GDB: rename DYN_ATTR_DATA_LOCATION into DYN_PROP_DATA_LOCATION.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
41bf6aca
TT
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2fdde8f8
DJ
255/* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259static struct type *
260alloc_type_instance (struct type *oldtype)
261{
262 struct type *type;
263
264 /* Allocate the structure. */
265
e9bb382b 266 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 267 type = XCNEW (struct type);
2fdde8f8 268 else
1deafd4e
PA
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
2fdde8f8
DJ
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
c16abbde 276 return type;
2fdde8f8
DJ
277}
278
279/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 280 replacing it with something else. Preserve owner information. */
5212577a 281
2fdde8f8
DJ
282static void
283smash_type (struct type *type)
284{
e9bb382b
UW
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
2fdde8f8
DJ
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
e9bb382b
UW
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
2fdde8f8
DJ
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298}
299
c906108c
SS
300/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305struct type *
fba45db2 306make_pointer_type (struct type *type, struct type **typeptr)
c906108c 307{
52f0bd74 308 struct type *ntype; /* New type */
053cb41b 309 struct type *chain;
c906108c
SS
310
311 ntype = TYPE_POINTER_TYPE (type);
312
c5aa993b 313 if (ntype)
c906108c 314 {
c5aa993b 315 if (typeptr == 0)
7ba81444
MS
316 return ntype; /* Don't care about alloc,
317 and have new type. */
c906108c 318 else if (*typeptr == 0)
c5aa993b 319 {
7ba81444 320 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 321 return ntype;
c5aa993b 322 }
c906108c
SS
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
e9bb382b 327 ntype = alloc_type_copy (type);
c906108c
SS
328 if (typeptr)
329 *typeptr = ntype;
330 }
7ba81444 331 else /* We have storage, but need to reset it. */
c906108c
SS
332 {
333 ntype = *typeptr;
053cb41b 334 chain = TYPE_CHAIN (ntype);
2fdde8f8 335 smash_type (ntype);
053cb41b 336 TYPE_CHAIN (ntype) = chain;
c906108c
SS
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
5212577a 342 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 343
50810684
UW
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
67b2adb2 348 /* Mark pointers as unsigned. The target converts between pointers
76e71323 349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 350 gdbarch_address_to_pointer. */
876cecd0 351 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 352
053cb41b
JB
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
c906108c
SS
361 return ntype;
362}
363
364/* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367struct type *
fba45db2 368lookup_pointer_type (struct type *type)
c906108c 369{
c5aa993b 370 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
371}
372
7ba81444
MS
373/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
c906108c
SS
377
378struct type *
fba45db2 379make_reference_type (struct type *type, struct type **typeptr)
c906108c 380{
52f0bd74 381 struct type *ntype; /* New type */
1e98b326 382 struct type *chain;
c906108c
SS
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
c5aa993b 386 if (ntype)
c906108c 387 {
c5aa993b 388 if (typeptr == 0)
7ba81444
MS
389 return ntype; /* Don't care about alloc,
390 and have new type. */
c906108c 391 else if (*typeptr == 0)
c5aa993b 392 {
7ba81444 393 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 394 return ntype;
c5aa993b 395 }
c906108c
SS
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
e9bb382b 400 ntype = alloc_type_copy (type);
c906108c
SS
401 if (typeptr)
402 *typeptr = ntype;
403 }
7ba81444 404 else /* We have storage, but need to reset it. */
c906108c
SS
405 {
406 ntype = *typeptr;
1e98b326 407 chain = TYPE_CHAIN (ntype);
2fdde8f8 408 smash_type (ntype);
1e98b326 409 TYPE_CHAIN (ntype) = chain;
c906108c
SS
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
7ba81444
MS
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
c906108c 418
50810684
UW
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 421 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 422
c906108c
SS
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
1e98b326
JB
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
c906108c
SS
434 return ntype;
435}
436
7ba81444
MS
437/* Same as above, but caller doesn't care about memory allocation
438 details. */
c906108c
SS
439
440struct type *
fba45db2 441lookup_reference_type (struct type *type)
c906108c 442{
c5aa993b 443 return make_reference_type (type, (struct type **) 0);
c906108c
SS
444}
445
7ba81444
MS
446/* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 449 function type we return. We allocate new memory if needed. */
c906108c
SS
450
451struct type *
0c8b41f1 452make_function_type (struct type *type, struct type **typeptr)
c906108c 453{
52f0bd74 454 struct type *ntype; /* New type */
c906108c
SS
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
e9bb382b 458 ntype = alloc_type_copy (type);
c906108c
SS
459 if (typeptr)
460 *typeptr = ntype;
461 }
7ba81444 462 else /* We have storage, but need to reset it. */
c906108c
SS
463 {
464 ntype = *typeptr;
2fdde8f8 465 smash_type (ntype);
c906108c
SS
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 472
b6cdc2c1
JK
473 INIT_FUNC_SPECIFIC (ntype);
474
c906108c
SS
475 return ntype;
476}
477
c906108c
SS
478/* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481struct type *
fba45db2 482lookup_function_type (struct type *type)
c906108c 483{
0c8b41f1 484 return make_function_type (type, (struct type **) 0);
c906108c
SS
485}
486
71918a86 487/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
71918a86
TT
490
491struct type *
492lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495{
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
e314d629 499 if (nparams > 0)
a6fb9c08 500 {
e314d629
TT
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
a6fb9c08
TT
514 }
515
71918a86
TT
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522}
523
47663de5
MS
524/* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
5212577a
DE
526
527int
50810684 528address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 529{
8b2dbe47 530 int type_flags;
d8734c88 531
7ba81444 532 /* Check for known address space delimiters. */
47663de5 533 if (!strcmp (space_identifier, "code"))
876cecd0 534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 535 else if (!strcmp (space_identifier, "data"))
876cecd0 536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
8b2dbe47 541 return type_flags;
47663de5 542 else
8a3fe4f8 543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
544}
545
546/* Identify address space identifier by integer flag as defined in
7ba81444 547 gdbtypes.h -- return the string version of the adress space name. */
47663de5 548
321432c0 549const char *
50810684 550address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 551{
876cecd0 552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 553 return "code";
876cecd0 554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 555 return "data";
876cecd0 556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
559 else
560 return NULL;
561}
562
2fdde8f8 563/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
47663de5 567
b9362cc7 568static struct type *
2fdde8f8
DJ
569make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
47663de5
MS
571{
572 struct type *ntype;
573
574 ntype = type;
5f61c20e
JK
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
47663de5 582
2fdde8f8
DJ
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
7ba81444
MS
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
ad766c0a
JB
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
2fdde8f8
DJ
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
47663de5
MS
598
599 /* Pointers or references to the original type are not relevant to
2fdde8f8 600 the new type. */
47663de5
MS
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 603
2fdde8f8
DJ
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 610
ab5d3da6
KB
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
47663de5
MS
614 return ntype;
615}
616
2fdde8f8
DJ
617/* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
7ba81444
MS
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
2fdde8f8
DJ
625
626struct type *
627make_type_with_address_space (struct type *type, int space_flag)
628{
2fdde8f8 629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636}
c906108c
SS
637
638/* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
c906108c 643
ad766c0a
JB
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
5212577a 649
c906108c 650struct type *
7ba81444
MS
651make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
c906108c 654{
52f0bd74 655 struct type *ntype; /* New type */
c906108c 656
2fdde8f8 657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 660
c906108c 661 if (cnst)
876cecd0 662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
663
664 if (voltl)
876cecd0 665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 666
2fdde8f8 667 if (typeptr && *typeptr != NULL)
a02fd225 668 {
ad766c0a
JB
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
682 }
683
7ba81444
MS
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
c906108c 686
2fdde8f8
DJ
687 if (typeptr != NULL)
688 *typeptr = ntype;
a02fd225 689
2fdde8f8 690 return ntype;
a02fd225 691}
c906108c 692
06d66ee9
TT
693/* Make a 'restrict'-qualified version of TYPE. */
694
695struct type *
696make_restrict_type (struct type *type)
697{
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702}
703
f1660027
TT
704/* Make a type without const, volatile, or restrict. */
705
706struct type *
707make_unqualified_type (struct type *type)
708{
