Change {lookup,make}_reference_type API
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
8f57eec2 190 on the obstack associated with GDBARCH. */
e9bb382b
UW
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
8f57eec2
PP
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2e056931
SM
255/* See gdbtypes.h. */
256
257unsigned int
258type_length_units (struct type *type)
259{
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264}
265
2fdde8f8
DJ
266/* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270static struct type *
271alloc_type_instance (struct type *oldtype)
272{
273 struct type *type;
274
275 /* Allocate the structure. */
276
e9bb382b 277 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 278 type = XCNEW (struct type);
2fdde8f8 279 else
1deafd4e
PA
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
2fdde8f8
DJ
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
c16abbde 287 return type;
2fdde8f8
DJ
288}
289
290/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 291 replacing it with something else. Preserve owner information. */
5212577a 292
2fdde8f8
DJ
293static void
294smash_type (struct type *type)
295{
e9bb382b
UW
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
2fdde8f8
DJ
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
e9bb382b
UW
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
2fdde8f8
DJ
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309}
310
c906108c
SS
311/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316struct type *
fba45db2 317make_pointer_type (struct type *type, struct type **typeptr)
c906108c 318{
52f0bd74 319 struct type *ntype; /* New type */
053cb41b 320 struct type *chain;
c906108c
SS
321
322 ntype = TYPE_POINTER_TYPE (type);
323
c5aa993b 324 if (ntype)
c906108c 325 {
c5aa993b 326 if (typeptr == 0)
7ba81444
MS
327 return ntype; /* Don't care about alloc,
328 and have new type. */
c906108c 329 else if (*typeptr == 0)
c5aa993b 330 {
7ba81444 331 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 332 return ntype;
c5aa993b 333 }
c906108c
SS
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
e9bb382b 338 ntype = alloc_type_copy (type);
c906108c
SS
339 if (typeptr)
340 *typeptr = ntype;
341 }
7ba81444 342 else /* We have storage, but need to reset it. */
c906108c
SS
343 {
344 ntype = *typeptr;
053cb41b 345 chain = TYPE_CHAIN (ntype);
2fdde8f8 346 smash_type (ntype);
053cb41b 347 TYPE_CHAIN (ntype) = chain;
c906108c
SS
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
5212577a 353 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 354
50810684
UW
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
67b2adb2 359 /* Mark pointers as unsigned. The target converts between pointers
76e71323 360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 361 gdbarch_address_to_pointer. */
876cecd0 362 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 363
053cb41b
JB
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
c906108c
SS
372 return ntype;
373}
374
375/* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378struct type *
fba45db2 379lookup_pointer_type (struct type *type)
c906108c 380{
c5aa993b 381 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
382}
383
7ba81444
MS
384/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
387 type we return. We allocate new memory if needed. REFCODE denotes
388 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
389
390struct type *
3b224330
AV
391make_reference_type (struct type *type, struct type **typeptr,
392 enum type_code refcode)
c906108c 393{
52f0bd74 394 struct type *ntype; /* New type */
3b224330 395 struct type **reftype;
1e98b326 396 struct type *chain;
c906108c 397
3b224330
AV
398 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
399
400 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
401 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 402
c5aa993b 403 if (ntype)
c906108c 404 {
c5aa993b 405 if (typeptr == 0)
7ba81444
MS
406 return ntype; /* Don't care about alloc,
407 and have new type. */
c906108c 408 else if (*typeptr == 0)
c5aa993b 409 {
7ba81444 410 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 411 return ntype;
c5aa993b 412 }
c906108c
SS
413 }
414
415 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
416 {
e9bb382b 417 ntype = alloc_type_copy (type);
c906108c
SS
418 if (typeptr)
419 *typeptr = ntype;
420 }
7ba81444 421 else /* We have storage, but need to reset it. */
c906108c
SS
422 {
423 ntype = *typeptr;
1e98b326 424 chain = TYPE_CHAIN (ntype);
2fdde8f8 425 smash_type (ntype);
1e98b326 426 TYPE_CHAIN (ntype) = chain;
c906108c
SS
427 }
428
429 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
430 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
431 : &TYPE_RVALUE_REFERENCE_TYPE (type));
432
433 *reftype = ntype;
c906108c 434
7ba81444
MS
435 /* FIXME! Assume the machine has only one representation for
436 references, and that it matches the (only) representation for
437 pointers! */
c906108c 438
50810684
UW
439 TYPE_LENGTH (ntype) =
440 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 441 TYPE_CODE (ntype) = refcode;
c5aa993b 442
3b224330 443 *reftype = ntype;
c906108c 444
1e98b326
JB
445 /* Update the length of all the other variants of this type. */
446 chain = TYPE_CHAIN (ntype);
447 while (chain != ntype)
448 {
449 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
450 chain = TYPE_CHAIN (chain);
451 }
452
c906108c
SS
453 return ntype;
454}
455
7ba81444
MS
456/* Same as above, but caller doesn't care about memory allocation
457 details. */
c906108c
SS
458
459struct type *
3b224330
AV
460lookup_reference_type (struct type *type, enum type_code refcode)
461{
462 return make_reference_type (type, (struct type **) 0, refcode);
463}
464
465/* Lookup the lvalue reference type for the type TYPE. */
466
467struct type *
468lookup_lvalue_reference_type (struct type *type)
469{
470 return lookup_reference_type (type, TYPE_CODE_REF);
471}
472
473/* Lookup the rvalue reference type for the type TYPE. */
474
475struct type *
476lookup_rvalue_reference_type (struct type *type)
c906108c 477{
3b224330 478 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
479}
480
7ba81444
MS
481/* Lookup a function type that returns type TYPE. TYPEPTR, if
482 nonzero, points to a pointer to memory where the function type
483 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 484 function type we return. We allocate new memory if needed. */
c906108c
SS
485
486struct type *
0c8b41f1 487make_function_type (struct type *type, struct type **typeptr)
c906108c 488{
52f0bd74 489 struct type *ntype; /* New type */
c906108c
SS
490
491 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
492 {
e9bb382b 493 ntype = alloc_type_copy (type);
c906108c
SS
494 if (typeptr)
495 *typeptr = ntype;
496 }
7ba81444 497 else /* We have storage, but need to reset it. */
c906108c
SS
498 {
499 ntype = *typeptr;
2fdde8f8 500 smash_type (ntype);
c906108c
SS
501 }
502
503 TYPE_TARGET_TYPE (ntype) = type;
504
505 TYPE_LENGTH (ntype) = 1;
506 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 507
b6cdc2c1
JK
508 INIT_FUNC_SPECIFIC (ntype);
509
c906108c
SS
510 return ntype;
511}
512
c906108c
SS
513/* Given a type TYPE, return a type of functions that return that type.
514 May need to construct such a type if this is the first use. */
515
516struct type *
fba45db2 517lookup_function_type (struct type *type)
c906108c 518{
0c8b41f1 519 return make_function_type (type, (struct type **) 0);
c906108c
SS
520}
521
71918a86 522/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
523 function type. If the final type in PARAM_TYPES is NULL, make a
524 varargs function. */
71918a86
TT
525
526struct type *
527lookup_function_type_with_arguments (struct type *type,
528 int nparams,
529 struct type **param_types)
530{
531 struct type *fn = make_function_type (type, (struct type **) 0);
532 int i;
533
e314d629 534 if (nparams > 0)
a6fb9c08 535 {
e314d629
TT
536 if (param_types[nparams - 1] == NULL)
537 {
538 --nparams;
539 TYPE_VARARGS (fn) = 1;
540 }
541 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
542 == TYPE_CODE_VOID)
543 {
544 --nparams;
545 /* Caller should have ensured this. */
546 gdb_assert (nparams == 0);
547 TYPE_PROTOTYPED (fn) = 1;
548 }
a6fb9c08
TT
549 }
550
71918a86 551 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
552 TYPE_FIELDS (fn)
553 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
554 for (i = 0; i < nparams; ++i)
555 TYPE_FIELD_TYPE (fn, i) = param_types[i];
556
557 return fn;
558}
559
47663de5
MS
560/* Identify address space identifier by name --
561 return the integer flag defined in gdbtypes.h. */
5212577a
DE
562
563int
50810684 564address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 565{
8b2dbe47 566 int type_flags;
d8734c88 567
7ba81444 568 /* Check for known address space delimiters. */
47663de5 569 if (!strcmp (space_identifier, "code"))
876cecd0 570 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 571 else if (!strcmp (space_identifier, "data"))
876cecd0 572 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
573 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
574 && gdbarch_address_class_name_to_type_flags (gdbarch,
575 space_identifier,
576 &type_flags))
8b2dbe47 577 return type_flags;
47663de5 578 else
8a3fe4f8 579 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
580}
581
582/* Identify address space identifier by integer flag as defined in
7ba81444 583 gdbtypes.h -- return the string version of the adress space name. */
47663de5 584
321432c0 585const char *
50810684 586address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 587{
876cecd0 588 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 589 return "code";
876cecd0 590 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 591 return "data";
876cecd0 592 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
593 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
594 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
595 else
596 return NULL;
597}
598
2fdde8f8 599/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
600
601 If STORAGE is non-NULL, create the new type instance there.
602 STORAGE must be in the same obstack as TYPE. */
47663de5 603
b9362cc7 604static struct type *
2fdde8f8
DJ
605make_qualified_type (struct type *type, int new_flags,
606 struct type *storage)
47663de5
MS
607{
608 struct type *ntype;
609
610 ntype = type;
5f61c20e
JK
611 do
612 {
613 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
614 return ntype;
615 ntype = TYPE_CHAIN (ntype);
616 }
617 while (ntype != type);
47663de5 618
2fdde8f8
DJ
619 /* Create a new type instance. */
620 if (storage == NULL)
621 ntype = alloc_type_instance (type);
622 else
623 {
7ba81444
MS
624 /* If STORAGE was provided, it had better be in the same objfile
625 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
626 if one objfile is freed and the other kept, we'd have
627 dangling pointers. */
ad766c0a
JB
628 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
629
2fdde8f8
DJ
630 ntype = storage;
631 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
632 TYPE_CHAIN (ntype) = ntype;
633 }
47663de5
MS
634
635 /* Pointers or references to the original type are not relevant to
2fdde8f8 636 the new type. */
47663de5
MS
637 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
638 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 639
2fdde8f8
DJ
640 /* Chain the new qualified type to the old type. */
641 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
642 TYPE_CHAIN (type) = ntype;
643
644 /* Now set the instance flags and return the new type. */
645 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 646
ab5d3da6
KB
647 /* Set length of new type to that of the original type. */
648 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
649
47663de5
MS
650 return ntype;
651}
652
2fdde8f8
DJ
653/* Make an address-space-delimited variant of a type -- a type that
654 is identical to the one supplied except that it has an address
655 space attribute attached to it (such as "code" or "data").
656
7ba81444
MS
657 The space attributes "code" and "data" are for Harvard
658 architectures. The address space attributes are for architectures
659 which have alternately sized pointers or pointers with alternate
660 representations. */
2fdde8f8
DJ
661
662struct type *
663make_type_with_address_space (struct type *type, int space_flag)
664{
2fdde8f8 665 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
666 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
667 | TYPE_INSTANCE_FLAG_DATA_SPACE
668 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
669 | space_flag);
670
671 return make_qualified_type (type, new_flags, NULL);
672}
c906108c
SS
673
674/* Make a "c-v" variant of a type -- a type that is identical to the
675 one supplied except that it may have const or volatile attributes
676 CNST is a flag for setting the const attribute
677 VOLTL is a flag for setting the volatile attribute
678 TYPE is the base type whose variant we are creating.
c906108c 679
ad766c0a
JB
680 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
681 storage to hold the new qualified type; *TYPEPTR and TYPE must be
682 in the same objfile. Otherwise, allocate fresh memory for the new
683 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
684 new type we construct. */
5212577a 685
c906108c 686struct type *
7ba81444
MS
687make_cv_type (int cnst, int voltl,
688 struct type *type,
689 struct type **typeptr)
c906108c 690{
52f0bd74 691 struct type *ntype; /* New type */
c906108c 692
2fdde8f8 693 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
694 & ~(TYPE_INSTANCE_FLAG_CONST
695 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 696
c906108c 697 if (cnst)
876cecd0 698 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
699
700 if (voltl)
876cecd0 701 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 702
2fdde8f8 703 if (typeptr && *typeptr != NULL)
a02fd225 704 {
ad766c0a
JB
705 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
706 a C-V variant chain that threads across objfiles: if one
707 objfile gets freed, then the other has a broken C-V chain.
708
709 This code used to try to copy over the main type from TYPE to
710 *TYPEPTR if they were in different objfiles, but that's
711 wrong, too: TYPE may have a field list or member function
712 lists, which refer to types of their own, etc. etc. The
713 whole shebang would need to be copied over recursively; you
714 can't have inter-objfile pointers. The only thing to do is
715 to leave stub types as stub types, and look them up afresh by
716 name each time you encounter them. */
717 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
718 }
719
7ba81444
MS
720 ntype = make_qualified_type (type, new_flags,
721 typeptr ? *typeptr : NULL);
c906108c 722
2fdde8f8
DJ
723 if (typeptr != NULL)
724 *typeptr = ntype;
a02fd225 725
2fdde8f8 726 return ntype;
a02fd225 727}
c906108c 728
06d66ee9
TT
729/* Make a 'restrict'-qualified version of TYPE. */
730
731struct type *
732make_restrict_type (struct type *type)
733{
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_RESTRICT),
737 NULL);
738}
739
f1660027
TT
740/* Make a type without const, volatile, or restrict. */
741
742struct type *
743make_unqualified_type (struct type *type)
744{
745 return make_qualified_type (type,
746 (TYPE_INSTANCE_FLAGS (type)
747 & ~(TYPE_INSTANCE_FLAG_CONST
748 | TYPE_INSTANCE_FLAG_VOLATILE
749 | TYPE_INSTANCE_FLAG_RESTRICT)),
750 NULL);
751}
752
a2c2acaf
MW
753/* Make a '_Atomic'-qualified version of TYPE. */
754
755struct type *
756make_atomic_type (struct type *type)
757{
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 | TYPE_INSTANCE_FLAG_ATOMIC),
761 NULL);
762}
763
2fdde8f8
DJ
764/* Replace the contents of ntype with the type *type. This changes the
765 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
766 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 767
cda6c68a
JB
768 In order to build recursive types, it's inevitable that we'll need
769 to update types in place --- but this sort of indiscriminate
770 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
771 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
772 clear if more steps are needed. */
5212577a 773
dd6bda65
DJ
774void
775replace_type (struct type *ntype, struct type *type)
776{
ab5d3da6 777 struct type *chain;
dd6bda65 778
ad766c0a
JB
779 /* These two types had better be in the same objfile. Otherwise,
780 the assignment of one type's main type structure to the other
781 will produce a type with references to objects (names; field
782 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 783 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 784
2fdde8f8 785 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 786
7ba81444
MS
787 /* The type length is not a part of the main type. Update it for
788 each type on the variant chain. */
ab5d3da6 789 chain = ntype;
5f61c20e
JK
790 do
791 {
792 /* Assert that this element of the chain has no address-class bits
793 set in its flags. Such type variants might have type lengths
794 which are supposed to be different from the non-address-class
795 variants. This assertion shouldn't ever be triggered because
796 symbol readers which do construct address-class variants don't
797 call replace_type(). */
798 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
799
800 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
801 chain = TYPE_CHAIN (chain);
802 }
803 while (ntype != chain);
ab5d3da6 804
2fdde8f8
DJ
805 /* Assert that the two types have equivalent instance qualifiers.
806 This should be true for at least all of our debug readers. */
807 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
808}
809
c906108c
SS
810/* Implement direct support for MEMBER_TYPE in GNU C++.
811 May need to construct such a type if this is the first use.
812 The TYPE is the type of the member. The DOMAIN is the type
813 of the aggregate that the member belongs to. */
814
815struct type *
0d5de010 816lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 817{
52f0bd74 818 struct type *mtype;
c906108c 819
e9bb382b 820 mtype = alloc_type_copy (type);
0d5de010 821 smash_to_memberptr_type (mtype, domain, type);
c16abbde 822 return mtype;
c906108c
SS
823}
824
0d5de010
DJ
825/* Return a pointer-to-method type, for a method of type TO_TYPE. */
826
827struct type *
828lookup_methodptr_type (struct type *to_type)
829{
830 struct type *mtype;
831
e9bb382b 832 mtype = alloc_type_copy (to_type);
0b92b5bb 833 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
834 return mtype;
835}
836
7ba81444
MS
837/* Allocate a stub method whose return type is TYPE. This apparently
838 happens for speed of symbol reading, since parsing out the
839 arguments to the method is cpu-intensive, the way we are doing it.
840 So, we will fill in arguments later. This always returns a fresh
841 type. */
c906108c
SS
842
843struct type *
fba45db2 844allocate_stub_method (struct type *type)
c906108c
SS
845{
846 struct type *mtype;
847
e9bb382b
UW
848 mtype = alloc_type_copy (type);
849 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
850 TYPE_LENGTH (mtype) = 1;
851 TYPE_STUB (mtype) = 1;
c906108c 852 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 853 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 854 return mtype;
c906108c
SS
855}
856
729efb13
SA
857/* Create a range type with a dynamic range from LOW_BOUND to
858 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
859
860struct type *
729efb13
SA
861create_range_type (struct type *result_type, struct type *index_type,
862 const struct dynamic_prop *low_bound,
863 const struct dynamic_prop *high_bound)
c906108c
SS
864{
865 if (result_type == NULL)
e9bb382b 866 result_type = alloc_type_copy (index_type);
c906108c
SS
867 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
868 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 869 if (TYPE_STUB (index_type))
876cecd0 870 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
871 else
872 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 873
43bbcdc2
PH
874 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
875 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
876 TYPE_RANGE_DATA (result_type)->low = *low_bound;
877 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 878
729efb13 879 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 880 TYPE_UNSIGNED (result_type) = 1;
c906108c 881
45e44d27
JB
882 /* Ada allows the declaration of range types whose upper bound is
883 less than the lower bound, so checking the lower bound is not
884 enough. Make sure we do not mark a range type whose upper bound
885 is negative as unsigned. */
886 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
887 TYPE_UNSIGNED (result_type) = 0;
888
262452ec 889 return result_type;
c906108c
SS
890}
891
729efb13
SA
892/* Create a range type using either a blank type supplied in
893 RESULT_TYPE, or creating a new type, inheriting the objfile from
894 INDEX_TYPE.
895
896 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
897 to HIGH_BOUND, inclusive.
