
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
125 value);
126}
127
5d161b24 128int overload_debug = 0;
920d2a44
AC
129static void
130show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
7ba81444
MS
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
920d2a44 135}
c906108c 136
c5aa993b
JM
137struct extra
138 {
139 char str[128];
140 int len;
7ba81444 141 }; /* Maximum extension is 128! FIXME */
c906108c 142
a14ed312 143static void print_bit_vector (B_TYPE *, int);
ad2f7632 144static void print_arg_types (struct field *, int, int);
a14ed312
KB
145static void dump_fn_fieldlists (struct type *, int);
146static void print_cplus_stuff (struct type *, int);
7a292a7a 147
c906108c 148
e9bb382b
UW
149/* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
c906108c
SS
152
153struct type *
fba45db2 154alloc_type (struct objfile *objfile)
c906108c 155{
52f0bd74 156 struct type *type;
c906108c 157
e9bb382b
UW
158 gdb_assert (objfile != NULL);
159
7ba81444 160 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
c906108c 165
e9bb382b
UW
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
c906108c 168
7ba81444 169 /* Initialize the fields that might not be zero. */
c906108c
SS
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 172 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 174
c16abbde 175 return type;
c906108c
SS
176}
177
e9bb382b
UW
178/* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182struct type *
183alloc_type_arch (struct gdbarch *gdbarch)
184{
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204}
205
206/* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210struct type *
211alloc_type_copy (const struct type *type)
212{
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217}
218
219/* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222struct gdbarch *
223get_type_arch (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229}
230
231
2fdde8f8
DJ
232/* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236static struct type *
237alloc_type_instance (struct type *oldtype)
238{
239 struct type *type;
240
241 /* Allocate the structure. */
242
e9bb382b 243 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 244 type = XZALLOC (struct type);
2fdde8f8 245 else
1deafd4e
PA
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
2fdde8f8
DJ
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
c16abbde 253 return type;
2fdde8f8
DJ
254}
255
256/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 257 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
258static void
259smash_type (struct type *type)
260{
e9bb382b
UW
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
2fdde8f8
DJ
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
e9bb382b
UW
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
2fdde8f8
DJ
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274}
275
c906108c
SS
276/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281struct type *
fba45db2 282make_pointer_type (struct type *type, struct type **typeptr)
c906108c 283{
52f0bd74 284 struct type *ntype; /* New type */
053cb41b 285 struct type *chain;
c906108c
SS
286
287 ntype = TYPE_POINTER_TYPE (type);
288
c5aa993b 289 if (ntype)
c906108c 290 {
c5aa993b 291 if (typeptr == 0)
7ba81444
MS
292 return ntype; /* Don't care about alloc,
293 and have new type. */
c906108c 294 else if (*typeptr == 0)
c5aa993b 295 {
7ba81444 296 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 297 return ntype;
c5aa993b 298 }
c906108c
SS
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
e9bb382b 303 ntype = alloc_type_copy (type);
c906108c
SS
304 if (typeptr)
305 *typeptr = ntype;
306 }
7ba81444 307 else /* We have storage, but need to reset it. */
c906108c
SS
308 {
309 ntype = *typeptr;
053cb41b 310 chain = TYPE_CHAIN (ntype);
2fdde8f8 311 smash_type (ntype);
053cb41b 312 TYPE_CHAIN (ntype) = chain;
c906108c
SS
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
7ba81444
MS
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
c906108c 320
50810684
UW
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
67b2adb2 325 /* Mark pointers as unsigned. The target converts between pointers
76e71323 326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 327 gdbarch_address_to_pointer. */
876cecd0 328 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 329
c906108c
SS
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
053cb41b
JB
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
c906108c
SS
341 return ntype;
342}
343
344/* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347struct type *
fba45db2 348lookup_pointer_type (struct type *type)
c906108c 349{
c5aa993b 350 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
351}
352
7ba81444
MS
353/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
c906108c
SS
357
358struct type *
fba45db2 359make_reference_type (struct type *type, struct type **typeptr)
c906108c 360{
52f0bd74 361 struct type *ntype; /* New type */
1e98b326 362 struct type *chain;
c906108c
SS
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
c5aa993b 366 if (ntype)
c906108c 367 {
c5aa993b 368 if (typeptr == 0)
7ba81444
MS
369 return ntype; /* Don't care about alloc,
370 and have new type. */
c906108c 371 else if (*typeptr == 0)
c5aa993b 372 {
7ba81444 373 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 374 return ntype;
c5aa993b 375 }
c906108c
SS
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
e9bb382b 380 ntype = alloc_type_copy (type);
c906108c
SS
381 if (typeptr)
382 *typeptr = ntype;
383 }
7ba81444 384 else /* We have storage, but need to reset it. */
c906108c
SS
385 {
386 ntype = *typeptr;
1e98b326 387 chain = TYPE_CHAIN (ntype);
2fdde8f8 388 smash_type (ntype);
1e98b326 389 TYPE_CHAIN (ntype) = chain;
c906108c
SS
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
7ba81444
MS
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
c906108c 398
50810684
UW
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 401 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 402
c906108c
SS
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
1e98b326
JB
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
c906108c
SS
414 return ntype;
415}
416
7ba81444
MS
417/* Same as above, but caller doesn't care about memory allocation
418 details. */
c906108c
SS
419
420struct type *
fba45db2 421lookup_reference_type (struct type *type)
c906108c 422{
c5aa993b 423 return make_reference_type (type, (struct type **) 0);
c906108c
SS
424}
425
7ba81444
MS
426/* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 429 function type we return. We allocate new memory if needed. */
c906108c
SS
430
431struct type *
0c8b41f1 432make_function_type (struct type *type, struct type **typeptr)
c906108c 433{
52f0bd74 434 struct type *ntype; /* New type */
c906108c
SS
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
e9bb382b 438 ntype = alloc_type_copy (type);
c906108c
SS
439 if (typeptr)
440 *typeptr = ntype;
441 }
7ba81444 442 else /* We have storage, but need to reset it. */
c906108c
SS
443 {
444 ntype = *typeptr;
2fdde8f8 445 smash_type (ntype);
c906108c
SS
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 452
b6cdc2c1
JK
453 INIT_FUNC_SPECIFIC (ntype);
454
c906108c
SS
455 return ntype;
456}
457
458
459/* Given a type TYPE, return a type of functions that return that type.
460 May need to construct such a type if this is the first use. */
461
462struct type *
fba45db2 463lookup_function_type (struct type *type)
c906108c 464{
0c8b41f1 465 return make_function_type (type, (struct type **) 0);
c906108c
SS
466}
467
47663de5
MS
468/* Identify address space identifier by name --
469 return the integer flag defined in gdbtypes.h. */
470extern int
50810684 471address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 472{
8b2dbe47 473 int type_flags;
d8734c88 474
7ba81444 475 /* Check for known address space delimiters. */
47663de5 476 if (!strcmp (space_identifier, "code"))
876cecd0 477 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 478 else if (!strcmp (space_identifier, "data"))
876cecd0 479 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
480 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
481 && gdbarch_address_class_name_to_type_flags (gdbarch,
482 space_identifier,
483 &type_flags))
8b2dbe47 484 return type_flags;
47663de5 485 else
8a3fe4f8 486 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
487}
488
489/* Identify address space identifier by integer flag as defined in
7ba81444 490 gdbtypes.h -- return the string version of the adress space name. */
47663de5 491
321432c0 492const char *
50810684 493address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 494{
876cecd0 495 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 496 return "code";
876cecd0 497 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 498 return "data";
876cecd0 499 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
500 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
501 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
502 else
503 return NULL;
504}
505
2fdde8f8 506/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
507
508 If STORAGE is non-NULL, create the new type instance there.
509 STORAGE must be in the same obstack as TYPE. */
47663de5 510
b9362cc7 511static struct type *
2fdde8f8
DJ
512make_qualified_type (struct type *type, int new_flags,
513 struct type *storage)
47663de5
MS
514{
515 struct type *ntype;
516
517 ntype = type;
5f61c20e
JK
518 do
519 {
520 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
521 return ntype;
522 ntype = TYPE_CHAIN (ntype);
523 }
524 while (ntype != type);
47663de5 525
2fdde8f8
DJ
526 /* Create a new type instance. */
527 if (storage == NULL)
528 ntype = alloc_type_instance (type);
529 else
530 {
7ba81444
MS
531 /* If STORAGE was provided, it had better be in the same objfile
532 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
533 if one objfile is freed and the other kept, we'd have
534 dangling pointers. */
ad766c0a
JB
535 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
536
2fdde8f8
DJ
537 ntype = storage;
538 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
539 TYPE_CHAIN (ntype) = ntype;
540 }
47663de5
MS
541
542 /* Pointers or references to the original type are not relevant to
2fdde8f8 543 the new type. */
47663de5
MS
544 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
545 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 546
2fdde8f8
DJ
547 /* Chain the new qualified type to the old type. */
548 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
549 TYPE_CHAIN (type) = ntype;
550
551 /* Now set the instance flags and return the new type. */
552 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 553
ab5d3da6
KB
554 /* Set length of new type to that of the original type. */
555 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
556
47663de5
MS
557 return ntype;
558}
559
2fdde8f8
DJ
560/* Make an address-space-delimited variant of a type -- a type that
561 is identical to the one supplied except that it has an address
562 space attribute attached to it (such as "code" or "data").
563
7ba81444
MS
564 The space attributes "code" and "data" are for Harvard
565 architectures. The address space attributes are for architectures
566 which have alternately sized pointers or pointers with alternate
567 representations. */
2fdde8f8
DJ
568
569struct type *
570make_type_with_address_space (struct type *type, int space_flag)
571{
2fdde8f8 572 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
573 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
574 | TYPE_INSTANCE_FLAG_DATA_SPACE
575 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
576 | space_flag);
577
578 return make_qualified_type (type, new_flags, NULL);
579}
c906108c
SS
580
581/* Make a "c-v" variant of a type -- a type that is identical to the
582 one supplied except that it may have const or volatile attributes
583 CNST is a flag for setting the const attribute
584 VOLTL is a flag for setting the volatile attribute
585 TYPE is the base type whose variant we are creating.
c906108c 586
ad766c0a
JB
587 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
588 storage to hold the new qualified type; *TYPEPTR and TYPE must be
589 in the same objfile. Otherwise, allocate fresh memory for the new
590 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
591 new type we construct. */
c906108c 592struct type *
7ba81444
MS
593make_cv_type (int cnst, int voltl,
594 struct type *type,
595 struct type **typeptr)
c906108c 596{
52f0bd74 597 struct type *ntype; /* New type */
c906108c 598
2fdde8f8 599 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
600 & ~(TYPE_INSTANCE_FLAG_CONST
601 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 602
c906108c 603 if (cnst)
876cecd0 604 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
605
606 if (voltl)
876cecd0 607 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 608
2fdde8f8 609 if (typeptr && *typeptr != NULL)
a02fd225 610 {
ad766c0a
JB
611 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
612 a C-V variant chain that threads across objfiles: if one
613 objfile gets freed, then the other has a broken C-V chain.
614
615 This code used to try to copy over the main type from TYPE to
616 *TYPEPTR if they were in different objfiles, but that's
617 wrong, too: TYPE may have a field list or member function
618 lists, which refer to types of their own, etc. etc. The
619 whole shebang would need to be copied over recursively; you
620 can't have inter-objfile pointers. The only thing to do is
621 to leave stub types as stub types, and look them up afresh by
622 name each time you encounter them. */
623 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
624 }
625
7ba81444
MS
626 ntype = make_qualified_type (type, new_flags,
627 typeptr ? *typeptr : NULL);
c906108c 628
2fdde8f8
DJ
629 if (typeptr != NULL)
630 *typeptr = ntype;
a02fd225 631
2fdde8f8 632 return ntype;
a02fd225 633}
c906108c 634
2fdde8f8
DJ
635/* Replace the contents of ntype with the type *type. This changes the
636 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
637 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 638
cda6c68a
JB
639 In order to build recursive types, it's inevitable that we'll need
640 to update types in place --- but this sort of indiscriminate
641 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
642 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
643 clear if more steps are needed. */
dd6bda65
DJ
644void
645replace_type (struct type *ntype, struct type *type)
646{
ab5d3da6 647 struct type *chain;
dd6bda65 648
ad766c0a
JB
649 /* These two types had better be in the same objfile. Otherwise,
650 the assignment of one type's main type structure to the other
651 will produce a type with references to objects (names; field
652 lists; etc.) allocated on an objfile other than its own. */
653 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
654
2fdde8f8 655 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 656
7ba81444
MS
657 /* The type length is not a part of the main type. Update it for
658 each type on the variant chain. */
ab5d3da6 659 chain = ntype;
5f61c20e
JK
660 do
661 {
662 /* Assert that this element of the chain has no address-class bits
663 set in its flags. Such type variants might have type lengths
664 which are supposed to be different from the non-address-class
665 variants. This assertion shouldn't ever be triggered because
666 symbol readers which do construct address-class variants don't
667 call replace_type(). */
668 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
669
670 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
671 chain = TYPE_CHAIN (chain);
672 }
673 while (ntype != chain);
ab5d3da6 674
2fdde8f8
DJ
675 /* Assert that the two types have equivalent instance qualifiers.
676 This should be true for at least all of our debug readers. */
677 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
678}
679
c906108c
SS
680/* Implement direct support for MEMBER_TYPE in GNU C++.
681 May need to construct such a type if this is the first use.
682 The TYPE is the type of the member. The DOMAIN is the type
683 of the aggregate that the member belongs to. */
684
685struct type *
0d5de010 686lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 687{
52f0bd74 688 struct type *mtype;
c906108c 689
e9bb382b 690 mtype = alloc_type_copy (type);
0d5de010 691 smash_to_memberptr_type (mtype, domain, type);
c16abbde 692 return mtype;
c906108c
SS
693}
694
0d5de010
DJ
695/* Return a pointer-to-method type, for a method of type TO_TYPE. */
696
697struct type *
698lookup_methodptr_type (struct type *to_type)
699{
700 struct type *mtype;
701
e9bb382b 702 mtype = alloc_type_copy (to_type);
0b92b5bb 703 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
704 return mtype;
705}
706
7ba81444
MS
707/* Allocate a stub method whose return type is TYPE. This apparently
708 happens for speed of symbol reading, since parsing out the
709 arguments to the method is cpu-intensive, the way we are doing it.
