Create and use struct rank.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4c38e0a4
JB
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
4f2aea11 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
c91ecb25 38#include "wrapper.h"
015a42b4 39#include "cp-abi.h"
a02fd225 40#include "gdb_assert.h"
ae5a43e0 41#include "hashtab.h"
c906108c 42
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
46const struct rank LENGTH_MISMATCH_BADNESS = {100};
47
48const struct rank TOO_FEW_PARAMS_BADNESS = {100};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100};
50
51const struct rank EXACT_MATCH_BADNESS = {0};
52
53const struct rank INTEGER_PROMOTION_BADNESS = {1};
54const struct rank FLOAT_PROMOTION_BADNESS = {1};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1};
56const struct rank INTEGER_CONVERSION_BADNESS = {2};
57const struct rank FLOAT_CONVERSION_BADNESS = {2};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2};
60const struct rank BOOL_PTR_CONVERSION_BADNESS = {3};
61const struct rank BASE_CONVERSION_BADNESS = {2};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2};
63
64const struct rank NS_POINTER_CONVERSION_BADNESS = {10};
65
8da61cc4 66/* Floatformat pairs. */
f9e9243a
UW
67const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70};
8da61cc4
DJ
71const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74};
75const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78};
79const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82};
83const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86};
87const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90};
91const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94};
95const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98};
99const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102};
103const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106};
107const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110};
b14d30e1
JM
111const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114};
8da61cc4 115
8da61cc4 116
c906108c 117int opaque_type_resolution = 1;
920d2a44
AC
118static void
119show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
120 struct cmd_list_element *c,
121 const char *value)
920d2a44
AC
122{
123 fprintf_filtered (file, _("\
124Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
125 value);
126}
127
5d161b24 128int overload_debug = 0;
920d2a44
AC
129static void
130show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
7ba81444
MS
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
920d2a44 135}
c906108c 136
c5aa993b
JM
137struct extra
138 {
139 char str[128];
140 int len;
7ba81444 141 }; /* Maximum extension is 128! FIXME */
c906108c 142
a14ed312 143static void print_bit_vector (B_TYPE *, int);
ad2f7632 144static void print_arg_types (struct field *, int, int);
a14ed312
KB
145static void dump_fn_fieldlists (struct type *, int);
146static void print_cplus_stuff (struct type *, int);
7a292a7a 147
c906108c 148
e9bb382b
UW
149/* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
c906108c
SS
152
153struct type *
fba45db2 154alloc_type (struct objfile *objfile)
c906108c 155{
52f0bd74 156 struct type *type;
c906108c 157
e9bb382b
UW
158 gdb_assert (objfile != NULL);
159
7ba81444 160 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
c906108c 165
e9bb382b
UW
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
c906108c 168
7ba81444 169 /* Initialize the fields that might not be zero. */
c906108c
SS
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 172 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 174
c16abbde 175 return type;
c906108c
SS
176}
177
e9bb382b
UW
178/* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182struct type *
183alloc_type_arch (struct gdbarch *gdbarch)
184{
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204}
205
206/* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210struct type *
211alloc_type_copy (const struct type *type)
212{
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217}
218
219/* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222struct gdbarch *
223get_type_arch (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229}
230
231
2fdde8f8
DJ
232/* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236static struct type *
237alloc_type_instance (struct type *oldtype)
238{
239 struct type *type;
240
241 /* Allocate the structure. */
242
e9bb382b 243 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 244 type = XZALLOC (struct type);
2fdde8f8 245 else
1deafd4e
PA
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
2fdde8f8
DJ
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
c16abbde 253 return type;
2fdde8f8
DJ
254}
255
256/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 257 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
258static void
259smash_type (struct type *type)
260{
e9bb382b
UW
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
2fdde8f8
DJ
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
e9bb382b
UW
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
2fdde8f8
DJ
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274}
275
c906108c
SS
276/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281struct type *
fba45db2 282make_pointer_type (struct type *type, struct type **typeptr)
c906108c 283{
52f0bd74 284 struct type *ntype; /* New type */
053cb41b 285 struct type *chain;
c906108c
SS
286
287 ntype = TYPE_POINTER_TYPE (type);
288
c5aa993b 289 if (ntype)
c906108c 290 {
c5aa993b 291 if (typeptr == 0)
7ba81444
MS
292 return ntype; /* Don't care about alloc,
293 and have new type. */
c906108c 294 else if (*typeptr == 0)
c5aa993b 295 {
7ba81444 296 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 297 return ntype;
c5aa993b 298 }
c906108c
SS
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
e9bb382b 303 ntype = alloc_type_copy (type);
c906108c
SS
304 if (typeptr)
305 *typeptr = ntype;
306 }
7ba81444 307 else /* We have storage, but need to reset it. */
c906108c
SS
308 {
309 ntype = *typeptr;
053cb41b 310 chain = TYPE_CHAIN (ntype);
2fdde8f8 311 smash_type (ntype);
053cb41b 312 TYPE_CHAIN (ntype) = chain;
c906108c
SS
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
7ba81444
MS
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
c906108c 320
50810684
UW
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
67b2adb2 325 /* Mark pointers as unsigned. The target converts between pointers
76e71323 326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 327 gdbarch_address_to_pointer. */
876cecd0 328 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 329
c906108c
SS
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
053cb41b
JB
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
c906108c
SS
341 return ntype;
342}
343
344/* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347struct type *
fba45db2 348lookup_pointer_type (struct type *type)
c906108c 349{
c5aa993b 350 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
351}
352
7ba81444
MS
353/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
c906108c
SS
357
358struct type *
fba45db2 359make_reference_type (struct type *type, struct type **typeptr)
c906108c 360{
52f0bd74 361 struct type *ntype; /* New type */
1e98b326 362 struct type *chain;
c906108c
SS
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
c5aa993b 366 if (ntype)
c906108c 367 {
c5aa993b 368 if (typeptr == 0)
7ba81444
MS
369 return ntype; /* Don't care about alloc,
370 and have new type. */
c906108c 371 else if (*typeptr == 0)
c5aa993b 372 {
7ba81444 373 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 374 return ntype;
c5aa993b 375 }
c906108c
SS
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
e9bb382b 380 ntype = alloc_type_copy (type);
c906108c
SS
381 if (typeptr)
382 *typeptr = ntype;
383 }
7ba81444 384 else /* We have storage, but need to reset it. */
c906108c
SS
385 {
386 ntype = *typeptr;
1e98b326 387 chain = TYPE_CHAIN (ntype);
2fdde8f8 388 smash_type (ntype);
1e98b326 389 TYPE_CHAIN (ntype) = chain;
c906108c
SS
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
7ba81444
MS
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
c906108c 398
50810684
UW
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 401 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 402
c906108c
SS
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
1e98b326
JB
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
c906108c
SS
414 return ntype;
415}
416
7ba81444
MS
417/* Same as above, but caller doesn't care about memory allocation
418 details. */
c906108c
SS
419
420struct type *
fba45db2 421lookup_reference_type (struct type *type)
c906108c 422{
c5aa993b 423 return make_reference_type (type, (struct type **) 0);
c906108c
SS
424}
425
7ba81444
MS
426/* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 429 function type we return. We allocate new memory if needed. */
c906108c
SS
430
431struct type *
0c8b41f1 432make_function_type (struct type *type, struct type **typeptr)
c906108c 433{
52f0bd74 434 struct type *ntype; /* New type */
c906108c
SS
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
e9bb382b 438 ntype = alloc_type_copy (type);
c906108c
SS
439 if (typeptr)
440 *typeptr = ntype;
441 }
7ba81444 442 else /* We have storage, but need to reset it. */
c906108c
SS
443 {
444 ntype = *typeptr;
2fdde8f8 445 smash_type (ntype);
c906108c
SS
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 452
c906108c
SS
453 return ntype;
454}
455
456
457/* Given a type TYPE, return a type of functions that return that type.
458 May need to construct such a type if this is the first use. */
459
460struct type *
fba45db2 461lookup_function_type (struct type *type)
c906108c 462{
0c8b41f1 463 return make_function_type (type, (struct type **) 0);
c906108c
SS
464}
465
47663de5
MS
466/* Identify address space identifier by name --
467 return the integer flag defined in gdbtypes.h. */
468extern int
50810684 469address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 470{
8b2dbe47 471 int type_flags;
d8734c88 472
7ba81444 473 /* Check for known address space delimiters. */
47663de5 474 if (!strcmp (space_identifier, "code"))
876cecd0 475 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 476 else if (!strcmp (space_identifier, "data"))
876cecd0 477 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
478 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479 && gdbarch_address_class_name_to_type_flags (gdbarch,
480 space_identifier,
481 &type_flags))
8b2dbe47 482 return type_flags;
47663de5 483 else
8a3fe4f8 484 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
485}
486
487/* Identify address space identifier by integer flag as defined in
7ba81444 488 gdbtypes.h -- return the string version of the adress space name. */
47663de5 489
321432c0 490const char *
50810684 491address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 492{
876cecd0 493 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 494 return "code";
876cecd0 495 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 496 return "data";
876cecd0 497 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
498 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
500 else
501 return NULL;
502}
503
2fdde8f8 504/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
505
506 If STORAGE is non-NULL, create the new type instance there.
507 STORAGE must be in the same obstack as TYPE. */
47663de5 508
b9362cc7 509static struct type *
2fdde8f8
DJ
510make_qualified_type (struct type *type, int new_flags,
511 struct type *storage)
47663de5
MS
512{
513 struct type *ntype;
514
515 ntype = type;
5f61c20e
JK
516 do
517 {
518 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 return ntype;
520 ntype = TYPE_CHAIN (ntype);
521 }
522 while (ntype != type);
47663de5 523
2fdde8f8
DJ
524 /* Create a new type instance. */
525 if (storage == NULL)
526 ntype = alloc_type_instance (type);
527 else
528 {
7ba81444
MS
529 /* If STORAGE was provided, it had better be in the same objfile
530 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
531 if one objfile is freed and the other kept, we'd have
532 dangling pointers. */
ad766c0a
JB
533 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534
2fdde8f8
DJ
535 ntype = storage;
536 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537 TYPE_CHAIN (ntype) = ntype;
538 }
47663de5
MS
539
540 /* Pointers or references to the original type are not relevant to
2fdde8f8 541 the new type. */
47663de5
MS
542 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 544
2fdde8f8
DJ
545 /* Chain the new qualified type to the old type. */
546 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547 TYPE_CHAIN (type) = ntype;
548
549 /* Now set the instance flags and return the new type. */
550 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 551
ab5d3da6
KB
552 /* Set length of new type to that of the original type. */
553 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554
47663de5
MS
555 return ntype;
556}
557
2fdde8f8
DJ
558/* Make an address-space-delimited variant of a type -- a type that
559 is identical to the one supplied except that it has an address
560 space attribute attached to it (such as "code" or "data").
561
7ba81444
MS
562 The space attributes "code" and "data" are for Harvard
563 architectures. The address space attributes are for architectures
564 which have alternately sized pointers or pointers with alternate
565 representations. */
2fdde8f8
DJ
566
567struct type *
568make_type_with_address_space (struct type *type, int space_flag)
569{
2fdde8f8 570 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
571 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 | TYPE_INSTANCE_FLAG_DATA_SPACE
573 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
574 | space_flag);
575
576 return make_qualified_type (type, new_flags, NULL);
577}
c906108c
SS
578
579/* Make a "c-v" variant of a type -- a type that is identical to the
580 one supplied except that it may have const or volatile attributes
581 CNST is a flag for setting the const attribute
582 VOLTL is a flag for setting the volatile attribute
583 TYPE is the base type whose variant we are creating.
c906108c 584
ad766c0a
JB
585 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586 storage to hold the new qualified type; *TYPEPTR and TYPE must be
587 in the same objfile. Otherwise, allocate fresh memory for the new
588 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
589 new type we construct. */
c906108c 590struct type *
7ba81444
MS
591make_cv_type (int cnst, int voltl,
592 struct type *type,
593 struct type **typeptr)
c906108c 594{
52f0bd74 595 struct type *ntype; /* New type */
c906108c 596
2fdde8f8 597 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
598 & ~(TYPE_INSTANCE_FLAG_CONST
599 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 600
c906108c 601 if (cnst)
876cecd0 602 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
603
604 if (voltl)
876cecd0 605 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 606
2fdde8f8 607 if (typeptr && *typeptr != NULL)
a02fd225 608 {
ad766c0a
JB
609 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
610 a C-V variant chain that threads across objfiles: if one
611 objfile gets freed, then the other has a broken C-V chain.
612
613 This code used to try to copy over the main type from TYPE to
614 *TYPEPTR if they were in different objfiles, but that's
615 wrong, too: TYPE may have a field list or member function
616 lists, which refer to types of their own, etc. etc. The
617 whole shebang would need to be copied over recursively; you
618 can't have inter-objfile pointers. The only thing to do is
619 to leave stub types as stub types, and look them up afresh by
620 name each time you encounter them. */
621 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
622 }
623
7ba81444
MS
624 ntype = make_qualified_type (type, new_flags,
625 typeptr ? *typeptr : NULL);
c906108c 626
2fdde8f8
DJ
627 if (typeptr != NULL)
628 *typeptr = ntype;
a02fd225 629
2fdde8f8 630 return ntype;
a02fd225 631}
c906108c 632
2fdde8f8
DJ
633/* Replace the contents of ntype with the type *type. This changes the
634 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 636
cda6c68a
JB
637 In order to build recursive types, it's inevitable that we'll need
638 to update types in place --- but this sort of indiscriminate
639 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
640 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
641 clear if more steps are needed. */
dd6bda65
DJ
642void
643replace_type (struct type *ntype, struct type *type)
644{
ab5d3da6 645 struct type *chain;
dd6bda65 646
ad766c0a
JB
647 /* These two types had better be in the same objfile. Otherwise,
648 the assignment of one type's main type structure to the other
649 will produce a type with references to objects (names; field
650 lists; etc.) allocated on an objfile other than its own. */
651 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652
2fdde8f8 653 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 654
7ba81444
MS
655 /* The type length is not a part of the main type. Update it for
656 each type on the variant chain. */
ab5d3da6 657 chain = ntype;
5f61c20e
JK
658 do
659 {
660 /* Assert that this element of the chain has no address-class bits
661 set in its flags. Such type variants might have type lengths
662 which are supposed to be different from the non-address-class
663 variants. This assertion shouldn't ever be triggered because
664 symbol readers which do construct address-class variants don't
665 call replace_type(). */
666 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667
668 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669 chain = TYPE_CHAIN (chain);
670 }
671 while (ntype != chain);
ab5d3da6 672
2fdde8f8
DJ
673 /* Assert that the two types have equivalent instance qualifiers.
