Split TRY_CATCH into TRY + CATCH
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
41bf6aca
TT
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2fdde8f8
DJ
255/* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259static struct type *
260alloc_type_instance (struct type *oldtype)
261{
262 struct type *type;
263
264 /* Allocate the structure. */
265
e9bb382b 266 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 267 type = XCNEW (struct type);
2fdde8f8 268 else
1deafd4e
PA
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
2fdde8f8
DJ
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
c16abbde 276 return type;
2fdde8f8
DJ
277}
278
279/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 280 replacing it with something else. Preserve owner information. */
5212577a 281
2fdde8f8
DJ
282static void
283smash_type (struct type *type)
284{
e9bb382b
UW
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
2fdde8f8
DJ
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
e9bb382b
UW
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
2fdde8f8
DJ
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298}
299
c906108c
SS
300/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305struct type *
fba45db2 306make_pointer_type (struct type *type, struct type **typeptr)
c906108c 307{
52f0bd74 308 struct type *ntype; /* New type */
053cb41b 309 struct type *chain;
c906108c
SS
310
311 ntype = TYPE_POINTER_TYPE (type);
312
c5aa993b 313 if (ntype)
c906108c 314 {
c5aa993b 315 if (typeptr == 0)
7ba81444
MS
316 return ntype; /* Don't care about alloc,
317 and have new type. */
c906108c 318 else if (*typeptr == 0)
c5aa993b 319 {
7ba81444 320 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 321 return ntype;
c5aa993b 322 }
c906108c
SS
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
e9bb382b 327 ntype = alloc_type_copy (type);
c906108c
SS
328 if (typeptr)
329 *typeptr = ntype;
330 }
7ba81444 331 else /* We have storage, but need to reset it. */
c906108c
SS
332 {
333 ntype = *typeptr;
053cb41b 334 chain = TYPE_CHAIN (ntype);
2fdde8f8 335 smash_type (ntype);
053cb41b 336 TYPE_CHAIN (ntype) = chain;
c906108c
SS
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
5212577a 342 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 343
50810684
UW
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
67b2adb2 348 /* Mark pointers as unsigned. The target converts between pointers
76e71323 349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 350 gdbarch_address_to_pointer. */
876cecd0 351 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 352
053cb41b
JB
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
c906108c
SS
361 return ntype;
362}
363
364/* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367struct type *
fba45db2 368lookup_pointer_type (struct type *type)
c906108c 369{
c5aa993b 370 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
371}
372
7ba81444
MS
373/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
c906108c
SS
377
378struct type *
fba45db2 379make_reference_type (struct type *type, struct type **typeptr)
c906108c 380{
52f0bd74 381 struct type *ntype; /* New type */
1e98b326 382 struct type *chain;
c906108c
SS
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
c5aa993b 386 if (ntype)
c906108c 387 {
c5aa993b 388 if (typeptr == 0)
7ba81444
MS
389 return ntype; /* Don't care about alloc,
390 and have new type. */
c906108c 391 else if (*typeptr == 0)
c5aa993b 392 {
7ba81444 393 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 394 return ntype;
c5aa993b 395 }
c906108c
SS
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
e9bb382b 400 ntype = alloc_type_copy (type);
c906108c
SS
401 if (typeptr)
402 *typeptr = ntype;
403 }
7ba81444 404 else /* We have storage, but need to reset it. */
c906108c
SS
405 {
406 ntype = *typeptr;
1e98b326 407 chain = TYPE_CHAIN (ntype);
2fdde8f8 408 smash_type (ntype);
1e98b326 409 TYPE_CHAIN (ntype) = chain;
c906108c
SS
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
7ba81444
MS
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
c906108c 418
50810684
UW
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 421 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 422
c906108c
SS
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
1e98b326
JB
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
c906108c
SS
434 return ntype;
435}
436
7ba81444
MS
437/* Same as above, but caller doesn't care about memory allocation
438 details. */
c906108c
SS
439
440struct type *
fba45db2 441lookup_reference_type (struct type *type)
c906108c 442{
c5aa993b 443 return make_reference_type (type, (struct type **) 0);
c906108c
SS
444}
445
7ba81444
MS
446/* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 449 function type we return. We allocate new memory if needed. */
c906108c
SS
450
451struct type *
0c8b41f1 452make_function_type (struct type *type, struct type **typeptr)
c906108c 453{
52f0bd74 454 struct type *ntype; /* New type */
c906108c
SS
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
e9bb382b 458 ntype = alloc_type_copy (type);
c906108c
SS
459 if (typeptr)
460 *typeptr = ntype;
461 }
7ba81444 462 else /* We have storage, but need to reset it. */
c906108c
SS
463 {
464 ntype = *typeptr;
2fdde8f8 465 smash_type (ntype);
c906108c
SS
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 472
b6cdc2c1
JK
473 INIT_FUNC_SPECIFIC (ntype);
474
c906108c
SS
475 return ntype;
476}
477
c906108c
SS
478/* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481struct type *
fba45db2 482lookup_function_type (struct type *type)
c906108c 483{
0c8b41f1 484 return make_function_type (type, (struct type **) 0);
c906108c
SS
485}
486
71918a86 487/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
71918a86
TT
490
491struct type *
492lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495{
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
e314d629 499 if (nparams > 0)
a6fb9c08 500 {
e314d629
TT
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
a6fb9c08
TT
514 }
515
71918a86
TT
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522}
523
47663de5
MS
524/* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
5212577a
DE
526
527int
50810684 528address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 529{
8b2dbe47 530 int type_flags;
d8734c88 531
7ba81444 532 /* Check for known address space delimiters. */
47663de5 533 if (!strcmp (space_identifier, "code"))
876cecd0 534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 535 else if (!strcmp (space_identifier, "data"))
876cecd0 536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
8b2dbe47 541 return type_flags;
47663de5 542 else
8a3fe4f8 543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
544}
545
546/* Identify address space identifier by integer flag as defined in
7ba81444 547 gdbtypes.h -- return the string version of the adress space name. */
47663de5 548
321432c0 549const char *
50810684 550address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 551{
876cecd0 552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 553 return "code";
876cecd0 554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 555 return "data";
876cecd0 556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
559 else
560 return NULL;
561}
562
2fdde8f8 563/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
47663de5 567
b9362cc7 568static struct type *
2fdde8f8
DJ
569make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
47663de5
MS
571{
572 struct type *ntype;
573
574 ntype = type;
5f61c20e
JK
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
47663de5 582
2fdde8f8
DJ
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
7ba81444
MS
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
ad766c0a
JB
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
2fdde8f8
DJ
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
47663de5
MS
598
599 /* Pointers or references to the original type are not relevant to
2fdde8f8 600 the new type. */
47663de5
MS
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 603
2fdde8f8
DJ
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 610
ab5d3da6
KB
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
47663de5
MS
614 return ntype;
615}
616
2fdde8f8
DJ
617/* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
7ba81444
MS
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
2fdde8f8
DJ
625
626struct type *
627make_type_with_address_space (struct type *type, int space_flag)
628{
2fdde8f8 629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636}
c906108c
SS
637
638/* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
c906108c 643
ad766c0a
JB
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
5212577a 649
c906108c 650struct type *
7ba81444
MS
651make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
c906108c 654{
52f0bd74 655 struct type *ntype; /* New type */
c906108c 656
2fdde8f8 657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 660
c906108c 661 if (cnst)
876cecd0 662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
663
664 if (voltl)
876cecd0 665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 666
2fdde8f8 667 if (typeptr && *typeptr != NULL)
a02fd225 668 {
ad766c0a
JB
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
682 }
683
7ba81444
MS
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
c906108c 686
2fdde8f8
DJ
687 if (typeptr != NULL)
688 *typeptr = ntype;
a02fd225 689
2fdde8f8 690 return ntype;
a02fd225 691}
c906108c 692
06d66ee9
TT
693/* Make a 'restrict'-qualified version of TYPE. */
694
695struct type *
696make_restrict_type (struct type *type)
697{
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702}
703
f1660027
TT
704/* Make a type without const, volatile, or restrict. */
705
706struct type *
707make_unqualified_type (struct type *type)
708{
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715}
716
a2c2acaf
MW
717/* Make a '_Atomic'-qualified version of TYPE. */
718
719struct type *
720make_atomic_type (struct type *type)
721{
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726}
727
2fdde8f8
DJ
728/* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 731
cda6c68a
JB
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
5212577a 737
dd6bda65
DJ
738void
739replace_type (struct type *ntype, struct type *type)
740{
ab5d3da6 741 struct type *chain;
dd6bda65 742
ad766c0a
JB
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
2fdde8f8 749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 750
7ba81444
MS
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
ab5d3da6 753 chain = ntype;
5f61c20e
JK
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
ab5d3da6 768
2fdde8f8
DJ
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
772}
773
c906108c
SS
774/* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779struct type *
0d5de010 780lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 781{
52f0bd74 782 struct type *mtype;
c906108c 783
e9bb382b 784 mtype = alloc_type_copy (type);
0d5de010 785 smash_to_memberptr_type (mtype, domain, type);
c16abbde 786 return mtype;
c906108c
SS
787}
788
0d5de010
DJ
789/* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791struct type *
792lookup_methodptr_type (struct type *to_type)
793{
794 struct type *mtype;
795
e9bb382b 796 mtype = alloc_type_copy (to_type);
0b92b5bb 797 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
798 return mtype;
799}
800
7ba81444
MS
801/* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
c906108c
SS
806
807struct type *
fba45db2 808allocate_stub_method (struct type *type)
c906108c
SS
809{
810 struct type *mtype;
811
e9bb382b
UW
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
c906108c 816 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 818 return mtype;
c906108c
SS
819}
820
729efb13
SA
821/* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
823
824struct type *
729efb13
SA
825create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
c906108c
SS
828{
829 if (result_type == NULL)
e9bb382b 830 result_type = alloc_type_copy (index_type);
c906108c
SS
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 833 if (TYPE_STUB (index_type))
876cecd0 834 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 837
43bbcdc2
PH
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 842
729efb13 843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 844 TYPE_UNSIGNED (result_type) = 1;
c906108c 845
45e44d27
JB
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
262452ec 853 return result_type;
c906108c
SS
854}
855
729efb13
SA
856/* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866struct type *
867create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869{
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881}
882
80180f79
SA
883/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886static int
887has_static_range (const struct range_bounds *bounds)
888{
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891}
892
893
7ba81444
MS
894/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
897
898int
fba45db2 899get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
900{
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
0963b4bd 912 entries. */
c906108c
SS
913 int i;
914
14e75d8e 915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
14e75d8e
JK
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
922 }
923
7ba81444 924 /* Set unsigned indicator if warranted. */
c5aa993b 925 if (*lowp >= 0)
c906108c 926 {
876cecd0 927 TYPE_UNSIGNED (type) = 1;
c906108c
SS
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
c5aa993b 941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
c5aa993b 945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
946 *highp = -*lowp - 1;
947 return 0;
948 }
7ba81444 949 /* ... fall through for unsigned ints ... */
c906108c
SS
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
7b83ea04 953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961}
962
dbc98a8b
KW
963/* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
0963b4bd 967 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977int
978get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979{
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005}
1006
7ba81444
MS
1007/* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
c906108c
SS
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
dc53a7ad
JB
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
7ba81444
MS
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
c906108c
SS
1020
1021struct type *
dc53a7ad
JB
1022create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
c906108c 1026{
c906108c 1027 if (result_type == NULL)
e9bb382b
UW
1028 result_type = alloc_type_copy (range_type);
1029
c906108c
SS
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
ab0d6e0d 1051 else
80180f79
SA
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
c906108c
SS
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1deafd4e 1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1065 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1068
0963b4bd 1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1070 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1071 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1072
c16abbde 1073 return result_type;
c906108c
SS
1074}
1075
dc53a7ad
JB
1076/* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079struct type *
1080create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083{
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086}
1087
e3506a9f
UW
1088struct type *
1089lookup_array_range_type (struct type *element_type,
63375b74 1090 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1091{
50810684 1092 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
0c9c3474 1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1096
e3506a9f
UW
1097 return create_array_type (NULL, element_type, range_type);
1098}
1099
7ba81444
MS
1100/* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
c906108c
SS
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
7ba81444
MS
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
c906108c
SS
1111
1112struct type *
3b7538c0
UW
1113create_string_type (struct type *result_type,
1114 struct type *string_char_type,
7ba81444 1115 struct type *range_type)
c906108c
SS
1116{
1117 result_type = create_array_type (result_type,
f290d38e 1118 string_char_type,
c906108c
SS
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1121 return result_type;
c906108c
SS
1122}
1123
e3506a9f
UW
1124struct type *
1125lookup_string_range_type (struct type *string_char_type,
63375b74 1126 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1127{
1128 struct type *result_type;
d8734c88 1129
e3506a9f
UW
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134}
1135
c906108c 1136struct type *
fba45db2 1137create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1138{
c906108c 1139 if (result_type == NULL)
e9bb382b
UW
1140 result_type = alloc_type_copy (domain_type);
1141
c906108c
SS
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1145
74a9bb82 1146 if (!TYPE_STUB (domain_type))
c906108c 1147 {
f9780d5b 1148 LONGEST low_bound, high_bound, bit_length;
d8734c88 1149
c906108c
SS
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1155 if (low_bound >= 0)
876cecd0 1156 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
c16abbde 1160 return result_type;
c906108c
SS
1161}
1162
ea37ba09
DJ
1163/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166void
1167make_vector_type (struct type *array_type)
1168{
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
2844d6b5 1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
876cecd0 1186 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1187}
1188
794ac428 1189struct type *
ac3aafc7
EZ
1190init_vector_type (struct type *elt_type, int n)
1191{
1192 struct type *array_type;
d8734c88 1193
e3506a9f 1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1195 make_vector_type (array_type);
ac3aafc7
EZ
1196 return array_type;
1197}
1198
09e2d7c7
DE
1199/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205struct type *
1206internal_type_self_type (struct type *type)
1207{
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
09e2d7c7
DE
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
eaaf76ab
DE
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
09e2d7c7
DE
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224}
1225
1226/* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231void
1232set_type_self_type (struct type *type, struct type *self_type)
1233{
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252}
1253
1254/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
c906108c 1260
7ba81444
MS
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
c906108c
SS
1263 allocated. */
1264
1265void
09e2d7c7 1266smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1267 struct type *to_type)
c906108c 1268{
2fdde8f8 1269 smash_type (type);
09e2d7c7 1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1271 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1272 set_type_self_type (type, self_type);
0d5de010
DJ
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
50810684
UW
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1277}
1278
0b92b5bb
TT
1279/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285void
1286smash_to_methodptr_type (struct type *type, struct type *to_type)
1287{
1288 smash_type (type);
09e2d7c7 1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1290 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1293}
1294
09e2d7c7 1295/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1296 METHOD just means `function that gets an extra "this" argument'.