898
899 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
900 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
901
902struct type *
903create_static_range_type (struct type *result_type, struct type *index_type,
904 LONGEST low_bound, LONGEST high_bound)
905{
906 struct dynamic_prop low, high;
907
908 low.kind = PROP_CONST;
909 low.data.const_val = low_bound;
910
911 high.kind = PROP_CONST;
912 high.data.const_val = high_bound;
913
914 result_type = create_range_type (result_type, index_type, &low, &high);
915
916 return result_type;
917}
918
80180f79
SA
919/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
920 are static, otherwise returns 0. */
921
922static int
923has_static_range (const struct range_bounds *bounds)
924{
925 return (bounds->low.kind == PROP_CONST
926 && bounds->high.kind == PROP_CONST);
927}
928
929
7ba81444
MS
930/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
931 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
932 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
933
934int
fba45db2 935get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 936{
f168693b 937 type = check_typedef (type);
c906108c
SS
938 switch (TYPE_CODE (type))
939 {
940 case TYPE_CODE_RANGE:
941 *lowp = TYPE_LOW_BOUND (type);
942 *highp = TYPE_HIGH_BOUND (type);
943 return 1;
944 case TYPE_CODE_ENUM:
945 if (TYPE_NFIELDS (type) > 0)
946 {
947 /* The enums may not be sorted by value, so search all
0963b4bd 948 entries. */
c906108c
SS
949 int i;
950
14e75d8e 951 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
952 for (i = 0; i < TYPE_NFIELDS (type); i++)
953 {
14e75d8e
JK
954 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
955 *lowp = TYPE_FIELD_ENUMVAL (type, i);
956 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
957 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
958 }
959
7ba81444 960 /* Set unsigned indicator if warranted. */
c5aa993b 961 if (*lowp >= 0)
c906108c 962 {
876cecd0 963 TYPE_UNSIGNED (type) = 1;
c906108c
SS
964 }
965 }
966 else
967 {
968 *lowp = 0;
969 *highp = -1;
970 }
971 return 0;
972 case TYPE_CODE_BOOL:
973 *lowp = 0;
974 *highp = 1;
975 return 0;
976 case TYPE_CODE_INT:
c5aa993b 977 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
978 return -1;
979 if (!TYPE_UNSIGNED (type))
980 {
c5aa993b 981 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
982 *highp = -*lowp - 1;
983 return 0;
984 }
7ba81444 985 /* ... fall through for unsigned ints ... */
c906108c
SS
986 case TYPE_CODE_CHAR:
987 *lowp = 0;
988 /* This round-about calculation is to avoid shifting by
7b83ea04 989 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 990 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
991 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
992 *highp = (*highp - 1) | *highp;
993 return 0;
994 default:
995 return -1;
996 }
997}
998
dbc98a8b
KW
999/* Assuming TYPE is a simple, non-empty array type, compute its upper
1000 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1001 Save the high bound into HIGH_BOUND if not NULL.
1002
0963b4bd 1003 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1004 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1005
1006 We now simply use get_discrete_bounds call to get the values
1007 of the low and high bounds.
1008 get_discrete_bounds can return three values:
1009 1, meaning that index is a range,
1010 0, meaning that index is a discrete type,
1011 or -1 for failure. */
1012
1013int
1014get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1015{
1016 struct type *index = TYPE_INDEX_TYPE (type);
1017 LONGEST low = 0;
1018 LONGEST high = 0;
1019 int res;
1020
1021 if (index == NULL)
1022 return 0;
1023
1024 res = get_discrete_bounds (index, &low, &high);
1025 if (res == -1)
1026 return 0;
1027
1028 /* Check if the array bounds are undefined. */
1029 if (res == 1
1030 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1031 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1032 return 0;
1033
1034 if (low_bound)
1035 *low_bound = low;
1036
1037 if (high_bound)
1038 *high_bound = high;
1039
1040 return 1;
1041}
1042
aa715135
JG
1043/* Assuming that TYPE is a discrete type and VAL is a valid integer
1044 representation of a value of this type, save the corresponding
1045 position number in POS.
1046
1047 Its differs from VAL only in the case of enumeration types. In
1048 this case, the position number of the value of the first listed
1049 enumeration literal is zero; the position number of the value of
1050 each subsequent enumeration literal is one more than that of its
1051 predecessor in the list.
1052
1053 Return 1 if the operation was successful. Return zero otherwise,
1054 in which case the value of POS is unmodified.
1055*/
1056
1057int
1058discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1059{
1060 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1061 {
1062 int i;
1063
1064 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1065 {
1066 if (val == TYPE_FIELD_ENUMVAL (type, i))
1067 {
1068 *pos = i;
1069 return 1;
1070 }
1071 }
1072 /* Invalid enumeration value. */
1073 return 0;
1074 }
1075 else
1076 {
1077 *pos = val;
1078 return 1;
1079 }
1080}
1081
7ba81444
MS
1082/* Create an array type using either a blank type supplied in
1083 RESULT_TYPE, or creating a new type, inheriting the objfile from
1084 RANGE_TYPE.
c906108c
SS
1085
1086 Elements will be of type ELEMENT_TYPE, the indices will be of type
1087 RANGE_TYPE.
1088
dc53a7ad
JB
1089 If BIT_STRIDE is not zero, build a packed array type whose element
1090 size is BIT_STRIDE. Otherwise, ignore this parameter.
1091
7ba81444
MS
1092 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1093 sure it is TYPE_CODE_UNDEF before we bash it into an array
1094 type? */
c906108c
SS
1095
1096struct type *
dc53a7ad
JB
1097create_array_type_with_stride (struct type *result_type,
1098 struct type *element_type,
1099 struct type *range_type,
1100 unsigned int bit_stride)
c906108c 1101{
c906108c 1102 if (result_type == NULL)
e9bb382b
UW
1103 result_type = alloc_type_copy (range_type);
1104
c906108c
SS
1105 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1106 TYPE_TARGET_TYPE (result_type) = element_type;
3f2f83dd 1107 if (has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1108 && (!type_not_associated (result_type)
1109 && !type_not_allocated (result_type)))
80180f79
SA
1110 {
1111 LONGEST low_bound, high_bound;
1112
1113 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1114 low_bound = high_bound = 0;
f168693b 1115 element_type = check_typedef (element_type);
80180f79
SA
1116 /* Be careful when setting the array length. Ada arrays can be
1117 empty arrays with the high_bound being smaller than the low_bound.
1118 In such cases, the array length should be zero. */
1119 if (high_bound < low_bound)
1120 TYPE_LENGTH (result_type) = 0;
1121 else if (bit_stride > 0)
1122 TYPE_LENGTH (result_type) =
1123 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1124 else
1125 TYPE_LENGTH (result_type) =
1126 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1127 }
ab0d6e0d 1128 else
80180f79
SA
1129 {
1130 /* This type is dynamic and its length needs to be computed
1131 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1132 undefined by setting it to zero. Although we are not expected
1133 to trust TYPE_LENGTH in this case, setting the size to zero
1134 allows us to avoid allocating objects of random sizes in case
1135 we accidently do. */
1136 TYPE_LENGTH (result_type) = 0;
1137 }
1138
c906108c
SS
1139 TYPE_NFIELDS (result_type) = 1;
1140 TYPE_FIELDS (result_type) =
1deafd4e 1141 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1142 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1143 if (bit_stride > 0)
1144 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1145
a9ff5f12 1146 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1147 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1148 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1149
c16abbde 1150 return result_type;
c906108c
SS
1151}
1152
dc53a7ad
JB
1153/* Same as create_array_type_with_stride but with no bit_stride
1154 (BIT_STRIDE = 0), thus building an unpacked array. */
1155
1156struct type *
1157create_array_type (struct type *result_type,
1158 struct type *element_type,
1159 struct type *range_type)
1160{
1161 return create_array_type_with_stride (result_type, element_type,
1162 range_type, 0);
1163}
1164
e3506a9f
UW
1165struct type *
1166lookup_array_range_type (struct type *element_type,
63375b74 1167 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1168{
50810684 1169 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1170 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1171 struct type *range_type
0c9c3474 1172 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1173
e3506a9f
UW
1174 return create_array_type (NULL, element_type, range_type);
1175}
1176
7ba81444
MS
1177/* Create a string type using either a blank type supplied in
1178 RESULT_TYPE, or creating a new type. String types are similar
1179 enough to array of char types that we can use create_array_type to
1180 build the basic type and then bash it into a string type.
c906108c
SS
1181
1182 For fixed length strings, the range type contains 0 as the lower
1183 bound and the length of the string minus one as the upper bound.
1184
7ba81444
MS
1185 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1186 sure it is TYPE_CODE_UNDEF before we bash it into a string
1187 type? */
c906108c
SS
1188
1189struct type *
3b7538c0
UW
1190create_string_type (struct type *result_type,
1191 struct type *string_char_type,
7ba81444 1192 struct type *range_type)
c906108c
SS
1193{
1194 result_type = create_array_type (result_type,
f290d38e 1195 string_char_type,
c906108c
SS
1196 range_type);
1197 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1198 return result_type;
c906108c
SS
1199}
1200
e3506a9f
UW
1201struct type *
1202lookup_string_range_type (struct type *string_char_type,
63375b74 1203 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1204{
1205 struct type *result_type;
d8734c88 1206
e3506a9f
UW
1207 result_type = lookup_array_range_type (string_char_type,
1208 low_bound, high_bound);
1209 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1210 return result_type;
1211}
1212
c906108c 1213struct type *
fba45db2 1214create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1215{
c906108c 1216 if (result_type == NULL)
e9bb382b
UW
1217 result_type = alloc_type_copy (domain_type);
1218
c906108c
SS
1219 TYPE_CODE (result_type) = TYPE_CODE_SET;
1220 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1221 TYPE_FIELDS (result_type)
1222 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1223
74a9bb82 1224 if (!TYPE_STUB (domain_type))
c906108c 1225 {
f9780d5b 1226 LONGEST low_bound, high_bound, bit_length;
d8734c88 1227
c906108c
SS
1228 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1229 low_bound = high_bound = 0;
1230 bit_length = high_bound - low_bound + 1;
1231 TYPE_LENGTH (result_type)
1232 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1233 if (low_bound >= 0)
876cecd0 1234 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1235 }
1236 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1237
c16abbde 1238 return result_type;
c906108c
SS
1239}
1240
ea37ba09
DJ
1241/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1242 and any array types nested inside it. */
1243
1244void
1245make_vector_type (struct type *array_type)
1246{
1247 struct type *inner_array, *elt_type;
1248 int flags;
1249
1250 /* Find the innermost array type, in case the array is
1251 multi-dimensional. */
1252 inner_array = array_type;
1253 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1254 inner_array = TYPE_TARGET_TYPE (inner_array);
1255
1256 elt_type = TYPE_TARGET_TYPE (inner_array);
1257 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1258 {
2844d6b5 1259 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1260 elt_type = make_qualified_type (elt_type, flags, NULL);
1261 TYPE_TARGET_TYPE (inner_array) = elt_type;
1262 }
1263
876cecd0 1264 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1265}
1266
794ac428 1267struct type *
ac3aafc7
EZ
1268init_vector_type (struct type *elt_type, int n)
1269{
1270 struct type *array_type;
d8734c88 1271
e3506a9f 1272 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1273 make_vector_type (array_type);
ac3aafc7
EZ
1274 return array_type;
1275}
1276
09e2d7c7
DE
1277/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1278 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1279 confusing. "self" is a common enough replacement for "this".
1280 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1281 TYPE_CODE_METHOD. */
1282
1283struct type *
1284internal_type_self_type (struct type *type)
1285{
1286 switch (TYPE_CODE (type))
1287 {
1288 case TYPE_CODE_METHODPTR:
1289 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1290 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1291 return NULL;
09e2d7c7
DE
1292 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1293 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1294 case TYPE_CODE_METHOD:
eaaf76ab
DE
1295 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1296 return NULL;
09e2d7c7
DE
1297 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1298 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1299 default:
1300 gdb_assert_not_reached ("bad type");
1301 }
1302}
1303
1304/* Set the type of the class that TYPE belongs to.
1305 In c++ this is the class of "this".
1306 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1307 TYPE_CODE_METHOD. */
1308
1309void
1310set_type_self_type (struct type *type, struct type *self_type)
1311{
1312 switch (TYPE_CODE (type))
1313 {
1314 case TYPE_CODE_METHODPTR:
1315 case TYPE_CODE_MEMBERPTR:
1316 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1317 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1318 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1319 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1320 break;
1321 case TYPE_CODE_METHOD:
1322 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1323 INIT_FUNC_SPECIFIC (type);
1324 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1325 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1326 break;
1327 default:
1328 gdb_assert_not_reached ("bad type");
1329 }
1330}
1331
1332/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1333 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1334 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1335 TYPE doesn't include the offset (that's the value of the MEMBER
1336 itself), but does include the structure type into which it points
1337 (for some reason).
c906108c 1338
7ba81444
MS
1339 When "smashing" the type, we preserve the objfile that the old type
1340 pointed to, since we aren't changing where the type is actually
c906108c
SS
1341 allocated. */
1342
1343void
09e2d7c7 1344smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1345 struct type *to_type)
c906108c 1346{
2fdde8f8 1347 smash_type (type);
09e2d7c7 1348 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1349 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1350 set_type_self_type (type, self_type);
0d5de010
DJ
1351 /* Assume that a data member pointer is the same size as a normal
1352 pointer. */
50810684
UW
1353 TYPE_LENGTH (type)
1354 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1355}
1356
0b92b5bb
TT
1357/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1358
1359 When "smashing" the type, we preserve the objfile that the old type
1360 pointed to, since we aren't changing where the type is actually
1361 allocated. */
1362
1363void
1364smash_to_methodptr_type (struct type *type, struct type *to_type)
1365{
1366 smash_type (type);
09e2d7c7 1367 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1368 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1369 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1370 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1371}
1372
09e2d7c7 1373/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1374 METHOD just means `function that gets an extra "this" argument'.
1375
7ba81444
MS
1376 When "smashing" the type, we preserve the objfile that the old type
1377 pointed to, since we aren't changing where the type is actually
c906108c
SS
1378 allocated. */
1379
1380void
09e2d7c7 1381smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1382 struct type *to_type, struct field *args,
1383 int nargs, int varargs)
c906108c 1384{
2fdde8f8 1385 smash_type (type);
09e2d7c7 1386 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1387 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1388 set_type_self_type (type, self_type);
ad2f7632
DJ
1389 TYPE_FIELDS (type) = args;
1390 TYPE_NFIELDS (type) = nargs;
1391 if (varargs)
876cecd0 1392 TYPE_VARARGS (type) = 1;
c906108c 1393 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1394}
1395
1396/* Return a typename for a struct/union/enum type without "struct ",
1397 "union ", or "enum ". If the type has a NULL name, return NULL. */
1398
0d5cff50 1399const char *
aa1ee363 1400type_name_no_tag (const struct type *type)
c906108c
SS
1401{
1402 if (TYPE_TAG_NAME (type) != NULL)
1403 return TYPE_TAG_NAME (type);
1404
7ba81444
MS
1405 /* Is there code which expects this to return the name if there is
1406 no tag name? My guess is that this is mainly used for C++ in
1407 cases where the two will always be the same. */
c906108c
SS
1408 return TYPE_NAME (type);
1409}
1410
d8228535
JK
1411/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1412 Since GCC PR debug/47510 DWARF provides associated information to detect the
1413 anonymous class linkage name from its typedef.
1414
1415 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1416 apply it itself. */
1417
1418const char *
1419type_name_no_tag_or_error (struct type *type)
1420{
1421 struct type *saved_type = type;
1422 const char *name;
1423 struct objfile *objfile;
1424
f168693b 1425 type = check_typedef (type);
d8228535
JK
1426
1427 name = type_name_no_tag (type);
1428 if (name != NULL)
1429 return name;
1430
1431 name = type_name_no_tag (saved_type);
1432 objfile = TYPE_OBJFILE (saved_type);
1433 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1434 name ? name : "<anonymous>",
1435 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1436}
1437
7ba81444
MS
1438/* Lookup a typedef or primitive type named NAME, visible in lexical
1439 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1440 suitably defined. */
c906108c
SS
1441
1442struct type *
e6c014f2 1443lookup_typename (const struct language_defn *language,
ddd49eee 1444 struct gdbarch *gdbarch, const char *name,
34eaf542 1445 const struct block *block, int noerr)
c906108c 1446{
52f0bd74 1447 struct symbol *sym;
c906108c 1448
1994afbf 1449 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1450 language->la_language, NULL).symbol;
c51fe631
DE
1451 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1452 return SYMBOL_TYPE (sym);
1453
c51fe631
DE
1454 if (noerr)
1455 return NULL;
1456 error (_("No type named %s."), name);
c906108c
SS
1457}
1458
1459struct type *
e6c014f2 1460lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1461 struct gdbarch *gdbarch, const char *name)
c906108c 1462{
224c3ddb 1463 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1464
1465 strcpy (uns, "unsigned ");
1466 strcpy (uns + 9, name);
e6c014f2 1467 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1468}
1469
1470struct type *
e6c014f2 1471lookup_signed_typename (const struct language_defn *language,
0d5cff50 1472 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1473{
1474 struct type *t;
224c3ddb 1475 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1476
1477 strcpy (uns, "signed ");
1478 strcpy (uns + 7, name);
e6c014f2 1479 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1480 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1481 if (t != NULL)
1482 return t;
e6c014f2 1483 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1484}
1485
1486/* Lookup a structure type named "struct NAME",
1487 visible in lexical block BLOCK. */
1488
1489struct type *
270140bd 1490lookup_struct (const char *name, const struct block *block)
c906108c 1491{
52f0bd74 1492 struct symbol *sym;
c906108c 1493
d12307c1 1494 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1495
1496 if (sym == NULL)
1497 {
8a3fe4f8 1498 error (_("No struct type named %s."), name);
c906108c
SS
1499 }
1500 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1501 {
7ba81444
MS
1502 error (_("This context has class, union or enum %s, not a struct."),
1503 name);
c906108c
SS
1504 }
1505 return (SYMBOL_TYPE (sym));
1506}
1507
1508/* Lookup a union type named "union NAME",
1509 visible in lexical block BLOCK. */
1510
1511struct type *
270140bd 1512lookup_union (const char *name, const struct block *block)
c906108c 1513{
52f0bd74 1514 struct symbol *sym;
c5aa993b 1515 struct type *t;
c906108c 1516
d12307c1 1517 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1518
1519 if (sym == NULL)
8a3fe4f8 1520 error (_("No union type named %s."), name);
c906108c 1521
c5aa993b 1522 t = SYMBOL_TYPE (sym);
c906108c
SS
1523
1524 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1525 return t;
c906108c 1526
7ba81444
MS
1527 /* If we get here, it's not a union. */
1528 error (_("This context has class, struct or enum %s, not a union."),
1529 name);
c906108c
SS
1530}
1531
c906108c
SS
1532/* Lookup an enum type named "enum NAME",
1533 visible in lexical block BLOCK. */
1534
1535struct type *
270140bd 1536lookup_enum (const char *name, const struct block *block)
c906108c 1537{
52f0bd74 1538 struct symbol *sym;
c906108c 1539
d12307c1 1540 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1541 if (sym == NULL)
1542 {
8a3fe4f8 1543 error (_("No enum type named %s."), name);
c906108c
SS
1544 }
1545 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1546 {
7ba81444
MS
1547 error (_("This context has class, struct or union %s, not an enum."),
1548 name);
c906108c
SS
1549 }
1550 return (SYMBOL_TYPE (sym));
1551}
1552
1553/* Lookup a template type named "template NAME<TYPE>",
1554 visible in lexical block BLOCK. */
1555
1556struct type *
7ba81444 1557lookup_template_type (char *name, struct type *type,
270140bd 1558 const struct block *block)
c906108c
SS
1559{
1560 struct symbol *sym;
7ba81444
MS
1561 char *nam = (char *)
1562 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1563
c906108c
SS
1564 strcpy (nam, name);
1565 strcat (nam, "<");
0004e5a2 1566 strcat (nam, TYPE_NAME (type));
0963b4bd 1567 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1568
d12307c1 1569 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1570
1571 if (sym == NULL)
1572 {
8a3fe4f8 1573 error (_("No template type named %s."), name);
c906108c
SS
1574 }
1575 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1576 {
7ba81444
MS
1577 error (_("This context has class, union or enum %s, not a struct."),
1578 name);
c906108c
SS
1579 }
1580 return (SYMBOL_TYPE (sym));
1581}
1582
7ba81444
MS
1583/* Given a type TYPE, lookup the type of the component of type named
1584 NAME.
c906108c 1585
7ba81444
MS
1586 TYPE can be either a struct or union, or a pointer or reference to
1587 a struct or union. If it is a pointer or reference, its target
1588 type is automatically used. Thus '.' and '->' are interchangable,
1589 as specified for the definitions of the expression element types
1590 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1591
1592 If NOERR is nonzero, return zero if NAME is not suitably defined.
1593 If NAME is the name of a baseclass type, return that type. */
1594
1595struct type *
d7561cbb 1596lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1597{
1598 int i;
1599
1600 for (;;)
1601 {
f168693b 1602 type = check_typedef (type);
c906108c
SS
1603 if (TYPE_CODE (type) != TYPE_CODE_PTR
1604 && TYPE_CODE (type) != TYPE_CODE_REF)
1605 break;
1606 type = TYPE_TARGET_TYPE (type);
1607 }
1608
687d6395
MS
1609 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1610 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1611 {
2f408ecb
PA
1612 std::string type_name = type_to_string (type);
1613 error (_("Type %s is not a structure or union type."),
1614 type_name.c_str ());
c906108c
SS
1615 }
1616
1617#if 0
7ba81444
MS
1618 /* FIXME: This change put in by Michael seems incorrect for the case
1619 where the structure tag name is the same as the member name.