674 This should be true for at least all of our debug readers. */
675 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
676}
677
c906108c
SS
678/* Implement direct support for MEMBER_TYPE in GNU C++.
679 May need to construct such a type if this is the first use.
680 The TYPE is the type of the member. The DOMAIN is the type
681 of the aggregate that the member belongs to. */
682
683struct type *
0d5de010 684lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 685{
52f0bd74 686 struct type *mtype;
c906108c 687
e9bb382b 688 mtype = alloc_type_copy (type);
0d5de010 689 smash_to_memberptr_type (mtype, domain, type);
c16abbde 690 return mtype;
c906108c
SS
691}
692
0d5de010
DJ
693/* Return a pointer-to-method type, for a method of type TO_TYPE. */
694
695struct type *
696lookup_methodptr_type (struct type *to_type)
697{
698 struct type *mtype;
699
e9bb382b 700 mtype = alloc_type_copy (to_type);
0b92b5bb 701 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
702 return mtype;
703}
704
7ba81444
MS
705/* Allocate a stub method whose return type is TYPE. This apparently
706 happens for speed of symbol reading, since parsing out the
707 arguments to the method is cpu-intensive, the way we are doing it.
708 So, we will fill in arguments later. This always returns a fresh
709 type. */
c906108c
SS
710
711struct type *
fba45db2 712allocate_stub_method (struct type *type)
c906108c
SS
713{
714 struct type *mtype;
715
e9bb382b
UW
716 mtype = alloc_type_copy (type);
717 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718 TYPE_LENGTH (mtype) = 1;
719 TYPE_STUB (mtype) = 1;
c906108c
SS
720 TYPE_TARGET_TYPE (mtype) = type;
721 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 722 return mtype;
c906108c
SS
723}
724
7ba81444
MS
725/* Create a range type using either a blank type supplied in
726 RESULT_TYPE, or creating a new type, inheriting the objfile from
727 INDEX_TYPE.
c906108c 728
7ba81444
MS
729 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730 to HIGH_BOUND, inclusive.
c906108c 731
7ba81444
MS
732 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
734
735struct type *
fba45db2 736create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 737 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
738{
739 if (result_type == NULL)
e9bb382b 740 result_type = alloc_type_copy (index_type);
c906108c
SS
741 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 743 if (TYPE_STUB (index_type))
876cecd0 744 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
745 else
746 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
747 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
749 TYPE_LOW_BOUND (result_type) = low_bound;
750 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 751
c5aa993b 752 if (low_bound >= 0)
876cecd0 753 TYPE_UNSIGNED (result_type) = 1;
c906108c 754
262452ec 755 return result_type;
c906108c
SS
756}
757
7ba81444
MS
758/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
760 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
761
762int
fba45db2 763get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
764{
765 CHECK_TYPEDEF (type);
766 switch (TYPE_CODE (type))
767 {
768 case TYPE_CODE_RANGE:
769 *lowp = TYPE_LOW_BOUND (type);
770 *highp = TYPE_HIGH_BOUND (type);
771 return 1;
772 case TYPE_CODE_ENUM:
773 if (TYPE_NFIELDS (type) > 0)
774 {
775 /* The enums may not be sorted by value, so search all
776 entries */
777 int i;
778
779 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 for (i = 0; i < TYPE_NFIELDS (type); i++)
781 {
782 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 *lowp = TYPE_FIELD_BITPOS (type, i);
784 if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 *highp = TYPE_FIELD_BITPOS (type, i);
786 }
787
7ba81444 788 /* Set unsigned indicator if warranted. */
c5aa993b 789 if (*lowp >= 0)
c906108c 790 {
876cecd0 791 TYPE_UNSIGNED (type) = 1;
c906108c
SS
792 }
793 }
794 else
795 {
796 *lowp = 0;
797 *highp = -1;
798 }
799 return 0;
800 case TYPE_CODE_BOOL:
801 *lowp = 0;
802 *highp = 1;
803 return 0;
804 case TYPE_CODE_INT:
c5aa993b 805 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
806 return -1;
807 if (!TYPE_UNSIGNED (type))
808 {
c5aa993b 809 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
810 *highp = -*lowp - 1;
811 return 0;
812 }
7ba81444 813 /* ... fall through for unsigned ints ... */
c906108c
SS
814 case TYPE_CODE_CHAR:
815 *lowp = 0;
816 /* This round-about calculation is to avoid shifting by
7b83ea04 817 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 818 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
819 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820 *highp = (*highp - 1) | *highp;
821 return 0;
822 default:
823 return -1;
824 }
825}
826
dbc98a8b
KW
827/* Assuming TYPE is a simple, non-empty array type, compute its upper
828 and lower bound. Save the low bound into LOW_BOUND if not NULL.
829 Save the high bound into HIGH_BOUND if not NULL.
830
831 Return 1 if the operation was successful. Return zero otherwise,
832 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833
834 We now simply use get_discrete_bounds call to get the values
835 of the low and high bounds.
836 get_discrete_bounds can return three values:
837 1, meaning that index is a range,
838 0, meaning that index is a discrete type,
839 or -1 for failure. */
840
841int
842get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843{
844 struct type *index = TYPE_INDEX_TYPE (type);
845 LONGEST low = 0;
846 LONGEST high = 0;
847 int res;
848
849 if (index == NULL)
850 return 0;
851
852 res = get_discrete_bounds (index, &low, &high);
853 if (res == -1)
854 return 0;
855
856 /* Check if the array bounds are undefined. */
857 if (res == 1
858 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860 return 0;
861
862 if (low_bound)
863 *low_bound = low;
864
865 if (high_bound)
866 *high_bound = high;
867
868 return 1;
869}
870
7ba81444
MS
871/* Create an array type using either a blank type supplied in
872 RESULT_TYPE, or creating a new type, inheriting the objfile from
873 RANGE_TYPE.
c906108c
SS
874
875 Elements will be of type ELEMENT_TYPE, the indices will be of type
876 RANGE_TYPE.
877
7ba81444
MS
878 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879 sure it is TYPE_CODE_UNDEF before we bash it into an array
880 type? */
c906108c
SS
881
882struct type *
7ba81444
MS
883create_array_type (struct type *result_type,
884 struct type *element_type,
fba45db2 885 struct type *range_type)
c906108c
SS
886{
887 LONGEST low_bound, high_bound;
888
889 if (result_type == NULL)
e9bb382b
UW
890 result_type = alloc_type_copy (range_type);
891
c906108c
SS
892 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893 TYPE_TARGET_TYPE (result_type) = element_type;
894 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895 low_bound = high_bound = 0;
896 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
897 /* Be careful when setting the array length. Ada arrays can be
898 empty arrays with the high_bound being smaller than the low_bound.
899 In such cases, the array length should be zero. */
900 if (high_bound < low_bound)
901 TYPE_LENGTH (result_type) = 0;
902 else
903 TYPE_LENGTH (result_type) =
904 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) =
1deafd4e 907 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 908 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
909 TYPE_VPTR_FIELDNO (result_type) = -1;
910
911 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
912 if (TYPE_LENGTH (result_type) == 0)
876cecd0 913 TYPE_TARGET_STUB (result_type) = 1;
c906108c 914
c16abbde 915 return result_type;
c906108c
SS
916}
917
e3506a9f
UW
918struct type *
919lookup_array_range_type (struct type *element_type,
920 int low_bound, int high_bound)
921{
50810684 922 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
923 struct type *index_type = builtin_type (gdbarch)->builtin_int;
924 struct type *range_type
925 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 926
e3506a9f
UW
927 return create_array_type (NULL, element_type, range_type);
928}
929
7ba81444
MS
930/* Create a string type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type. String types are similar
932 enough to array of char types that we can use create_array_type to
933 build the basic type and then bash it into a string type.
c906108c
SS
934
935 For fixed length strings, the range type contains 0 as the lower
936 bound and the length of the string minus one as the upper bound.
937
7ba81444
MS
938 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939 sure it is TYPE_CODE_UNDEF before we bash it into a string
940 type? */
c906108c
SS
941
942struct type *
3b7538c0
UW
943create_string_type (struct type *result_type,
944 struct type *string_char_type,
7ba81444 945 struct type *range_type)
c906108c
SS
946{
947 result_type = create_array_type (result_type,
f290d38e 948 string_char_type,
c906108c
SS
949 range_type);
950 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 951 return result_type;
c906108c
SS
952}
953
e3506a9f
UW
954struct type *
955lookup_string_range_type (struct type *string_char_type,
956 int low_bound, int high_bound)
957{
958 struct type *result_type;
d8734c88 959
e3506a9f
UW
960 result_type = lookup_array_range_type (string_char_type,
961 low_bound, high_bound);
962 TYPE_CODE (result_type) = TYPE_CODE_STRING;
963 return result_type;
964}
965
c906108c 966struct type *
fba45db2 967create_set_type (struct type *result_type, struct type *domain_type)
c906108c 968{
c906108c 969 if (result_type == NULL)
e9bb382b
UW
970 result_type = alloc_type_copy (domain_type);
971
c906108c
SS
972 TYPE_CODE (result_type) = TYPE_CODE_SET;
973 TYPE_NFIELDS (result_type) = 1;
1deafd4e 974 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 975
74a9bb82 976 if (!TYPE_STUB (domain_type))
c906108c 977 {
f9780d5b 978 LONGEST low_bound, high_bound, bit_length;
d8734c88 979
c906108c
SS
980 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 low_bound = high_bound = 0;
982 bit_length = high_bound - low_bound + 1;
983 TYPE_LENGTH (result_type)
984 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 985 if (low_bound >= 0)
876cecd0 986 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
987 }
988 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989
c16abbde 990 return result_type;
c906108c
SS
991}
992
ea37ba09
DJ
993/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
994 and any array types nested inside it. */
995
996void
997make_vector_type (struct type *array_type)
998{
999 struct type *inner_array, *elt_type;
1000 int flags;
1001
1002 /* Find the innermost array type, in case the array is
1003 multi-dimensional. */
1004 inner_array = array_type;
1005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006 inner_array = TYPE_TARGET_TYPE (inner_array);
1007
1008 elt_type = TYPE_TARGET_TYPE (inner_array);
1009 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010 {
2844d6b5 1011 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1012 elt_type = make_qualified_type (elt_type, flags, NULL);
1013 TYPE_TARGET_TYPE (inner_array) = elt_type;
1014 }
1015
876cecd0 1016 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1017}
1018
794ac428 1019struct type *
ac3aafc7
EZ
1020init_vector_type (struct type *elt_type, int n)
1021{
1022 struct type *array_type;
d8734c88 1023
e3506a9f 1024 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1025 make_vector_type (array_type);
ac3aafc7
EZ
1026 return array_type;
1027}
1028
0d5de010
DJ
1029/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1031 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1032 TYPE doesn't include the offset (that's the value of the MEMBER
1033 itself), but does include the structure type into which it points
1034 (for some reason).
c906108c 1035
7ba81444
MS
1036 When "smashing" the type, we preserve the objfile that the old type
1037 pointed to, since we aren't changing where the type is actually
c906108c
SS
1038 allocated. */
1039
1040void
0d5de010
DJ
1041smash_to_memberptr_type (struct type *type, struct type *domain,
1042 struct type *to_type)
c906108c 1043{
2fdde8f8 1044 smash_type (type);
c906108c
SS
1045 TYPE_TARGET_TYPE (type) = to_type;
1046 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1047 /* Assume that a data member pointer is the same size as a normal
1048 pointer. */
50810684
UW
1049 TYPE_LENGTH (type)
1050 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1051 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1052}
1053
0b92b5bb
TT
1054/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055
1056 When "smashing" the type, we preserve the objfile that the old type
1057 pointed to, since we aren't changing where the type is actually
1058 allocated. */
1059
1060void
1061smash_to_methodptr_type (struct type *type, struct type *to_type)
1062{
1063 smash_type (type);
1064 TYPE_TARGET_TYPE (type) = to_type;
1065 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068}
1069
c906108c
SS
1070/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071 METHOD just means `function that gets an extra "this" argument'.