710 So, we will fill in arguments later. This always returns a fresh
711 type. */
c906108c
SS
712
713struct type *
fba45db2 714allocate_stub_method (struct type *type)
c906108c
SS
715{
716 struct type *mtype;
717
e9bb382b
UW
718 mtype = alloc_type_copy (type);
719 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
720 TYPE_LENGTH (mtype) = 1;
721 TYPE_STUB (mtype) = 1;
c906108c
SS
722 TYPE_TARGET_TYPE (mtype) = type;
723 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 724 return mtype;
c906108c
SS
725}
726
7ba81444
MS
727/* Create a range type using either a blank type supplied in
728 RESULT_TYPE, or creating a new type, inheriting the objfile from
729 INDEX_TYPE.
c906108c 730
7ba81444
MS
731 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
732 to HIGH_BOUND, inclusive.
c906108c 733
7ba81444
MS
734 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
735 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
736
737struct type *
fba45db2 738create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 739 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
740{
741 if (result_type == NULL)
e9bb382b 742 result_type = alloc_type_copy (index_type);
c906108c
SS
743 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
744 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 745 if (TYPE_STUB (index_type))
876cecd0 746 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
747 else
748 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
749 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
750 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
751 TYPE_LOW_BOUND (result_type) = low_bound;
752 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 753
c5aa993b 754 if (low_bound >= 0)
876cecd0 755 TYPE_UNSIGNED (result_type) = 1;
c906108c 756
262452ec 757 return result_type;
c906108c
SS
758}
759
7ba81444
MS
760/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
761 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
762 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
763
764int
fba45db2 765get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
766{
767 CHECK_TYPEDEF (type);
768 switch (TYPE_CODE (type))
769 {
770 case TYPE_CODE_RANGE:
771 *lowp = TYPE_LOW_BOUND (type);
772 *highp = TYPE_HIGH_BOUND (type);
773 return 1;
774 case TYPE_CODE_ENUM:
775 if (TYPE_NFIELDS (type) > 0)
776 {
777 /* The enums may not be sorted by value, so search all
0963b4bd 778 entries. */
c906108c
SS
779 int i;
780
781 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
782 for (i = 0; i < TYPE_NFIELDS (type); i++)
783 {
784 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
785 *lowp = TYPE_FIELD_BITPOS (type, i);
786 if (TYPE_FIELD_BITPOS (type, i) > *highp)
787 *highp = TYPE_FIELD_BITPOS (type, i);
788 }
789
7ba81444 790 /* Set unsigned indicator if warranted. */
c5aa993b 791 if (*lowp >= 0)
c906108c 792 {
876cecd0 793 TYPE_UNSIGNED (type) = 1;
c906108c
SS
794 }
795 }
796 else
797 {
798 *lowp = 0;
799 *highp = -1;
800 }
801 return 0;
802 case TYPE_CODE_BOOL:
803 *lowp = 0;
804 *highp = 1;
805 return 0;
806 case TYPE_CODE_INT:
c5aa993b 807 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
808 return -1;
809 if (!TYPE_UNSIGNED (type))
810 {
c5aa993b 811 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
812 *highp = -*lowp - 1;
813 return 0;
814 }
7ba81444 815 /* ... fall through for unsigned ints ... */
c906108c
SS
816 case TYPE_CODE_CHAR:
817 *lowp = 0;
818 /* This round-about calculation is to avoid shifting by
7b83ea04 819 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 820 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
821 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
822 *highp = (*highp - 1) | *highp;
823 return 0;
824 default:
825 return -1;
826 }
827}
828
dbc98a8b
KW
829/* Assuming TYPE is a simple, non-empty array type, compute its upper
830 and lower bound. Save the low bound into LOW_BOUND if not NULL.
831 Save the high bound into HIGH_BOUND if not NULL.
832
0963b4bd 833 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
834 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
835
836 We now simply use get_discrete_bounds call to get the values
837 of the low and high bounds.
838 get_discrete_bounds can return three values:
839 1, meaning that index is a range,
840 0, meaning that index is a discrete type,
841 or -1 for failure. */
842
843int
844get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
845{
846 struct type *index = TYPE_INDEX_TYPE (type);
847 LONGEST low = 0;
848 LONGEST high = 0;
849 int res;
850
851 if (index == NULL)
852 return 0;
853
854 res = get_discrete_bounds (index, &low, &high);
855 if (res == -1)
856 return 0;
857
858 /* Check if the array bounds are undefined. */
859 if (res == 1
860 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
861 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
862 return 0;
863
864 if (low_bound)
865 *low_bound = low;
866
867 if (high_bound)
868 *high_bound = high;
869
870 return 1;
871}
872
7ba81444
MS
873/* Create an array type using either a blank type supplied in
874 RESULT_TYPE, or creating a new type, inheriting the objfile from
875 RANGE_TYPE.
c906108c
SS
876
877 Elements will be of type ELEMENT_TYPE, the indices will be of type
878 RANGE_TYPE.
879
7ba81444
MS
880 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
881 sure it is TYPE_CODE_UNDEF before we bash it into an array
882 type? */
c906108c
SS
883
884struct type *
7ba81444
MS
885create_array_type (struct type *result_type,
886 struct type *element_type,
fba45db2 887 struct type *range_type)
c906108c
SS
888{
889 LONGEST low_bound, high_bound;
890
891 if (result_type == NULL)
e9bb382b
UW
892 result_type = alloc_type_copy (range_type);
893
c906108c
SS
894 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
895 TYPE_TARGET_TYPE (result_type) = element_type;
896 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
897 low_bound = high_bound = 0;
898 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
899 /* Be careful when setting the array length. Ada arrays can be
900 empty arrays with the high_bound being smaller than the low_bound.
901 In such cases, the array length should be zero. */
902 if (high_bound < low_bound)
903 TYPE_LENGTH (result_type) = 0;
904 else
905 TYPE_LENGTH (result_type) =
906 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) =
1deafd4e 909 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 910 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
911 TYPE_VPTR_FIELDNO (result_type) = -1;
912
0963b4bd 913 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 914 if (TYPE_LENGTH (result_type) == 0)
876cecd0 915 TYPE_TARGET_STUB (result_type) = 1;
c906108c 916
c16abbde 917 return result_type;
c906108c
SS
918}
919
e3506a9f
UW
920struct type *
921lookup_array_range_type (struct type *element_type,
922 int low_bound, int high_bound)
923{
50810684 924 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
925 struct type *index_type = builtin_type (gdbarch)->builtin_int;
926 struct type *range_type
927 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 928
e3506a9f
UW
929 return create_array_type (NULL, element_type, range_type);
930}
931
7ba81444
MS
932/* Create a string type using either a blank type supplied in
933 RESULT_TYPE, or creating a new type. String types are similar
934 enough to array of char types that we can use create_array_type to
935 build the basic type and then bash it into a string type.
c906108c
SS
936
937 For fixed length strings, the range type contains 0 as the lower
938 bound and the length of the string minus one as the upper bound.
939
7ba81444
MS
940 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
941 sure it is TYPE_CODE_UNDEF before we bash it into a string
942 type? */
c906108c
SS
943
944struct type *
3b7538c0
UW
945create_string_type (struct type *result_type,
946 struct type *string_char_type,
7ba81444 947 struct type *range_type)
c906108c
SS
948{
949 result_type = create_array_type (result_type,
f290d38e 950 string_char_type,
c906108c
SS
951 range_type);
952 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 953 return result_type;
c906108c
SS
954}
955
e3506a9f
UW
956struct type *
957lookup_string_range_type (struct type *string_char_type,
958 int low_bound, int high_bound)
959{
960 struct type *result_type;
d8734c88 961
e3506a9f
UW
962 result_type = lookup_array_range_type (string_char_type,
963 low_bound, high_bound);
964 TYPE_CODE (result_type) = TYPE_CODE_STRING;
965 return result_type;
966}
967
c906108c 968struct type *
fba45db2 969create_set_type (struct type *result_type, struct type *domain_type)
c906108c 970{
c906108c 971 if (result_type == NULL)
e9bb382b
UW
972 result_type = alloc_type_copy (domain_type);
973
c906108c
SS
974 TYPE_CODE (result_type) = TYPE_CODE_SET;
975 TYPE_NFIELDS (result_type) = 1;
1deafd4e 976 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 977
74a9bb82 978 if (!TYPE_STUB (domain_type))
c906108c 979 {
f9780d5b 980 LONGEST low_bound, high_bound, bit_length;
d8734c88 981
c906108c
SS
982 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
983 low_bound = high_bound = 0;
984 bit_length = high_bound - low_bound + 1;
985 TYPE_LENGTH (result_type)
986 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 987 if (low_bound >= 0)
876cecd0 988 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
989 }
990 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
991
c16abbde 992 return result_type;
c906108c
SS
993}
994
ea37ba09
DJ
995/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
996 and any array types nested inside it. */
997
998void
999make_vector_type (struct type *array_type)
1000{
1001 struct type *inner_array, *elt_type;
1002 int flags;
1003
1004 /* Find the innermost array type, in case the array is
1005 multi-dimensional. */
1006 inner_array = array_type;
1007 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1008 inner_array = TYPE_TARGET_TYPE (inner_array);
1009
1010 elt_type = TYPE_TARGET_TYPE (inner_array);
1011 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1012 {
2844d6b5 1013 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1014 elt_type = make_qualified_type (elt_type, flags, NULL);
1015 TYPE_TARGET_TYPE (inner_array) = elt_type;
1016 }
1017
876cecd0 1018 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1019}
1020
794ac428 1021struct type *
ac3aafc7
EZ
1022init_vector_type (struct type *elt_type, int n)
1023{
1024 struct type *array_type;
d8734c88 1025
e3506a9f 1026 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1027 make_vector_type (array_type);
ac3aafc7
EZ
1028 return array_type;
1029}
1030
0d5de010
DJ
1031/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1032 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1033 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1034 TYPE doesn't include the offset (that's the value of the MEMBER
1035 itself), but does include the structure type into which it points
1036 (for some reason).
c906108c 1037
7ba81444
MS
1038 When "smashing" the type, we preserve the objfile that the old type
1039 pointed to, since we aren't changing where the type is actually
c906108c
SS
1040 allocated. */
1041
1042void
0d5de010
DJ
1043smash_to_memberptr_type (struct type *type, struct type *domain,
1044 struct type *to_type)
c906108c 1045{
2fdde8f8 1046 smash_type (type);
c906108c
SS
1047 TYPE_TARGET_TYPE (type) = to_type;
1048 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1049 /* Assume that a data member pointer is the same size as a normal
1050 pointer. */
50810684
UW
1051 TYPE_LENGTH (type)
1052 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1053 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1054}
1055
0b92b5bb
TT
1056/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1057
1058 When "smashing" the type, we preserve the objfile that the old type
1059 pointed to, since we aren't changing where the type is actually
1060 allocated. */
1061
1062void
1063smash_to_methodptr_type (struct type *type, struct type *to_type)
1064{
1065 smash_type (type);
1066 TYPE_TARGET_TYPE (type) = to_type;
1067 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1068 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1069 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1070}
1071
c906108c
SS
1072/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1073 METHOD just means `function that gets an extra "this" argument'.
1074
7ba81444
MS
1075 When "smashing" the type, we preserve the objfile that the old type
1076 pointed to, since we aren't changing where the type is actually
c906108c
SS
1077 allocated. */
1078
1079void
fba45db2 1080smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1081 struct type *to_type, struct field *args,
1082 int nargs, int varargs)
c906108c 1083{
2fdde8f8 1084 smash_type (type);
c906108c
SS
1085 TYPE_TARGET_TYPE (type) = to_type;
1086 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1087 TYPE_FIELDS (type) = args;
1088 TYPE_NFIELDS (type) = nargs;
1089 if (varargs)
876cecd0 1090 TYPE_VARARGS (type) = 1;
c906108c
SS
1091 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1092 TYPE_CODE (type) = TYPE_CODE_METHOD;
1093}
1094
1095/* Return a typename for a struct/union/enum type without "struct ",
1096 "union ", or "enum ". If the type has a NULL name, return NULL. */
1097
1098char *
aa1ee363 1099type_name_no_tag (const struct type *type)
c906108c
SS
1100{
1101 if (TYPE_TAG_NAME (type) != NULL)
1102 return TYPE_TAG_NAME (type);
1103
7ba81444
MS
1104 /* Is there code which expects this to return the name if there is
1105 no tag name? My guess is that this is mainly used for C++ in
1106 cases where the two will always be the same. */
c906108c
SS
1107 return TYPE_NAME (type);
1108}
1109
d8228535
JK
1110/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1111 Since GCC PR debug/47510 DWARF provides associated information to detect the
1112 anonymous class linkage name from its typedef.
1113
1114 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1115 apply it itself. */
1116
1117const char *
1118type_name_no_tag_or_error (struct type *type)
1119{
1120 struct type *saved_type = type;
1121 const char *name;
1122 struct objfile *objfile;
1123
1124 CHECK_TYPEDEF (type);
1125
1126 name = type_name_no_tag (type);
1127 if (name != NULL)
1128 return name;
1129
1130 name = type_name_no_tag (saved_type);
1131 objfile = TYPE_OBJFILE (saved_type);
1132 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1133 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1134}
1135
7ba81444
MS
1136/* Lookup a typedef or primitive type named NAME, visible in lexical
1137 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1138 suitably defined. */
c906108c
SS
1139
1140struct type *
e6c014f2 1141lookup_typename (const struct language_defn *language,
ddd49eee 1142 struct gdbarch *gdbarch, const char *name,
34eaf542 1143 const struct block *block, int noerr)
c906108c 1144{
52f0bd74
AC
1145 struct symbol *sym;
1146 struct type *tmp;
c906108c 1147
774b6a14 1148 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1149 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1150 {
e6c014f2 1151 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1152 if (tmp)
1153 {
c16abbde 1154 return tmp;
c906108c
SS
1155 }
1156 else if (!tmp && noerr)
1157 {
c16abbde 1158 return NULL;
c906108c
SS
1159 }
1160 else
1161 {
8a3fe4f8 1162 error (_("No type named %s."), name);
c906108c
SS
1163 }
1164 }
1165 return (SYMBOL_TYPE (sym));
1166}
1167
1168struct type *
e6c014f2
UW
1169lookup_unsigned_typename (const struct language_defn *language,
1170 struct gdbarch *gdbarch, char *name)
c906108c
SS
1171{
1172 char *uns = alloca (strlen (name) + 10);
1173
1174 strcpy (uns, "unsigned ");
1175 strcpy (uns + 9, name);
e6c014f2 1176 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1177}
1178
1179struct type *
e6c014f2
UW
1180lookup_signed_typename (const struct language_defn *language,
1181 struct gdbarch *gdbarch, char *name)
c906108c
SS
1182{
1183 struct type *t;
1184 char *uns = alloca (strlen (name) + 8);
1185
1186 strcpy (uns, "signed ");
1187 strcpy (uns + 7, name);
e6c014f2 1188 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1189 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1190 if (t != NULL)
1191 return t;
e6c014f2 1192 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1193}
1194
1195/* Lookup a structure type named "struct NAME",
1196 visible in lexical block BLOCK. */
1197
1198struct type *
ddd49eee 1199lookup_struct (const char *name, struct block *block)
c906108c 1200{
52f0bd74 1201 struct symbol *sym;
c906108c 1202
2570f2b7 1203 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1204
1205 if (sym == NULL)
1206 {
8a3fe4f8 1207 error (_("No struct type named %s."), name);
c906108c
SS
1208 }
1209 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1210 {
7ba81444
MS
1211 error (_("This context has class, union or enum %s, not a struct."),
1212 name);
c906108c
SS
1213 }
1214 return (SYMBOL_TYPE (sym));
1215}
1216
1217/* Lookup a union type named "union NAME",
1218 visible in lexical block BLOCK. */
1219
1220struct type *
ddd49eee 1221lookup_union (const char *name, struct block *block)
c906108c 1222{
52f0bd74 1223 struct symbol *sym;
c5aa993b 1224 struct type *t;
c906108c 1225
2570f2b7 1226 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1227
1228 if (sym == NULL)
8a3fe4f8 1229 error (_("No union type named %s."), name);
c906108c 1230
c5aa993b 1231 t = SYMBOL_TYPE (sym);
c906108c
SS
1232
1233 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1234 return t;
c906108c 1235
7ba81444
MS
1236 /* If we get here, it's not a union. */
1237 error (_("This context has class, struct or enum %s, not a union."),
1238 name);
c906108c
SS
1239}
1240
1241
1242/* Lookup an enum type named "enum NAME",
1243 visible in lexical block BLOCK. */
1244
1245struct type *
ddd49eee 1246lookup_enum (const char *name, struct block *block)
c906108c 1247{
52f0bd74 1248 struct symbol *sym;
c906108c 1249
2570f2b7 1250 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1251 if (sym == NULL)
1252 {
8a3fe4f8 1253 error (_("No enum type named %s."), name);
c906108c
SS
1254 }
1255 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1256 {
7ba81444
MS
1257 error (_("This context has class, struct or union %s, not an enum."),
1258 name);
c906108c
SS
1259 }
1260 return (SYMBOL_TYPE (sym));
1261}
1262
1263/* Lookup a template type named "template NAME<TYPE>",
1264 visible in lexical block BLOCK. */
1265
1266struct type *
7ba81444
MS
1267lookup_template_type (char *name, struct type *type,
1268 struct block *block)
c906108c
SS
1269{
1270 struct symbol *sym;
7ba81444
MS
1271 char *nam = (char *)
1272 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1273
c906108c
SS
1274 strcpy (nam, name);
1275 strcat (nam, "<");
0004e5a2 1276 strcat (nam, TYPE_NAME (type));
0963b4bd 1277 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1278
2570f2b7 1279 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1280
1281 if (sym == NULL)
1282 {
8a3fe4f8 1283 error (_("No template type named %s."), name);
c906108c
SS
1284 }
1285 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1286 {
7ba81444
MS
1287 error (_("This context has class, union or enum %s, not a struct."),
1288 name);
c906108c
SS
1289 }
1290 return (SYMBOL_TYPE (sym));