0963b4bd 1620 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1621 foo; } bell;" Disabled by fnf. */
c906108c 1622 {
fe978cb0 1623 char *type_name;
c906108c 1624
fe978cb0
PA
1625 type_name = type_name_no_tag (type);
1626 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1627 return type;
1628 }
1629#endif
1630
1631 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1632 {
0d5cff50 1633 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1634
db577aea 1635 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1636 {
1637 return TYPE_FIELD_TYPE (type, i);
1638 }
f5a010c0
PM
1639 else if (!t_field_name || *t_field_name == '\0')
1640 {
d8734c88
MS
1641 struct type *subtype
1642 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1643
f5a010c0
PM
1644 if (subtype != NULL)
1645 return subtype;
1646 }
c906108c
SS
1647 }
1648
1649 /* OK, it's not in this class. Recursively check the baseclasses. */
1650 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1651 {
1652 struct type *t;
1653
9733fc94 1654 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1655 if (t != NULL)
1656 {
1657 return t;
1658 }
1659 }
1660
1661 if (noerr)
1662 {
1663 return NULL;
1664 }
c5aa993b 1665
2f408ecb
PA
1666 std::string type_name = type_to_string (type);
1667 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1668}
1669
ed3ef339
DE
1670/* Store in *MAX the largest number representable by unsigned integer type
1671 TYPE. */
1672
1673void
1674get_unsigned_type_max (struct type *type, ULONGEST *max)
1675{
1676 unsigned int n;
1677
f168693b 1678 type = check_typedef (type);
ed3ef339
DE
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1680 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1681
1682 /* Written this way to avoid overflow. */
1683 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1684 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1685}
1686
1687/* Store in *MIN, *MAX the smallest and largest numbers representable by
1688 signed integer type TYPE. */
1689
1690void
1691get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1692{
1693 unsigned int n;
1694
f168693b 1695 type = check_typedef (type);
ed3ef339
DE
1696 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1697 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1698
1699 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1700 *min = -((ULONGEST) 1 << (n - 1));
1701 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1702}
1703
ae6ae975
DE
1704/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1705 cplus_stuff.vptr_fieldno.
1706
1707 cplus_stuff is initialized to cplus_struct_default which does not
1708 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1709 designated initializers). We cope with that here. */
1710
1711int
1712internal_type_vptr_fieldno (struct type *type)
1713{
f168693b 1714 type = check_typedef (type);
ae6ae975
DE
1715 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1716 || TYPE_CODE (type) == TYPE_CODE_UNION);
1717 if (!HAVE_CPLUS_STRUCT (type))
1718 return -1;
1719 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1720}
1721
1722/* Set the value of cplus_stuff.vptr_fieldno. */
1723
1724void
1725set_type_vptr_fieldno (struct type *type, int fieldno)
1726{
f168693b 1727 type = check_typedef (type);
ae6ae975
DE
1728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1729 || TYPE_CODE (type) == TYPE_CODE_UNION);
1730 if (!HAVE_CPLUS_STRUCT (type))
1731 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1732 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1733}
1734
1735/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1736 cplus_stuff.vptr_basetype. */
1737
1738struct type *
1739internal_type_vptr_basetype (struct type *type)
1740{
f168693b 1741 type = check_typedef (type);
ae6ae975
DE
1742 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1743 || TYPE_CODE (type) == TYPE_CODE_UNION);
1744 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1745 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1746}
1747
1748/* Set the value of cplus_stuff.vptr_basetype. */
1749
1750void
1751set_type_vptr_basetype (struct type *type, struct type *basetype)
1752{
f168693b 1753 type = check_typedef (type);
ae6ae975
DE
1754 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1755 || TYPE_CODE (type) == TYPE_CODE_UNION);
1756 if (!HAVE_CPLUS_STRUCT (type))
1757 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1758 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1759}
1760
81fe8080
DE
1761/* Lookup the vptr basetype/fieldno values for TYPE.
1762 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1763 vptr_fieldno. Also, if found and basetype is from the same objfile,
1764 cache the results.
1765 If not found, return -1 and ignore BASETYPEP.
1766 Callers should be aware that in some cases (for example,
c906108c 1767 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1768 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1769 this function will not be able to find the
7ba81444 1770 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1771 vptr_basetype will remain NULL or incomplete. */
c906108c 1772
81fe8080
DE
1773int
1774get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1775{
f168693b 1776 type = check_typedef (type);
c906108c
SS
1777
1778 if (TYPE_VPTR_FIELDNO (type) < 0)
1779 {
1780 int i;
1781
7ba81444
MS
1782 /* We must start at zero in case the first (and only) baseclass
1783 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1784 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1785 {
81fe8080
DE
1786 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1787 int fieldno;
1788 struct type *basetype;
1789
1790 fieldno = get_vptr_fieldno (baseclass, &basetype);
1791 if (fieldno >= 0)
c906108c 1792 {
81fe8080 1793 /* If the type comes from a different objfile we can't cache
0963b4bd 1794 it, it may have a different lifetime. PR 2384 */
5ef73790 1795 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1796 {
ae6ae975
DE
1797 set_type_vptr_fieldno (type, fieldno);
1798 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1799 }
1800 if (basetypep)
1801 *basetypep = basetype;
1802 return fieldno;
c906108c
SS
1803 }
1804 }
81fe8080
DE
1805
1806 /* Not found. */
1807 return -1;
1808 }
1809 else
1810 {
1811 if (basetypep)
1812 *basetypep = TYPE_VPTR_BASETYPE (type);
1813 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1814 }
1815}
1816
44e1a9eb
DJ
1817static void
1818stub_noname_complaint (void)
1819{
e2e0b3e5 1820 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1821}
1822
d98b7a16 1823/* Worker for is_dynamic_type. */
80180f79 1824
d98b7a16 1825static int
ee715b5a 1826is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1827{
1828 type = check_typedef (type);
1829
e771e4be
PMR
1830 /* We only want to recognize references at the outermost level. */
1831 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1832 type = check_typedef (TYPE_TARGET_TYPE (type));
1833
3cdcd0ce
JB
1834 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1835 dynamic, even if the type itself is statically defined.
1836 From a user's point of view, this may appear counter-intuitive;
1837 but it makes sense in this context, because the point is to determine
1838 whether any part of the type needs to be resolved before it can
1839 be exploited. */
1840 if (TYPE_DATA_LOCATION (type) != NULL
1841 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1842 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1843 return 1;
1844
3f2f83dd
KB
1845 if (TYPE_ASSOCIATED_PROP (type))
1846 return 1;
1847
1848 if (TYPE_ALLOCATED_PROP (type))
1849 return 1;
1850
80180f79
SA
1851 switch (TYPE_CODE (type))
1852 {
6f8a3220 1853 case TYPE_CODE_RANGE:
ddb87a81
JB
1854 {
1855 /* A range type is obviously dynamic if it has at least one
1856 dynamic bound. But also consider the range type to be
1857 dynamic when its subtype is dynamic, even if the bounds
1858 of the range type are static. It allows us to assume that
1859 the subtype of a static range type is also static. */
1860 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1861 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1862 }
6f8a3220 1863
80180f79
SA
1864 case TYPE_CODE_ARRAY:
1865 {
80180f79 1866 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1867
1868 /* The array is dynamic if either the bounds are dynamic,
1869 or the elements it contains have a dynamic contents. */
ee715b5a 1870 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1871 return 1;
ee715b5a 1872 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1873 }
012370f6
TT
1874
1875 case TYPE_CODE_STRUCT:
1876 case TYPE_CODE_UNION:
1877 {
1878 int i;
1879
1880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1881 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1882 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1883 return 1;
1884 }
1885 break;
80180f79 1886 }
92e2a17f
TT
1887
1888 return 0;
80180f79
SA
1889}
1890
d98b7a16
TT
1891/* See gdbtypes.h. */
1892
1893int
1894is_dynamic_type (struct type *type)
1895{
ee715b5a 1896 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1897}
1898
df25ebbd 1899static struct type *resolve_dynamic_type_internal
ee715b5a 1900 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1901
df25ebbd
JB
1902/* Given a dynamic range type (dyn_range_type) and a stack of
1903 struct property_addr_info elements, return a static version
1904 of that type. */
d190df30 1905
80180f79 1906static struct type *
df25ebbd
JB
1907resolve_dynamic_range (struct type *dyn_range_type,
1908 struct property_addr_info *addr_stack)
80180f79
SA
1909{
1910 CORE_ADDR value;
ddb87a81 1911 struct type *static_range_type, *static_target_type;
80180f79 1912 const struct dynamic_prop *prop;
80180f79
SA
1913 struct dynamic_prop low_bound, high_bound;
1914
6f8a3220 1915 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1916
6f8a3220 1917 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1918 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1919 {
1920 low_bound.kind = PROP_CONST;
1921 low_bound.data.const_val = value;
1922 }
1923 else
1924 {
1925 low_bound.kind = PROP_UNDEFINED;
1926 low_bound.data.const_val = 0;
1927 }
1928
6f8a3220 1929 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1930 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1931 {
1932 high_bound.kind = PROP_CONST;
1933 high_bound.data.const_val = value;
c451ebe5 1934
6f8a3220 1935 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1936 high_bound.data.const_val
1937 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1938 }
1939 else
1940 {
1941 high_bound.kind = PROP_UNDEFINED;
1942 high_bound.data.const_val = 0;
1943 }
1944
ddb87a81
JB
1945 static_target_type
1946 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 1947 addr_stack, 0);
6f8a3220 1948 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1949 static_target_type,
6f8a3220
JB
1950 &low_bound, &high_bound);
1951 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1952 return static_range_type;
1953}
1954
1955/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1956 ADDR_STACK is a stack of struct property_addr_info to be used
1957 if needed during the dynamic resolution. */
6f8a3220
JB
1958
1959static struct type *
df25ebbd
JB
1960resolve_dynamic_array (struct type *type,
1961 struct property_addr_info *addr_stack)
6f8a3220
JB
1962{
1963 CORE_ADDR value;
1964 struct type *elt_type;
1965 struct type *range_type;
1966 struct type *ary_dim;
3f2f83dd 1967 struct dynamic_prop *prop;
6f8a3220
JB
1968
1969 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1970
3f2f83dd
KB
1971 type = copy_type (type);
1972
6f8a3220
JB
1973 elt_type = type;
1974 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1975 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1976
3f2f83dd
KB
1977 /* Resolve allocated/associated here before creating a new array type, which
1978 will update the length of the array accordingly. */
1979 prop = TYPE_ALLOCATED_PROP (type);
1980 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1981 {
1982 TYPE_DYN_PROP_ADDR (prop) = value;
1983 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1984 }
1985 prop = TYPE_ASSOCIATED_PROP (type);
1986 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1987 {
1988 TYPE_DYN_PROP_ADDR (prop) = value;
1989 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1990 }
1991
80180f79
SA
1992 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1993
1994 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 1995 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
1996 else
1997 elt_type = TYPE_TARGET_TYPE (type);
1998
3f2f83dd
KB
1999 return create_array_type_with_stride (type, elt_type, range_type,
2000 TYPE_FIELD_BITSIZE (type, 0));
80180f79
SA
2001}
2002
012370f6 2003/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2004 bounds. ADDR_STACK is a stack of struct property_addr_info
2005 to be used if needed during the dynamic resolution. */
012370f6
TT
2006
2007static struct type *
df25ebbd
JB
2008resolve_dynamic_union (struct type *type,
2009 struct property_addr_info *addr_stack)
012370f6
TT
2010{
2011 struct type *resolved_type;
2012 int i;
2013 unsigned int max_len = 0;
2014
2015 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2016
2017 resolved_type = copy_type (type);
2018 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2019 = (struct field *) TYPE_ALLOC (resolved_type,
2020 TYPE_NFIELDS (resolved_type)
2021 * sizeof (struct field));
012370f6
TT
2022 memcpy (TYPE_FIELDS (resolved_type),
2023 TYPE_FIELDS (type),
2024 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2025 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2026 {
2027 struct type *t;
2028
2029 if (field_is_static (&TYPE_FIELD (type, i)))
2030 continue;
2031
d98b7a16 2032 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2033 addr_stack, 0);
012370f6
TT
2034 TYPE_FIELD_TYPE (resolved_type, i) = t;
2035 if (TYPE_LENGTH (t) > max_len)
2036 max_len = TYPE_LENGTH (t);
2037 }
2038
2039 TYPE_LENGTH (resolved_type) = max_len;
2040 return resolved_type;
2041}
2042
2043/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2044 bounds. ADDR_STACK is a stack of struct property_addr_info to
2045 be used if needed during the dynamic resolution. */
012370f6
TT
2046
2047static struct type *
df25ebbd
JB
2048resolve_dynamic_struct (struct type *type,
2049 struct property_addr_info *addr_stack)
012370f6
TT
2050{
2051 struct type *resolved_type;
2052 int i;
6908c509 2053 unsigned resolved_type_bit_length = 0;
012370f6
TT
2054
2055 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2056 gdb_assert (TYPE_NFIELDS (type) > 0);
2057
2058 resolved_type = copy_type (type);
2059 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2060 = (struct field *) TYPE_ALLOC (resolved_type,
2061 TYPE_NFIELDS (resolved_type)
2062 * sizeof (struct field));
012370f6
TT
2063 memcpy (TYPE_FIELDS (resolved_type),
2064 TYPE_FIELDS (type),
2065 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2066 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2067 {
6908c509 2068 unsigned new_bit_length;
df25ebbd 2069 struct property_addr_info pinfo;
012370f6
TT
2070
2071 if (field_is_static (&TYPE_FIELD (type, i)))
2072 continue;
2073
6908c509
JB
2074 /* As we know this field is not a static field, the field's
2075 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2076 this is the case, but only trigger a simple error rather
2077 than an internal error if that fails. While failing
2078 that verification indicates a bug in our code, the error
2079 is not severe enough to suggest to the user he stops
2080 his debugging session because of it. */
df25ebbd 2081 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2082 error (_("Cannot determine struct field location"
2083 " (invalid location kind)"));
df25ebbd
JB
2084
2085 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2086 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2087 pinfo.addr
2088 = (addr_stack->addr
2089 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2090 pinfo.next = addr_stack;
2091
2092 TYPE_FIELD_TYPE (resolved_type, i)
2093 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2094 &pinfo, 0);
df25ebbd
JB
2095 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2096 == FIELD_LOC_KIND_BITPOS);
2097
6908c509
JB
2098 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2099 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2100 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2101 else
2102 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2103 * TARGET_CHAR_BIT);
2104
2105 /* Normally, we would use the position and size of the last field
2106 to determine the size of the enclosing structure. But GCC seems
2107 to be encoding the position of some fields incorrectly when
2108 the struct contains a dynamic field that is not placed last.
2109 So we compute the struct size based on the field that has
2110 the highest position + size - probably the best we can do. */
2111 if (new_bit_length > resolved_type_bit_length)
2112 resolved_type_bit_length = new_bit_length;
012370f6
TT
2113 }
2114
9920b434
BH
2115 /* The length of a type won't change for fortran, but it does for C and Ada.
2116 For fortran the size of dynamic fields might change over time but not the
2117 type length of the structure. If we adapt it, we run into problems
2118 when calculating the element offset for arrays of structs. */
2119 if (current_language->la_language != language_fortran)
2120 TYPE_LENGTH (resolved_type)
2121 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2122
9e195661
PMR
2123 /* The Ada language uses this field as a cache for static fixed types: reset
2124 it as RESOLVED_TYPE must have its own static fixed type. */
2125 TYPE_TARGET_TYPE (resolved_type) = NULL;
2126
012370f6
TT
2127 return resolved_type;
2128}
2129
d98b7a16 2130/* Worker for resolved_dynamic_type. */
80180f79 2131
d98b7a16 2132static struct type *
df25ebbd 2133resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2134 struct property_addr_info *addr_stack,
2135 int top_level)
80180f79
SA
2136{
2137 struct type *real_type = check_typedef (type);
6f8a3220 2138 struct type *resolved_type = type;
d9823cbb 2139 struct dynamic_prop *prop;
3cdcd0ce 2140 CORE_ADDR value;
80180f79 2141
ee715b5a 2142 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2143 return type;
2144
5537b577 2145 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2146 {
cac9b138
JK
2147 resolved_type = copy_type (type);
2148 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2149 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2150 top_level);
5537b577
JK
2151 }
2152 else
2153 {
2154 /* Before trying to resolve TYPE, make sure it is not a stub. */
2155 type = real_type;
012370f6 2156
5537b577
JK
2157 switch (TYPE_CODE (type))
2158 {
e771e4be
PMR
2159 case TYPE_CODE_REF:
2160 {
2161 struct property_addr_info pinfo;
2162
2163 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2164 pinfo.valaddr = NULL;
2165 if (addr_stack->valaddr != NULL)
2166 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2167 else
2168 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2169 pinfo.next = addr_stack;
2170
2171 resolved_type = copy_type (type);
2172 TYPE_TARGET_TYPE (resolved_type)
2173 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2174 &pinfo, top_level);
2175 break;
2176 }
2177
5537b577 2178 case TYPE_CODE_ARRAY:
df25ebbd 2179 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2180 break;
2181
2182 case TYPE_CODE_RANGE:
df25ebbd 2183 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2184 break;
2185
2186 case TYPE_CODE_UNION:
df25ebbd 2187 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2188 break;
2189
2190 case TYPE_CODE_STRUCT:
df25ebbd 2191 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2192 break;
2193 }
6f8a3220 2194 }
80180f79 2195
3cdcd0ce
JB
2196 /* Resolve data_location attribute. */
2197 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2198 if (prop != NULL
2199 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2200 {
d9823cbb
KB
2201 TYPE_DYN_PROP_ADDR (prop) = value;
2202 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2203 }
3cdcd0ce 2204
80180f79
SA
2205 return resolved_type;
2206}
2207
d98b7a16
TT
2208/* See gdbtypes.h */
2209
2210struct type *
c3345124
JB
2211resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2212 CORE_ADDR addr)
d98b7a16 2213{
c3345124
JB
2214 struct property_addr_info pinfo
2215 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2216
ee715b5a 2217 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2218}
2219
d9823cbb
KB
2220/* See gdbtypes.h */
2221
2222struct dynamic_prop *
2223get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2224{
2225 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2226
2227 while (node != NULL)
2228 {
2229 if (node->prop_kind == prop_kind)
283a9958 2230 return &node->prop;
d9823cbb
KB
2231 node = node->next;
2232 }
2233 return NULL;
2234}
2235
2236/* See gdbtypes.h */
2237
2238void
2239add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2240 struct type *type, struct objfile *objfile)
2241{
2242 struct dynamic_prop_list *temp;
2243
2244 gdb_assert (TYPE_OBJFILE_OWNED (type));
2245
224c3ddb 2246 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
d9823cbb 2247 temp->prop_kind = prop_kind;
283a9958 2248 temp->prop = prop;
d9823cbb
KB
2249 temp->next = TYPE_DYN_PROP_LIST (type);
2250
2251 TYPE_DYN_PROP_LIST (type) = temp;
2252}
2253
9920b434
BH
2254/* Remove dynamic property from TYPE in case it exists. */
2255
2256void
2257remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2258 struct type *type)
2259{
2260 struct dynamic_prop_list *prev_node, *curr_node;
2261
2262 curr_node = TYPE_DYN_PROP_LIST (type);
2263 prev_node = NULL;
2264
2265 while (NULL != curr_node)
2266 {
2267 if (curr_node->prop_kind == prop_kind)
2268 {
2269 /* Update the linked list but don't free anything.
