fix record "run" regression
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
0e9f083f 23#include <string.h>
c906108c
SS
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
8de20a37 40#include "cp-support.h"
ca092b61
DE
41#include "bcache.h"
42#include "dwarf2loc.h"
80180f79 43#include "gdbcore.h"
ac3aafc7 44
6403aeea
SW
45/* Initialize BADNESS constants. */
46
a9d5ef47 47const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 48
a9d5ef47
SW
49const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 51
a9d5ef47 52const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 53
a9d5ef47
SW
54const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 64const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 65const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 66const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 67
8da61cc4 68/* Floatformat pairs. */
f9e9243a
UW
69const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72};
8da61cc4
DJ
73const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76};
77const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80};
81const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84};
85const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88};
89const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92};
93const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96};
97const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100};
101const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104};
105const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108};
109const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112};
b14d30e1 113const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
b14d30e1 116};
8da61cc4 117
2873700e
KS
118/* Should opaque types be resolved? */
119
120static int opaque_type_resolution = 1;
121
122/* A flag to enable printing of debugging information of C++
123 overloading. */
124
125unsigned int overload_debug = 0;
126
a451cb65
KS
127/* A flag to enable strict type checking. */
128
129static int strict_type_checking = 1;
130
2873700e 131/* A function to show whether opaque types are resolved. */
5212577a 132
920d2a44
AC
133static void
134show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
135 struct cmd_list_element *c,
136 const char *value)
920d2a44 137{
3e43a32a
MS
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
140 value);
141}
142
2873700e 143/* A function to show whether C++ overload debugging is enabled. */
5212577a 144
920d2a44
AC
145static void
146show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
7ba81444
MS
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
920d2a44 151}
c906108c 152
a451cb65
KS
153/* A function to show the status of strict type checking. */
154
155static void
156show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160}
161
5212577a 162\f
e9bb382b
UW
163/* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
c906108c
SS
166
167struct type *
fba45db2 168alloc_type (struct objfile *objfile)
c906108c 169{
52f0bd74 170 struct type *type;
c906108c 171
e9bb382b
UW
172 gdb_assert (objfile != NULL);
173
7ba81444 174 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
c906108c 179
e9bb382b
UW
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
c906108c 182
7ba81444 183 /* Initialize the fields that might not be zero. */
c906108c
SS
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 186 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 188
c16abbde 189 return type;
c906108c
SS
190}
191
e9bb382b
UW
192/* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196struct type *
197alloc_type_arch (struct gdbarch *gdbarch)
198{
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
41bf6aca
TT
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218}
219
220/* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224struct type *
225alloc_type_copy (const struct type *type)
226{
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231}
232
233/* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236struct gdbarch *
237get_type_arch (const struct type *type)
238{
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243}
244
99ad9427
YQ
245/* See gdbtypes.h. */
246
247struct type *
248get_target_type (struct type *type)
249{
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258}
259
2fdde8f8
DJ
260/* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264static struct type *
265alloc_type_instance (struct type *oldtype)
266{
267 struct type *type;
268
269 /* Allocate the structure. */
270
e9bb382b 271 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 272 type = XCNEW (struct type);
2fdde8f8 273 else
1deafd4e
PA
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
2fdde8f8
DJ
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
c16abbde 281 return type;
2fdde8f8
DJ
282}
283
284/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 285 replacing it with something else. Preserve owner information. */
5212577a 286
2fdde8f8
DJ
287static void
288smash_type (struct type *type)
289{
e9bb382b
UW
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
2fdde8f8
DJ
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
e9bb382b
UW
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
2fdde8f8
DJ
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303}
304
c906108c
SS
305/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310struct type *
fba45db2 311make_pointer_type (struct type *type, struct type **typeptr)
c906108c 312{
52f0bd74 313 struct type *ntype; /* New type */
053cb41b 314 struct type *chain;
c906108c
SS
315
316 ntype = TYPE_POINTER_TYPE (type);
317
c5aa993b 318 if (ntype)
c906108c 319 {
c5aa993b 320 if (typeptr == 0)
7ba81444
MS
321 return ntype; /* Don't care about alloc,
322 and have new type. */
c906108c 323 else if (*typeptr == 0)
c5aa993b 324 {
7ba81444 325 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 326 return ntype;
c5aa993b 327 }
c906108c
SS
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
e9bb382b 332 ntype = alloc_type_copy (type);
c906108c
SS
333 if (typeptr)
334 *typeptr = ntype;
335 }
7ba81444 336 else /* We have storage, but need to reset it. */
c906108c
SS
337 {
338 ntype = *typeptr;
053cb41b 339 chain = TYPE_CHAIN (ntype);
2fdde8f8 340 smash_type (ntype);
053cb41b 341 TYPE_CHAIN (ntype) = chain;
c906108c
SS
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
5212577a 347 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 348
50810684
UW
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
67b2adb2 353 /* Mark pointers as unsigned. The target converts between pointers
76e71323 354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 355 gdbarch_address_to_pointer. */
876cecd0 356 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 357
053cb41b
JB
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
c906108c
SS
366 return ntype;
367}
368
369/* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372struct type *
fba45db2 373lookup_pointer_type (struct type *type)
c906108c 374{
c5aa993b 375 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
376}
377
7ba81444
MS
378/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
c906108c
SS
382
383struct type *
fba45db2 384make_reference_type (struct type *type, struct type **typeptr)
c906108c 385{
52f0bd74 386 struct type *ntype; /* New type */
1e98b326 387 struct type *chain;
c906108c
SS
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
c5aa993b 391 if (ntype)
c906108c 392 {
c5aa993b 393 if (typeptr == 0)
7ba81444
MS
394 return ntype; /* Don't care about alloc,
395 and have new type. */
c906108c 396 else if (*typeptr == 0)
c5aa993b 397 {
7ba81444 398 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 399 return ntype;
c5aa993b 400 }
c906108c
SS
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
e9bb382b 405 ntype = alloc_type_copy (type);
c906108c
SS
406 if (typeptr)
407 *typeptr = ntype;
408 }
7ba81444 409 else /* We have storage, but need to reset it. */
c906108c
SS
410 {
411 ntype = *typeptr;
1e98b326 412 chain = TYPE_CHAIN (ntype);
2fdde8f8 413 smash_type (ntype);
1e98b326 414 TYPE_CHAIN (ntype) = chain;
c906108c
SS
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
7ba81444
MS
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
c906108c 423
50810684
UW
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 426 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 427
c906108c
SS
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
1e98b326
JB
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
c906108c
SS
439 return ntype;
440}
441
7ba81444
MS
442/* Same as above, but caller doesn't care about memory allocation
443 details. */
c906108c
SS
444
445struct type *
fba45db2 446lookup_reference_type (struct type *type)
c906108c 447{
c5aa993b 448 return make_reference_type (type, (struct type **) 0);
c906108c
SS
449}
450
7ba81444
MS
451/* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 454 function type we return. We allocate new memory if needed. */
c906108c
SS
455
456struct type *
0c8b41f1 457make_function_type (struct type *type, struct type **typeptr)
c906108c 458{
52f0bd74 459 struct type *ntype; /* New type */
c906108c
SS
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
e9bb382b 463 ntype = alloc_type_copy (type);
c906108c
SS
464 if (typeptr)
465 *typeptr = ntype;
466 }
7ba81444 467 else /* We have storage, but need to reset it. */
c906108c
SS
468 {
469 ntype = *typeptr;
2fdde8f8 470 smash_type (ntype);
c906108c
SS
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 477
b6cdc2c1
JK
478 INIT_FUNC_SPECIFIC (ntype);
479
c906108c
SS
480 return ntype;
481}
482
c906108c
SS
483/* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486struct type *
fba45db2 487lookup_function_type (struct type *type)
c906108c 488{
0c8b41f1 489 return make_function_type (type, (struct type **) 0);
c906108c
SS
490}
491
71918a86 492/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
71918a86
TT
495
496struct type *
497lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500{
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
e314d629 504 if (nparams > 0)
a6fb9c08 505 {
e314d629
TT
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
a6fb9c08
TT
519 }
520
71918a86
TT
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527}
528
47663de5
MS
529/* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
5212577a
DE
531
532int
50810684 533address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 534{
8b2dbe47 535 int type_flags;
d8734c88 536
7ba81444 537 /* Check for known address space delimiters. */
47663de5 538 if (!strcmp (space_identifier, "code"))
876cecd0 539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 540 else if (!strcmp (space_identifier, "data"))
876cecd0 541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
8b2dbe47 546 return type_flags;
47663de5 547 else
8a3fe4f8 548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
549}
550
551/* Identify address space identifier by integer flag as defined in
7ba81444 552 gdbtypes.h -- return the string version of the adress space name. */
47663de5 553
321432c0 554const char *
50810684 555address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 556{
876cecd0 557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 558 return "code";
876cecd0 559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 560 return "data";
876cecd0 561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
564 else
565 return NULL;
566}
567
2fdde8f8 568/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
47663de5 572
b9362cc7 573static struct type *
2fdde8f8
DJ
574make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
47663de5
MS
576{
577 struct type *ntype;
578
579 ntype = type;
5f61c20e
JK
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
47663de5 587
2fdde8f8
DJ
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
7ba81444
MS
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
ad766c0a
JB
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
2fdde8f8
DJ
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
47663de5
MS
603
604 /* Pointers or references to the original type are not relevant to
2fdde8f8 605 the new type. */
47663de5
MS
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 608
2fdde8f8
DJ
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 615
ab5d3da6
KB
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
47663de5
MS
619 return ntype;
620}
621
2fdde8f8
DJ
622/* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
7ba81444
MS
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
2fdde8f8
DJ
630
631struct type *
632make_type_with_address_space (struct type *type, int space_flag)
633{
2fdde8f8 634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641}
c906108c
SS
642
643/* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
c906108c 648
ad766c0a
JB
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
5212577a 654
c906108c 655struct type *
7ba81444
MS
656make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
c906108c 659{
52f0bd74 660 struct type *ntype; /* New type */
c906108c 661
2fdde8f8 662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 665
c906108c 666 if (cnst)
876cecd0 667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
668
669 if (voltl)
876cecd0 670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 671
2fdde8f8 672 if (typeptr && *typeptr != NULL)
a02fd225 673 {
ad766c0a
JB
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
687 }
688
7ba81444
MS
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
c906108c 691
2fdde8f8
DJ
692 if (typeptr != NULL)
693 *typeptr = ntype;
a02fd225 694
2fdde8f8 695 return ntype;
a02fd225 696}
c906108c 697
06d66ee9
TT
698/* Make a 'restrict'-qualified version of TYPE. */
699
700struct type *
701make_restrict_type (struct type *type)
702{
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707}
708
2fdde8f8
DJ
709/* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 712
cda6c68a
JB
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
5212577a 718
dd6bda65
DJ
719void
720replace_type (struct type *ntype, struct type *type)
721{
ab5d3da6 722 struct type *chain;
dd6bda65 723
ad766c0a
JB
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
2fdde8f8 730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 731
7ba81444
MS
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
ab5d3da6 734 chain = ntype;
5f61c20e
JK
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
ab5d3da6 749
2fdde8f8
DJ
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
753}
754
c906108c
SS
755/* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760struct type *
0d5de010 761lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 762{
52f0bd74 763 struct type *mtype;
c906108c 764
e9bb382b 765 mtype = alloc_type_copy (type);
0d5de010 766 smash_to_memberptr_type (mtype, domain, type);
c16abbde 767 return mtype;
c906108c
SS
768}
769
0d5de010
DJ
770/* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772struct type *
773lookup_methodptr_type (struct type *to_type)
774{
775 struct type *mtype;
776
e9bb382b 777 mtype = alloc_type_copy (to_type);
0b92b5bb 778 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
779 return mtype;
780}
781
7ba81444
MS
782/* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
c906108c
SS
787
788struct type *
fba45db2 789allocate_stub_method (struct type *type)
c906108c
SS
790{
791 struct type *mtype;
792
e9bb382b
UW
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
c906108c
SS
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 799 return mtype;
c906108c
SS
800}
801
729efb13
SA
802/* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
804
805struct type *
729efb13
SA
806create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
c906108c
SS
809{
810 if (result_type == NULL)
e9bb382b 811 result_type = alloc_type_copy (index_type);
c906108c
SS
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 814 if (TYPE_STUB (index_type))
876cecd0 815 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 818
43bbcdc2
PH
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 823
729efb13 824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 825 TYPE_UNSIGNED (result_type) = 1;
c906108c 826
262452ec 827 return result_type;
c906108c
SS
828}
829
729efb13
SA
830/* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840struct type *
841create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843{
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855}
856
80180f79
SA
857/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860static int
861has_static_range (const struct range_bounds *bounds)
862{
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865}
866
867
7ba81444
MS
868/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
871
872int
fba45db2 873get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
874{
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
0963b4bd 886 entries. */
c906108c
SS
887 int i;
888
14e75d8e 889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
14e75d8e
JK
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
896 }
897
7ba81444 898 /* Set unsigned indicator if warranted. */
c5aa993b 899 if (*lowp >= 0)
c906108c 900 {
876cecd0 901 TYPE_UNSIGNED (type) = 1;
c906108c
SS
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
c5aa993b 915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
c5aa993b 919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
920 *highp = -*lowp - 1;
921 return 0;
922 }
7ba81444 923 /* ... fall through for unsigned ints ... */
c906108c
SS
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
7b83ea04 927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935}
936
dbc98a8b
KW
937/* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
0963b4bd 941 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951int
952get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953{
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979}
980
7ba81444
MS
981/* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
c906108c
SS
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
dc53a7ad
JB
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
7ba81444
MS
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
c906108c
SS
994
995struct type *
dc53a7ad
JB
996create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
c906108c 1000{
c906108c 1001 if (result_type == NULL)
e9bb382b
UW
1002 result_type = alloc_type_copy (range_type);
1003
c906108c
SS
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
ab0d6e0d 1025 else
80180f79
SA
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
c906108c
SS
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1deafd4e 1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1039 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c 1040 TYPE_VPTR_FIELDNO (result_type) = -1;
dc53a7ad
JB
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1043
0963b4bd 1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1045 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1046 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1047
c16abbde 1048 return result_type;
c906108c
SS
1049}
1050
dc53a7ad
JB
1051/* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054struct type *
1055create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058{
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061}