1297
7ba81444
MS
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
c906108c
SS
1300 allocated. */
1301
1302void
09e2d7c7 1303smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
c906108c 1306{
2fdde8f8 1307 smash_type (type);
09e2d7c7 1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1309 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1310 set_type_self_type (type, self_type);
ad2f7632
DJ
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
876cecd0 1314 TYPE_VARARGS (type) = 1;
c906108c 1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1316}
1317
1318/* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
0d5cff50 1321const char *
aa1ee363 1322type_name_no_tag (const struct type *type)
c906108c
SS
1323{
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
7ba81444
MS
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
c906108c
SS
1330 return TYPE_NAME (type);
1331}
1332
d8228535
JK
1333/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340const char *
1341type_name_no_tag_or_error (struct type *type)
1342{
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1358}
1359
7ba81444
MS
1360/* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
c906108c
SS
1363
1364struct type *
e6c014f2 1365lookup_typename (const struct language_defn *language,
ddd49eee 1366 struct gdbarch *gdbarch, const char *name,
34eaf542 1367 const struct block *block, int noerr)
c906108c 1368{
52f0bd74 1369 struct symbol *sym;
659c9f3a 1370 struct type *type;
c906108c 1371
1994afbf
DE
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
c51fe631
DE
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
c51fe631
DE
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
c906108c
SS
1380}
1381
1382struct type *
e6c014f2 1383lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1384 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1385{
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
e6c014f2 1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1391}
1392
1393struct type *
e6c014f2 1394lookup_signed_typename (const struct language_defn *language,
0d5cff50 1395 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1396{
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
e6c014f2 1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1404 if (t != NULL)
1405 return t;
e6c014f2 1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1407}
1408
1409/* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412struct type *
270140bd 1413lookup_struct (const char *name, const struct block *block)
c906108c 1414{
52f0bd74 1415 struct symbol *sym;
c906108c 1416
2570f2b7 1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1418
1419 if (sym == NULL)
1420 {
8a3fe4f8 1421 error (_("No struct type named %s."), name);
c906108c
SS
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
7ba81444
MS
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
c906108c
SS
1427 }
1428 return (SYMBOL_TYPE (sym));
1429}
1430
1431/* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434struct type *
270140bd 1435lookup_union (const char *name, const struct block *block)
c906108c 1436{
52f0bd74 1437 struct symbol *sym;
c5aa993b 1438 struct type *t;
c906108c 1439
2570f2b7 1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1441
1442 if (sym == NULL)
8a3fe4f8 1443 error (_("No union type named %s."), name);
c906108c 1444
c5aa993b 1445 t = SYMBOL_TYPE (sym);
c906108c
SS
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1448 return t;
c906108c 1449
7ba81444
MS
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
c906108c
SS
1453}
1454
c906108c
SS
1455/* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458struct type *
270140bd 1459lookup_enum (const char *name, const struct block *block)
c906108c 1460{
52f0bd74 1461 struct symbol *sym;
c906108c 1462
2570f2b7 1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1464 if (sym == NULL)
1465 {
8a3fe4f8 1466 error (_("No enum type named %s."), name);
c906108c
SS
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
7ba81444
MS
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
c906108c
SS
1472 }
1473 return (SYMBOL_TYPE (sym));
1474}
1475
1476/* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479struct type *
7ba81444 1480lookup_template_type (char *name, struct type *type,
270140bd 1481 const struct block *block)
c906108c
SS
1482{
1483 struct symbol *sym;
7ba81444
MS
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1486
c906108c
SS
1487 strcpy (nam, name);
1488 strcat (nam, "<");
0004e5a2 1489 strcat (nam, TYPE_NAME (type));
0963b4bd 1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1491
2570f2b7 1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1493
1494 if (sym == NULL)
1495 {
8a3fe4f8 1496 error (_("No template type named %s."), name);
c906108c
SS
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
7ba81444
MS
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
c906108c
SS
1502 }
1503 return (SYMBOL_TYPE (sym));
1504}
1505
7ba81444
MS
1506/* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
c906108c 1508
7ba81444
MS
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518struct type *
d7561cbb 1519lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1520{
1521 int i;
fe978cb0 1522 char *type_name;
c906108c
SS
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
687d6395
MS
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1535 {
fe978cb0
PA
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
c906108c
SS
1539 }
1540
1541#if 0
7ba81444
MS
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
0963b4bd 1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1545 foo; } bell;" Disabled by fnf. */
c906108c 1546 {
fe978cb0 1547 char *type_name;
c906108c 1548
fe978cb0
PA
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1551 return type;
1552 }
1553#endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
0d5cff50 1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1558
db577aea 1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
f5a010c0
PM
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
d8734c88
MS
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
f5a010c0
PM
1568 if (subtype != NULL)
1569 return subtype;
1570 }
c906108c
SS
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
9733fc94 1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
c5aa993b 1589
fe978cb0
PA
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
c906108c
SS
1593}
1594
ed3ef339
DE
1595/* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598void
1599get_unsigned_type_max (struct type *type, ULONGEST *max)
1600{
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610}
1611
1612/* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615void
1616get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617{
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627}
1628
ae6ae975
DE
1629/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636int
1637internal_type_vptr_fieldno (struct type *type)
1638{
0def5aaa 1639 CHECK_TYPEDEF (type);
ae6ae975
DE
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645}
1646
1647/* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649void
1650set_type_vptr_fieldno (struct type *type, int fieldno)
1651{
0def5aaa 1652 CHECK_TYPEDEF (type);
ae6ae975
DE
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658}
1659
1660/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663struct type *
1664internal_type_vptr_basetype (struct type *type)
1665{
0def5aaa 1666 CHECK_TYPEDEF (type);
ae6ae975
DE
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671}
1672
1673/* Set the value of cplus_stuff.vptr_basetype. */
1674
1675void
1676set_type_vptr_basetype (struct type *type, struct type *basetype)
1677{
0def5aaa 1678 CHECK_TYPEDEF (type);
ae6ae975
DE
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684}
1685
81fe8080
DE
1686/* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
c906108c 1692 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
7ba81444 1695 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1696 vptr_basetype will remain NULL or incomplete. */
c906108c 1697
81fe8080
DE
1698int
1699get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1700{
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
7ba81444
MS
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
81fe8080
DE
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
c906108c 1717 {
81fe8080 1718 /* If the type comes from a different objfile we can't cache
0963b4bd 1719 it, it may have a different lifetime. PR 2384 */
5ef73790 1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1721 {
ae6ae975
DE
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
c906108c
SS
1728 }
1729 }
81fe8080
DE
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1739 }
1740}
1741
44e1a9eb
DJ
1742static void
1743stub_noname_complaint (void)
1744{
e2e0b3e5 1745 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1746}
1747
d98b7a16 1748/* Worker for is_dynamic_type. */
80180f79 1749
d98b7a16
TT
1750static int
1751is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1752{
1753 type = check_typedef (type);
1754
d98b7a16
TT
1755 /* We only want to recognize references at the outermost level. */
1756 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1757 type = check_typedef (TYPE_TARGET_TYPE (type));
1758
3cdcd0ce
JB
1759 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1760 dynamic, even if the type itself is statically defined.
1761 From a user's point of view, this may appear counter-intuitive;
1762 but it makes sense in this context, because the point is to determine
1763 whether any part of the type needs to be resolved before it can
1764 be exploited. */
1765 if (TYPE_DATA_LOCATION (type) != NULL
1766 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1767 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1768 return 1;
1769
80180f79
SA
1770 switch (TYPE_CODE (type))
1771 {
6f8a3220 1772 case TYPE_CODE_RANGE:
ddb87a81
JB
1773 {
1774 /* A range type is obviously dynamic if it has at least one
1775 dynamic bound. But also consider the range type to be
1776 dynamic when its subtype is dynamic, even if the bounds
1777 of the range type are static. It allows us to assume that
1778 the subtype of a static range type is also static. */
1779 return (!has_static_range (TYPE_RANGE_DATA (type))
1780 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1781 }
6f8a3220 1782
80180f79
SA
1783 case TYPE_CODE_ARRAY:
1784 {
80180f79 1785 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1786
1787 /* The array is dynamic if either the bounds are dynamic,
1788 or the elements it contains have a dynamic contents. */
d98b7a16 1789 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1790 return 1;
d98b7a16 1791 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1792 }
012370f6
TT
1793
1794 case TYPE_CODE_STRUCT:
1795 case TYPE_CODE_UNION:
1796 {
1797 int i;
1798
1799 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1800 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1801 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1802 return 1;
1803 }
1804 break;
80180f79 1805 }
92e2a17f
TT
1806
1807 return 0;
80180f79
SA
1808}
1809
d98b7a16
TT
1810/* See gdbtypes.h. */
1811
1812int
1813is_dynamic_type (struct type *type)
1814{
1815 return is_dynamic_type_internal (type, 1);
1816}
1817
df25ebbd
JB
1818static struct type *resolve_dynamic_type_internal
1819 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1820
df25ebbd
JB
1821/* Given a dynamic range type (dyn_range_type) and a stack of
1822 struct property_addr_info elements, return a static version
1823 of that type. */
d190df30 1824
80180f79 1825static struct type *
df25ebbd
JB
1826resolve_dynamic_range (struct type *dyn_range_type,
1827 struct property_addr_info *addr_stack)
80180f79
SA
1828{
1829 CORE_ADDR value;
ddb87a81 1830 struct type *static_range_type, *static_target_type;
80180f79
SA
1831 const struct dynamic_prop *prop;
1832 const struct dwarf2_locexpr_baton *baton;
1833 struct dynamic_prop low_bound, high_bound;
1834
6f8a3220 1835 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1836
6f8a3220 1837 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
df25ebbd 1838 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1839 {
1840 low_bound.kind = PROP_CONST;
1841 low_bound.data.const_val = value;
1842 }
1843 else
1844 {
1845 low_bound.kind = PROP_UNDEFINED;
1846 low_bound.data.const_val = 0;
1847 }
1848
6f8a3220 1849 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
df25ebbd 1850 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1851 {
1852 high_bound.kind = PROP_CONST;
1853 high_bound.data.const_val = value;
c451ebe5 1854
6f8a3220 1855 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1856 high_bound.data.const_val
1857 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1858 }
1859 else
1860 {
1861 high_bound.kind = PROP_UNDEFINED;
1862 high_bound.data.const_val = 0;
1863 }
1864
ddb87a81
JB
1865 static_target_type
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
df25ebbd 1867 addr_stack, 0);
6f8a3220 1868 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1869 static_target_type,
6f8a3220
JB
1870 &low_bound, &high_bound);
1871 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1872 return static_range_type;
1873}
1874
1875/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1876 ADDR_STACK is a stack of struct property_addr_info to be used
1877 if needed during the dynamic resolution. */
6f8a3220
JB
1878
1879static struct type *
df25ebbd
JB
1880resolve_dynamic_array (struct type *type,
1881 struct property_addr_info *addr_stack)
6f8a3220
JB
1882{
1883 CORE_ADDR value;
1884 struct type *elt_type;
1885 struct type *range_type;
1886 struct type *ary_dim;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1889
1890 elt_type = type;
1891 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1892 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1893
80180f79
SA
1894 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1895
1896 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
df25ebbd 1897 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
80180f79
SA
1898 else
1899 elt_type = TYPE_TARGET_TYPE (type);
1900
80180f79
SA
1901 return create_array_type (copy_type (type),
1902 elt_type,
1903 range_type);
1904}
1905
012370f6 1906/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
1907 bounds. ADDR_STACK is a stack of struct property_addr_info
1908 to be used if needed during the dynamic resolution. */
012370f6
TT
1909
1910static struct type *
df25ebbd
JB
1911resolve_dynamic_union (struct type *type,
1912 struct property_addr_info *addr_stack)
012370f6
TT
1913{
1914 struct type *resolved_type;
1915 int i;
1916 unsigned int max_len = 0;
1917
1918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1919
1920 resolved_type = copy_type (type);
1921 TYPE_FIELDS (resolved_type)
1922 = TYPE_ALLOC (resolved_type,
1923 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1924 memcpy (TYPE_FIELDS (resolved_type),
1925 TYPE_FIELDS (type),
1926 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1927 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1928 {
1929 struct type *t;
1930
1931 if (field_is_static (&TYPE_FIELD (type, i)))
1932 continue;
1933
d98b7a16 1934 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
df25ebbd 1935 addr_stack, 0);
012370f6
TT
1936 TYPE_FIELD_TYPE (resolved_type, i) = t;
1937 if (TYPE_LENGTH (t) > max_len)
1938 max_len = TYPE_LENGTH (t);
1939 }
1940
1941 TYPE_LENGTH (resolved_type) = max_len;
1942 return resolved_type;
1943}
1944
1945/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
1946 bounds. ADDR_STACK is a stack of struct property_addr_info to
1947 be used if needed during the dynamic resolution. */
012370f6
TT
1948
1949static struct type *
df25ebbd
JB
1950resolve_dynamic_struct (struct type *type,
1951 struct property_addr_info *addr_stack)
012370f6
TT
1952{
1953 struct type *resolved_type;
1954 int i;
6908c509 1955 unsigned resolved_type_bit_length = 0;
012370f6
TT
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1958 gdb_assert (TYPE_NFIELDS (type) > 0);
1959
1960 resolved_type = copy_type (type);
1961 TYPE_FIELDS (resolved_type)
1962 = TYPE_ALLOC (resolved_type,
1963 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1964 memcpy (TYPE_FIELDS (resolved_type),
1965 TYPE_FIELDS (type),
1966 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1967 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1968 {
6908c509 1969 unsigned new_bit_length;
df25ebbd 1970 struct property_addr_info pinfo;
012370f6
TT
1971
1972 if (field_is_static (&TYPE_FIELD (type, i)))
1973 continue;
1974
6908c509
JB
1975 /* As we know this field is not a static field, the field's
1976 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1977 this is the case, but only trigger a simple error rather
1978 than an internal error if that fails. While failing
1979 that verification indicates a bug in our code, the error
1980 is not severe enough to suggest to the user he stops
1981 his debugging session because of it. */
df25ebbd 1982 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
1983 error (_("Cannot determine struct field location"
1984 " (invalid location kind)"));
df25ebbd
JB
1985
1986 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1987 pinfo.addr = addr_stack->addr;
1988 pinfo.next = addr_stack;
1989
1990 TYPE_FIELD_TYPE (resolved_type, i)
1991 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1992 &pinfo, 0);
1993 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1994 == FIELD_LOC_KIND_BITPOS);
1995
6908c509
JB
1996 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1997 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1998 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1999 else
2000 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2001 * TARGET_CHAR_BIT);
2002
2003 /* Normally, we would use the position and size of the last field
2004 to determine the size of the enclosing structure. But GCC seems
2005 to be encoding the position of some fields incorrectly when
2006 the struct contains a dynamic field that is not placed last.