2270 The property was allocated on objstack and it is not known
2271 if we are on top of it. Nevertheless, everything is released
2272 when the complete objstack is freed. */
2273 if (NULL == prev_node)
2274 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2275 else
2276 prev_node->next = curr_node->next;
2277
2278 return;
2279 }
2280
2281 prev_node = curr_node;
2282 curr_node = curr_node->next;
2283 }
2284}
d9823cbb 2285
92163a10
JK
2286/* Find the real type of TYPE. This function returns the real type,
2287 after removing all layers of typedefs, and completing opaque or stub
2288 types. Completion changes the TYPE argument, but stripping of
2289 typedefs does not.
2290
2291 Instance flags (e.g. const/volatile) are preserved as typedefs are
2292 stripped. If necessary a new qualified form of the underlying type
2293 is created.
2294
2295 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2296 not been computed and we're either in the middle of reading symbols, or
2297 there was no name for the typedef in the debug info.
2298
9bc118a5
DE
2299 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2300 QUITs in the symbol reading code can also throw.
2301 Thus this function can throw an exception.
2302
92163a10
JK
2303 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2304 the target type.
c906108c
SS
2305
2306 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2307 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2308 definition, so we can use it in future. There used to be a comment
2309 (but not any code) that if we don't find a full definition, we'd
2310 set a flag so we don't spend time in the future checking the same
2311 type. That would be a mistake, though--we might load in more
92163a10 2312 symbols which contain a full definition for the type. */
c906108c
SS
2313
2314struct type *
a02fd225 2315check_typedef (struct type *type)
c906108c
SS
2316{
2317 struct type *orig_type = type;
92163a10
JK
2318 /* While we're removing typedefs, we don't want to lose qualifiers.
2319 E.g., const/volatile. */
2320 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2321
423c0af8
MS
2322 gdb_assert (type);
2323
c906108c
SS
2324 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2325 {
2326 if (!TYPE_TARGET_TYPE (type))
2327 {
0d5cff50 2328 const char *name;
c906108c
SS
2329 struct symbol *sym;
2330
2331 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2332 reading a symtab. Infinite recursion is one danger. */
c906108c 2333 if (currently_reading_symtab)
92163a10 2334 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2335
2336 name = type_name_no_tag (type);
7ba81444
MS
2337 /* FIXME: shouldn't we separately check the TYPE_NAME and
2338 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2339 VAR_DOMAIN as appropriate? (this code was written before
2340 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2341 if (name == NULL)
2342 {
23136709 2343 stub_noname_complaint ();
92163a10 2344 return make_qualified_type (type, instance_flags, NULL);
c906108c 2345 }
d12307c1 2346 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2347 if (sym)
2348 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2349 else /* TYPE_CODE_UNDEF */
e9bb382b 2350 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2351 }
2352 type = TYPE_TARGET_TYPE (type);
c906108c 2353
92163a10
JK
2354 /* Preserve the instance flags as we traverse down the typedef chain.
2355
2356 Handling address spaces/classes is nasty, what do we do if there's a
2357 conflict?
2358 E.g., what if an outer typedef marks the type as class_1 and an inner
2359 typedef marks the type as class_2?
2360 This is the wrong place to do such error checking. We leave it to
2361 the code that created the typedef in the first place to flag the
2362 error. We just pick the outer address space (akin to letting the
2363 outer cast in a chain of casting win), instead of assuming
2364 "it can't happen". */
2365 {
2366 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2367 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2368 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2369 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2370
2371 /* Treat code vs data spaces and address classes separately. */
2372 if ((instance_flags & ALL_SPACES) != 0)
2373 new_instance_flags &= ~ALL_SPACES;
2374 if ((instance_flags & ALL_CLASSES) != 0)
2375 new_instance_flags &= ~ALL_CLASSES;
2376
2377 instance_flags |= new_instance_flags;
2378 }
2379 }
a02fd225 2380
7ba81444
MS
2381 /* If this is a struct/class/union with no fields, then check
2382 whether a full definition exists somewhere else. This is for
2383 systems where a type definition with no fields is issued for such
2384 types, instead of identifying them as stub types in the first
2385 place. */
c5aa993b 2386
7ba81444
MS
2387 if (TYPE_IS_OPAQUE (type)
2388 && opaque_type_resolution
2389 && !currently_reading_symtab)
c906108c 2390 {
0d5cff50 2391 const char *name = type_name_no_tag (type);
c5aa993b 2392 struct type *newtype;
d8734c88 2393
c906108c
SS
2394 if (name == NULL)
2395 {
23136709 2396 stub_noname_complaint ();
92163a10 2397 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2398 }
2399 newtype = lookup_transparent_type (name);
ad766c0a 2400
c906108c 2401 if (newtype)
ad766c0a 2402 {
7ba81444
MS
2403 /* If the resolved type and the stub are in the same
2404 objfile, then replace the stub type with the real deal.
2405 But if they're in separate objfiles, leave the stub
2406 alone; we'll just look up the transparent type every time
2407 we call check_typedef. We can't create pointers between
2408 types allocated to different objfiles, since they may
2409 have different lifetimes. Trying to copy NEWTYPE over to
2410 TYPE's objfile is pointless, too, since you'll have to
2411 move over any other types NEWTYPE refers to, which could
2412 be an unbounded amount of stuff. */
ad766c0a 2413 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2414 type = make_qualified_type (newtype,
2415 TYPE_INSTANCE_FLAGS (type),
2416 type);
ad766c0a
JB
2417 else
2418 type = newtype;
2419 }
c906108c 2420 }
7ba81444
MS
2421 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2422 types. */
74a9bb82 2423 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2424 {
0d5cff50 2425 const char *name = type_name_no_tag (type);
c906108c 2426 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2427 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2428 as appropriate? (this code was written before TYPE_NAME and
2429 TYPE_TAG_NAME were separate). */
c906108c 2430 struct symbol *sym;
d8734c88 2431
c906108c
SS
2432 if (name == NULL)
2433 {
23136709 2434 stub_noname_complaint ();
92163a10 2435 return make_qualified_type (type, instance_flags, NULL);
c906108c 2436 }
d12307c1 2437 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2438 if (sym)
c26f2453
JB
2439 {
2440 /* Same as above for opaque types, we can replace the stub
92163a10 2441 with the complete type only if they are in the same
c26f2453
JB
2442 objfile. */
2443 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2444 type = make_qualified_type (SYMBOL_TYPE (sym),
2445 TYPE_INSTANCE_FLAGS (type),
2446 type);
c26f2453
JB
2447 else
2448 type = SYMBOL_TYPE (sym);
2449 }
c906108c
SS
2450 }
2451
74a9bb82 2452 if (TYPE_TARGET_STUB (type))
c906108c 2453 {
c906108c
SS
2454 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2455
74a9bb82 2456 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2457 {
73e2eb35 2458 /* Nothing we can do. */
c5aa993b 2459 }
c906108c
SS
2460 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2461 {
2462 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2463 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2464 }
2465 }
92163a10
JK
2466
2467 type = make_qualified_type (type, instance_flags, NULL);
2468
7ba81444 2469 /* Cache TYPE_LENGTH for future use. */
c906108c 2470 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2471
c906108c
SS
2472 return type;
2473}
2474
7ba81444 2475/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2476 occurs, silently return a void type. */
c91ecb25 2477
b9362cc7 2478static struct type *
48319d1f 2479safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2480{
2481 struct ui_file *saved_gdb_stderr;
34365054 2482 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2483
7ba81444 2484 /* Suppress error messages. */
c91ecb25 2485 saved_gdb_stderr = gdb_stderr;
d7e74731 2486 gdb_stderr = &null_stream;
c91ecb25 2487
7ba81444 2488 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2489 TRY
8e7b59a5
KS
2490 {
2491 type = parse_and_eval_type (p, length);
2492 }
492d29ea
PA
2493 CATCH (except, RETURN_MASK_ERROR)
2494 {
2495 type = builtin_type (gdbarch)->builtin_void;
2496 }
2497 END_CATCH
c91ecb25 2498
7ba81444 2499 /* Stop suppressing error messages. */
c91ecb25
ND
2500 gdb_stderr = saved_gdb_stderr;
2501
2502 return type;
2503}
2504
c906108c
SS
2505/* Ugly hack to convert method stubs into method types.
2506
7ba81444
MS
2507 He ain't kiddin'. This demangles the name of the method into a
2508 string including argument types, parses out each argument type,
2509 generates a string casting a zero to that type, evaluates the
2510 string, and stuffs the resulting type into an argtype vector!!!
2511 Then it knows the type of the whole function (including argument
2512 types for overloading), which info used to be in the stab's but was
2513 removed to hack back the space required for them. */
c906108c 2514
de17c821 2515static void
fba45db2 2516check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2517{
50810684 2518 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2519 struct fn_field *f;
2520 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2521 char *demangled_name = gdb_demangle (mangled_name,
2522 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2523 char *argtypetext, *p;
2524 int depth = 0, argcount = 1;
ad2f7632 2525 struct field *argtypes;
c906108c
SS
2526 struct type *mtype;
2527
2528 /* Make sure we got back a function string that we can use. */
2529 if (demangled_name)
2530 p = strchr (demangled_name, '(');
502dcf4e
AC
2531 else
2532 p = NULL;
c906108c
SS
2533
2534 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2535 error (_("Internal: Cannot demangle mangled name `%s'."),
2536 mangled_name);
c906108c
SS
2537
2538 /* Now, read in the parameters that define this type. */
2539 p += 1;
2540 argtypetext = p;
2541 while (*p)
2542 {
070ad9f0 2543 if (*p == '(' || *p == '<')
c906108c
SS
2544 {
2545 depth += 1;
2546 }
070ad9f0 2547 else if (*p == ')' || *p == '>')
c906108c
SS
2548 {
2549 depth -= 1;
2550 }
2551 else if (*p == ',' && depth == 0)
2552 {
2553 argcount += 1;
2554 }
2555
2556 p += 1;
2557 }
2558
ad2f7632 2559 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2560 if (startswith (argtypetext, "(void)"))
ad2f7632 2561 argcount -= 1;
c906108c 2562
ad2f7632
DJ
2563 /* We need one extra slot, for the THIS pointer. */
2564
2565 argtypes = (struct field *)
2566 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2567 p = argtypetext;
4a1970e4
DJ
2568
2569 /* Add THIS pointer for non-static methods. */
2570 f = TYPE_FN_FIELDLIST1 (type, method_id);
2571 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2572 argcount = 0;
2573 else
2574 {
ad2f7632 2575 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2576 argcount = 1;
2577 }
c906108c 2578
0963b4bd 2579 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2580 {
2581 depth = 0;
2582 while (*p)
2583 {
2584 if (depth <= 0 && (*p == ',' || *p == ')'))
2585 {
ad2f7632
DJ
2586 /* Avoid parsing of ellipsis, they will be handled below.
2587 Also avoid ``void'' as above. */
2588 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2589 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2590 {
ad2f7632 2591 argtypes[argcount].type =
48319d1f 2592 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2593 argcount += 1;
2594 }
2595 argtypetext = p + 1;
2596 }
2597
070ad9f0 2598 if (*p == '(' || *p == '<')
c906108c
SS
2599 {
2600 depth += 1;
2601 }
070ad9f0 2602 else if (*p == ')' || *p == '>')
c906108c
SS
2603 {
2604 depth -= 1;
2605 }
2606
2607 p += 1;
2608 }
2609 }
2610
c906108c
SS
2611 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2612
2613 /* Now update the old "stub" type into a real type. */
2614 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2615 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2616 We want a method (TYPE_CODE_METHOD). */
2617 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2618 argtypes, argcount, p[-2] == '.');
876cecd0 2619 TYPE_STUB (mtype) = 0;
c906108c 2620 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2621
2622 xfree (demangled_name);
c906108c
SS
2623}
2624
7ba81444
MS
2625/* This is the external interface to check_stub_method, above. This
2626 function unstubs all of the signatures for TYPE's METHOD_ID method
2627 name. After calling this function TYPE_FN_FIELD_STUB will be
2628 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2629 correct.
de17c821
DJ
2630
2631 This function unfortunately can not die until stabs do. */
2632
2633void
2634check_stub_method_group (struct type *type, int method_id)
2635{
2636 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2637 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2638 int j, found_stub = 0;
de17c821
DJ
2639
2640 for (j = 0; j < len; j++)
2641 if (TYPE_FN_FIELD_STUB (f, j))
2642 {
2643 found_stub = 1;
2644 check_stub_method (type, method_id, j);
2645 }
2646
7ba81444
MS
2647 /* GNU v3 methods with incorrect names were corrected when we read
2648 in type information, because it was cheaper to do it then. The
2649 only GNU v2 methods with incorrect method names are operators and
2650 destructors; destructors were also corrected when we read in type
2651 information.
de17c821
DJ
2652
2653 Therefore the only thing we need to handle here are v2 operator
2654 names. */
61012eef 2655 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2656 {
2657 int ret;
2658 char dem_opname[256];
2659
7ba81444
MS
2660 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2661 method_id),
de17c821
DJ
2662 dem_opname, DMGL_ANSI);
2663 if (!ret)
7ba81444
MS
2664 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2665 method_id),
de17c821
DJ
2666 dem_opname, 0);
2667 if (ret)
2668 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2669 }
2670}
2671
9655fd1a
JK
2672/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2673const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2674
2675void
fba45db2 2676allocate_cplus_struct_type (struct type *type)
c906108c 2677{
b4ba55a1
JB
2678 if (HAVE_CPLUS_STRUCT (type))
2679 /* Structure was already allocated. Nothing more to do. */
2680 return;
2681
2682 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2683 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2684 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2685 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2686 set_type_vptr_fieldno (type, -1);
c906108c
SS
2687}
2688
b4ba55a1
JB
2689const struct gnat_aux_type gnat_aux_default =
2690 { NULL };
2691
2692/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2693 and allocate the associated gnat-specific data. The gnat-specific
2694 data is also initialized to gnat_aux_default. */
5212577a 2695
b4ba55a1
JB
2696void
2697allocate_gnat_aux_type (struct type *type)
2698{
2699 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2700 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2701 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2702 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2703}
2704
ae438bc5
UW
2705/* Helper function to initialize a newly allocated type. Set type code
2706 to CODE and initialize the type-specific fields accordingly. */
2707
2708static void
2709set_type_code (struct type *type, enum type_code code)
2710{
2711 TYPE_CODE (type) = code;
2712
2713 switch (code)
2714 {
2715 case TYPE_CODE_STRUCT:
2716 case TYPE_CODE_UNION:
2717 case TYPE_CODE_NAMESPACE:
2718 INIT_CPLUS_SPECIFIC (type);
2719 break;
2720 case TYPE_CODE_FLT:
2721 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2722 break;
2723 case TYPE_CODE_FUNC:
2724 INIT_FUNC_SPECIFIC (type);
2725 break;
2726 }
2727}
2728
19f392bc
UW
2729/* Helper function to verify floating-point format and size.
2730 BIT is the type size in bits; if BIT equals -1, the size is
2731 determined by the floatformat. Returns size to be used. */
2732
2733static int
2734verify_floatformat (int bit, const struct floatformat **floatformats)
2735{
9b790ce7
UW
2736 gdb_assert (floatformats != NULL);
2737 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2738
19f392bc 2739 if (bit == -1)
9b790ce7 2740 bit = floatformats[0]->totalsize;
19f392bc
UW
2741 gdb_assert (bit >= 0);
2742
9b790ce7
UW
2743 size_t len = bit / TARGET_CHAR_BIT;
2744 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2745 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
19f392bc
UW
2746
2747 return bit;
2748}
2749
c906108c
SS
2750/* Helper function to initialize the standard scalar types.
2751
86f62fd7
TT
2752 If NAME is non-NULL, then it is used to initialize the type name.
2753 Note that NAME is not copied; it is required to have a lifetime at
2754 least as long as OBJFILE. */
c906108c
SS
2755
2756struct type *
19f392bc
UW
2757init_type (struct objfile *objfile, enum type_code code, int length,
2758 const char *name)
c906108c 2759{
52f0bd74 2760 struct type *type;
c906108c
SS
2761
2762 type = alloc_type (objfile);
ae438bc5 2763 set_type_code (type, code);
c906108c 2764 TYPE_LENGTH (type) = length;
86f62fd7 2765 TYPE_NAME (type) = name;
c906108c 2766
c16abbde 2767 return type;
c906108c 2768}
19f392bc
UW
2769
2770/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2771 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2772 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2773
2774struct type *
2775init_integer_type (struct objfile *objfile,
2776 int bit, int unsigned_p, const char *name)
2777{
2778 struct type *t;
2779
2780 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2781 if (unsigned_p)
2782 TYPE_UNSIGNED (t) = 1;
2783
2784 return t;
2785}
2786
2787/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2788 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2789 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2790
2791struct type *
2792init_character_type (struct objfile *objfile,
2793 int bit, int unsigned_p, const char *name)
2794{
2795 struct type *t;
2796
2797 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2798 if (unsigned_p)
2799 TYPE_UNSIGNED (t) = 1;
2800
2801 return t;
2802}
2803
2804/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2805 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2806 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2807
2808struct type *
2809init_boolean_type (struct objfile *objfile,
2810 int bit, int unsigned_p, const char *name)
2811{
2812 struct type *t;
2813
2814 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2815 if (unsigned_p)
2816 TYPE_UNSIGNED (t) = 1;
2817
2818 return t;
2819}
2820
2821/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2822 BIT is the type size in bits; if BIT equals -1, the size is
2823 determined by the floatformat. NAME is the type name. Set the
2824 TYPE_FLOATFORMAT from FLOATFORMATS. */
2825
2826struct type *
2827init_float_type (struct objfile *objfile,
2828 int bit, const char *name,
2829 const struct floatformat **floatformats)
2830{
2831 struct type *t;
2832
2833 bit = verify_floatformat (bit, floatformats);
2834 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2835 TYPE_FLOATFORMAT (t) = floatformats;
2836
2837 return t;
2838}
2839
2840/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2841 BIT is the type size in bits. NAME is the type name. */
2842
2843struct type *
2844init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2845{
2846 struct type *t;
2847
2848 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2849 return t;
2850}
2851
2852/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2853 NAME is the type name. TARGET_TYPE is the component float type. */
2854
2855struct type *
2856init_complex_type (struct objfile *objfile,
2857 const char *name, struct type *target_type)
2858{
2859 struct type *t;
2860
2861 t = init_type (objfile, TYPE_CODE_COMPLEX,
2862 2 * TYPE_LENGTH (target_type), name);
2863 TYPE_TARGET_TYPE (t) = target_type;
2864 return t;
2865}
2866
2867/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2868 BIT is the pointer type size in bits. NAME is the type name.