1291}
1292
7ba81444
MS
1293/* Given a type TYPE, lookup the type of the component of type named
1294 NAME.
c906108c 1295
7ba81444
MS
1296 TYPE can be either a struct or union, or a pointer or reference to
1297 a struct or union. If it is a pointer or reference, its target
1298 type is automatically used. Thus '.' and '->' are interchangable,
1299 as specified for the definitions of the expression element types
1300 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1301
1302 If NOERR is nonzero, return zero if NAME is not suitably defined.
1303 If NAME is the name of a baseclass type, return that type. */
1304
1305struct type *
fba45db2 1306lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1307{
1308 int i;
c92817ce 1309 char *typename;
c906108c
SS
1310
1311 for (;;)
1312 {
1313 CHECK_TYPEDEF (type);
1314 if (TYPE_CODE (type) != TYPE_CODE_PTR
1315 && TYPE_CODE (type) != TYPE_CODE_REF)
1316 break;
1317 type = TYPE_TARGET_TYPE (type);
1318 }
1319
687d6395
MS
1320 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1321 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1322 {
c92817ce
TT
1323 typename = type_to_string (type);
1324 make_cleanup (xfree, typename);
1325 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1326 }
1327
1328#if 0
7ba81444
MS
1329 /* FIXME: This change put in by Michael seems incorrect for the case
1330 where the structure tag name is the same as the member name.
0963b4bd 1331 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1332 foo; } bell;" Disabled by fnf. */
c906108c
SS
1333 {
1334 char *typename;
1335
1336 typename = type_name_no_tag (type);
762f08a3 1337 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1338 return type;
1339 }
1340#endif
1341
1342 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1343 {
1344 char *t_field_name = TYPE_FIELD_NAME (type, i);
1345
db577aea 1346 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1347 {
1348 return TYPE_FIELD_TYPE (type, i);
1349 }
f5a010c0
PM
1350 else if (!t_field_name || *t_field_name == '\0')
1351 {
d8734c88
MS
1352 struct type *subtype
1353 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1354
f5a010c0
PM
1355 if (subtype != NULL)
1356 return subtype;
1357 }
c906108c
SS
1358 }
1359
1360 /* OK, it's not in this class. Recursively check the baseclasses. */
1361 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1362 {
1363 struct type *t;
1364
9733fc94 1365 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1366 if (t != NULL)
1367 {
1368 return t;
1369 }
1370 }
1371
1372 if (noerr)
1373 {
1374 return NULL;
1375 }
c5aa993b 1376
c92817ce
TT
1377 typename = type_to_string (type);
1378 make_cleanup (xfree, typename);
1379 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1380}
1381
81fe8080
DE
1382/* Lookup the vptr basetype/fieldno values for TYPE.
1383 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1384 vptr_fieldno. Also, if found and basetype is from the same objfile,
1385 cache the results.
1386 If not found, return -1 and ignore BASETYPEP.
1387 Callers should be aware that in some cases (for example,
c906108c 1388 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1389 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1390 this function will not be able to find the
7ba81444 1391 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1392 vptr_basetype will remain NULL or incomplete. */
c906108c 1393
81fe8080
DE
1394int
1395get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1396{
1397 CHECK_TYPEDEF (type);
1398
1399 if (TYPE_VPTR_FIELDNO (type) < 0)
1400 {
1401 int i;
1402
7ba81444
MS
1403 /* We must start at zero in case the first (and only) baseclass
1404 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1405 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1406 {
81fe8080
DE
1407 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1408 int fieldno;
1409 struct type *basetype;
1410
1411 fieldno = get_vptr_fieldno (baseclass, &basetype);
1412 if (fieldno >= 0)
c906108c 1413 {
81fe8080 1414 /* If the type comes from a different objfile we can't cache
0963b4bd 1415 it, it may have a different lifetime. PR 2384 */
5ef73790 1416 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1417 {
1418 TYPE_VPTR_FIELDNO (type) = fieldno;
1419 TYPE_VPTR_BASETYPE (type) = basetype;
1420 }
1421 if (basetypep)
1422 *basetypep = basetype;
1423 return fieldno;
c906108c
SS
1424 }
1425 }
81fe8080
DE
1426
1427 /* Not found. */
1428 return -1;
1429 }
1430 else
1431 {
1432 if (basetypep)
1433 *basetypep = TYPE_VPTR_BASETYPE (type);
1434 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1435 }
1436}
1437
44e1a9eb
DJ
1438static void
1439stub_noname_complaint (void)
1440{
e2e0b3e5 1441 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1442}
1443
92163a10
JK
1444/* Find the real type of TYPE. This function returns the real type,
1445 after removing all layers of typedefs, and completing opaque or stub
1446 types. Completion changes the TYPE argument, but stripping of
1447 typedefs does not.
1448
1449 Instance flags (e.g. const/volatile) are preserved as typedefs are
1450 stripped. If necessary a new qualified form of the underlying type
1451 is created.
1452
1453 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1454 not been computed and we're either in the middle of reading symbols, or
1455 there was no name for the typedef in the debug info.
1456
1457 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1458 the target type.
c906108c
SS
1459
1460 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1461 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1462 definition, so we can use it in future. There used to be a comment
1463 (but not any code) that if we don't find a full definition, we'd
1464 set a flag so we don't spend time in the future checking the same
1465 type. That would be a mistake, though--we might load in more
92163a10 1466 symbols which contain a full definition for the type. */
c906108c
SS
1467
1468struct type *
a02fd225 1469check_typedef (struct type *type)
c906108c
SS
1470{
1471 struct type *orig_type = type;
92163a10
JK
1472 /* While we're removing typedefs, we don't want to lose qualifiers.
1473 E.g., const/volatile. */
1474 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1475
423c0af8
MS
1476 gdb_assert (type);
1477
c906108c
SS
1478 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1479 {
1480 if (!TYPE_TARGET_TYPE (type))
1481 {
c5aa993b 1482 char *name;
c906108c
SS
1483 struct symbol *sym;
1484
1485 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1486 reading a symtab. Infinite recursion is one danger. */
c906108c 1487 if (currently_reading_symtab)
92163a10 1488 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1489
1490 name = type_name_no_tag (type);
7ba81444
MS
1491 /* FIXME: shouldn't we separately check the TYPE_NAME and
1492 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1493 VAR_DOMAIN as appropriate? (this code was written before
1494 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1495 if (name == NULL)
1496 {
23136709 1497 stub_noname_complaint ();
92163a10 1498 return make_qualified_type (type, instance_flags, NULL);
c906108c 1499 }
2570f2b7 1500 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1501 if (sym)
1502 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1503 else /* TYPE_CODE_UNDEF */
e9bb382b 1504 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1505 }
1506 type = TYPE_TARGET_TYPE (type);
c906108c 1507
92163a10
JK
1508 /* Preserve the instance flags as we traverse down the typedef chain.
1509
1510 Handling address spaces/classes is nasty, what do we do if there's a
1511 conflict?
1512 E.g., what if an outer typedef marks the type as class_1 and an inner
1513 typedef marks the type as class_2?
1514 This is the wrong place to do such error checking. We leave it to
1515 the code that created the typedef in the first place to flag the
1516 error. We just pick the outer address space (akin to letting the
1517 outer cast in a chain of casting win), instead of assuming
1518 "it can't happen". */
1519 {
1520 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1521 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1522 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1523 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1524
1525 /* Treat code vs data spaces and address classes separately. */
1526 if ((instance_flags & ALL_SPACES) != 0)
1527 new_instance_flags &= ~ALL_SPACES;
1528 if ((instance_flags & ALL_CLASSES) != 0)
1529 new_instance_flags &= ~ALL_CLASSES;
1530
1531 instance_flags |= new_instance_flags;
1532 }
1533 }
a02fd225 1534
7ba81444
MS
1535 /* If this is a struct/class/union with no fields, then check
1536 whether a full definition exists somewhere else. This is for
1537 systems where a type definition with no fields is issued for such
1538 types, instead of identifying them as stub types in the first
1539 place. */
c5aa993b 1540
7ba81444
MS
1541 if (TYPE_IS_OPAQUE (type)
1542 && opaque_type_resolution
1543 && !currently_reading_symtab)
c906108c 1544 {
c5aa993b
JM
1545 char *name = type_name_no_tag (type);
1546 struct type *newtype;
d8734c88 1547
c906108c
SS
1548 if (name == NULL)
1549 {
23136709 1550 stub_noname_complaint ();
92163a10 1551 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1552 }
1553 newtype = lookup_transparent_type (name);
ad766c0a 1554
c906108c 1555 if (newtype)
ad766c0a 1556 {
7ba81444
MS
1557 /* If the resolved type and the stub are in the same
1558 objfile, then replace the stub type with the real deal.
1559 But if they're in separate objfiles, leave the stub
1560 alone; we'll just look up the transparent type every time
1561 we call check_typedef. We can't create pointers between
1562 types allocated to different objfiles, since they may
1563 have different lifetimes. Trying to copy NEWTYPE over to
1564 TYPE's objfile is pointless, too, since you'll have to
1565 move over any other types NEWTYPE refers to, which could
1566 be an unbounded amount of stuff. */
ad766c0a 1567 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1568 type = make_qualified_type (newtype,
1569 TYPE_INSTANCE_FLAGS (type),
1570 type);
ad766c0a
JB
1571 else
1572 type = newtype;
1573 }
c906108c 1574 }
7ba81444
MS
1575 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1576 types. */
74a9bb82 1577 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1578 {
c5aa993b 1579 char *name = type_name_no_tag (type);
c906108c 1580 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1581 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1582 as appropriate? (this code was written before TYPE_NAME and
1583 TYPE_TAG_NAME were separate). */
c906108c 1584 struct symbol *sym;
d8734c88 1585
c906108c
SS
1586 if (name == NULL)
1587 {
23136709 1588 stub_noname_complaint ();
92163a10 1589 return make_qualified_type (type, instance_flags, NULL);
c906108c 1590 }
2570f2b7 1591 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1592 if (sym)
c26f2453
JB
1593 {
1594 /* Same as above for opaque types, we can replace the stub
92163a10 1595 with the complete type only if they are in the same
c26f2453
JB
1596 objfile. */
1597 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1598 type = make_qualified_type (SYMBOL_TYPE (sym),
1599 TYPE_INSTANCE_FLAGS (type),
1600 type);
c26f2453
JB
1601 else
1602 type = SYMBOL_TYPE (sym);
1603 }
c906108c
SS
1604 }
1605
74a9bb82 1606 if (TYPE_TARGET_STUB (type))
c906108c
SS
1607 {
1608 struct type *range_type;
1609 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1610
74a9bb82 1611 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1612 {
73e2eb35 1613 /* Nothing we can do. */
c5aa993b 1614 }
c906108c
SS
1615 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1616 && TYPE_NFIELDS (type) == 1
262452ec 1617 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1618 == TYPE_CODE_RANGE))
1619 {
1620 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1621 number of elements and the target type's length.
1622 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1623 is smaller than the low bound. */
43bbcdc2
PH
1624 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1625 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1626 ULONGEST len;
1627
ab0d6e0d 1628 if (high_bound < low_bound)
43bbcdc2 1629 len = 0;
d8734c88
MS
1630 else
1631 {
1632 /* For now, we conservatively take the array length to be 0
1633 if its length exceeds UINT_MAX. The code below assumes
1634 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1635 which is technically not guaranteed by C, but is usually true
1636 (because it would be true if x were unsigned with its
0963b4bd 1637 high-order bit on). It uses the fact that
d8734c88
MS
1638 high_bound-low_bound is always representable in
1639 ULONGEST and that if high_bound-low_bound+1 overflows,
1640 it overflows to 0. We must change these tests if we
1641 decide to increase the representation of TYPE_LENGTH
0963b4bd 1642 from unsigned int to ULONGEST. */
d8734c88
MS
1643 ULONGEST ulow = low_bound, uhigh = high_bound;
1644 ULONGEST tlen = TYPE_LENGTH (target_type);
1645
1646 len = tlen * (uhigh - ulow + 1);
1647 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1648 || len > UINT_MAX)
1649 len = 0;
1650 }
43bbcdc2 1651 TYPE_LENGTH (type) = len;
876cecd0 1652 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1653 }
1654 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1655 {
1656 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1657 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1658 }
1659 }
92163a10
JK
1660
1661 type = make_qualified_type (type, instance_flags, NULL);
1662
7ba81444 1663 /* Cache TYPE_LENGTH for future use. */
c906108c 1664 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1665
c906108c
SS
1666 return type;
1667}
1668
7ba81444 1669/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1670 occurs, silently return a void type. */
c91ecb25 1671
b9362cc7 1672static struct type *
48319d1f 1673safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1674{
1675 struct ui_file *saved_gdb_stderr;
1676 struct type *type;
1677
7ba81444 1678 /* Suppress error messages. */
c91ecb25
ND
1679 saved_gdb_stderr = gdb_stderr;
1680 gdb_stderr = ui_file_new ();
1681
7ba81444 1682 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1683 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1684 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1685
7ba81444 1686 /* Stop suppressing error messages. */
c91ecb25
ND
1687 ui_file_delete (gdb_stderr);
1688 gdb_stderr = saved_gdb_stderr;
1689
1690 return type;
1691}
1692
c906108c
SS
1693/* Ugly hack to convert method stubs into method types.