2007 So we compute the struct size based on the field that has
2008 the highest position + size - probably the best we can do. */
2009 if (new_bit_length > resolved_type_bit_length)
2010 resolved_type_bit_length = new_bit_length;
012370f6
TT
2011 }
2012
012370f6 2013 TYPE_LENGTH (resolved_type)
6908c509
JB
2014 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2015
012370f6
TT
2016 return resolved_type;
2017}
2018
d98b7a16 2019/* Worker for resolved_dynamic_type. */
80180f79 2020
d98b7a16 2021static struct type *
df25ebbd
JB
2022resolve_dynamic_type_internal (struct type *type,
2023 struct property_addr_info *addr_stack,
d98b7a16 2024 int top_level)
80180f79
SA
2025{
2026 struct type *real_type = check_typedef (type);
6f8a3220 2027 struct type *resolved_type = type;
3cdcd0ce
JB
2028 const struct dynamic_prop *prop;
2029 CORE_ADDR value;
80180f79 2030
d98b7a16 2031 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2032 return type;
2033
5537b577 2034 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2035 {
cac9b138
JK
2036 resolved_type = copy_type (type);
2037 TYPE_TARGET_TYPE (resolved_type)
df25ebbd 2038 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
cac9b138 2039 top_level);
5537b577
JK
2040 }
2041 else
2042 {
2043 /* Before trying to resolve TYPE, make sure it is not a stub. */
2044 type = real_type;
012370f6 2045
5537b577
JK
2046 switch (TYPE_CODE (type))
2047 {
2048 case TYPE_CODE_REF:
2049 {
df25ebbd
JB
2050 struct property_addr_info pinfo;
2051
2052 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2053 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2054 pinfo.next = addr_stack;
5537b577
JK
2055
2056 resolved_type = copy_type (type);
2057 TYPE_TARGET_TYPE (resolved_type)
2058 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
df25ebbd 2059 &pinfo, top_level);
5537b577
JK
2060 break;
2061 }
2062
2063 case TYPE_CODE_ARRAY:
df25ebbd 2064 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2065 break;
2066
2067 case TYPE_CODE_RANGE:
df25ebbd 2068 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2069 break;
2070
2071 case TYPE_CODE_UNION:
df25ebbd 2072 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2073 break;
2074
2075 case TYPE_CODE_STRUCT:
df25ebbd 2076 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2077 break;
2078 }
6f8a3220 2079 }
80180f79 2080
3cdcd0ce
JB
2081 /* Resolve data_location attribute. */
2082 prop = TYPE_DATA_LOCATION (resolved_type);
df25ebbd 2083 if (dwarf2_evaluate_property (prop, addr_stack, &value))
3cdcd0ce
JB
2084 {
2085 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2086 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2087 }
2088 else
2089 TYPE_DATA_LOCATION (resolved_type) = NULL;
2090
80180f79
SA
2091 return resolved_type;
2092}
2093
d98b7a16
TT
2094/* See gdbtypes.h */
2095
2096struct type *
2097resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2098{
df25ebbd
JB
2099 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2100
2101 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2102}
2103
92163a10
JK
2104/* Find the real type of TYPE. This function returns the real type,
2105 after removing all layers of typedefs, and completing opaque or stub
2106 types. Completion changes the TYPE argument, but stripping of
2107 typedefs does not.
2108
2109 Instance flags (e.g. const/volatile) are preserved as typedefs are
2110 stripped. If necessary a new qualified form of the underlying type
2111 is created.
2112
2113 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2114 not been computed and we're either in the middle of reading symbols, or
2115 there was no name for the typedef in the debug info.
2116
9bc118a5
DE
2117 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2118 QUITs in the symbol reading code can also throw.
2119 Thus this function can throw an exception.
2120
92163a10
JK
2121 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2122 the target type.
c906108c
SS
2123
2124 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2125 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2126 definition, so we can use it in future. There used to be a comment
2127 (but not any code) that if we don't find a full definition, we'd
2128 set a flag so we don't spend time in the future checking the same
2129 type. That would be a mistake, though--we might load in more
92163a10 2130 symbols which contain a full definition for the type. */
c906108c
SS
2131
2132struct type *
a02fd225 2133check_typedef (struct type *type)
c906108c
SS
2134{
2135 struct type *orig_type = type;
92163a10
JK
2136 /* While we're removing typedefs, we don't want to lose qualifiers.
2137 E.g., const/volatile. */
2138 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2139
423c0af8
MS
2140 gdb_assert (type);
2141
c906108c
SS
2142 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2143 {
2144 if (!TYPE_TARGET_TYPE (type))
2145 {
0d5cff50 2146 const char *name;
c906108c
SS
2147 struct symbol *sym;
2148
2149 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2150 reading a symtab. Infinite recursion is one danger. */
c906108c 2151 if (currently_reading_symtab)
92163a10 2152 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2153
2154 name = type_name_no_tag (type);
7ba81444
MS
2155 /* FIXME: shouldn't we separately check the TYPE_NAME and
2156 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2157 VAR_DOMAIN as appropriate? (this code was written before
2158 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2159 if (name == NULL)
2160 {
23136709 2161 stub_noname_complaint ();
92163a10 2162 return make_qualified_type (type, instance_flags, NULL);
c906108c 2163 }
2570f2b7 2164 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
2165 if (sym)
2166 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2167 else /* TYPE_CODE_UNDEF */
e9bb382b 2168 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2169 }
2170 type = TYPE_TARGET_TYPE (type);
c906108c 2171
92163a10
JK
2172 /* Preserve the instance flags as we traverse down the typedef chain.
2173
2174 Handling address spaces/classes is nasty, what do we do if there's a
2175 conflict?
2176 E.g., what if an outer typedef marks the type as class_1 and an inner
2177 typedef marks the type as class_2?
2178 This is the wrong place to do such error checking. We leave it to
2179 the code that created the typedef in the first place to flag the
2180 error. We just pick the outer address space (akin to letting the
2181 outer cast in a chain of casting win), instead of assuming
2182 "it can't happen". */
2183 {
2184 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2185 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2186 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2187 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2188
2189 /* Treat code vs data spaces and address classes separately. */
2190 if ((instance_flags & ALL_SPACES) != 0)
2191 new_instance_flags &= ~ALL_SPACES;
2192 if ((instance_flags & ALL_CLASSES) != 0)
2193 new_instance_flags &= ~ALL_CLASSES;
2194
2195 instance_flags |= new_instance_flags;
2196 }
2197 }
a02fd225 2198
7ba81444
MS
2199 /* If this is a struct/class/union with no fields, then check
2200 whether a full definition exists somewhere else. This is for
2201 systems where a type definition with no fields is issued for such
2202 types, instead of identifying them as stub types in the first
2203 place. */
c5aa993b 2204
7ba81444
MS
2205 if (TYPE_IS_OPAQUE (type)
2206 && opaque_type_resolution
2207 && !currently_reading_symtab)
c906108c 2208 {
0d5cff50 2209 const char *name = type_name_no_tag (type);
c5aa993b 2210 struct type *newtype;
d8734c88 2211
c906108c
SS
2212 if (name == NULL)
2213 {
23136709 2214 stub_noname_complaint ();
92163a10 2215 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2216 }
2217 newtype = lookup_transparent_type (name);
ad766c0a 2218
c906108c 2219 if (newtype)
ad766c0a 2220 {
7ba81444
MS
2221 /* If the resolved type and the stub are in the same
2222 objfile, then replace the stub type with the real deal.
2223 But if they're in separate objfiles, leave the stub
2224 alone; we'll just look up the transparent type every time
2225 we call check_typedef. We can't create pointers between
2226 types allocated to different objfiles, since they may
2227 have different lifetimes. Trying to copy NEWTYPE over to
2228 TYPE's objfile is pointless, too, since you'll have to
2229 move over any other types NEWTYPE refers to, which could
2230 be an unbounded amount of stuff. */
ad766c0a 2231 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2232 type = make_qualified_type (newtype,
2233 TYPE_INSTANCE_FLAGS (type),
2234 type);
ad766c0a
JB
2235 else
2236 type = newtype;
2237 }
c906108c 2238 }
7ba81444
MS
2239 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2240 types. */
74a9bb82 2241 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2242 {
0d5cff50 2243 const char *name = type_name_no_tag (type);
c906108c 2244 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2245 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2246 as appropriate? (this code was written before TYPE_NAME and
2247 TYPE_TAG_NAME were separate). */
c906108c 2248 struct symbol *sym;
d8734c88 2249
c906108c
SS
2250 if (name == NULL)
2251 {
23136709 2252 stub_noname_complaint ();
92163a10 2253 return make_qualified_type (type, instance_flags, NULL);
c906108c 2254 }
2570f2b7 2255 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2256 if (sym)
c26f2453
JB
2257 {
2258 /* Same as above for opaque types, we can replace the stub
92163a10 2259 with the complete type only if they are in the same
c26f2453
JB
2260 objfile. */
2261 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2262 type = make_qualified_type (SYMBOL_TYPE (sym),
2263 TYPE_INSTANCE_FLAGS (type),
2264 type);
c26f2453
JB
2265 else
2266 type = SYMBOL_TYPE (sym);
2267 }
c906108c
SS
2268 }
2269
74a9bb82 2270 if (TYPE_TARGET_STUB (type))
c906108c
SS
2271 {
2272 struct type *range_type;
2273 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2274
74a9bb82 2275 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2276 {
73e2eb35 2277 /* Nothing we can do. */
c5aa993b 2278 }
c906108c
SS
2279 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2280 {
2281 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2282 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2283 }
2284 }
92163a10
JK
2285
2286 type = make_qualified_type (type, instance_flags, NULL);
2287
7ba81444 2288 /* Cache TYPE_LENGTH for future use. */
c906108c 2289 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2290
c906108c
SS
2291 return type;
2292}
2293
7ba81444 2294/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2295 occurs, silently return a void type. */
c91ecb25 2296
b9362cc7 2297static struct type *
48319d1f 2298safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2299{
2300 struct ui_file *saved_gdb_stderr;
34365054 2301 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2302
7ba81444 2303 /* Suppress error messages. */
c91ecb25
ND
2304 saved_gdb_stderr = gdb_stderr;
2305 gdb_stderr = ui_file_new ();
2306
7ba81444 2307 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2308 TRY
8e7b59a5
KS
2309 {
2310 type = parse_and_eval_type (p, length);
2311 }
2312
492d29ea
PA
2313 CATCH (except, RETURN_MASK_ERROR)
2314 {
2315 type = builtin_type (gdbarch)->builtin_void;
2316 }
2317 END_CATCH
c91ecb25 2318
7ba81444 2319 /* Stop suppressing error messages. */
c91ecb25
ND
2320 ui_file_delete (gdb_stderr);
2321 gdb_stderr = saved_gdb_stderr;
2322
2323 return type;
2324}
2325
c906108c
SS
2326/* Ugly hack to convert method stubs into method types.
2327
7ba81444
MS
2328 He ain't kiddin'. This demangles the name of the method into a
2329 string including argument types, parses out each argument type,
2330 generates a string casting a zero to that type, evaluates the
2331 string, and stuffs the resulting type into an argtype vector!!!
2332 Then it knows the type of the whole function (including argument
2333 types for overloading), which info used to be in the stab's but was
2334 removed to hack back the space required for them. */
c906108c 2335
de17c821 2336static void
fba45db2 2337check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2338{
50810684 2339 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2340 struct fn_field *f;
2341 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2342 char *demangled_name = gdb_demangle (mangled_name,
2343 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2344 char *argtypetext, *p;
2345 int depth = 0, argcount = 1;
ad2f7632 2346 struct field *argtypes;
c906108c
SS
2347 struct type *mtype;
2348
2349 /* Make sure we got back a function string that we can use. */
2350 if (demangled_name)
2351 p = strchr (demangled_name, '(');
502dcf4e
AC
2352 else
2353 p = NULL;
c906108c
SS
2354
2355 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2356 error (_("Internal: Cannot demangle mangled name `%s'."),
2357 mangled_name);
c906108c
SS
2358
2359 /* Now, read in the parameters that define this type. */
2360 p += 1;
2361 argtypetext = p;
2362 while (*p)
2363 {
070ad9f0 2364 if (*p == '(' || *p == '<')
c906108c
SS
2365 {
2366 depth += 1;
2367 }
070ad9f0 2368 else if (*p == ')' || *p == '>')
c906108c
SS
2369 {
2370 depth -= 1;
2371 }
2372 else if (*p == ',' && depth == 0)
2373 {
2374 argcount += 1;
2375 }
2376
2377 p += 1;
2378 }
2379
ad2f7632 2380 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2381 if (startswith (argtypetext, "(void)"))
ad2f7632 2382 argcount -= 1;
c906108c 2383
ad2f7632
DJ
2384 /* We need one extra slot, for the THIS pointer. */
2385
2386 argtypes = (struct field *)
2387 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2388 p = argtypetext;
4a1970e4
DJ
2389
2390 /* Add THIS pointer for non-static methods. */
2391 f = TYPE_FN_FIELDLIST1 (type, method_id);
2392 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2393 argcount = 0;
2394 else
2395 {
ad2f7632 2396 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2397 argcount = 1;
2398 }
c906108c 2399
0963b4bd 2400 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2401 {
2402 depth = 0;
2403 while (*p)
2404 {
2405 if (depth <= 0 && (*p == ',' || *p == ')'))
2406 {
ad2f7632
DJ
2407 /* Avoid parsing of ellipsis, they will be handled below.
2408 Also avoid ``void'' as above. */
2409 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2410 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2411 {
ad2f7632 2412 argtypes[argcount].type =
48319d1f 2413 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2414 argcount += 1;
2415 }
2416 argtypetext = p + 1;
2417 }
2418
070ad9f0 2419 if (*p == '(' || *p == '<')
c906108c
SS
2420 {
2421 depth += 1;
2422 }
070ad9f0 2423 else if (*p == ')' || *p == '>')
c906108c
SS
2424 {
2425 depth -= 1;
2426 }
2427
2428 p += 1;
2429 }
2430 }
2431
c906108c
SS
2432 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2433
2434 /* Now update the old "stub" type into a real type. */
2435 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2436 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2437 We want a method (TYPE_CODE_METHOD). */
2438 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2439 argtypes, argcount, p[-2] == '.');
876cecd0 2440 TYPE_STUB (mtype) = 0;
c906108c 2441 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2442
2443 xfree (demangled_name);
c906108c
SS
2444}
2445
7ba81444
MS
2446/* This is the external interface to check_stub_method, above. This
2447 function unstubs all of the signatures for TYPE's METHOD_ID method
2448 name. After calling this function TYPE_FN_FIELD_STUB will be
2449 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2450 correct.
de17c821
DJ
2451
2452 This function unfortunately can not die until stabs do. */
2453
2454void
2455check_stub_method_group (struct type *type, int method_id)
2456{
2457 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2458 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2459 int j, found_stub = 0;
de17c821
DJ
2460
2461 for (j = 0; j < len; j++)
2462 if (TYPE_FN_FIELD_STUB (f, j))
2463 {
2464 found_stub = 1;
2465 check_stub_method (type, method_id, j);
2466 }
2467
7ba81444
MS
2468 /* GNU v3 methods with incorrect names were corrected when we read
2469 in type information, because it was cheaper to do it then. The
2470 only GNU v2 methods with incorrect method names are operators and
2471 destructors; destructors were also corrected when we read in type
2472 information.
de17c821
DJ
2473
2474 Therefore the only thing we need to handle here are v2 operator
2475 names. */
61012eef 2476 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2477 {
2478 int ret;
2479 char dem_opname[256];
2480
7ba81444
MS
2481 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2482 method_id),
de17c821
DJ
2483 dem_opname, DMGL_ANSI);
2484 if (!ret)
7ba81444
MS
2485 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2486 method_id),
de17c821
DJ
2487 dem_opname, 0);
2488 if (ret)
2489 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2490 }
2491}
2492
9655fd1a
JK
2493/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2494const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2495
2496void
fba45db2 2497allocate_cplus_struct_type (struct type *type)
c906108c 2498{
b4ba55a1
JB
2499 if (HAVE_CPLUS_STRUCT (type))
2500 /* Structure was already allocated. Nothing more to do. */
2501 return;
2502
2503 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2504 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2505 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2506 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2507 set_type_vptr_fieldno (type, -1);
c906108c
SS
2508}
2509
b4ba55a1
JB
2510const struct gnat_aux_type gnat_aux_default =
2511 { NULL };
2512
2513/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2514 and allocate the associated gnat-specific data. The gnat-specific
2515 data is also initialized to gnat_aux_default. */
5212577a 2516
b4ba55a1
JB
2517void
2518allocate_gnat_aux_type (struct type *type)
2519{
2520 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2521 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2522 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2523 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2524}
2525
c906108c
SS
2526/* Helper function to initialize the standard scalar types.