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715}
716
a2c2acaf
MW
717/* Make a '_Atomic'-qualified version of TYPE. */
718
719struct type *
720make_atomic_type (struct type *type)
721{
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726}
727
2fdde8f8
DJ
728/* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 731
cda6c68a
JB
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
5212577a 737
dd6bda65
DJ
738void
739replace_type (struct type *ntype, struct type *type)
740{
ab5d3da6 741 struct type *chain;
dd6bda65 742
ad766c0a
JB
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
2fdde8f8 749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 750
7ba81444
MS
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
ab5d3da6 753 chain = ntype;
5f61c20e
JK
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
ab5d3da6 768
2fdde8f8
DJ
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
772}
773
c906108c
SS
774/* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779struct type *
0d5de010 780lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 781{
52f0bd74 782 struct type *mtype;
c906108c 783
e9bb382b 784 mtype = alloc_type_copy (type);
0d5de010 785 smash_to_memberptr_type (mtype, domain, type);
c16abbde 786 return mtype;
c906108c
SS
787}
788
0d5de010
DJ
789/* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791struct type *
792lookup_methodptr_type (struct type *to_type)
793{
794 struct type *mtype;
795
e9bb382b 796 mtype = alloc_type_copy (to_type);
0b92b5bb 797 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
798 return mtype;
799}
800
7ba81444
MS
801/* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
c906108c
SS
806
807struct type *
fba45db2 808allocate_stub_method (struct type *type)
c906108c
SS
809{
810 struct type *mtype;
811
e9bb382b
UW
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
c906108c 816 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 818 return mtype;
c906108c
SS
819}
820
729efb13
SA
821/* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
823
824struct type *
729efb13
SA
825create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
c906108c
SS
828{
829 if (result_type == NULL)
e9bb382b 830 result_type = alloc_type_copy (index_type);
c906108c
SS
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 833 if (TYPE_STUB (index_type))
876cecd0 834 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 837
43bbcdc2
PH
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 842
729efb13 843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 844 TYPE_UNSIGNED (result_type) = 1;
c906108c 845
45e44d27
JB
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
262452ec 853 return result_type;
c906108c
SS
854}
855
729efb13
SA
856/* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866struct type *
867create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869{
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881}
882
80180f79
SA
883/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886static int
887has_static_range (const struct range_bounds *bounds)
888{
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891}
892
893
7ba81444
MS
894/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
897
898int
fba45db2 899get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
900{
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
0963b4bd 912 entries. */
c906108c
SS
913 int i;
914
14e75d8e 915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
14e75d8e
JK
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
922 }
923
7ba81444 924 /* Set unsigned indicator if warranted. */
c5aa993b 925 if (*lowp >= 0)
c906108c 926 {
876cecd0 927 TYPE_UNSIGNED (type) = 1;
c906108c
SS
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
c5aa993b 941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
c5aa993b 945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
946 *highp = -*lowp - 1;
947 return 0;
948 }
7ba81444 949 /* ... fall through for unsigned ints ... */
c906108c
SS
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
7b83ea04 953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961}
962
dbc98a8b
KW
963/* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
0963b4bd 967 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977int
978get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979{
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005}
1006
7ba81444
MS
1007/* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
c906108c
SS
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
dc53a7ad
JB
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
7ba81444
MS
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
c906108c
SS
1020
1021struct type *
dc53a7ad
JB
1022create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
c906108c 1026{
c906108c 1027 if (result_type == NULL)
e9bb382b
UW
1028 result_type = alloc_type_copy (range_type);
1029
c906108c
SS
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
ab0d6e0d 1051 else
80180f79
SA
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
c906108c
SS
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1deafd4e 1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1065 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1068
0963b4bd 1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1070 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1071 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1072
c16abbde 1073 return result_type;
c906108c
SS
1074}
1075
dc53a7ad
JB
1076/* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079struct type *
1080create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083{
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086}
1087
e3506a9f
UW
1088struct type *
1089lookup_array_range_type (struct type *element_type,
63375b74 1090 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1091{
50810684 1092 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
0c9c3474 1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1096
e3506a9f
UW
1097 return create_array_type (NULL, element_type, range_type);
1098}
1099
7ba81444
MS
1100/* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
c906108c
SS
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
7ba81444
MS
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
c906108c
SS
1111
1112struct type *
3b7538c0
UW
1113create_string_type (struct type *result_type,
1114 struct type *string_char_type,
7ba81444 1115 struct type *range_type)
c906108c
SS
1116{
1117 result_type = create_array_type (result_type,
f290d38e 1118 string_char_type,
c906108c
SS
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1121 return result_type;
c906108c
SS
1122}
1123
e3506a9f
UW
1124struct type *
1125lookup_string_range_type (struct type *string_char_type,
63375b74 1126 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1127{
1128 struct type *result_type;
d8734c88 1129
e3506a9f
UW
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134}
1135
c906108c 1136struct type *
fba45db2 1137create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1138{
c906108c 1139 if (result_type == NULL)
e9bb382b
UW
1140 result_type = alloc_type_copy (domain_type);
1141
c906108c
SS
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1145
74a9bb82 1146 if (!TYPE_STUB (domain_type))
c906108c 1147 {
f9780d5b 1148 LONGEST low_bound, high_bound, bit_length;
d8734c88 1149
c906108c
SS
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1155 if (low_bound >= 0)
876cecd0 1156 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
c16abbde 1160 return result_type;
c906108c
SS
1161}
1162
ea37ba09
DJ
1163/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166void
1167make_vector_type (struct type *array_type)
1168{
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
2844d6b5 1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
876cecd0 1186 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1187}
1188
794ac428 1189struct type *
ac3aafc7
EZ
1190init_vector_type (struct type *elt_type, int n)
1191{
1192 struct type *array_type;
d8734c88 1193
e3506a9f 1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1195 make_vector_type (array_type);
ac3aafc7
EZ
1196 return array_type;
1197}
1198
09e2d7c7
DE
1199/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205struct type *
1206internal_type_self_type (struct type *type)
1207{
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
09e2d7c7
DE
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
eaaf76ab
DE
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
09e2d7c7
DE
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224}
1225
1226/* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231void
1232set_type_self_type (struct type *type, struct type *self_type)
1233{
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252}
1253
1254/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
c906108c 1260
7ba81444
MS
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
c906108c
SS
1263 allocated. */
1264
1265void
09e2d7c7 1266smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1267 struct type *to_type)
c906108c 1268{
2fdde8f8 1269 smash_type (type);
09e2d7c7 1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1271 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1272 set_type_self_type (type, self_type);
0d5de010
DJ
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
50810684
UW
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1277}
1278
0b92b5bb
TT
1279/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285void
1286smash_to_methodptr_type (struct type *type, struct type *to_type)
1287{
1288 smash_type (type);
09e2d7c7 1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1290 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1293}
1294
09e2d7c7 1295/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1296 METHOD just means `function that gets an extra "this" argument'.