1062
e3506a9f
UW
1063struct type *
1064lookup_array_range_type (struct type *element_type,
63375b74 1065 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1066{
50810684 1067 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
0c9c3474 1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1071
e3506a9f
UW
1072 return create_array_type (NULL, element_type, range_type);
1073}
1074
7ba81444
MS
1075/* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
c906108c
SS
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
7ba81444
MS
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
c906108c
SS
1086
1087struct type *
3b7538c0
UW
1088create_string_type (struct type *result_type,
1089 struct type *string_char_type,
7ba81444 1090 struct type *range_type)
c906108c
SS
1091{
1092 result_type = create_array_type (result_type,
f290d38e 1093 string_char_type,
c906108c
SS
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1096 return result_type;
c906108c
SS
1097}
1098
e3506a9f
UW
1099struct type *
1100lookup_string_range_type (struct type *string_char_type,
63375b74 1101 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1102{
1103 struct type *result_type;
d8734c88 1104
e3506a9f
UW
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109}
1110
c906108c 1111struct type *
fba45db2 1112create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1113{
c906108c 1114 if (result_type == NULL)
e9bb382b
UW
1115 result_type = alloc_type_copy (domain_type);
1116
c906108c
SS
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1120
74a9bb82 1121 if (!TYPE_STUB (domain_type))
c906108c 1122 {
f9780d5b 1123 LONGEST low_bound, high_bound, bit_length;
d8734c88 1124
c906108c
SS
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1130 if (low_bound >= 0)
876cecd0 1131 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
c16abbde 1135 return result_type;
c906108c
SS
1136}
1137
ea37ba09
DJ
1138/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141void
1142make_vector_type (struct type *array_type)
1143{
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
2844d6b5 1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
876cecd0 1161 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1162}
1163
794ac428 1164struct type *
ac3aafc7
EZ
1165init_vector_type (struct type *elt_type, int n)
1166{
1167 struct type *array_type;
d8734c88 1168
e3506a9f 1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1170 make_vector_type (array_type);
ac3aafc7
EZ
1171 return array_type;
1172}
1173
0d5de010
DJ
1174/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
c906108c 1180
7ba81444
MS
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
c906108c
SS
1183 allocated. */
1184
1185void
0d5de010
DJ
1186smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
c906108c 1188{
2fdde8f8 1189 smash_type (type);
c906108c
SS
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
50810684
UW
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1197}
1198
0b92b5bb
TT
1199/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205void
1206smash_to_methodptr_type (struct type *type, struct type *to_type)
1207{
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213}
1214
c906108c
SS
1215/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
7ba81444
MS
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
c906108c
SS
1220 allocated. */
1221
1222void
fba45db2 1223smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
c906108c 1226{
2fdde8f8 1227 smash_type (type);
c906108c
SS
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
876cecd0 1233 TYPE_VARARGS (type) = 1;
c906108c
SS
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236}
1237
1238/* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
0d5cff50 1241const char *
aa1ee363 1242type_name_no_tag (const struct type *type)
c906108c
SS
1243{
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
7ba81444
MS
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
c906108c
SS
1250 return TYPE_NAME (type);
1251}
1252
d8228535
JK
1253/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260const char *
1261type_name_no_tag_or_error (struct type *type)
1262{
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1278}
1279
7ba81444
MS
1280/* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
c906108c
SS
1283
1284struct type *
e6c014f2 1285lookup_typename (const struct language_defn *language,
ddd49eee 1286 struct gdbarch *gdbarch, const char *name,
34eaf542 1287 const struct block *block, int noerr)
c906108c 1288{
52f0bd74 1289 struct symbol *sym;
659c9f3a 1290 struct type *type;
c906108c 1291
774b6a14 1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
659c9f3a
DE
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
c51fe631
DE
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
c906108c
SS
1303}
1304
1305struct type *
e6c014f2 1306lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1307 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1308{
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
e6c014f2 1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1314}
1315
1316struct type *
e6c014f2 1317lookup_signed_typename (const struct language_defn *language,
0d5cff50 1318 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1319{
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
e6c014f2 1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1327 if (t != NULL)
1328 return t;
e6c014f2 1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1330}
1331
1332/* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335struct type *
270140bd 1336lookup_struct (const char *name, const struct block *block)
c906108c 1337{
52f0bd74 1338 struct symbol *sym;
c906108c 1339
2570f2b7 1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1341
1342 if (sym == NULL)
1343 {
8a3fe4f8 1344 error (_("No struct type named %s."), name);
c906108c
SS
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
7ba81444
MS
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
c906108c
SS
1350 }
1351 return (SYMBOL_TYPE (sym));
1352}
1353
1354/* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357struct type *
270140bd 1358lookup_union (const char *name, const struct block *block)
c906108c 1359{
52f0bd74 1360 struct symbol *sym;
c5aa993b 1361 struct type *t;
c906108c 1362
2570f2b7 1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1364
1365 if (sym == NULL)
8a3fe4f8 1366 error (_("No union type named %s."), name);
c906108c 1367
c5aa993b 1368 t = SYMBOL_TYPE (sym);
c906108c
SS
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1371 return t;
c906108c 1372
7ba81444
MS
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
c906108c
SS
1376}
1377
c906108c
SS
1378/* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381struct type *
270140bd 1382lookup_enum (const char *name, const struct block *block)
c906108c 1383{
52f0bd74 1384 struct symbol *sym;
c906108c 1385
2570f2b7 1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1387 if (sym == NULL)
1388 {
8a3fe4f8 1389 error (_("No enum type named %s."), name);
c906108c
SS
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
7ba81444
MS
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
c906108c
SS
1395 }
1396 return (SYMBOL_TYPE (sym));
1397}
1398
1399/* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402struct type *
7ba81444 1403lookup_template_type (char *name, struct type *type,
270140bd 1404 const struct block *block)
c906108c
SS
1405{
1406 struct symbol *sym;
7ba81444
MS
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1409
c906108c
SS
1410 strcpy (nam, name);
1411 strcat (nam, "<");
0004e5a2 1412 strcat (nam, TYPE_NAME (type));
0963b4bd 1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1414
2570f2b7 1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1416
1417 if (sym == NULL)
1418 {
8a3fe4f8 1419 error (_("No template type named %s."), name);
c906108c
SS
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
7ba81444
MS
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
c906108c
SS
1425 }
1426 return (SYMBOL_TYPE (sym));
1427}
1428
7ba81444
MS
1429/* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
c906108c 1431
7ba81444
MS
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441struct type *
d7561cbb 1442lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1443{
1444 int i;
c92817ce 1445 char *typename;
c906108c
SS
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
687d6395
MS
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1458 {
c92817ce
TT
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1462 }
1463
1464#if 0
7ba81444
MS
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
0963b4bd 1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1468 foo; } bell;" Disabled by fnf. */
c906108c
SS
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
762f08a3 1473 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1474 return type;
1475 }
1476#endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
0d5cff50 1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1481
db577aea 1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
f5a010c0
PM
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
d8734c88
MS
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
f5a010c0
PM
1491 if (subtype != NULL)
1492 return subtype;
1493 }
c906108c
SS
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
9733fc94 1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
c5aa993b 1512
c92817ce
TT
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1516}
1517
ed3ef339
DE
1518/* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521void
1522get_unsigned_type_max (struct type *type, ULONGEST *max)
1523{
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533}
1534
1535/* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538void
1539get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540{
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550}
1551
81fe8080
DE
1552/* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
c906108c 1558 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
7ba81444 1561 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1562 vptr_basetype will remain NULL or incomplete. */
c906108c 1563
81fe8080
DE
1564int
1565get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1566{
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
7ba81444
MS
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
81fe8080
DE
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
c906108c 1583 {
81fe8080 1584 /* If the type comes from a different objfile we can't cache
0963b4bd 1585 it, it may have a different lifetime. PR 2384 */
5ef73790 1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
c906108c
SS
1594 }
1595 }
81fe8080
DE
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1605 }
1606}
1607
44e1a9eb
DJ
1608static void
1609stub_noname_complaint (void)
1610{
e2e0b3e5 1611 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1612}
1613
80180f79
SA
1614/* See gdbtypes.h. */
1615
1616int
1617is_dynamic_type (struct type *type)
1618{
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
6f8a3220
JB
1626 case TYPE_CODE_RANGE:
1627 return !has_static_range (TYPE_RANGE_DATA (type));
6f8a3220 1628
80180f79
SA
1629 case TYPE_CODE_ARRAY:
1630 {
80180f79 1631 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1632
1633 /* The array is dynamic if either the bounds are dynamic,
1634 or the elements it contains have a dynamic contents. */
1635 if (is_dynamic_type (TYPE_INDEX_TYPE (type)))
80180f79 1636 return 1;
92e2a17f 1637 return is_dynamic_type (TYPE_TARGET_TYPE (type));
80180f79 1638 }
012370f6
TT
1639
1640 case TYPE_CODE_STRUCT:
1641 case TYPE_CODE_UNION:
1642 {
1643 int i;
1644
1645 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1646 if (!field_is_static (&TYPE_FIELD (type, i))
1647 && is_dynamic_type (TYPE_FIELD_TYPE (type, i)))
1648 return 1;
1649 }
1650 break;
80180f79 1651 }
92e2a17f
TT
1652
1653 return 0;
80180f79
SA
1654}
1655
d190df30
JB
1656/* Given a dynamic range type (dyn_range_type), return a static version
1657 of that type. */
1658
80180f79 1659static struct type *
1cfdf534 1660resolve_dynamic_range (struct type *dyn_range_type)
80180f79
SA
1661{
1662 CORE_ADDR value;
6f8a3220 1663 struct type *static_range_type;
80180f79
SA
1664 const struct dynamic_prop *prop;
1665 const struct dwarf2_locexpr_baton *baton;
1666 struct dynamic_prop low_bound, high_bound;
1667
6f8a3220 1668 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1669
6f8a3220 1670 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1cfdf534 1671 if (dwarf2_evaluate_property (prop, &value))
80180f79
SA
1672 {
1673 low_bound.kind = PROP_CONST;
1674 low_bound.data.const_val = value;
1675 }
1676 else
1677 {
1678 low_bound.kind = PROP_UNDEFINED;
1679 low_bound.data.const_val = 0;
1680 }
1681
6f8a3220 1682 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1cfdf534 1683 if (dwarf2_evaluate_property (prop, &value))
80180f79
SA
1684 {
1685 high_bound.kind = PROP_CONST;
1686 high_bound.data.const_val = value;
c451ebe5 1687
6f8a3220 1688 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1689 high_bound.data.const_val
1690 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1691 }
1692 else
1693 {
1694 high_bound.kind = PROP_UNDEFINED;
1695 high_bound.data.const_val = 0;
1696 }
1697
6f8a3220
JB
1698 static_range_type = create_range_type (copy_type (dyn_range_type),
1699 TYPE_TARGET_TYPE (dyn_range_type),
1700 &low_bound, &high_bound);
1701 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1702 return static_range_type;
1703}
1704
1705/* Resolves dynamic bound values of an array type TYPE to static ones.
1706 ADDRESS might be needed to resolve the subrange bounds, it is the location
1707 of the associated array. */
1708
1709static struct type *
1cfdf534 1710resolve_dynamic_array (struct type *type)
6f8a3220
JB
1711{
1712 CORE_ADDR value;
1713 struct type *elt_type;
1714 struct type *range_type;
1715 struct type *ary_dim;
1716
1717 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1718
1719 elt_type = type;
1720 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1cfdf534 1721 range_type = resolve_dynamic_range (range_type);
6f8a3220 1722
80180f79
SA
1723 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1724
1725 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1cfdf534 1726 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type));
80180f79
SA
1727 else
1728 elt_type = TYPE_TARGET_TYPE (type);
1729
80180f79
SA
1730 return create_array_type (copy_type (type),
1731 elt_type,
1732 range_type);
1733}
1734
012370f6
TT
1735/* Resolve dynamic bounds of members of the union TYPE to static
1736 bounds. */
1737
1738static struct type *
1739resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1740{
1741 struct type *resolved_type;
1742 int i;
1743 unsigned int max_len = 0;
1744
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1746
1747 resolved_type = copy_type (type);
1748 TYPE_FIELDS (resolved_type)
1749 = TYPE_ALLOC (resolved_type,
1750 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1751 memcpy (TYPE_FIELDS (resolved_type),
1752 TYPE_FIELDS (type),
1753 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1754 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1755 {
1756 struct type *t;
1757
1758 if (field_is_static (&TYPE_FIELD (type, i)))
1759 continue;
1760
1761 t = resolve_dynamic_type (TYPE_FIELD_TYPE (resolved_type, i), addr);
1762 TYPE_FIELD_TYPE (resolved_type, i) = t;
1763 if (TYPE_LENGTH (t) > max_len)
1764 max_len = TYPE_LENGTH (t);
1765 }
1766
1767 TYPE_LENGTH (resolved_type) = max_len;
1768 return resolved_type;
1769}
1770
1771/* Resolve dynamic bounds of members of the struct TYPE to static
1772 bounds. */
1773
1774static struct type *
1775resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1776{
1777 struct type *resolved_type;
1778 int i;
1779 int vla_field = TYPE_NFIELDS (type) - 1;
1780
1781 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1782 gdb_assert (TYPE_NFIELDS (type) > 0);
1783
1784 resolved_type = copy_type (type);
1785 TYPE_FIELDS (resolved_type)
1786 = TYPE_ALLOC (resolved_type,
1787 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1788 memcpy (TYPE_FIELDS (resolved_type),
1789 TYPE_FIELDS (type),
1790 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1791 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1792 {
1793 struct type *t;
1794
1795 if (field_is_static (&TYPE_FIELD (type, i)))
1796 continue;
1797
1798 t = resolve_dynamic_type (TYPE_FIELD_TYPE (resolved_type, i), addr);
1799
1800 /* This is a bit odd. We do not support a VLA in any position
1801 of a struct except for the last. GCC does have an extension
1802 that allows a VLA in the middle of a structure, but the DWARF
1803 it emits is relatively useless to us, so we can't represent
1804 such a type properly -- and even if we could, we do not have
1805 enough information to redo structure layout anyway.
1806 Nevertheless, we check all the fields in case something odd
1807 slips through, since it's better to see an error than
1808 incorrect results. */
1809 if (t != TYPE_FIELD_TYPE (resolved_type, i)
1810 && i != vla_field)
1811 error (_("Attempt to resolve a variably-sized type which appears "
1812 "in the interior of a structure type"));
1813
1814 TYPE_FIELD_TYPE (resolved_type, i) = t;
1815 }
1816
1817 /* Due to the above restrictions we can successfully compute
1818 the size of the resulting structure here, as the offset of
1819 the final field plus its size. */
1820 TYPE_LENGTH (resolved_type)
1821 = (TYPE_FIELD_BITPOS (resolved_type, vla_field) / TARGET_CHAR_BIT
1822 + TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, vla_field)));
1823 return resolved_type;
1824}
1825
80180f79
SA
1826/* See gdbtypes.h */
1827
1828struct type *
1829resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1830{
1831 struct type *real_type = check_typedef (type);
6f8a3220 1832 struct type *resolved_type = type;
80180f79
SA
1833
1834 if (!is_dynamic_type (real_type))
1835 return type;
1836
6f8a3220
JB
1837 switch (TYPE_CODE (type))
1838 {
1839 case TYPE_CODE_TYPEDEF:
1840 resolved_type = copy_type (type);
1841 TYPE_TARGET_TYPE (resolved_type)
1842 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), addr);
1843 break;
1844
1845 case TYPE_CODE_REF:
1846 {
1847 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1848
1849 resolved_type = copy_type (type);
1850 TYPE_TARGET_TYPE (resolved_type)
1851 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), target_addr);
1852 break;
1853 }
1854
1855 case TYPE_CODE_ARRAY:
1cfdf534 1856 resolved_type = resolve_dynamic_array (type);
6f8a3220
JB
1857 break;
1858
1859 case TYPE_CODE_RANGE:
1cfdf534 1860 resolved_type = resolve_dynamic_range (type);
6f8a3220 1861 break;
012370f6
TT
1862
1863 case TYPE_CODE_UNION:
1864 resolved_type = resolve_dynamic_union (type, addr);
1865 break;
1866
1867 case TYPE_CODE_STRUCT:
1868 resolved_type = resolve_dynamic_struct (type, addr);
1869 break;
6f8a3220 1870 }
80180f79
SA
1871
1872 return resolved_type;
1873}
1874
92163a10
JK
1875/* Find the real type of TYPE. This function returns the real type,
1876 after removing all layers of typedefs, and completing opaque or stub
1877 types. Completion changes the TYPE argument, but stripping of
1878 typedefs does not.