1072
7ba81444
MS
1073 When "smashing" the type, we preserve the objfile that the old type
1074 pointed to, since we aren't changing where the type is actually
c906108c
SS
1075 allocated. */
1076
1077void
fba45db2 1078smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1079 struct type *to_type, struct field *args,
1080 int nargs, int varargs)
c906108c 1081{
2fdde8f8 1082 smash_type (type);
c906108c
SS
1083 TYPE_TARGET_TYPE (type) = to_type;
1084 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1085 TYPE_FIELDS (type) = args;
1086 TYPE_NFIELDS (type) = nargs;
1087 if (varargs)
876cecd0 1088 TYPE_VARARGS (type) = 1;
c906108c
SS
1089 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1090 TYPE_CODE (type) = TYPE_CODE_METHOD;
1091}
1092
1093/* Return a typename for a struct/union/enum type without "struct ",
1094 "union ", or "enum ". If the type has a NULL name, return NULL. */
1095
1096char *
aa1ee363 1097type_name_no_tag (const struct type *type)
c906108c
SS
1098{
1099 if (TYPE_TAG_NAME (type) != NULL)
1100 return TYPE_TAG_NAME (type);
1101
7ba81444
MS
1102 /* Is there code which expects this to return the name if there is
1103 no tag name? My guess is that this is mainly used for C++ in
1104 cases where the two will always be the same. */
c906108c
SS
1105 return TYPE_NAME (type);
1106}
1107
7ba81444
MS
1108/* Lookup a typedef or primitive type named NAME, visible in lexical
1109 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1110 suitably defined. */
c906108c
SS
1111
1112struct type *
e6c014f2
UW
1113lookup_typename (const struct language_defn *language,
1114 struct gdbarch *gdbarch, char *name,
34eaf542 1115 const struct block *block, int noerr)
c906108c 1116{
52f0bd74
AC
1117 struct symbol *sym;
1118 struct type *tmp;
c906108c 1119
774b6a14 1120 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1121 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1122 {
e6c014f2 1123 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1124 if (tmp)
1125 {
c16abbde 1126 return tmp;
c906108c
SS
1127 }
1128 else if (!tmp && noerr)
1129 {
c16abbde 1130 return NULL;
c906108c
SS
1131 }
1132 else
1133 {
8a3fe4f8 1134 error (_("No type named %s."), name);
c906108c
SS
1135 }
1136 }
1137 return (SYMBOL_TYPE (sym));
1138}
1139
1140struct type *
e6c014f2
UW
1141lookup_unsigned_typename (const struct language_defn *language,
1142 struct gdbarch *gdbarch, char *name)
c906108c
SS
1143{
1144 char *uns = alloca (strlen (name) + 10);
1145
1146 strcpy (uns, "unsigned ");
1147 strcpy (uns + 9, name);
e6c014f2 1148 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1149}
1150
1151struct type *
e6c014f2
UW
1152lookup_signed_typename (const struct language_defn *language,
1153 struct gdbarch *gdbarch, char *name)
c906108c
SS
1154{
1155 struct type *t;
1156 char *uns = alloca (strlen (name) + 8);
1157
1158 strcpy (uns, "signed ");
1159 strcpy (uns + 7, name);
e6c014f2 1160 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1161 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1162 if (t != NULL)
1163 return t;
e6c014f2 1164 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1165}
1166
1167/* Lookup a structure type named "struct NAME",
1168 visible in lexical block BLOCK. */
1169
1170struct type *
fba45db2 1171lookup_struct (char *name, struct block *block)
c906108c 1172{
52f0bd74 1173 struct symbol *sym;
c906108c 1174
2570f2b7 1175 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1176
1177 if (sym == NULL)
1178 {
8a3fe4f8 1179 error (_("No struct type named %s."), name);
c906108c
SS
1180 }
1181 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1182 {
7ba81444
MS
1183 error (_("This context has class, union or enum %s, not a struct."),
1184 name);
c906108c
SS
1185 }
1186 return (SYMBOL_TYPE (sym));
1187}
1188
1189/* Lookup a union type named "union NAME",
1190 visible in lexical block BLOCK. */
1191
1192struct type *
fba45db2 1193lookup_union (char *name, struct block *block)
c906108c 1194{
52f0bd74 1195 struct symbol *sym;
c5aa993b 1196 struct type *t;
c906108c 1197
2570f2b7 1198 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1199
1200 if (sym == NULL)
8a3fe4f8 1201 error (_("No union type named %s."), name);
c906108c 1202
c5aa993b 1203 t = SYMBOL_TYPE (sym);
c906108c
SS
1204
1205 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1206 return t;
c906108c 1207
7ba81444
MS
1208 /* If we get here, it's not a union. */
1209 error (_("This context has class, struct or enum %s, not a union."),
1210 name);
c906108c
SS
1211}
1212
1213
1214/* Lookup an enum type named "enum NAME",
1215 visible in lexical block BLOCK. */
1216
1217struct type *
fba45db2 1218lookup_enum (char *name, struct block *block)
c906108c 1219{
52f0bd74 1220 struct symbol *sym;
c906108c 1221
2570f2b7 1222 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1223 if (sym == NULL)
1224 {
8a3fe4f8 1225 error (_("No enum type named %s."), name);
c906108c
SS
1226 }
1227 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1228 {
7ba81444
MS
1229 error (_("This context has class, struct or union %s, not an enum."),
1230 name);
c906108c
SS
1231 }
1232 return (SYMBOL_TYPE (sym));
1233}
1234
1235/* Lookup a template type named "template NAME<TYPE>",
1236 visible in lexical block BLOCK. */
1237
1238struct type *
7ba81444
MS
1239lookup_template_type (char *name, struct type *type,
1240 struct block *block)
c906108c
SS
1241{
1242 struct symbol *sym;
7ba81444
MS
1243 char *nam = (char *)
1244 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1245
c906108c
SS
1246 strcpy (nam, name);
1247 strcat (nam, "<");
0004e5a2 1248 strcat (nam, TYPE_NAME (type));
7ba81444 1249 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1250
2570f2b7 1251 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1252
1253 if (sym == NULL)
1254 {
8a3fe4f8 1255 error (_("No template type named %s."), name);
c906108c
SS
1256 }
1257 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1258 {
7ba81444
MS
1259 error (_("This context has class, union or enum %s, not a struct."),
1260 name);
c906108c
SS
1261 }
1262 return (SYMBOL_TYPE (sym));
1263}
1264
7ba81444
MS
1265/* Given a type TYPE, lookup the type of the component of type named
1266 NAME.
c906108c 1267
7ba81444
MS
1268 TYPE can be either a struct or union, or a pointer or reference to
1269 a struct or union. If it is a pointer or reference, its target
1270 type is automatically used. Thus '.' and '->' are interchangable,
1271 as specified for the definitions of the expression element types
1272 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1273
1274 If NOERR is nonzero, return zero if NAME is not suitably defined.
1275 If NAME is the name of a baseclass type, return that type. */
1276
1277struct type *
fba45db2 1278lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1279{
1280 int i;
c92817ce 1281 char *typename;
c906108c
SS
1282
1283 for (;;)
1284 {
1285 CHECK_TYPEDEF (type);
1286 if (TYPE_CODE (type) != TYPE_CODE_PTR
1287 && TYPE_CODE (type) != TYPE_CODE_REF)
1288 break;
1289 type = TYPE_TARGET_TYPE (type);
1290 }
1291
687d6395
MS
1292 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1293 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1294 {
c92817ce
TT
1295 typename = type_to_string (type);
1296 make_cleanup (xfree, typename);
1297 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1298 }
1299
1300#if 0
7ba81444
MS
1301 /* FIXME: This change put in by Michael seems incorrect for the case
1302 where the structure tag name is the same as the member name.
1303 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1304 foo; } bell;" Disabled by fnf. */
c906108c
SS
1305 {
1306 char *typename;
1307
1308 typename = type_name_no_tag (type);
762f08a3 1309 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1310 return type;
1311 }
1312#endif
1313
1314 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1315 {
1316 char *t_field_name = TYPE_FIELD_NAME (type, i);
1317
db577aea 1318 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1319 {
1320 return TYPE_FIELD_TYPE (type, i);
1321 }
f5a010c0
PM
1322 else if (!t_field_name || *t_field_name == '\0')
1323 {
d8734c88
MS
1324 struct type *subtype
1325 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1326
f5a010c0
PM
1327 if (subtype != NULL)
1328 return subtype;
1329 }
c906108c
SS
1330 }
1331
1332 /* OK, it's not in this class. Recursively check the baseclasses. */
1333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1334 {
1335 struct type *t;
1336
9733fc94 1337 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1338 if (t != NULL)
1339 {
1340 return t;
1341 }
1342 }
1343
1344 if (noerr)
1345 {
1346 return NULL;
1347 }
c5aa993b 1348
c92817ce
TT
1349 typename = type_to_string (type);
1350 make_cleanup (xfree, typename);
1351 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1352}
1353
81fe8080
DE
1354/* Lookup the vptr basetype/fieldno values for TYPE.
1355 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1356 vptr_fieldno. Also, if found and basetype is from the same objfile,
1357 cache the results.
1358 If not found, return -1 and ignore BASETYPEP.
1359 Callers should be aware that in some cases (for example,
c906108c 1360 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1361 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1362 this function will not be able to find the
7ba81444 1363 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1364 vptr_basetype will remain NULL or incomplete. */
c906108c 1365
81fe8080
DE
1366int
1367get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1368{
1369 CHECK_TYPEDEF (type);
1370
1371 if (TYPE_VPTR_FIELDNO (type) < 0)
1372 {
1373 int i;
1374
7ba81444
MS
1375 /* We must start at zero in case the first (and only) baseclass
1376 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1377 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1378 {
81fe8080
DE
1379 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1380 int fieldno;
1381 struct type *basetype;
1382
1383 fieldno = get_vptr_fieldno (baseclass, &basetype);
1384 if (fieldno >= 0)
c906108c 1385 {
81fe8080
DE
1386 /* If the type comes from a different objfile we can't cache
1387 it, it may have a different lifetime. PR 2384 */
5ef73790 1388 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1389 {
1390 TYPE_VPTR_FIELDNO (type) = fieldno;
1391 TYPE_VPTR_BASETYPE (type) = basetype;
1392 }
1393 if (basetypep)
1394 *basetypep = basetype;
1395 return fieldno;
c906108c
SS
1396 }
1397 }
81fe8080
DE
1398
1399 /* Not found. */
1400 return -1;
1401 }
1402 else
1403 {
1404 if (basetypep)
1405 *basetypep = TYPE_VPTR_BASETYPE (type);
1406 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1407 }
1408}
1409
44e1a9eb
DJ
1410static void
1411stub_noname_complaint (void)
1412{
e2e0b3e5 1413 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1414}
1415
92163a10
JK
1416/* Find the real type of TYPE. This function returns the real type,
1417 after removing all layers of typedefs, and completing opaque or stub
1418 types. Completion changes the TYPE argument, but stripping of
1419 typedefs does not.
1420
1421 Instance flags (e.g. const/volatile) are preserved as typedefs are
1422 stripped. If necessary a new qualified form of the underlying type
1423 is created.
1424
1425 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1426 not been computed and we're either in the middle of reading symbols, or
1427 there was no name for the typedef in the debug info.
1428
1429 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1430 the target type.
c906108c
SS
1431
1432 If this is a stubbed struct (i.e. declared as struct foo *), see if
1433 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1434 definition, so we can use it in future. There used to be a comment
1435 (but not any code) that if we don't find a full definition, we'd
1436 set a flag so we don't spend time in the future checking the same
1437 type. That would be a mistake, though--we might load in more
92163a10 1438 symbols which contain a full definition for the type. */
c906108c
SS
1439
1440struct type *
a02fd225 1441check_typedef (struct type *type)
c906108c
SS
1442{
1443 struct type *orig_type = type;
92163a10
JK
1444 /* While we're removing typedefs, we don't want to lose qualifiers.
1445 E.g., const/volatile. */
1446 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1447
423c0af8
MS
1448 gdb_assert (type);
1449
c906108c
SS
1450 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451 {
1452 if (!TYPE_TARGET_TYPE (type))
1453 {
c5aa993b 1454 char *name;
c906108c
SS
1455 struct symbol *sym;
1456
1457 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1458 reading a symtab. Infinite recursion is one danger. */
c906108c 1459 if (currently_reading_symtab)
92163a10 1460 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1461
1462 name = type_name_no_tag (type);
7ba81444
MS
1463 /* FIXME: shouldn't we separately check the TYPE_NAME and
1464 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1465 VAR_DOMAIN as appropriate? (this code was written before
1466 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1467 if (name == NULL)
1468 {
23136709 1469 stub_noname_complaint ();
92163a10 1470 return make_qualified_type (type, instance_flags, NULL);
c906108c 1471 }
2570f2b7 1472 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1473 if (sym)
1474 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1475 else /* TYPE_CODE_UNDEF */
e9bb382b 1476 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1477 }
1478 type = TYPE_TARGET_TYPE (type);
c906108c 1479
92163a10
JK
1480 /* Preserve the instance flags as we traverse down the typedef chain.
1481
1482 Handling address spaces/classes is nasty, what do we do if there's a
1483 conflict?
1484 E.g., what if an outer typedef marks the type as class_1 and an inner
1485 typedef marks the type as class_2?
1486 This is the wrong place to do such error checking. We leave it to
1487 the code that created the typedef in the first place to flag the
1488 error. We just pick the outer address space (akin to letting the
1489 outer cast in a chain of casting win), instead of assuming
1490 "it can't happen". */
1491 {
1492 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1493 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1494 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1495 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1496
1497 /* Treat code vs data spaces and address classes separately. */
1498 if ((instance_flags & ALL_SPACES) != 0)
1499 new_instance_flags &= ~ALL_SPACES;
1500 if ((instance_flags & ALL_CLASSES) != 0)
1501 new_instance_flags &= ~ALL_CLASSES;
1502
1503 instance_flags |= new_instance_flags;
1504 }
1505 }
a02fd225 1506
7ba81444
MS
1507 /* If this is a struct/class/union with no fields, then check
1508 whether a full definition exists somewhere else. This is for
1509 systems where a type definition with no fields is issued for such
1510 types, instead of identifying them as stub types in the first
1511 place. */
c5aa993b 1512
7ba81444
MS
1513 if (TYPE_IS_OPAQUE (type)
1514 && opaque_type_resolution
1515 && !currently_reading_symtab)
c906108c 1516 {
c5aa993b
JM
1517 char *name = type_name_no_tag (type);
1518 struct type *newtype;
d8734c88 1519
c906108c
SS
1520 if (name == NULL)
1521 {
23136709 1522 stub_noname_complaint ();
92163a10 1523 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1524 }
1525 newtype = lookup_transparent_type (name);
ad766c0a 1526
c906108c 1527 if (newtype)
ad766c0a 1528 {
7ba81444
MS
1529 /* If the resolved type and the stub are in the same
1530 objfile, then replace the stub type with the real deal.
1531 But if they're in separate objfiles, leave the stub
1532 alone; we'll just look up the transparent type every time
1533 we call check_typedef. We can't create pointers between
1534 types allocated to different objfiles, since they may
1535 have different lifetimes. Trying to copy NEWTYPE over to
1536 TYPE's objfile is pointless, too, since you'll have to
1537 move over any other types NEWTYPE refers to, which could
1538 be an unbounded amount of stuff. */
ad766c0a 1539 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1540 type = make_qualified_type (newtype,
1541 TYPE_INSTANCE_FLAGS (type),
1542 type);
ad766c0a
JB
1543 else
1544 type = newtype;
1545 }
c906108c 1546 }
7ba81444
MS
1547 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1548 types. */
74a9bb82 1549 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1550 {
c5aa993b 1551 char *name = type_name_no_tag (type);
c906108c 1552 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1553 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1554 as appropriate? (this code was written before TYPE_NAME and
1555 TYPE_TAG_NAME were separate). */
c906108c 1556 struct symbol *sym;
d8734c88 1557
c906108c
SS
1558 if (name == NULL)
1559 {
23136709 1560 stub_noname_complaint ();
92163a10 1561 return make_qualified_type (type, instance_flags, NULL);
c906108c 1562 }
2570f2b7 1563 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1564 if (sym)
c26f2453
JB
1565 {
1566 /* Same as above for opaque types, we can replace the stub
92163a10 1567 with the complete type only if they are in the same
c26f2453
JB
1568 objfile. */
1569 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1570 type = make_qualified_type (SYMBOL_TYPE (sym),
1571 TYPE_INSTANCE_FLAGS (type),
1572 type);
c26f2453
JB
1573 else
1574 type = SYMBOL_TYPE (sym);
1575 }
c906108c
SS
1576 }
1577
74a9bb82 1578 if (TYPE_TARGET_STUB (type))
c906108c
SS
1579 {
1580 struct type *range_type;
1581 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1582
74a9bb82 1583 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1584 {
7ba81444 1585 /* Empty. */
c5aa993b 1586 }
c906108c
SS
1587 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 && TYPE_NFIELDS (type) == 1
262452ec 1589 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1590 == TYPE_CODE_RANGE))
1591 {
1592 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1593 number of elements and the target type's length.