1297
7ba81444
MS
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
c906108c
SS
1300 allocated. */
1301
1302void
09e2d7c7 1303smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
c906108c 1306{
2fdde8f8 1307 smash_type (type);
09e2d7c7 1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1309 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1310 set_type_self_type (type, self_type);
ad2f7632
DJ
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
876cecd0 1314 TYPE_VARARGS (type) = 1;
c906108c 1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1316}
1317
1318/* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
0d5cff50 1321const char *
aa1ee363 1322type_name_no_tag (const struct type *type)
c906108c
SS
1323{
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
7ba81444
MS
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
c906108c
SS
1330 return TYPE_NAME (type);
1331}
1332
d8228535
JK
1333/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340const char *
1341type_name_no_tag_or_error (struct type *type)
1342{
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1358}
1359
7ba81444
MS
1360/* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
c906108c
SS
1363
1364struct type *
e6c014f2 1365lookup_typename (const struct language_defn *language,
ddd49eee 1366 struct gdbarch *gdbarch, const char *name,
34eaf542 1367 const struct block *block, int noerr)
c906108c 1368{
52f0bd74 1369 struct symbol *sym;
659c9f3a 1370 struct type *type;
c906108c 1371
1994afbf
DE
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
c51fe631
DE
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
c51fe631
DE
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
c906108c
SS
1380}
1381
1382struct type *
e6c014f2 1383lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1384 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1385{
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
e6c014f2 1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1391}
1392
1393struct type *
e6c014f2 1394lookup_signed_typename (const struct language_defn *language,
0d5cff50 1395 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1396{
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
e6c014f2 1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1404 if (t != NULL)
1405 return t;
e6c014f2 1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1407}
1408
1409/* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412struct type *
270140bd 1413lookup_struct (const char *name, const struct block *block)
c906108c 1414{
52f0bd74 1415 struct symbol *sym;
c906108c 1416
2570f2b7 1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1418
1419 if (sym == NULL)
1420 {
8a3fe4f8 1421 error (_("No struct type named %s."), name);
c906108c
SS
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
7ba81444
MS
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
c906108c
SS
1427 }
1428 return (SYMBOL_TYPE (sym));
1429}
1430
1431/* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434struct type *
270140bd 1435lookup_union (const char *name, const struct block *block)
c906108c 1436{
52f0bd74 1437 struct symbol *sym;
c5aa993b 1438 struct type *t;
c906108c 1439
2570f2b7 1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1441
1442 if (sym == NULL)
8a3fe4f8 1443 error (_("No union type named %s."), name);
c906108c 1444
c5aa993b 1445 t = SYMBOL_TYPE (sym);
c906108c
SS
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1448 return t;
c906108c 1449
7ba81444
MS
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
c906108c
SS
1453}
1454
c906108c
SS
1455/* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458struct type *
270140bd 1459lookup_enum (const char *name, const struct block *block)
c906108c 1460{
52f0bd74 1461 struct symbol *sym;
c906108c 1462
2570f2b7 1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1464 if (sym == NULL)
1465 {
8a3fe4f8 1466 error (_("No enum type named %s."), name);
c906108c
SS
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
7ba81444
MS
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
c906108c
SS
1472 }
1473 return (SYMBOL_TYPE (sym));
1474}
1475
1476/* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479struct type *
7ba81444 1480lookup_template_type (char *name, struct type *type,
270140bd 1481 const struct block *block)
c906108c
SS
1482{
1483 struct symbol *sym;
7ba81444
MS
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1486
c906108c
SS
1487 strcpy (nam, name);
1488 strcat (nam, "<");
0004e5a2 1489 strcat (nam, TYPE_NAME (type));
0963b4bd 1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1491
2570f2b7 1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1493
1494 if (sym == NULL)
1495 {
8a3fe4f8 1496 error (_("No template type named %s."), name);
c906108c
SS
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
7ba81444
MS
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
c906108c
SS
1502 }
1503 return (SYMBOL_TYPE (sym));
1504}
1505
7ba81444
MS
1506/* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
c906108c 1508
7ba81444
MS
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518struct type *
d7561cbb 1519lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1520{
1521 int i;
fe978cb0 1522 char *type_name;
c906108c
SS
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
687d6395
MS
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1535 {
fe978cb0
PA
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
c906108c
SS
1539 }
1540
1541#if 0
7ba81444
MS
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
0963b4bd 1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1545 foo; } bell;" Disabled by fnf. */
c906108c 1546 {
fe978cb0 1547 char *type_name;
c906108c 1548
fe978cb0
PA
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1551 return type;
1552 }
1553#endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
0d5cff50 1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1558
db577aea 1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
f5a010c0
PM
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
d8734c88
MS
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
f5a010c0
PM
1568 if (subtype != NULL)
1569 return subtype;
1570 }
c906108c
SS
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
9733fc94 1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
c5aa993b 1589
fe978cb0
PA
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
c906108c
SS
1593}
1594
ed3ef339
DE
1595/* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598void
1599get_unsigned_type_max (struct type *type, ULONGEST *max)
1600{
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610}
1611
1612/* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615void
1616get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617{
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627}
1628
ae6ae975
DE
1629/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636int
1637internal_type_vptr_fieldno (struct type *type)
1638{
0def5aaa 1639 CHECK_TYPEDEF (type);
ae6ae975
DE
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645}
1646
1647/* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649void
1650set_type_vptr_fieldno (struct type *type, int fieldno)
1651{
0def5aaa 1652 CHECK_TYPEDEF (type);
ae6ae975
DE
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658}
1659
1660/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663struct type *
1664internal_type_vptr_basetype (struct type *type)