2869 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2870 TYPE_UNSIGNED flag. */
2871
2872struct type *
2873init_pointer_type (struct objfile *objfile,
2874 int bit, const char *name, struct type *target_type)
2875{
2876 struct type *t;
2877
2878 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2879 TYPE_TARGET_TYPE (t) = target_type;
2880 TYPE_UNSIGNED (t) = 1;
2881 return t;
2882}
2883
5212577a
DE
2884\f
2885/* Queries on types. */
c906108c 2886
c906108c 2887int
fba45db2 2888can_dereference (struct type *t)
c906108c 2889{
7ba81444
MS
2890 /* FIXME: Should we return true for references as well as
2891 pointers? */
f168693b 2892 t = check_typedef (t);
c906108c
SS
2893 return
2894 (t != NULL
2895 && TYPE_CODE (t) == TYPE_CODE_PTR
2896 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2897}
2898
adf40b2e 2899int
fba45db2 2900is_integral_type (struct type *t)
adf40b2e 2901{
f168693b 2902 t = check_typedef (t);
adf40b2e
JM
2903 return
2904 ((t != NULL)
d4f3574e
SS
2905 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2906 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2907 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2908 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2909 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2910 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2911}
2912
e09342b5
TJB
2913/* Return true if TYPE is scalar. */
2914
220475ed 2915int
e09342b5
TJB
2916is_scalar_type (struct type *type)
2917{
f168693b 2918 type = check_typedef (type);
e09342b5
TJB
2919
2920 switch (TYPE_CODE (type))
2921 {
2922 case TYPE_CODE_ARRAY:
2923 case TYPE_CODE_STRUCT:
2924 case TYPE_CODE_UNION:
2925 case TYPE_CODE_SET:
2926 case TYPE_CODE_STRING:
e09342b5
TJB
2927 return 0;
2928 default:
2929 return 1;
2930 }
2931}
2932
2933/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2934 the memory layout of a scalar type. E.g., an array or struct with only
2935 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2936
2937int
2938is_scalar_type_recursive (struct type *t)
2939{
f168693b 2940 t = check_typedef (t);
e09342b5
TJB
2941
2942 if (is_scalar_type (t))
2943 return 1;
2944 /* Are we dealing with an array or string of known dimensions? */
2945 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2946 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2947 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2948 {
2949 LONGEST low_bound, high_bound;
2950 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2951
2952 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2953
2954 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2955 }
2956 /* Are we dealing with a struct with one element? */
2957 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2958 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2959 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2960 {
2961 int i, n = TYPE_NFIELDS (t);
2962
2963 /* If all elements of the union are scalar, then the union is scalar. */
2964 for (i = 0; i < n; i++)
2965 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2966 return 0;
2967
2968 return 1;
2969 }
2970
2971 return 0;
2972}
2973
6c659fc2
SC
2974/* Return true is T is a class or a union. False otherwise. */
2975
2976int
2977class_or_union_p (const struct type *t)
2978{
2979 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2980 || TYPE_CODE (t) == TYPE_CODE_UNION);
2981}
2982
4e8f195d
TT
2983/* A helper function which returns true if types A and B represent the
2984 "same" class type. This is true if the types have the same main
2985 type, or the same name. */
2986
2987int
2988class_types_same_p (const struct type *a, const struct type *b)
2989{
2990 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2991 || (TYPE_NAME (a) && TYPE_NAME (b)
2992 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2993}
2994
a9d5ef47
SW
2995/* If BASE is an ancestor of DCLASS return the distance between them.
2996 otherwise return -1;
2997 eg:
2998
2999 class A {};
3000 class B: public A {};
3001 class C: public B {};
3002 class D: C {};
3003
3004 distance_to_ancestor (A, A, 0) = 0
3005 distance_to_ancestor (A, B, 0) = 1
3006 distance_to_ancestor (A, C, 0) = 2
3007 distance_to_ancestor (A, D, 0) = 3
3008
3009 If PUBLIC is 1 then only public ancestors are considered,
3010 and the function returns the distance only if BASE is a public ancestor
3011 of DCLASS.
3012 Eg:
3013
0963b4bd 3014 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3015
0526b37a 3016static int
fe978cb0 3017distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3018{
3019 int i;
a9d5ef47 3020 int d;
c5aa993b 3021
f168693b
SM
3022 base = check_typedef (base);
3023 dclass = check_typedef (dclass);
c906108c 3024
4e8f195d 3025 if (class_types_same_p (base, dclass))
a9d5ef47 3026 return 0;
c906108c
SS
3027
3028 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3029 {
fe978cb0 3030 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3031 continue;
3032
fe978cb0 3033 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3034 if (d >= 0)
3035 return 1 + d;
4e8f195d 3036 }
c906108c 3037
a9d5ef47 3038 return -1;
c906108c 3039}
4e8f195d 3040
0526b37a
SW
3041/* Check whether BASE is an ancestor or base class or DCLASS
3042 Return 1 if so, and 0 if not.
3043 Note: If BASE and DCLASS are of the same type, this function
3044 will return 1. So for some class A, is_ancestor (A, A) will
3045 return 1. */
3046
3047int
3048is_ancestor (struct type *base, struct type *dclass)
3049{
a9d5ef47 3050 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3051}
3052
4e8f195d
TT
3053/* Like is_ancestor, but only returns true when BASE is a public
3054 ancestor of DCLASS. */
3055
3056int
3057is_public_ancestor (struct type *base, struct type *dclass)
3058{
a9d5ef47 3059 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3060}
3061
3062/* A helper function for is_unique_ancestor. */
3063
3064static int
3065is_unique_ancestor_worker (struct type *base, struct type *dclass,
3066 int *offset,
8af8e3bc
PA
3067 const gdb_byte *valaddr, int embedded_offset,
3068 CORE_ADDR address, struct value *val)
4e8f195d
TT
3069{
3070 int i, count = 0;
3071
f168693b
SM
3072 base = check_typedef (base);
3073 dclass = check_typedef (dclass);
4e8f195d
TT
3074
3075 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3076 {
8af8e3bc
PA
3077 struct type *iter;
3078 int this_offset;
4e8f195d 3079
8af8e3bc
PA
3080 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3081
3082 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3083 address, val);
4e8f195d
TT
3084
3085 if (class_types_same_p (base, iter))
3086 {
3087 /* If this is the first subclass, set *OFFSET and set count
3088 to 1. Otherwise, if this is at the same offset as
3089 previous instances, do nothing. Otherwise, increment
3090 count. */
3091 if (*offset == -1)
3092 {
3093 *offset = this_offset;
3094 count = 1;
3095 }
3096 else if (this_offset == *offset)
3097 {
3098 /* Nothing. */
3099 }
3100 else
3101 ++count;
3102 }
3103 else
3104 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3105 valaddr,
3106 embedded_offset + this_offset,
3107 address, val);
4e8f195d
TT
3108 }
3109
3110 return count;
3111}
3112
3113/* Like is_ancestor, but only returns true if BASE is a unique base
3114 class of the type of VAL. */
3115
3116int
3117is_unique_ancestor (struct type *base, struct value *val)
3118{
3119 int offset = -1;
3120
3121 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3122 value_contents_for_printing (val),
3123 value_embedded_offset (val),
3124 value_address (val), val) == 1;
4e8f195d
TT
3125}
3126
c906108c 3127\f
5212577a 3128/* Overload resolution. */
c906108c 3129
6403aeea
SW
3130/* Return the sum of the rank of A with the rank of B. */
3131
3132struct rank
3133sum_ranks (struct rank a, struct rank b)
3134{
3135 struct rank c;
3136 c.rank = a.rank + b.rank;
a9d5ef47 3137 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3138 return c;
3139}
3140
3141/* Compare rank A and B and return:
3142 0 if a = b
3143 1 if a is better than b
3144 -1 if b is better than a. */
3145
3146int
3147compare_ranks (struct rank a, struct rank b)
3148{
3149 if (a.rank == b.rank)
a9d5ef47
SW
3150 {
3151 if (a.subrank == b.subrank)
3152 return 0;
3153 if (a.subrank < b.subrank)
3154 return 1;
3155 if (a.subrank > b.subrank)
3156 return -1;
3157 }
6403aeea
SW
3158
3159 if (a.rank < b.rank)
3160 return 1;
3161
0963b4bd 3162 /* a.rank > b.rank */
6403aeea
SW
3163 return -1;
3164}
c5aa993b 3165
0963b4bd 3166/* Functions for overload resolution begin here. */
c906108c
SS
3167
3168/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3169 0 => A and B are identical
3170 1 => A and B are incomparable
3171 2 => A is better than B
3172 3 => A is worse than B */
c906108c
SS
3173
3174int
fba45db2 3175compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3176{
3177 int i;
3178 int tmp;
c5aa993b
JM
3179 short found_pos = 0; /* any positives in c? */
3180 short found_neg = 0; /* any negatives in c? */
3181
3182 /* differing lengths => incomparable */
c906108c
SS
3183 if (a->length != b->length)
3184 return 1;
3185
c5aa993b
JM
3186 /* Subtract b from a */
3187 for (i = 0; i < a->length; i++)
c906108c 3188 {
6403aeea 3189 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3190 if (tmp > 0)
c5aa993b 3191 found_pos = 1;
c906108c 3192 else if (tmp < 0)
c5aa993b 3193 found_neg = 1;
c906108c
SS
3194 }
3195
3196 if (found_pos)
3197 {
3198 if (found_neg)
c5aa993b 3199 return 1; /* incomparable */
c906108c 3200 else
c5aa993b 3201 return 3; /* A > B */
c906108c 3202 }
c5aa993b
JM
3203 else
3204 /* no positives */
c906108c
SS
3205 {
3206 if (found_neg)
c5aa993b 3207 return 2; /* A < B */
c906108c 3208 else
c5aa993b 3209 return 0; /* A == B */
c906108c
SS
3210 }
3211}
3212
7ba81444
MS
3213/* Rank a function by comparing its parameter types (PARMS, length
3214 NPARMS), to the types of an argument list (ARGS, length NARGS).
3215 Return a pointer to a badness vector. This has NARGS + 1
3216 entries. */
c906108c
SS
3217
3218struct badness_vector *
7ba81444 3219rank_function (struct type **parms, int nparms,
da096638 3220 struct value **args, int nargs)
c906108c
SS
3221{
3222 int i;
8d749320 3223 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3224 int min_len = nparms < nargs ? nparms : nargs;
3225
0963b4bd 3226 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3227 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3228
3229 /* First compare the lengths of the supplied lists.
7ba81444 3230 If there is a mismatch, set it to a high value. */
c5aa993b 3231
c906108c 3232 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3233 arguments and ellipsis parameter lists, we should consider those
3234 and rank the length-match more finely. */
c906108c 3235
6403aeea
SW
3236 LENGTH_MATCH (bv) = (nargs != nparms)
3237 ? LENGTH_MISMATCH_BADNESS
3238 : EXACT_MATCH_BADNESS;
c906108c 3239
0963b4bd 3240 /* Now rank all the parameters of the candidate function. */
74cc24b0 3241 for (i = 1; i <= min_len; i++)
da096638
KS
3242 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3243 args[i - 1]);
c906108c 3244
0963b4bd 3245 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3246 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3247 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3248
3249 return bv;
3250}
3251
973ccf8b
DJ
3252/* Compare the names of two integer types, assuming that any sign
3253 qualifiers have been checked already. We do it this way because
3254 there may be an "int" in the name of one of the types. */
3255
3256static int
3257integer_types_same_name_p (const char *first, const char *second)
3258{
3259 int first_p, second_p;
3260
7ba81444
MS
3261 /* If both are shorts, return 1; if neither is a short, keep
3262 checking. */
973ccf8b
DJ
3263 first_p = (strstr (first, "short") != NULL);
3264 second_p = (strstr (second, "short") != NULL);
3265 if (first_p && second_p)
3266 return 1;
3267 if (first_p || second_p)
3268 return 0;
3269
3270 /* Likewise for long. */
3271 first_p = (strstr (first, "long") != NULL);
3272 second_p = (strstr (second, "long") != NULL);
3273 if (first_p && second_p)
3274 return 1;
3275 if (first_p || second_p)
3276 return 0;
3277
3278 /* Likewise for char. */
3279 first_p = (strstr (first, "char") != NULL);
3280 second_p = (strstr (second, "char") != NULL);
3281 if (first_p && second_p)
3282 return 1;
3283 if (first_p || second_p)
3284 return 0;
3285
3286 /* They must both be ints. */
3287 return 1;
3288}
3289
7062b0a0
SW
3290/* Compares type A to type B returns 1 if the represent the same type
3291 0 otherwise. */
3292
bd69fc68 3293int
7062b0a0
SW
3294types_equal (struct type *a, struct type *b)
3295{
3296 /* Identical type pointers. */
3297 /* However, this still doesn't catch all cases of same type for b
3298 and a. The reason is that builtin types are different from
3299 the same ones constructed from the object. */
3300 if (a == b)
3301 return 1;
3302
3303 /* Resolve typedefs */
3304 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3305 a = check_typedef (a);
3306 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3307 b = check_typedef (b);
3308
3309 /* If after resolving typedefs a and b are not of the same type
3310 code then they are not equal. */
3311 if (TYPE_CODE (a) != TYPE_CODE (b))
3312 return 0;
3313
3314 /* If a and b are both pointers types or both reference types then
3315 they are equal of the same type iff the objects they refer to are
3316 of the same type. */
3317 if (TYPE_CODE (a) == TYPE_CODE_PTR
3318 || TYPE_CODE (a) == TYPE_CODE_REF)
3319 return types_equal (TYPE_TARGET_TYPE (a),
3320 TYPE_TARGET_TYPE (b));
3321
0963b4bd 3322 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3323 are exactly the same. This happens when we generate method
3324 stubs. The types won't point to the same address, but they
0963b4bd 3325 really are the same. */
7062b0a0
SW
3326
3327 if (TYPE_NAME (a) && TYPE_NAME (b)
3328 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3329 return 1;
3330
3331 /* Check if identical after resolving typedefs. */
3332 if (a == b)
3333 return 1;
3334
9ce98649
TT
3335 /* Two function types are equal if their argument and return types
3336 are equal. */
3337 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3338 {
3339 int i;
3340
3341 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3342 return 0;
3343
3344 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3345 return 0;
3346
3347 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3348 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3349 return 0;
3350
3351 return 1;
3352 }
3353
7062b0a0
SW
3354 return 0;
3355}
ca092b61
DE
3356\f
3357/* Deep comparison of types. */
3358
3359/* An entry in the type-equality bcache. */
3360
3361typedef struct type_equality_entry
3362{
3363 struct type *type1, *type2;
3364} type_equality_entry_d;
3365
3366DEF_VEC_O (type_equality_entry_d);
3367
3368/* A helper function to compare two strings. Returns 1 if they are
3369 the same, 0 otherwise. Handles NULLs properly. */
3370
3371static int
3372compare_maybe_null_strings (const char *s, const char *t)
3373{
3374 if (s == NULL && t != NULL)
3375 return 0;
3376 else if (s != NULL && t == NULL)
3377 return 0;
3378 else if (s == NULL && t== NULL)
3379 return 1;
3380 return strcmp (s, t) == 0;
3381}
3382
3383/* A helper function for check_types_worklist that checks two types for
3384 "deep" equality. Returns non-zero if the types are considered the
3385 same, zero otherwise. */
3386
3387static int
3388check_types_equal (struct type *type1, struct type *type2,
3389 VEC (type_equality_entry_d) **worklist)
3390{
f168693b
SM
3391 type1 = check_typedef (type1);
3392 type2 = check_typedef (type2);
ca092b61
DE
3393
3394 if (type1 == type2)
3395 return 1;
3396
3397 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3398 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3399 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3400 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3401 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3402 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3403 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3404 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3405 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3406 return 0;
3407
3408 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3409 TYPE_TAG_NAME (type2)))
3410 return 0;
3411 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3412 return 0;
3413
3414 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3415 {
3416 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3417 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3418 return 0;
3419 }
3420 else
3421 {
3422 int i;
3423
3424 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3425 {
3426 const struct field *field1 = &TYPE_FIELD (type1, i);
3427 const struct field *field2 = &TYPE_FIELD (type2, i);
3428 struct type_equality_entry entry;
3429
3430 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3431 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3432 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3433 return 0;
3434 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3435 FIELD_NAME (*field2)))
3436 return 0;
3437 switch (FIELD_LOC_KIND (*field1))
3438 {
3439 case FIELD_LOC_KIND_BITPOS:
3440 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3441 return 0;
3442 break;
3443 case FIELD_LOC_KIND_ENUMVAL:
3444 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3445 return 0;
3446 break;
3447 case FIELD_LOC_KIND_PHYSADDR:
3448 if (FIELD_STATIC_PHYSADDR (*field1)
3449 != FIELD_STATIC_PHYSADDR (*field2))
3450 return 0;
3451 break;
3452 case FIELD_LOC_KIND_PHYSNAME:
3453 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3454 FIELD_STATIC_PHYSNAME (*field2)))
3455 return 0;
3456 break;
3457 case FIELD_LOC_KIND_DWARF_BLOCK:
3458 {
3459 struct dwarf2_locexpr_baton *block1, *block2;
3460
3461 block1 = FIELD_DWARF_BLOCK (*field1);
3462 block2 = FIELD_DWARF_BLOCK (*field2);
3463 if (block1->per_cu != block2->per_cu
3464 || block1->size != block2->size
3465 || memcmp (block1->data, block2->data, block1->size) != 0)
3466 return 0;
3467 }
3468 break;
3469 default:
3470 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3471 "%d by check_types_equal"),
3472 FIELD_LOC_KIND (*field1));
3473 }
3474
3475 entry.type1 = FIELD_TYPE (*field1);
3476 entry.type2 = FIELD_TYPE (*field2);
3477 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3478 }
3479 }
3480
3481 if (TYPE_TARGET_TYPE (type1) != NULL)
3482 {
3483 struct type_equality_entry entry;
3484
3485 if (TYPE_TARGET_TYPE (type2) == NULL)
3486 return 0;
3487
3488 entry.type1 = TYPE_TARGET_TYPE (type1);
3489 entry.type2 = TYPE_TARGET_TYPE (type2);
3490 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3491 }
3492 else if (TYPE_TARGET_TYPE (type2) != NULL)
3493 return 0;
3494
3495 return 1;
3496}
3497
3498/* Check types on a worklist for equality. Returns zero if any pair
3499 is not equal, non-zero if they are all considered equal. */
3500
3501static int
3502check_types_worklist (VEC (type_equality_entry_d) **worklist,
3503 struct bcache *cache)
3504{
3505 while (!VEC_empty (type_equality_entry_d, *worklist))
3506 {
3507 struct type_equality_entry entry;
3508 int added;
3509
3510 entry = *VEC_last (type_equality_entry_d, *worklist);
3511 VEC_pop (type_equality_entry_d, *worklist);
3512
3513 /* If the type pair has already been visited, we know it is
3514 ok. */
3515 bcache_full (&entry, sizeof (entry), cache, &added);
3516 if (!added)
3517 continue;
3518
3519 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3520 return 0;
3521 }
7062b0a0 3522
ca092b61
DE
3523 return 1;
3524}
3525
3526/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3527 "deep comparison". Otherwise return zero. */
3528
3529int
3530types_deeply_equal (struct type *type1, struct type *type2)
3531{
6c63c96a 3532 struct gdb_exception except = exception_none;
ca092b61
DE
3533 int result = 0;
3534 struct bcache *cache;
3535 VEC (type_equality_entry_d) *worklist = NULL;
3536 struct type_equality_entry entry;
3537
3538 gdb_assert (type1 != NULL && type2 != NULL);
3539
3540 /* Early exit for the simple case. */
3541 if (type1 == type2)
3542 return 1;
3543
3544 cache = bcache_xmalloc (NULL, NULL);
3545
3546 entry.type1 = type1;
3547 entry.type2 = type2;
3548 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3549
6c63c96a
PA
3550 /* check_types_worklist calls several nested helper functions, some
3551 of which can raise a GDB exception, so we just check and rethrow
3552 here. If there is a GDB exception, a comparison is not capable
3553 (or trusted), so exit. */
492d29ea 3554 TRY
ca092b61
DE
3555 {
3556 result = check_types_worklist (&worklist, cache);
3557 }
6c63c96a 3558 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3559 {
6c63c96a 3560 except = ex;
492d29ea
PA
3561 }
3562 END_CATCH
ca092b61 3563
6c63c96a
PA
3564 bcache_xfree (cache);
3565 VEC_free (type_equality_entry_d, worklist);
3566
3567 /* Rethrow if there was a problem. */
3568 if (except.reason < 0)
3569 throw_exception (except);
3570
ca092b61
DE
3571 return result;
3572}
3f2f83dd
KB
3573
3574/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3575 Otherwise return one. */
3576
3577int
3578type_not_allocated (const struct type *type)
3579{
3580 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3581
3582 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3583 && !TYPE_DYN_PROP_ADDR (prop));
3584}
3585
3586/* Associated status of type TYPE. Return zero if type TYPE is associated.