1594 Watch out for Ada null Ada arrays where the high bound
43bbcdc2
PH
1595 is smaller than the low bound. */
1596 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1597 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1598 ULONGEST len;
1599
ab0d6e0d 1600 if (high_bound < low_bound)
43bbcdc2 1601 len = 0;
d8734c88
MS
1602 else
1603 {
1604 /* For now, we conservatively take the array length to be 0
1605 if its length exceeds UINT_MAX. The code below assumes
1606 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1607 which is technically not guaranteed by C, but is usually true
1608 (because it would be true if x were unsigned with its
1609 high-order bit on). It uses the fact that
1610 high_bound-low_bound is always representable in
1611 ULONGEST and that if high_bound-low_bound+1 overflows,
1612 it overflows to 0. We must change these tests if we
1613 decide to increase the representation of TYPE_LENGTH
1614 from unsigned int to ULONGEST. */
1615 ULONGEST ulow = low_bound, uhigh = high_bound;
1616 ULONGEST tlen = TYPE_LENGTH (target_type);
1617
1618 len = tlen * (uhigh - ulow + 1);
1619 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1620 || len > UINT_MAX)
1621 len = 0;
1622 }
43bbcdc2 1623 TYPE_LENGTH (type) = len;
876cecd0 1624 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1625 }
1626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1627 {
1628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1629 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1630 }
1631 }
92163a10
JK
1632
1633 type = make_qualified_type (type, instance_flags, NULL);
1634
7ba81444 1635 /* Cache TYPE_LENGTH for future use. */
c906108c 1636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1637
c906108c
SS
1638 return type;
1639}
1640
7ba81444 1641/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1642 occurs, silently return a void type. */
c91ecb25 1643
b9362cc7 1644static struct type *
48319d1f 1645safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1646{
1647 struct ui_file *saved_gdb_stderr;
1648 struct type *type;
1649
7ba81444 1650 /* Suppress error messages. */
c91ecb25
ND
1651 saved_gdb_stderr = gdb_stderr;
1652 gdb_stderr = ui_file_new ();
1653
7ba81444 1654 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1655 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1656 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1657
7ba81444 1658 /* Stop suppressing error messages. */
c91ecb25
ND
1659 ui_file_delete (gdb_stderr);
1660 gdb_stderr = saved_gdb_stderr;
1661
1662 return type;
1663}
1664
c906108c
SS
1665/* Ugly hack to convert method stubs into method types.
1666
7ba81444
MS
1667 He ain't kiddin'. This demangles the name of the method into a
1668 string including argument types, parses out each argument type,
1669 generates a string casting a zero to that type, evaluates the
1670 string, and stuffs the resulting type into an argtype vector!!!
1671 Then it knows the type of the whole function (including argument
1672 types for overloading), which info used to be in the stab's but was
1673 removed to hack back the space required for them. */
c906108c 1674
de17c821 1675static void
fba45db2 1676check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1677{
50810684 1678 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1679 struct fn_field *f;
1680 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1681 char *demangled_name = cplus_demangle (mangled_name,
1682 DMGL_PARAMS | DMGL_ANSI);
1683 char *argtypetext, *p;
1684 int depth = 0, argcount = 1;
ad2f7632 1685 struct field *argtypes;
c906108c
SS
1686 struct type *mtype;
1687
1688 /* Make sure we got back a function string that we can use. */
1689 if (demangled_name)
1690 p = strchr (demangled_name, '(');
502dcf4e
AC
1691 else
1692 p = NULL;
c906108c
SS
1693
1694 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1695 error (_("Internal: Cannot demangle mangled name `%s'."),
1696 mangled_name);
c906108c
SS
1697
1698 /* Now, read in the parameters that define this type. */
1699 p += 1;
1700 argtypetext = p;
1701 while (*p)
1702 {
070ad9f0 1703 if (*p == '(' || *p == '<')
c906108c
SS
1704 {
1705 depth += 1;
1706 }
070ad9f0 1707 else if (*p == ')' || *p == '>')
c906108c
SS
1708 {
1709 depth -= 1;
1710 }
1711 else if (*p == ',' && depth == 0)
1712 {
1713 argcount += 1;
1714 }
1715
1716 p += 1;
1717 }
1718
ad2f7632
DJ
1719 /* If we read one argument and it was ``void'', don't count it. */
1720 if (strncmp (argtypetext, "(void)", 6) == 0)
1721 argcount -= 1;
c906108c 1722
ad2f7632
DJ
1723 /* We need one extra slot, for the THIS pointer. */
1724
1725 argtypes = (struct field *)
1726 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1727 p = argtypetext;
4a1970e4
DJ
1728
1729 /* Add THIS pointer for non-static methods. */
1730 f = TYPE_FN_FIELDLIST1 (type, method_id);
1731 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1732 argcount = 0;
1733 else
1734 {
ad2f7632 1735 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1736 argcount = 1;
1737 }
c906108c 1738
c5aa993b 1739 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1740 {
1741 depth = 0;
1742 while (*p)
1743 {
1744 if (depth <= 0 && (*p == ',' || *p == ')'))
1745 {
ad2f7632
DJ
1746 /* Avoid parsing of ellipsis, they will be handled below.
1747 Also avoid ``void'' as above. */
1748 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1749 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1750 {
ad2f7632 1751 argtypes[argcount].type =
48319d1f 1752 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1753 argcount += 1;
1754 }
1755 argtypetext = p + 1;
1756 }
1757
070ad9f0 1758 if (*p == '(' || *p == '<')
c906108c
SS
1759 {
1760 depth += 1;
1761 }
070ad9f0 1762 else if (*p == ')' || *p == '>')
c906108c
SS
1763 {
1764 depth -= 1;
1765 }
1766
1767 p += 1;
1768 }
1769 }
1770
c906108c
SS
1771 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1772
1773 /* Now update the old "stub" type into a real type. */
1774 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1775 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1776 TYPE_FIELDS (mtype) = argtypes;
1777 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1778 TYPE_STUB (mtype) = 0;
c906108c 1779 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1780 if (p[-2] == '.')
876cecd0 1781 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1782
1783 xfree (demangled_name);
c906108c
SS
1784}
1785
7ba81444
MS
1786/* This is the external interface to check_stub_method, above. This
1787 function unstubs all of the signatures for TYPE's METHOD_ID method
1788 name. After calling this function TYPE_FN_FIELD_STUB will be
1789 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1790 correct.
de17c821
DJ
1791
1792 This function unfortunately can not die until stabs do. */
1793
1794void
1795check_stub_method_group (struct type *type, int method_id)
1796{
1797 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1798 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1799 int j, found_stub = 0;
de17c821
DJ
1800
1801 for (j = 0; j < len; j++)
1802 if (TYPE_FN_FIELD_STUB (f, j))
1803 {
1804 found_stub = 1;
1805 check_stub_method (type, method_id, j);
1806 }
1807
7ba81444
MS
1808 /* GNU v3 methods with incorrect names were corrected when we read
1809 in type information, because it was cheaper to do it then. The
1810 only GNU v2 methods with incorrect method names are operators and
1811 destructors; destructors were also corrected when we read in type
1812 information.
de17c821
DJ
1813
1814 Therefore the only thing we need to handle here are v2 operator
1815 names. */
1816 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1817 {
1818 int ret;
1819 char dem_opname[256];
1820
7ba81444
MS
1821 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1822 method_id),
de17c821
DJ
1823 dem_opname, DMGL_ANSI);
1824 if (!ret)
7ba81444
MS
1825 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1826 method_id),
de17c821
DJ
1827 dem_opname, 0);
1828 if (ret)
1829 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1830 }
1831}
1832
9655fd1a
JK
1833/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1834const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1835
1836void
fba45db2 1837allocate_cplus_struct_type (struct type *type)
c906108c 1838{
b4ba55a1
JB
1839 if (HAVE_CPLUS_STRUCT (type))
1840 /* Structure was already allocated. Nothing more to do. */
1841 return;
1842
1843 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1844 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1845 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1846 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1847}
1848
b4ba55a1
JB
1849const struct gnat_aux_type gnat_aux_default =
1850 { NULL };
1851
1852/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1853 and allocate the associated gnat-specific data. The gnat-specific
1854 data is also initialized to gnat_aux_default. */
1855void
1856allocate_gnat_aux_type (struct type *type)
1857{
1858 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1859 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1860 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1861 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1862}
1863
1864
c906108c
SS
1865/* Helper function to initialize the standard scalar types.
1866
e9bb382b
UW
1867 If NAME is non-NULL, then we make a copy of the string pointed
1868 to by name in the objfile_obstack for that objfile, and initialize
1869 the type name to that copy. There are places (mipsread.c in particular),
1870 where init_type is called with a NULL value for NAME). */
c906108c
SS
1871
1872struct type *
7ba81444
MS
1873init_type (enum type_code code, int length, int flags,
1874 char *name, struct objfile *objfile)
c906108c 1875{
52f0bd74 1876 struct type *type;
c906108c
SS
1877
1878 type = alloc_type (objfile);
1879 TYPE_CODE (type) = code;
1880 TYPE_LENGTH (type) = length;
876cecd0
TT
1881
1882 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1883 if (flags & TYPE_FLAG_UNSIGNED)
1884 TYPE_UNSIGNED (type) = 1;
1885 if (flags & TYPE_FLAG_NOSIGN)
1886 TYPE_NOSIGN (type) = 1;
1887 if (flags & TYPE_FLAG_STUB)
1888 TYPE_STUB (type) = 1;
1889 if (flags & TYPE_FLAG_TARGET_STUB)
1890 TYPE_TARGET_STUB (type) = 1;
1891 if (flags & TYPE_FLAG_STATIC)
1892 TYPE_STATIC (type) = 1;
1893 if (flags & TYPE_FLAG_PROTOTYPED)
1894 TYPE_PROTOTYPED (type) = 1;
1895 if (flags & TYPE_FLAG_INCOMPLETE)
1896 TYPE_INCOMPLETE (type) = 1;
1897 if (flags & TYPE_FLAG_VARARGS)
1898 TYPE_VARARGS (type) = 1;
1899 if (flags & TYPE_FLAG_VECTOR)
1900 TYPE_VECTOR (type) = 1;
1901 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1902 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1903 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1904 TYPE_FIXED_INSTANCE (type) = 1;
1905
e9bb382b
UW
1906 if (name)
1907 TYPE_NAME (type) = obsavestring (name, strlen (name),
1908 &objfile->objfile_obstack);
c906108c
SS
1909
1910 /* C++ fancies. */
1911
973ccf8b 1912 if (name && strcmp (name, "char") == 0)
876cecd0 1913 TYPE_NOSIGN (type) = 1;
973ccf8b 1914
b4ba55a1 1915 switch (code)
c906108c 1916 {
b4ba55a1
JB
1917 case TYPE_CODE_STRUCT:
1918 case TYPE_CODE_UNION:
1919 case TYPE_CODE_NAMESPACE:
1920 INIT_CPLUS_SPECIFIC (type);
1921 break;
1922 case TYPE_CODE_FLT:
1923 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1924 break;
1925 case TYPE_CODE_FUNC:
1926 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1927 break;
c906108c 1928 }
c16abbde 1929 return type;
c906108c
SS
1930}
1931
c906108c 1932int
fba45db2 1933can_dereference (struct type *t)
c906108c 1934{
7ba81444
MS
1935 /* FIXME: Should we return true for references as well as
1936 pointers? */
c906108c
SS
1937 CHECK_TYPEDEF (t);
1938 return
1939 (t != NULL
1940 && TYPE_CODE (t) == TYPE_CODE_PTR
1941 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1942}
1943
adf40b2e 1944int
fba45db2 1945is_integral_type (struct type *t)
adf40b2e
JM
1946{
1947 CHECK_TYPEDEF (t);
1948 return
1949 ((t != NULL)
d4f3574e
SS
1950 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1951 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1952 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1953 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1954 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1955 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1956}
1957
4e8f195d
TT
1958/* A helper function which returns true if types A and B represent the
1959 "same" class type. This is true if the types have the same main
1960 type, or the same name. */
1961
1962int
1963class_types_same_p (const struct type *a, const struct type *b)
1964{
1965 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1966 || (TYPE_NAME (a) && TYPE_NAME (b)
1967 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1968}
1969
0526b37a
SW
1970/* Check whether BASE is an ancestor or base class of DCLASS
1971 Return 1 if so, and 0 if not. If PUBLIC is 1 then only public
1972 ancestors are considered, and the function returns 1 only if
1973 BASE is a public ancestor of DCLASS. */
c906108c 1974
0526b37a
SW
1975static int
1976do_is_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
1977{
1978 int i;
c5aa993b 1979
c906108c
SS
1980 CHECK_TYPEDEF (base);
1981 CHECK_TYPEDEF (dclass);
1982
4e8f195d 1983 if (class_types_same_p (base, dclass))
6b1ba9a0 1984 return 1;
c906108c
SS
1985
1986 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 1987 {
0526b37a
SW
1988 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
1989 continue;
1990
1991 if (do_is_ancestor (base, TYPE_BASECLASS (dclass, i), public))
4e8f195d
TT
1992 return 1;
1993 }
c906108c
SS
1994
1995 return 0;