1879
1880 Instance flags (e.g. const/volatile) are preserved as typedefs are
1881 stripped. If necessary a new qualified form of the underlying type
1882 is created.
1883
1884 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1885 not been computed and we're either in the middle of reading symbols, or
1886 there was no name for the typedef in the debug info.
1887
9bc118a5
DE
1888 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1889 QUITs in the symbol reading code can also throw.
1890 Thus this function can throw an exception.
1891
92163a10
JK
1892 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1893 the target type.
c906108c
SS
1894
1895 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1896 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1897 definition, so we can use it in future. There used to be a comment
1898 (but not any code) that if we don't find a full definition, we'd
1899 set a flag so we don't spend time in the future checking the same
1900 type. That would be a mistake, though--we might load in more
92163a10 1901 symbols which contain a full definition for the type. */
c906108c
SS
1902
1903struct type *
a02fd225 1904check_typedef (struct type *type)
c906108c
SS
1905{
1906 struct type *orig_type = type;
92163a10
JK
1907 /* While we're removing typedefs, we don't want to lose qualifiers.
1908 E.g., const/volatile. */
1909 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1910
423c0af8
MS
1911 gdb_assert (type);
1912
c906108c
SS
1913 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1914 {
1915 if (!TYPE_TARGET_TYPE (type))
1916 {
0d5cff50 1917 const char *name;
c906108c
SS
1918 struct symbol *sym;
1919
1920 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1921 reading a symtab. Infinite recursion is one danger. */
c906108c 1922 if (currently_reading_symtab)
92163a10 1923 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1924
1925 name = type_name_no_tag (type);
7ba81444
MS
1926 /* FIXME: shouldn't we separately check the TYPE_NAME and
1927 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1928 VAR_DOMAIN as appropriate? (this code was written before
1929 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1930 if (name == NULL)
1931 {
23136709 1932 stub_noname_complaint ();
92163a10 1933 return make_qualified_type (type, instance_flags, NULL);
c906108c 1934 }
2570f2b7 1935 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1936 if (sym)
1937 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1938 else /* TYPE_CODE_UNDEF */
e9bb382b 1939 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1940 }
1941 type = TYPE_TARGET_TYPE (type);
c906108c 1942
92163a10
JK
1943 /* Preserve the instance flags as we traverse down the typedef chain.
1944
1945 Handling address spaces/classes is nasty, what do we do if there's a
1946 conflict?
1947 E.g., what if an outer typedef marks the type as class_1 and an inner
1948 typedef marks the type as class_2?
1949 This is the wrong place to do such error checking. We leave it to
1950 the code that created the typedef in the first place to flag the
1951 error. We just pick the outer address space (akin to letting the
1952 outer cast in a chain of casting win), instead of assuming
1953 "it can't happen". */
1954 {
1955 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1956 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1957 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1958 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1959
1960 /* Treat code vs data spaces and address classes separately. */
1961 if ((instance_flags & ALL_SPACES) != 0)
1962 new_instance_flags &= ~ALL_SPACES;
1963 if ((instance_flags & ALL_CLASSES) != 0)
1964 new_instance_flags &= ~ALL_CLASSES;
1965
1966 instance_flags |= new_instance_flags;
1967 }
1968 }
a02fd225 1969
7ba81444
MS
1970 /* If this is a struct/class/union with no fields, then check
1971 whether a full definition exists somewhere else. This is for
1972 systems where a type definition with no fields is issued for such
1973 types, instead of identifying them as stub types in the first
1974 place. */
c5aa993b 1975
7ba81444
MS
1976 if (TYPE_IS_OPAQUE (type)
1977 && opaque_type_resolution
1978 && !currently_reading_symtab)
c906108c 1979 {
0d5cff50 1980 const char *name = type_name_no_tag (type);
c5aa993b 1981 struct type *newtype;
d8734c88 1982
c906108c
SS
1983 if (name == NULL)
1984 {
23136709 1985 stub_noname_complaint ();
92163a10 1986 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1987 }
1988 newtype = lookup_transparent_type (name);
ad766c0a 1989
c906108c 1990 if (newtype)
ad766c0a 1991 {
7ba81444
MS
1992 /* If the resolved type and the stub are in the same
1993 objfile, then replace the stub type with the real deal.
1994 But if they're in separate objfiles, leave the stub
1995 alone; we'll just look up the transparent type every time
1996 we call check_typedef. We can't create pointers between
1997 types allocated to different objfiles, since they may
1998 have different lifetimes. Trying to copy NEWTYPE over to
1999 TYPE's objfile is pointless, too, since you'll have to
2000 move over any other types NEWTYPE refers to, which could
2001 be an unbounded amount of stuff. */
ad766c0a 2002 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2003 type = make_qualified_type (newtype,
2004 TYPE_INSTANCE_FLAGS (type),
2005 type);
ad766c0a
JB
2006 else
2007 type = newtype;
2008 }
c906108c 2009 }
7ba81444
MS
2010 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2011 types. */
74a9bb82 2012 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2013 {
0d5cff50 2014 const char *name = type_name_no_tag (type);
c906108c 2015 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2016 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2017 as appropriate? (this code was written before TYPE_NAME and
2018 TYPE_TAG_NAME were separate). */
c906108c 2019 struct symbol *sym;
d8734c88 2020
c906108c
SS
2021 if (name == NULL)
2022 {
23136709 2023 stub_noname_complaint ();
92163a10 2024 return make_qualified_type (type, instance_flags, NULL);
c906108c 2025 }
2570f2b7 2026 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2027 if (sym)
c26f2453
JB
2028 {
2029 /* Same as above for opaque types, we can replace the stub
92163a10 2030 with the complete type only if they are in the same
c26f2453
JB
2031 objfile. */
2032 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2033 type = make_qualified_type (SYMBOL_TYPE (sym),
2034 TYPE_INSTANCE_FLAGS (type),
2035 type);
c26f2453
JB
2036 else
2037 type = SYMBOL_TYPE (sym);
2038 }
c906108c
SS
2039 }
2040
74a9bb82 2041 if (TYPE_TARGET_STUB (type))
c906108c
SS
2042 {
2043 struct type *range_type;
2044 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2045
74a9bb82 2046 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2047 {
73e2eb35 2048 /* Nothing we can do. */
c5aa993b 2049 }
c906108c
SS
2050 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2051 {
2052 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2053 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2054 }
2055 }
92163a10
JK
2056
2057 type = make_qualified_type (type, instance_flags, NULL);
2058
7ba81444 2059 /* Cache TYPE_LENGTH for future use. */
c906108c 2060 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2061
c906108c
SS
2062 return type;
2063}
2064
7ba81444 2065/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2066 occurs, silently return a void type. */
c91ecb25 2067
b9362cc7 2068static struct type *
48319d1f 2069safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2070{
2071 struct ui_file *saved_gdb_stderr;
34365054 2072 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 2073 volatile struct gdb_exception except;
c91ecb25 2074
7ba81444 2075 /* Suppress error messages. */
c91ecb25
ND
2076 saved_gdb_stderr = gdb_stderr;
2077 gdb_stderr = ui_file_new ();
2078
7ba81444 2079 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
2080 TRY_CATCH (except, RETURN_MASK_ERROR)
2081 {
2082 type = parse_and_eval_type (p, length);
2083 }
2084
2085 if (except.reason < 0)
48319d1f 2086 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 2087
7ba81444 2088 /* Stop suppressing error messages. */
c91ecb25
ND
2089 ui_file_delete (gdb_stderr);
2090 gdb_stderr = saved_gdb_stderr;
2091
2092 return type;
2093}
2094
c906108c
SS
2095/* Ugly hack to convert method stubs into method types.
2096
7ba81444
MS
2097 He ain't kiddin'. This demangles the name of the method into a
2098 string including argument types, parses out each argument type,
2099 generates a string casting a zero to that type, evaluates the
2100 string, and stuffs the resulting type into an argtype vector!!!
2101 Then it knows the type of the whole function (including argument
2102 types for overloading), which info used to be in the stab's but was
2103 removed to hack back the space required for them. */
c906108c 2104
de17c821 2105static void
fba45db2 2106check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2107{
50810684 2108 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2109 struct fn_field *f;
2110 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2111 char *demangled_name = gdb_demangle (mangled_name,
2112 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2113 char *argtypetext, *p;
2114 int depth = 0, argcount = 1;
ad2f7632 2115 struct field *argtypes;
c906108c
SS
2116 struct type *mtype;
2117
2118 /* Make sure we got back a function string that we can use. */
2119 if (demangled_name)
2120 p = strchr (demangled_name, '(');
502dcf4e
AC
2121 else
2122 p = NULL;
c906108c
SS
2123
2124 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2125 error (_("Internal: Cannot demangle mangled name `%s'."),
2126 mangled_name);
c906108c
SS
2127
2128 /* Now, read in the parameters that define this type. */
2129 p += 1;
2130 argtypetext = p;
2131 while (*p)
2132 {
070ad9f0 2133 if (*p == '(' || *p == '<')
c906108c
SS
2134 {
2135 depth += 1;
2136 }
070ad9f0 2137 else if (*p == ')' || *p == '>')
c906108c
SS
2138 {
2139 depth -= 1;
2140 }
2141 else if (*p == ',' && depth == 0)
2142 {
2143 argcount += 1;
2144 }
2145
2146 p += 1;
2147 }
2148
ad2f7632
DJ
2149 /* If we read one argument and it was ``void'', don't count it. */
2150 if (strncmp (argtypetext, "(void)", 6) == 0)
2151 argcount -= 1;
c906108c 2152
ad2f7632
DJ
2153 /* We need one extra slot, for the THIS pointer. */
2154
2155 argtypes = (struct field *)
2156 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2157 p = argtypetext;
4a1970e4
DJ
2158
2159 /* Add THIS pointer for non-static methods. */
2160 f = TYPE_FN_FIELDLIST1 (type, method_id);
2161 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2162 argcount = 0;
2163 else
2164 {
ad2f7632 2165 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2166 argcount = 1;
2167 }
c906108c 2168
0963b4bd 2169 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2170 {
2171 depth = 0;
2172 while (*p)
2173 {
2174 if (depth <= 0 && (*p == ',' || *p == ')'))
2175 {
ad2f7632
DJ
2176 /* Avoid parsing of ellipsis, they will be handled below.
2177 Also avoid ``void'' as above. */
2178 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2179 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2180 {
ad2f7632 2181 argtypes[argcount].type =
48319d1f 2182 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2183 argcount += 1;
2184 }
2185 argtypetext = p + 1;
2186 }
2187
070ad9f0 2188 if (*p == '(' || *p == '<')
c906108c
SS
2189 {
2190 depth += 1;
2191 }
070ad9f0 2192 else if (*p == ')' || *p == '>')
c906108c
SS
2193 {
2194 depth -= 1;
2195 }
2196
2197 p += 1;
2198 }
2199 }
2200
c906108c
SS
2201 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2202
2203 /* Now update the old "stub" type into a real type. */
2204 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2205 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
2206 TYPE_FIELDS (mtype) = argtypes;
2207 TYPE_NFIELDS (mtype) = argcount;
876cecd0 2208 TYPE_STUB (mtype) = 0;
c906108c 2209 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 2210 if (p[-2] == '.')
876cecd0 2211 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
2212
2213 xfree (demangled_name);
c906108c
SS
2214}
2215
7ba81444
MS
2216/* This is the external interface to check_stub_method, above. This
2217 function unstubs all of the signatures for TYPE's METHOD_ID method
2218 name. After calling this function TYPE_FN_FIELD_STUB will be
2219 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2220 correct.
de17c821
DJ
2221
2222 This function unfortunately can not die until stabs do. */
2223
2224void
2225check_stub_method_group (struct type *type, int method_id)
2226{
2227 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2228 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2229 int j, found_stub = 0;
de17c821
DJ
2230
2231 for (j = 0; j < len; j++)
2232 if (TYPE_FN_FIELD_STUB (f, j))
2233 {
2234 found_stub = 1;
2235 check_stub_method (type, method_id, j);
2236 }
2237
7ba81444
MS
2238 /* GNU v3 methods with incorrect names were corrected when we read
2239 in type information, because it was cheaper to do it then. The
2240 only GNU v2 methods with incorrect method names are operators and
2241 destructors; destructors were also corrected when we read in type
2242 information.
de17c821
DJ
2243
2244 Therefore the only thing we need to handle here are v2 operator
2245 names. */
2246 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2247 {
2248 int ret;
2249 char dem_opname[256];
2250
7ba81444
MS
2251 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2252 method_id),
de17c821
DJ
2253 dem_opname, DMGL_ANSI);
2254 if (!ret)
7ba81444
MS
2255 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2256 method_id),
de17c821
DJ
2257 dem_opname, 0);
2258 if (ret)
2259 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2260 }
2261}
2262
9655fd1a
JK
2263/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2264const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2265
2266void
fba45db2 2267allocate_cplus_struct_type (struct type *type)
c906108c 2268{
b4ba55a1
JB
2269 if (HAVE_CPLUS_STRUCT (type))
2270 /* Structure was already allocated. Nothing more to do. */
2271 return;
2272
2273 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2274 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2275 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2276 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
2277}
2278
b4ba55a1
JB
2279const struct gnat_aux_type gnat_aux_default =
2280 { NULL };
2281
2282/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2283 and allocate the associated gnat-specific data. The gnat-specific
2284 data is also initialized to gnat_aux_default. */
5212577a 2285
b4ba55a1
JB
2286void
2287allocate_gnat_aux_type (struct type *type)
2288{
2289 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2290 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2291 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2292 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2293}
2294
c906108c
SS
2295/* Helper function to initialize the standard scalar types.