1694
7ba81444
MS
1695 He ain't kiddin'. This demangles the name of the method into a
1696 string including argument types, parses out each argument type,
1697 generates a string casting a zero to that type, evaluates the
1698 string, and stuffs the resulting type into an argtype vector!!!
1699 Then it knows the type of the whole function (including argument
1700 types for overloading), which info used to be in the stab's but was
1701 removed to hack back the space required for them. */
c906108c 1702
de17c821 1703static void
fba45db2 1704check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1705{
50810684 1706 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1707 struct fn_field *f;
1708 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1709 char *demangled_name = cplus_demangle (mangled_name,
1710 DMGL_PARAMS | DMGL_ANSI);
1711 char *argtypetext, *p;
1712 int depth = 0, argcount = 1;
ad2f7632 1713 struct field *argtypes;
c906108c
SS
1714 struct type *mtype;
1715
1716 /* Make sure we got back a function string that we can use. */
1717 if (demangled_name)
1718 p = strchr (demangled_name, '(');
502dcf4e
AC
1719 else
1720 p = NULL;
c906108c
SS
1721
1722 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1723 error (_("Internal: Cannot demangle mangled name `%s'."),
1724 mangled_name);
c906108c
SS
1725
1726 /* Now, read in the parameters that define this type. */
1727 p += 1;
1728 argtypetext = p;
1729 while (*p)
1730 {
070ad9f0 1731 if (*p == '(' || *p == '<')
c906108c
SS
1732 {
1733 depth += 1;
1734 }
070ad9f0 1735 else if (*p == ')' || *p == '>')
c906108c
SS
1736 {
1737 depth -= 1;
1738 }
1739 else if (*p == ',' && depth == 0)
1740 {
1741 argcount += 1;
1742 }
1743
1744 p += 1;
1745 }
1746
ad2f7632
DJ
1747 /* If we read one argument and it was ``void'', don't count it. */
1748 if (strncmp (argtypetext, "(void)", 6) == 0)
1749 argcount -= 1;
c906108c 1750
ad2f7632
DJ
1751 /* We need one extra slot, for the THIS pointer. */
1752
1753 argtypes = (struct field *)
1754 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1755 p = argtypetext;
4a1970e4
DJ
1756
1757 /* Add THIS pointer for non-static methods. */
1758 f = TYPE_FN_FIELDLIST1 (type, method_id);
1759 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1760 argcount = 0;
1761 else
1762 {
ad2f7632 1763 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1764 argcount = 1;
1765 }
c906108c 1766
0963b4bd 1767 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1768 {
1769 depth = 0;
1770 while (*p)
1771 {
1772 if (depth <= 0 && (*p == ',' || *p == ')'))
1773 {
ad2f7632
DJ
1774 /* Avoid parsing of ellipsis, they will be handled below.
1775 Also avoid ``void'' as above. */
1776 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1777 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1778 {
ad2f7632 1779 argtypes[argcount].type =
48319d1f 1780 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1781 argcount += 1;
1782 }
1783 argtypetext = p + 1;
1784 }
1785
070ad9f0 1786 if (*p == '(' || *p == '<')
c906108c
SS
1787 {
1788 depth += 1;
1789 }
070ad9f0 1790 else if (*p == ')' || *p == '>')
c906108c
SS
1791 {
1792 depth -= 1;
1793 }
1794
1795 p += 1;
1796 }
1797 }
1798
c906108c
SS
1799 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1800
1801 /* Now update the old "stub" type into a real type. */
1802 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1803 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1804 TYPE_FIELDS (mtype) = argtypes;
1805 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1806 TYPE_STUB (mtype) = 0;
c906108c 1807 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1808 if (p[-2] == '.')
876cecd0 1809 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1810
1811 xfree (demangled_name);
c906108c
SS
1812}
1813
7ba81444
MS
1814/* This is the external interface to check_stub_method, above. This
1815 function unstubs all of the signatures for TYPE's METHOD_ID method
1816 name. After calling this function TYPE_FN_FIELD_STUB will be
1817 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1818 correct.
de17c821
DJ
1819
1820 This function unfortunately can not die until stabs do. */
1821
1822void
1823check_stub_method_group (struct type *type, int method_id)
1824{
1825 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1826 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1827 int j, found_stub = 0;
de17c821
DJ
1828
1829 for (j = 0; j < len; j++)
1830 if (TYPE_FN_FIELD_STUB (f, j))
1831 {
1832 found_stub = 1;
1833 check_stub_method (type, method_id, j);
1834 }
1835
7ba81444
MS
1836 /* GNU v3 methods with incorrect names were corrected when we read
1837 in type information, because it was cheaper to do it then. The
1838 only GNU v2 methods with incorrect method names are operators and
1839 destructors; destructors were also corrected when we read in type
1840 information.
de17c821
DJ
1841
1842 Therefore the only thing we need to handle here are v2 operator
1843 names. */
1844 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1845 {
1846 int ret;
1847 char dem_opname[256];
1848
7ba81444
MS
1849 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1850 method_id),
de17c821
DJ
1851 dem_opname, DMGL_ANSI);
1852 if (!ret)
7ba81444
MS
1853 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1854 method_id),
de17c821
DJ
1855 dem_opname, 0);
1856 if (ret)
1857 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1858 }
1859}
1860
9655fd1a
JK
1861/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1862const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1863
1864void
fba45db2 1865allocate_cplus_struct_type (struct type *type)
c906108c 1866{
b4ba55a1
JB
1867 if (HAVE_CPLUS_STRUCT (type))
1868 /* Structure was already allocated. Nothing more to do. */
1869 return;
1870
1871 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1872 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1873 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1874 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1875}
1876
b4ba55a1
JB
1877const struct gnat_aux_type gnat_aux_default =
1878 { NULL };
1879
1880/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1881 and allocate the associated gnat-specific data. The gnat-specific
1882 data is also initialized to gnat_aux_default. */
1883void
1884allocate_gnat_aux_type (struct type *type)
1885{
1886 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1887 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1888 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1889 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1890}
1891
1892
c906108c
SS
1893/* Helper function to initialize the standard scalar types.
1894
e9bb382b
UW
1895 If NAME is non-NULL, then we make a copy of the string pointed
1896 to by name in the objfile_obstack for that objfile, and initialize
1897 the type name to that copy. There are places (mipsread.c in particular),
1898 where init_type is called with a NULL value for NAME). */
c906108c
SS
1899
1900struct type *
7ba81444
MS
1901init_type (enum type_code code, int length, int flags,
1902 char *name, struct objfile *objfile)
c906108c 1903{
52f0bd74 1904 struct type *type;
c906108c
SS
1905
1906 type = alloc_type (objfile);
1907 TYPE_CODE (type) = code;
1908 TYPE_LENGTH (type) = length;
876cecd0
TT
1909
1910 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1911 if (flags & TYPE_FLAG_UNSIGNED)
1912 TYPE_UNSIGNED (type) = 1;
1913 if (flags & TYPE_FLAG_NOSIGN)
1914 TYPE_NOSIGN (type) = 1;
1915 if (flags & TYPE_FLAG_STUB)
1916 TYPE_STUB (type) = 1;
1917 if (flags & TYPE_FLAG_TARGET_STUB)
1918 TYPE_TARGET_STUB (type) = 1;
1919 if (flags & TYPE_FLAG_STATIC)
1920 TYPE_STATIC (type) = 1;
1921 if (flags & TYPE_FLAG_PROTOTYPED)
1922 TYPE_PROTOTYPED (type) = 1;
1923 if (flags & TYPE_FLAG_INCOMPLETE)
1924 TYPE_INCOMPLETE (type) = 1;
1925 if (flags & TYPE_FLAG_VARARGS)
1926 TYPE_VARARGS (type) = 1;
1927 if (flags & TYPE_FLAG_VECTOR)
1928 TYPE_VECTOR (type) = 1;
1929 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1930 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1931 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1932 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1933 if (flags & TYPE_FLAG_GNU_IFUNC)
1934 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1935
e9bb382b
UW
1936 if (name)
1937 TYPE_NAME (type) = obsavestring (name, strlen (name),
1938 &objfile->objfile_obstack);
c906108c
SS
1939
1940 /* C++ fancies. */
1941
973ccf8b 1942 if (name && strcmp (name, "char") == 0)
876cecd0 1943 TYPE_NOSIGN (type) = 1;
973ccf8b 1944
b4ba55a1 1945 switch (code)
c906108c 1946 {
b4ba55a1
JB
1947 case TYPE_CODE_STRUCT:
1948 case TYPE_CODE_UNION:
1949 case TYPE_CODE_NAMESPACE:
1950 INIT_CPLUS_SPECIFIC (type);
1951 break;
1952 case TYPE_CODE_FLT:
1953 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1954 break;
1955 case TYPE_CODE_FUNC:
b6cdc2c1 1956 INIT_FUNC_SPECIFIC (type);
b4ba55a1 1957 break;
c906108c 1958 }
c16abbde 1959 return type;
c906108c
SS
1960}
1961
c906108c 1962int
fba45db2 1963can_dereference (struct type *t)
c906108c 1964{
7ba81444
MS
1965 /* FIXME: Should we return true for references as well as
1966 pointers? */
c906108c
SS
1967 CHECK_TYPEDEF (t);
1968 return
1969 (t != NULL
1970 && TYPE_CODE (t) == TYPE_CODE_PTR
1971 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1972}
1973
adf40b2e 1974int
fba45db2 1975is_integral_type (struct type *t)
adf40b2e
JM
1976{
1977 CHECK_TYPEDEF (t);
1978 return
1979 ((t != NULL)
d4f3574e
SS
1980 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1981 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1982 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1983 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1984 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1985 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1986}
1987
e09342b5
TJB
1988/* Return true if TYPE is scalar. */
1989
1990static int
1991is_scalar_type (struct type *type)
1992{
1993 CHECK_TYPEDEF (type);
1994
1995 switch (TYPE_CODE (type))
1996 {
1997 case TYPE_CODE_ARRAY:
1998 case TYPE_CODE_STRUCT:
1999 case TYPE_CODE_UNION:
2000 case TYPE_CODE_SET:
2001 case TYPE_CODE_STRING:
2002 case TYPE_CODE_BITSTRING:
2003 return 0;
2004 default:
2005 return 1;
2006 }
2007}
2008
2009/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2010 the memory layout of a scalar type. E.g., an array or struct with only
2011 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2012
2013int
2014is_scalar_type_recursive (struct type *t)
2015{
2016 CHECK_TYPEDEF (t);
2017
2018 if (is_scalar_type (t))
2019 return 1;
2020 /* Are we dealing with an array or string of known dimensions? */
2021 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2022 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2023 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2024 {
2025 LONGEST low_bound, high_bound;
2026 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2027
2028 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2029
2030 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2031 }
2032 /* Are we dealing with a struct with one element? */
2033 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2034 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2035 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2036 {
2037 int i, n = TYPE_NFIELDS (t);
2038
2039 /* If all elements of the union are scalar, then the union is scalar. */
2040 for (i = 0; i < n; i++)
2041 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2042 return 0;
2043
2044 return 1;
2045 }
2046
2047 return 0;
2048}
2049
4e8f195d
TT
2050/* A helper function which returns true if types A and B represent the
2051 "same" class type. This is true if the types have the same main
2052 type, or the same name. */
2053
2054int
2055class_types_same_p (const struct type *a, const struct type *b)
2056{
2057 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2058 || (TYPE_NAME (a) && TYPE_NAME (b)
2059 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2060}
2061
a9d5ef47
SW
2062/* If BASE is an ancestor of DCLASS return the distance between them.
2063 otherwise return -1;
2064 eg:
2065
2066 class A {};
2067 class B: public A {};
2068 class C: public B {};
2069 class D: C {};
2070
2071 distance_to_ancestor (A, A, 0) = 0
2072 distance_to_ancestor (A, B, 0) = 1
2073 distance_to_ancestor (A, C, 0) = 2
2074 distance_to_ancestor (A, D, 0) = 3
2075
2076 If PUBLIC is 1 then only public ancestors are considered,
2077 and the function returns the distance only if BASE is a public ancestor
2078 of DCLASS.
2079 Eg:
2080
0963b4bd 2081 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2082
0526b37a 2083static int
a9d5ef47 2084distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2085{
2086 int i;
a9d5ef47 2087 int d;
c5aa993b 2088
c906108c
SS
2089 CHECK_TYPEDEF (base);
2090 CHECK_TYPEDEF (dclass);
2091
4e8f195d 2092 if (class_types_same_p (base, dclass))
a9d5ef47 2093 return 0;
c906108c
SS
2094
2095 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2096 {
0526b37a
SW
2097 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2098 continue;
2099
a9d5ef47
SW
2100 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2101 if (d >= 0)
2102 return 1 + d;
4e8f195d 2103 }
c906108c 2104
a9d5ef47 2105 return -1;