1665{
0def5aaa 1666 CHECK_TYPEDEF (type);
ae6ae975
DE
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671}
1672
1673/* Set the value of cplus_stuff.vptr_basetype. */
1674
1675void
1676set_type_vptr_basetype (struct type *type, struct type *basetype)
1677{
0def5aaa 1678 CHECK_TYPEDEF (type);
ae6ae975
DE
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684}
1685
81fe8080
DE
1686/* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
c906108c 1692 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
7ba81444 1695 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1696 vptr_basetype will remain NULL or incomplete. */
c906108c 1697
81fe8080
DE
1698int
1699get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1700{
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
7ba81444
MS
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
81fe8080
DE
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
c906108c 1717 {
81fe8080 1718 /* If the type comes from a different objfile we can't cache
0963b4bd 1719 it, it may have a different lifetime. PR 2384 */
5ef73790 1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1721 {
ae6ae975
DE
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
c906108c
SS
1728 }
1729 }
81fe8080
DE
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1739 }
1740}
1741
44e1a9eb
DJ
1742static void
1743stub_noname_complaint (void)
1744{
e2e0b3e5 1745 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1746}
1747
d98b7a16 1748/* Worker for is_dynamic_type. */
80180f79 1749
d98b7a16
TT
1750static int
1751is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1752{
1753 type = check_typedef (type);
1754
d98b7a16
TT
1755 /* We only want to recognize references at the outermost level. */
1756 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1757 type = check_typedef (TYPE_TARGET_TYPE (type));
1758
3cdcd0ce
JB
1759 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1760 dynamic, even if the type itself is statically defined.
1761 From a user's point of view, this may appear counter-intuitive;
1762 but it makes sense in this context, because the point is to determine
1763 whether any part of the type needs to be resolved before it can
1764 be exploited. */
1765 if (TYPE_DATA_LOCATION (type) != NULL
1766 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1767 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1768 return 1;
1769
80180f79
SA
1770 switch (TYPE_CODE (type))
1771 {
6f8a3220 1772 case TYPE_CODE_RANGE:
ddb87a81
JB
1773 {
1774 /* A range type is obviously dynamic if it has at least one
1775 dynamic bound. But also consider the range type to be
1776 dynamic when its subtype is dynamic, even if the bounds
1777 of the range type are static. It allows us to assume that
1778 the subtype of a static range type is also static. */
1779 return (!has_static_range (TYPE_RANGE_DATA (type))
1780 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1781 }
6f8a3220 1782
80180f79
SA
1783 case TYPE_CODE_ARRAY:
1784 {
80180f79 1785 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1786
1787 /* The array is dynamic if either the bounds are dynamic,
1788 or the elements it contains have a dynamic contents. */
d98b7a16 1789 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1790 return 1;
d98b7a16 1791 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1792 }
012370f6
TT
1793
1794 case TYPE_CODE_STRUCT:
1795 case TYPE_CODE_UNION:
1796 {
1797 int i;
1798
1799 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1800 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1801 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1802 return 1;
1803 }
1804 break;
80180f79 1805 }
92e2a17f
TT
1806
1807 return 0;
80180f79
SA
1808}
1809
d98b7a16
TT
1810/* See gdbtypes.h. */
1811
1812int
1813is_dynamic_type (struct type *type)
1814{
1815 return is_dynamic_type_internal (type, 1);
1816}
1817
df25ebbd
JB
1818static struct type *resolve_dynamic_type_internal
1819 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1820
df25ebbd
JB
1821/* Given a dynamic range type (dyn_range_type) and a stack of
1822 struct property_addr_info elements, return a static version
1823 of that type. */
d190df30 1824
80180f79 1825static struct type *
df25ebbd
JB
1826resolve_dynamic_range (struct type *dyn_range_type,
1827 struct property_addr_info *addr_stack)
80180f79
SA
1828{
1829 CORE_ADDR value;
ddb87a81 1830 struct type *static_range_type, *static_target_type;
80180f79
SA
1831 const struct dynamic_prop *prop;
1832 const struct dwarf2_locexpr_baton *baton;
1833 struct dynamic_prop low_bound, high_bound;
1834
6f8a3220 1835 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1836
6f8a3220 1837 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
df25ebbd 1838 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1839 {
1840 low_bound.kind = PROP_CONST;
1841 low_bound.data.const_val = value;
1842 }
1843 else
1844 {
1845 low_bound.kind = PROP_UNDEFINED;
1846 low_bound.data.const_val = 0;
1847 }
1848
6f8a3220 1849 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
df25ebbd 1850 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1851 {
1852 high_bound.kind = PROP_CONST;
1853 high_bound.data.const_val = value;
c451ebe5 1854
6f8a3220 1855 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1856 high_bound.data.const_val
1857 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1858 }
1859 else
1860 {
1861 high_bound.kind = PROP_UNDEFINED;
1862 high_bound.data.const_val = 0;
1863 }
1864
ddb87a81
JB
1865 static_target_type
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
df25ebbd 1867 addr_stack, 0);
6f8a3220 1868 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1869 static_target_type,
6f8a3220
JB
1870 &low_bound, &high_bound);
1871 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1872 return static_range_type;
1873}
1874
1875/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1876 ADDR_STACK is a stack of struct property_addr_info to be used
1877 if needed during the dynamic resolution. */
6f8a3220
JB
1878
1879static struct type *
df25ebbd
JB
1880resolve_dynamic_array (struct type *type,
1881 struct property_addr_info *addr_stack)
6f8a3220
JB
1882{
1883 CORE_ADDR value;
1884 struct type *elt_type;
1885 struct type *range_type;
1886 struct type *ary_dim;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1889
1890 elt_type = type;
1891 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1892 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1893
80180f79
SA
1894 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1895
1896 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
df25ebbd 1897 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
80180f79
SA
1898 else
1899 elt_type = TYPE_TARGET_TYPE (type);
1900
80180f79
SA
1901 return create_array_type (copy_type (type),
1902 elt_type,
1903 range_type);
1904}
1905
012370f6 1906/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
1907 bounds. ADDR_STACK is a stack of struct property_addr_info
1908 to be used if needed during the dynamic resolution. */
012370f6
TT
1909
1910static struct type *
df25ebbd
JB
1911resolve_dynamic_union (struct type *type,
1912 struct property_addr_info *addr_stack)
012370f6
TT
1913{
1914 struct type *resolved_type;
1915 int i;
1916 unsigned int max_len = 0;
1917
1918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1919
1920 resolved_type = copy_type (type);
1921 TYPE_FIELDS (resolved_type)