2296
86f62fd7
TT
2297 If NAME is non-NULL, then it is used to initialize the type name.
2298 Note that NAME is not copied; it is required to have a lifetime at
2299 least as long as OBJFILE. */
c906108c
SS
2300
2301struct type *
7ba81444 2302init_type (enum type_code code, int length, int flags,
748e18ae 2303 const char *name, struct objfile *objfile)
c906108c 2304{
52f0bd74 2305 struct type *type;
c906108c
SS
2306
2307 type = alloc_type (objfile);
2308 TYPE_CODE (type) = code;
2309 TYPE_LENGTH (type) = length;
876cecd0
TT
2310
2311 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2312 if (flags & TYPE_FLAG_UNSIGNED)
2313 TYPE_UNSIGNED (type) = 1;
2314 if (flags & TYPE_FLAG_NOSIGN)
2315 TYPE_NOSIGN (type) = 1;
2316 if (flags & TYPE_FLAG_STUB)
2317 TYPE_STUB (type) = 1;
2318 if (flags & TYPE_FLAG_TARGET_STUB)
2319 TYPE_TARGET_STUB (type) = 1;
2320 if (flags & TYPE_FLAG_STATIC)
2321 TYPE_STATIC (type) = 1;
2322 if (flags & TYPE_FLAG_PROTOTYPED)
2323 TYPE_PROTOTYPED (type) = 1;
2324 if (flags & TYPE_FLAG_INCOMPLETE)
2325 TYPE_INCOMPLETE (type) = 1;
2326 if (flags & TYPE_FLAG_VARARGS)
2327 TYPE_VARARGS (type) = 1;
2328 if (flags & TYPE_FLAG_VECTOR)
2329 TYPE_VECTOR (type) = 1;
2330 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2331 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2332 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2333 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2334 if (flags & TYPE_FLAG_GNU_IFUNC)
2335 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2336
86f62fd7 2337 TYPE_NAME (type) = name;
c906108c
SS
2338
2339 /* C++ fancies. */
2340
973ccf8b 2341 if (name && strcmp (name, "char") == 0)
876cecd0 2342 TYPE_NOSIGN (type) = 1;
973ccf8b 2343
b4ba55a1 2344 switch (code)
c906108c 2345 {
b4ba55a1
JB
2346 case TYPE_CODE_STRUCT:
2347 case TYPE_CODE_UNION:
2348 case TYPE_CODE_NAMESPACE:
2349 INIT_CPLUS_SPECIFIC (type);
2350 break;
2351 case TYPE_CODE_FLT:
2352 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2353 break;
2354 case TYPE_CODE_FUNC:
b6cdc2c1 2355 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2356 break;
c906108c 2357 }
c16abbde 2358 return type;
c906108c 2359}
5212577a
DE
2360\f
2361/* Queries on types. */
c906108c 2362
c906108c 2363int
fba45db2 2364can_dereference (struct type *t)
c906108c 2365{
7ba81444
MS
2366 /* FIXME: Should we return true for references as well as
2367 pointers? */
c906108c
SS
2368 CHECK_TYPEDEF (t);
2369 return
2370 (t != NULL
2371 && TYPE_CODE (t) == TYPE_CODE_PTR
2372 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2373}
2374
adf40b2e 2375int
fba45db2 2376is_integral_type (struct type *t)
adf40b2e
JM
2377{
2378 CHECK_TYPEDEF (t);
2379 return
2380 ((t != NULL)
d4f3574e
SS
2381 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2382 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2383 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2384 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2385 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2386 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2387}
2388
e09342b5
TJB
2389/* Return true if TYPE is scalar. */
2390
2391static int
2392is_scalar_type (struct type *type)
2393{
2394 CHECK_TYPEDEF (type);
2395
2396 switch (TYPE_CODE (type))
2397 {
2398 case TYPE_CODE_ARRAY:
2399 case TYPE_CODE_STRUCT:
2400 case TYPE_CODE_UNION:
2401 case TYPE_CODE_SET:
2402 case TYPE_CODE_STRING:
e09342b5
TJB
2403 return 0;
2404 default:
2405 return 1;
2406 }
2407}
2408
2409/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2410 the memory layout of a scalar type. E.g., an array or struct with only
2411 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2412
2413int
2414is_scalar_type_recursive (struct type *t)
2415{
2416 CHECK_TYPEDEF (t);
2417
2418 if (is_scalar_type (t))
2419 return 1;
2420 /* Are we dealing with an array or string of known dimensions? */
2421 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2422 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2423 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2424 {
2425 LONGEST low_bound, high_bound;
2426 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2427
2428 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2429
2430 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2431 }
2432 /* Are we dealing with a struct with one element? */
2433 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2434 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2435 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2436 {
2437 int i, n = TYPE_NFIELDS (t);
2438
2439 /* If all elements of the union are scalar, then the union is scalar. */
2440 for (i = 0; i < n; i++)
2441 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2442 return 0;
2443
2444 return 1;
2445 }
2446
2447 return 0;
2448}
2449
4e8f195d
TT
2450/* A helper function which returns true if types A and B represent the
2451 "same" class type. This is true if the types have the same main
2452 type, or the same name. */
2453
2454int
2455class_types_same_p (const struct type *a, const struct type *b)
2456{
2457 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2458 || (TYPE_NAME (a) && TYPE_NAME (b)
2459 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2460}
2461
a9d5ef47
SW
2462/* If BASE is an ancestor of DCLASS return the distance between them.
2463 otherwise return -1;
2464 eg:
2465
2466 class A {};
2467 class B: public A {};
2468 class C: public B {};
2469 class D: C {};
2470
2471 distance_to_ancestor (A, A, 0) = 0
2472 distance_to_ancestor (A, B, 0) = 1
2473 distance_to_ancestor (A, C, 0) = 2
2474 distance_to_ancestor (A, D, 0) = 3
2475
2476 If PUBLIC is 1 then only public ancestors are considered,
2477 and the function returns the distance only if BASE is a public ancestor
2478 of DCLASS.
2479 Eg:
2480
0963b4bd 2481 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2482
0526b37a 2483static int
a9d5ef47 2484distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2485{
2486 int i;
a9d5ef47 2487 int d;
c5aa993b 2488
c906108c
SS
2489 CHECK_TYPEDEF (base);
2490 CHECK_TYPEDEF (dclass);
2491
4e8f195d 2492 if (class_types_same_p (base, dclass))
a9d5ef47 2493 return 0;
c906108c
SS
2494
2495 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2496 {
0526b37a
SW
2497 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2498 continue;
2499
a9d5ef47
SW
2500 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2501 if (d >= 0)
2502 return 1 + d;
4e8f195d 2503 }
c906108c 2504
a9d5ef47 2505 return -1;
c906108c 2506}
4e8f195d 2507
0526b37a
SW
2508/* Check whether BASE is an ancestor or base class or DCLASS
2509 Return 1 if so, and 0 if not.
2510 Note: If BASE and DCLASS are of the same type, this function
2511 will return 1. So for some class A, is_ancestor (A, A) will
2512 return 1. */
2513
2514int
2515is_ancestor (struct type *base, struct type *dclass)
2516{
a9d5ef47 2517 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2518}
2519
4e8f195d
TT
2520/* Like is_ancestor, but only returns true when BASE is a public
2521 ancestor of DCLASS. */
2522
2523int
2524is_public_ancestor (struct type *base, struct type *dclass)
2525{
a9d5ef47 2526 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2527}
2528
2529/* A helper function for is_unique_ancestor. */
2530
2531static int
2532is_unique_ancestor_worker (struct type *base, struct type *dclass,
2533 int *offset,
8af8e3bc
PA
2534 const gdb_byte *valaddr, int embedded_offset,
2535 CORE_ADDR address, struct value *val)
4e8f195d
TT
2536{
2537 int i, count = 0;
2538
2539 CHECK_TYPEDEF (base);
2540 CHECK_TYPEDEF (dclass);
2541
2542 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2543 {
8af8e3bc
PA
2544 struct type *iter;
2545 int this_offset;
4e8f195d 2546
8af8e3bc
PA
2547 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2548
2549 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2550 address, val);
4e8f195d
TT
2551
2552 if (class_types_same_p (base, iter))
2553 {
2554 /* If this is the first subclass, set *OFFSET and set count
2555 to 1. Otherwise, if this is at the same offset as
2556 previous instances, do nothing. Otherwise, increment
2557 count. */
2558 if (*offset == -1)
2559 {
2560 *offset = this_offset;
2561 count = 1;
2562 }
2563 else if (this_offset == *offset)
2564 {
2565 /* Nothing. */
2566 }
2567 else
2568 ++count;
2569 }
2570 else
2571 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2572 valaddr,
2573 embedded_offset + this_offset,
2574 address, val);
4e8f195d
TT
2575 }
2576
2577 return count;
2578}
2579
2580/* Like is_ancestor, but only returns true if BASE is a unique base
2581 class of the type of VAL. */
2582
2583int
2584is_unique_ancestor (struct type *base, struct value *val)
2585{
2586 int offset = -1;
2587
2588 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2589 value_contents_for_printing (val),
2590 value_embedded_offset (val),
2591 value_address (val), val) == 1;
4e8f195d
TT
2592}
2593
c906108c 2594\f
5212577a 2595/* Overload resolution. */
c906108c 2596
6403aeea
SW
2597/* Return the sum of the rank of A with the rank of B. */
2598
2599struct rank
2600sum_ranks (struct rank a, struct rank b)
2601{
2602 struct rank c;
2603 c.rank = a.rank + b.rank;
a9d5ef47 2604 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2605 return c;
2606}
2607
2608/* Compare rank A and B and return:
2609 0 if a = b
2610 1 if a is better than b
2611 -1 if b is better than a. */
2612
2613int
2614compare_ranks (struct rank a, struct rank b)
2615{
2616 if (a.rank == b.rank)
a9d5ef47
SW
2617 {
2618 if (a.subrank == b.subrank)
2619 return 0;
2620 if (a.subrank < b.subrank)
2621 return 1;
2622 if (a.subrank > b.subrank)
2623 return -1;
2624 }
6403aeea
SW
2625
2626 if (a.rank < b.rank)
2627 return 1;
2628
0963b4bd 2629 /* a.rank > b.rank */
6403aeea
SW
2630 return -1;
2631}
c5aa993b 2632
0963b4bd 2633/* Functions for overload resolution begin here. */
c906108c
SS
2634
2635/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2636 0 => A and B are identical
2637 1 => A and B are incomparable
2638 2 => A is better than B
2639 3 => A is worse than B */
c906108c
SS
2640
2641int
fba45db2 2642compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2643{
2644 int i;
2645 int tmp;
c5aa993b
JM
2646 short found_pos = 0; /* any positives in c? */
2647 short found_neg = 0; /* any negatives in c? */
2648
2649 /* differing lengths => incomparable */
c906108c
SS
2650 if (a->length != b->length)
2651 return 1;
2652
c5aa993b
JM
2653 /* Subtract b from a */
2654 for (i = 0; i < a->length; i++)
c906108c 2655 {
6403aeea 2656 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2657 if (tmp > 0)
c5aa993b 2658 found_pos = 1;
c906108c 2659 else if (tmp < 0)
c5aa993b 2660 found_neg = 1;
c906108c
SS
2661 }
2662
2663 if (found_pos)
2664 {
2665 if (found_neg)
c5aa993b 2666 return 1; /* incomparable */
c906108c 2667 else
c5aa993b 2668 return 3; /* A > B */
c906108c 2669 }
c5aa993b
JM
2670 else
2671 /* no positives */
c906108c
SS
2672 {
2673 if (found_neg)
c5aa993b 2674 return 2; /* A < B */
c906108c 2675 else
c5aa993b 2676 return 0; /* A == B */
c906108c
SS
2677 }
2678}
2679
7ba81444
MS
2680/* Rank a function by comparing its parameter types (PARMS, length
2681 NPARMS), to the types of an argument list (ARGS, length NARGS).
2682 Return a pointer to a badness vector. This has NARGS + 1
2683 entries. */
c906108c
SS
2684
2685struct badness_vector *
7ba81444 2686rank_function (struct type **parms, int nparms,
da096638 2687 struct value **args, int nargs)
c906108c
SS
2688{
2689 int i;
c5aa993b 2690 struct badness_vector *bv;
c906108c
SS
2691 int min_len = nparms < nargs ? nparms : nargs;
2692
2693 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2694 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2695 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2696
2697 /* First compare the lengths of the supplied lists.