2527
86f62fd7
TT
2528 If NAME is non-NULL, then it is used to initialize the type name.
2529 Note that NAME is not copied; it is required to have a lifetime at
2530 least as long as OBJFILE. */
c906108c
SS
2531
2532struct type *
7ba81444 2533init_type (enum type_code code, int length, int flags,
748e18ae 2534 const char *name, struct objfile *objfile)
c906108c 2535{
52f0bd74 2536 struct type *type;
c906108c
SS
2537
2538 type = alloc_type (objfile);
2539 TYPE_CODE (type) = code;
2540 TYPE_LENGTH (type) = length;
876cecd0
TT
2541
2542 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2543 if (flags & TYPE_FLAG_UNSIGNED)
2544 TYPE_UNSIGNED (type) = 1;
2545 if (flags & TYPE_FLAG_NOSIGN)
2546 TYPE_NOSIGN (type) = 1;
2547 if (flags & TYPE_FLAG_STUB)
2548 TYPE_STUB (type) = 1;
2549 if (flags & TYPE_FLAG_TARGET_STUB)
2550 TYPE_TARGET_STUB (type) = 1;
2551 if (flags & TYPE_FLAG_STATIC)
2552 TYPE_STATIC (type) = 1;
2553 if (flags & TYPE_FLAG_PROTOTYPED)
2554 TYPE_PROTOTYPED (type) = 1;
2555 if (flags & TYPE_FLAG_INCOMPLETE)
2556 TYPE_INCOMPLETE (type) = 1;
2557 if (flags & TYPE_FLAG_VARARGS)
2558 TYPE_VARARGS (type) = 1;
2559 if (flags & TYPE_FLAG_VECTOR)
2560 TYPE_VECTOR (type) = 1;
2561 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2562 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2563 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2564 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2565 if (flags & TYPE_FLAG_GNU_IFUNC)
2566 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2567
86f62fd7 2568 TYPE_NAME (type) = name;
c906108c
SS
2569
2570 /* C++ fancies. */
2571
973ccf8b 2572 if (name && strcmp (name, "char") == 0)
876cecd0 2573 TYPE_NOSIGN (type) = 1;
973ccf8b 2574
b4ba55a1 2575 switch (code)
c906108c 2576 {
b4ba55a1
JB
2577 case TYPE_CODE_STRUCT:
2578 case TYPE_CODE_UNION:
2579 case TYPE_CODE_NAMESPACE:
2580 INIT_CPLUS_SPECIFIC (type);
2581 break;
2582 case TYPE_CODE_FLT:
2583 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2584 break;
2585 case TYPE_CODE_FUNC:
b6cdc2c1 2586 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2587 break;
c906108c 2588 }
c16abbde 2589 return type;
c906108c 2590}
5212577a
DE
2591\f
2592/* Queries on types. */
c906108c 2593
c906108c 2594int
fba45db2 2595can_dereference (struct type *t)
c906108c 2596{
7ba81444
MS
2597 /* FIXME: Should we return true for references as well as
2598 pointers? */
c906108c
SS
2599 CHECK_TYPEDEF (t);
2600 return
2601 (t != NULL
2602 && TYPE_CODE (t) == TYPE_CODE_PTR
2603 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2604}
2605
adf40b2e 2606int
fba45db2 2607is_integral_type (struct type *t)
adf40b2e
JM
2608{
2609 CHECK_TYPEDEF (t);
2610 return
2611 ((t != NULL)
d4f3574e
SS
2612 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2613 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2614 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2615 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2616 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2617 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2618}
2619
e09342b5
TJB
2620/* Return true if TYPE is scalar. */
2621
2622static int
2623is_scalar_type (struct type *type)
2624{
2625 CHECK_TYPEDEF (type);
2626
2627 switch (TYPE_CODE (type))
2628 {
2629 case TYPE_CODE_ARRAY:
2630 case TYPE_CODE_STRUCT:
2631 case TYPE_CODE_UNION:
2632 case TYPE_CODE_SET:
2633 case TYPE_CODE_STRING:
e09342b5
TJB
2634 return 0;
2635 default:
2636 return 1;
2637 }
2638}
2639
2640/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2641 the memory layout of a scalar type. E.g., an array or struct with only
2642 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2643
2644int
2645is_scalar_type_recursive (struct type *t)
2646{
2647 CHECK_TYPEDEF (t);
2648
2649 if (is_scalar_type (t))
2650 return 1;
2651 /* Are we dealing with an array or string of known dimensions? */
2652 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2653 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2654 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2655 {
2656 LONGEST low_bound, high_bound;
2657 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2658
2659 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2660
2661 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2662 }
2663 /* Are we dealing with a struct with one element? */
2664 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2665 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2666 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2667 {
2668 int i, n = TYPE_NFIELDS (t);
2669
2670 /* If all elements of the union are scalar, then the union is scalar. */
2671 for (i = 0; i < n; i++)
2672 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2673 return 0;
2674
2675 return 1;
2676 }
2677
2678 return 0;
2679}
2680
6c659fc2
SC
2681/* Return true is T is a class or a union. False otherwise. */
2682
2683int
2684class_or_union_p (const struct type *t)
2685{
2686 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2687 || TYPE_CODE (t) == TYPE_CODE_UNION);
2688}
2689
4e8f195d
TT
2690/* A helper function which returns true if types A and B represent the
2691 "same" class type. This is true if the types have the same main
2692 type, or the same name. */
2693
2694int
2695class_types_same_p (const struct type *a, const struct type *b)
2696{
2697 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2698 || (TYPE_NAME (a) && TYPE_NAME (b)
2699 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2700}
2701
a9d5ef47
SW
2702/* If BASE is an ancestor of DCLASS return the distance between them.
2703 otherwise return -1;
2704 eg:
2705
2706 class A {};
2707 class B: public A {};
2708 class C: public B {};
2709 class D: C {};
2710
2711 distance_to_ancestor (A, A, 0) = 0
2712 distance_to_ancestor (A, B, 0) = 1
2713 distance_to_ancestor (A, C, 0) = 2
2714 distance_to_ancestor (A, D, 0) = 3
2715
2716 If PUBLIC is 1 then only public ancestors are considered,
2717 and the function returns the distance only if BASE is a public ancestor
2718 of DCLASS.
2719 Eg:
2720
0963b4bd 2721 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2722
0526b37a 2723static int
fe978cb0 2724distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
2725{
2726 int i;
a9d5ef47 2727 int d;
c5aa993b 2728
c906108c
SS
2729 CHECK_TYPEDEF (base);
2730 CHECK_TYPEDEF (dclass);
2731
4e8f195d 2732 if (class_types_same_p (base, dclass))
a9d5ef47 2733 return 0;
c906108c
SS
2734
2735 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2736 {
fe978cb0 2737 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
2738 continue;
2739
fe978cb0 2740 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
2741 if (d >= 0)
2742 return 1 + d;
4e8f195d 2743 }
c906108c 2744
a9d5ef47 2745 return -1;
c906108c 2746}
4e8f195d 2747
0526b37a
SW
2748/* Check whether BASE is an ancestor or base class or DCLASS
2749 Return 1 if so, and 0 if not.
2750 Note: If BASE and DCLASS are of the same type, this function
2751 will return 1. So for some class A, is_ancestor (A, A) will
2752 return 1. */
2753
2754int
2755is_ancestor (struct type *base, struct type *dclass)
2756{
a9d5ef47 2757 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2758}
2759
4e8f195d
TT
2760/* Like is_ancestor, but only returns true when BASE is a public
2761 ancestor of DCLASS. */
2762
2763int
2764is_public_ancestor (struct type *base, struct type *dclass)
2765{
a9d5ef47 2766 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2767}
2768
2769/* A helper function for is_unique_ancestor. */
2770
2771static int
2772is_unique_ancestor_worker (struct type *base, struct type *dclass,
2773 int *offset,
8af8e3bc
PA
2774 const gdb_byte *valaddr, int embedded_offset,
2775 CORE_ADDR address, struct value *val)
4e8f195d
TT
2776{
2777 int i, count = 0;
2778
2779 CHECK_TYPEDEF (base);
2780 CHECK_TYPEDEF (dclass);
2781
2782 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2783 {
8af8e3bc
PA
2784 struct type *iter;
2785 int this_offset;
4e8f195d 2786
8af8e3bc
PA
2787 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2788
2789 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2790 address, val);
4e8f195d
TT
2791
2792 if (class_types_same_p (base, iter))
2793 {
2794 /* If this is the first subclass, set *OFFSET and set count
2795 to 1. Otherwise, if this is at the same offset as
2796 previous instances, do nothing. Otherwise, increment
2797 count. */
2798 if (*offset == -1)
2799 {
2800 *offset = this_offset;
2801 count = 1;
2802 }
2803 else if (this_offset == *offset)
2804 {
2805 /* Nothing. */
2806 }
2807 else
2808 ++count;
2809 }
2810 else
2811 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2812 valaddr,
2813 embedded_offset + this_offset,
2814 address, val);
4e8f195d
TT
2815 }
2816
2817 return count;
2818}
2819
2820/* Like is_ancestor, but only returns true if BASE is a unique base
2821 class of the type of VAL. */
2822
2823int
2824is_unique_ancestor (struct type *base, struct value *val)
2825{
2826 int offset = -1;
2827
2828 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2829 value_contents_for_printing (val),
2830 value_embedded_offset (val),
2831 value_address (val), val) == 1;
4e8f195d
TT
2832}
2833
c906108c 2834\f
5212577a 2835/* Overload resolution. */
c906108c 2836
6403aeea
SW
2837/* Return the sum of the rank of A with the rank of B. */
2838
2839struct rank
2840sum_ranks (struct rank a, struct rank b)
2841{
2842 struct rank c;
2843 c.rank = a.rank + b.rank;
a9d5ef47 2844 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2845 return c;
2846}
2847
2848/* Compare rank A and B and return:
2849 0 if a = b
2850 1 if a is better than b
2851 -1 if b is better than a. */
2852
2853int
2854compare_ranks (struct rank a, struct rank b)
2855{
2856 if (a.rank == b.rank)
a9d5ef47
SW
2857 {
2858 if (a.subrank == b.subrank)
2859 return 0;
2860 if (a.subrank < b.subrank)
2861 return 1;
2862 if (a.subrank > b.subrank)
2863 return -1;
2864 }
6403aeea
SW
2865
2866 if (a.rank < b.rank)
2867 return 1;
2868
0963b4bd 2869 /* a.rank > b.rank */
6403aeea
SW
2870 return -1;
2871}
c5aa993b 2872
0963b4bd 2873/* Functions for overload resolution begin here. */
c906108c
SS
2874
2875/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2876 0 => A and B are identical
2877 1 => A and B are incomparable
2878 2 => A is better than B
2879 3 => A is worse than B */
c906108c
SS
2880
2881int
fba45db2 2882compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2883{
2884 int i;
2885 int tmp;
c5aa993b
JM
2886 short found_pos = 0; /* any positives in c? */
2887 short found_neg = 0; /* any negatives in c? */
2888
2889 /* differing lengths => incomparable */
c906108c
SS
2890 if (a->length != b->length)
2891 return 1;
2892
c5aa993b
JM
2893 /* Subtract b from a */
2894 for (i = 0; i < a->length; i++)
c906108c 2895 {
6403aeea 2896 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2897 if (tmp > 0)
c5aa993b 2898 found_pos = 1;
c906108c 2899 else if (tmp < 0)
c5aa993b 2900 found_neg = 1;
c906108c
SS
2901 }
2902
2903 if (found_pos)
2904 {
2905 if (found_neg)
c5aa993b 2906 return 1; /* incomparable */
c906108c 2907 else
c5aa993b 2908 return 3; /* A > B */
c906108c 2909 }
c5aa993b
JM
2910 else
2911 /* no positives */
c906108c
SS
2912 {
2913 if (found_neg)
c5aa993b 2914 return 2; /* A < B */
c906108c 2915 else
c5aa993b 2916 return 0; /* A == B */
c906108c
SS
2917 }
2918}
2919
7ba81444
MS
2920/* Rank a function by comparing its parameter types (PARMS, length
2921 NPARMS), to the types of an argument list (ARGS, length NARGS).
2922 Return a pointer to a badness vector. This has NARGS + 1
2923 entries. */
c906108c
SS
2924
2925struct badness_vector *
7ba81444 2926rank_function (struct type **parms, int nparms,
da096638 2927 struct value **args, int nargs)
c906108c
SS
2928{
2929 int i;
c5aa993b 2930 struct badness_vector *bv;
c906108c
SS
2931 int min_len = nparms < nargs ? nparms : nargs;
2932
2933 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2934 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2935 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2936
2937 /* First compare the lengths of the supplied lists.