c906108c 2106}
4e8f195d 2107
0526b37a
SW
2108/* Check whether BASE is an ancestor or base class or DCLASS
2109 Return 1 if so, and 0 if not.
2110 Note: If BASE and DCLASS are of the same type, this function
2111 will return 1. So for some class A, is_ancestor (A, A) will
2112 return 1. */
2113
2114int
2115is_ancestor (struct type *base, struct type *dclass)
2116{
a9d5ef47 2117 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2118}
2119
4e8f195d
TT
2120/* Like is_ancestor, but only returns true when BASE is a public
2121 ancestor of DCLASS. */
2122
2123int
2124is_public_ancestor (struct type *base, struct type *dclass)
2125{
a9d5ef47 2126 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2127}
2128
2129/* A helper function for is_unique_ancestor. */
2130
2131static int
2132is_unique_ancestor_worker (struct type *base, struct type *dclass,
2133 int *offset,
8af8e3bc
PA
2134 const gdb_byte *valaddr, int embedded_offset,
2135 CORE_ADDR address, struct value *val)
4e8f195d
TT
2136{
2137 int i, count = 0;
2138
2139 CHECK_TYPEDEF (base);
2140 CHECK_TYPEDEF (dclass);
2141
2142 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2143 {
8af8e3bc
PA
2144 struct type *iter;
2145 int this_offset;
4e8f195d 2146
8af8e3bc
PA
2147 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2148
2149 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2150 address, val);
4e8f195d
TT
2151
2152 if (class_types_same_p (base, iter))
2153 {
2154 /* If this is the first subclass, set *OFFSET and set count
2155 to 1. Otherwise, if this is at the same offset as
2156 previous instances, do nothing. Otherwise, increment
2157 count. */
2158 if (*offset == -1)
2159 {
2160 *offset = this_offset;
2161 count = 1;
2162 }
2163 else if (this_offset == *offset)
2164 {
2165 /* Nothing. */
2166 }
2167 else
2168 ++count;
2169 }
2170 else
2171 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2172 valaddr,
2173 embedded_offset + this_offset,
2174 address, val);
4e8f195d
TT
2175 }
2176
2177 return count;
2178}
2179
2180/* Like is_ancestor, but only returns true if BASE is a unique base
2181 class of the type of VAL. */
2182
2183int
2184is_unique_ancestor (struct type *base, struct value *val)
2185{
2186 int offset = -1;
2187
2188 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2189 value_contents_for_printing (val),
2190 value_embedded_offset (val),
2191 value_address (val), val) == 1;
4e8f195d
TT
2192}
2193
c906108c
SS
2194\f
2195
6403aeea
SW
2196/* Return the sum of the rank of A with the rank of B. */
2197
2198struct rank
2199sum_ranks (struct rank a, struct rank b)
2200{
2201 struct rank c;
2202 c.rank = a.rank + b.rank;
a9d5ef47 2203 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2204 return c;
2205}
2206
2207/* Compare rank A and B and return:
2208 0 if a = b
2209 1 if a is better than b
2210 -1 if b is better than a. */
2211
2212int
2213compare_ranks (struct rank a, struct rank b)
2214{
2215 if (a.rank == b.rank)
a9d5ef47
SW
2216 {
2217 if (a.subrank == b.subrank)
2218 return 0;
2219 if (a.subrank < b.subrank)
2220 return 1;
2221 if (a.subrank > b.subrank)
2222 return -1;
2223 }
6403aeea
SW
2224
2225 if (a.rank < b.rank)
2226 return 1;
2227
0963b4bd 2228 /* a.rank > b.rank */
6403aeea
SW
2229 return -1;
2230}
c5aa993b 2231
0963b4bd 2232/* Functions for overload resolution begin here. */
c906108c
SS
2233
2234/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2235 0 => A and B are identical
2236 1 => A and B are incomparable
2237 2 => A is better than B
2238 3 => A is worse than B */
c906108c
SS
2239
2240int
fba45db2 2241compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2242{
2243 int i;
2244 int tmp;
c5aa993b
JM
2245 short found_pos = 0; /* any positives in c? */
2246 short found_neg = 0; /* any negatives in c? */
2247
2248 /* differing lengths => incomparable */
c906108c
SS
2249 if (a->length != b->length)
2250 return 1;
2251
c5aa993b
JM
2252 /* Subtract b from a */
2253 for (i = 0; i < a->length; i++)
c906108c 2254 {
6403aeea 2255 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2256 if (tmp > 0)
c5aa993b 2257 found_pos = 1;
c906108c 2258 else if (tmp < 0)
c5aa993b 2259 found_neg = 1;
c906108c
SS
2260 }
2261
2262 if (found_pos)
2263 {
2264 if (found_neg)
c5aa993b 2265 return 1; /* incomparable */
c906108c 2266 else
c5aa993b 2267 return 3; /* A > B */
c906108c 2268 }
c5aa993b
JM
2269 else
2270 /* no positives */
c906108c
SS
2271 {
2272 if (found_neg)
c5aa993b 2273 return 2; /* A < B */
c906108c 2274 else
c5aa993b 2275 return 0; /* A == B */
c906108c
SS
2276 }
2277}
2278
7ba81444
MS
2279/* Rank a function by comparing its parameter types (PARMS, length
2280 NPARMS), to the types of an argument list (ARGS, length NARGS).
2281 Return a pointer to a badness vector. This has NARGS + 1
2282 entries. */
c906108c
SS
2283
2284struct badness_vector *
7ba81444 2285rank_function (struct type **parms, int nparms,
da096638 2286 struct value **args, int nargs)
c906108c
SS
2287{
2288 int i;
c5aa993b 2289 struct badness_vector *bv;
c906108c
SS
2290 int min_len = nparms < nargs ? nparms : nargs;
2291
2292 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2293 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2294 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2295
2296 /* First compare the lengths of the supplied lists.
7ba81444 2297 If there is a mismatch, set it to a high value. */
c5aa993b 2298
c906108c 2299 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2300 arguments and ellipsis parameter lists, we should consider those
2301 and rank the length-match more finely. */
c906108c 2302
6403aeea
SW
2303 LENGTH_MATCH (bv) = (nargs != nparms)
2304 ? LENGTH_MISMATCH_BADNESS
2305 : EXACT_MATCH_BADNESS;
c906108c 2306
0963b4bd 2307 /* Now rank all the parameters of the candidate function. */
74cc24b0 2308 for (i = 1; i <= min_len; i++)
da096638
KS
2309 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2310 args[i - 1]);
c906108c 2311
0963b4bd 2312 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2313 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2314 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2315
2316 return bv;
2317}
2318
973ccf8b
DJ
2319/* Compare the names of two integer types, assuming that any sign
2320 qualifiers have been checked already. We do it this way because
2321 there may be an "int" in the name of one of the types. */
2322
2323static int
2324integer_types_same_name_p (const char *first, const char *second)
2325{
2326 int first_p, second_p;
2327
7ba81444
MS
2328 /* If both are shorts, return 1; if neither is a short, keep
2329 checking. */
973ccf8b
DJ
2330 first_p = (strstr (first, "short") != NULL);
2331 second_p = (strstr (second, "short") != NULL);
2332 if (first_p && second_p)
2333 return 1;
2334 if (first_p || second_p)
2335 return 0;
2336
2337 /* Likewise for long. */
2338 first_p = (strstr (first, "long") != NULL);
2339 second_p = (strstr (second, "long") != NULL);
2340 if (first_p && second_p)
2341 return 1;
2342 if (first_p || second_p)
2343 return 0;
2344
2345 /* Likewise for char. */
2346 first_p = (strstr (first, "char") != NULL);
2347 second_p = (strstr (second, "char") != NULL);
2348 if (first_p && second_p)
2349 return 1;
2350 if (first_p || second_p)
2351 return 0;
2352
2353 /* They must both be ints. */
2354 return 1;
2355}
2356
7062b0a0
SW
2357/* Compares type A to type B returns 1 if the represent the same type
2358 0 otherwise. */
2359
2360static int
2361types_equal (struct type *a, struct type *b)
2362{
2363 /* Identical type pointers. */
2364 /* However, this still doesn't catch all cases of same type for b
2365 and a. The reason is that builtin types are different from
2366 the same ones constructed from the object. */
2367 if (a == b)
2368 return 1;
2369
2370 /* Resolve typedefs */
2371 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2372 a = check_typedef (a);
2373 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2374 b = check_typedef (b);
2375
2376 /* If after resolving typedefs a and b are not of the same type
2377 code then they are not equal. */
2378 if (TYPE_CODE (a) != TYPE_CODE (b))
2379 return 0;
2380
2381 /* If a and b are both pointers types or both reference types then
2382 they are equal of the same type iff the objects they refer to are
2383 of the same type. */
2384 if (TYPE_CODE (a) == TYPE_CODE_PTR
2385 || TYPE_CODE (a) == TYPE_CODE_REF)
2386 return types_equal (TYPE_TARGET_TYPE (a),
2387 TYPE_TARGET_TYPE (b));
2388
0963b4bd 2389 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2390 are exactly the same. This happens when we generate method
2391 stubs. The types won't point to the same address, but they
0963b4bd 2392 really are the same. */
7062b0a0
SW
2393
2394 if (TYPE_NAME (a) && TYPE_NAME (b)
2395 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2396 return 1;
2397
2398 /* Check if identical after resolving typedefs. */
2399 if (a == b)
2400 return 1;
2401
2402 return 0;
2403}
2404
c906108c
SS
2405/* Compare one type (PARM) for compatibility with another (ARG).
2406 * PARM is intended to be the parameter type of a function; and
2407 * ARG is the supplied argument's type. This function tests if
2408 * the latter can be converted to the former.
da096638 2409 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2410 *
2411 * Return 0 if they are identical types;
2412 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2413 * PARM is to ARG. The higher the return value, the worse the match.
2414 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2415
6403aeea 2416struct rank
da096638 2417rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2418{
a9d5ef47 2419 struct rank rank = {0,0};
7062b0a0
SW
2420
2421 if (types_equal (parm, arg))
6403aeea 2422 return EXACT_MATCH_BADNESS;
c906108c
SS
2423
2424 /* Resolve typedefs */
2425 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2426 parm = check_typedef (parm);
2427 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2428 arg = check_typedef (arg);
2429
db577aea 2430 /* See through references, since we can almost make non-references
7ba81444 2431 references. */
db577aea 2432 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2433 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2434 REFERENCE_CONVERSION_BADNESS));
db577aea 2435 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2436 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2437 REFERENCE_CONVERSION_BADNESS));
5d161b24 2438 if (overload_debug)
7ba81444
MS
2439 /* Debugging only. */
2440 fprintf_filtered (gdb_stderr,
2441 "------ Arg is %s [%d], parm is %s [%d]\n",
2442 TYPE_NAME (arg), TYPE_CODE (arg),
2443 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2444
0963b4bd 2445 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2446
2447 switch (TYPE_CODE (parm))
2448 {
c5aa993b
JM
2449 case TYPE_CODE_PTR:
2450 switch (TYPE_CODE (arg))
2451 {
2452 case TYPE_CODE_PTR:
7062b0a0
SW
2453
2454 /* Allowed pointer conversions are:
2455 (a) pointer to void-pointer conversion. */
2456 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2457 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2458
2459 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2460 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2461 TYPE_TARGET_TYPE (arg),
2462 0);
2463 if (rank.subrank >= 0)
2464 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2465
2466 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2467 case TYPE_CODE_ARRAY:
7062b0a0
SW
2468 if (types_equal (TYPE_TARGET_TYPE (parm),
2469 TYPE_TARGET_TYPE (arg)))
6403aeea 2470 return EXACT_MATCH_BADNESS;
7062b0a0 2471 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2472 case TYPE_CODE_FUNC:
da096638 2473 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2474 case TYPE_CODE_INT:
da096638
KS
2475 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2476 && value_as_long (value) == 0)
2477 {
2478 /* Null pointer conversion: allow it to be cast to a pointer.
2479 [4.10.1 of C++ standard draft n3290] */
2480 return NULL_POINTER_CONVERSION_BADNESS;
2481 }
2482 /* fall through */
c5aa993b 2483 case TYPE_CODE_ENUM:
4f2aea11 2484 case TYPE_CODE_FLAGS:
c5aa993b
JM
2485 case TYPE_CODE_CHAR:
2486 case TYPE_CODE_RANGE:
2487 case TYPE_CODE_BOOL:
c5aa993b
JM
2488 default:
2489 return INCOMPATIBLE_TYPE_BADNESS;
2490 }
2491 case TYPE_CODE_ARRAY:
2492 switch (TYPE_CODE (arg))
2493 {
2494 case TYPE_CODE_PTR:
2495 case TYPE_CODE_ARRAY:
7ba81444 2496 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 2497 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2498 default:
2499 return INCOMPATIBLE_TYPE_BADNESS;
2500 }
2501 case TYPE_CODE_FUNC:
2502 switch (TYPE_CODE (arg))
2503 {
2504 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 2505 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2506 default:
2507 return INCOMPATIBLE_TYPE_BADNESS;
2508 }
2509 case TYPE_CODE_INT:
2510 switch (TYPE_CODE (arg))
2511 {
2512 case TYPE_CODE_INT:
2513 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2514 {
2515 /* Deal with signed, unsigned, and plain chars and
7ba81444 2516 signed and unsigned ints. */
c5aa993b
JM
2517 if (TYPE_NOSIGN (parm))
2518 {
0963b4bd 2519 /* This case only for character types. */
7ba81444 2520 if (TYPE_NOSIGN (arg))
6403aeea 2521 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2522 else /* signed/unsigned char -> plain char */
2523 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2524 }
2525 else if (TYPE_UNSIGNED (parm))
2526 {
2527 if (TYPE_UNSIGNED (arg))
2528 {
7ba81444
MS
2529 /* unsigned int -> unsigned int, or
2530 unsigned long -> unsigned long */
2531 if (integer_types_same_name_p (TYPE_NAME (parm),
2532 TYPE_NAME (arg)))
6403aeea 2533 return EXACT_MATCH_BADNESS;
7ba81444
MS
2534 else if (integer_types_same_name_p (TYPE_NAME (arg),
2535 "int")
2536 && integer_types_same_name_p (TYPE_NAME (parm),
2537 "long"))
3e43a32a
MS
2538 /* unsigned int -> unsigned long */
2539 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2540 else
3e43a32a
MS
2541 /* unsigned long -> unsigned int */
2542 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2543 }
2544 else
2545 {
7ba81444
MS
2546 if (integer_types_same_name_p (TYPE_NAME (arg),
2547 "long")
2548 && integer_types_same_name_p (TYPE_NAME (parm),
2549 "int"))
3e43a32a
MS
2550 /* signed long -> unsigned int */
2551 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2552 else
3e43a32a
MS
2553 /* signed int/long -> unsigned int/long */