3587 Otherwise return one. */
3588
3589int
3590type_not_associated (const struct type *type)
3591{
3592 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3593
3594 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3595 && !TYPE_DYN_PROP_ADDR (prop));
3596}
ca092b61 3597\f
c906108c
SS
3598/* Compare one type (PARM) for compatibility with another (ARG).
3599 * PARM is intended to be the parameter type of a function; and
3600 * ARG is the supplied argument's type. This function tests if
3601 * the latter can be converted to the former.
da096638 3602 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3603 *
3604 * Return 0 if they are identical types;
3605 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3606 * PARM is to ARG. The higher the return value, the worse the match.
3607 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3608
6403aeea 3609struct rank
da096638 3610rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3611{
a9d5ef47 3612 struct rank rank = {0,0};
7062b0a0
SW
3613
3614 if (types_equal (parm, arg))
6403aeea 3615 return EXACT_MATCH_BADNESS;
c906108c
SS
3616
3617 /* Resolve typedefs */
3618 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3619 parm = check_typedef (parm);
3620 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3621 arg = check_typedef (arg);
3622
db577aea 3623 /* See through references, since we can almost make non-references
7ba81444 3624 references. */
db577aea 3625 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3626 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3627 REFERENCE_CONVERSION_BADNESS));
db577aea 3628 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3629 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3630 REFERENCE_CONVERSION_BADNESS));
5d161b24 3631 if (overload_debug)
7ba81444
MS
3632 /* Debugging only. */
3633 fprintf_filtered (gdb_stderr,
3634 "------ Arg is %s [%d], parm is %s [%d]\n",
3635 TYPE_NAME (arg), TYPE_CODE (arg),
3636 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3637
0963b4bd 3638 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3639
3640 switch (TYPE_CODE (parm))
3641 {
c5aa993b
JM
3642 case TYPE_CODE_PTR:
3643 switch (TYPE_CODE (arg))
3644 {
3645 case TYPE_CODE_PTR:
7062b0a0
SW
3646
3647 /* Allowed pointer conversions are:
3648 (a) pointer to void-pointer conversion. */
3649 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3650 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3651
3652 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3653 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3654 TYPE_TARGET_TYPE (arg),
3655 0);
3656 if (rank.subrank >= 0)
3657 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3658
3659 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3660 case TYPE_CODE_ARRAY:
7062b0a0
SW
3661 if (types_equal (TYPE_TARGET_TYPE (parm),
3662 TYPE_TARGET_TYPE (arg)))
6403aeea 3663 return EXACT_MATCH_BADNESS;
7062b0a0 3664 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3665 case TYPE_CODE_FUNC:
da096638 3666 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3667 case TYPE_CODE_INT:
a451cb65 3668 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3669 {
a451cb65
KS
3670 if (value_as_long (value) == 0)
3671 {
3672 /* Null pointer conversion: allow it to be cast to a pointer.
3673 [4.10.1 of C++ standard draft n3290] */
3674 return NULL_POINTER_CONVERSION_BADNESS;
3675 }
3676 else
3677 {
3678 /* If type checking is disabled, allow the conversion. */
3679 if (!strict_type_checking)
3680 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3681 }
da096638
KS
3682 }
3683 /* fall through */
c5aa993b 3684 case TYPE_CODE_ENUM:
4f2aea11 3685 case TYPE_CODE_FLAGS:
c5aa993b
JM
3686 case TYPE_CODE_CHAR:
3687 case TYPE_CODE_RANGE:
3688 case TYPE_CODE_BOOL:
c5aa993b
JM
3689 default:
3690 return INCOMPATIBLE_TYPE_BADNESS;
3691 }
3692 case TYPE_CODE_ARRAY:
3693 switch (TYPE_CODE (arg))
3694 {
3695 case TYPE_CODE_PTR:
3696 case TYPE_CODE_ARRAY:
7ba81444 3697 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3698 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3699 default:
3700 return INCOMPATIBLE_TYPE_BADNESS;
3701 }
3702 case TYPE_CODE_FUNC:
3703 switch (TYPE_CODE (arg))
3704 {
3705 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3706 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3707 default:
3708 return INCOMPATIBLE_TYPE_BADNESS;
3709 }
3710 case TYPE_CODE_INT:
3711 switch (TYPE_CODE (arg))
3712 {
3713 case TYPE_CODE_INT:
3714 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3715 {
3716 /* Deal with signed, unsigned, and plain chars and
7ba81444 3717 signed and unsigned ints. */
c5aa993b
JM
3718 if (TYPE_NOSIGN (parm))
3719 {
0963b4bd 3720 /* This case only for character types. */
7ba81444 3721 if (TYPE_NOSIGN (arg))
6403aeea 3722 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3723 else /* signed/unsigned char -> plain char */
3724 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3725 }
3726 else if (TYPE_UNSIGNED (parm))
3727 {
3728 if (TYPE_UNSIGNED (arg))
3729 {
7ba81444
MS
3730 /* unsigned int -> unsigned int, or
3731 unsigned long -> unsigned long */
3732 if (integer_types_same_name_p (TYPE_NAME (parm),
3733 TYPE_NAME (arg)))
6403aeea 3734 return EXACT_MATCH_BADNESS;
7ba81444
MS
3735 else if (integer_types_same_name_p (TYPE_NAME (arg),
3736 "int")
3737 && integer_types_same_name_p (TYPE_NAME (parm),
3738 "long"))
3e43a32a
MS
3739 /* unsigned int -> unsigned long */
3740 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3741 else
3e43a32a
MS
3742 /* unsigned long -> unsigned int */
3743 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3744 }
3745 else
3746 {
7ba81444
MS
3747 if (integer_types_same_name_p (TYPE_NAME (arg),
3748 "long")
3749 && integer_types_same_name_p (TYPE_NAME (parm),
3750 "int"))
3e43a32a
MS
3751 /* signed long -> unsigned int */
3752 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3753 else
3e43a32a
MS
3754 /* signed int/long -> unsigned int/long */
3755 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3756 }
3757 }
3758 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3759 {
7ba81444
MS
3760 if (integer_types_same_name_p (TYPE_NAME (parm),
3761 TYPE_NAME (arg)))
6403aeea 3762 return EXACT_MATCH_BADNESS;
7ba81444
MS
3763 else if (integer_types_same_name_p (TYPE_NAME (arg),
3764 "int")
3765 && integer_types_same_name_p (TYPE_NAME (parm),
3766 "long"))
c5aa993b
JM
3767 return INTEGER_PROMOTION_BADNESS;
3768 else
1c5cb38e 3769 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3770 }
3771 else
1c5cb38e 3772 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3773 }
3774 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3775 return INTEGER_PROMOTION_BADNESS;
3776 else
1c5cb38e 3777 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3778 case TYPE_CODE_ENUM:
4f2aea11 3779 case TYPE_CODE_FLAGS:
c5aa993b
JM
3780 case TYPE_CODE_CHAR:
3781 case TYPE_CODE_RANGE:
3782 case TYPE_CODE_BOOL:
3d567982
TT
3783 if (TYPE_DECLARED_CLASS (arg))
3784 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3785 return INTEGER_PROMOTION_BADNESS;
3786 case TYPE_CODE_FLT:
3787 return INT_FLOAT_CONVERSION_BADNESS;
3788 case TYPE_CODE_PTR:
3789 return NS_POINTER_CONVERSION_BADNESS;
3790 default:
3791 return INCOMPATIBLE_TYPE_BADNESS;
3792 }
3793 break;
3794 case TYPE_CODE_ENUM:
3795 switch (TYPE_CODE (arg))
3796 {
3797 case TYPE_CODE_INT:
3798 case TYPE_CODE_CHAR:
3799 case TYPE_CODE_RANGE:
3800 case TYPE_CODE_BOOL:
3801 case TYPE_CODE_ENUM:
3d567982
TT
3802 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3803 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3804 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3805 case TYPE_CODE_FLT:
3806 return INT_FLOAT_CONVERSION_BADNESS;
3807 default:
3808 return INCOMPATIBLE_TYPE_BADNESS;
3809 }
3810 break;
3811 case TYPE_CODE_CHAR:
3812 switch (TYPE_CODE (arg))
3813 {
3814 case TYPE_CODE_RANGE:
3815 case TYPE_CODE_BOOL:
3816 case TYPE_CODE_ENUM:
3d567982
TT
3817 if (TYPE_DECLARED_CLASS (arg))
3818 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3819 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3820 case TYPE_CODE_FLT:
3821 return INT_FLOAT_CONVERSION_BADNESS;
3822 case TYPE_CODE_INT:
3823 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3824 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3825 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3826 return INTEGER_PROMOTION_BADNESS;
3827 /* >>> !! else fall through !! <<< */
3828 case TYPE_CODE_CHAR:
7ba81444
MS
3829 /* Deal with signed, unsigned, and plain chars for C++ and
3830 with int cases falling through from previous case. */
c5aa993b
JM
3831 if (TYPE_NOSIGN (parm))
3832 {
3833 if (TYPE_NOSIGN (arg))
6403aeea 3834 return EXACT_MATCH_BADNESS;
c5aa993b 3835 else
1c5cb38e 3836 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3837 }
3838 else if (TYPE_UNSIGNED (parm))
3839 {
3840 if (TYPE_UNSIGNED (arg))
6403aeea 3841 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3842 else
3843 return INTEGER_PROMOTION_BADNESS;
3844 }
3845 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3846 return EXACT_MATCH_BADNESS;
c5aa993b 3847 else
1c5cb38e 3848 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3849 default:
3850 return INCOMPATIBLE_TYPE_BADNESS;
3851 }
3852 break;
3853 case TYPE_CODE_RANGE:
3854 switch (TYPE_CODE (arg))
3855 {
3856 case TYPE_CODE_INT:
3857 case TYPE_CODE_CHAR:
3858 case TYPE_CODE_RANGE:
3859 case TYPE_CODE_BOOL:
3860 case TYPE_CODE_ENUM:
1c5cb38e 3861 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3862 case TYPE_CODE_FLT:
3863 return INT_FLOAT_CONVERSION_BADNESS;
3864 default:
3865 return INCOMPATIBLE_TYPE_BADNESS;
3866 }
3867 break;
3868 case TYPE_CODE_BOOL:
3869 switch (TYPE_CODE (arg))
3870 {
5b4f6e25
KS
3871 /* n3290 draft, section 4.12.1 (conv.bool):
3872
3873 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3874 pointer to member type can be converted to a prvalue of type
3875 bool. A zero value, null pointer value, or null member pointer
3876 value is converted to false; any other value is converted to
3877 true. A prvalue of type std::nullptr_t can be converted to a
3878 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3879 case TYPE_CODE_INT:
3880 case TYPE_CODE_CHAR:
c5aa993b
JM
3881 case TYPE_CODE_ENUM:
3882 case TYPE_CODE_FLT:
5b4f6e25 3883 case TYPE_CODE_MEMBERPTR:
c5aa993b 3884 case TYPE_CODE_PTR:
5b4f6e25
KS
3885 return BOOL_CONVERSION_BADNESS;
3886 case TYPE_CODE_RANGE:
3887 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3888 case TYPE_CODE_BOOL:
6403aeea 3889 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3890 default:
3891 return INCOMPATIBLE_TYPE_BADNESS;
3892 }
3893 break;
3894 case TYPE_CODE_FLT:
3895 switch (TYPE_CODE (arg))
3896 {
3897 case TYPE_CODE_FLT:
3898 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3899 return FLOAT_PROMOTION_BADNESS;
3900 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3901 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3902 else
3903 return FLOAT_CONVERSION_BADNESS;
3904 case TYPE_CODE_INT:
3905 case TYPE_CODE_BOOL:
3906 case TYPE_CODE_ENUM:
3907 case TYPE_CODE_RANGE:
3908 case TYPE_CODE_CHAR:
3909 return INT_FLOAT_CONVERSION_BADNESS;
3910 default:
3911 return INCOMPATIBLE_TYPE_BADNESS;
3912 }
3913 break;
3914 case TYPE_CODE_COMPLEX:
3915 switch (TYPE_CODE (arg))
7ba81444 3916 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3917 case TYPE_CODE_FLT:
3918 return FLOAT_PROMOTION_BADNESS;
3919 case TYPE_CODE_COMPLEX:
6403aeea 3920 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3921 default:
3922 return INCOMPATIBLE_TYPE_BADNESS;
3923 }
3924 break;
3925 case TYPE_CODE_STRUCT:
c5aa993b
JM
3926 switch (TYPE_CODE (arg))
3927 {
3928 case TYPE_CODE_STRUCT:
3929 /* Check for derivation */
a9d5ef47
SW
3930 rank.subrank = distance_to_ancestor (parm, arg, 0);
3931 if (rank.subrank >= 0)
3932 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3933 /* else fall through */
3934 default:
3935 return INCOMPATIBLE_TYPE_BADNESS;
3936 }
3937 break;
3938 case TYPE_CODE_UNION:
3939 switch (TYPE_CODE (arg))
3940 {
3941 case TYPE_CODE_UNION:
3942 default:
3943 return INCOMPATIBLE_TYPE_BADNESS;
3944 }
3945 break;
0d5de010 3946 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3947 switch (TYPE_CODE (arg))
3948 {
3949 default:
3950 return INCOMPATIBLE_TYPE_BADNESS;
3951 }
3952 break;
3953 case TYPE_CODE_METHOD:
3954 switch (TYPE_CODE (arg))
3955 {
3956
3957 default:
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 }
3960 break;
3961 case TYPE_CODE_REF:
3962 switch (TYPE_CODE (arg))
3963 {
3964
3965 default:
3966 return INCOMPATIBLE_TYPE_BADNESS;
3967 }
3968
3969 break;
3970 case TYPE_CODE_SET:
3971 switch (TYPE_CODE (arg))
3972 {
3973 /* Not in C++ */
3974 case TYPE_CODE_SET:
7ba81444 3975 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3976 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3977 default:
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 }
3980 break;
3981 case TYPE_CODE_VOID:
3982 default:
3983 return INCOMPATIBLE_TYPE_BADNESS;
3984 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3985}
3986
0963b4bd 3987/* End of functions for overload resolution. */
5212577a
DE
3988\f
3989/* Routines to pretty-print types. */
c906108c 3990
c906108c 3991static void
fba45db2 3992print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3993{
3994 int bitno;
3995
3996 for (bitno = 0; bitno < nbits; bitno++)
3997 {
3998 if ((bitno % 8) == 0)
3999 {
4000 puts_filtered (" ");
4001 }
4002 if (B_TST (bits, bitno))
a3f17187 4003 printf_filtered (("1"));
c906108c 4004 else
a3f17187 4005 printf_filtered (("0"));
c906108c
SS
4006 }
4007}
4008
ad2f7632 4009/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4010 include it since we may get into a infinitely recursive
4011 situation. */
c906108c
SS
4012
4013static void
4c9e8482 4014print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4015{
4016 if (args != NULL)
4017 {
ad2f7632
DJ
4018 int i;
4019
4020 for (i = 0; i < nargs; i++)
4c9e8482
DE
4021 {
4022 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4023 args[i].name != NULL ? args[i].name : "<NULL>");
4024 recursive_dump_type (args[i].type, spaces + 2);
4025 }
c906108c
SS
4026 }
4027}
4028
d6a843b5
JK
4029int
4030field_is_static (struct field *f)
4031{
4032 /* "static" fields are the fields whose location is not relative
4033 to the address of the enclosing struct. It would be nice to
4034 have a dedicated flag that would be set for static fields when
4035 the type is being created. But in practice, checking the field
254e6b9e 4036 loc_kind should give us an accurate answer. */
d6a843b5
JK
4037 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4038 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4039}
4040
c906108c 4041static void
fba45db2 4042dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4043{
4044 int method_idx;
4045 int overload_idx;
4046 struct fn_field *f;
4047
4048 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4049 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4050 printf_filtered ("\n");
4051 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4052 {
4053 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4054 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4055 method_idx,
4056 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4057 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4058 gdb_stdout);
a3f17187 4059 printf_filtered (_(") length %d\n"),
c906108c
SS
4060 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4061 for (overload_idx = 0;
4062 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4063 overload_idx++)
4064 {
4065 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4066 overload_idx,
4067 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4068 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4069 gdb_stdout);
c906108c
SS
4070 printf_filtered (")\n");
4071 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4072 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4073 gdb_stdout);
c906108c
SS
4074 printf_filtered ("\n");
4075
4076 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4077 spaces + 8 + 2);
4078
4079 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4080 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4081 gdb_stdout);
c906108c 4082 printf_filtered ("\n");
4c9e8482
DE
4083 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4084 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4085 spaces + 8 + 2);
c906108c 4086 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4087 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4088 gdb_stdout);
c906108c
SS
4089 printf_filtered ("\n");
4090
4091 printfi_filtered (spaces + 8, "is_const %d\n",
4092 TYPE_FN_FIELD_CONST (f, overload_idx));
4093 printfi_filtered (spaces + 8, "is_volatile %d\n",
4094 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4095 printfi_filtered (spaces + 8, "is_private %d\n",
4096 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4097 printfi_filtered (spaces + 8, "is_protected %d\n",
4098 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4099 printfi_filtered (spaces + 8, "is_stub %d\n",
4100 TYPE_FN_FIELD_STUB (f, overload_idx));
4101 printfi_filtered (spaces + 8, "voffset %u\n",
4102 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4103 }
4104 }
4105}
4106
4107static void
fba45db2 4108print_cplus_stuff (struct type *type, int spaces)
c906108c 4109{
ae6ae975
DE
4110 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4111 printfi_filtered (spaces, "vptr_basetype ");
4112 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4113 puts_filtered ("\n");
4114 if (TYPE_VPTR_BASETYPE (type) != NULL)
4115 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4116
c906108c
SS
4117 printfi_filtered (spaces, "n_baseclasses %d\n",
4118 TYPE_N_BASECLASSES (type));
4119 printfi_filtered (spaces, "nfn_fields %d\n",
4120 TYPE_NFN_FIELDS (type));
c906108c
SS
4121 if (TYPE_N_BASECLASSES (type) > 0)
4122 {
4123 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4124 TYPE_N_BASECLASSES (type));
7ba81444
MS
4125 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4126 gdb_stdout);
c906108c
SS
4127 printf_filtered (")");
4128
4129 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4130 TYPE_N_BASECLASSES (type));
4131 puts_filtered ("\n");
4132 }
4133 if (TYPE_NFIELDS (type) > 0)
4134 {
4135 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4136 {
7ba81444
MS
4137 printfi_filtered (spaces,
4138 "private_field_bits (%d bits at *",