7ba81444 2938 If there is a mismatch, set it to a high value. */
c5aa993b 2939
c906108c 2940 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2941 arguments and ellipsis parameter lists, we should consider those
2942 and rank the length-match more finely. */
c906108c 2943
6403aeea
SW
2944 LENGTH_MATCH (bv) = (nargs != nparms)
2945 ? LENGTH_MISMATCH_BADNESS
2946 : EXACT_MATCH_BADNESS;
c906108c 2947
0963b4bd 2948 /* Now rank all the parameters of the candidate function. */
74cc24b0 2949 for (i = 1; i <= min_len; i++)
da096638
KS
2950 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2951 args[i - 1]);
c906108c 2952
0963b4bd 2953 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2954 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2955 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2956
2957 return bv;
2958}
2959
973ccf8b
DJ
2960/* Compare the names of two integer types, assuming that any sign
2961 qualifiers have been checked already. We do it this way because
2962 there may be an "int" in the name of one of the types. */
2963
2964static int
2965integer_types_same_name_p (const char *first, const char *second)
2966{
2967 int first_p, second_p;
2968
7ba81444
MS
2969 /* If both are shorts, return 1; if neither is a short, keep
2970 checking. */
973ccf8b
DJ
2971 first_p = (strstr (first, "short") != NULL);
2972 second_p = (strstr (second, "short") != NULL);
2973 if (first_p && second_p)
2974 return 1;
2975 if (first_p || second_p)
2976 return 0;
2977
2978 /* Likewise for long. */
2979 first_p = (strstr (first, "long") != NULL);
2980 second_p = (strstr (second, "long") != NULL);
2981 if (first_p && second_p)
2982 return 1;
2983 if (first_p || second_p)
2984 return 0;
2985
2986 /* Likewise for char. */
2987 first_p = (strstr (first, "char") != NULL);
2988 second_p = (strstr (second, "char") != NULL);
2989 if (first_p && second_p)
2990 return 1;
2991 if (first_p || second_p)
2992 return 0;
2993
2994 /* They must both be ints. */
2995 return 1;
2996}
2997
7062b0a0
SW
2998/* Compares type A to type B returns 1 if the represent the same type
2999 0 otherwise. */
3000
bd69fc68 3001int
7062b0a0
SW
3002types_equal (struct type *a, struct type *b)
3003{
3004 /* Identical type pointers. */
3005 /* However, this still doesn't catch all cases of same type for b
3006 and a. The reason is that builtin types are different from
3007 the same ones constructed from the object. */
3008 if (a == b)
3009 return 1;
3010
3011 /* Resolve typedefs */
3012 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3013 a = check_typedef (a);
3014 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3015 b = check_typedef (b);
3016
3017 /* If after resolving typedefs a and b are not of the same type
3018 code then they are not equal. */
3019 if (TYPE_CODE (a) != TYPE_CODE (b))
3020 return 0;
3021
3022 /* If a and b are both pointers types or both reference types then
3023 they are equal of the same type iff the objects they refer to are
3024 of the same type. */
3025 if (TYPE_CODE (a) == TYPE_CODE_PTR
3026 || TYPE_CODE (a) == TYPE_CODE_REF)
3027 return types_equal (TYPE_TARGET_TYPE (a),
3028 TYPE_TARGET_TYPE (b));
3029
0963b4bd 3030 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3031 are exactly the same. This happens when we generate method
3032 stubs. The types won't point to the same address, but they
0963b4bd 3033 really are the same. */
7062b0a0
SW
3034
3035 if (TYPE_NAME (a) && TYPE_NAME (b)
3036 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3037 return 1;
3038
3039 /* Check if identical after resolving typedefs. */
3040 if (a == b)
3041 return 1;
3042
9ce98649
TT
3043 /* Two function types are equal if their argument and return types
3044 are equal. */
3045 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3046 {
3047 int i;
3048
3049 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3050 return 0;
3051
3052 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3053 return 0;
3054
3055 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3056 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3057 return 0;
3058
3059 return 1;
3060 }
3061
7062b0a0
SW
3062 return 0;
3063}
ca092b61
DE
3064\f
3065/* Deep comparison of types. */
3066
3067/* An entry in the type-equality bcache. */
3068
3069typedef struct type_equality_entry
3070{
3071 struct type *type1, *type2;
3072} type_equality_entry_d;
3073
3074DEF_VEC_O (type_equality_entry_d);
3075
3076/* A helper function to compare two strings. Returns 1 if they are
3077 the same, 0 otherwise. Handles NULLs properly. */
3078
3079static int
3080compare_maybe_null_strings (const char *s, const char *t)
3081{
3082 if (s == NULL && t != NULL)
3083 return 0;
3084 else if (s != NULL && t == NULL)
3085 return 0;
3086 else if (s == NULL && t== NULL)
3087 return 1;
3088 return strcmp (s, t) == 0;
3089}
3090
3091/* A helper function for check_types_worklist that checks two types for
3092 "deep" equality. Returns non-zero if the types are considered the
3093 same, zero otherwise. */
3094
3095static int
3096check_types_equal (struct type *type1, struct type *type2,
3097 VEC (type_equality_entry_d) **worklist)
3098{
3099 CHECK_TYPEDEF (type1);
3100 CHECK_TYPEDEF (type2);
3101
3102 if (type1 == type2)
3103 return 1;
3104
3105 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3106 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3107 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3108 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3109 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3110 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3111 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3112 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3113 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3114 return 0;
3115
3116 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3117 TYPE_TAG_NAME (type2)))
3118 return 0;
3119 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3120 return 0;
3121
3122 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3123 {
3124 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3125 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3126 return 0;
3127 }
3128 else
3129 {
3130 int i;
3131
3132 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3133 {
3134 const struct field *field1 = &TYPE_FIELD (type1, i);
3135 const struct field *field2 = &TYPE_FIELD (type2, i);
3136 struct type_equality_entry entry;
3137
3138 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3139 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3140 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3141 return 0;
3142 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3143 FIELD_NAME (*field2)))
3144 return 0;
3145 switch (FIELD_LOC_KIND (*field1))
3146 {
3147 case FIELD_LOC_KIND_BITPOS:
3148 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3149 return 0;
3150 break;
3151 case FIELD_LOC_KIND_ENUMVAL:
3152 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3153 return 0;
3154 break;
3155 case FIELD_LOC_KIND_PHYSADDR:
3156 if (FIELD_STATIC_PHYSADDR (*field1)
3157 != FIELD_STATIC_PHYSADDR (*field2))
3158 return 0;
3159 break;
3160 case FIELD_LOC_KIND_PHYSNAME:
3161 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3162 FIELD_STATIC_PHYSNAME (*field2)))
3163 return 0;
3164 break;
3165 case FIELD_LOC_KIND_DWARF_BLOCK:
3166 {
3167 struct dwarf2_locexpr_baton *block1, *block2;
3168
3169 block1 = FIELD_DWARF_BLOCK (*field1);
3170 block2 = FIELD_DWARF_BLOCK (*field2);
3171 if (block1->per_cu != block2->per_cu
3172 || block1->size != block2->size
3173 || memcmp (block1->data, block2->data, block1->size) != 0)
3174 return 0;
3175 }
3176 break;
3177 default:
3178 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3179 "%d by check_types_equal"),
3180 FIELD_LOC_KIND (*field1));
3181 }
3182
3183 entry.type1 = FIELD_TYPE (*field1);
3184 entry.type2 = FIELD_TYPE (*field2);
3185 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3186 }
3187 }
3188
3189 if (TYPE_TARGET_TYPE (type1) != NULL)
3190 {
3191 struct type_equality_entry entry;
3192
3193 if (TYPE_TARGET_TYPE (type2) == NULL)
3194 return 0;
3195
3196 entry.type1 = TYPE_TARGET_TYPE (type1);
3197 entry.type2 = TYPE_TARGET_TYPE (type2);
3198 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3199 }
3200 else if (TYPE_TARGET_TYPE (type2) != NULL)
3201 return 0;
3202
3203 return 1;
3204}
3205
3206/* Check types on a worklist for equality. Returns zero if any pair
3207 is not equal, non-zero if they are all considered equal. */
3208
3209static int
3210check_types_worklist (VEC (type_equality_entry_d) **worklist,
3211 struct bcache *cache)
3212{
3213 while (!VEC_empty (type_equality_entry_d, *worklist))
3214 {
3215 struct type_equality_entry entry;
3216 int added;
3217
3218 entry = *VEC_last (type_equality_entry_d, *worklist);
3219 VEC_pop (type_equality_entry_d, *worklist);
3220
3221 /* If the type pair has already been visited, we know it is
3222 ok. */
3223 bcache_full (&entry, sizeof (entry), cache, &added);
3224 if (!added)
3225 continue;
3226
3227 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3228 return 0;
3229 }
7062b0a0 3230
ca092b61
DE
3231 return 1;
3232}
3233
3234/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3235 "deep comparison". Otherwise return zero. */
3236
3237int
3238types_deeply_equal (struct type *type1, struct type *type2)
3239{
ca092b61
DE
3240 int result = 0;
3241 struct bcache *cache;
3242 VEC (type_equality_entry_d) *worklist = NULL;
3243 struct type_equality_entry entry;
3244
3245 gdb_assert (type1 != NULL && type2 != NULL);
3246
3247 /* Early exit for the simple case. */
3248 if (type1 == type2)
3249 return 1;
3250
3251 cache = bcache_xmalloc (NULL, NULL);
3252
3253 entry.type1 = type1;
3254 entry.type2 = type2;
3255 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3256
492d29ea 3257 TRY
ca092b61
DE
3258 {
3259 result = check_types_worklist (&worklist, cache);
3260 }
3261 /* check_types_worklist calls several nested helper functions,
3262 some of which can raise a GDB Exception, so we just check
3263 and rethrow here. If there is a GDB exception, a comparison
3264 is not capable (or trusted), so exit. */
3265 bcache_xfree (cache);
3266 VEC_free (type_equality_entry_d, worklist);
3267 /* Rethrow if there was a problem. */
492d29ea
PA
3268 CATCH (except, RETURN_MASK_ALL)
3269 {
3270 throw_exception (except);
3271 }
3272 END_CATCH
ca092b61
DE
3273
3274 return result;
3275}
3276\f
c906108c
SS
3277/* Compare one type (PARM) for compatibility with another (ARG).
3278 * PARM is intended to be the parameter type of a function; and
3279 * ARG is the supplied argument's type. This function tests if
3280 * the latter can be converted to the former.
da096638 3281 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3282 *
3283 * Return 0 if they are identical types;
3284 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3285 * PARM is to ARG. The higher the return value, the worse the match.
3286 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3287
6403aeea 3288struct rank
da096638 3289rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3290{
a9d5ef47 3291 struct rank rank = {0,0};
7062b0a0
SW
3292
3293 if (types_equal (parm, arg))
6403aeea 3294 return EXACT_MATCH_BADNESS;
c906108c
SS
3295
3296 /* Resolve typedefs */
3297 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3298 parm = check_typedef (parm);
3299 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3300 arg = check_typedef (arg);
3301
db577aea 3302 /* See through references, since we can almost make non-references
7ba81444 3303 references. */
db577aea 3304 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3305 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3306 REFERENCE_CONVERSION_BADNESS));
db577aea 3307 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3308 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3309 REFERENCE_CONVERSION_BADNESS));
5d161b24 3310 if (overload_debug)
7ba81444
MS
3311 /* Debugging only. */
3312 fprintf_filtered (gdb_stderr,
3313 "------ Arg is %s [%d], parm is %s [%d]\n",
3314 TYPE_NAME (arg), TYPE_CODE (arg),
3315 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3316
0963b4bd 3317 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3318
3319 switch (TYPE_CODE (parm))
3320 {
c5aa993b
JM
3321 case TYPE_CODE_PTR:
3322 switch (TYPE_CODE (arg))
3323 {
3324 case TYPE_CODE_PTR:
7062b0a0
SW
3325
3326 /* Allowed pointer conversions are:
3327 (a) pointer to void-pointer conversion. */
3328 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3329 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3330
3331 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3332 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3333 TYPE_TARGET_TYPE (arg),
3334 0);
3335 if (rank.subrank >= 0)
3336 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3337
3338 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3339 case TYPE_CODE_ARRAY:
7062b0a0
SW
3340 if (types_equal (TYPE_TARGET_TYPE (parm),
3341 TYPE_TARGET_TYPE (arg)))
6403aeea 3342 return EXACT_MATCH_BADNESS;
7062b0a0 3343 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3344 case TYPE_CODE_FUNC:
da096638 3345 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3346 case TYPE_CODE_INT:
a451cb65 3347 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3348 {
a451cb65
KS
3349 if (value_as_long (value) == 0)
3350 {
3351 /* Null pointer conversion: allow it to be cast to a pointer.
3352 [4.10.1 of C++ standard draft n3290] */
3353 return NULL_POINTER_CONVERSION_BADNESS;
3354 }
3355 else
3356 {
3357 /* If type checking is disabled, allow the conversion. */
3358 if (!strict_type_checking)
3359 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3360 }
da096638
KS
3361 }
3362 /* fall through */
c5aa993b 3363 case TYPE_CODE_ENUM:
4f2aea11 3364 case TYPE_CODE_FLAGS:
c5aa993b
JM
3365 case TYPE_CODE_CHAR:
3366 case TYPE_CODE_RANGE:
3367 case TYPE_CODE_BOOL:
c5aa993b
JM
3368 default:
3369 return INCOMPATIBLE_TYPE_BADNESS;
3370 }
3371 case TYPE_CODE_ARRAY:
3372 switch (TYPE_CODE (arg))
3373 {
3374 case TYPE_CODE_PTR:
3375 case TYPE_CODE_ARRAY:
7ba81444 3376 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3377 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3378 default:
3379 return INCOMPATIBLE_TYPE_BADNESS;
3380 }
3381 case TYPE_CODE_FUNC:
3382 switch (TYPE_CODE (arg))
3383 {
3384 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3385 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3386 default:
3387 return INCOMPATIBLE_TYPE_BADNESS;
3388 }
3389 case TYPE_CODE_INT:
3390 switch (TYPE_CODE (arg))
3391 {
3392 case TYPE_CODE_INT:
3393 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3394 {
3395 /* Deal with signed, unsigned, and plain chars and
7ba81444 3396 signed and unsigned ints. */
c5aa993b
JM
3397 if (TYPE_NOSIGN (parm))
3398 {
0963b4bd 3399 /* This case only for character types. */
7ba81444 3400 if (TYPE_NOSIGN (arg))
6403aeea 3401 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3402 else /* signed/unsigned char -> plain char */
3403 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3404 }
3405 else if (TYPE_UNSIGNED (parm))
3406 {
3407 if (TYPE_UNSIGNED (arg))
3408 {
7ba81444
MS
3409 /* unsigned int -> unsigned int, or
3410 unsigned long -> unsigned long */
3411 if (integer_types_same_name_p (TYPE_NAME (parm),
3412 TYPE_NAME (arg)))
6403aeea 3413 return EXACT_MATCH_BADNESS;
7ba81444
MS
3414 else if (integer_types_same_name_p (TYPE_NAME (arg),
3415 "int")
3416 && integer_types_same_name_p (TYPE_NAME (parm),
3417 "long"))
3e43a32a
MS
3418 /* unsigned int -> unsigned long */
3419 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3420 else
3e43a32a
MS
3421 /* unsigned long -> unsigned int */