1996}
4e8f195d 1997
0526b37a
SW
1998/* Check whether BASE is an ancestor or base class or DCLASS
1999 Return 1 if so, and 0 if not.
2000 Note: If BASE and DCLASS are of the same type, this function
2001 will return 1. So for some class A, is_ancestor (A, A) will
2002 return 1. */
2003
2004int
2005is_ancestor (struct type *base, struct type *dclass)
2006{
2007 return do_is_ancestor (base, dclass, 0);
2008}
2009
4e8f195d
TT
2010/* Like is_ancestor, but only returns true when BASE is a public
2011 ancestor of DCLASS. */
2012
2013int
2014is_public_ancestor (struct type *base, struct type *dclass)
2015{
0526b37a 2016 return do_is_ancestor (base, dclass, 1);
4e8f195d
TT
2017}
2018
2019/* A helper function for is_unique_ancestor. */
2020
2021static int
2022is_unique_ancestor_worker (struct type *base, struct type *dclass,
2023 int *offset,
2024 const bfd_byte *contents, CORE_ADDR address)
2025{
2026 int i, count = 0;
2027
2028 CHECK_TYPEDEF (base);
2029 CHECK_TYPEDEF (dclass);
2030
2031 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2032 {
2033 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
2034 int this_offset = baseclass_offset (dclass, i, contents, address);
2035
2036 if (this_offset == -1)
2037 error (_("virtual baseclass botch"));
2038
2039 if (class_types_same_p (base, iter))
2040 {
2041 /* If this is the first subclass, set *OFFSET and set count
2042 to 1. Otherwise, if this is at the same offset as
2043 previous instances, do nothing. Otherwise, increment
2044 count. */
2045 if (*offset == -1)
2046 {
2047 *offset = this_offset;
2048 count = 1;
2049 }
2050 else if (this_offset == *offset)
2051 {
2052 /* Nothing. */
2053 }
2054 else
2055 ++count;
2056 }
2057 else
2058 count += is_unique_ancestor_worker (base, iter, offset,
2059 contents + this_offset,
2060 address + this_offset);
2061 }
2062
2063 return count;
2064}
2065
2066/* Like is_ancestor, but only returns true if BASE is a unique base
2067 class of the type of VAL. */
2068
2069int
2070is_unique_ancestor (struct type *base, struct value *val)
2071{
2072 int offset = -1;
2073
2074 return is_unique_ancestor_worker (base, value_type (val), &offset,
2075 value_contents (val),
2076 value_address (val)) == 1;
2077}
2078
c906108c
SS
2079\f
2080
6403aeea
SW
2081/* Return the sum of the rank of A with the rank of B. */
2082
2083struct rank
2084sum_ranks (struct rank a, struct rank b)
2085{
2086 struct rank c;
2087 c.rank = a.rank + b.rank;
2088 return c;
2089}
2090
2091/* Compare rank A and B and return:
2092 0 if a = b
2093 1 if a is better than b
2094 -1 if b is better than a. */
2095
2096int
2097compare_ranks (struct rank a, struct rank b)
2098{
2099 if (a.rank == b.rank)
2100 return 0;
2101
2102 if (a.rank < b.rank)
2103 return 1;
2104
2105 return -1;
2106}
c5aa993b 2107
c906108c
SS
2108/* Functions for overload resolution begin here */
2109
2110/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2111 0 => A and B are identical
2112 1 => A and B are incomparable
2113 2 => A is better than B
2114 3 => A is worse than B */
c906108c
SS
2115
2116int
fba45db2 2117compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2118{
2119 int i;
2120 int tmp;
c5aa993b
JM
2121 short found_pos = 0; /* any positives in c? */
2122 short found_neg = 0; /* any negatives in c? */
2123
2124 /* differing lengths => incomparable */
c906108c
SS
2125 if (a->length != b->length)
2126 return 1;
2127
c5aa993b
JM
2128 /* Subtract b from a */
2129 for (i = 0; i < a->length; i++)
c906108c 2130 {
6403aeea 2131 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2132 if (tmp > 0)
c5aa993b 2133 found_pos = 1;
c906108c 2134 else if (tmp < 0)
c5aa993b 2135 found_neg = 1;
c906108c
SS
2136 }
2137
2138 if (found_pos)
2139 {
2140 if (found_neg)
c5aa993b 2141 return 1; /* incomparable */
c906108c 2142 else
c5aa993b 2143 return 3; /* A > B */
c906108c 2144 }
c5aa993b
JM
2145 else
2146 /* no positives */
c906108c
SS
2147 {
2148 if (found_neg)
c5aa993b 2149 return 2; /* A < B */
c906108c 2150 else
c5aa993b 2151 return 0; /* A == B */
c906108c
SS
2152 }
2153}
2154
7ba81444
MS
2155/* Rank a function by comparing its parameter types (PARMS, length
2156 NPARMS), to the types of an argument list (ARGS, length NARGS).
2157 Return a pointer to a badness vector. This has NARGS + 1
2158 entries. */
c906108c
SS
2159
2160struct badness_vector *
7ba81444
MS
2161rank_function (struct type **parms, int nparms,
2162 struct type **args, int nargs)
c906108c
SS
2163{
2164 int i;
c5aa993b 2165 struct badness_vector *bv;
c906108c
SS
2166 int min_len = nparms < nargs ? nparms : nargs;
2167
2168 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 2169 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
2170 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2171
2172 /* First compare the lengths of the supplied lists.
7ba81444 2173 If there is a mismatch, set it to a high value. */
c5aa993b 2174
c906108c 2175 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2176 arguments and ellipsis parameter lists, we should consider those
2177 and rank the length-match more finely. */
c906108c 2178
6403aeea
SW
2179 LENGTH_MATCH (bv) = (nargs != nparms)
2180 ? LENGTH_MISMATCH_BADNESS
2181 : EXACT_MATCH_BADNESS;
c906108c
SS
2182
2183 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
2184 for (i = 1; i <= min_len; i++)
2185 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 2186
c5aa993b
JM
2187 /* If more arguments than parameters, add dummy entries */
2188 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2189 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2190
2191 return bv;
2192}
2193
973ccf8b
DJ
2194/* Compare the names of two integer types, assuming that any sign
2195 qualifiers have been checked already. We do it this way because
2196 there may be an "int" in the name of one of the types. */
2197
2198static int
2199integer_types_same_name_p (const char *first, const char *second)
2200{
2201 int first_p, second_p;
2202
7ba81444
MS
2203 /* If both are shorts, return 1; if neither is a short, keep
2204 checking. */
973ccf8b
DJ
2205 first_p = (strstr (first, "short") != NULL);
2206 second_p = (strstr (second, "short") != NULL);
2207 if (first_p && second_p)
2208 return 1;
2209 if (first_p || second_p)
2210 return 0;
2211
2212 /* Likewise for long. */
2213 first_p = (strstr (first, "long") != NULL);
2214 second_p = (strstr (second, "long") != NULL);
2215 if (first_p && second_p)
2216 return 1;
2217 if (first_p || second_p)
2218 return 0;
2219
2220 /* Likewise for char. */
2221 first_p = (strstr (first, "char") != NULL);
2222 second_p = (strstr (second, "char") != NULL);
2223 if (first_p && second_p)
2224 return 1;
2225 if (first_p || second_p)
2226 return 0;
2227
2228 /* They must both be ints. */
2229 return 1;
2230}
2231
7062b0a0
SW
2232/* Compares type A to type B returns 1 if the represent the same type
2233 0 otherwise. */
2234
2235static int
2236types_equal (struct type *a, struct type *b)
2237{
2238 /* Identical type pointers. */
2239 /* However, this still doesn't catch all cases of same type for b
2240 and a. The reason is that builtin types are different from
2241 the same ones constructed from the object. */
2242 if (a == b)
2243 return 1;
2244
2245 /* Resolve typedefs */
2246 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2247 a = check_typedef (a);
2248 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2249 b = check_typedef (b);
2250
2251 /* If after resolving typedefs a and b are not of the same type
2252 code then they are not equal. */
2253 if (TYPE_CODE (a) != TYPE_CODE (b))
2254 return 0;
2255
2256 /* If a and b are both pointers types or both reference types then
2257 they are equal of the same type iff the objects they refer to are
2258 of the same type. */
2259 if (TYPE_CODE (a) == TYPE_CODE_PTR
2260 || TYPE_CODE (a) == TYPE_CODE_REF)
2261 return types_equal (TYPE_TARGET_TYPE (a),
2262 TYPE_TARGET_TYPE (b));
2263
2264 /*
2265 Well, damnit, if the names are exactly the same, I'll say they
2266 are exactly the same. This happens when we generate method
2267 stubs. The types won't point to the same address, but they
2268 really are the same.
2269 */
2270
2271 if (TYPE_NAME (a) && TYPE_NAME (b)
2272 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2273 return 1;
2274
2275 /* Check if identical after resolving typedefs. */
2276 if (a == b)
2277 return 1;
2278
2279 return 0;
2280}
2281
c906108c
SS
2282/* Compare one type (PARM) for compatibility with another (ARG).
2283 * PARM is intended to be the parameter type of a function; and
2284 * ARG is the supplied argument's type. This function tests if
2285 * the latter can be converted to the former.
2286 *
2287 * Return 0 if they are identical types;
2288 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2289 * PARM is to ARG. The higher the return value, the worse the match.
2290 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2291
6403aeea 2292struct rank
fba45db2 2293rank_one_type (struct type *parm, struct type *arg)
c906108c 2294{
7062b0a0
SW
2295
2296 if (types_equal (parm, arg))
6403aeea 2297 return EXACT_MATCH_BADNESS;
c906108c
SS
2298
2299 /* Resolve typedefs */
2300 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2301 parm = check_typedef (parm);
2302 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2303 arg = check_typedef (arg);
2304
db577aea 2305 /* See through references, since we can almost make non-references
7ba81444 2306 references. */
db577aea 2307 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6403aeea
SW
2308 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2309 REFERENCE_CONVERSION_BADNESS));
db577aea 2310 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6403aeea
SW
2311 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2312 REFERENCE_CONVERSION_BADNESS));
5d161b24 2313 if (overload_debug)
7ba81444
MS
2314 /* Debugging only. */
2315 fprintf_filtered (gdb_stderr,
2316 "------ Arg is %s [%d], parm is %s [%d]\n",
2317 TYPE_NAME (arg), TYPE_CODE (arg),
2318 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2319
2320 /* x -> y means arg of type x being supplied for parameter of type y */
2321
2322 switch (TYPE_CODE (parm))
2323 {
c5aa993b
JM
2324 case TYPE_CODE_PTR:
2325 switch (TYPE_CODE (arg))
2326 {
2327 case TYPE_CODE_PTR:
7062b0a0
SW
2328
2329 /* Allowed pointer conversions are:
2330 (a) pointer to void-pointer conversion. */
2331 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2332 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2333
2334 /* (b) pointer to ancestor-pointer conversion. */
2335 if (is_ancestor (TYPE_TARGET_TYPE (parm),
2336 TYPE_TARGET_TYPE (arg)))
2337 return BASE_PTR_CONVERSION_BADNESS;
2338
2339 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2340 case TYPE_CODE_ARRAY:
7062b0a0
SW
2341 if (types_equal (TYPE_TARGET_TYPE (parm),
2342 TYPE_TARGET_TYPE (arg)))
6403aeea 2343 return EXACT_MATCH_BADNESS;
7062b0a0 2344 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
2345 case TYPE_CODE_FUNC:
2346 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2347 case TYPE_CODE_INT:
2348 case TYPE_CODE_ENUM:
4f2aea11 2349 case TYPE_CODE_FLAGS:
c5aa993b
JM
2350 case TYPE_CODE_CHAR:
2351 case TYPE_CODE_RANGE:
2352 case TYPE_CODE_BOOL:
c5aa993b
JM
2353 default:
2354 return INCOMPATIBLE_TYPE_BADNESS;
2355 }
2356 case TYPE_CODE_ARRAY:
2357 switch (TYPE_CODE (arg))
2358 {
2359 case TYPE_CODE_PTR:
2360 case TYPE_CODE_ARRAY:
7ba81444
MS
2361 return rank_one_type (TYPE_TARGET_TYPE (parm),
2362 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2363 default:
2364 return INCOMPATIBLE_TYPE_BADNESS;
2365 }
2366 case TYPE_CODE_FUNC:
2367 switch (TYPE_CODE (arg))
2368 {
2369 case TYPE_CODE_PTR: /* funcptr -> func */
2370 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2371 default:
2372 return INCOMPATIBLE_TYPE_BADNESS;
2373 }
2374 case TYPE_CODE_INT:
2375 switch (TYPE_CODE (arg))
2376 {
2377 case TYPE_CODE_INT:
2378 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2379 {
2380 /* Deal with signed, unsigned, and plain chars and
7ba81444 2381 signed and unsigned ints. */
c5aa993b
JM
2382 if (TYPE_NOSIGN (parm))
2383 {
2384 /* This case only for character types */
7ba81444 2385 if (TYPE_NOSIGN (arg))
6403aeea 2386 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2387 else /* signed/unsigned char -> plain char */
2388 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2389 }
2390 else if (TYPE_UNSIGNED (parm))
2391 {
2392 if (TYPE_UNSIGNED (arg))
2393 {
7ba81444
MS
2394 /* unsigned int -> unsigned int, or
2395 unsigned long -> unsigned long */
2396 if (integer_types_same_name_p (TYPE_NAME (parm),
2397 TYPE_NAME (arg)))
6403aeea 2398 return EXACT_MATCH_BADNESS;
7ba81444
MS
2399 else if (integer_types_same_name_p (TYPE_NAME (arg),
2400 "int")
2401 && integer_types_same_name_p (TYPE_NAME (parm),
2402 "long"))
c5aa993b
JM
2403 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2404 else
1c5cb38e 2405 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2406 }
2407 else
2408 {
7ba81444
MS
2409 if (integer_types_same_name_p (TYPE_NAME (arg),
2410 "long")
2411 && integer_types_same_name_p (TYPE_NAME (parm),
2412 "int"))
1c5cb38e 2413 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2414 else
2415 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2416 }
2417 }
2418 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2419 {
7ba81444
MS
2420 if (integer_types_same_name_p (TYPE_NAME (parm),
2421 TYPE_NAME (arg)))
6403aeea 2422 return EXACT_MATCH_BADNESS;
7ba81444
MS
2423 else if (integer_types_same_name_p (TYPE_NAME (arg),
2424 "int")
2425 && integer_types_same_name_p (TYPE_NAME (parm),
2426 "long"))
c5aa993b
JM
2427 return INTEGER_PROMOTION_BADNESS;
2428 else
1c5cb38e 2429 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2430 }
2431 else
1c5cb38e 2432 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2433 }
2434 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2435 return INTEGER_PROMOTION_BADNESS;
2436 else