2554 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2555 }
2556 }
2557 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2558 {
7ba81444
MS
2559 if (integer_types_same_name_p (TYPE_NAME (parm),
2560 TYPE_NAME (arg)))
6403aeea 2561 return EXACT_MATCH_BADNESS;
7ba81444
MS
2562 else if (integer_types_same_name_p (TYPE_NAME (arg),
2563 "int")
2564 && integer_types_same_name_p (TYPE_NAME (parm),
2565 "long"))
c5aa993b
JM
2566 return INTEGER_PROMOTION_BADNESS;
2567 else
1c5cb38e 2568 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2569 }
2570 else
1c5cb38e 2571 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2572 }
2573 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2574 return INTEGER_PROMOTION_BADNESS;
2575 else
1c5cb38e 2576 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2577 case TYPE_CODE_ENUM:
4f2aea11 2578 case TYPE_CODE_FLAGS:
c5aa993b
JM
2579 case TYPE_CODE_CHAR:
2580 case TYPE_CODE_RANGE:
2581 case TYPE_CODE_BOOL:
2582 return INTEGER_PROMOTION_BADNESS;
2583 case TYPE_CODE_FLT:
2584 return INT_FLOAT_CONVERSION_BADNESS;
2585 case TYPE_CODE_PTR:
2586 return NS_POINTER_CONVERSION_BADNESS;
2587 default:
2588 return INCOMPATIBLE_TYPE_BADNESS;
2589 }
2590 break;
2591 case TYPE_CODE_ENUM:
2592 switch (TYPE_CODE (arg))
2593 {
2594 case TYPE_CODE_INT:
2595 case TYPE_CODE_CHAR:
2596 case TYPE_CODE_RANGE:
2597 case TYPE_CODE_BOOL:
2598 case TYPE_CODE_ENUM:
1c5cb38e 2599 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2600 case TYPE_CODE_FLT:
2601 return INT_FLOAT_CONVERSION_BADNESS;
2602 default:
2603 return INCOMPATIBLE_TYPE_BADNESS;
2604 }
2605 break;
2606 case TYPE_CODE_CHAR:
2607 switch (TYPE_CODE (arg))
2608 {
2609 case TYPE_CODE_RANGE:
2610 case TYPE_CODE_BOOL:
2611 case TYPE_CODE_ENUM:
1c5cb38e 2612 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2613 case TYPE_CODE_FLT:
2614 return INT_FLOAT_CONVERSION_BADNESS;
2615 case TYPE_CODE_INT:
2616 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2617 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2618 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2619 return INTEGER_PROMOTION_BADNESS;
2620 /* >>> !! else fall through !! <<< */
2621 case TYPE_CODE_CHAR:
7ba81444
MS
2622 /* Deal with signed, unsigned, and plain chars for C++ and
2623 with int cases falling through from previous case. */
c5aa993b
JM
2624 if (TYPE_NOSIGN (parm))
2625 {
2626 if (TYPE_NOSIGN (arg))
6403aeea 2627 return EXACT_MATCH_BADNESS;
c5aa993b 2628 else
1c5cb38e 2629 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2630 }
2631 else if (TYPE_UNSIGNED (parm))
2632 {
2633 if (TYPE_UNSIGNED (arg))
6403aeea 2634 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2635 else
2636 return INTEGER_PROMOTION_BADNESS;
2637 }
2638 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2639 return EXACT_MATCH_BADNESS;
c5aa993b 2640 else
1c5cb38e 2641 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2642 default:
2643 return INCOMPATIBLE_TYPE_BADNESS;
2644 }
2645 break;
2646 case TYPE_CODE_RANGE:
2647 switch (TYPE_CODE (arg))
2648 {
2649 case TYPE_CODE_INT:
2650 case TYPE_CODE_CHAR:
2651 case TYPE_CODE_RANGE:
2652 case TYPE_CODE_BOOL:
2653 case TYPE_CODE_ENUM:
1c5cb38e 2654 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2655 case TYPE_CODE_FLT:
2656 return INT_FLOAT_CONVERSION_BADNESS;
2657 default:
2658 return INCOMPATIBLE_TYPE_BADNESS;
2659 }
2660 break;
2661 case TYPE_CODE_BOOL:
2662 switch (TYPE_CODE (arg))
2663 {
2664 case TYPE_CODE_INT:
2665 case TYPE_CODE_CHAR:
2666 case TYPE_CODE_RANGE:
2667 case TYPE_CODE_ENUM:
2668 case TYPE_CODE_FLT:
026ffab7 2669 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2670 case TYPE_CODE_PTR:
026ffab7 2671 return BOOL_PTR_CONVERSION_BADNESS;
c5aa993b 2672 case TYPE_CODE_BOOL:
6403aeea 2673 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2674 default:
2675 return INCOMPATIBLE_TYPE_BADNESS;
2676 }
2677 break;
2678 case TYPE_CODE_FLT:
2679 switch (TYPE_CODE (arg))
2680 {
2681 case TYPE_CODE_FLT:
2682 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2683 return FLOAT_PROMOTION_BADNESS;
2684 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2685 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2686 else
2687 return FLOAT_CONVERSION_BADNESS;
2688 case TYPE_CODE_INT:
2689 case TYPE_CODE_BOOL:
2690 case TYPE_CODE_ENUM:
2691 case TYPE_CODE_RANGE:
2692 case TYPE_CODE_CHAR:
2693 return INT_FLOAT_CONVERSION_BADNESS;
2694 default:
2695 return INCOMPATIBLE_TYPE_BADNESS;
2696 }
2697 break;
2698 case TYPE_CODE_COMPLEX:
2699 switch (TYPE_CODE (arg))
7ba81444 2700 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2701 case TYPE_CODE_FLT:
2702 return FLOAT_PROMOTION_BADNESS;
2703 case TYPE_CODE_COMPLEX:
6403aeea 2704 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2705 default:
2706 return INCOMPATIBLE_TYPE_BADNESS;
2707 }
2708 break;
2709 case TYPE_CODE_STRUCT:
0963b4bd 2710 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2711 switch (TYPE_CODE (arg))
2712 {
2713 case TYPE_CODE_STRUCT:
2714 /* Check for derivation */
a9d5ef47
SW
2715 rank.subrank = distance_to_ancestor (parm, arg, 0);
2716 if (rank.subrank >= 0)
2717 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2718 /* else fall through */
2719 default:
2720 return INCOMPATIBLE_TYPE_BADNESS;
2721 }
2722 break;
2723 case TYPE_CODE_UNION:
2724 switch (TYPE_CODE (arg))
2725 {
2726 case TYPE_CODE_UNION:
2727 default:
2728 return INCOMPATIBLE_TYPE_BADNESS;
2729 }
2730 break;
0d5de010 2731 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2732 switch (TYPE_CODE (arg))
2733 {
2734 default:
2735 return INCOMPATIBLE_TYPE_BADNESS;
2736 }
2737 break;
2738 case TYPE_CODE_METHOD:
2739 switch (TYPE_CODE (arg))
2740 {
2741
2742 default:
2743 return INCOMPATIBLE_TYPE_BADNESS;
2744 }
2745 break;
2746 case TYPE_CODE_REF:
2747 switch (TYPE_CODE (arg))
2748 {
2749
2750 default:
2751 return INCOMPATIBLE_TYPE_BADNESS;
2752 }
2753
2754 break;
2755 case TYPE_CODE_SET:
2756 switch (TYPE_CODE (arg))
2757 {
2758 /* Not in C++ */
2759 case TYPE_CODE_SET:
7ba81444 2760 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 2761 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
2762 default:
2763 return INCOMPATIBLE_TYPE_BADNESS;
2764 }
2765 break;
2766 case TYPE_CODE_VOID:
2767 default:
2768 return INCOMPATIBLE_TYPE_BADNESS;
2769 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2770}
2771
c5aa993b 2772
0963b4bd 2773/* End of functions for overload resolution. */
c906108c 2774
c906108c 2775static void
fba45db2 2776print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2777{
2778 int bitno;
2779
2780 for (bitno = 0; bitno < nbits; bitno++)
2781 {
2782 if ((bitno % 8) == 0)
2783 {
2784 puts_filtered (" ");
2785 }
2786 if (B_TST (bits, bitno))
a3f17187 2787 printf_filtered (("1"));
c906108c 2788 else
a3f17187 2789 printf_filtered (("0"));
c906108c
SS
2790 }
2791}
2792
ad2f7632 2793/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2794 include it since we may get into a infinitely recursive
2795 situation. */
c906108c
SS
2796
2797static void
ad2f7632 2798print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2799{
2800 if (args != NULL)
2801 {
ad2f7632
DJ
2802 int i;
2803
2804 for (i = 0; i < nargs; i++)
2805 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2806 }
2807}
2808
d6a843b5
JK
2809int
2810field_is_static (struct field *f)
2811{
2812 /* "static" fields are the fields whose location is not relative
2813 to the address of the enclosing struct. It would be nice to
2814 have a dedicated flag that would be set for static fields when
2815 the type is being created. But in practice, checking the field
254e6b9e 2816 loc_kind should give us an accurate answer. */
d6a843b5
JK
2817 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2818 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2819}
2820
c906108c 2821static void
fba45db2 2822dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2823{
2824 int method_idx;
2825 int overload_idx;
2826 struct fn_field *f;
2827
2828 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2829 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2830 printf_filtered ("\n");
2831 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2832 {
2833 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2834 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2835 method_idx,
2836 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2837 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2838 gdb_stdout);
a3f17187 2839 printf_filtered (_(") length %d\n"),
c906108c
SS
2840 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2841 for (overload_idx = 0;
2842 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2843 overload_idx++)
2844 {
2845 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2846 overload_idx,
2847 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2848 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2849 gdb_stdout);
c906108c
SS
2850 printf_filtered (")\n");
2851 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2852 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2853 gdb_stdout);
c906108c
SS
2854 printf_filtered ("\n");
2855
2856 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2857 spaces + 8 + 2);
2858
2859 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2860 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2861 gdb_stdout);
c906108c
SS
2862 printf_filtered ("\n");
2863
ad2f7632 2864 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2865 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2866 overload_idx)),
ad2f7632 2867 spaces);
c906108c 2868 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2869 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2870 gdb_stdout);
c906108c
SS
2871 printf_filtered ("\n");
2872
2873 printfi_filtered (spaces + 8, "is_const %d\n",
2874 TYPE_FN_FIELD_CONST (f, overload_idx));
2875 printfi_filtered (spaces + 8, "is_volatile %d\n",
2876 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2877 printfi_filtered (spaces + 8, "is_private %d\n",
2878 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2879 printfi_filtered (spaces + 8, "is_protected %d\n",
2880 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2881 printfi_filtered (spaces + 8, "is_stub %d\n",
2882 TYPE_FN_FIELD_STUB (f, overload_idx));
2883 printfi_filtered (spaces + 8, "voffset %u\n",
2884 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2885 }
2886 }
2887}
2888
2889static void
fba45db2 2890print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2891{
2892 printfi_filtered (spaces, "n_baseclasses %d\n",
2893 TYPE_N_BASECLASSES (type));
2894 printfi_filtered (spaces, "nfn_fields %d\n",
2895 TYPE_NFN_FIELDS (type));
2896 printfi_filtered (spaces, "nfn_fields_total %d\n",
2897 TYPE_NFN_FIELDS_TOTAL (type));
2898 if (TYPE_N_BASECLASSES (type) > 0)
2899 {
2900 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2901 TYPE_N_BASECLASSES (type));
7ba81444
MS
2902 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2903 gdb_stdout);
c906108c
SS
2904 printf_filtered (")");
2905
2906 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2907 TYPE_N_BASECLASSES (type));
2908 puts_filtered ("\n");
2909 }
2910 if (TYPE_NFIELDS (type) > 0)
2911 {
2912 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2913 {
7ba81444
MS
2914 printfi_filtered (spaces,
2915 "private_field_bits (%d bits at *",
c906108c 2916 TYPE_NFIELDS (type));
7ba81444
MS
2917 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2918 gdb_stdout);
c906108c
SS
2919 printf_filtered (")");
2920 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2921 TYPE_NFIELDS (type));
2922 puts_filtered ("\n");
2923 }
2924 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2925 {
7ba81444
MS
2926 printfi_filtered (spaces,
2927 "protected_field_bits (%d bits at *",
c906108c 2928 TYPE_NFIELDS (type));
7ba81444
MS
2929 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2930 gdb_stdout);
c906108c
SS
2931 printf_filtered (")");
2932 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2933 TYPE_NFIELDS (type));
2934 puts_filtered ("\n");
2935 }
2936 }
2937 if (TYPE_NFN_FIELDS (type) > 0)
2938 {
2939 dump_fn_fieldlists (type, spaces);
2940 }
2941}
2942
b4ba55a1
JB
2943/* Print the contents of the TYPE's type_specific union, assuming that
2944 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2945
2946static void
2947print_gnat_stuff (struct type *type, int spaces)
2948{
2949 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2950
2951 recursive_dump_type (descriptive_type, spaces + 2);
2952}
2953
c906108c
SS
2954static struct obstack dont_print_type_obstack;
2955
2956void
fba45db2 2957recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2958{
2959 int idx;
2960
2961 if (spaces == 0)
2962 obstack_begin (&dont_print_type_obstack, 0);
2963
2964 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2965 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2966 {
2967 struct type **first_dont_print
7ba81444 2968 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2969
7ba81444
MS
2970 int i = (struct type **)
2971 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2972
2973 while (--i >= 0)
2974 {
2975 if (type == first_dont_print[i])
2976 {
2977 printfi_filtered (spaces, "type node ");
d4f3574e 2978 gdb_print_host_address (type, gdb_stdout);
a3f17187 2979 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2980 return;
2981 }
2982 }
2983
2984 obstack_ptr_grow (&dont_print_type_obstack, type);
2985 }
2986
2987 printfi_filtered (spaces, "type node ");
d4f3574e 2988 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2989 printf_filtered ("\n");
2990 printfi_filtered (spaces, "name '%s' (",
2991 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2992 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2993 printf_filtered (")\n");
e9e79dd9
FF
2994 printfi_filtered (spaces, "tagname '%s' (",
2995 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2996 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2997 printf_filtered (")\n");
c906108c
SS
2998 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2999 switch (TYPE_CODE (type))
3000 {
c5aa993b
JM
3001 case TYPE_CODE_UNDEF:
3002 printf_filtered ("(TYPE_CODE_UNDEF)");
3003 break;
3004 case TYPE_CODE_PTR:
3005 printf_filtered ("(TYPE_CODE_PTR)");
3006 break;
3007 case TYPE_CODE_ARRAY:
3008 printf_filtered ("(TYPE_CODE_ARRAY)");
3009 break;
3010 case TYPE_CODE_STRUCT:
3011 printf_filtered ("(TYPE_CODE_STRUCT)");