c906108c 4139 TYPE_NFIELDS (type));
7ba81444
MS
4140 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4141 gdb_stdout);
c906108c
SS
4142 printf_filtered (")");
4143 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4144 TYPE_NFIELDS (type));
4145 puts_filtered ("\n");
4146 }
4147 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4148 {
7ba81444
MS
4149 printfi_filtered (spaces,
4150 "protected_field_bits (%d bits at *",
c906108c 4151 TYPE_NFIELDS (type));
7ba81444
MS
4152 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4153 gdb_stdout);
c906108c
SS
4154 printf_filtered (")");
4155 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4156 TYPE_NFIELDS (type));
4157 puts_filtered ("\n");
4158 }
4159 }
4160 if (TYPE_NFN_FIELDS (type) > 0)
4161 {
4162 dump_fn_fieldlists (type, spaces);
4163 }
4164}
4165
b4ba55a1
JB
4166/* Print the contents of the TYPE's type_specific union, assuming that
4167 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4168
4169static void
4170print_gnat_stuff (struct type *type, int spaces)
4171{
4172 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4173
8cd00c59
PMR
4174 if (descriptive_type == NULL)
4175 printfi_filtered (spaces + 2, "no descriptive type\n");
4176 else
4177 {
4178 printfi_filtered (spaces + 2, "descriptive type\n");
4179 recursive_dump_type (descriptive_type, spaces + 4);
4180 }
b4ba55a1
JB
4181}
4182
c906108c
SS
4183static struct obstack dont_print_type_obstack;
4184
4185void
fba45db2 4186recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4187{
4188 int idx;
4189
4190 if (spaces == 0)
4191 obstack_begin (&dont_print_type_obstack, 0);
4192
4193 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4194 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4195 {
4196 struct type **first_dont_print
7ba81444 4197 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4198
7ba81444
MS
4199 int i = (struct type **)
4200 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4201
4202 while (--i >= 0)
4203 {
4204 if (type == first_dont_print[i])
4205 {
4206 printfi_filtered (spaces, "type node ");
d4f3574e 4207 gdb_print_host_address (type, gdb_stdout);
a3f17187 4208 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4209 return;
4210 }
4211 }
4212
4213 obstack_ptr_grow (&dont_print_type_obstack, type);
4214 }
4215
4216 printfi_filtered (spaces, "type node ");
d4f3574e 4217 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4218 printf_filtered ("\n");
4219 printfi_filtered (spaces, "name '%s' (",
4220 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4221 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4222 printf_filtered (")\n");
e9e79dd9
FF
4223 printfi_filtered (spaces, "tagname '%s' (",
4224 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4225 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4226 printf_filtered (")\n");
c906108c
SS
4227 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4228 switch (TYPE_CODE (type))
4229 {
c5aa993b
JM
4230 case TYPE_CODE_UNDEF:
4231 printf_filtered ("(TYPE_CODE_UNDEF)");
4232 break;
4233 case TYPE_CODE_PTR:
4234 printf_filtered ("(TYPE_CODE_PTR)");
4235 break;
4236 case TYPE_CODE_ARRAY:
4237 printf_filtered ("(TYPE_CODE_ARRAY)");
4238 break;
4239 case TYPE_CODE_STRUCT:
4240 printf_filtered ("(TYPE_CODE_STRUCT)");
4241 break;
4242 case TYPE_CODE_UNION:
4243 printf_filtered ("(TYPE_CODE_UNION)");
4244 break;
4245 case TYPE_CODE_ENUM:
4246 printf_filtered ("(TYPE_CODE_ENUM)");
4247 break;
4f2aea11
MK
4248 case TYPE_CODE_FLAGS:
4249 printf_filtered ("(TYPE_CODE_FLAGS)");
4250 break;
c5aa993b
JM
4251 case TYPE_CODE_FUNC:
4252 printf_filtered ("(TYPE_CODE_FUNC)");
4253 break;
4254 case TYPE_CODE_INT:
4255 printf_filtered ("(TYPE_CODE_INT)");
4256 break;
4257 case TYPE_CODE_FLT:
4258 printf_filtered ("(TYPE_CODE_FLT)");
4259 break;
4260 case TYPE_CODE_VOID:
4261 printf_filtered ("(TYPE_CODE_VOID)");
4262 break;
4263 case TYPE_CODE_SET:
4264 printf_filtered ("(TYPE_CODE_SET)");
4265 break;
4266 case TYPE_CODE_RANGE:
4267 printf_filtered ("(TYPE_CODE_RANGE)");
4268 break;
4269 case TYPE_CODE_STRING:
4270 printf_filtered ("(TYPE_CODE_STRING)");
4271 break;
4272 case TYPE_CODE_ERROR:
4273 printf_filtered ("(TYPE_CODE_ERROR)");
4274 break;
0d5de010
DJ
4275 case TYPE_CODE_MEMBERPTR:
4276 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4277 break;
4278 case TYPE_CODE_METHODPTR:
4279 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4280 break;
4281 case TYPE_CODE_METHOD:
4282 printf_filtered ("(TYPE_CODE_METHOD)");
4283 break;
4284 case TYPE_CODE_REF:
4285 printf_filtered ("(TYPE_CODE_REF)");
4286 break;
4287 case TYPE_CODE_CHAR:
4288 printf_filtered ("(TYPE_CODE_CHAR)");
4289 break;
4290 case TYPE_CODE_BOOL:
4291 printf_filtered ("(TYPE_CODE_BOOL)");
4292 break;
e9e79dd9
FF
4293 case TYPE_CODE_COMPLEX:
4294 printf_filtered ("(TYPE_CODE_COMPLEX)");
4295 break;
c5aa993b
JM
4296 case TYPE_CODE_TYPEDEF:
4297 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4298 break;
5c4e30ca
DC
4299 case TYPE_CODE_NAMESPACE:
4300 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4301 break;
c5aa993b
JM
4302 default:
4303 printf_filtered ("(UNKNOWN TYPE CODE)");
4304 break;
c906108c
SS
4305 }
4306 puts_filtered ("\n");
4307 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4308 if (TYPE_OBJFILE_OWNED (type))
4309 {
4310 printfi_filtered (spaces, "objfile ");
4311 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4312 }
4313 else
4314 {
4315 printfi_filtered (spaces, "gdbarch ");
4316 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4317 }
c906108c
SS
4318 printf_filtered ("\n");
4319 printfi_filtered (spaces, "target_type ");
d4f3574e 4320 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4321 printf_filtered ("\n");
4322 if (TYPE_TARGET_TYPE (type) != NULL)
4323 {
4324 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4325 }
4326 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4327 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4328 printf_filtered ("\n");
4329 printfi_filtered (spaces, "reference_type ");
d4f3574e 4330 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4331 printf_filtered ("\n");
2fdde8f8
DJ
4332 printfi_filtered (spaces, "type_chain ");
4333 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4334 printf_filtered ("\n");
7ba81444
MS
4335 printfi_filtered (spaces, "instance_flags 0x%x",
4336 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4337 if (TYPE_CONST (type))
4338 {
a9ff5f12 4339 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4340 }
4341 if (TYPE_VOLATILE (type))
4342 {
a9ff5f12 4343 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4344 }
4345 if (TYPE_CODE_SPACE (type))
4346 {
a9ff5f12 4347 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4348 }
4349 if (TYPE_DATA_SPACE (type))
4350 {
a9ff5f12 4351 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4352 }
8b2dbe47
KB
4353 if (TYPE_ADDRESS_CLASS_1 (type))
4354 {
a9ff5f12 4355 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4356 }
4357 if (TYPE_ADDRESS_CLASS_2 (type))
4358 {
a9ff5f12 4359 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4360 }
06d66ee9
TT
4361 if (TYPE_RESTRICT (type))
4362 {
a9ff5f12 4363 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4364 }
a2c2acaf
MW
4365 if (TYPE_ATOMIC (type))
4366 {
a9ff5f12 4367 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4368 }
2fdde8f8 4369 puts_filtered ("\n");
876cecd0
TT
4370
4371 printfi_filtered (spaces, "flags");
762a036f 4372 if (TYPE_UNSIGNED (type))
c906108c 4373 {
a9ff5f12 4374 puts_filtered (" TYPE_UNSIGNED");
c906108c 4375 }
762a036f
FF
4376 if (TYPE_NOSIGN (type))
4377 {
a9ff5f12 4378 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4379 }
4380 if (TYPE_STUB (type))
c906108c 4381 {
a9ff5f12 4382 puts_filtered (" TYPE_STUB");
c906108c 4383 }
762a036f
FF
4384 if (TYPE_TARGET_STUB (type))
4385 {
a9ff5f12 4386 puts_filtered (" TYPE_TARGET_STUB");
762a036f
FF
4387 }
4388 if (TYPE_STATIC (type))
4389 {
a9ff5f12 4390 puts_filtered (" TYPE_STATIC");
762a036f 4391 }
762a036f
FF
4392 if (TYPE_PROTOTYPED (type))
4393 {
a9ff5f12 4394 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4395 }
4396 if (TYPE_INCOMPLETE (type))
4397 {
a9ff5f12 4398 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4399 }
762a036f
FF
4400 if (TYPE_VARARGS (type))
4401 {
a9ff5f12 4402 puts_filtered (" TYPE_VARARGS");
762a036f 4403 }
f5f8a009
EZ
4404 /* This is used for things like AltiVec registers on ppc. Gcc emits
4405 an attribute for the array type, which tells whether or not we
4406 have a vector, instead of a regular array. */
4407 if (TYPE_VECTOR (type))
4408 {
a9ff5f12 4409 puts_filtered (" TYPE_VECTOR");
f5f8a009 4410 }
876cecd0
TT
4411 if (TYPE_FIXED_INSTANCE (type))
4412 {
4413 puts_filtered (" TYPE_FIXED_INSTANCE");
4414 }
4415 if (TYPE_STUB_SUPPORTED (type))
4416 {
4417 puts_filtered (" TYPE_STUB_SUPPORTED");
4418 }
4419 if (TYPE_NOTTEXT (type))
4420 {
4421 puts_filtered (" TYPE_NOTTEXT");
4422 }
c906108c
SS
4423 puts_filtered ("\n");
4424 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4425 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4426 puts_filtered ("\n");
4427 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4428 {
14e75d8e
JK
4429 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4430 printfi_filtered (spaces + 2,
4431 "[%d] enumval %s type ",
4432 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4433 else
4434 printfi_filtered (spaces + 2,
6b850546
DT
4435 "[%d] bitpos %s bitsize %d type ",
4436 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4437 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4438 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4439 printf_filtered (" name '%s' (",
4440 TYPE_FIELD_NAME (type, idx) != NULL
4441 ? TYPE_FIELD_NAME (type, idx)
4442 : "<NULL>");
d4f3574e 4443 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4444 printf_filtered (")\n");
4445 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4446 {
4447 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4448 }
4449 }
43bbcdc2
PH
4450 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4451 {
4452 printfi_filtered (spaces, "low %s%s high %s%s\n",
4453 plongest (TYPE_LOW_BOUND (type)),
4454 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4455 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4456 TYPE_HIGH_BOUND_UNDEFINED (type)
4457 ? " (undefined)" : "");
43bbcdc2 4458 }
c906108c 4459
b4ba55a1
JB
4460 switch (TYPE_SPECIFIC_FIELD (type))
4461 {
4462 case TYPE_SPECIFIC_CPLUS_STUFF:
4463 printfi_filtered (spaces, "cplus_stuff ");
4464 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4465 gdb_stdout);
4466 puts_filtered ("\n");
4467 print_cplus_stuff (type, spaces);
4468 break;
8da61cc4 4469
b4ba55a1
JB
4470 case TYPE_SPECIFIC_GNAT_STUFF:
4471 printfi_filtered (spaces, "gnat_stuff ");
4472 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4473 puts_filtered ("\n");
4474 print_gnat_stuff (type, spaces);
4475 break;
701c159d 4476
b4ba55a1
JB
4477 case TYPE_SPECIFIC_FLOATFORMAT:
4478 printfi_filtered (spaces, "floatformat ");
4479 if (TYPE_FLOATFORMAT (type) == NULL)
4480 puts_filtered ("(null)");
4481 else
4482 {
4483 puts_filtered ("{ ");
4484 if (TYPE_FLOATFORMAT (type)[0] == NULL
4485 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4486 puts_filtered ("(null)");
4487 else
4488 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4489
4490 puts_filtered (", ");
4491 if (TYPE_FLOATFORMAT (type)[1] == NULL
4492 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4493 puts_filtered ("(null)");
4494 else
4495 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4496
4497 puts_filtered (" }");
4498 }
4499 puts_filtered ("\n");
4500 break;
c906108c 4501
b6cdc2c1 4502 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4503 printfi_filtered (spaces, "calling_convention %d\n",
4504 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4505 /* tail_call_list is not printed. */
b4ba55a1 4506 break;
09e2d7c7
DE
4507
4508 case TYPE_SPECIFIC_SELF_TYPE:
4509 printfi_filtered (spaces, "self_type ");
4510 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4511 puts_filtered ("\n");
4512 break;
c906108c 4513 }
b4ba55a1 4514
c906108c
SS
4515 if (spaces == 0)
4516 obstack_free (&dont_print_type_obstack, NULL);
4517}
5212577a 4518\f
ae5a43e0
DJ
4519/* Trivial helpers for the libiberty hash table, for mapping one
4520 type to another. */
4521
4522struct type_pair
4523{
fe978cb0 4524 struct type *old, *newobj;
ae5a43e0
DJ
4525};
4526
4527static hashval_t
4528type_pair_hash (const void *item)
4529{
9a3c8263 4530 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4531
ae5a43e0
DJ
4532 return htab_hash_pointer (pair->old);
4533}
4534
4535static int
4536type_pair_eq (const void *item_lhs, const void *item_rhs)
4537{
9a3c8263
SM
4538 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4539 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4540
ae5a43e0
DJ
4541 return lhs->old == rhs->old;
4542}
4543
4544/* Allocate the hash table used by copy_type_recursive to walk
4545 types without duplicates. We use OBJFILE's obstack, because
4546 OBJFILE is about to be deleted. */
4547
4548htab_t
4549create_copied_types_hash (struct objfile *objfile)
4550{
4551 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4552 NULL, &objfile->objfile_obstack,
4553 hashtab_obstack_allocate,
4554 dummy_obstack_deallocate);
4555}
4556
d9823cbb
KB
4557/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4558
4559static struct dynamic_prop_list *
4560copy_dynamic_prop_list (struct obstack *objfile_obstack,
4561 struct dynamic_prop_list *list)
4562{
4563 struct dynamic_prop_list *copy = list;
4564 struct dynamic_prop_list **node_ptr = &copy;
4565
4566 while (*node_ptr != NULL)
4567 {
4568 struct dynamic_prop_list *node_copy;
4569
224c3ddb
SM
4570 node_copy = ((struct dynamic_prop_list *)
4571 obstack_copy (objfile_obstack, *node_ptr,
4572 sizeof (struct dynamic_prop_list)));
283a9958 4573 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4574 *node_ptr = node_copy;
4575
4576 node_ptr = &node_copy->next;
4577 }
4578
4579 return copy;
4580}
4581
7ba81444 4582/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4583 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4584 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4585 it is not associated with OBJFILE. */
ae5a43e0
DJ
4586
4587struct type *
7ba81444
MS
4588copy_type_recursive (struct objfile *objfile,
4589 struct type *type,
ae5a43e0
DJ
4590 htab_t copied_types)
4591{
4592 struct type_pair *stored, pair;
4593 void **slot;
4594 struct type *new_type;
4595
e9bb382b 4596 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4597 return type;
4598
7ba81444
MS
4599 /* This type shouldn't be pointing to any types in other objfiles;
4600 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4601 gdb_assert (TYPE_OBJFILE (type) == objfile);
4602
4603 pair.old = type;
4604 slot = htab_find_slot (copied_types, &pair, INSERT);
4605 if (*slot != NULL)
fe978cb0 4606 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4607
e9bb382b 4608 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4609
4610 /* We must add the new type to the hash table immediately, in case
4611 we encounter this type again during a recursive call below. */
8d749320 4612 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
ae5a43e0 4613 stored->old = type;
fe978cb0 4614 stored->newobj = new_type;
ae5a43e0
DJ
4615 *slot = stored;
4616
876cecd0
TT
4617 /* Copy the common fields of types. For the main type, we simply
4618 copy the entire thing and then update specific fields as needed. */
4619 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4620 TYPE_OBJFILE_OWNED (new_type) = 0;
4621 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4622
ae5a43e0
DJ
4623 if (TYPE_NAME (type))
4624 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4625 if (TYPE_TAG_NAME (type))
4626 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4627
4628 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4629 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4630
4631 /* Copy the fields. */
ae5a43e0
DJ
4632 if (TYPE_NFIELDS (type))
4633 {
4634 int i, nfields;
4635
4636 nfields = TYPE_NFIELDS (type);
fc270c35 4637 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4638 for (i = 0; i < nfields; i++)
4639 {
7ba81444
MS
4640 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4641 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4642 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4643 if (TYPE_FIELD_TYPE (type, i))
4644 TYPE_FIELD_TYPE (new_type, i)
4645 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4646 copied_types);
4647 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4648 TYPE_FIELD_NAME (new_type, i) =
4649 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4650 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4651 {
d6a843b5
JK
4652 case FIELD_LOC_KIND_BITPOS:
4653 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4654 TYPE_FIELD_BITPOS (type, i));
4655 break;
14e75d8e
JK
4656 case FIELD_LOC_KIND_ENUMVAL:
4657 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4658 TYPE_FIELD_ENUMVAL (type, i));
4659 break;
d6a843b5
JK
4660 case FIELD_LOC_KIND_PHYSADDR:
4661 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4662 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4663 break;
4664 case FIELD_LOC_KIND_PHYSNAME:
4665 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4666 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4667 i)));
4668 break;
4669 default:
4670 internal_error (__FILE__, __LINE__,
4671 _("Unexpected type field location kind: %d"),
4672 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4673 }
4674 }
4675 }
4676
0963b4bd 4677 /* For range types, copy the bounds information. */
43bbcdc2
PH
4678 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4679 {
8d749320 4680 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4681 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4682 }
4683
d9823cbb
KB
4684 if (TYPE_DYN_PROP_LIST (type) != NULL)
4685 TYPE_DYN_PROP_LIST (new_type)
4686 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4687 TYPE_DYN_PROP_LIST (type));
4688
3cdcd0ce 4689
ae5a43e0
DJ
4690 /* Copy pointers to other types. */
4691 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4692 TYPE_TARGET_TYPE (new_type) =
4693 copy_type_recursive (objfile,
4694 TYPE_TARGET_TYPE (type),
4695 copied_types);
f6b3afbf 4696
ae5a43e0
DJ
4697 /* Maybe copy the type_specific bits.