1c5cb38e 2437 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2438 case TYPE_CODE_ENUM:
4f2aea11 2439 case TYPE_CODE_FLAGS:
c5aa993b
JM
2440 case TYPE_CODE_CHAR:
2441 case TYPE_CODE_RANGE:
2442 case TYPE_CODE_BOOL:
2443 return INTEGER_PROMOTION_BADNESS;
2444 case TYPE_CODE_FLT:
2445 return INT_FLOAT_CONVERSION_BADNESS;
2446 case TYPE_CODE_PTR:
2447 return NS_POINTER_CONVERSION_BADNESS;
2448 default:
2449 return INCOMPATIBLE_TYPE_BADNESS;
2450 }
2451 break;
2452 case TYPE_CODE_ENUM:
2453 switch (TYPE_CODE (arg))
2454 {
2455 case TYPE_CODE_INT:
2456 case TYPE_CODE_CHAR:
2457 case TYPE_CODE_RANGE:
2458 case TYPE_CODE_BOOL:
2459 case TYPE_CODE_ENUM:
1c5cb38e 2460 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2461 case TYPE_CODE_FLT:
2462 return INT_FLOAT_CONVERSION_BADNESS;
2463 default:
2464 return INCOMPATIBLE_TYPE_BADNESS;
2465 }
2466 break;
2467 case TYPE_CODE_CHAR:
2468 switch (TYPE_CODE (arg))
2469 {
2470 case TYPE_CODE_RANGE:
2471 case TYPE_CODE_BOOL:
2472 case TYPE_CODE_ENUM:
1c5cb38e 2473 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2474 case TYPE_CODE_FLT:
2475 return INT_FLOAT_CONVERSION_BADNESS;
2476 case TYPE_CODE_INT:
2477 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2478 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2479 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2480 return INTEGER_PROMOTION_BADNESS;
2481 /* >>> !! else fall through !! <<< */
2482 case TYPE_CODE_CHAR:
7ba81444
MS
2483 /* Deal with signed, unsigned, and plain chars for C++ and
2484 with int cases falling through from previous case. */
c5aa993b
JM
2485 if (TYPE_NOSIGN (parm))
2486 {
2487 if (TYPE_NOSIGN (arg))
6403aeea 2488 return EXACT_MATCH_BADNESS;
c5aa993b 2489 else
1c5cb38e 2490 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2491 }
2492 else if (TYPE_UNSIGNED (parm))
2493 {
2494 if (TYPE_UNSIGNED (arg))
6403aeea 2495 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2496 else
2497 return INTEGER_PROMOTION_BADNESS;
2498 }
2499 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2500 return EXACT_MATCH_BADNESS;
c5aa993b 2501 else
1c5cb38e 2502 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2503 default:
2504 return INCOMPATIBLE_TYPE_BADNESS;
2505 }
2506 break;
2507 case TYPE_CODE_RANGE:
2508 switch (TYPE_CODE (arg))
2509 {
2510 case TYPE_CODE_INT:
2511 case TYPE_CODE_CHAR:
2512 case TYPE_CODE_RANGE:
2513 case TYPE_CODE_BOOL:
2514 case TYPE_CODE_ENUM:
1c5cb38e 2515 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2516 case TYPE_CODE_FLT:
2517 return INT_FLOAT_CONVERSION_BADNESS;
2518 default:
2519 return INCOMPATIBLE_TYPE_BADNESS;
2520 }
2521 break;
2522 case TYPE_CODE_BOOL:
2523 switch (TYPE_CODE (arg))
2524 {
2525 case TYPE_CODE_INT:
2526 case TYPE_CODE_CHAR:
2527 case TYPE_CODE_RANGE:
2528 case TYPE_CODE_ENUM:
2529 case TYPE_CODE_FLT:
026ffab7 2530 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2531 case TYPE_CODE_PTR:
026ffab7 2532 return BOOL_PTR_CONVERSION_BADNESS;
c5aa993b 2533 case TYPE_CODE_BOOL:
6403aeea 2534 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2535 default:
2536 return INCOMPATIBLE_TYPE_BADNESS;
2537 }
2538 break;
2539 case TYPE_CODE_FLT:
2540 switch (TYPE_CODE (arg))
2541 {
2542 case TYPE_CODE_FLT:
2543 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2544 return FLOAT_PROMOTION_BADNESS;
2545 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2546 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2547 else
2548 return FLOAT_CONVERSION_BADNESS;
2549 case TYPE_CODE_INT:
2550 case TYPE_CODE_BOOL:
2551 case TYPE_CODE_ENUM:
2552 case TYPE_CODE_RANGE:
2553 case TYPE_CODE_CHAR:
2554 return INT_FLOAT_CONVERSION_BADNESS;
2555 default:
2556 return INCOMPATIBLE_TYPE_BADNESS;
2557 }
2558 break;
2559 case TYPE_CODE_COMPLEX:
2560 switch (TYPE_CODE (arg))
7ba81444 2561 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2562 case TYPE_CODE_FLT:
2563 return FLOAT_PROMOTION_BADNESS;
2564 case TYPE_CODE_COMPLEX:
6403aeea 2565 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2566 default:
2567 return INCOMPATIBLE_TYPE_BADNESS;
2568 }
2569 break;
2570 case TYPE_CODE_STRUCT:
c906108c 2571 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2572 switch (TYPE_CODE (arg))
2573 {
2574 case TYPE_CODE_STRUCT:
2575 /* Check for derivation */
2576 if (is_ancestor (parm, arg))
2577 return BASE_CONVERSION_BADNESS;
2578 /* else fall through */
2579 default:
2580 return INCOMPATIBLE_TYPE_BADNESS;
2581 }
2582 break;
2583 case TYPE_CODE_UNION:
2584 switch (TYPE_CODE (arg))
2585 {
2586 case TYPE_CODE_UNION:
2587 default:
2588 return INCOMPATIBLE_TYPE_BADNESS;
2589 }
2590 break;
0d5de010 2591 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2592 switch (TYPE_CODE (arg))
2593 {
2594 default:
2595 return INCOMPATIBLE_TYPE_BADNESS;
2596 }
2597 break;
2598 case TYPE_CODE_METHOD:
2599 switch (TYPE_CODE (arg))
2600 {
2601
2602 default:
2603 return INCOMPATIBLE_TYPE_BADNESS;
2604 }
2605 break;
2606 case TYPE_CODE_REF:
2607 switch (TYPE_CODE (arg))
2608 {
2609
2610 default:
2611 return INCOMPATIBLE_TYPE_BADNESS;
2612 }
2613
2614 break;
2615 case TYPE_CODE_SET:
2616 switch (TYPE_CODE (arg))
2617 {
2618 /* Not in C++ */
2619 case TYPE_CODE_SET:
7ba81444
MS
2620 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2621 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2622 default:
2623 return INCOMPATIBLE_TYPE_BADNESS;
2624 }
2625 break;
2626 case TYPE_CODE_VOID:
2627 default:
2628 return INCOMPATIBLE_TYPE_BADNESS;
2629 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2630}
2631
c5aa993b
JM
2632
2633/* End of functions for overload resolution */
c906108c 2634
c906108c 2635static void
fba45db2 2636print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2637{
2638 int bitno;
2639
2640 for (bitno = 0; bitno < nbits; bitno++)
2641 {
2642 if ((bitno % 8) == 0)
2643 {
2644 puts_filtered (" ");
2645 }
2646 if (B_TST (bits, bitno))
a3f17187 2647 printf_filtered (("1"));
c906108c 2648 else
a3f17187 2649 printf_filtered (("0"));
c906108c
SS
2650 }
2651}
2652
ad2f7632 2653/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2654 include it since we may get into a infinitely recursive
2655 situation. */
c906108c
SS
2656
2657static void
ad2f7632 2658print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2659{
2660 if (args != NULL)
2661 {
ad2f7632
DJ
2662 int i;
2663
2664 for (i = 0; i < nargs; i++)
2665 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2666 }
2667}
2668
d6a843b5
JK
2669int
2670field_is_static (struct field *f)
2671{
2672 /* "static" fields are the fields whose location is not relative
2673 to the address of the enclosing struct. It would be nice to
2674 have a dedicated flag that would be set for static fields when
2675 the type is being created. But in practice, checking the field
254e6b9e 2676 loc_kind should give us an accurate answer. */
d6a843b5
JK
2677 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2678 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2679}
2680
c906108c 2681static void
fba45db2 2682dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2683{
2684 int method_idx;
2685 int overload_idx;
2686 struct fn_field *f;
2687
2688 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2689 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2690 printf_filtered ("\n");
2691 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2692 {
2693 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2694 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2695 method_idx,
2696 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2697 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2698 gdb_stdout);
a3f17187 2699 printf_filtered (_(") length %d\n"),
c906108c
SS
2700 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2701 for (overload_idx = 0;
2702 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2703 overload_idx++)
2704 {
2705 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2706 overload_idx,
2707 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2708 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2709 gdb_stdout);
c906108c
SS
2710 printf_filtered (")\n");
2711 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2712 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2713 gdb_stdout);
c906108c
SS
2714 printf_filtered ("\n");
2715
2716 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2717 spaces + 8 + 2);
2718
2719 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2720 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2721 gdb_stdout);
c906108c
SS
2722 printf_filtered ("\n");
2723
ad2f7632 2724 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2725 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2726 overload_idx)),
ad2f7632 2727 spaces);
c906108c 2728 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2729 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2730 gdb_stdout);
c906108c
SS
2731 printf_filtered ("\n");
2732
2733 printfi_filtered (spaces + 8, "is_const %d\n",
2734 TYPE_FN_FIELD_CONST (f, overload_idx));
2735 printfi_filtered (spaces + 8, "is_volatile %d\n",
2736 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2737 printfi_filtered (spaces + 8, "is_private %d\n",
2738 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2739 printfi_filtered (spaces + 8, "is_protected %d\n",
2740 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2741 printfi_filtered (spaces + 8, "is_stub %d\n",
2742 TYPE_FN_FIELD_STUB (f, overload_idx));
2743 printfi_filtered (spaces + 8, "voffset %u\n",
2744 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2745 }
2746 }
2747}
2748
2749static void
fba45db2 2750print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2751{
2752 printfi_filtered (spaces, "n_baseclasses %d\n",
2753 TYPE_N_BASECLASSES (type));
2754 printfi_filtered (spaces, "nfn_fields %d\n",
2755 TYPE_NFN_FIELDS (type));
2756 printfi_filtered (spaces, "nfn_fields_total %d\n",
2757 TYPE_NFN_FIELDS_TOTAL (type));
2758 if (TYPE_N_BASECLASSES (type) > 0)
2759 {
2760 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2761 TYPE_N_BASECLASSES (type));
7ba81444
MS
2762 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2763 gdb_stdout);
c906108c
SS
2764 printf_filtered (")");
2765
2766 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2767 TYPE_N_BASECLASSES (type));
2768 puts_filtered ("\n");
2769 }
2770 if (TYPE_NFIELDS (type) > 0)
2771 {
2772 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2773 {
7ba81444
MS
2774 printfi_filtered (spaces,
2775 "private_field_bits (%d bits at *",
c906108c 2776 TYPE_NFIELDS (type));
7ba81444
MS
2777 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2778 gdb_stdout);
c906108c
SS
2779 printf_filtered (")");
2780 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2781 TYPE_NFIELDS (type));
2782 puts_filtered ("\n");
2783 }
2784 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2785 {
7ba81444
MS
2786 printfi_filtered (spaces,
2787 "protected_field_bits (%d bits at *",
c906108c 2788 TYPE_NFIELDS (type));
7ba81444
MS
2789 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2790 gdb_stdout);
c906108c
SS
2791 printf_filtered (")");
2792 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2793 TYPE_NFIELDS (type));
2794 puts_filtered ("\n");
2795 }
2796 }
2797 if (TYPE_NFN_FIELDS (type) > 0)
2798 {
2799 dump_fn_fieldlists (type, spaces);
2800 }
2801}
2802
b4ba55a1
JB
2803/* Print the contents of the TYPE's type_specific union, assuming that
2804 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2805
2806static void
2807print_gnat_stuff (struct type *type, int spaces)
2808{
2809 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2810
2811 recursive_dump_type (descriptive_type, spaces + 2);
2812}
2813
c906108c
SS
2814static struct obstack dont_print_type_obstack;
2815
2816void
fba45db2 2817recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2818{
2819 int idx;
2820
2821 if (spaces == 0)
2822 obstack_begin (&dont_print_type_obstack, 0);
2823
2824 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2825 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2826 {
2827 struct type **first_dont_print
7ba81444 2828 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2829
7ba81444
MS
2830 int i = (struct type **)
2831 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2832
2833 while (--i >= 0)
2834 {
2835 if (type == first_dont_print[i])
2836 {
2837 printfi_filtered (spaces, "type node ");
d4f3574e 2838 gdb_print_host_address (type, gdb_stdout);
a3f17187 2839 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2840 return;
2841 }
2842 }
2843
2844 obstack_ptr_grow (&dont_print_type_obstack, type);
2845 }
2846
2847 printfi_filtered (spaces, "type node ");
d4f3574e 2848 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2849 printf_filtered ("\n");
2850 printfi_filtered (spaces, "name '%s' (",
2851 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2852 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2853 printf_filtered (")\n");
e9e79dd9
FF
2854 printfi_filtered (spaces, "tagname '%s' (",
2855 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2856 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2857 printf_filtered (")\n");
c906108c
SS
2858 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2859 switch (TYPE_CODE (type))
2860 {
c5aa993b
JM
2861 case TYPE_CODE_UNDEF:
2862 printf_filtered ("(TYPE_CODE_UNDEF)");
2863 break;
2864 case TYPE_CODE_PTR:
2865 printf_filtered ("(TYPE_CODE_PTR)");
2866 break;
2867 case TYPE_CODE_ARRAY:
2868 printf_filtered ("(TYPE_CODE_ARRAY)");
2869 break;
2870 case TYPE_CODE_STRUCT:
2871 printf_filtered ("(TYPE_CODE_STRUCT)");
2872 break;
2873 case TYPE_CODE_UNION:
2874 printf_filtered ("(TYPE_CODE_UNION)");
2875 break;
2876 case TYPE_CODE_ENUM:
2877 printf_filtered ("(TYPE_CODE_ENUM)");
2878 break;
4f2aea11
MK
2879 case TYPE_CODE_FLAGS:
2880 printf_filtered ("(TYPE_CODE_FLAGS)");
2881 break;
c5aa993b
JM
2882 case TYPE_CODE_FUNC:
2883 printf_filtered ("(TYPE_CODE_FUNC)");