7ba81444 2698 If there is a mismatch, set it to a high value. */
c5aa993b 2699
c906108c 2700 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2701 arguments and ellipsis parameter lists, we should consider those
2702 and rank the length-match more finely. */
c906108c 2703
6403aeea
SW
2704 LENGTH_MATCH (bv) = (nargs != nparms)
2705 ? LENGTH_MISMATCH_BADNESS
2706 : EXACT_MATCH_BADNESS;
c906108c 2707
0963b4bd 2708 /* Now rank all the parameters of the candidate function. */
74cc24b0 2709 for (i = 1; i <= min_len; i++)
da096638
KS
2710 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2711 args[i - 1]);
c906108c 2712
0963b4bd 2713 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2714 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2715 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2716
2717 return bv;
2718}
2719
973ccf8b
DJ
2720/* Compare the names of two integer types, assuming that any sign
2721 qualifiers have been checked already. We do it this way because
2722 there may be an "int" in the name of one of the types. */
2723
2724static int
2725integer_types_same_name_p (const char *first, const char *second)
2726{
2727 int first_p, second_p;
2728
7ba81444
MS
2729 /* If both are shorts, return 1; if neither is a short, keep
2730 checking. */
973ccf8b
DJ
2731 first_p = (strstr (first, "short") != NULL);
2732 second_p = (strstr (second, "short") != NULL);
2733 if (first_p && second_p)
2734 return 1;
2735 if (first_p || second_p)
2736 return 0;
2737
2738 /* Likewise for long. */
2739 first_p = (strstr (first, "long") != NULL);
2740 second_p = (strstr (second, "long") != NULL);
2741 if (first_p && second_p)
2742 return 1;
2743 if (first_p || second_p)
2744 return 0;
2745
2746 /* Likewise for char. */
2747 first_p = (strstr (first, "char") != NULL);
2748 second_p = (strstr (second, "char") != NULL);
2749 if (first_p && second_p)
2750 return 1;
2751 if (first_p || second_p)
2752 return 0;
2753
2754 /* They must both be ints. */
2755 return 1;
2756}
2757
7062b0a0
SW
2758/* Compares type A to type B returns 1 if the represent the same type
2759 0 otherwise. */
2760
bd69fc68 2761int
7062b0a0
SW
2762types_equal (struct type *a, struct type *b)
2763{
2764 /* Identical type pointers. */
2765 /* However, this still doesn't catch all cases of same type for b
2766 and a. The reason is that builtin types are different from
2767 the same ones constructed from the object. */
2768 if (a == b)
2769 return 1;
2770
2771 /* Resolve typedefs */
2772 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2773 a = check_typedef (a);
2774 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2775 b = check_typedef (b);
2776
2777 /* If after resolving typedefs a and b are not of the same type
2778 code then they are not equal. */
2779 if (TYPE_CODE (a) != TYPE_CODE (b))
2780 return 0;
2781
2782 /* If a and b are both pointers types or both reference types then
2783 they are equal of the same type iff the objects they refer to are
2784 of the same type. */
2785 if (TYPE_CODE (a) == TYPE_CODE_PTR
2786 || TYPE_CODE (a) == TYPE_CODE_REF)
2787 return types_equal (TYPE_TARGET_TYPE (a),
2788 TYPE_TARGET_TYPE (b));
2789
0963b4bd 2790 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2791 are exactly the same. This happens when we generate method
2792 stubs. The types won't point to the same address, but they
0963b4bd 2793 really are the same. */
7062b0a0
SW
2794
2795 if (TYPE_NAME (a) && TYPE_NAME (b)
2796 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2797 return 1;
2798
2799 /* Check if identical after resolving typedefs. */
2800 if (a == b)
2801 return 1;
2802
9ce98649
TT
2803 /* Two function types are equal if their argument and return types
2804 are equal. */
2805 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2806 {
2807 int i;
2808
2809 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2810 return 0;
2811
2812 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2813 return 0;
2814
2815 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2816 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2817 return 0;
2818
2819 return 1;
2820 }
2821
7062b0a0
SW
2822 return 0;
2823}
ca092b61
DE
2824\f
2825/* Deep comparison of types. */
2826
2827/* An entry in the type-equality bcache. */
2828
2829typedef struct type_equality_entry
2830{
2831 struct type *type1, *type2;
2832} type_equality_entry_d;
2833
2834DEF_VEC_O (type_equality_entry_d);
2835
2836/* A helper function to compare two strings. Returns 1 if they are
2837 the same, 0 otherwise. Handles NULLs properly. */
2838
2839static int
2840compare_maybe_null_strings (const char *s, const char *t)
2841{
2842 if (s == NULL && t != NULL)
2843 return 0;
2844 else if (s != NULL && t == NULL)
2845 return 0;
2846 else if (s == NULL && t== NULL)
2847 return 1;
2848 return strcmp (s, t) == 0;
2849}
2850
2851/* A helper function for check_types_worklist that checks two types for
2852 "deep" equality. Returns non-zero if the types are considered the
2853 same, zero otherwise. */
2854
2855static int
2856check_types_equal (struct type *type1, struct type *type2,
2857 VEC (type_equality_entry_d) **worklist)
2858{
2859 CHECK_TYPEDEF (type1);
2860 CHECK_TYPEDEF (type2);
2861
2862 if (type1 == type2)
2863 return 1;
2864
2865 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2866 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2867 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2868 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2869 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2870 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2871 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2872 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2873 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2874 return 0;
2875
2876 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2877 TYPE_TAG_NAME (type2)))
2878 return 0;
2879 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2880 return 0;
2881
2882 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2883 {
2884 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2885 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2886 return 0;
2887 }
2888 else
2889 {
2890 int i;
2891
2892 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2893 {
2894 const struct field *field1 = &TYPE_FIELD (type1, i);
2895 const struct field *field2 = &TYPE_FIELD (type2, i);
2896 struct type_equality_entry entry;
2897
2898 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2899 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2900 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2901 return 0;
2902 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2903 FIELD_NAME (*field2)))
2904 return 0;
2905 switch (FIELD_LOC_KIND (*field1))
2906 {
2907 case FIELD_LOC_KIND_BITPOS:
2908 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2909 return 0;
2910 break;
2911 case FIELD_LOC_KIND_ENUMVAL:
2912 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2913 return 0;
2914 break;
2915 case FIELD_LOC_KIND_PHYSADDR:
2916 if (FIELD_STATIC_PHYSADDR (*field1)
2917 != FIELD_STATIC_PHYSADDR (*field2))
2918 return 0;
2919 break;
2920 case FIELD_LOC_KIND_PHYSNAME:
2921 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2922 FIELD_STATIC_PHYSNAME (*field2)))
2923 return 0;
2924 break;
2925 case FIELD_LOC_KIND_DWARF_BLOCK:
2926 {
2927 struct dwarf2_locexpr_baton *block1, *block2;
2928
2929 block1 = FIELD_DWARF_BLOCK (*field1);
2930 block2 = FIELD_DWARF_BLOCK (*field2);
2931 if (block1->per_cu != block2->per_cu
2932 || block1->size != block2->size
2933 || memcmp (block1->data, block2->data, block1->size) != 0)
2934 return 0;
2935 }
2936 break;
2937 default:
2938 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2939 "%d by check_types_equal"),
2940 FIELD_LOC_KIND (*field1));
2941 }
2942
2943 entry.type1 = FIELD_TYPE (*field1);
2944 entry.type2 = FIELD_TYPE (*field2);
2945 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2946 }
2947 }
2948
2949 if (TYPE_TARGET_TYPE (type1) != NULL)
2950 {
2951 struct type_equality_entry entry;
2952
2953 if (TYPE_TARGET_TYPE (type2) == NULL)
2954 return 0;
2955
2956 entry.type1 = TYPE_TARGET_TYPE (type1);
2957 entry.type2 = TYPE_TARGET_TYPE (type2);
2958 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2959 }
2960 else if (TYPE_TARGET_TYPE (type2) != NULL)
2961 return 0;
2962
2963 return 1;
2964}
2965
2966/* Check types on a worklist for equality. Returns zero if any pair
2967 is not equal, non-zero if they are all considered equal. */
2968
2969static int
2970check_types_worklist (VEC (type_equality_entry_d) **worklist,
2971 struct bcache *cache)
2972{
2973 while (!VEC_empty (type_equality_entry_d, *worklist))
2974 {
2975 struct type_equality_entry entry;
2976 int added;
2977
2978 entry = *VEC_last (type_equality_entry_d, *worklist);
2979 VEC_pop (type_equality_entry_d, *worklist);
2980
2981 /* If the type pair has already been visited, we know it is
2982 ok. */
2983 bcache_full (&entry, sizeof (entry), cache, &added);
2984 if (!added)
2985 continue;
2986
2987 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2988 return 0;
2989 }
7062b0a0 2990
ca092b61
DE
2991 return 1;
2992}
2993
2994/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2995 "deep comparison". Otherwise return zero. */
2996
2997int
2998types_deeply_equal (struct type *type1, struct type *type2)
2999{
3000 volatile struct gdb_exception except;
3001 int result = 0;
3002 struct bcache *cache;
3003 VEC (type_equality_entry_d) *worklist = NULL;
3004 struct type_equality_entry entry;
3005
3006 gdb_assert (type1 != NULL && type2 != NULL);
3007
3008 /* Early exit for the simple case. */
3009 if (type1 == type2)
3010 return 1;
3011
3012 cache = bcache_xmalloc (NULL, NULL);
3013
3014 entry.type1 = type1;
3015 entry.type2 = type2;
3016 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3017
3018 TRY_CATCH (except, RETURN_MASK_ALL)
3019 {
3020 result = check_types_worklist (&worklist, cache);
3021 }
3022 /* check_types_worklist calls several nested helper functions,
3023 some of which can raise a GDB Exception, so we just check
3024 and rethrow here. If there is a GDB exception, a comparison
3025 is not capable (or trusted), so exit. */
3026 bcache_xfree (cache);
3027 VEC_free (type_equality_entry_d, worklist);
3028 /* Rethrow if there was a problem. */
3029 if (except.reason < 0)
3030 throw_exception (except);
3031
3032 return result;
3033}
3034\f
c906108c
SS
3035/* Compare one type (PARM) for compatibility with another (ARG).
3036 * PARM is intended to be the parameter type of a function; and
3037 * ARG is the supplied argument's type. This function tests if
3038 * the latter can be converted to the former.
da096638 3039 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3040 *
3041 * Return 0 if they are identical types;
3042 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3043 * PARM is to ARG. The higher the return value, the worse the match.
3044 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3045
6403aeea 3046struct rank
da096638 3047rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3048{
a9d5ef47 3049 struct rank rank = {0,0};
7062b0a0
SW
3050
3051 if (types_equal (parm, arg))
6403aeea 3052 return EXACT_MATCH_BADNESS;
c906108c
SS
3053
3054 /* Resolve typedefs */
3055 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3056 parm = check_typedef (parm);
3057 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3058 arg = check_typedef (arg);
3059
db577aea 3060 /* See through references, since we can almost make non-references
7ba81444 3061 references. */
db577aea 3062 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3063 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3064 REFERENCE_CONVERSION_BADNESS));
db577aea 3065 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3066 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3067 REFERENCE_CONVERSION_BADNESS));
5d161b24 3068 if (overload_debug)
7ba81444
MS
3069 /* Debugging only. */
3070 fprintf_filtered (gdb_stderr,
3071 "------ Arg is %s [%d], parm is %s [%d]\n",
3072 TYPE_NAME (arg), TYPE_CODE (arg),
3073 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3074
0963b4bd 3075 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3076
3077 switch (TYPE_CODE (parm))
3078 {
c5aa993b
JM
3079 case TYPE_CODE_PTR:
3080 switch (TYPE_CODE (arg))
3081 {
3082 case TYPE_CODE_PTR:
7062b0a0
SW
3083
3084 /* Allowed pointer conversions are:
3085 (a) pointer to void-pointer conversion. */
3086 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3087 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3088
3089 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3090 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3091 TYPE_TARGET_TYPE (arg),
3092 0);
3093 if (rank.subrank >= 0)
3094 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3095
3096 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3097 case TYPE_CODE_ARRAY:
7062b0a0
SW
3098 if (types_equal (TYPE_TARGET_TYPE (parm),
3099 TYPE_TARGET_TYPE (arg)))
6403aeea 3100 return EXACT_MATCH_BADNESS;
7062b0a0 3101 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3102 case TYPE_CODE_FUNC:
da096638 3103 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3104 case TYPE_CODE_INT:
a451cb65 3105 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3106 {
a451cb65
KS
3107 if (value_as_long (value) == 0)
3108 {
3109 /* Null pointer conversion: allow it to be cast to a pointer.
3110 [4.10.1 of C++ standard draft n3290] */
3111 return NULL_POINTER_CONVERSION_BADNESS;
3112 }
3113 else
3114 {
3115 /* If type checking is disabled, allow the conversion. */
3116 if (!strict_type_checking)
3117 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3118 }
da096638
KS
3119 }
3120 /* fall through */
c5aa993b 3121 case TYPE_CODE_ENUM:
4f2aea11 3122 case TYPE_CODE_FLAGS:
c5aa993b
JM
3123 case TYPE_CODE_CHAR:
3124 case TYPE_CODE_RANGE:
3125 case TYPE_CODE_BOOL:
c5aa993b
JM
3126 default:
3127 return INCOMPATIBLE_TYPE_BADNESS;
3128 }
3129 case TYPE_CODE_ARRAY:
3130 switch (TYPE_CODE (arg))
3131 {
3132 case TYPE_CODE_PTR:
3133 case TYPE_CODE_ARRAY:
7ba81444 3134 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3135 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3136 default:
3137 return INCOMPATIBLE_TYPE_BADNESS;
3138 }
3139 case TYPE_CODE_FUNC:
3140 switch (TYPE_CODE (arg))
3141 {
3142 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3143 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3144 default:
3145 return INCOMPATIBLE_TYPE_BADNESS;
3146 }
3147 case TYPE_CODE_INT:
3148 switch (TYPE_CODE (arg))
3149 {
3150 case TYPE_CODE_INT:
3151 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3152 {
3153 /* Deal with signed, unsigned, and plain chars and
7ba81444 3154 signed and unsigned ints. */
c5aa993b
JM
3155 if (TYPE_NOSIGN (parm))
3156 {
0963b4bd 3157 /* This case only for character types. */
7ba81444 3158 if (TYPE_NOSIGN (arg))
6403aeea 3159 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3160 else /* signed/unsigned char -> plain char */
3161 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3162 }
3163 else if (TYPE_UNSIGNED (parm))
3164 {
3165 if (TYPE_UNSIGNED (arg))
3166 {
7ba81444
MS
3167 /* unsigned int -> unsigned int, or
3168 unsigned long -> unsigned long */
3169 if (integer_types_same_name_p (TYPE_NAME (parm),
3170 TYPE_NAME (arg)))