1922 = TYPE_ALLOC (resolved_type,
1923 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1924 memcpy (TYPE_FIELDS (resolved_type),
1925 TYPE_FIELDS (type),
1926 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1927 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1928 {
1929 struct type *t;
1930
1931 if (field_is_static (&TYPE_FIELD (type, i)))
1932 continue;
1933
d98b7a16 1934 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
df25ebbd 1935 addr_stack, 0);
012370f6
TT
1936 TYPE_FIELD_TYPE (resolved_type, i) = t;
1937 if (TYPE_LENGTH (t) > max_len)
1938 max_len = TYPE_LENGTH (t);
1939 }
1940
1941 TYPE_LENGTH (resolved_type) = max_len;
1942 return resolved_type;
1943}
1944
1945/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
1946 bounds. ADDR_STACK is a stack of struct property_addr_info to
1947 be used if needed during the dynamic resolution. */
012370f6
TT
1948
1949static struct type *
df25ebbd
JB
1950resolve_dynamic_struct (struct type *type,
1951 struct property_addr_info *addr_stack)
012370f6
TT
1952{
1953 struct type *resolved_type;
1954 int i;
6908c509 1955 unsigned resolved_type_bit_length = 0;
012370f6
TT
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1958 gdb_assert (TYPE_NFIELDS (type) > 0);
1959
1960 resolved_type = copy_type (type);
1961 TYPE_FIELDS (resolved_type)
1962 = TYPE_ALLOC (resolved_type,
1963 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1964 memcpy (TYPE_FIELDS (resolved_type),
1965 TYPE_FIELDS (type),
1966 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1967 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1968 {
6908c509 1969 unsigned new_bit_length;
df25ebbd 1970 struct property_addr_info pinfo;
012370f6
TT
1971
1972 if (field_is_static (&TYPE_FIELD (type, i)))
1973 continue;
1974
6908c509
JB
1975 /* As we know this field is not a static field, the field's
1976 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1977 this is the case, but only trigger a simple error rather
1978 than an internal error if that fails. While failing
1979 that verification indicates a bug in our code, the error
1980 is not severe enough to suggest to the user he stops
1981 his debugging session because of it. */
df25ebbd 1982 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
1983 error (_("Cannot determine struct field location"
1984 " (invalid location kind)"));
df25ebbd
JB
1985
1986 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1987 pinfo.addr = addr_stack->addr;
1988 pinfo.next = addr_stack;
1989
1990 TYPE_FIELD_TYPE (resolved_type, i)
1991 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1992 &pinfo, 0);
1993 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1994 == FIELD_LOC_KIND_BITPOS);
1995
6908c509
JB
1996 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1997 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1998 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1999 else
2000 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2001 * TARGET_CHAR_BIT);
2002
2003 /* Normally, we would use the position and size of the last field
2004 to determine the size of the enclosing structure. But GCC seems
2005 to be encoding the position of some fields incorrectly when
2006 the struct contains a dynamic field that is not placed last.
2007 So we compute the struct size based on the field that has
2008 the highest position + size - probably the best we can do. */
2009 if (new_bit_length > resolved_type_bit_length)
2010 resolved_type_bit_length = new_bit_length;
012370f6
TT
2011 }
2012
012370f6 2013 TYPE_LENGTH (resolved_type)
6908c509
JB
2014 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2015
012370f6
TT
2016 return resolved_type;
2017}
2018
d98b7a16 2019/* Worker for resolved_dynamic_type. */
80180f79 2020
d98b7a16 2021static struct type *
df25ebbd
JB
2022resolve_dynamic_type_internal (struct type *type,
2023 struct property_addr_info *addr_stack,
d98b7a16 2024 int top_level)
80180f79
SA
2025{
2026 struct type *real_type = check_typedef (type);
6f8a3220 2027 struct type *resolved_type = type;
d9823cbb 2028 struct dynamic_prop *prop;
3cdcd0ce 2029 CORE_ADDR value;
80180f79 2030
d98b7a16 2031 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2032 return type;
2033
5537b577 2034 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2035 {
cac9b138
JK
2036 resolved_type = copy_type (type);
2037 TYPE_TARGET_TYPE (resolved_type)
df25ebbd 2038 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
cac9b138 2039 top_level);
5537b577
JK
2040 }
2041 else
2042 {
2043 /* Before trying to resolve TYPE, make sure it is not a stub. */
2044 type = real_type;
012370f6 2045
5537b577
JK
2046 switch (TYPE_CODE (type))
2047 {
2048 case TYPE_CODE_REF:
2049 {
df25ebbd
JB
2050 struct property_addr_info pinfo;
2051
2052 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2053 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2054 pinfo.next = addr_stack;
5537b577
JK
2055
2056 resolved_type = copy_type (type);
2057 TYPE_TARGET_TYPE (resolved_type)
2058 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
df25ebbd 2059 &pinfo, top_level);
5537b577
JK
2060 break;
2061 }
2062
2063 case TYPE_CODE_ARRAY:
df25ebbd 2064 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2065 break;
2066
2067 case TYPE_CODE_RANGE:
df25ebbd 2068 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2069 break;
2070
2071 case TYPE_CODE_UNION:
df25ebbd 2072 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2073 break;
2074
2075 case TYPE_CODE_STRUCT:
df25ebbd 2076 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2077 break;
2078 }
6f8a3220 2079 }
80180f79 2080
3cdcd0ce
JB
2081 /* Resolve data_location attribute. */
2082 prop = TYPE_DATA_LOCATION (resolved_type);
d9823cbb 2083 if (prop != NULL && dwarf2_evaluate_property (prop, addr_stack, &value))
3cdcd0ce 2084 {
d9823cbb
KB
2085 TYPE_DYN_PROP_ADDR (prop) = value;
2086 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2087 }
3cdcd0ce 2088
80180f79
SA
2089 return resolved_type;
2090}
2091
d98b7a16
TT
2092/* See gdbtypes.h */
2093
2094struct type *
2095resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2096{
df25ebbd
JB
2097 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2098
2099 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2100}
2101
d9823cbb
KB
2102/* See gdbtypes.h */
2103
2104struct dynamic_prop *
2105get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2106{
2107 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2108
2109 while (node != NULL)
2110 {
2111 if (node->prop_kind == prop_kind)
2112 return node->prop;
2113 node = node->next;
2114 }
2115 return NULL;
2116}
2117
2118/* See gdbtypes.h */
2119
2120void
2121add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2122 struct type *type, struct objfile *objfile)
2123{
2124 struct dynamic_prop_list *temp;
2125
2126 gdb_assert (TYPE_OBJFILE_OWNED (type));
2127
2128 temp = obstack_alloc (&objfile->objfile_obstack,
2129 sizeof (struct dynamic_prop_list));
2130 temp->prop_kind = prop_kind;
2131 temp->prop = obstack_copy (&objfile->objfile_obstack, &prop, sizeof (prop));
2132 temp->next = TYPE_DYN_PROP_LIST (type);
2133
2134 TYPE_DYN_PROP_LIST (type) = temp;
2135}
2136
2137
92163a10
JK
2138/* Find the real type of TYPE. This function returns the real type,
2139 after removing all layers of typedefs, and completing opaque or stub
2140 types. Completion changes the TYPE argument, but stripping of
2141 typedefs does not.