3012 break;
3013 case TYPE_CODE_UNION:
3014 printf_filtered ("(TYPE_CODE_UNION)");
3015 break;
3016 case TYPE_CODE_ENUM:
3017 printf_filtered ("(TYPE_CODE_ENUM)");
3018 break;
4f2aea11
MK
3019 case TYPE_CODE_FLAGS:
3020 printf_filtered ("(TYPE_CODE_FLAGS)");
3021 break;
c5aa993b
JM
3022 case TYPE_CODE_FUNC:
3023 printf_filtered ("(TYPE_CODE_FUNC)");
3024 break;
3025 case TYPE_CODE_INT:
3026 printf_filtered ("(TYPE_CODE_INT)");
3027 break;
3028 case TYPE_CODE_FLT:
3029 printf_filtered ("(TYPE_CODE_FLT)");
3030 break;
3031 case TYPE_CODE_VOID:
3032 printf_filtered ("(TYPE_CODE_VOID)");
3033 break;
3034 case TYPE_CODE_SET:
3035 printf_filtered ("(TYPE_CODE_SET)");
3036 break;
3037 case TYPE_CODE_RANGE:
3038 printf_filtered ("(TYPE_CODE_RANGE)");
3039 break;
3040 case TYPE_CODE_STRING:
3041 printf_filtered ("(TYPE_CODE_STRING)");
3042 break;
e9e79dd9
FF
3043 case TYPE_CODE_BITSTRING:
3044 printf_filtered ("(TYPE_CODE_BITSTRING)");
3045 break;
c5aa993b
JM
3046 case TYPE_CODE_ERROR:
3047 printf_filtered ("(TYPE_CODE_ERROR)");
3048 break;
0d5de010
DJ
3049 case TYPE_CODE_MEMBERPTR:
3050 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3051 break;
3052 case TYPE_CODE_METHODPTR:
3053 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3054 break;
3055 case TYPE_CODE_METHOD:
3056 printf_filtered ("(TYPE_CODE_METHOD)");
3057 break;
3058 case TYPE_CODE_REF:
3059 printf_filtered ("(TYPE_CODE_REF)");
3060 break;
3061 case TYPE_CODE_CHAR:
3062 printf_filtered ("(TYPE_CODE_CHAR)");
3063 break;
3064 case TYPE_CODE_BOOL:
3065 printf_filtered ("(TYPE_CODE_BOOL)");
3066 break;
e9e79dd9
FF
3067 case TYPE_CODE_COMPLEX:
3068 printf_filtered ("(TYPE_CODE_COMPLEX)");
3069 break;
c5aa993b
JM
3070 case TYPE_CODE_TYPEDEF:
3071 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3072 break;
5c4e30ca
DC
3073 case TYPE_CODE_NAMESPACE:
3074 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3075 break;
c5aa993b
JM
3076 default:
3077 printf_filtered ("(UNKNOWN TYPE CODE)");
3078 break;
c906108c
SS
3079 }
3080 puts_filtered ("\n");
3081 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3082 if (TYPE_OBJFILE_OWNED (type))
3083 {
3084 printfi_filtered (spaces, "objfile ");
3085 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3086 }
3087 else
3088 {
3089 printfi_filtered (spaces, "gdbarch ");
3090 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3091 }
c906108c
SS
3092 printf_filtered ("\n");
3093 printfi_filtered (spaces, "target_type ");
d4f3574e 3094 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3095 printf_filtered ("\n");
3096 if (TYPE_TARGET_TYPE (type) != NULL)
3097 {
3098 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3099 }
3100 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3101 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3102 printf_filtered ("\n");
3103 printfi_filtered (spaces, "reference_type ");
d4f3574e 3104 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3105 printf_filtered ("\n");
2fdde8f8
DJ
3106 printfi_filtered (spaces, "type_chain ");
3107 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3108 printf_filtered ("\n");
7ba81444
MS
3109 printfi_filtered (spaces, "instance_flags 0x%x",
3110 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3111 if (TYPE_CONST (type))
3112 {
3113 puts_filtered (" TYPE_FLAG_CONST");
3114 }
3115 if (TYPE_VOLATILE (type))
3116 {
3117 puts_filtered (" TYPE_FLAG_VOLATILE");
3118 }
3119 if (TYPE_CODE_SPACE (type))
3120 {
3121 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3122 }
3123 if (TYPE_DATA_SPACE (type))
3124 {
3125 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3126 }
8b2dbe47
KB
3127 if (TYPE_ADDRESS_CLASS_1 (type))
3128 {
3129 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3130 }
3131 if (TYPE_ADDRESS_CLASS_2 (type))
3132 {
3133 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3134 }
2fdde8f8 3135 puts_filtered ("\n");
876cecd0
TT
3136
3137 printfi_filtered (spaces, "flags");
762a036f 3138 if (TYPE_UNSIGNED (type))
c906108c
SS
3139 {
3140 puts_filtered (" TYPE_FLAG_UNSIGNED");
3141 }
762a036f
FF
3142 if (TYPE_NOSIGN (type))
3143 {
3144 puts_filtered (" TYPE_FLAG_NOSIGN");
3145 }
3146 if (TYPE_STUB (type))
c906108c
SS
3147 {
3148 puts_filtered (" TYPE_FLAG_STUB");
3149 }
762a036f
FF
3150 if (TYPE_TARGET_STUB (type))
3151 {
3152 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3153 }
3154 if (TYPE_STATIC (type))
3155 {
3156 puts_filtered (" TYPE_FLAG_STATIC");
3157 }
762a036f
FF
3158 if (TYPE_PROTOTYPED (type))
3159 {
3160 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3161 }
3162 if (TYPE_INCOMPLETE (type))
3163 {
3164 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3165 }
762a036f
FF
3166 if (TYPE_VARARGS (type))
3167 {
3168 puts_filtered (" TYPE_FLAG_VARARGS");
3169 }
f5f8a009
EZ
3170 /* This is used for things like AltiVec registers on ppc. Gcc emits
3171 an attribute for the array type, which tells whether or not we
3172 have a vector, instead of a regular array. */
3173 if (TYPE_VECTOR (type))
3174 {
3175 puts_filtered (" TYPE_FLAG_VECTOR");
3176 }
876cecd0
TT
3177 if (TYPE_FIXED_INSTANCE (type))
3178 {
3179 puts_filtered (" TYPE_FIXED_INSTANCE");
3180 }
3181 if (TYPE_STUB_SUPPORTED (type))
3182 {
3183 puts_filtered (" TYPE_STUB_SUPPORTED");
3184 }
3185 if (TYPE_NOTTEXT (type))
3186 {
3187 puts_filtered (" TYPE_NOTTEXT");
3188 }
c906108c
SS
3189 puts_filtered ("\n");
3190 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3191 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3192 puts_filtered ("\n");
3193 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3194 {
3195 printfi_filtered (spaces + 2,
3196 "[%d] bitpos %d bitsize %d type ",
3197 idx, TYPE_FIELD_BITPOS (type, idx),
3198 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3199 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3200 printf_filtered (" name '%s' (",
3201 TYPE_FIELD_NAME (type, idx) != NULL
3202 ? TYPE_FIELD_NAME (type, idx)
3203 : "<NULL>");
d4f3574e 3204 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3205 printf_filtered (")\n");
3206 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3207 {
3208 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3209 }
3210 }
43bbcdc2
PH
3211 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3212 {
3213 printfi_filtered (spaces, "low %s%s high %s%s\n",
3214 plongest (TYPE_LOW_BOUND (type)),
3215 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3216 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3217 TYPE_HIGH_BOUND_UNDEFINED (type)
3218 ? " (undefined)" : "");
43bbcdc2 3219 }
c906108c 3220 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3221 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3222 puts_filtered ("\n");
3223 if (TYPE_VPTR_BASETYPE (type) != NULL)
3224 {
3225 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3226 }
7ba81444
MS
3227 printfi_filtered (spaces, "vptr_fieldno %d\n",
3228 TYPE_VPTR_FIELDNO (type));
c906108c 3229
b4ba55a1
JB
3230 switch (TYPE_SPECIFIC_FIELD (type))
3231 {
3232 case TYPE_SPECIFIC_CPLUS_STUFF:
3233 printfi_filtered (spaces, "cplus_stuff ");
3234 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3235 gdb_stdout);
3236 puts_filtered ("\n");
3237 print_cplus_stuff (type, spaces);
3238 break;
8da61cc4 3239
b4ba55a1
JB
3240 case TYPE_SPECIFIC_GNAT_STUFF:
3241 printfi_filtered (spaces, "gnat_stuff ");
3242 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3243 puts_filtered ("\n");
3244 print_gnat_stuff (type, spaces);
3245 break;
701c159d 3246
b4ba55a1
JB
3247 case TYPE_SPECIFIC_FLOATFORMAT:
3248 printfi_filtered (spaces, "floatformat ");
3249 if (TYPE_FLOATFORMAT (type) == NULL)
3250 puts_filtered ("(null)");
3251 else
3252 {
3253 puts_filtered ("{ ");
3254 if (TYPE_FLOATFORMAT (type)[0] == NULL
3255 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3256 puts_filtered ("(null)");
3257 else
3258 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3259
3260 puts_filtered (", ");
3261 if (TYPE_FLOATFORMAT (type)[1] == NULL
3262 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3263 puts_filtered ("(null)");
3264 else
3265 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3266
3267 puts_filtered (" }");
3268 }
3269 puts_filtered ("\n");
3270 break;
c906108c 3271
b6cdc2c1 3272 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3273 printfi_filtered (spaces, "calling_convention %d\n",
3274 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3275 /* tail_call_list is not printed. */
b4ba55a1 3276 break;
c906108c 3277 }
b4ba55a1 3278
c906108c
SS
3279 if (spaces == 0)
3280 obstack_free (&dont_print_type_obstack, NULL);
3281}
3282
ae5a43e0
DJ
3283/* Trivial helpers for the libiberty hash table, for mapping one
3284 type to another. */
3285
3286struct type_pair
3287{
3288 struct type *old, *new;
3289};
3290
3291static hashval_t
3292type_pair_hash (const void *item)
3293{
3294 const struct type_pair *pair = item;
d8734c88 3295
ae5a43e0
DJ
3296 return htab_hash_pointer (pair->old);
3297}
3298
3299static int
3300type_pair_eq (const void *item_lhs, const void *item_rhs)
3301{
3302 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3303
ae5a43e0
DJ
3304 return lhs->old == rhs->old;
3305}
3306
3307/* Allocate the hash table used by copy_type_recursive to walk
3308 types without duplicates. We use OBJFILE's obstack, because
3309 OBJFILE is about to be deleted. */
3310
3311htab_t
3312create_copied_types_hash (struct objfile *objfile)
3313{
3314 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3315 NULL, &objfile->objfile_obstack,
3316 hashtab_obstack_allocate,
3317 dummy_obstack_deallocate);
3318}
3319
7ba81444
MS
3320/* Recursively copy (deep copy) TYPE, if it is associated with
3321 OBJFILE. Return a new type allocated using malloc, a saved type if
3322 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3323 not associated with OBJFILE. */
ae5a43e0
DJ
3324
3325struct type *
7ba81444
MS
3326copy_type_recursive (struct objfile *objfile,
3327 struct type *type,
ae5a43e0
DJ
3328 htab_t copied_types)
3329{
3330 struct type_pair *stored, pair;
3331 void **slot;
3332 struct type *new_type;
3333
e9bb382b 3334 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3335 return type;
3336
7ba81444
MS
3337 /* This type shouldn't be pointing to any types in other objfiles;
3338 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3339 gdb_assert (TYPE_OBJFILE (type) == objfile);
3340
3341 pair.old = type;
3342 slot = htab_find_slot (copied_types, &pair, INSERT);
3343 if (*slot != NULL)
3344 return ((struct type_pair *) *slot)->new;
3345
e9bb382b 3346 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3347
3348 /* We must add the new type to the hash table immediately, in case
3349 we encounter this type again during a recursive call below. */
3e43a32a
MS
3350 stored
3351 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3352 stored->old = type;
3353 stored->new = new_type;
3354 *slot = stored;
3355
876cecd0
TT
3356 /* Copy the common fields of types. For the main type, we simply
3357 copy the entire thing and then update specific fields as needed. */
3358 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3359 TYPE_OBJFILE_OWNED (new_type) = 0;
3360 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3361
ae5a43e0
DJ
3362 if (TYPE_NAME (type))
3363 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3364 if (TYPE_TAG_NAME (type))
3365 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3366
3367 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3368 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3369
3370 /* Copy the fields. */
ae5a43e0
DJ
3371 if (TYPE_NFIELDS (type))
3372 {
3373 int i, nfields;
3374
3375 nfields = TYPE_NFIELDS (type);
1deafd4e 3376 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3377 for (i = 0; i < nfields; i++)
3378 {
7ba81444
MS
3379 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3380 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3381 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3382 if (TYPE_FIELD_TYPE (type, i))
3383 TYPE_FIELD_TYPE (new_type, i)
3384 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3385 copied_types);
3386 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3387 TYPE_FIELD_NAME (new_type, i) =
3388 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3389 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3390 {
d6a843b5
JK
3391 case FIELD_LOC_KIND_BITPOS:
3392 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3393 TYPE_FIELD_BITPOS (type, i));
3394 break;
3395 case FIELD_LOC_KIND_PHYSADDR:
3396 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3397 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3398 break;
3399 case FIELD_LOC_KIND_PHYSNAME:
3400 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3401 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3402 i)));
3403 break;
3404 default:
3405 internal_error (__FILE__, __LINE__,
3406 _("Unexpected type field location kind: %d"),
3407 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3408 }
3409 }
3410 }
3411
0963b4bd 3412 /* For range types, copy the bounds information. */
43bbcdc2
PH
3413 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3414 {
3415 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3416 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3417 }
3418
ae5a43e0
DJ
3419 /* Copy pointers to other types. */
3420 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3421 TYPE_TARGET_TYPE (new_type) =
3422 copy_type_recursive (objfile,
3423 TYPE_TARGET_TYPE (type),
3424 copied_types);
ae5a43e0 3425 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3426 TYPE_VPTR_BASETYPE (new_type) =
3427 copy_type_recursive (objfile,
3428 TYPE_VPTR_BASETYPE (type),
3429 copied_types);
ae5a43e0
DJ
3430 /* Maybe copy the type_specific bits.
3431
3432 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3433 base classes and methods. There's no fundamental reason why we
3434 can't, but at the moment it is not needed. */
3435
3436 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3437 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3438 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3439 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3440 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3441 INIT_CPLUS_SPECIFIC (new_type);
3442
3443 return new_type;
3444}
3445
4af88198
JB
3446/* Make a copy of the given TYPE, except that the pointer & reference
3447 types are not preserved.