2884 break;
2885 case TYPE_CODE_INT:
2886 printf_filtered ("(TYPE_CODE_INT)");
2887 break;
2888 case TYPE_CODE_FLT:
2889 printf_filtered ("(TYPE_CODE_FLT)");
2890 break;
2891 case TYPE_CODE_VOID:
2892 printf_filtered ("(TYPE_CODE_VOID)");
2893 break;
2894 case TYPE_CODE_SET:
2895 printf_filtered ("(TYPE_CODE_SET)");
2896 break;
2897 case TYPE_CODE_RANGE:
2898 printf_filtered ("(TYPE_CODE_RANGE)");
2899 break;
2900 case TYPE_CODE_STRING:
2901 printf_filtered ("(TYPE_CODE_STRING)");
2902 break;
e9e79dd9
FF
2903 case TYPE_CODE_BITSTRING:
2904 printf_filtered ("(TYPE_CODE_BITSTRING)");
2905 break;
c5aa993b
JM
2906 case TYPE_CODE_ERROR:
2907 printf_filtered ("(TYPE_CODE_ERROR)");
2908 break;
0d5de010
DJ
2909 case TYPE_CODE_MEMBERPTR:
2910 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2911 break;
2912 case TYPE_CODE_METHODPTR:
2913 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2914 break;
2915 case TYPE_CODE_METHOD:
2916 printf_filtered ("(TYPE_CODE_METHOD)");
2917 break;
2918 case TYPE_CODE_REF:
2919 printf_filtered ("(TYPE_CODE_REF)");
2920 break;
2921 case TYPE_CODE_CHAR:
2922 printf_filtered ("(TYPE_CODE_CHAR)");
2923 break;
2924 case TYPE_CODE_BOOL:
2925 printf_filtered ("(TYPE_CODE_BOOL)");
2926 break;
e9e79dd9
FF
2927 case TYPE_CODE_COMPLEX:
2928 printf_filtered ("(TYPE_CODE_COMPLEX)");
2929 break;
c5aa993b
JM
2930 case TYPE_CODE_TYPEDEF:
2931 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2932 break;
5c4e30ca
DC
2933 case TYPE_CODE_NAMESPACE:
2934 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2935 break;
c5aa993b
JM
2936 default:
2937 printf_filtered ("(UNKNOWN TYPE CODE)");
2938 break;
c906108c
SS
2939 }
2940 puts_filtered ("\n");
2941 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
2942 if (TYPE_OBJFILE_OWNED (type))
2943 {
2944 printfi_filtered (spaces, "objfile ");
2945 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2946 }
2947 else
2948 {
2949 printfi_filtered (spaces, "gdbarch ");
2950 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2951 }
c906108c
SS
2952 printf_filtered ("\n");
2953 printfi_filtered (spaces, "target_type ");
d4f3574e 2954 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2955 printf_filtered ("\n");
2956 if (TYPE_TARGET_TYPE (type) != NULL)
2957 {
2958 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2959 }
2960 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2961 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2962 printf_filtered ("\n");
2963 printfi_filtered (spaces, "reference_type ");
d4f3574e 2964 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2965 printf_filtered ("\n");
2fdde8f8
DJ
2966 printfi_filtered (spaces, "type_chain ");
2967 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2968 printf_filtered ("\n");
7ba81444
MS
2969 printfi_filtered (spaces, "instance_flags 0x%x",
2970 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2971 if (TYPE_CONST (type))
2972 {
2973 puts_filtered (" TYPE_FLAG_CONST");
2974 }
2975 if (TYPE_VOLATILE (type))
2976 {
2977 puts_filtered (" TYPE_FLAG_VOLATILE");
2978 }
2979 if (TYPE_CODE_SPACE (type))
2980 {
2981 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2982 }
2983 if (TYPE_DATA_SPACE (type))
2984 {
2985 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2986 }
8b2dbe47
KB
2987 if (TYPE_ADDRESS_CLASS_1 (type))
2988 {
2989 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2990 }
2991 if (TYPE_ADDRESS_CLASS_2 (type))
2992 {
2993 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2994 }
2fdde8f8 2995 puts_filtered ("\n");
876cecd0
TT
2996
2997 printfi_filtered (spaces, "flags");
762a036f 2998 if (TYPE_UNSIGNED (type))
c906108c
SS
2999 {
3000 puts_filtered (" TYPE_FLAG_UNSIGNED");
3001 }
762a036f
FF
3002 if (TYPE_NOSIGN (type))
3003 {
3004 puts_filtered (" TYPE_FLAG_NOSIGN");
3005 }
3006 if (TYPE_STUB (type))
c906108c
SS
3007 {
3008 puts_filtered (" TYPE_FLAG_STUB");
3009 }
762a036f
FF
3010 if (TYPE_TARGET_STUB (type))
3011 {
3012 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3013 }
3014 if (TYPE_STATIC (type))
3015 {
3016 puts_filtered (" TYPE_FLAG_STATIC");
3017 }
762a036f
FF
3018 if (TYPE_PROTOTYPED (type))
3019 {
3020 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3021 }
3022 if (TYPE_INCOMPLETE (type))
3023 {
3024 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3025 }
762a036f
FF
3026 if (TYPE_VARARGS (type))
3027 {
3028 puts_filtered (" TYPE_FLAG_VARARGS");
3029 }
f5f8a009
EZ
3030 /* This is used for things like AltiVec registers on ppc. Gcc emits
3031 an attribute for the array type, which tells whether or not we
3032 have a vector, instead of a regular array. */
3033 if (TYPE_VECTOR (type))
3034 {
3035 puts_filtered (" TYPE_FLAG_VECTOR");
3036 }
876cecd0
TT
3037 if (TYPE_FIXED_INSTANCE (type))
3038 {
3039 puts_filtered (" TYPE_FIXED_INSTANCE");
3040 }
3041 if (TYPE_STUB_SUPPORTED (type))
3042 {
3043 puts_filtered (" TYPE_STUB_SUPPORTED");
3044 }
3045 if (TYPE_NOTTEXT (type))
3046 {
3047 puts_filtered (" TYPE_NOTTEXT");
3048 }
c906108c
SS
3049 puts_filtered ("\n");
3050 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3051 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3052 puts_filtered ("\n");
3053 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3054 {
3055 printfi_filtered (spaces + 2,
3056 "[%d] bitpos %d bitsize %d type ",
3057 idx, TYPE_FIELD_BITPOS (type, idx),
3058 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3059 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3060 printf_filtered (" name '%s' (",
3061 TYPE_FIELD_NAME (type, idx) != NULL
3062 ? TYPE_FIELD_NAME (type, idx)
3063 : "<NULL>");
d4f3574e 3064 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3065 printf_filtered (")\n");
3066 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3067 {
3068 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3069 }
3070 }
43bbcdc2
PH
3071 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3072 {
3073 printfi_filtered (spaces, "low %s%s high %s%s\n",
3074 plongest (TYPE_LOW_BOUND (type)),
3075 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3076 plongest (TYPE_HIGH_BOUND (type)),
3077 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
3078 }
c906108c 3079 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3080 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3081 puts_filtered ("\n");
3082 if (TYPE_VPTR_BASETYPE (type) != NULL)
3083 {
3084 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3085 }
7ba81444
MS
3086 printfi_filtered (spaces, "vptr_fieldno %d\n",
3087 TYPE_VPTR_FIELDNO (type));
c906108c 3088
b4ba55a1
JB
3089 switch (TYPE_SPECIFIC_FIELD (type))
3090 {
3091 case TYPE_SPECIFIC_CPLUS_STUFF:
3092 printfi_filtered (spaces, "cplus_stuff ");
3093 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3094 gdb_stdout);
3095 puts_filtered ("\n");
3096 print_cplus_stuff (type, spaces);
3097 break;
8da61cc4 3098
b4ba55a1
JB
3099 case TYPE_SPECIFIC_GNAT_STUFF:
3100 printfi_filtered (spaces, "gnat_stuff ");
3101 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3102 puts_filtered ("\n");
3103 print_gnat_stuff (type, spaces);
3104 break;
701c159d 3105
b4ba55a1
JB
3106 case TYPE_SPECIFIC_FLOATFORMAT:
3107 printfi_filtered (spaces, "floatformat ");
3108 if (TYPE_FLOATFORMAT (type) == NULL)
3109 puts_filtered ("(null)");
3110 else
3111 {
3112 puts_filtered ("{ ");
3113 if (TYPE_FLOATFORMAT (type)[0] == NULL
3114 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3115 puts_filtered ("(null)");
3116 else
3117 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3118
3119 puts_filtered (", ");
3120 if (TYPE_FLOATFORMAT (type)[1] == NULL
3121 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3122 puts_filtered ("(null)");
3123 else
3124 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3125
3126 puts_filtered (" }");
3127 }
3128 puts_filtered ("\n");
3129 break;
c906108c 3130
b4ba55a1
JB
3131 case TYPE_SPECIFIC_CALLING_CONVENTION:
3132 printfi_filtered (spaces, "calling_convention %d\n",
3133 TYPE_CALLING_CONVENTION (type));
3134 break;
c906108c 3135 }
b4ba55a1 3136
c906108c
SS
3137 if (spaces == 0)
3138 obstack_free (&dont_print_type_obstack, NULL);
3139}
3140
ae5a43e0
DJ
3141/* Trivial helpers for the libiberty hash table, for mapping one
3142 type to another. */
3143
3144struct type_pair
3145{
3146 struct type *old, *new;
3147};
3148
3149static hashval_t
3150type_pair_hash (const void *item)
3151{
3152 const struct type_pair *pair = item;
d8734c88 3153
ae5a43e0
DJ
3154 return htab_hash_pointer (pair->old);
3155}
3156
3157static int
3158type_pair_eq (const void *item_lhs, const void *item_rhs)
3159{
3160 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3161
ae5a43e0
DJ
3162 return lhs->old == rhs->old;
3163}
3164
3165/* Allocate the hash table used by copy_type_recursive to walk
3166 types without duplicates. We use OBJFILE's obstack, because
3167 OBJFILE is about to be deleted. */
3168
3169htab_t
3170create_copied_types_hash (struct objfile *objfile)
3171{
3172 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3173 NULL, &objfile->objfile_obstack,
3174 hashtab_obstack_allocate,
3175 dummy_obstack_deallocate);
3176}
3177
7ba81444
MS
3178/* Recursively copy (deep copy) TYPE, if it is associated with
3179 OBJFILE. Return a new type allocated using malloc, a saved type if
3180 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3181 not associated with OBJFILE. */
ae5a43e0
DJ
3182
3183struct type *
7ba81444
MS
3184copy_type_recursive (struct objfile *objfile,
3185 struct type *type,
ae5a43e0
DJ
3186 htab_t copied_types)
3187{
3188 struct type_pair *stored, pair;
3189 void **slot;
3190 struct type *new_type;
3191
e9bb382b 3192 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3193 return type;
3194
7ba81444
MS
3195 /* This type shouldn't be pointing to any types in other objfiles;
3196 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3197 gdb_assert (TYPE_OBJFILE (type) == objfile);
3198
3199 pair.old = type;
3200 slot = htab_find_slot (copied_types, &pair, INSERT);
3201 if (*slot != NULL)
3202 return ((struct type_pair *) *slot)->new;
3203
e9bb382b 3204 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3205
3206 /* We must add the new type to the hash table immediately, in case
3207 we encounter this type again during a recursive call below. */
d87ecdfb 3208 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3209 stored->old = type;
3210 stored->new = new_type;
3211 *slot = stored;
3212
876cecd0
TT
3213 /* Copy the common fields of types. For the main type, we simply
3214 copy the entire thing and then update specific fields as needed. */
3215 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3216 TYPE_OBJFILE_OWNED (new_type) = 0;
3217 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3218
ae5a43e0
DJ
3219 if (TYPE_NAME (type))
3220 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3221 if (TYPE_TAG_NAME (type))
3222 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3223
3224 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3225 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3226
3227 /* Copy the fields. */
ae5a43e0
DJ
3228 if (TYPE_NFIELDS (type))
3229 {
3230 int i, nfields;
3231
3232 nfields = TYPE_NFIELDS (type);
1deafd4e 3233 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3234 for (i = 0; i < nfields; i++)
3235 {
7ba81444
MS
3236 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3237 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3238 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3239 if (TYPE_FIELD_TYPE (type, i))
3240 TYPE_FIELD_TYPE (new_type, i)
3241 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3242 copied_types);
3243 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3244 TYPE_FIELD_NAME (new_type, i) =
3245 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3246 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3247 {
d6a843b5
JK
3248 case FIELD_LOC_KIND_BITPOS:
3249 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3250 TYPE_FIELD_BITPOS (type, i));
3251 break;
3252 case FIELD_LOC_KIND_PHYSADDR:
3253 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3254 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3255 break;
3256 case FIELD_LOC_KIND_PHYSNAME:
3257 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3258 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3259 i)));
3260 break;
3261 default:
3262 internal_error (__FILE__, __LINE__,
3263 _("Unexpected type field location kind: %d"),
3264 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3265 }
3266 }
3267 }
3268
43bbcdc2
PH
3269 /* For range types, copy the bounds information. */
3270 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3271 {
3272 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3273 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3274 }
3275
ae5a43e0
DJ
3276 /* Copy pointers to other types. */
3277 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3278 TYPE_TARGET_TYPE (new_type) =
3279 copy_type_recursive (objfile,
3280 TYPE_TARGET_TYPE (type),
3281 copied_types);
ae5a43e0 3282 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3283 TYPE_VPTR_BASETYPE (new_type) =
3284 copy_type_recursive (objfile,
3285 TYPE_VPTR_BASETYPE (type),
3286 copied_types);
ae5a43e0
DJ
3287 /* Maybe copy the type_specific bits.
3288
3289 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3290 base classes and methods. There's no fundamental reason why we
3291 can't, but at the moment it is not needed. */
3292
3293 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3294 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3295 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3296 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3297 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3298 INIT_CPLUS_SPECIFIC (new_type);
3299
3300 return new_type;
3301}
3302
4af88198
JB
3303/* Make a copy of the given TYPE, except that the pointer & reference
3304 types are not preserved.