2142
2143 Instance flags (e.g. const/volatile) are preserved as typedefs are
2144 stripped. If necessary a new qualified form of the underlying type
2145 is created.
2146
2147 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2148 not been computed and we're either in the middle of reading symbols, or
2149 there was no name for the typedef in the debug info.
2150
9bc118a5
DE
2151 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2152 QUITs in the symbol reading code can also throw.
2153 Thus this function can throw an exception.
2154
92163a10
JK
2155 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2156 the target type.
c906108c
SS
2157
2158 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2159 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2160 definition, so we can use it in future. There used to be a comment
2161 (but not any code) that if we don't find a full definition, we'd
2162 set a flag so we don't spend time in the future checking the same
2163 type. That would be a mistake, though--we might load in more
92163a10 2164 symbols which contain a full definition for the type. */
c906108c
SS
2165
2166struct type *
a02fd225 2167check_typedef (struct type *type)
c906108c
SS
2168{
2169 struct type *orig_type = type;
92163a10
JK
2170 /* While we're removing typedefs, we don't want to lose qualifiers.
2171 E.g., const/volatile. */
2172 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2173
423c0af8
MS
2174 gdb_assert (type);
2175
c906108c
SS
2176 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2177 {
2178 if (!TYPE_TARGET_TYPE (type))
2179 {
0d5cff50 2180 const char *name;
c906108c
SS
2181 struct symbol *sym;
2182
2183 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2184 reading a symtab. Infinite recursion is one danger. */
c906108c 2185 if (currently_reading_symtab)
92163a10 2186 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2187
2188 name = type_name_no_tag (type);
7ba81444
MS
2189 /* FIXME: shouldn't we separately check the TYPE_NAME and
2190 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2191 VAR_DOMAIN as appropriate? (this code was written before
2192 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2193 if (name == NULL)
2194 {
23136709 2195 stub_noname_complaint ();
92163a10 2196 return make_qualified_type (type, instance_flags, NULL);
c906108c 2197 }
2570f2b7 2198 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
2199 if (sym)
2200 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2201 else /* TYPE_CODE_UNDEF */
e9bb382b 2202 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2203 }
2204 type = TYPE_TARGET_TYPE (type);
c906108c 2205
92163a10
JK
2206 /* Preserve the instance flags as we traverse down the typedef chain.
2207
2208 Handling address spaces/classes is nasty, what do we do if there's a
2209 conflict?
2210 E.g., what if an outer typedef marks the type as class_1 and an inner
2211 typedef marks the type as class_2?
2212 This is the wrong place to do such error checking. We leave it to
2213 the code that created the typedef in the first place to flag the
2214 error. We just pick the outer address space (akin to letting the
2215 outer cast in a chain of casting win), instead of assuming
2216 "it can't happen". */
2217 {
2218 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2219 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2220 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2221 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2222
2223 /* Treat code vs data spaces and address classes separately. */
2224 if ((instance_flags & ALL_SPACES) != 0)
2225 new_instance_flags &= ~ALL_SPACES;
2226 if ((instance_flags & ALL_CLASSES) != 0)
2227 new_instance_flags &= ~ALL_CLASSES;
2228
2229 instance_flags |= new_instance_flags;
2230 }
2231 }
a02fd225 2232
7ba81444
MS
2233 /* If this is a struct/class/union with no fields, then check
2234 whether a full definition exists somewhere else. This is for
2235 systems where a type definition with no fields is issued for such
2236 types, instead of identifying them as stub types in the first
2237 place. */
c5aa993b 2238
7ba81444
MS
2239 if (TYPE_IS_OPAQUE (type)
2240 && opaque_type_resolution
2241 && !currently_reading_symtab)
c906108c 2242 {
0d5cff50 2243 const char *name = type_name_no_tag (type);
c5aa993b 2244 struct type *newtype;
d8734c88 2245
c906108c
SS
2246 if (name == NULL)
2247 {
23136709 2248 stub_noname_complaint ();
92163a10 2249 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2250 }
2251 newtype = lookup_transparent_type (name);
ad766c0a 2252
c906108c 2253 if (newtype)
ad766c0a 2254 {
7ba81444
MS
2255 /* If the resolved type and the stub are in the same
2256 objfile, then replace the stub type with the real deal.