3422 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3423 }
3424 else
3425 {
7ba81444
MS
3426 if (integer_types_same_name_p (TYPE_NAME (arg),
3427 "long")
3428 && integer_types_same_name_p (TYPE_NAME (parm),
3429 "int"))
3e43a32a
MS
3430 /* signed long -> unsigned int */
3431 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3432 else
3e43a32a
MS
3433 /* signed int/long -> unsigned int/long */
3434 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3435 }
3436 }
3437 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3438 {
7ba81444
MS
3439 if (integer_types_same_name_p (TYPE_NAME (parm),
3440 TYPE_NAME (arg)))
6403aeea 3441 return EXACT_MATCH_BADNESS;
7ba81444
MS
3442 else if (integer_types_same_name_p (TYPE_NAME (arg),
3443 "int")
3444 && integer_types_same_name_p (TYPE_NAME (parm),
3445 "long"))
c5aa993b
JM
3446 return INTEGER_PROMOTION_BADNESS;
3447 else
1c5cb38e 3448 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3449 }
3450 else
1c5cb38e 3451 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3452 }
3453 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3454 return INTEGER_PROMOTION_BADNESS;
3455 else
1c5cb38e 3456 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3457 case TYPE_CODE_ENUM:
4f2aea11 3458 case TYPE_CODE_FLAGS:
c5aa993b
JM
3459 case TYPE_CODE_CHAR:
3460 case TYPE_CODE_RANGE:
3461 case TYPE_CODE_BOOL:
3d567982
TT
3462 if (TYPE_DECLARED_CLASS (arg))
3463 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3464 return INTEGER_PROMOTION_BADNESS;
3465 case TYPE_CODE_FLT:
3466 return INT_FLOAT_CONVERSION_BADNESS;
3467 case TYPE_CODE_PTR:
3468 return NS_POINTER_CONVERSION_BADNESS;
3469 default:
3470 return INCOMPATIBLE_TYPE_BADNESS;
3471 }
3472 break;
3473 case TYPE_CODE_ENUM:
3474 switch (TYPE_CODE (arg))
3475 {
3476 case TYPE_CODE_INT:
3477 case TYPE_CODE_CHAR:
3478 case TYPE_CODE_RANGE:
3479 case TYPE_CODE_BOOL:
3480 case TYPE_CODE_ENUM:
3d567982
TT
3481 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3482 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3483 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3484 case TYPE_CODE_FLT:
3485 return INT_FLOAT_CONVERSION_BADNESS;
3486 default:
3487 return INCOMPATIBLE_TYPE_BADNESS;
3488 }
3489 break;
3490 case TYPE_CODE_CHAR:
3491 switch (TYPE_CODE (arg))
3492 {
3493 case TYPE_CODE_RANGE:
3494 case TYPE_CODE_BOOL:
3495 case TYPE_CODE_ENUM:
3d567982
TT
3496 if (TYPE_DECLARED_CLASS (arg))
3497 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3498 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3499 case TYPE_CODE_FLT:
3500 return INT_FLOAT_CONVERSION_BADNESS;
3501 case TYPE_CODE_INT:
3502 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3503 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3504 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3505 return INTEGER_PROMOTION_BADNESS;
3506 /* >>> !! else fall through !! <<< */
3507 case TYPE_CODE_CHAR:
7ba81444
MS
3508 /* Deal with signed, unsigned, and plain chars for C++ and
3509 with int cases falling through from previous case. */
c5aa993b
JM
3510 if (TYPE_NOSIGN (parm))
3511 {
3512 if (TYPE_NOSIGN (arg))
6403aeea 3513 return EXACT_MATCH_BADNESS;
c5aa993b 3514 else
1c5cb38e 3515 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3516 }
3517 else if (TYPE_UNSIGNED (parm))
3518 {
3519 if (TYPE_UNSIGNED (arg))
6403aeea 3520 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3521 else
3522 return INTEGER_PROMOTION_BADNESS;
3523 }
3524 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3525 return EXACT_MATCH_BADNESS;
c5aa993b 3526 else
1c5cb38e 3527 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3528 default:
3529 return INCOMPATIBLE_TYPE_BADNESS;
3530 }
3531 break;
3532 case TYPE_CODE_RANGE:
3533 switch (TYPE_CODE (arg))
3534 {
3535 case TYPE_CODE_INT:
3536 case TYPE_CODE_CHAR:
3537 case TYPE_CODE_RANGE:
3538 case TYPE_CODE_BOOL:
3539 case TYPE_CODE_ENUM:
1c5cb38e 3540 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3541 case TYPE_CODE_FLT:
3542 return INT_FLOAT_CONVERSION_BADNESS;
3543 default:
3544 return INCOMPATIBLE_TYPE_BADNESS;
3545 }
3546 break;
3547 case TYPE_CODE_BOOL:
3548 switch (TYPE_CODE (arg))
3549 {
5b4f6e25
KS
3550 /* n3290 draft, section 4.12.1 (conv.bool):
3551
3552 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3553 pointer to member type can be converted to a prvalue of type
3554 bool. A zero value, null pointer value, or null member pointer
3555 value is converted to false; any other value is converted to
3556 true. A prvalue of type std::nullptr_t can be converted to a
3557 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3558 case TYPE_CODE_INT:
3559 case TYPE_CODE_CHAR:
c5aa993b
JM
3560 case TYPE_CODE_ENUM:
3561 case TYPE_CODE_FLT:
5b4f6e25 3562 case TYPE_CODE_MEMBERPTR:
c5aa993b 3563 case TYPE_CODE_PTR:
5b4f6e25
KS
3564 return BOOL_CONVERSION_BADNESS;
3565 case TYPE_CODE_RANGE:
3566 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3567 case TYPE_CODE_BOOL:
6403aeea 3568 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3569 default:
3570 return INCOMPATIBLE_TYPE_BADNESS;
3571 }
3572 break;
3573 case TYPE_CODE_FLT:
3574 switch (TYPE_CODE (arg))
3575 {
3576 case TYPE_CODE_FLT:
3577 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3578 return FLOAT_PROMOTION_BADNESS;
3579 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3580 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3581 else
3582 return FLOAT_CONVERSION_BADNESS;
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_BOOL:
3585 case TYPE_CODE_ENUM:
3586 case TYPE_CODE_RANGE:
3587 case TYPE_CODE_CHAR:
3588 return INT_FLOAT_CONVERSION_BADNESS;
3589 default:
3590 return INCOMPATIBLE_TYPE_BADNESS;
3591 }
3592 break;
3593 case TYPE_CODE_COMPLEX:
3594 switch (TYPE_CODE (arg))
7ba81444 3595 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3596 case TYPE_CODE_FLT:
3597 return FLOAT_PROMOTION_BADNESS;
3598 case TYPE_CODE_COMPLEX:
6403aeea 3599 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3600 default:
3601 return INCOMPATIBLE_TYPE_BADNESS;
3602 }
3603 break;
3604 case TYPE_CODE_STRUCT:
c5aa993b
JM
3605 switch (TYPE_CODE (arg))
3606 {
3607 case TYPE_CODE_STRUCT:
3608 /* Check for derivation */
a9d5ef47
SW
3609 rank.subrank = distance_to_ancestor (parm, arg, 0);
3610 if (rank.subrank >= 0)
3611 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3612 /* else fall through */
3613 default:
3614 return INCOMPATIBLE_TYPE_BADNESS;
3615 }
3616 break;
3617 case TYPE_CODE_UNION:
3618 switch (TYPE_CODE (arg))
3619 {
3620 case TYPE_CODE_UNION:
3621 default:
3622 return INCOMPATIBLE_TYPE_BADNESS;
3623 }
3624 break;
0d5de010 3625 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3626 switch (TYPE_CODE (arg))
3627 {
3628 default:
3629 return INCOMPATIBLE_TYPE_BADNESS;
3630 }
3631 break;
3632 case TYPE_CODE_METHOD:
3633 switch (TYPE_CODE (arg))
3634 {
3635
3636 default:
3637 return INCOMPATIBLE_TYPE_BADNESS;
3638 }
3639 break;
3640 case TYPE_CODE_REF:
3641 switch (TYPE_CODE (arg))
3642 {
3643
3644 default:
3645 return INCOMPATIBLE_TYPE_BADNESS;
3646 }
3647
3648 break;
3649 case TYPE_CODE_SET:
3650 switch (TYPE_CODE (arg))
3651 {
3652 /* Not in C++ */
3653 case TYPE_CODE_SET:
7ba81444 3654 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3655 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3656 default:
3657 return INCOMPATIBLE_TYPE_BADNESS;
3658 }
3659 break;
3660 case TYPE_CODE_VOID:
3661 default:
3662 return INCOMPATIBLE_TYPE_BADNESS;
3663 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3664}
3665
0963b4bd 3666/* End of functions for overload resolution. */
5212577a
DE
3667\f
3668/* Routines to pretty-print types. */
c906108c 3669
c906108c 3670static void
fba45db2 3671print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3672{
3673 int bitno;
3674
3675 for (bitno = 0; bitno < nbits; bitno++)
3676 {
3677 if ((bitno % 8) == 0)
3678 {
3679 puts_filtered (" ");
3680 }
3681 if (B_TST (bits, bitno))
a3f17187 3682 printf_filtered (("1"));
c906108c 3683 else
a3f17187 3684 printf_filtered (("0"));
c906108c
SS
3685 }
3686}
3687
ad2f7632 3688/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3689 include it since we may get into a infinitely recursive
3690 situation. */
c906108c
SS
3691
3692static void
4c9e8482 3693print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3694{
3695 if (args != NULL)
3696 {
ad2f7632
DJ
3697 int i;
3698
3699 for (i = 0; i < nargs; i++)
4c9e8482
DE
3700 {
3701 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3702 args[i].name != NULL ? args[i].name : "<NULL>");
3703 recursive_dump_type (args[i].type, spaces + 2);
3704 }
c906108c
SS
3705 }
3706}
3707
d6a843b5
JK
3708int
3709field_is_static (struct field *f)
3710{
3711 /* "static" fields are the fields whose location is not relative
3712 to the address of the enclosing struct. It would be nice to
3713 have a dedicated flag that would be set for static fields when
3714 the type is being created. But in practice, checking the field
254e6b9e 3715 loc_kind should give us an accurate answer. */
d6a843b5
JK
3716 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3717 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3718}
3719
c906108c 3720static void
fba45db2 3721dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3722{
3723 int method_idx;
3724 int overload_idx;
3725 struct fn_field *f;
3726
3727 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3728 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3729 printf_filtered ("\n");
3730 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3731 {
3732 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3733 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3734 method_idx,
3735 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3736 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3737 gdb_stdout);
a3f17187 3738 printf_filtered (_(") length %d\n"),
c906108c
SS
3739 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3740 for (overload_idx = 0;
3741 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3742 overload_idx++)
3743 {
3744 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3745 overload_idx,
3746 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3747 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3748 gdb_stdout);
c906108c
SS
3749 printf_filtered (")\n");
3750 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3751 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3752 gdb_stdout);
c906108c
SS
3753 printf_filtered ("\n");
3754
3755 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3756 spaces + 8 + 2);
3757
3758 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3759 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3760 gdb_stdout);
c906108c 3761 printf_filtered ("\n");
4c9e8482
DE
3762 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3763 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3764 spaces + 8 + 2);
c906108c 3765 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3766 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3767 gdb_stdout);
c906108c
SS
3768 printf_filtered ("\n");
3769
3770 printfi_filtered (spaces + 8, "is_const %d\n",
3771 TYPE_FN_FIELD_CONST (f, overload_idx));
3772 printfi_filtered (spaces + 8, "is_volatile %d\n",
3773 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3774 printfi_filtered (spaces + 8, "is_private %d\n",
3775 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3776 printfi_filtered (spaces + 8, "is_protected %d\n",
3777 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3778 printfi_filtered (spaces + 8, "is_stub %d\n",
3779 TYPE_FN_FIELD_STUB (f, overload_idx));
3780 printfi_filtered (spaces + 8, "voffset %u\n",
3781 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3782 }
3783 }
3784}
3785
3786static void
fba45db2 3787print_cplus_stuff (struct type *type, int spaces)
c906108c 3788{
ae6ae975
DE
3789 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3790 printfi_filtered (spaces, "vptr_basetype ");
3791 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3792 puts_filtered ("\n");
3793 if (TYPE_VPTR_BASETYPE (type) != NULL)
3794 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3795
c906108c
SS
3796 printfi_filtered (spaces, "n_baseclasses %d\n",
3797 TYPE_N_BASECLASSES (type));
3798 printfi_filtered (spaces, "nfn_fields %d\n",
3799 TYPE_NFN_FIELDS (type));
c906108c
SS
3800 if (TYPE_N_BASECLASSES (type) > 0)
3801 {
3802 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3803 TYPE_N_BASECLASSES (type));
7ba81444
MS
3804 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3805 gdb_stdout);
c906108c
SS
3806 printf_filtered (")");
3807
3808 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3809 TYPE_N_BASECLASSES (type));
3810 puts_filtered ("\n");
3811 }
3812 if (TYPE_NFIELDS (type) > 0)
3813 {
3814 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3815 {
7ba81444
MS
3816 printfi_filtered (spaces,
3817 "private_field_bits (%d bits at *",
c906108c 3818 TYPE_NFIELDS (type));
7ba81444
MS
3819 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3820 gdb_stdout);
c906108c
SS
3821 printf_filtered (")");
3822 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3823 TYPE_NFIELDS (type));
3824 puts_filtered ("\n");
3825 }
3826 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3827 {
7ba81444
MS
3828 printfi_filtered (spaces,
3829 "protected_field_bits (%d bits at *",
c906108c 3830 TYPE_NFIELDS (type));
7ba81444
MS
3831 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3832 gdb_stdout);
c906108c
SS
3833 printf_filtered (")");
3834 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3835 TYPE_NFIELDS (type));
3836 puts_filtered ("\n");
3837 }
3838 }
3839 if (TYPE_NFN_FIELDS (type) > 0)
3840 {
3841 dump_fn_fieldlists (type, spaces);
3842 }
3843}
3844
b4ba55a1
JB
3845/* Print the contents of the TYPE's type_specific union, assuming that
3846 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3847
3848static void
3849print_gnat_stuff (struct type *type, int spaces)
3850{
3851 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3852
3853 recursive_dump_type (descriptive_type, spaces + 2);
3854}
3855
c906108c
SS
3856static struct obstack dont_print_type_obstack;
3857
3858void
fba45db2 3859recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3860{
3861 int idx;
3862
3863 if (spaces == 0)
3864 obstack_begin (&dont_print_type_obstack, 0);
3865
3866 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3867 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3868 {
3869 struct type **first_dont_print
7ba81444 3870 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3871
7ba81444
MS
3872 int i = (struct type **)
3873 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3874
3875 while (--i >= 0)
3876 {
3877 if (type == first_dont_print[i])
3878 {
3879 printfi_filtered (spaces, "type node ");
d4f3574e 3880 gdb_print_host_address (type, gdb_stdout);
a3f17187 3881 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3882 return;
3883 }
3884 }
3885
3886 obstack_ptr_grow (&dont_print_type_obstack, type);
3887 }
3888
3889 printfi_filtered (spaces, "type node ");
d4f3574e 3890 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3891 printf_filtered ("\n");
3892 printfi_filtered (spaces, "name '%s' (",
3893 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3894 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3895 printf_filtered (")\n");
e9e79dd9
FF
3896 printfi_filtered (spaces, "tagname '%s' (",
3897 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3898 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3899 printf_filtered (")\n");
c906108c
SS
3900 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3901 switch (TYPE_CODE (type))
3902 {
c5aa993b
JM
3903 case TYPE_CODE_UNDEF:
3904 printf_filtered ("(TYPE_CODE_UNDEF)");