3448
3449 This function assumes that the given type has an associated objfile.
3450 This objfile is used to allocate the new type. */
3451
3452struct type *
3453copy_type (const struct type *type)
3454{
3455 struct type *new_type;
3456
e9bb382b 3457 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3458
e9bb382b 3459 new_type = alloc_type_copy (type);
4af88198
JB
3460 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3461 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3462 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3463 sizeof (struct main_type));
3464
3465 return new_type;
3466}
3467
e9bb382b
UW
3468
3469/* Helper functions to initialize architecture-specific types. */
3470
3471/* Allocate a type structure associated with GDBARCH and set its
3472 CODE, LENGTH, and NAME fields. */
3473struct type *
3474arch_type (struct gdbarch *gdbarch,
3475 enum type_code code, int length, char *name)
3476{
3477 struct type *type;
3478
3479 type = alloc_type_arch (gdbarch);
3480 TYPE_CODE (type) = code;
3481 TYPE_LENGTH (type) = length;
3482
3483 if (name)
3484 TYPE_NAME (type) = xstrdup (name);
3485
3486 return type;
3487}
3488
3489/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3490 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3491 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3492struct type *
3493arch_integer_type (struct gdbarch *gdbarch,
3494 int bit, int unsigned_p, char *name)
3495{
3496 struct type *t;
3497
3498 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3499 if (unsigned_p)
3500 TYPE_UNSIGNED (t) = 1;
3501 if (name && strcmp (name, "char") == 0)
3502 TYPE_NOSIGN (t) = 1;
3503
3504 return t;
3505}
3506
3507/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3508 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3509 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3510struct type *
3511arch_character_type (struct gdbarch *gdbarch,
3512 int bit, int unsigned_p, char *name)
3513{
3514 struct type *t;
3515
3516 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3517 if (unsigned_p)
3518 TYPE_UNSIGNED (t) = 1;
3519
3520 return t;
3521}
3522
3523/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3524 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3525 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3526struct type *
3527arch_boolean_type (struct gdbarch *gdbarch,
3528 int bit, int unsigned_p, char *name)
3529{
3530 struct type *t;
3531
3532 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3533 if (unsigned_p)
3534 TYPE_UNSIGNED (t) = 1;
3535
3536 return t;
3537}
3538
3539/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3540 BIT is the type size in bits; if BIT equals -1, the size is
3541 determined by the floatformat. NAME is the type name. Set the
3542 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3543struct type *
e9bb382b
UW
3544arch_float_type (struct gdbarch *gdbarch,
3545 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3546{
3547 struct type *t;
3548
3549 if (bit == -1)
3550 {
3551 gdb_assert (floatformats != NULL);
3552 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3553 bit = floatformats[0]->totalsize;
3554 }
3555 gdb_assert (bit >= 0);
3556
e9bb382b 3557 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3558 TYPE_FLOATFORMAT (t) = floatformats;
3559 return t;
3560}
3561
e9bb382b
UW
3562/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3563 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3564struct type *
e9bb382b
UW
3565arch_complex_type (struct gdbarch *gdbarch,
3566 char *name, struct type *target_type)
27067745
UW
3567{
3568 struct type *t;
d8734c88 3569
e9bb382b
UW
3570 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3571 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3572 TYPE_TARGET_TYPE (t) = target_type;
3573 return t;
3574}
3575
e9bb382b 3576/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3577 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3578struct type *
3579arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3580{
3581 int nfields = length * TARGET_CHAR_BIT;
3582 struct type *type;
3583
3584 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3585 TYPE_UNSIGNED (type) = 1;
3586 TYPE_NFIELDS (type) = nfields;
3587 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3588
3589 return type;
3590}
3591
3592/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3593 position BITPOS is called NAME. */
3594void
3595append_flags_type_flag (struct type *type, int bitpos, char *name)
3596{
3597 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3598 gdb_assert (bitpos < TYPE_NFIELDS (type));
3599 gdb_assert (bitpos >= 0);
3600
3601 if (name)
3602 {
3603 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3604 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3605 }
3606 else
3607 {
3608 /* Don't show this field to the user. */
3609 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3610 }
3611}
3612
3613/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3614 specified by CODE) associated with GDBARCH. NAME is the type name. */
3615struct type *
3616arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3617{
3618 struct type *t;
d8734c88 3619
e9bb382b
UW
3620 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3621 t = arch_type (gdbarch, code, 0, NULL);
3622 TYPE_TAG_NAME (t) = name;
3623 INIT_CPLUS_SPECIFIC (t);
3624 return t;
3625}
3626
3627/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3628 Do not set the field's position or adjust the type's length;
3629 the caller should do so. Return the new field. */
3630struct field *
3631append_composite_type_field_raw (struct type *t, char *name,
3632 struct type *field)
e9bb382b
UW
3633{
3634 struct field *f;
d8734c88 3635
e9bb382b
UW
3636 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3637 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3638 sizeof (struct field) * TYPE_NFIELDS (t));
3639 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3640 memset (f, 0, sizeof f[0]);
3641 FIELD_TYPE (f[0]) = field;
3642 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3643 return f;
3644}
3645
3646/* Add new field with name NAME and type FIELD to composite type T.
3647 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3648void
3649append_composite_type_field_aligned (struct type *t, char *name,
3650 struct type *field, int alignment)
3651{
3652 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3653
e9bb382b
UW
3654 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3655 {
3656 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3657 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3658 }
3659 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3660 {
3661 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3662 if (TYPE_NFIELDS (t) > 1)
3663 {
3664 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3665 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3666 * TARGET_CHAR_BIT));
3667
3668 if (alignment)
3669 {
86c3c1fc
AB
3670 int left;
3671
3672 alignment *= TARGET_CHAR_BIT;
3673 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3674
e9bb382b
UW
3675 if (left)
3676 {
86c3c1fc
AB
3677 FIELD_BITPOS (f[0]) += (alignment - left);
3678 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3679 }
3680 }
3681 }
3682 }
3683}
3684
3685/* Add new field with name NAME and type FIELD to composite type T. */
3686void
3687append_composite_type_field (struct type *t, char *name,
3688 struct type *field)
3689{
3690 append_composite_type_field_aligned (t, name, field, 0);
3691}
3692
3693
000177f0
AC
3694static struct gdbarch_data *gdbtypes_data;
3695
3696const struct builtin_type *
3697builtin_type (struct gdbarch *gdbarch)
3698{
3699 return gdbarch_data (gdbarch, gdbtypes_data);
3700}
3701
3702static void *
3703gdbtypes_post_init (struct gdbarch *gdbarch)
3704{
3705 struct builtin_type *builtin_type
3706 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3707
46bf5051 3708 /* Basic types. */
e9bb382b
UW
3709 builtin_type->builtin_void
3710 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3711 builtin_type->builtin_char
3712 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3713 !gdbarch_char_signed (gdbarch), "char");
3714 builtin_type->builtin_signed_char
3715 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3716 0, "signed char");
3717 builtin_type->builtin_unsigned_char
3718 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3719 1, "unsigned char");
3720 builtin_type->builtin_short
3721 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3722 0, "short");
3723 builtin_type->builtin_unsigned_short
3724 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3725 1, "unsigned short");
3726 builtin_type->builtin_int
3727 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3728 0, "int");
3729 builtin_type->builtin_unsigned_int
3730 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3731 1, "unsigned int");
3732 builtin_type->builtin_long
3733 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3734 0, "long");
3735 builtin_type->builtin_unsigned_long
3736 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3737 1, "unsigned long");
3738 builtin_type->builtin_long_long
3739 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3740 0, "long long");
3741 builtin_type->builtin_unsigned_long_long
3742 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3743 1, "unsigned long long");
70bd8e24 3744 builtin_type->builtin_float
e9bb382b 3745 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3746 "float", gdbarch_float_format (gdbarch));
70bd8e24 3747 builtin_type->builtin_double
e9bb382b 3748 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3749 "double", gdbarch_double_format (gdbarch));
70bd8e24 3750 builtin_type->builtin_long_double
e9bb382b 3751 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3752 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3753 builtin_type->builtin_complex
e9bb382b
UW
3754 = arch_complex_type (gdbarch, "complex",
3755 builtin_type->builtin_float);
70bd8e24 3756 builtin_type->builtin_double_complex
e9bb382b
UW
3757 = arch_complex_type (gdbarch, "double complex",
3758 builtin_type->builtin_double);
3759 builtin_type->builtin_string
3760 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3761 builtin_type->builtin_bool
3762 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3763
7678ef8f
TJB
3764 /* The following three are about decimal floating point types, which
3765 are 32-bits, 64-bits and 128-bits respectively. */
3766 builtin_type->builtin_decfloat
e9bb382b 3767 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3768 builtin_type->builtin_decdouble
e9bb382b 3769 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3770 builtin_type->builtin_declong
e9bb382b 3771 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3772
69feb676 3773 /* "True" character types. */
e9bb382b
UW
3774 builtin_type->builtin_true_char
3775 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3776 builtin_type->builtin_true_unsigned_char
3777 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3778
df4df182 3779 /* Fixed-size integer types. */
e9bb382b
UW
3780 builtin_type->builtin_int0
3781 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3782 builtin_type->builtin_int8
3783 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3784 builtin_type->builtin_uint8
3785 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3786 builtin_type->builtin_int16
3787 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3788 builtin_type->builtin_uint16
3789 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3790 builtin_type->builtin_int32
3791 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3792 builtin_type->builtin_uint32
3793 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3794 builtin_type->builtin_int64
3795 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3796 builtin_type->builtin_uint64
3797 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3798 builtin_type->builtin_int128
3799 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3800 builtin_type->builtin_uint128
3801 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3802 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3803 TYPE_INSTANCE_FLAG_NOTTEXT;
3804 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3805 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3806
9a22f0d0
PM
3807 /* Wide character types. */
3808 builtin_type->builtin_char16
3809 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3810 builtin_type->builtin_char32
3811 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3812
3813
46bf5051 3814 /* Default data/code pointer types. */
e9bb382b
UW
3815 builtin_type->builtin_data_ptr
3816 = lookup_pointer_type (builtin_type->builtin_void);
3817 builtin_type->builtin_func_ptr
3818 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3819 builtin_type->builtin_func_func
3820 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3821
78267919 3822 /* This type represents a GDB internal function. */
e9bb382b
UW
3823 builtin_type->internal_fn
3824 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3825 "<internal function>");
78267919 3826
46bf5051
UW
3827 return builtin_type;
3828}
3829
3830
3831/* This set of objfile-based types is intended to be used by symbol
3832 readers as basic types. */
3833
3834static const struct objfile_data *objfile_type_data;
3835
3836const struct objfile_type *
3837objfile_type (struct objfile *objfile)
3838{
3839 struct gdbarch *gdbarch;
3840 struct objfile_type *objfile_type
3841 = objfile_data (objfile, objfile_type_data);
3842
3843 if (objfile_type)
3844 return objfile_type;
3845
3846 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3847 1, struct objfile_type);
3848
3849 /* Use the objfile architecture to determine basic type properties. */
3850 gdbarch = get_objfile_arch (objfile);
3851
3852 /* Basic types. */
3853 objfile_type->builtin_void
3854 = init_type (TYPE_CODE_VOID, 1,
3855 0,
3856 "void", objfile);
3857
3858 objfile_type->builtin_char
3859 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3860 (TYPE_FLAG_NOSIGN
3861 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3862 "char", objfile);
3863 objfile_type->builtin_signed_char
3864 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3865 0,
3866 "signed char", objfile);
3867 objfile_type->builtin_unsigned_char
3868 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3869 TYPE_FLAG_UNSIGNED,
3870 "unsigned char", objfile);
3871 objfile_type->builtin_short
3872 = init_type (TYPE_CODE_INT,
3873 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3874 0, "short", objfile);
3875 objfile_type->builtin_unsigned_short
3876 = init_type (TYPE_CODE_INT,
3877 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3878 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3879 objfile_type->builtin_int
3880 = init_type (TYPE_CODE_INT,
3881 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3882 0, "int", objfile);
3883 objfile_type->builtin_unsigned_int
3884 = init_type (TYPE_CODE_INT,
3885 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3886 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3887 objfile_type->builtin_long
3888 = init_type (TYPE_CODE_INT,
3889 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3890 0, "long", objfile);
3891 objfile_type->builtin_unsigned_long
3892 = init_type (TYPE_CODE_INT,
3893 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3894 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3895 objfile_type->builtin_long_long
3896 = init_type (TYPE_CODE_INT,
3897 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3898 0, "long long", objfile);
3899 objfile_type->builtin_unsigned_long_long
3900 = init_type (TYPE_CODE_INT,
3901 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3902 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3903
3904 objfile_type->builtin_float
3905 = init_type (TYPE_CODE_FLT,
3906 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3907 0, "float", objfile);
3908 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3909 = gdbarch_float_format (gdbarch);
3910 objfile_type->builtin_double
3911 = init_type (TYPE_CODE_FLT,
3912 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3913 0, "double", objfile);
3914 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3915 = gdbarch_double_format (gdbarch);
3916 objfile_type->builtin_long_double
3917 = init_type (TYPE_CODE_FLT,
3918 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3919 0, "long double", objfile);
3920 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3921 = gdbarch_long_double_format (gdbarch);
3922
3923 /* This type represents a type that was unrecognized in symbol read-in. */
3924 objfile_type->builtin_error
3925 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3926
3927 /* The following set of types is used for symbols with no
3928 debug information. */
3929 objfile_type->nodebug_text_symbol
3930 = init_type (TYPE_CODE_FUNC, 1, 0,
3931 "<text variable, no debug info>", objfile);
3932 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3933 = objfile_type->builtin_int;
0875794a
JK
3934 objfile_type->nodebug_text_gnu_ifunc_symbol
3935 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3936 "<text gnu-indirect-function variable, no debug info>",
3937 objfile);
3938 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3939 = objfile_type->nodebug_text_symbol;
3940 objfile_type->nodebug_got_plt_symbol
3941 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3942 "<text from jump slot in .got.plt, no debug info>",
3943 objfile);
3944 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3945 = objfile_type->nodebug_text_symbol;
46bf5051
UW
3946 objfile_type->nodebug_data_symbol
3947 = init_type (TYPE_CODE_INT,
3948 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3949 "<data variable, no debug info>", objfile);
3950 objfile_type->nodebug_unknown_symbol
3951 = init_type (TYPE_CODE_INT, 1, 0,
3952 "<variable (not text or data), no debug info>", objfile);
3953 objfile_type->nodebug_tls_symbol
3954 = init_type (TYPE_CODE_INT,
3955 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3956 "<thread local variable, no debug info>", objfile);
000177f0
AC
3957
3958 /* NOTE: on some targets, addresses and pointers are not necessarily
3959 the same --- for example, on the D10V, pointers are 16 bits long,
3960 but addresses are 32 bits long. See doc/gdbint.texinfo,
3961 ``Pointers Are Not Always Addresses''.
3962
3963 The upshot is:
3964 - gdb's `struct type' always describes the target's
3965 representation.
3966 - gdb's `struct value' objects should always hold values in
3967 target form.
3968 - gdb's CORE_ADDR values are addresses in the unified virtual
3969 address space that the assembler and linker work with. Thus,
3970 since target_read_memory takes a CORE_ADDR as an argument, it
3971 can access any memory on the target, even if the processor has
3972 separate code and data address spaces.
3973
3974 So, for example:
3975 - If v is a value holding a D10V code pointer, its contents are
3976 in target form: a big-endian address left-shifted two bits.
3977 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3978 sizeof (void *) == 2 on the target.
3979
46bf5051
UW
3980 In this context, objfile_type->builtin_core_addr is a bit odd:
3981 it's a target type for a value the target will never see. It's
3982 only used to hold the values of (typeless) linker symbols, which
3983 are indeed in the unified virtual address space. */
000177f0 3984
46bf5051
UW
3985 objfile_type->builtin_core_addr
3986 = init_type (TYPE_CODE_INT,
3987 gdbarch_addr_bit (gdbarch) / 8,
3988 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3989
46bf5051
UW
3990 set_objfile_data (objfile, objfile_type_data, objfile_type);
3991 return objfile_type;
000177f0
AC
3992}
3993
46bf5051 3994
a14ed312 3995extern void _initialize_gdbtypes (void);
c906108c 3996void
fba45db2 3997_initialize_gdbtypes (void)
c906108c 3998{
5674de60 3999 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4000 objfile_type_data = register_objfile_data ();
5674de60 4001
3e43a32a
MS
4002 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
4003 _("Set debugging of C++ overloading."),
4004 _("Show debugging of C++ overloading."),
4005 _("When enabled, ranking of the "
4006 "functions is displayed."),
85c07804 4007 NULL,
920d2a44 4008 show_overload_debug,
85c07804 4009 &setdebuglist, &showdebuglist);
5674de60 4010
7ba81444 4011 /* Add user knob for controlling resolution of opaque types. */
5674de60 4012 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4013 &opaque_type_resolution,
4014 _("Set resolution of opaque struct/class/union"
4015 " types (if set before loading symbols)."),
4016 _("Show resolution of opaque struct/class/union"
4017 " types (if set before loading symbols)."),
4018 NULL, NULL,
5674de60
UW
4019 show_opaque_type_resolution,
4020 &setlist, &showlist);
c906108c 4021}
This page took 1.523165 seconds and 4 git commands to generate.