3305
3306 This function assumes that the given type has an associated objfile.
3307 This objfile is used to allocate the new type. */
3308
3309struct type *
3310copy_type (const struct type *type)
3311{
3312 struct type *new_type;
3313
e9bb382b 3314 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3315
e9bb382b 3316 new_type = alloc_type_copy (type);
4af88198
JB
3317 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3318 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3319 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3320 sizeof (struct main_type));
3321
3322 return new_type;
3323}
3324
e9bb382b
UW
3325
3326/* Helper functions to initialize architecture-specific types. */
3327
3328/* Allocate a type structure associated with GDBARCH and set its
3329 CODE, LENGTH, and NAME fields. */
3330struct type *
3331arch_type (struct gdbarch *gdbarch,
3332 enum type_code code, int length, char *name)
3333{
3334 struct type *type;
3335
3336 type = alloc_type_arch (gdbarch);
3337 TYPE_CODE (type) = code;
3338 TYPE_LENGTH (type) = length;
3339
3340 if (name)
3341 TYPE_NAME (type) = xstrdup (name);
3342
3343 return type;
3344}
3345
3346/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3347 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3348 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3349struct type *
3350arch_integer_type (struct gdbarch *gdbarch,
3351 int bit, int unsigned_p, char *name)
3352{
3353 struct type *t;
3354
3355 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3356 if (unsigned_p)
3357 TYPE_UNSIGNED (t) = 1;
3358 if (name && strcmp (name, "char") == 0)
3359 TYPE_NOSIGN (t) = 1;
3360
3361 return t;
3362}
3363
3364/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3365 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3366 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3367struct type *
3368arch_character_type (struct gdbarch *gdbarch,
3369 int bit, int unsigned_p, char *name)
3370{
3371 struct type *t;
3372
3373 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3374 if (unsigned_p)
3375 TYPE_UNSIGNED (t) = 1;
3376
3377 return t;
3378}
3379
3380/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3381 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3382 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3383struct type *
3384arch_boolean_type (struct gdbarch *gdbarch,
3385 int bit, int unsigned_p, char *name)
3386{
3387 struct type *t;
3388
3389 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3390 if (unsigned_p)
3391 TYPE_UNSIGNED (t) = 1;
3392
3393 return t;
3394}
3395
3396/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3397 BIT is the type size in bits; if BIT equals -1, the size is
3398 determined by the floatformat. NAME is the type name. Set the
3399 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3400struct type *
e9bb382b
UW
3401arch_float_type (struct gdbarch *gdbarch,
3402 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3403{
3404 struct type *t;
3405
3406 if (bit == -1)
3407 {
3408 gdb_assert (floatformats != NULL);
3409 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3410 bit = floatformats[0]->totalsize;
3411 }
3412 gdb_assert (bit >= 0);
3413
e9bb382b 3414 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3415 TYPE_FLOATFORMAT (t) = floatformats;
3416 return t;
3417}
3418
e9bb382b
UW
3419/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3420 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3421struct type *
e9bb382b
UW
3422arch_complex_type (struct gdbarch *gdbarch,
3423 char *name, struct type *target_type)
27067745
UW
3424{
3425 struct type *t;
d8734c88 3426
e9bb382b
UW
3427 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3428 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3429 TYPE_TARGET_TYPE (t) = target_type;
3430 return t;
3431}
3432
e9bb382b 3433/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3434 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3435struct type *
3436arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3437{
3438 int nfields = length * TARGET_CHAR_BIT;
3439 struct type *type;
3440
3441 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3442 TYPE_UNSIGNED (type) = 1;
3443 TYPE_NFIELDS (type) = nfields;
3444 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3445
3446 return type;
3447}
3448
3449/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3450 position BITPOS is called NAME. */
3451void
3452append_flags_type_flag (struct type *type, int bitpos, char *name)
3453{
3454 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3455 gdb_assert (bitpos < TYPE_NFIELDS (type));
3456 gdb_assert (bitpos >= 0);
3457
3458 if (name)
3459 {
3460 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3461 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3462 }
3463 else
3464 {
3465 /* Don't show this field to the user. */
3466 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3467 }
3468}
3469
3470/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3471 specified by CODE) associated with GDBARCH. NAME is the type name. */
3472struct type *
3473arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3474{
3475 struct type *t;
d8734c88 3476
e9bb382b
UW
3477 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3478 t = arch_type (gdbarch, code, 0, NULL);
3479 TYPE_TAG_NAME (t) = name;
3480 INIT_CPLUS_SPECIFIC (t);
3481 return t;
3482}
3483
3484/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3485 Do not set the field's position or adjust the type's length;
3486 the caller should do so. Return the new field. */
3487struct field *
3488append_composite_type_field_raw (struct type *t, char *name,
3489 struct type *field)
e9bb382b
UW
3490{
3491 struct field *f;
d8734c88 3492
e9bb382b
UW
3493 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3494 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3495 sizeof (struct field) * TYPE_NFIELDS (t));
3496 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3497 memset (f, 0, sizeof f[0]);
3498 FIELD_TYPE (f[0]) = field;
3499 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3500 return f;
3501}
3502
3503/* Add new field with name NAME and type FIELD to composite type T.
3504 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3505void
3506append_composite_type_field_aligned (struct type *t, char *name,
3507 struct type *field, int alignment)
3508{
3509 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3510
e9bb382b
UW
3511 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3512 {
3513 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3514 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3515 }
3516 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3517 {
3518 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3519 if (TYPE_NFIELDS (t) > 1)
3520 {
3521 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3522 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3523 * TARGET_CHAR_BIT));
3524
3525 if (alignment)
3526 {
3527 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
d8734c88 3528
e9bb382b
UW
3529 if (left)
3530 {
3531 FIELD_BITPOS (f[0]) += left;
3532 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3533 }
3534 }
3535 }
3536 }
3537}
3538
3539/* Add new field with name NAME and type FIELD to composite type T. */
3540void
3541append_composite_type_field (struct type *t, char *name,
3542 struct type *field)
3543{
3544 append_composite_type_field_aligned (t, name, field, 0);
3545}
3546
3547
000177f0
AC
3548static struct gdbarch_data *gdbtypes_data;
3549
3550const struct builtin_type *
3551builtin_type (struct gdbarch *gdbarch)
3552{
3553 return gdbarch_data (gdbarch, gdbtypes_data);
3554}
3555
3556static void *
3557gdbtypes_post_init (struct gdbarch *gdbarch)
3558{
3559 struct builtin_type *builtin_type
3560 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3561
46bf5051 3562 /* Basic types. */
e9bb382b
UW
3563 builtin_type->builtin_void
3564 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3565 builtin_type->builtin_char
3566 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3567 !gdbarch_char_signed (gdbarch), "char");
3568 builtin_type->builtin_signed_char
3569 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3570 0, "signed char");
3571 builtin_type->builtin_unsigned_char
3572 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3573 1, "unsigned char");
3574 builtin_type->builtin_short
3575 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3576 0, "short");
3577 builtin_type->builtin_unsigned_short
3578 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3579 1, "unsigned short");
3580 builtin_type->builtin_int
3581 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3582 0, "int");
3583 builtin_type->builtin_unsigned_int
3584 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3585 1, "unsigned int");
3586 builtin_type->builtin_long
3587 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3588 0, "long");
3589 builtin_type->builtin_unsigned_long
3590 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3591 1, "unsigned long");
3592 builtin_type->builtin_long_long
3593 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3594 0, "long long");
3595 builtin_type->builtin_unsigned_long_long
3596 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3597 1, "unsigned long long");
70bd8e24 3598 builtin_type->builtin_float
e9bb382b 3599 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3600 "float", gdbarch_float_format (gdbarch));
70bd8e24 3601 builtin_type->builtin_double
e9bb382b 3602 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3603 "double", gdbarch_double_format (gdbarch));
70bd8e24 3604 builtin_type->builtin_long_double
e9bb382b 3605 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3606 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3607 builtin_type->builtin_complex
e9bb382b
UW
3608 = arch_complex_type (gdbarch, "complex",
3609 builtin_type->builtin_float);
70bd8e24 3610 builtin_type->builtin_double_complex
e9bb382b
UW
3611 = arch_complex_type (gdbarch, "double complex",
3612 builtin_type->builtin_double);
3613 builtin_type->builtin_string
3614 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3615 builtin_type->builtin_bool
3616 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3617
7678ef8f
TJB
3618 /* The following three are about decimal floating point types, which
3619 are 32-bits, 64-bits and 128-bits respectively. */
3620 builtin_type->builtin_decfloat
e9bb382b 3621 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3622 builtin_type->builtin_decdouble
e9bb382b 3623 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3624 builtin_type->builtin_declong
e9bb382b 3625 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3626
69feb676 3627 /* "True" character types. */
e9bb382b
UW
3628 builtin_type->builtin_true_char
3629 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3630 builtin_type->builtin_true_unsigned_char
3631 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3632
df4df182 3633 /* Fixed-size integer types. */
e9bb382b
UW
3634 builtin_type->builtin_int0
3635 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3636 builtin_type->builtin_int8
3637 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3638 builtin_type->builtin_uint8
3639 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3640 builtin_type->builtin_int16
3641 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3642 builtin_type->builtin_uint16
3643 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3644 builtin_type->builtin_int32
3645 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3646 builtin_type->builtin_uint32
3647 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3648 builtin_type->builtin_int64
3649 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3650 builtin_type->builtin_uint64
3651 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3652 builtin_type->builtin_int128
3653 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3654 builtin_type->builtin_uint128
3655 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3656 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3657 TYPE_INSTANCE_FLAG_NOTTEXT;
3658 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3659 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3660
9a22f0d0
PM
3661 /* Wide character types. */
3662 builtin_type->builtin_char16
3663 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3664 builtin_type->builtin_char32
3665 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3666
3667
46bf5051 3668 /* Default data/code pointer types. */
e9bb382b
UW
3669 builtin_type->builtin_data_ptr
3670 = lookup_pointer_type (builtin_type->builtin_void);
3671 builtin_type->builtin_func_ptr
3672 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
46bf5051 3673
78267919 3674 /* This type represents a GDB internal function. */
e9bb382b
UW
3675 builtin_type->internal_fn
3676 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3677 "<internal function>");
78267919 3678
46bf5051
UW
3679 return builtin_type;
3680}
3681
3682
3683/* This set of objfile-based types is intended to be used by symbol
3684 readers as basic types. */
3685
3686static const struct objfile_data *objfile_type_data;
3687
3688const struct objfile_type *
3689objfile_type (struct objfile *objfile)
3690{
3691 struct gdbarch *gdbarch;
3692 struct objfile_type *objfile_type
3693 = objfile_data (objfile, objfile_type_data);
3694
3695 if (objfile_type)
3696 return objfile_type;
3697
3698 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3699 1, struct objfile_type);
3700
3701 /* Use the objfile architecture to determine basic type properties. */
3702 gdbarch = get_objfile_arch (objfile);
3703
3704 /* Basic types. */
3705 objfile_type->builtin_void
3706 = init_type (TYPE_CODE_VOID, 1,
3707 0,
3708 "void", objfile);
3709
3710 objfile_type->builtin_char
3711 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3712 (TYPE_FLAG_NOSIGN
3713 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3714 "char", objfile);
3715 objfile_type->builtin_signed_char
3716 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3717 0,
3718 "signed char", objfile);
3719 objfile_type->builtin_unsigned_char
3720 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3721 TYPE_FLAG_UNSIGNED,
3722 "unsigned char", objfile);
3723 objfile_type->builtin_short
3724 = init_type (TYPE_CODE_INT,
3725 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3726 0, "short", objfile);
3727 objfile_type->builtin_unsigned_short
3728 = init_type (TYPE_CODE_INT,
3729 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3730 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3731 objfile_type->builtin_int
3732 = init_type (TYPE_CODE_INT,
3733 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3734 0, "int", objfile);
3735 objfile_type->builtin_unsigned_int
3736 = init_type (TYPE_CODE_INT,
3737 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3738 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3739 objfile_type->builtin_long
3740 = init_type (TYPE_CODE_INT,
3741 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3742 0, "long", objfile);
3743 objfile_type->builtin_unsigned_long
3744 = init_type (TYPE_CODE_INT,
3745 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3746 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3747 objfile_type->builtin_long_long
3748 = init_type (TYPE_CODE_INT,
3749 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3750 0, "long long", objfile);
3751 objfile_type->builtin_unsigned_long_long
3752 = init_type (TYPE_CODE_INT,
3753 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3754 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3755
3756 objfile_type->builtin_float
3757 = init_type (TYPE_CODE_FLT,
3758 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3759 0, "float", objfile);
3760 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3761 = gdbarch_float_format (gdbarch);
3762 objfile_type->builtin_double
3763 = init_type (TYPE_CODE_FLT,
3764 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3765 0, "double", objfile);
3766 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3767 = gdbarch_double_format (gdbarch);
3768 objfile_type->builtin_long_double
3769 = init_type (TYPE_CODE_FLT,
3770 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3771 0, "long double", objfile);
3772 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3773 = gdbarch_long_double_format (gdbarch);
3774
3775 /* This type represents a type that was unrecognized in symbol read-in. */
3776 objfile_type->builtin_error
3777 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3778
3779 /* The following set of types is used for symbols with no
3780 debug information. */
3781 objfile_type->nodebug_text_symbol
3782 = init_type (TYPE_CODE_FUNC, 1, 0,
3783 "<text variable, no debug info>", objfile);
3784 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3785 = objfile_type->builtin_int;
3786 objfile_type->nodebug_data_symbol
3787 = init_type (TYPE_CODE_INT,
3788 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3789 "<data variable, no debug info>", objfile);
3790 objfile_type->nodebug_unknown_symbol
3791 = init_type (TYPE_CODE_INT, 1, 0,
3792 "<variable (not text or data), no debug info>", objfile);
3793 objfile_type->nodebug_tls_symbol
3794 = init_type (TYPE_CODE_INT,
3795 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3796 "<thread local variable, no debug info>", objfile);
000177f0
AC
3797
3798 /* NOTE: on some targets, addresses and pointers are not necessarily
3799 the same --- for example, on the D10V, pointers are 16 bits long,
3800 but addresses are 32 bits long. See doc/gdbint.texinfo,
3801 ``Pointers Are Not Always Addresses''.
3802
3803 The upshot is:
3804 - gdb's `struct type' always describes the target's
3805 representation.
3806 - gdb's `struct value' objects should always hold values in
3807 target form.
3808 - gdb's CORE_ADDR values are addresses in the unified virtual
3809 address space that the assembler and linker work with. Thus,
3810 since target_read_memory takes a CORE_ADDR as an argument, it
3811 can access any memory on the target, even if the processor has
3812 separate code and data address spaces.
3813
3814 So, for example:
3815 - If v is a value holding a D10V code pointer, its contents are
3816 in target form: a big-endian address left-shifted two bits.
3817 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3818 sizeof (void *) == 2 on the target.
3819
46bf5051
UW
3820 In this context, objfile_type->builtin_core_addr is a bit odd:
3821 it's a target type for a value the target will never see. It's
3822 only used to hold the values of (typeless) linker symbols, which
3823 are indeed in the unified virtual address space. */
000177f0 3824
46bf5051
UW
3825 objfile_type->builtin_core_addr
3826 = init_type (TYPE_CODE_INT,
3827 gdbarch_addr_bit (gdbarch) / 8,
3828 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3829
46bf5051
UW
3830 set_objfile_data (objfile, objfile_type_data, objfile_type);
3831 return objfile_type;
000177f0
AC
3832}
3833
46bf5051 3834
a14ed312 3835extern void _initialize_gdbtypes (void);
c906108c 3836void
fba45db2 3837_initialize_gdbtypes (void)
c906108c 3838{
5674de60 3839 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 3840 objfile_type_data = register_objfile_data ();
5674de60 3841
85c07804
AC
3842 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3843Set debugging of C++ overloading."), _("\
3844Show debugging of C++ overloading."), _("\
3845When enabled, ranking of the functions is displayed."),
3846 NULL,
920d2a44 3847 show_overload_debug,
85c07804 3848 &setdebuglist, &showdebuglist);
5674de60 3849
7ba81444 3850 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3851 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3852 &opaque_type_resolution, _("\
3853Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3854Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3855 NULL,
3856 show_opaque_type_resolution,
3857 &setlist, &showlist);
c906108c 3858}
This page took 1.093887 seconds and 4 git commands to generate.