3905 break;
3906 case TYPE_CODE_PTR:
3907 printf_filtered ("(TYPE_CODE_PTR)");
3908 break;
3909 case TYPE_CODE_ARRAY:
3910 printf_filtered ("(TYPE_CODE_ARRAY)");
3911 break;
3912 case TYPE_CODE_STRUCT:
3913 printf_filtered ("(TYPE_CODE_STRUCT)");
3914 break;
3915 case TYPE_CODE_UNION:
3916 printf_filtered ("(TYPE_CODE_UNION)");
3917 break;
3918 case TYPE_CODE_ENUM:
3919 printf_filtered ("(TYPE_CODE_ENUM)");
3920 break;
4f2aea11
MK
3921 case TYPE_CODE_FLAGS:
3922 printf_filtered ("(TYPE_CODE_FLAGS)");
3923 break;
c5aa993b
JM
3924 case TYPE_CODE_FUNC:
3925 printf_filtered ("(TYPE_CODE_FUNC)");
3926 break;
3927 case TYPE_CODE_INT:
3928 printf_filtered ("(TYPE_CODE_INT)");
3929 break;
3930 case TYPE_CODE_FLT:
3931 printf_filtered ("(TYPE_CODE_FLT)");
3932 break;
3933 case TYPE_CODE_VOID:
3934 printf_filtered ("(TYPE_CODE_VOID)");
3935 break;
3936 case TYPE_CODE_SET:
3937 printf_filtered ("(TYPE_CODE_SET)");
3938 break;
3939 case TYPE_CODE_RANGE:
3940 printf_filtered ("(TYPE_CODE_RANGE)");
3941 break;
3942 case TYPE_CODE_STRING:
3943 printf_filtered ("(TYPE_CODE_STRING)");
3944 break;
3945 case TYPE_CODE_ERROR:
3946 printf_filtered ("(TYPE_CODE_ERROR)");
3947 break;
0d5de010
DJ
3948 case TYPE_CODE_MEMBERPTR:
3949 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3950 break;
3951 case TYPE_CODE_METHODPTR:
3952 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3953 break;
3954 case TYPE_CODE_METHOD:
3955 printf_filtered ("(TYPE_CODE_METHOD)");
3956 break;
3957 case TYPE_CODE_REF:
3958 printf_filtered ("(TYPE_CODE_REF)");
3959 break;
3960 case TYPE_CODE_CHAR:
3961 printf_filtered ("(TYPE_CODE_CHAR)");
3962 break;
3963 case TYPE_CODE_BOOL:
3964 printf_filtered ("(TYPE_CODE_BOOL)");
3965 break;
e9e79dd9
FF
3966 case TYPE_CODE_COMPLEX:
3967 printf_filtered ("(TYPE_CODE_COMPLEX)");
3968 break;
c5aa993b
JM
3969 case TYPE_CODE_TYPEDEF:
3970 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3971 break;
5c4e30ca
DC
3972 case TYPE_CODE_NAMESPACE:
3973 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3974 break;
c5aa993b
JM
3975 default:
3976 printf_filtered ("(UNKNOWN TYPE CODE)");
3977 break;
c906108c
SS
3978 }
3979 puts_filtered ("\n");
3980 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3981 if (TYPE_OBJFILE_OWNED (type))
3982 {
3983 printfi_filtered (spaces, "objfile ");
3984 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3985 }
3986 else
3987 {
3988 printfi_filtered (spaces, "gdbarch ");
3989 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3990 }
c906108c
SS
3991 printf_filtered ("\n");
3992 printfi_filtered (spaces, "target_type ");
d4f3574e 3993 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3994 printf_filtered ("\n");
3995 if (TYPE_TARGET_TYPE (type) != NULL)
3996 {
3997 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3998 }
3999 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4000 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4001 printf_filtered ("\n");
4002 printfi_filtered (spaces, "reference_type ");
d4f3574e 4003 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4004 printf_filtered ("\n");
2fdde8f8
DJ
4005 printfi_filtered (spaces, "type_chain ");
4006 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4007 printf_filtered ("\n");
7ba81444
MS
4008 printfi_filtered (spaces, "instance_flags 0x%x",
4009 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4010 if (TYPE_CONST (type))
4011 {
4012 puts_filtered (" TYPE_FLAG_CONST");
4013 }
4014 if (TYPE_VOLATILE (type))
4015 {
4016 puts_filtered (" TYPE_FLAG_VOLATILE");
4017 }
4018 if (TYPE_CODE_SPACE (type))
4019 {
4020 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4021 }
4022 if (TYPE_DATA_SPACE (type))
4023 {
4024 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4025 }
8b2dbe47
KB
4026 if (TYPE_ADDRESS_CLASS_1 (type))
4027 {
4028 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4029 }
4030 if (TYPE_ADDRESS_CLASS_2 (type))
4031 {
4032 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4033 }
06d66ee9
TT
4034 if (TYPE_RESTRICT (type))
4035 {
4036 puts_filtered (" TYPE_FLAG_RESTRICT");
4037 }
a2c2acaf
MW
4038 if (TYPE_ATOMIC (type))
4039 {
4040 puts_filtered (" TYPE_FLAG_ATOMIC");
4041 }
2fdde8f8 4042 puts_filtered ("\n");
876cecd0
TT
4043
4044 printfi_filtered (spaces, "flags");
762a036f 4045 if (TYPE_UNSIGNED (type))
c906108c
SS
4046 {
4047 puts_filtered (" TYPE_FLAG_UNSIGNED");
4048 }
762a036f
FF
4049 if (TYPE_NOSIGN (type))
4050 {
4051 puts_filtered (" TYPE_FLAG_NOSIGN");
4052 }
4053 if (TYPE_STUB (type))
c906108c
SS
4054 {
4055 puts_filtered (" TYPE_FLAG_STUB");
4056 }
762a036f
FF
4057 if (TYPE_TARGET_STUB (type))
4058 {
4059 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4060 }
4061 if (TYPE_STATIC (type))
4062 {
4063 puts_filtered (" TYPE_FLAG_STATIC");
4064 }
762a036f
FF
4065 if (TYPE_PROTOTYPED (type))
4066 {
4067 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4068 }
4069 if (TYPE_INCOMPLETE (type))
4070 {
4071 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4072 }
762a036f
FF
4073 if (TYPE_VARARGS (type))
4074 {
4075 puts_filtered (" TYPE_FLAG_VARARGS");
4076 }
f5f8a009
EZ
4077 /* This is used for things like AltiVec registers on ppc. Gcc emits
4078 an attribute for the array type, which tells whether or not we
4079 have a vector, instead of a regular array. */
4080 if (TYPE_VECTOR (type))
4081 {
4082 puts_filtered (" TYPE_FLAG_VECTOR");
4083 }
876cecd0
TT
4084 if (TYPE_FIXED_INSTANCE (type))
4085 {
4086 puts_filtered (" TYPE_FIXED_INSTANCE");
4087 }
4088 if (TYPE_STUB_SUPPORTED (type))
4089 {
4090 puts_filtered (" TYPE_STUB_SUPPORTED");
4091 }
4092 if (TYPE_NOTTEXT (type))
4093 {
4094 puts_filtered (" TYPE_NOTTEXT");
4095 }
c906108c
SS
4096 puts_filtered ("\n");
4097 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4098 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4099 puts_filtered ("\n");
4100 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4101 {
14e75d8e
JK
4102 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4103 printfi_filtered (spaces + 2,
4104 "[%d] enumval %s type ",
4105 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4106 else
4107 printfi_filtered (spaces + 2,
4108 "[%d] bitpos %d bitsize %d type ",
4109 idx, TYPE_FIELD_BITPOS (type, idx),
4110 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4111 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4112 printf_filtered (" name '%s' (",
4113 TYPE_FIELD_NAME (type, idx) != NULL
4114 ? TYPE_FIELD_NAME (type, idx)
4115 : "<NULL>");
d4f3574e 4116 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4117 printf_filtered (")\n");
4118 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4119 {
4120 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4121 }
4122 }
43bbcdc2
PH
4123 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4124 {
4125 printfi_filtered (spaces, "low %s%s high %s%s\n",
4126 plongest (TYPE_LOW_BOUND (type)),
4127 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4128 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4129 TYPE_HIGH_BOUND_UNDEFINED (type)
4130 ? " (undefined)" : "");
43bbcdc2 4131 }
c906108c 4132
b4ba55a1
JB
4133 switch (TYPE_SPECIFIC_FIELD (type))
4134 {
4135 case TYPE_SPECIFIC_CPLUS_STUFF:
4136 printfi_filtered (spaces, "cplus_stuff ");
4137 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4138 gdb_stdout);
4139 puts_filtered ("\n");
4140 print_cplus_stuff (type, spaces);
4141 break;
8da61cc4 4142
b4ba55a1
JB
4143 case TYPE_SPECIFIC_GNAT_STUFF:
4144 printfi_filtered (spaces, "gnat_stuff ");
4145 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4146 puts_filtered ("\n");
4147 print_gnat_stuff (type, spaces);
4148 break;
701c159d 4149
b4ba55a1
JB
4150 case TYPE_SPECIFIC_FLOATFORMAT:
4151 printfi_filtered (spaces, "floatformat ");
4152 if (TYPE_FLOATFORMAT (type) == NULL)
4153 puts_filtered ("(null)");
4154 else
4155 {
4156 puts_filtered ("{ ");
4157 if (TYPE_FLOATFORMAT (type)[0] == NULL
4158 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4159 puts_filtered ("(null)");
4160 else
4161 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4162
4163 puts_filtered (", ");
4164 if (TYPE_FLOATFORMAT (type)[1] == NULL
4165 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4166 puts_filtered ("(null)");
4167 else
4168 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4169
4170 puts_filtered (" }");
4171 }
4172 puts_filtered ("\n");
4173 break;
c906108c 4174
b6cdc2c1 4175 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4176 printfi_filtered (spaces, "calling_convention %d\n",
4177 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4178 /* tail_call_list is not printed. */
b4ba55a1 4179 break;
09e2d7c7
DE
4180
4181 case TYPE_SPECIFIC_SELF_TYPE:
4182 printfi_filtered (spaces, "self_type ");
4183 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4184 puts_filtered ("\n");
4185 break;
c906108c 4186 }
b4ba55a1 4187
c906108c
SS
4188 if (spaces == 0)
4189 obstack_free (&dont_print_type_obstack, NULL);
4190}
5212577a 4191\f
ae5a43e0
DJ
4192/* Trivial helpers for the libiberty hash table, for mapping one
4193 type to another. */
4194
4195struct type_pair
4196{
fe978cb0 4197 struct type *old, *newobj;
ae5a43e0
DJ
4198};
4199
4200static hashval_t
4201type_pair_hash (const void *item)
4202{
4203 const struct type_pair *pair = item;
d8734c88 4204
ae5a43e0
DJ
4205 return htab_hash_pointer (pair->old);
4206}
4207
4208static int
4209type_pair_eq (const void *item_lhs, const void *item_rhs)
4210{
4211 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4212
ae5a43e0
DJ
4213 return lhs->old == rhs->old;
4214}
4215
4216/* Allocate the hash table used by copy_type_recursive to walk
4217 types without duplicates. We use OBJFILE's obstack, because
4218 OBJFILE is about to be deleted. */
4219
4220htab_t
4221create_copied_types_hash (struct objfile *objfile)
4222{
4223 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4224 NULL, &objfile->objfile_obstack,
4225 hashtab_obstack_allocate,
4226 dummy_obstack_deallocate);
4227}
4228
7ba81444
MS
4229/* Recursively copy (deep copy) TYPE, if it is associated with
4230 OBJFILE. Return a new type allocated using malloc, a saved type if
4231 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4232 not associated with OBJFILE. */
ae5a43e0
DJ
4233
4234struct type *
7ba81444
MS
4235copy_type_recursive (struct objfile *objfile,
4236 struct type *type,
ae5a43e0
DJ
4237 htab_t copied_types)
4238{
4239 struct type_pair *stored, pair;
4240 void **slot;
4241 struct type *new_type;
4242
e9bb382b 4243 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4244 return type;
4245
7ba81444
MS
4246 /* This type shouldn't be pointing to any types in other objfiles;
4247 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4248 gdb_assert (TYPE_OBJFILE (type) == objfile);
4249
4250 pair.old = type;
4251 slot = htab_find_slot (copied_types, &pair, INSERT);
4252 if (*slot != NULL)
fe978cb0 4253 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4254
e9bb382b 4255 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4256
4257 /* We must add the new type to the hash table immediately, in case
4258 we encounter this type again during a recursive call below. */
3e43a32a
MS
4259 stored
4260 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0 4261 stored->old = type;
fe978cb0 4262 stored->newobj = new_type;
ae5a43e0
DJ
4263 *slot = stored;
4264
876cecd0
TT
4265 /* Copy the common fields of types. For the main type, we simply
4266 copy the entire thing and then update specific fields as needed. */
4267 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4268 TYPE_OBJFILE_OWNED (new_type) = 0;
4269 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4270
ae5a43e0
DJ
4271 if (TYPE_NAME (type))
4272 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4273 if (TYPE_TAG_NAME (type))
4274 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4275
4276 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4277 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4278
4279 /* Copy the fields. */
ae5a43e0
DJ
4280 if (TYPE_NFIELDS (type))
4281 {
4282 int i, nfields;
4283
4284 nfields = TYPE_NFIELDS (type);
fc270c35 4285 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4286 for (i = 0; i < nfields; i++)
4287 {
7ba81444
MS
4288 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4289 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4290 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4291 if (TYPE_FIELD_TYPE (type, i))
4292 TYPE_FIELD_TYPE (new_type, i)
4293 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4294 copied_types);
4295 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4296 TYPE_FIELD_NAME (new_type, i) =
4297 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4298 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4299 {
d6a843b5
JK
4300 case FIELD_LOC_KIND_BITPOS:
4301 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4302 TYPE_FIELD_BITPOS (type, i));
4303 break;
14e75d8e
JK
4304 case FIELD_LOC_KIND_ENUMVAL:
4305 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4306 TYPE_FIELD_ENUMVAL (type, i));
4307 break;
d6a843b5
JK
4308 case FIELD_LOC_KIND_PHYSADDR:
4309 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4310 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4311 break;
4312 case FIELD_LOC_KIND_PHYSNAME:
4313 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4314 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4315 i)));
4316 break;
4317 default:
4318 internal_error (__FILE__, __LINE__,
4319 _("Unexpected type field location kind: %d"),
4320 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4321 }
4322 }
4323 }
4324
0963b4bd 4325 /* For range types, copy the bounds information. */
43bbcdc2
PH
4326 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4327 {
4328 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4329 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4330 }
4331
3cdcd0ce
JB
4332 /* Copy the data location information. */
4333 if (TYPE_DATA_LOCATION (type) != NULL)
4334 {
4335 TYPE_DATA_LOCATION (new_type)
4336 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4337 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4338 sizeof (struct dynamic_prop));
4339 }
4340
ae5a43e0
DJ
4341 /* Copy pointers to other types. */
4342 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4343 TYPE_TARGET_TYPE (new_type) =
4344 copy_type_recursive (objfile,
4345 TYPE_TARGET_TYPE (type),
4346 copied_types);
f6b3afbf 4347
ae5a43e0
DJ
4348 /* Maybe copy the type_specific bits.
4349
4350 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4351 base classes and methods. There's no fundamental reason why we
4352 can't, but at the moment it is not needed. */
4353
f6b3afbf
DE
4354 switch (TYPE_SPECIFIC_FIELD (type))
4355 {
4356 case TYPE_SPECIFIC_NONE:
4357 break;
4358 case TYPE_SPECIFIC_FUNC:
4359 INIT_FUNC_SPECIFIC (new_type);
4360 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4361 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4362 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4363 break;
4364 case TYPE_SPECIFIC_FLOATFORMAT:
4365 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4366 break;
4367 case TYPE_SPECIFIC_CPLUS_STUFF:
4368 INIT_CPLUS_SPECIFIC (new_type);
4369 break;
4370 case TYPE_SPECIFIC_GNAT_STUFF:
4371 INIT_GNAT_SPECIFIC (new_type);
4372 break;
09e2d7c7
DE
4373 case TYPE_SPECIFIC_SELF_TYPE:
4374 set_type_self_type (new_type,
4375 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4376 copied_types));
4377 break;
f6b3afbf
DE
4378 default:
4379 gdb_assert_not_reached ("bad type_specific_kind");
4380 }
ae5a43e0
DJ
4381
4382 return new_type;
4383}
4384
4af88198
JB
4385/* Make a copy of the given TYPE, except that the pointer & reference
4386 types are not preserved.