6403aeea 3171 return EXACT_MATCH_BADNESS;
7ba81444
MS
3172 else if (integer_types_same_name_p (TYPE_NAME (arg),
3173 "int")
3174 && integer_types_same_name_p (TYPE_NAME (parm),
3175 "long"))
3e43a32a
MS
3176 /* unsigned int -> unsigned long */
3177 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3178 else
3e43a32a
MS
3179 /* unsigned long -> unsigned int */
3180 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3181 }
3182 else
3183 {
7ba81444
MS
3184 if (integer_types_same_name_p (TYPE_NAME (arg),
3185 "long")
3186 && integer_types_same_name_p (TYPE_NAME (parm),
3187 "int"))
3e43a32a
MS
3188 /* signed long -> unsigned int */
3189 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3190 else
3e43a32a
MS
3191 /* signed int/long -> unsigned int/long */
3192 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3193 }
3194 }
3195 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3196 {
7ba81444
MS
3197 if (integer_types_same_name_p (TYPE_NAME (parm),
3198 TYPE_NAME (arg)))
6403aeea 3199 return EXACT_MATCH_BADNESS;
7ba81444
MS
3200 else if (integer_types_same_name_p (TYPE_NAME (arg),
3201 "int")
3202 && integer_types_same_name_p (TYPE_NAME (parm),
3203 "long"))
c5aa993b
JM
3204 return INTEGER_PROMOTION_BADNESS;
3205 else
1c5cb38e 3206 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3207 }
3208 else
1c5cb38e 3209 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3210 }
3211 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3212 return INTEGER_PROMOTION_BADNESS;
3213 else
1c5cb38e 3214 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3215 case TYPE_CODE_ENUM:
4f2aea11 3216 case TYPE_CODE_FLAGS:
c5aa993b
JM
3217 case TYPE_CODE_CHAR:
3218 case TYPE_CODE_RANGE:
3219 case TYPE_CODE_BOOL:
3d567982
TT
3220 if (TYPE_DECLARED_CLASS (arg))
3221 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3222 return INTEGER_PROMOTION_BADNESS;
3223 case TYPE_CODE_FLT:
3224 return INT_FLOAT_CONVERSION_BADNESS;
3225 case TYPE_CODE_PTR:
3226 return NS_POINTER_CONVERSION_BADNESS;
3227 default:
3228 return INCOMPATIBLE_TYPE_BADNESS;
3229 }
3230 break;
3231 case TYPE_CODE_ENUM:
3232 switch (TYPE_CODE (arg))
3233 {
3234 case TYPE_CODE_INT:
3235 case TYPE_CODE_CHAR:
3236 case TYPE_CODE_RANGE:
3237 case TYPE_CODE_BOOL:
3238 case TYPE_CODE_ENUM:
3d567982
TT
3239 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3240 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3241 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3242 case TYPE_CODE_FLT:
3243 return INT_FLOAT_CONVERSION_BADNESS;
3244 default:
3245 return INCOMPATIBLE_TYPE_BADNESS;
3246 }
3247 break;
3248 case TYPE_CODE_CHAR:
3249 switch (TYPE_CODE (arg))
3250 {
3251 case TYPE_CODE_RANGE:
3252 case TYPE_CODE_BOOL:
3253 case TYPE_CODE_ENUM:
3d567982
TT
3254 if (TYPE_DECLARED_CLASS (arg))
3255 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3256 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3257 case TYPE_CODE_FLT:
3258 return INT_FLOAT_CONVERSION_BADNESS;
3259 case TYPE_CODE_INT:
3260 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3261 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3262 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3263 return INTEGER_PROMOTION_BADNESS;
3264 /* >>> !! else fall through !! <<< */
3265 case TYPE_CODE_CHAR:
7ba81444
MS
3266 /* Deal with signed, unsigned, and plain chars for C++ and
3267 with int cases falling through from previous case. */
c5aa993b
JM
3268 if (TYPE_NOSIGN (parm))
3269 {
3270 if (TYPE_NOSIGN (arg))
6403aeea 3271 return EXACT_MATCH_BADNESS;
c5aa993b 3272 else
1c5cb38e 3273 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3274 }
3275 else if (TYPE_UNSIGNED (parm))
3276 {
3277 if (TYPE_UNSIGNED (arg))
6403aeea 3278 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3279 else
3280 return INTEGER_PROMOTION_BADNESS;
3281 }
3282 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3283 return EXACT_MATCH_BADNESS;
c5aa993b 3284 else
1c5cb38e 3285 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3286 default:
3287 return INCOMPATIBLE_TYPE_BADNESS;
3288 }
3289 break;
3290 case TYPE_CODE_RANGE:
3291 switch (TYPE_CODE (arg))
3292 {
3293 case TYPE_CODE_INT:
3294 case TYPE_CODE_CHAR:
3295 case TYPE_CODE_RANGE:
3296 case TYPE_CODE_BOOL:
3297 case TYPE_CODE_ENUM:
1c5cb38e 3298 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3299 case TYPE_CODE_FLT:
3300 return INT_FLOAT_CONVERSION_BADNESS;
3301 default:
3302 return INCOMPATIBLE_TYPE_BADNESS;
3303 }
3304 break;
3305 case TYPE_CODE_BOOL:
3306 switch (TYPE_CODE (arg))
3307 {
5b4f6e25
KS
3308 /* n3290 draft, section 4.12.1 (conv.bool):
3309
3310 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3311 pointer to member type can be converted to a prvalue of type
3312 bool. A zero value, null pointer value, or null member pointer
3313 value is converted to false; any other value is converted to
3314 true. A prvalue of type std::nullptr_t can be converted to a
3315 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3316 case TYPE_CODE_INT:
3317 case TYPE_CODE_CHAR:
c5aa993b
JM
3318 case TYPE_CODE_ENUM:
3319 case TYPE_CODE_FLT:
5b4f6e25 3320 case TYPE_CODE_MEMBERPTR:
c5aa993b 3321 case TYPE_CODE_PTR:
5b4f6e25
KS
3322 return BOOL_CONVERSION_BADNESS;
3323 case TYPE_CODE_RANGE:
3324 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3325 case TYPE_CODE_BOOL:
6403aeea 3326 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3327 default:
3328 return INCOMPATIBLE_TYPE_BADNESS;
3329 }
3330 break;
3331 case TYPE_CODE_FLT:
3332 switch (TYPE_CODE (arg))
3333 {
3334 case TYPE_CODE_FLT:
3335 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3336 return FLOAT_PROMOTION_BADNESS;
3337 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3338 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3339 else
3340 return FLOAT_CONVERSION_BADNESS;
3341 case TYPE_CODE_INT:
3342 case TYPE_CODE_BOOL:
3343 case TYPE_CODE_ENUM:
3344 case TYPE_CODE_RANGE:
3345 case TYPE_CODE_CHAR:
3346 return INT_FLOAT_CONVERSION_BADNESS;
3347 default:
3348 return INCOMPATIBLE_TYPE_BADNESS;
3349 }
3350 break;
3351 case TYPE_CODE_COMPLEX:
3352 switch (TYPE_CODE (arg))
7ba81444 3353 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3354 case TYPE_CODE_FLT:
3355 return FLOAT_PROMOTION_BADNESS;
3356 case TYPE_CODE_COMPLEX:
6403aeea 3357 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3358 default:
3359 return INCOMPATIBLE_TYPE_BADNESS;
3360 }
3361 break;
3362 case TYPE_CODE_STRUCT:
0963b4bd 3363 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
3364 switch (TYPE_CODE (arg))
3365 {
3366 case TYPE_CODE_STRUCT:
3367 /* Check for derivation */
a9d5ef47
SW
3368 rank.subrank = distance_to_ancestor (parm, arg, 0);
3369 if (rank.subrank >= 0)
3370 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3371 /* else fall through */
3372 default:
3373 return INCOMPATIBLE_TYPE_BADNESS;
3374 }
3375 break;
3376 case TYPE_CODE_UNION:
3377 switch (TYPE_CODE (arg))
3378 {
3379 case TYPE_CODE_UNION:
3380 default:
3381 return INCOMPATIBLE_TYPE_BADNESS;
3382 }
3383 break;
0d5de010 3384 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3385 switch (TYPE_CODE (arg))
3386 {
3387 default:
3388 return INCOMPATIBLE_TYPE_BADNESS;
3389 }
3390 break;
3391 case TYPE_CODE_METHOD:
3392 switch (TYPE_CODE (arg))
3393 {
3394
3395 default:
3396 return INCOMPATIBLE_TYPE_BADNESS;
3397 }
3398 break;
3399 case TYPE_CODE_REF:
3400 switch (TYPE_CODE (arg))
3401 {
3402
3403 default:
3404 return INCOMPATIBLE_TYPE_BADNESS;
3405 }
3406
3407 break;
3408 case TYPE_CODE_SET:
3409 switch (TYPE_CODE (arg))
3410 {
3411 /* Not in C++ */
3412 case TYPE_CODE_SET:
7ba81444 3413 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3414 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3415 default:
3416 return INCOMPATIBLE_TYPE_BADNESS;
3417 }
3418 break;
3419 case TYPE_CODE_VOID:
3420 default:
3421 return INCOMPATIBLE_TYPE_BADNESS;
3422 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3423}
3424
0963b4bd 3425/* End of functions for overload resolution. */
5212577a
DE
3426\f
3427/* Routines to pretty-print types. */
c906108c 3428
c906108c 3429static void
fba45db2 3430print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3431{
3432 int bitno;
3433
3434 for (bitno = 0; bitno < nbits; bitno++)
3435 {
3436 if ((bitno % 8) == 0)
3437 {
3438 puts_filtered (" ");
3439 }
3440 if (B_TST (bits, bitno))
a3f17187 3441 printf_filtered (("1"));
c906108c 3442 else
a3f17187 3443 printf_filtered (("0"));
c906108c
SS
3444 }
3445}
3446
ad2f7632 3447/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3448 include it since we may get into a infinitely recursive
3449 situation. */
c906108c
SS
3450
3451static void
ad2f7632 3452print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
3453{
3454 if (args != NULL)
3455 {
ad2f7632
DJ
3456 int i;
3457
3458 for (i = 0; i < nargs; i++)
3459 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
3460 }
3461}
3462
d6a843b5
JK
3463int
3464field_is_static (struct field *f)
3465{
3466 /* "static" fields are the fields whose location is not relative
3467 to the address of the enclosing struct. It would be nice to
3468 have a dedicated flag that would be set for static fields when
3469 the type is being created. But in practice, checking the field
254e6b9e 3470 loc_kind should give us an accurate answer. */
d6a843b5
JK
3471 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3472 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3473}
3474
c906108c 3475static void
fba45db2 3476dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3477{
3478 int method_idx;
3479 int overload_idx;
3480 struct fn_field *f;
3481
3482 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3483 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3484 printf_filtered ("\n");
3485 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3486 {
3487 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3488 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3489 method_idx,
3490 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3491 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3492 gdb_stdout);
a3f17187 3493 printf_filtered (_(") length %d\n"),
c906108c
SS
3494 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3495 for (overload_idx = 0;
3496 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3497 overload_idx++)
3498 {
3499 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3500 overload_idx,
3501 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3502 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3503 gdb_stdout);
c906108c
SS
3504 printf_filtered (")\n");
3505 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3506 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3507 gdb_stdout);
c906108c
SS
3508 printf_filtered ("\n");
3509
3510 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3511 spaces + 8 + 2);
3512
3513 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3514 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3515 gdb_stdout);
c906108c
SS
3516 printf_filtered ("\n");
3517
ad2f7632 3518 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
3519 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3520 overload_idx)),
ad2f7632 3521 spaces);
c906108c 3522 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3523 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3524 gdb_stdout);
c906108c
SS
3525 printf_filtered ("\n");
3526
3527 printfi_filtered (spaces + 8, "is_const %d\n",
3528 TYPE_FN_FIELD_CONST (f, overload_idx));
3529 printfi_filtered (spaces + 8, "is_volatile %d\n",
3530 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3531 printfi_filtered (spaces + 8, "is_private %d\n",
3532 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3533 printfi_filtered (spaces + 8, "is_protected %d\n",
3534 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3535 printfi_filtered (spaces + 8, "is_stub %d\n",
3536 TYPE_FN_FIELD_STUB (f, overload_idx));
3537 printfi_filtered (spaces + 8, "voffset %u\n",
3538 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3539 }
3540 }
3541}
3542
3543static void
fba45db2 3544print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
3545{
3546 printfi_filtered (spaces, "n_baseclasses %d\n",
3547 TYPE_N_BASECLASSES (type));
3548 printfi_filtered (spaces, "nfn_fields %d\n",
3549 TYPE_NFN_FIELDS (type));
c906108c
SS
3550 if (TYPE_N_BASECLASSES (type) > 0)
3551 {
3552 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3553 TYPE_N_BASECLASSES (type));
7ba81444
MS
3554 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3555 gdb_stdout);
c906108c
SS
3556 printf_filtered (")");
3557
3558 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3559 TYPE_N_BASECLASSES (type));
3560 puts_filtered ("\n");
3561 }
3562 if (TYPE_NFIELDS (type) > 0)
3563 {
3564 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3565 {
7ba81444
MS
3566 printfi_filtered (spaces,
3567 "private_field_bits (%d bits at *",
c906108c 3568 TYPE_NFIELDS (type));
7ba81444
MS
3569 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3570 gdb_stdout);
c906108c
SS
3571 printf_filtered (")");
3572 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3573 TYPE_NFIELDS (type));
3574 puts_filtered ("\n");
3575 }
3576 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3577 {
7ba81444
MS
3578 printfi_filtered (spaces,
3579 "protected_field_bits (%d bits at *",
c906108c 3580 TYPE_NFIELDS (type));
7ba81444
MS
3581 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3582 gdb_stdout);
c906108c
SS
3583 printf_filtered (")");
3584 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3585 TYPE_NFIELDS (type));
3586 puts_filtered ("\n");
3587 }
3588 }
3589 if (TYPE_NFN_FIELDS (type) > 0)
3590 {
3591 dump_fn_fieldlists (type, spaces);
3592 }
3593}
3594
b4ba55a1
JB
3595/* Print the contents of the TYPE's type_specific union, assuming that
3596 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3597
3598static void
3599print_gnat_stuff (struct type *type, int spaces)
3600{
3601 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3602
3603 recursive_dump_type (descriptive_type, spaces + 2);
3604}
3605
c906108c
SS
3606static struct obstack dont_print_type_obstack;
3607
3608void
fba45db2 3609recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3610{
3611 int idx;
3612
3613 if (spaces == 0)
3614 obstack_begin (&dont_print_type_obstack, 0);
3615
3616 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3617 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3618 {
3619 struct type **first_dont_print
7ba81444 3620 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3621
7ba81444
MS
3622 int i = (struct type **)
3623 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3624
3625 while (--i >= 0)
3626 {
3627 if (type == first_dont_print[i])
3628 {
3629 printfi_filtered (spaces, "type node ");
d4f3574e 3630 gdb_print_host_address (type, gdb_stdout);
a3f17187 3631 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3632 return;
3633 }
3634 }
3635
3636 obstack_ptr_grow (&dont_print_type_obstack, type);
3637 }
3638
3639 printfi_filtered (spaces, "type node ");
d4f3574e 3640 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3641 printf_filtered ("\n");
3642 printfi_filtered (spaces, "name '%s' (",
3643 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3644 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3645 printf_filtered (")\n");
e9e79dd9
FF
3646 printfi_filtered (spaces, "tagname '%s' (",