2257 But if they're in separate objfiles, leave the stub
2258 alone; we'll just look up the transparent type every time
2259 we call check_typedef. We can't create pointers between
2260 types allocated to different objfiles, since they may
2261 have different lifetimes. Trying to copy NEWTYPE over to
2262 TYPE's objfile is pointless, too, since you'll have to
2263 move over any other types NEWTYPE refers to, which could
2264 be an unbounded amount of stuff. */
ad766c0a 2265 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2266 type = make_qualified_type (newtype,
2267 TYPE_INSTANCE_FLAGS (type),
2268 type);
ad766c0a
JB
2269 else
2270 type = newtype;
2271 }
c906108c 2272 }
7ba81444
MS
2273 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2274 types. */
74a9bb82 2275 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2276 {
0d5cff50 2277 const char *name = type_name_no_tag (type);
c906108c 2278 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2279 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2280 as appropriate? (this code was written before TYPE_NAME and
2281 TYPE_TAG_NAME were separate). */
c906108c 2282 struct symbol *sym;
d8734c88 2283
c906108c
SS
2284 if (name == NULL)
2285 {
23136709 2286 stub_noname_complaint ();
92163a10 2287 return make_qualified_type (type, instance_flags, NULL);
c906108c 2288 }
2570f2b7 2289 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2290 if (sym)
c26f2453
JB
2291 {
2292 /* Same as above for opaque types, we can replace the stub
92163a10 2293 with the complete type only if they are in the same
c26f2453
JB
2294 objfile. */
2295 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2296 type = make_qualified_type (SYMBOL_TYPE (sym),
2297 TYPE_INSTANCE_FLAGS (type),
2298 type);
c26f2453
JB
2299 else
2300 type = SYMBOL_TYPE (sym);
2301 }
c906108c
SS
2302 }
2303
74a9bb82 2304 if (TYPE_TARGET_STUB (type))
c906108c
SS
2305 {
2306 struct type *range_type;
2307 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2308
74a9bb82 2309 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2310 {
73e2eb35 2311 /* Nothing we can do. */
c5aa993b 2312 }
c906108c
SS
2313 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2314 {
2315 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2316 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2317 }
2318 }
92163a10
JK
2319
2320 type = make_qualified_type (type, instance_flags, NULL);
2321
7ba81444 2322 /* Cache TYPE_LENGTH for future use. */
c906108c 2323 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2324
c906108c
SS
2325 return type;
2326}
2327
7ba81444 2328/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2329 occurs, silently return a void type. */
c91ecb25 2330
b9362cc7 2331static struct type *
48319d1f 2332safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2333{
2334 struct ui_file *saved_gdb_stderr;
34365054 2335 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2336
7ba81444 2337 /* Suppress error messages. */
c91ecb25
ND
2338 saved_gdb_stderr = gdb_stderr;
2339 gdb_stderr = ui_file_new ();
2340
7ba81444 2341 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2342 TRY
8e7b59a5
KS
2343 {
2344 type = parse_and_eval_type (p, length);
2345 }
492d29ea
PA
2346 CATCH (except, RETURN_MASK_ERROR)
2347 {
2348 type = builtin_type (gdbarch)->builtin_void;
2349 }
2350 END_CATCH
c91ecb25 2351
7ba81444 2352 /* Stop suppressing error messages. */
c91ecb25
ND
2353 ui_file_delete (gdb_stderr);
2354 gdb_stderr = saved_gdb_stderr;
2355
2356 return type;
2357}
2358
c906108c
SS
2359/* Ugly hack to convert method stubs into method types.
2360
7ba81444
MS
2361 He ain't kiddin'. This demangles the name of the method into a
2362 string including argument types, parses out each argument type,
2363 generates a string casting a zero to that type, evaluates the
2364 string, and stuffs the resulting type into an argtype vector!!!
2365 Then it knows the type of the whole function (including argument
2366 types for overloading), which info used to be in the stab's but was
2367 removed to hack back the space required for them. */
c906108c 2368
de17c821 2369static void
fba45db2 2370check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2371{
50810684 2372 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2373 struct fn_field *f;
2374 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2375 char *demangled_name = gdb_demangle (mangled_name,
2376 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2377 char *argtypetext, *p;
2378 int depth = 0, argcount = 1;
ad2f7632 2379 struct field *argtypes;
c906108c
SS
2380 struct type *mtype;
2381
2382 /* Make sure we got back a function string that we can use. */
2383 if (demangled_name)
2384 p = strchr (demangled_name, '(');
502dcf4e
AC
2385 else
2386 p = NULL;
c906108c
SS
2387
2388 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2389 error (_("Internal: Cannot demangle mangled name `%s'."),
2390 mangled_name);
c906108c
SS
2391
2392 /* Now, read in the parameters that define this type. */
2393 p += 1;
2394 argtypetext = p;
2395 while (*p)
2396 {
070ad9f0 2397 if (*p == '(' || *p == '<')
c906108c
SS
2398 {
2399 depth += 1;
2400 }
070ad9f0 2401 else if (*p == ')' || *p == '>')
c906108c
SS
2402 {
2403 depth -= 1;
2404 }
2405 else if (*p == ',' && depth == 0)
2406 {
2407 argcount += 1;
2408 }
2409
2410 p += 1;
2411 }
2412
ad2f7632 2413 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2414 if (startswith (argtypetext, "(void)"))
ad2f7632 2415 argcount -= 1;
c906108c 2416
ad2f7632
DJ
2417 /* We need one extra slot, for the THIS pointer. */
2418
2419 argtypes = (struct field *)
2420 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2421 p = argtypetext;
4a1970e4
DJ
2422
2423 /* Add THIS pointer for non-static methods. */
2424 f = TYPE_FN_FIELDLIST1 (type, method_id);
2425 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2426 argcount = 0;
2427 else
2428 {
ad2f7632 2429 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2430 argcount = 1;
2431 }
c906108c 2432
0963b4bd 2433 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2434 {
2435 depth = 0;
2436 while (*p)
2437 {
2438 if (depth <= 0 && (*p == ',' || *p == ')'))
2439 {
ad2f7632
DJ
2440 /* Avoid parsing of ellipsis, they will be handled below.
2441 Also avoid ``void'' as above. */
2442 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2443 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2444 {
ad2f7632 2445 argtypes[argcount].type =
48319d1f 2446 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2447 argcount += 1;
2448 }
2449 argtypetext = p + 1;
2450 }
2451
070ad9f0 2452 if (*p == '(' || *p == '<')
c906108c
SS
2453 {
2454 depth += 1;
2455 }
070ad9f0 2456 else if (*p == ')' || *p == '>')
c906108c
SS
2457 {
2458 depth -= 1;
2459 }
2460
2461 p += 1;
2462 }
2463 }
2464
c906108c
SS
2465 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2466
2467 /* Now update the old "stub" type into a real type. */
2468 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2469 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2470 We want a method (TYPE_CODE_METHOD). */
2471 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2472 argtypes, argcount, p[-2] == '.');
876cecd0 2473 TYPE_STUB (mtype) = 0;
c906108c 2474 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2475
2476 xfree (demangled_name);
c906108c
SS
2477}
2478
7ba81444
MS
2479/* This is the external interface to check_stub_method, above. This
2480 function unstubs all of the signatures for TYPE's METHOD_ID method
2481 name. After calling this function TYPE_FN_FIELD_STUB will be
2482 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2483 correct.