4698
4699 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4700 base classes and methods. There's no fundamental reason why we
4701 can't, but at the moment it is not needed. */
4702
f6b3afbf
DE
4703 switch (TYPE_SPECIFIC_FIELD (type))
4704 {
4705 case TYPE_SPECIFIC_NONE:
4706 break;
4707 case TYPE_SPECIFIC_FUNC:
4708 INIT_FUNC_SPECIFIC (new_type);
4709 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4710 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4711 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4712 break;
4713 case TYPE_SPECIFIC_FLOATFORMAT:
4714 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4715 break;
4716 case TYPE_SPECIFIC_CPLUS_STUFF:
4717 INIT_CPLUS_SPECIFIC (new_type);
4718 break;
4719 case TYPE_SPECIFIC_GNAT_STUFF:
4720 INIT_GNAT_SPECIFIC (new_type);
4721 break;
09e2d7c7
DE
4722 case TYPE_SPECIFIC_SELF_TYPE:
4723 set_type_self_type (new_type,
4724 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4725 copied_types));
4726 break;
f6b3afbf
DE
4727 default:
4728 gdb_assert_not_reached ("bad type_specific_kind");
4729 }
ae5a43e0
DJ
4730
4731 return new_type;
4732}
4733
4af88198
JB
4734/* Make a copy of the given TYPE, except that the pointer & reference
4735 types are not preserved.
4736
4737 This function assumes that the given type has an associated objfile.
4738 This objfile is used to allocate the new type. */
4739
4740struct type *
4741copy_type (const struct type *type)
4742{
4743 struct type *new_type;
4744
e9bb382b 4745 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4746
e9bb382b 4747 new_type = alloc_type_copy (type);
4af88198
JB
4748 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4749 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4750 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4751 sizeof (struct main_type));
d9823cbb
KB
4752 if (TYPE_DYN_PROP_LIST (type) != NULL)
4753 TYPE_DYN_PROP_LIST (new_type)
4754 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4755 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4756
4757 return new_type;
4758}
5212577a 4759\f
e9bb382b
UW
4760/* Helper functions to initialize architecture-specific types. */
4761
4762/* Allocate a type structure associated with GDBARCH and set its
4763 CODE, LENGTH, and NAME fields. */
5212577a 4764
e9bb382b
UW
4765struct type *
4766arch_type (struct gdbarch *gdbarch,
695bfa52 4767 enum type_code code, int length, const char *name)
e9bb382b
UW
4768{
4769 struct type *type;
4770
4771 type = alloc_type_arch (gdbarch);
ae438bc5 4772 set_type_code (type, code);
e9bb382b
UW
4773 TYPE_LENGTH (type) = length;
4774
4775 if (name)
6c214e7c 4776 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
4777
4778 return type;
4779}
4780
4781/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4782 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4783 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4784
e9bb382b
UW
4785struct type *
4786arch_integer_type (struct gdbarch *gdbarch,
695bfa52 4787 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4788{
4789 struct type *t;
4790
4791 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4792 if (unsigned_p)
4793 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
4794
4795 return t;
4796}
4797
4798/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4799 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4800 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4801
e9bb382b
UW
4802struct type *
4803arch_character_type (struct gdbarch *gdbarch,
695bfa52 4804 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4805{
4806 struct type *t;
4807
4808 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4809 if (unsigned_p)
4810 TYPE_UNSIGNED (t) = 1;
4811
4812 return t;
4813}
4814
4815/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4816 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4817 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4818
e9bb382b
UW
4819struct type *
4820arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 4821 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4822{
4823 struct type *t;
4824
4825 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4826 if (unsigned_p)
4827 TYPE_UNSIGNED (t) = 1;
4828
4829 return t;
4830}
4831
4832/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4833 BIT is the type size in bits; if BIT equals -1, the size is
4834 determined by the floatformat. NAME is the type name. Set the
4835 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4836
27067745 4837struct type *
e9bb382b 4838arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
4839 int bit, const char *name,
4840 const struct floatformat **floatformats)
8da61cc4
DJ
4841{
4842 struct type *t;
4843
19f392bc 4844 bit = verify_floatformat (bit, floatformats);
e9bb382b 4845 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4 4846 TYPE_FLOATFORMAT (t) = floatformats;
b79497cb 4847
8da61cc4
DJ
4848 return t;
4849}
4850
88dfca6c
UW
4851/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4852 BIT is the type size in bits. NAME is the type name. */
4853
4854struct type *
4855arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4856{
4857 struct type *t;
4858
4859 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4860 return t;
4861}
4862
e9bb382b
UW
4863/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4864 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4865
27067745 4866struct type *
e9bb382b 4867arch_complex_type (struct gdbarch *gdbarch,
695bfa52 4868 const char *name, struct type *target_type)
27067745
UW
4869{
4870 struct type *t;
d8734c88 4871
e9bb382b
UW
4872 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4873 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4874 TYPE_TARGET_TYPE (t) = target_type;
4875 return t;
4876}
4877
88dfca6c
UW
4878/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4879 BIT is the pointer type size in bits. NAME is the type name.
4880 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4881 TYPE_UNSIGNED flag. */
4882
4883struct type *
4884arch_pointer_type (struct gdbarch *gdbarch,
4885 int bit, const char *name, struct type *target_type)
4886{
4887 struct type *t;
4888
4889 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4890 TYPE_TARGET_TYPE (t) = target_type;
4891 TYPE_UNSIGNED (t) = 1;
4892 return t;
4893}
4894
e9bb382b 4895/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4896 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4897
e9bb382b 4898struct type *
695bfa52 4899arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
e9bb382b 4900{
81516450 4901 int max_nfields = length * TARGET_CHAR_BIT;
e9bb382b
UW
4902 struct type *type;
4903
4904 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4905 TYPE_UNSIGNED (type) = 1;
81516450
DE
4906 TYPE_NFIELDS (type) = 0;
4907 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 4908 TYPE_FIELDS (type)
81516450 4909 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
e9bb382b
UW
4910
4911 return type;
4912}
4913
4914/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
4915 position BITPOS is called NAME. Pass NAME as "" for fields that
4916 should not be printed. */
4917
4918void
4919append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 4920 struct type *field_type, const char *name)
81516450
DE
4921{
4922 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4923 int field_nr = TYPE_NFIELDS (type);
4924
4925 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4926 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4927 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4928 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4929 gdb_assert (name != NULL);
4930
4931 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4932 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4933 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4934 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4935 ++TYPE_NFIELDS (type);
4936}
4937
4938/* Special version of append_flags_type_field to add a flag field.
4939 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 4940 position BITPOS is called NAME. */
5212577a 4941
e9bb382b 4942void
695bfa52 4943append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 4944{
81516450 4945 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 4946
81516450
DE
4947 append_flags_type_field (type, bitpos, 1,
4948 builtin_type (gdbarch)->builtin_bool,
4949 name);
e9bb382b
UW
4950}
4951
4952/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4953 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4954
e9bb382b 4955struct type *
695bfa52
TT
4956arch_composite_type (struct gdbarch *gdbarch, const char *name,
4957 enum type_code code)
e9bb382b
UW
4958{
4959 struct type *t;
d8734c88 4960
e9bb382b
UW
4961 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4962 t = arch_type (gdbarch, code, 0, NULL);
4963 TYPE_TAG_NAME (t) = name;
4964 INIT_CPLUS_SPECIFIC (t);
4965 return t;
4966}
4967
4968/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4969 Do not set the field's position or adjust the type's length;
4970 the caller should do so. Return the new field. */
5212577a 4971
f5dff777 4972struct field *
695bfa52 4973append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 4974 struct type *field)
e9bb382b
UW
4975{
4976 struct field *f;
d8734c88 4977
e9bb382b 4978 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
4979 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4980 TYPE_NFIELDS (t));
e9bb382b
UW
4981 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4982 memset (f, 0, sizeof f[0]);
4983 FIELD_TYPE (f[0]) = field;
4984 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4985 return f;
4986}
4987
4988/* Add new field with name NAME and type FIELD to composite type T.
4989 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4990
f5dff777 4991void
695bfa52 4992append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
4993 struct type *field, int alignment)
4994{
4995 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4996
e9bb382b
UW
4997 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4998 {
4999 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5000 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5001 }
5002 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5003 {
5004 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5005 if (TYPE_NFIELDS (t) > 1)
5006 {
f41f5e61
PA
5007 SET_FIELD_BITPOS (f[0],
5008 (FIELD_BITPOS (f[-1])
5009 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5010 * TARGET_CHAR_BIT)));
e9bb382b
UW
5011
5012 if (alignment)
5013 {
86c3c1fc
AB
5014 int left;
5015
5016 alignment *= TARGET_CHAR_BIT;
5017 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5018
e9bb382b
UW
5019 if (left)
5020 {
f41f5e61 5021 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5022 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5023 }
5024 }
5025 }
5026 }
5027}
5028
5029/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5030
e9bb382b 5031void
695bfa52 5032append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5033 struct type *field)
5034{
5035 append_composite_type_field_aligned (t, name, field, 0);
5036}
5037
000177f0
AC
5038static struct gdbarch_data *gdbtypes_data;
5039
5040const struct builtin_type *
5041builtin_type (struct gdbarch *gdbarch)
5042{
9a3c8263 5043 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5044}
5045
5046static void *
5047gdbtypes_post_init (struct gdbarch *gdbarch)
5048{
5049 struct builtin_type *builtin_type
5050 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5051
46bf5051 5052 /* Basic types. */
e9bb382b
UW
5053 builtin_type->builtin_void
5054 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5055 builtin_type->builtin_char
5056 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5057 !gdbarch_char_signed (gdbarch), "char");
c413c448 5058 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5059 builtin_type->builtin_signed_char
5060 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5061 0, "signed char");
5062 builtin_type->builtin_unsigned_char
5063 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5064 1, "unsigned char");
5065 builtin_type->builtin_short
5066 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5067 0, "short");
5068 builtin_type->builtin_unsigned_short
5069 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5070 1, "unsigned short");
5071 builtin_type->builtin_int
5072 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5073 0, "int");
5074 builtin_type->builtin_unsigned_int
5075 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5076 1, "unsigned int");
5077 builtin_type->builtin_long
5078 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5079 0, "long");
5080 builtin_type->builtin_unsigned_long
5081 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5082 1, "unsigned long");
5083 builtin_type->builtin_long_long
5084 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5085 0, "long long");
5086 builtin_type->builtin_unsigned_long_long
5087 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5088 1, "unsigned long long");
70bd8e24 5089 builtin_type->builtin_float
e9bb382b 5090 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5091 "float", gdbarch_float_format (gdbarch));
70bd8e24 5092 builtin_type->builtin_double
e9bb382b 5093 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5094 "double", gdbarch_double_format (gdbarch));
70bd8e24 5095 builtin_type->builtin_long_double
e9bb382b 5096 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5097 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5098 builtin_type->builtin_complex
e9bb382b
UW
5099 = arch_complex_type (gdbarch, "complex",
5100 builtin_type->builtin_float);
70bd8e24 5101 builtin_type->builtin_double_complex
e9bb382b
UW
5102 = arch_complex_type (gdbarch, "double complex",
5103 builtin_type->builtin_double);
5104 builtin_type->builtin_string
5105 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5106 builtin_type->builtin_bool
5107 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 5108
7678ef8f
TJB
5109 /* The following three are about decimal floating point types, which
5110 are 32-bits, 64-bits and 128-bits respectively. */
5111 builtin_type->builtin_decfloat
88dfca6c 5112 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5113 builtin_type->builtin_decdouble
88dfca6c 5114 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5115 builtin_type->builtin_declong
88dfca6c 5116 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5117
69feb676 5118 /* "True" character types. */
e9bb382b
UW
5119 builtin_type->builtin_true_char
5120 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5121 builtin_type->builtin_true_unsigned_char
5122 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5123
df4df182 5124 /* Fixed-size integer types. */
e9bb382b
UW
5125 builtin_type->builtin_int0
5126 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5127 builtin_type->builtin_int8
5128 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5129 builtin_type->builtin_uint8
5130 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5131 builtin_type->builtin_int16
5132 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5133 builtin_type->builtin_uint16
5134 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5135 builtin_type->builtin_int32
5136 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5137 builtin_type->builtin_uint32
5138 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5139 builtin_type->builtin_int64
5140 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5141 builtin_type->builtin_uint64
5142 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5143 builtin_type->builtin_int128
5144 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5145 builtin_type->builtin_uint128
5146 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5147 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5148 TYPE_INSTANCE_FLAG_NOTTEXT;
5149 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5150 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5151
9a22f0d0
PM
5152 /* Wide character types. */
5153 builtin_type->builtin_char16
5154 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5155 builtin_type->builtin_char32
5156 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5157
5158
46bf5051 5159 /* Default data/code pointer types. */
e9bb382b
UW
5160 builtin_type->builtin_data_ptr
5161 = lookup_pointer_type (builtin_type->builtin_void);
5162 builtin_type->builtin_func_ptr
5163 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5164 builtin_type->builtin_func_func
5165 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5166
78267919 5167 /* This type represents a GDB internal function. */
e9bb382b
UW
5168 builtin_type->internal_fn
5169 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5170 "<internal function>");
78267919 5171
e81e7f5e
SC
5172 /* This type represents an xmethod. */
5173 builtin_type->xmethod
5174 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5175
46bf5051
UW
5176 return builtin_type;
5177}
5178
46bf5051
UW
5179/* This set of objfile-based types is intended to be used by symbol
5180 readers as basic types. */
5181
5182static const struct objfile_data *objfile_type_data;
5183
5184const struct objfile_type *
5185objfile_type (struct objfile *objfile)
5186{
5187 struct gdbarch *gdbarch;
5188 struct objfile_type *objfile_type
9a3c8263 5189 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5190
5191 if (objfile_type)
5192 return objfile_type;
5193
5194 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5195 1, struct objfile_type);
5196
5197 /* Use the objfile architecture to determine basic type properties. */
5198 gdbarch = get_objfile_arch (objfile);
5199
5200 /* Basic types. */
5201 objfile_type->builtin_void
19f392bc 5202 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
46bf5051 5203 objfile_type->builtin_char
19f392bc
UW
5204 = init_integer_type (objfile, TARGET_CHAR_BIT,
5205 !gdbarch_char_signed (gdbarch), "char");
c413c448 5206 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5207 objfile_type->builtin_signed_char
19f392bc
UW
5208 = init_integer_type (objfile, TARGET_CHAR_BIT,
5209 0, "signed char");
46bf5051 5210 objfile_type->builtin_unsigned_char
19f392bc
UW
5211 = init_integer_type (objfile, TARGET_CHAR_BIT,
5212 1, "unsigned char");
46bf5051 5213 objfile_type->builtin_short
19f392bc
UW
5214 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5215 0, "short");
46bf5051 5216 objfile_type->builtin_unsigned_short
19f392bc
UW
5217 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5218 1, "unsigned short");
46bf5051 5219 objfile_type->builtin_int
19f392bc
UW
5220 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5221 0, "int");
46bf5051 5222 objfile_type->builtin_unsigned_int
19f392bc
UW
5223 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5224 1, "unsigned int");
46bf5051 5225 objfile_type->builtin_long
19f392bc
UW
5226 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5227 0, "long");
46bf5051 5228 objfile_type->builtin_unsigned_long
19f392bc
UW
5229 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5230 1, "unsigned long");
46bf5051 5231 objfile_type->builtin_long_long
19f392bc
UW
5232 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5233 0, "long long");
46bf5051 5234 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5235 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5236 1, "unsigned long long");
46bf5051 5237 objfile_type->builtin_float
19f392bc
UW
5238 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5239 "float", gdbarch_float_format (gdbarch));
46bf5051 5240 objfile_type->builtin_double
19f392bc
UW
5241 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5242 "double", gdbarch_double_format (gdbarch));
46bf5051 5243 objfile_type->builtin_long_double
19f392bc
UW
5244 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5245 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5246
5247 /* This type represents a type that was unrecognized in symbol read-in. */
5248 objfile_type->builtin_error
19f392bc 5249 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5250
5251 /* The following set of types is used for symbols with no
5252 debug information. */
5253 objfile_type->nodebug_text_symbol
19f392bc
UW
5254 = init_type (objfile, TYPE_CODE_FUNC, 1,
5255 "<text variable, no debug info>");
46bf5051
UW
5256 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5257 = objfile_type->builtin_int;
0875794a 5258 objfile_type->nodebug_text_gnu_ifunc_symbol
19f392bc
UW
5259 = init_type (objfile, TYPE_CODE_FUNC, 1,
5260 "<text gnu-indirect-function variable, no debug info>");
0875794a
JK
5261 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5262 = objfile_type->nodebug_text_symbol;
19f392bc 5263 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5264 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5265 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5266 "<text from jump slot in .got.plt, no debug info>",
5267 objfile_type->nodebug_text_symbol);
46bf5051 5268 objfile_type->nodebug_data_symbol
19f392bc
UW
5269 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5270 "<data variable, no debug info>");
46bf5051 5271 objfile_type->nodebug_unknown_symbol
19f392bc
UW
5272 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5273 "<variable (not text or data), no debug info>");
46bf5051 5274 objfile_type->nodebug_tls_symbol
19f392bc
UW
5275 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5276 "<thread local variable, no debug info>");
000177f0
AC
5277
5278 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5279 the same.
000177f0
AC
5280
5281 The upshot is:
5282 - gdb's `struct type' always describes the target's
5283 representation.
5284 - gdb's `struct value' objects should always hold values in
5285 target form.
5286 - gdb's CORE_ADDR values are addresses in the unified virtual
5287 address space that the assembler and linker work with. Thus,
5288 since target_read_memory takes a CORE_ADDR as an argument, it
5289 can access any memory on the target, even if the processor has
5290 separate code and data address spaces.
5291
46bf5051
UW
5292 In this context, objfile_type->builtin_core_addr is a bit odd:
5293 it's a target type for a value the target will never see. It's
5294 only used to hold the values of (typeless) linker symbols, which
5295 are indeed in the unified virtual address space. */
000177f0 5296
46bf5051 5297 objfile_type->builtin_core_addr
19f392bc
UW
5298 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5299 "__CORE_ADDR");
64c50499 5300
46bf5051
UW
5301 set_objfile_data (objfile, objfile_type_data, objfile_type);
5302 return objfile_type;
000177f0
AC
5303}
5304
5212577a 5305extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 5306
c906108c 5307void
fba45db2 5308_initialize_gdbtypes (void)
c906108c 5309{
5674de60 5310 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5311 objfile_type_data = register_objfile_data ();
5674de60 5312
ccce17b0
YQ
5313 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5314 _("Set debugging of C++ overloading."),
5315 _("Show debugging of C++ overloading."),
5316 _("When enabled, ranking of the "
5317 "functions is displayed."),
5318 NULL,
5319 show_overload_debug,
5320 &setdebuglist, &showdebuglist);
5674de60 5321
7ba81444 5322 /* Add user knob for controlling resolution of opaque types. */
5674de60 5323 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5324 &opaque_type_resolution,
5325 _("Set resolution of opaque struct/class/union"
5326 " types (if set before loading symbols)."),
5327 _("Show resolution of opaque struct/class/union"
5328 " types (if set before loading symbols)."),
5329 NULL, NULL,
5674de60
UW
5330 show_opaque_type_resolution,
5331 &setlist, &showlist);
a451cb65
KS
5332
5333 /* Add an option to permit non-strict type checking. */
5334 add_setshow_boolean_cmd ("type", class_support,
5335 &strict_type_checking,
5336 _("Set strict type checking."),
5337 _("Show strict type checking."),
5338 NULL, NULL,
5339 show_strict_type_checking,
5340 &setchecklist, &showchecklist);
c906108c 5341}
This page took 2.201733 seconds and 4 git commands to generate.