4387
4388 This function assumes that the given type has an associated objfile.
4389 This objfile is used to allocate the new type. */
4390
4391struct type *
4392copy_type (const struct type *type)
4393{
4394 struct type *new_type;
4395
e9bb382b 4396 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4397
e9bb382b 4398 new_type = alloc_type_copy (type);
4af88198
JB
4399 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4400 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4401 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4402 sizeof (struct main_type));
3cdcd0ce
JB
4403 if (TYPE_DATA_LOCATION (type) != NULL)
4404 {
4405 TYPE_DATA_LOCATION (new_type)
4406 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4407 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4408 sizeof (struct dynamic_prop));
4409 }
4af88198
JB
4410
4411 return new_type;
4412}
5212577a 4413\f
e9bb382b
UW
4414/* Helper functions to initialize architecture-specific types. */
4415
4416/* Allocate a type structure associated with GDBARCH and set its
4417 CODE, LENGTH, and NAME fields. */
5212577a 4418
e9bb382b
UW
4419struct type *
4420arch_type (struct gdbarch *gdbarch,
4421 enum type_code code, int length, char *name)
4422{
4423 struct type *type;
4424
4425 type = alloc_type_arch (gdbarch);
4426 TYPE_CODE (type) = code;
4427 TYPE_LENGTH (type) = length;
4428
4429 if (name)
4430 TYPE_NAME (type) = xstrdup (name);
4431
4432 return type;
4433}
4434
4435/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4436 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4437 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4438
e9bb382b
UW
4439struct type *
4440arch_integer_type (struct gdbarch *gdbarch,
4441 int bit, int unsigned_p, char *name)
4442{
4443 struct type *t;
4444
4445 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4446 if (unsigned_p)
4447 TYPE_UNSIGNED (t) = 1;
4448 if (name && strcmp (name, "char") == 0)
4449 TYPE_NOSIGN (t) = 1;
4450
4451 return t;
4452}
4453
4454/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4455 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4456 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4457
e9bb382b
UW
4458struct type *
4459arch_character_type (struct gdbarch *gdbarch,
4460 int bit, int unsigned_p, char *name)
4461{
4462 struct type *t;
4463
4464 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4465 if (unsigned_p)
4466 TYPE_UNSIGNED (t) = 1;
4467
4468 return t;
4469}
4470
4471/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4472 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4473 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4474
e9bb382b
UW
4475struct type *
4476arch_boolean_type (struct gdbarch *gdbarch,
4477 int bit, int unsigned_p, char *name)
4478{
4479 struct type *t;
4480
4481 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4482 if (unsigned_p)
4483 TYPE_UNSIGNED (t) = 1;
4484
4485 return t;
4486}
4487
4488/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4489 BIT is the type size in bits; if BIT equals -1, the size is
4490 determined by the floatformat. NAME is the type name. Set the
4491 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4492
27067745 4493struct type *
e9bb382b
UW
4494arch_float_type (struct gdbarch *gdbarch,
4495 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4496{
4497 struct type *t;
4498
4499 if (bit == -1)
4500 {
4501 gdb_assert (floatformats != NULL);
4502 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4503 bit = floatformats[0]->totalsize;
4504 }
4505 gdb_assert (bit >= 0);
4506
e9bb382b 4507 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4508 TYPE_FLOATFORMAT (t) = floatformats;
4509 return t;
4510}
4511
e9bb382b
UW
4512/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4513 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4514
27067745 4515struct type *
e9bb382b
UW
4516arch_complex_type (struct gdbarch *gdbarch,
4517 char *name, struct type *target_type)
27067745
UW
4518{
4519 struct type *t;
d8734c88 4520
e9bb382b
UW
4521 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4522 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4523 TYPE_TARGET_TYPE (t) = target_type;
4524 return t;
4525}
4526
e9bb382b 4527/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4528 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4529
e9bb382b
UW
4530struct type *
4531arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4532{
4533 int nfields = length * TARGET_CHAR_BIT;
4534 struct type *type;
4535
4536 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4537 TYPE_UNSIGNED (type) = 1;
4538 TYPE_NFIELDS (type) = nfields;
4539 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4540
4541 return type;
4542}
4543
4544/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4545 position BITPOS is called NAME. */
5212577a 4546
e9bb382b
UW
4547void
4548append_flags_type_flag (struct type *type, int bitpos, char *name)
4549{
4550 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4551 gdb_assert (bitpos < TYPE_NFIELDS (type));
4552 gdb_assert (bitpos >= 0);
4553
4554 if (name)
4555 {
4556 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4557 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4558 }
4559 else
4560 {
4561 /* Don't show this field to the user. */
945b3a32 4562 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4563 }
4564}
4565
4566/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4567 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4568
e9bb382b
UW
4569struct type *
4570arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4571{
4572 struct type *t;
d8734c88 4573
e9bb382b
UW
4574 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4575 t = arch_type (gdbarch, code, 0, NULL);
4576 TYPE_TAG_NAME (t) = name;
4577 INIT_CPLUS_SPECIFIC (t);
4578 return t;
4579}
4580
4581/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4582 Do not set the field's position or adjust the type's length;
4583 the caller should do so. Return the new field. */
5212577a 4584
f5dff777
DJ
4585struct field *
4586append_composite_type_field_raw (struct type *t, char *name,
4587 struct type *field)
e9bb382b
UW
4588{
4589 struct field *f;
d8734c88 4590
e9bb382b
UW
4591 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4592 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4593 sizeof (struct field) * TYPE_NFIELDS (t));
4594 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4595 memset (f, 0, sizeof f[0]);
4596 FIELD_TYPE (f[0]) = field;
4597 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4598 return f;
4599}
4600
4601/* Add new field with name NAME and type FIELD to composite type T.
4602 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4603
f5dff777
DJ
4604void
4605append_composite_type_field_aligned (struct type *t, char *name,
4606 struct type *field, int alignment)
4607{
4608 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4609
e9bb382b
UW
4610 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4611 {
4612 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4613 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4614 }
4615 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4616 {
4617 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4618 if (TYPE_NFIELDS (t) > 1)
4619 {
f41f5e61
PA
4620 SET_FIELD_BITPOS (f[0],
4621 (FIELD_BITPOS (f[-1])
4622 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4623 * TARGET_CHAR_BIT)));
e9bb382b
UW
4624
4625 if (alignment)
4626 {
86c3c1fc
AB
4627 int left;
4628
4629 alignment *= TARGET_CHAR_BIT;
4630 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4631
e9bb382b
UW
4632 if (left)
4633 {
f41f5e61 4634 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4635 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4636 }
4637 }
4638 }
4639 }
4640}
4641
4642/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4643
e9bb382b
UW
4644void
4645append_composite_type_field (struct type *t, char *name,
4646 struct type *field)
4647{
4648 append_composite_type_field_aligned (t, name, field, 0);
4649}
4650
000177f0
AC
4651static struct gdbarch_data *gdbtypes_data;
4652
4653const struct builtin_type *
4654builtin_type (struct gdbarch *gdbarch)
4655{
4656 return gdbarch_data (gdbarch, gdbtypes_data);
4657}
4658
4659static void *
4660gdbtypes_post_init (struct gdbarch *gdbarch)
4661{
4662 struct builtin_type *builtin_type
4663 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4664
46bf5051 4665 /* Basic types. */
e9bb382b
UW
4666 builtin_type->builtin_void
4667 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4668 builtin_type->builtin_char
4669 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4670 !gdbarch_char_signed (gdbarch), "char");
4671 builtin_type->builtin_signed_char
4672 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4673 0, "signed char");
4674 builtin_type->builtin_unsigned_char
4675 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4676 1, "unsigned char");
4677 builtin_type->builtin_short
4678 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4679 0, "short");
4680 builtin_type->builtin_unsigned_short
4681 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4682 1, "unsigned short");
4683 builtin_type->builtin_int
4684 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4685 0, "int");
4686 builtin_type->builtin_unsigned_int
4687 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4688 1, "unsigned int");
4689 builtin_type->builtin_long
4690 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4691 0, "long");
4692 builtin_type->builtin_unsigned_long
4693 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4694 1, "unsigned long");
4695 builtin_type->builtin_long_long
4696 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4697 0, "long long");
4698 builtin_type->builtin_unsigned_long_long
4699 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4700 1, "unsigned long long");
70bd8e24 4701 builtin_type->builtin_float
e9bb382b 4702 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4703 "float", gdbarch_float_format (gdbarch));
70bd8e24 4704 builtin_type->builtin_double
e9bb382b 4705 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4706 "double", gdbarch_double_format (gdbarch));
70bd8e24 4707 builtin_type->builtin_long_double
e9bb382b 4708 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4709 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4710 builtin_type->builtin_complex
e9bb382b
UW
4711 = arch_complex_type (gdbarch, "complex",
4712 builtin_type->builtin_float);
70bd8e24 4713 builtin_type->builtin_double_complex
e9bb382b
UW
4714 = arch_complex_type (gdbarch, "double complex",
4715 builtin_type->builtin_double);
4716 builtin_type->builtin_string
4717 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4718 builtin_type->builtin_bool
4719 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4720
7678ef8f
TJB
4721 /* The following three are about decimal floating point types, which
4722 are 32-bits, 64-bits and 128-bits respectively. */
4723 builtin_type->builtin_decfloat
e9bb382b 4724 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4725 builtin_type->builtin_decdouble
e9bb382b 4726 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4727 builtin_type->builtin_declong
e9bb382b 4728 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4729
69feb676 4730 /* "True" character types. */
e9bb382b
UW
4731 builtin_type->builtin_true_char
4732 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4733 builtin_type->builtin_true_unsigned_char
4734 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4735
df4df182 4736 /* Fixed-size integer types. */
e9bb382b
UW
4737 builtin_type->builtin_int0
4738 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4739 builtin_type->builtin_int8
4740 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4741 builtin_type->builtin_uint8
4742 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4743 builtin_type->builtin_int16
4744 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4745 builtin_type->builtin_uint16
4746 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4747 builtin_type->builtin_int32
4748 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4749 builtin_type->builtin_uint32
4750 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4751 builtin_type->builtin_int64
4752 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4753 builtin_type->builtin_uint64
4754 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4755 builtin_type->builtin_int128
4756 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4757 builtin_type->builtin_uint128
4758 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4759 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4760 TYPE_INSTANCE_FLAG_NOTTEXT;
4761 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4762 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4763
9a22f0d0
PM
4764 /* Wide character types. */
4765 builtin_type->builtin_char16
4766 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4767 builtin_type->builtin_char32
4768 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4769
4770
46bf5051 4771 /* Default data/code pointer types. */
e9bb382b
UW
4772 builtin_type->builtin_data_ptr
4773 = lookup_pointer_type (builtin_type->builtin_void);
4774 builtin_type->builtin_func_ptr
4775 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4776 builtin_type->builtin_func_func
4777 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4778
78267919 4779 /* This type represents a GDB internal function. */
e9bb382b
UW
4780 builtin_type->internal_fn
4781 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4782 "<internal function>");
78267919 4783
e81e7f5e
SC
4784 /* This type represents an xmethod. */
4785 builtin_type->xmethod
4786 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4787
46bf5051
UW
4788 return builtin_type;
4789}
4790
46bf5051
UW
4791/* This set of objfile-based types is intended to be used by symbol
4792 readers as basic types. */
4793
4794static const struct objfile_data *objfile_type_data;
4795
4796const struct objfile_type *
4797objfile_type (struct objfile *objfile)
4798{
4799 struct gdbarch *gdbarch;
4800 struct objfile_type *objfile_type
4801 = objfile_data (objfile, objfile_type_data);
4802
4803 if (objfile_type)
4804 return objfile_type;
4805
4806 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4807 1, struct objfile_type);
4808
4809 /* Use the objfile architecture to determine basic type properties. */
4810 gdbarch = get_objfile_arch (objfile);
4811
4812 /* Basic types. */
4813 objfile_type->builtin_void
4814 = init_type (TYPE_CODE_VOID, 1,
4815 0,
4816 "void", objfile);
4817
4818 objfile_type->builtin_char
4819 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4820 (TYPE_FLAG_NOSIGN
4821 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4822 "char", objfile);
4823 objfile_type->builtin_signed_char
4824 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4825 0,
4826 "signed char", objfile);
4827 objfile_type->builtin_unsigned_char
4828 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4829 TYPE_FLAG_UNSIGNED,
4830 "unsigned char", objfile);
4831 objfile_type->builtin_short
4832 = init_type (TYPE_CODE_INT,
4833 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4834 0, "short", objfile);
4835 objfile_type->builtin_unsigned_short
4836 = init_type (TYPE_CODE_INT,
4837 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4838 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4839 objfile_type->builtin_int
4840 = init_type (TYPE_CODE_INT,
4841 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4842 0, "int", objfile);
4843 objfile_type->builtin_unsigned_int
4844 = init_type (TYPE_CODE_INT,
4845 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4846 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4847 objfile_type->builtin_long
4848 = init_type (TYPE_CODE_INT,
4849 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4850 0, "long", objfile);
4851 objfile_type->builtin_unsigned_long
4852 = init_type (TYPE_CODE_INT,
4853 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4854 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4855 objfile_type->builtin_long_long
4856 = init_type (TYPE_CODE_INT,
4857 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4858 0, "long long", objfile);
4859 objfile_type->builtin_unsigned_long_long
4860 = init_type (TYPE_CODE_INT,
4861 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4862 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4863
4864 objfile_type->builtin_float
4865 = init_type (TYPE_CODE_FLT,
4866 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4867 0, "float", objfile);
4868 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4869 = gdbarch_float_format (gdbarch);
4870 objfile_type->builtin_double
4871 = init_type (TYPE_CODE_FLT,
4872 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4873 0, "double", objfile);
4874 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4875 = gdbarch_double_format (gdbarch);
4876 objfile_type->builtin_long_double
4877 = init_type (TYPE_CODE_FLT,
4878 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4879 0, "long double", objfile);
4880 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4881 = gdbarch_long_double_format (gdbarch);
4882
4883 /* This type represents a type that was unrecognized in symbol read-in. */
4884 objfile_type->builtin_error
4885 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4886
4887 /* The following set of types is used for symbols with no
4888 debug information. */
4889 objfile_type->nodebug_text_symbol
4890 = init_type (TYPE_CODE_FUNC, 1, 0,
4891 "<text variable, no debug info>", objfile);
4892 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4893 = objfile_type->builtin_int;
0875794a
JK
4894 objfile_type->nodebug_text_gnu_ifunc_symbol
4895 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4896 "<text gnu-indirect-function variable, no debug info>",
4897 objfile);
4898 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4899 = objfile_type->nodebug_text_symbol;
4900 objfile_type->nodebug_got_plt_symbol
4901 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4902 "<text from jump slot in .got.plt, no debug info>",
4903 objfile);
4904 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4905 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4906 objfile_type->nodebug_data_symbol
4907 = init_type (TYPE_CODE_INT,
4908 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4909 "<data variable, no debug info>", objfile);
4910 objfile_type->nodebug_unknown_symbol
4911 = init_type (TYPE_CODE_INT, 1, 0,
4912 "<variable (not text or data), no debug info>", objfile);
4913 objfile_type->nodebug_tls_symbol
4914 = init_type (TYPE_CODE_INT,
4915 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4916 "<thread local variable, no debug info>", objfile);
000177f0
AC
4917
4918 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4919 the same.
000177f0
AC
4920
4921 The upshot is:
4922 - gdb's `struct type' always describes the target's
4923 representation.
4924 - gdb's `struct value' objects should always hold values in
4925 target form.
4926 - gdb's CORE_ADDR values are addresses in the unified virtual
4927 address space that the assembler and linker work with. Thus,
4928 since target_read_memory takes a CORE_ADDR as an argument, it
4929 can access any memory on the target, even if the processor has
4930 separate code and data address spaces.
4931
46bf5051
UW
4932 In this context, objfile_type->builtin_core_addr is a bit odd:
4933 it's a target type for a value the target will never see. It's
4934 only used to hold the values of (typeless) linker symbols, which
4935 are indeed in the unified virtual address space. */
000177f0 4936
46bf5051
UW
4937 objfile_type->builtin_core_addr
4938 = init_type (TYPE_CODE_INT,
4939 gdbarch_addr_bit (gdbarch) / 8,
4940 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4941
46bf5051
UW
4942 set_objfile_data (objfile, objfile_type_data, objfile_type);
4943 return objfile_type;
000177f0
AC
4944}
4945
5212577a 4946extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4947
c906108c 4948void
fba45db2 4949_initialize_gdbtypes (void)
c906108c 4950{
5674de60 4951 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4952 objfile_type_data = register_objfile_data ();
5674de60 4953
ccce17b0
YQ
4954 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4955 _("Set debugging of C++ overloading."),
4956 _("Show debugging of C++ overloading."),
4957 _("When enabled, ranking of the "
4958 "functions is displayed."),
4959 NULL,
4960 show_overload_debug,
4961 &setdebuglist, &showdebuglist);
5674de60 4962
7ba81444 4963 /* Add user knob for controlling resolution of opaque types. */
5674de60 4964 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4965 &opaque_type_resolution,
4966 _("Set resolution of opaque struct/class/union"
4967 " types (if set before loading symbols)."),
4968 _("Show resolution of opaque struct/class/union"
4969 " types (if set before loading symbols)."),
4970 NULL, NULL,
5674de60
UW
4971 show_opaque_type_resolution,
4972 &setlist, &showlist);
a451cb65
KS
4973
4974 /* Add an option to permit non-strict type checking. */
4975 add_setshow_boolean_cmd ("type", class_support,
4976 &strict_type_checking,
4977 _("Set strict type checking."),
4978 _("Show strict type checking."),
4979 NULL, NULL,
4980 show_strict_type_checking,
4981 &setchecklist, &showchecklist);
c906108c 4982}
This page took 2.28185 seconds and 4 git commands to generate.