3647 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3648 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3649 printf_filtered (")\n");
c906108c
SS
3650 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3651 switch (TYPE_CODE (type))
3652 {
c5aa993b
JM
3653 case TYPE_CODE_UNDEF:
3654 printf_filtered ("(TYPE_CODE_UNDEF)");
3655 break;
3656 case TYPE_CODE_PTR:
3657 printf_filtered ("(TYPE_CODE_PTR)");
3658 break;
3659 case TYPE_CODE_ARRAY:
3660 printf_filtered ("(TYPE_CODE_ARRAY)");
3661 break;
3662 case TYPE_CODE_STRUCT:
3663 printf_filtered ("(TYPE_CODE_STRUCT)");
3664 break;
3665 case TYPE_CODE_UNION:
3666 printf_filtered ("(TYPE_CODE_UNION)");
3667 break;
3668 case TYPE_CODE_ENUM:
3669 printf_filtered ("(TYPE_CODE_ENUM)");
3670 break;
4f2aea11
MK
3671 case TYPE_CODE_FLAGS:
3672 printf_filtered ("(TYPE_CODE_FLAGS)");
3673 break;
c5aa993b
JM
3674 case TYPE_CODE_FUNC:
3675 printf_filtered ("(TYPE_CODE_FUNC)");
3676 break;
3677 case TYPE_CODE_INT:
3678 printf_filtered ("(TYPE_CODE_INT)");
3679 break;
3680 case TYPE_CODE_FLT:
3681 printf_filtered ("(TYPE_CODE_FLT)");
3682 break;
3683 case TYPE_CODE_VOID:
3684 printf_filtered ("(TYPE_CODE_VOID)");
3685 break;
3686 case TYPE_CODE_SET:
3687 printf_filtered ("(TYPE_CODE_SET)");
3688 break;
3689 case TYPE_CODE_RANGE:
3690 printf_filtered ("(TYPE_CODE_RANGE)");
3691 break;
3692 case TYPE_CODE_STRING:
3693 printf_filtered ("(TYPE_CODE_STRING)");
3694 break;
3695 case TYPE_CODE_ERROR:
3696 printf_filtered ("(TYPE_CODE_ERROR)");
3697 break;
0d5de010
DJ
3698 case TYPE_CODE_MEMBERPTR:
3699 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3700 break;
3701 case TYPE_CODE_METHODPTR:
3702 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3703 break;
3704 case TYPE_CODE_METHOD:
3705 printf_filtered ("(TYPE_CODE_METHOD)");
3706 break;
3707 case TYPE_CODE_REF:
3708 printf_filtered ("(TYPE_CODE_REF)");
3709 break;
3710 case TYPE_CODE_CHAR:
3711 printf_filtered ("(TYPE_CODE_CHAR)");
3712 break;
3713 case TYPE_CODE_BOOL:
3714 printf_filtered ("(TYPE_CODE_BOOL)");
3715 break;
e9e79dd9
FF
3716 case TYPE_CODE_COMPLEX:
3717 printf_filtered ("(TYPE_CODE_COMPLEX)");
3718 break;
c5aa993b
JM
3719 case TYPE_CODE_TYPEDEF:
3720 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3721 break;
5c4e30ca
DC
3722 case TYPE_CODE_NAMESPACE:
3723 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3724 break;
c5aa993b
JM
3725 default:
3726 printf_filtered ("(UNKNOWN TYPE CODE)");
3727 break;
c906108c
SS
3728 }
3729 puts_filtered ("\n");
3730 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3731 if (TYPE_OBJFILE_OWNED (type))
3732 {
3733 printfi_filtered (spaces, "objfile ");
3734 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3735 }
3736 else
3737 {
3738 printfi_filtered (spaces, "gdbarch ");
3739 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3740 }
c906108c
SS
3741 printf_filtered ("\n");
3742 printfi_filtered (spaces, "target_type ");
d4f3574e 3743 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3744 printf_filtered ("\n");
3745 if (TYPE_TARGET_TYPE (type) != NULL)
3746 {
3747 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3748 }
3749 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3750 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3751 printf_filtered ("\n");
3752 printfi_filtered (spaces, "reference_type ");
d4f3574e 3753 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3754 printf_filtered ("\n");
2fdde8f8
DJ
3755 printfi_filtered (spaces, "type_chain ");
3756 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3757 printf_filtered ("\n");
7ba81444
MS
3758 printfi_filtered (spaces, "instance_flags 0x%x",
3759 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3760 if (TYPE_CONST (type))
3761 {
3762 puts_filtered (" TYPE_FLAG_CONST");
3763 }
3764 if (TYPE_VOLATILE (type))
3765 {
3766 puts_filtered (" TYPE_FLAG_VOLATILE");
3767 }
3768 if (TYPE_CODE_SPACE (type))
3769 {
3770 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3771 }
3772 if (TYPE_DATA_SPACE (type))
3773 {
3774 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3775 }
8b2dbe47
KB
3776 if (TYPE_ADDRESS_CLASS_1 (type))
3777 {
3778 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3779 }
3780 if (TYPE_ADDRESS_CLASS_2 (type))
3781 {
3782 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3783 }
06d66ee9
TT
3784 if (TYPE_RESTRICT (type))
3785 {
3786 puts_filtered (" TYPE_FLAG_RESTRICT");
3787 }
2fdde8f8 3788 puts_filtered ("\n");
876cecd0
TT
3789
3790 printfi_filtered (spaces, "flags");
762a036f 3791 if (TYPE_UNSIGNED (type))
c906108c
SS
3792 {
3793 puts_filtered (" TYPE_FLAG_UNSIGNED");
3794 }
762a036f
FF
3795 if (TYPE_NOSIGN (type))
3796 {
3797 puts_filtered (" TYPE_FLAG_NOSIGN");
3798 }
3799 if (TYPE_STUB (type))
c906108c
SS
3800 {
3801 puts_filtered (" TYPE_FLAG_STUB");
3802 }
762a036f
FF
3803 if (TYPE_TARGET_STUB (type))
3804 {
3805 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3806 }
3807 if (TYPE_STATIC (type))
3808 {
3809 puts_filtered (" TYPE_FLAG_STATIC");
3810 }
762a036f
FF
3811 if (TYPE_PROTOTYPED (type))
3812 {
3813 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3814 }
3815 if (TYPE_INCOMPLETE (type))
3816 {
3817 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3818 }
762a036f
FF
3819 if (TYPE_VARARGS (type))
3820 {
3821 puts_filtered (" TYPE_FLAG_VARARGS");
3822 }
f5f8a009
EZ
3823 /* This is used for things like AltiVec registers on ppc. Gcc emits
3824 an attribute for the array type, which tells whether or not we
3825 have a vector, instead of a regular array. */
3826 if (TYPE_VECTOR (type))
3827 {
3828 puts_filtered (" TYPE_FLAG_VECTOR");
3829 }
876cecd0
TT
3830 if (TYPE_FIXED_INSTANCE (type))
3831 {
3832 puts_filtered (" TYPE_FIXED_INSTANCE");
3833 }
3834 if (TYPE_STUB_SUPPORTED (type))
3835 {
3836 puts_filtered (" TYPE_STUB_SUPPORTED");
3837 }
3838 if (TYPE_NOTTEXT (type))
3839 {
3840 puts_filtered (" TYPE_NOTTEXT");
3841 }
c906108c
SS
3842 puts_filtered ("\n");
3843 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3844 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3845 puts_filtered ("\n");
3846 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3847 {
14e75d8e
JK
3848 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3849 printfi_filtered (spaces + 2,
3850 "[%d] enumval %s type ",
3851 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3852 else
3853 printfi_filtered (spaces + 2,
3854 "[%d] bitpos %d bitsize %d type ",
3855 idx, TYPE_FIELD_BITPOS (type, idx),
3856 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3857 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3858 printf_filtered (" name '%s' (",
3859 TYPE_FIELD_NAME (type, idx) != NULL
3860 ? TYPE_FIELD_NAME (type, idx)
3861 : "<NULL>");
d4f3574e 3862 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3863 printf_filtered (")\n");
3864 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3865 {
3866 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3867 }
3868 }
43bbcdc2
PH
3869 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3870 {
3871 printfi_filtered (spaces, "low %s%s high %s%s\n",
3872 plongest (TYPE_LOW_BOUND (type)),
3873 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3874 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3875 TYPE_HIGH_BOUND_UNDEFINED (type)
3876 ? " (undefined)" : "");
43bbcdc2 3877 }
c906108c 3878 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3879 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3880 puts_filtered ("\n");
3881 if (TYPE_VPTR_BASETYPE (type) != NULL)
3882 {
3883 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3884 }
7ba81444
MS
3885 printfi_filtered (spaces, "vptr_fieldno %d\n",
3886 TYPE_VPTR_FIELDNO (type));
c906108c 3887
b4ba55a1
JB
3888 switch (TYPE_SPECIFIC_FIELD (type))
3889 {
3890 case TYPE_SPECIFIC_CPLUS_STUFF:
3891 printfi_filtered (spaces, "cplus_stuff ");
3892 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3893 gdb_stdout);
3894 puts_filtered ("\n");
3895 print_cplus_stuff (type, spaces);
3896 break;
8da61cc4 3897
b4ba55a1
JB
3898 case TYPE_SPECIFIC_GNAT_STUFF:
3899 printfi_filtered (spaces, "gnat_stuff ");
3900 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3901 puts_filtered ("\n");
3902 print_gnat_stuff (type, spaces);
3903 break;
701c159d 3904
b4ba55a1
JB
3905 case TYPE_SPECIFIC_FLOATFORMAT:
3906 printfi_filtered (spaces, "floatformat ");
3907 if (TYPE_FLOATFORMAT (type) == NULL)
3908 puts_filtered ("(null)");
3909 else
3910 {
3911 puts_filtered ("{ ");
3912 if (TYPE_FLOATFORMAT (type)[0] == NULL
3913 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3914 puts_filtered ("(null)");
3915 else
3916 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3917
3918 puts_filtered (", ");
3919 if (TYPE_FLOATFORMAT (type)[1] == NULL
3920 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3921 puts_filtered ("(null)");
3922 else
3923 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3924
3925 puts_filtered (" }");
3926 }
3927 puts_filtered ("\n");
3928 break;
c906108c 3929
b6cdc2c1 3930 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3931 printfi_filtered (spaces, "calling_convention %d\n",
3932 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3933 /* tail_call_list is not printed. */
b4ba55a1 3934 break;
c906108c 3935 }
b4ba55a1 3936
c906108c
SS
3937 if (spaces == 0)
3938 obstack_free (&dont_print_type_obstack, NULL);
3939}
5212577a 3940\f
ae5a43e0
DJ
3941/* Trivial helpers for the libiberty hash table, for mapping one
3942 type to another. */
3943
3944struct type_pair
3945{
3946 struct type *old, *new;
3947};
3948
3949static hashval_t
3950type_pair_hash (const void *item)
3951{
3952 const struct type_pair *pair = item;
d8734c88 3953
ae5a43e0
DJ
3954 return htab_hash_pointer (pair->old);
3955}
3956
3957static int
3958type_pair_eq (const void *item_lhs, const void *item_rhs)
3959{
3960 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3961
ae5a43e0
DJ
3962 return lhs->old == rhs->old;
3963}
3964
3965/* Allocate the hash table used by copy_type_recursive to walk
3966 types without duplicates. We use OBJFILE's obstack, because
3967 OBJFILE is about to be deleted. */
3968
3969htab_t
3970create_copied_types_hash (struct objfile *objfile)
3971{
3972 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3973 NULL, &objfile->objfile_obstack,
3974 hashtab_obstack_allocate,
3975 dummy_obstack_deallocate);
3976}
3977
7ba81444
MS
3978/* Recursively copy (deep copy) TYPE, if it is associated with
3979 OBJFILE. Return a new type allocated using malloc, a saved type if
3980 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3981 not associated with OBJFILE. */
ae5a43e0
DJ
3982
3983struct type *
7ba81444
MS
3984copy_type_recursive (struct objfile *objfile,
3985 struct type *type,
ae5a43e0
DJ
3986 htab_t copied_types)
3987{
3988 struct type_pair *stored, pair;
3989 void **slot;
3990 struct type *new_type;
3991
e9bb382b 3992 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3993 return type;
3994
7ba81444
MS
3995 /* This type shouldn't be pointing to any types in other objfiles;
3996 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3997 gdb_assert (TYPE_OBJFILE (type) == objfile);
3998
3999 pair.old = type;
4000 slot = htab_find_slot (copied_types, &pair, INSERT);
4001 if (*slot != NULL)
4002 return ((struct type_pair *) *slot)->new;
4003
e9bb382b 4004 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4005
4006 /* We must add the new type to the hash table immediately, in case
4007 we encounter this type again during a recursive call below. */
3e43a32a
MS
4008 stored
4009 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
4010 stored->old = type;
4011 stored->new = new_type;
4012 *slot = stored;
4013
876cecd0
TT
4014 /* Copy the common fields of types. For the main type, we simply
4015 copy the entire thing and then update specific fields as needed. */
4016 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4017 TYPE_OBJFILE_OWNED (new_type) = 0;
4018 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4019
ae5a43e0
DJ
4020 if (TYPE_NAME (type))
4021 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4022 if (TYPE_TAG_NAME (type))
4023 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4024
4025 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4026 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4027
4028 /* Copy the fields. */
ae5a43e0
DJ
4029 if (TYPE_NFIELDS (type))
4030 {
4031 int i, nfields;
4032
4033 nfields = TYPE_NFIELDS (type);
fc270c35 4034 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4035 for (i = 0; i < nfields; i++)
4036 {
7ba81444
MS
4037 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4038 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4039 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4040 if (TYPE_FIELD_TYPE (type, i))
4041 TYPE_FIELD_TYPE (new_type, i)
4042 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4043 copied_types);
4044 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4045 TYPE_FIELD_NAME (new_type, i) =
4046 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4047 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4048 {
d6a843b5
JK
4049 case FIELD_LOC_KIND_BITPOS:
4050 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4051 TYPE_FIELD_BITPOS (type, i));
4052 break;
14e75d8e
JK
4053 case FIELD_LOC_KIND_ENUMVAL:
4054 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4055 TYPE_FIELD_ENUMVAL (type, i));
4056 break;
d6a843b5
JK
4057 case FIELD_LOC_KIND_PHYSADDR:
4058 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4059 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4060 break;
4061 case FIELD_LOC_KIND_PHYSNAME:
4062 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4063 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4064 i)));
4065 break;
4066 default:
4067 internal_error (__FILE__, __LINE__,
4068 _("Unexpected type field location kind: %d"),
4069 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4070 }
4071 }
4072 }
4073
0963b4bd 4074 /* For range types, copy the bounds information. */
43bbcdc2
PH
4075 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4076 {
4077 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4078 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4079 }
4080
ae5a43e0
DJ
4081 /* Copy pointers to other types. */
4082 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4083 TYPE_TARGET_TYPE (new_type) =
4084 copy_type_recursive (objfile,
4085 TYPE_TARGET_TYPE (type),
4086 copied_types);
ae5a43e0 4087 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
4088 TYPE_VPTR_BASETYPE (new_type) =
4089 copy_type_recursive (objfile,
4090 TYPE_VPTR_BASETYPE (type),
4091 copied_types);
ae5a43e0
DJ
4092 /* Maybe copy the type_specific bits.
4093
4094 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4095 base classes and methods. There's no fundamental reason why we
4096 can't, but at the moment it is not needed. */
4097
4098 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 4099 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
4100 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4101 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
4102 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4103 INIT_CPLUS_SPECIFIC (new_type);
4104
4105 return new_type;
4106}
4107
4af88198
JB
4108/* Make a copy of the given TYPE, except that the pointer & reference
4109 types are not preserved.
4110
4111 This function assumes that the given type has an associated objfile.
4112 This objfile is used to allocate the new type. */
4113
4114struct type *
4115copy_type (const struct type *type)
4116{
4117 struct type *new_type;
4118
e9bb382b 4119 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4120
e9bb382b 4121 new_type = alloc_type_copy (type);
4af88198
JB
4122 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4123 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4124 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4125 sizeof (struct main_type));
4126
4127 return new_type;
4128}
5212577a 4129\f
e9bb382b
UW
4130/* Helper functions to initialize architecture-specific types. */
4131
4132/* Allocate a type structure associated with GDBARCH and set its
4133 CODE, LENGTH, and NAME fields. */
5212577a 4134
e9bb382b
UW
4135struct type *
4136arch_type (struct gdbarch *gdbarch,
4137 enum type_code code, int length, char *name)
4138{
4139 struct type *type;
4140
4141 type = alloc_type_arch (gdbarch);
4142 TYPE_CODE (type) = code;
4143 TYPE_LENGTH (type) = length;
4144
4145 if (name)
4146 TYPE_NAME (type) = xstrdup (name);
4147
4148 return type;
4149}
4150
4151/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4152 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4153 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4154
e9bb382b
UW
4155struct type *
4156arch_integer_type (struct gdbarch *gdbarch,
4157 int bit, int unsigned_p, char *name)
4158{
4159 struct type *t;
4160
4161 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4162 if (unsigned_p)
4163 TYPE_UNSIGNED (t) = 1;
4164 if (name && strcmp (name, "char") == 0)
4165 TYPE_NOSIGN (t) = 1;
4166
4167 return t;
4168}
4169
4170/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4171 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4172 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4173
e9bb382b
UW
4174struct type *
4175arch_character_type (struct gdbarch *gdbarch,
4176 int bit, int unsigned_p, char *name)
4177{
4178 struct type *t;
4179
4180 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4181 if (unsigned_p)
4182 TYPE_UNSIGNED (t) = 1;
4183
4184 return t;
4185}
4186
4187/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4188 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4189 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4190
e9bb382b
UW
4191struct type *
4192arch_boolean_type (struct gdbarch *gdbarch,
4193 int bit, int unsigned_p, char *name)
4194{
4195 struct type *t;
4196
4197 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4198 if (unsigned_p)
4199 TYPE_UNSIGNED (t) = 1;
4200
4201 return t;
4202}
4203
4204/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4205 BIT is the type size in bits; if BIT equals -1, the size is
4206 determined by the floatformat. NAME is the type name. Set the
4207 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4208
27067745 4209struct type *
e9bb382b
UW
4210arch_float_type (struct gdbarch *gdbarch,
4211 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4212{
4213 struct type *t;
4214
4215 if (bit == -1)
4216 {
4217 gdb_assert (floatformats != NULL);
4218 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4219 bit = floatformats[0]->totalsize;
4220 }
4221 gdb_assert (bit >= 0);
4222
e9bb382b 4223 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4224 TYPE_FLOATFORMAT (t) = floatformats;
4225 return t;
4226}
4227
e9bb382b
UW
4228/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4229 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4230
27067745 4231struct type *
e9bb382b
UW
4232arch_complex_type (struct gdbarch *gdbarch,
4233 char *name, struct type *target_type)
27067745
UW
4234{
4235 struct type *t;
d8734c88 4236
e9bb382b
UW
4237 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4238 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4239 TYPE_TARGET_TYPE (t) = target_type;
4240 return t;
4241}
4242
e9bb382b 4243/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4244 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4245
e9bb382b
UW
4246struct type *
4247arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4248{
4249 int nfields = length * TARGET_CHAR_BIT;
4250 struct type *type;
4251
4252 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4253 TYPE_UNSIGNED (type) = 1;
4254 TYPE_NFIELDS (type) = nfields;
4255 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4256
4257 return type;
4258}
4259
4260/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4261 position BITPOS is called NAME. */
5212577a 4262
e9bb382b
UW
4263void
4264append_flags_type_flag (struct type *type, int bitpos, char *name)
4265{
4266 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4267 gdb_assert (bitpos < TYPE_NFIELDS (type));
4268 gdb_assert (bitpos >= 0);
4269
4270 if (name)
4271 {
4272 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4273 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4274 }
4275 else
4276 {
4277 /* Don't show this field to the user. */
945b3a32 4278 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4279 }
4280}
4281
4282/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4283 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4284
e9bb382b
UW
4285struct type *
4286arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4287{
4288 struct type *t;
d8734c88 4289
e9bb382b
UW
4290 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4291 t = arch_type (gdbarch, code, 0, NULL);
4292 TYPE_TAG_NAME (t) = name;
4293 INIT_CPLUS_SPECIFIC (t);
4294 return t;
4295}
4296
4297/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4298 Do not set the field's position or adjust the type's length;
4299 the caller should do so. Return the new field. */
5212577a 4300
f5dff777
DJ
4301struct field *
4302append_composite_type_field_raw (struct type *t, char *name,
4303 struct type *field)
e9bb382b
UW
4304{
4305 struct field *f;
d8734c88 4306
e9bb382b
UW
4307 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4308 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4309 sizeof (struct field) * TYPE_NFIELDS (t));
4310 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4311 memset (f, 0, sizeof f[0]);
4312 FIELD_TYPE (f[0]) = field;
4313 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4314 return f;
4315}
4316
4317/* Add new field with name NAME and type FIELD to composite type T.
4318 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4319
f5dff777
DJ
4320void
4321append_composite_type_field_aligned (struct type *t, char *name,
4322 struct type *field, int alignment)
4323{
4324 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4325
e9bb382b
UW
4326 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4327 {
4328 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4329 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4330 }
4331 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4332 {
4333 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4334 if (TYPE_NFIELDS (t) > 1)
4335 {
f41f5e61
PA
4336 SET_FIELD_BITPOS (f[0],
4337 (FIELD_BITPOS (f[-1])
4338 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4339 * TARGET_CHAR_BIT)));
e9bb382b
UW
4340
4341 if (alignment)
4342 {
86c3c1fc
AB
4343 int left;
4344
4345 alignment *= TARGET_CHAR_BIT;
4346 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4347
e9bb382b
UW
4348 if (left)
4349 {
f41f5e61 4350 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4351 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4352 }
4353 }
4354 }
4355 }
4356}
4357
4358/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4359
e9bb382b
UW
4360void
4361append_composite_type_field (struct type *t, char *name,
4362 struct type *field)
4363{
4364 append_composite_type_field_aligned (t, name, field, 0);
4365}
4366
000177f0
AC
4367static struct gdbarch_data *gdbtypes_data;
4368
4369const struct builtin_type *
4370builtin_type (struct gdbarch *gdbarch)
4371{
4372 return gdbarch_data (gdbarch, gdbtypes_data);
4373}
4374
4375static void *
4376gdbtypes_post_init (struct gdbarch *gdbarch)
4377{
4378 struct builtin_type *builtin_type
4379 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4380
46bf5051 4381 /* Basic types. */
e9bb382b
UW
4382 builtin_type->builtin_void
4383 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4384 builtin_type->builtin_char
4385 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4386 !gdbarch_char_signed (gdbarch), "char");
4387 builtin_type->builtin_signed_char
4388 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4389 0, "signed char");
4390 builtin_type->builtin_unsigned_char
4391 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4392 1, "unsigned char");
4393 builtin_type->builtin_short
4394 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4395 0, "short");
4396 builtin_type->builtin_unsigned_short
4397 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4398 1, "unsigned short");
4399 builtin_type->builtin_int
4400 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4401 0, "int");
4402 builtin_type->builtin_unsigned_int
4403 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4404 1, "unsigned int");
4405 builtin_type->builtin_long
4406 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4407 0, "long");
4408 builtin_type->builtin_unsigned_long
4409 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4410 1, "unsigned long");
4411 builtin_type->builtin_long_long
4412 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4413 0, "long long");
4414 builtin_type->builtin_unsigned_long_long
4415 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4416 1, "unsigned long long");
70bd8e24 4417 builtin_type->builtin_float
e9bb382b 4418 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4419 "float", gdbarch_float_format (gdbarch));
70bd8e24 4420 builtin_type->builtin_double
e9bb382b 4421 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4422 "double", gdbarch_double_format (gdbarch));
70bd8e24 4423 builtin_type->builtin_long_double
e9bb382b 4424 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4425 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4426 builtin_type->builtin_complex
e9bb382b
UW
4427 = arch_complex_type (gdbarch, "complex",
4428 builtin_type->builtin_float);
70bd8e24 4429 builtin_type->builtin_double_complex
e9bb382b
UW
4430 = arch_complex_type (gdbarch, "double complex",
4431 builtin_type->builtin_double);
4432 builtin_type->builtin_string
4433 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4434 builtin_type->builtin_bool
4435 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4436
7678ef8f
TJB
4437 /* The following three are about decimal floating point types, which
4438 are 32-bits, 64-bits and 128-bits respectively. */
4439 builtin_type->builtin_decfloat
e9bb382b 4440 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4441 builtin_type->builtin_decdouble
e9bb382b 4442 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4443 builtin_type->builtin_declong
e9bb382b 4444 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4445
69feb676 4446 /* "True" character types. */
e9bb382b
UW
4447 builtin_type->builtin_true_char
4448 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4449 builtin_type->builtin_true_unsigned_char
4450 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4451
df4df182 4452 /* Fixed-size integer types. */
e9bb382b
UW
4453 builtin_type->builtin_int0
4454 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4455 builtin_type->builtin_int8
4456 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4457 builtin_type->builtin_uint8
4458 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4459 builtin_type->builtin_int16
4460 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4461 builtin_type->builtin_uint16
4462 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4463 builtin_type->builtin_int32
4464 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4465 builtin_type->builtin_uint32
4466 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4467 builtin_type->builtin_int64
4468 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4469 builtin_type->builtin_uint64
4470 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4471 builtin_type->builtin_int128
4472 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4473 builtin_type->builtin_uint128
4474 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4475 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4476 TYPE_INSTANCE_FLAG_NOTTEXT;
4477 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4478 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4479
9a22f0d0
PM
4480 /* Wide character types. */
4481 builtin_type->builtin_char16
4482 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4483 builtin_type->builtin_char32
4484 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4485
4486
46bf5051 4487 /* Default data/code pointer types. */
e9bb382b
UW
4488 builtin_type->builtin_data_ptr
4489 = lookup_pointer_type (builtin_type->builtin_void);
4490 builtin_type->builtin_func_ptr
4491 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4492 builtin_type->builtin_func_func
4493 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4494
78267919 4495 /* This type represents a GDB internal function. */
e9bb382b
UW
4496 builtin_type->internal_fn
4497 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4498 "<internal function>");
78267919 4499
e81e7f5e
SC
4500 /* This type represents an xmethod. */
4501 builtin_type->xmethod
4502 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4503
46bf5051
UW
4504 return builtin_type;
4505}
4506
46bf5051
UW
4507/* This set of objfile-based types is intended to be used by symbol
4508 readers as basic types. */
4509
4510static const struct objfile_data *objfile_type_data;
4511
4512const struct objfile_type *
4513objfile_type (struct objfile *objfile)
4514{
4515 struct gdbarch *gdbarch;
4516 struct objfile_type *objfile_type
4517 = objfile_data (objfile, objfile_type_data);
4518
4519 if (objfile_type)
4520 return objfile_type;
4521
4522 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4523 1, struct objfile_type);
4524
4525 /* Use the objfile architecture to determine basic type properties. */
4526 gdbarch = get_objfile_arch (objfile);
4527
4528 /* Basic types. */
4529 objfile_type->builtin_void
4530 = init_type (TYPE_CODE_VOID, 1,
4531 0,
4532 "void", objfile);
4533
4534 objfile_type->builtin_char
4535 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4536 (TYPE_FLAG_NOSIGN
4537 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4538 "char", objfile);
4539 objfile_type->builtin_signed_char
4540 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4541 0,
4542 "signed char", objfile);
4543 objfile_type->builtin_unsigned_char
4544 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4545 TYPE_FLAG_UNSIGNED,
4546 "unsigned char", objfile);
4547 objfile_type->builtin_short
4548 = init_type (TYPE_CODE_INT,
4549 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4550 0, "short", objfile);
4551 objfile_type->builtin_unsigned_short
4552 = init_type (TYPE_CODE_INT,
4553 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4554 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4555 objfile_type->builtin_int
4556 = init_type (TYPE_CODE_INT,
4557 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4558 0, "int", objfile);
4559 objfile_type->builtin_unsigned_int
4560 = init_type (TYPE_CODE_INT,
4561 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4562 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4563 objfile_type->builtin_long
4564 = init_type (TYPE_CODE_INT,
4565 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4566 0, "long", objfile);
4567 objfile_type->builtin_unsigned_long
4568 = init_type (TYPE_CODE_INT,
4569 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4570 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4571 objfile_type->builtin_long_long
4572 = init_type (TYPE_CODE_INT,
4573 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4574 0, "long long", objfile);
4575 objfile_type->builtin_unsigned_long_long
4576 = init_type (TYPE_CODE_INT,
4577 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4578 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4579
4580 objfile_type->builtin_float
4581 = init_type (TYPE_CODE_FLT,
4582 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4583 0, "float", objfile);
4584 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4585 = gdbarch_float_format (gdbarch);
4586 objfile_type->builtin_double
4587 = init_type (TYPE_CODE_FLT,
4588 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4589 0, "double", objfile);
4590 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4591 = gdbarch_double_format (gdbarch);
4592 objfile_type->builtin_long_double
4593 = init_type (TYPE_CODE_FLT,
4594 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4595 0, "long double", objfile);
4596 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4597 = gdbarch_long_double_format (gdbarch);
4598
4599 /* This type represents a type that was unrecognized in symbol read-in. */
4600 objfile_type->builtin_error
4601 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4602
4603 /* The following set of types is used for symbols with no
4604 debug information. */
4605 objfile_type->nodebug_text_symbol
4606 = init_type (TYPE_CODE_FUNC, 1, 0,
4607 "<text variable, no debug info>", objfile);
4608 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4609 = objfile_type->builtin_int;
0875794a
JK
4610 objfile_type->nodebug_text_gnu_ifunc_symbol
4611 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4612 "<text gnu-indirect-function variable, no debug info>",
4613 objfile);
4614 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4615 = objfile_type->nodebug_text_symbol;
4616 objfile_type->nodebug_got_plt_symbol
4617 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4618 "<text from jump slot in .got.plt, no debug info>",
4619 objfile);
4620 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4621 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4622 objfile_type->nodebug_data_symbol
4623 = init_type (TYPE_CODE_INT,
4624 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4625 "<data variable, no debug info>", objfile);
4626 objfile_type->nodebug_unknown_symbol
4627 = init_type (TYPE_CODE_INT, 1, 0,
4628 "<variable (not text or data), no debug info>", objfile);
4629 objfile_type->nodebug_tls_symbol
4630 = init_type (TYPE_CODE_INT,
4631 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4632 "<thread local variable, no debug info>", objfile);
000177f0
AC
4633
4634 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4635 the same.
000177f0
AC
4636
4637 The upshot is:
4638 - gdb's `struct type' always describes the target's
4639 representation.
4640 - gdb's `struct value' objects should always hold values in
4641 target form.
4642 - gdb's CORE_ADDR values are addresses in the unified virtual
4643 address space that the assembler and linker work with. Thus,
4644 since target_read_memory takes a CORE_ADDR as an argument, it
4645 can access any memory on the target, even if the processor has
4646 separate code and data address spaces.
4647
46bf5051
UW
4648 In this context, objfile_type->builtin_core_addr is a bit odd:
4649 it's a target type for a value the target will never see. It's
4650 only used to hold the values of (typeless) linker symbols, which
4651 are indeed in the unified virtual address space. */
000177f0 4652
46bf5051
UW
4653 objfile_type->builtin_core_addr
4654 = init_type (TYPE_CODE_INT,
4655 gdbarch_addr_bit (gdbarch) / 8,
4656 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4657
46bf5051
UW
4658 set_objfile_data (objfile, objfile_type_data, objfile_type);
4659 return objfile_type;
000177f0
AC
4660}
4661
5212577a 4662extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4663
c906108c 4664void
fba45db2 4665_initialize_gdbtypes (void)
c906108c 4666{
5674de60 4667 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4668 objfile_type_data = register_objfile_data ();
5674de60 4669
ccce17b0
YQ
4670 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4671 _("Set debugging of C++ overloading."),
4672 _("Show debugging of C++ overloading."),
4673 _("When enabled, ranking of the "
4674 "functions is displayed."),
4675 NULL,
4676 show_overload_debug,
4677 &setdebuglist, &showdebuglist);
5674de60 4678
7ba81444 4679 /* Add user knob for controlling resolution of opaque types. */
5674de60 4680 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4681 &opaque_type_resolution,
4682 _("Set resolution of opaque struct/class/union"
4683 " types (if set before loading symbols)."),
4684 _("Show resolution of opaque struct/class/union"
4685 " types (if set before loading symbols)."),
4686 NULL, NULL,
5674de60
UW
4687 show_opaque_type_resolution,
4688 &setlist, &showlist);
a451cb65
KS
4689
4690 /* Add an option to permit non-strict type checking. */
4691 add_setshow_boolean_cmd ("type", class_support,
4692 &strict_type_checking,
4693 _("Set strict type checking."),
4694 _("Show strict type checking."),
4695 NULL, NULL,
4696 show_strict_type_checking,
4697 &setchecklist, &showchecklist);
c906108c 4698}
This page took 2.09563 seconds and 4 git commands to generate.