de17c821
DJ
2484
2485 This function unfortunately can not die until stabs do. */
2486
2487void
2488check_stub_method_group (struct type *type, int method_id)
2489{
2490 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2491 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2492 int j, found_stub = 0;
de17c821
DJ
2493
2494 for (j = 0; j < len; j++)
2495 if (TYPE_FN_FIELD_STUB (f, j))
2496 {
2497 found_stub = 1;
2498 check_stub_method (type, method_id, j);
2499 }
2500
7ba81444
MS
2501 /* GNU v3 methods with incorrect names were corrected when we read
2502 in type information, because it was cheaper to do it then. The
2503 only GNU v2 methods with incorrect method names are operators and
2504 destructors; destructors were also corrected when we read in type
2505 information.
de17c821
DJ
2506
2507 Therefore the only thing we need to handle here are v2 operator
2508 names. */
61012eef 2509 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2510 {
2511 int ret;
2512 char dem_opname[256];
2513
7ba81444
MS
2514 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2515 method_id),
de17c821
DJ
2516 dem_opname, DMGL_ANSI);
2517 if (!ret)
7ba81444
MS
2518 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2519 method_id),
de17c821
DJ
2520 dem_opname, 0);
2521 if (ret)
2522 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2523 }
2524}
2525
9655fd1a
JK
2526/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2527const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2528
2529void
fba45db2 2530allocate_cplus_struct_type (struct type *type)
c906108c 2531{
b4ba55a1
JB
2532 if (HAVE_CPLUS_STRUCT (type))
2533 /* Structure was already allocated. Nothing more to do. */
2534 return;
2535
2536 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2537 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2538 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2539 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2540 set_type_vptr_fieldno (type, -1);
c906108c
SS
2541}
2542
b4ba55a1
JB
2543const struct gnat_aux_type gnat_aux_default =
2544 { NULL };
2545
2546/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2547 and allocate the associated gnat-specific data. The gnat-specific
2548 data is also initialized to gnat_aux_default. */
5212577a 2549
b4ba55a1
JB
2550void
2551allocate_gnat_aux_type (struct type *type)
2552{
2553 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2554 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2555 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2556 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2557}
2558
c906108c
SS
2559/* Helper function to initialize the standard scalar types.
2560
86f62fd7
TT
2561 If NAME is non-NULL, then it is used to initialize the type name.
2562 Note that NAME is not copied; it is required to have a lifetime at
2563 least as long as OBJFILE. */
c906108c
SS
2564
2565struct type *
7ba81444 2566init_type (enum type_code code, int length, int flags,
748e18ae 2567 const char *name, struct objfile *objfile)
c906108c 2568{
52f0bd74 2569 struct type *type;
c906108c
SS
2570
2571 type = alloc_type (objfile);
2572 TYPE_CODE (type) = code;
2573 TYPE_LENGTH (type) = length;
876cecd0
TT
2574
2575 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2576 if (flags & TYPE_FLAG_UNSIGNED)
2577 TYPE_UNSIGNED (type) = 1;
2578 if (flags & TYPE_FLAG_NOSIGN)
2579 TYPE_NOSIGN (type) = 1;
2580 if (flags & TYPE_FLAG_STUB)
2581 TYPE_STUB (type) = 1;
2582 if (flags & TYPE_FLAG_TARGET_STUB)
2583 TYPE_TARGET_STUB (type) = 1;
2584 if (flags & TYPE_FLAG_STATIC)
2585 TYPE_STATIC (type) = 1;
2586 if (flags & TYPE_FLAG_PROTOTYPED)
2587 TYPE_PROTOTYPED (type) = 1;
2588 if (flags & TYPE_FLAG_INCOMPLETE)
2589 TYPE_INCOMPLETE (type) = 1;
2590 if (flags & TYPE_FLAG_VARARGS)
2591 TYPE_VARARGS (type) = 1;
2592 if (flags & TYPE_FLAG_VECTOR)
2593 TYPE_VECTOR (type) = 1;
2594 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2595 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2596 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2597 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2598 if (flags & TYPE_FLAG_GNU_IFUNC)
2599 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2600
86f62fd7 2601 TYPE_NAME (type) = name;
c906108c
SS
2602
2603 /* C++ fancies. */
2604
973ccf8b 2605 if (name && strcmp (name, "char") == 0)
876cecd0 2606 TYPE_NOSIGN (type) = 1;
973ccf8b 2607
b4ba55a1 2608 switch (code)
c906108c 2609 {
b4ba55a1
JB
2610 case TYPE_CODE_STRUCT:
2611 case TYPE_CODE_UNION:
2612 case TYPE_CODE_NAMESPACE:
2613 INIT_CPLUS_SPECIFIC (type);
2614 break;
2615 case TYPE_CODE_FLT:
2616 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2617 break;
2618 case TYPE_CODE_FUNC:
b6cdc2c1 2619 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2620 break;
c906108c 2621 }
c16abbde 2622 return type;
c906108c 2623}
5212577a
DE
2624\f
2625/* Queries on types. */
c906108c 2626
c906108c 2627int
fba45db2 2628can_dereference (struct type *t)
c906108c 2629{
7ba81444
MS
2630 /* FIXME: Should we return true for references as well as
2631 pointers? */
c906108c
SS
2632 CHECK_TYPEDEF (t);
2633 return
2634 (t != NULL
2635 && TYPE_CODE (t) == TYPE_CODE_PTR
2636 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2637}
2638
adf40b2e 2639int
fba45db2 2640is_integral_type (struct type *t)
adf40b2e
JM
2641{
2642 CHECK_TYPEDEF (t);
2643 return
2644 ((t != NULL)
d4f3574e
SS
2645 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2646 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2647 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2648 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2649 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2650 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2651}
2652
e09342b5
TJB
2653/* Return true if TYPE is scalar. */
2654
2655static int
2656is_scalar_type (struct type *type)
2657{
2658 CHECK_TYPEDEF (type);
2659
2660 switch (TYPE_CODE (type))
2661 {
2662 case TYPE_CODE_ARRAY:
2663 case TYPE_CODE_STRUCT:
2664 case TYPE_CODE_UNION:
2665 case TYPE_CODE_SET:
2666 case TYPE_CODE_STRING:
e09342b5
TJB
2667 return 0;
2668 default:
2669 return 1;
2670 }
2671}
2672
2673/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2674 the memory layout of a scalar type. E.g., an array or struct with only
2675 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2676
2677int
2678is_scalar_type_recursive (struct type *t)
2679{
2680 CHECK_TYPEDEF (t);
2681
2682 if (is_scalar_type (t))
2683 return 1;
2684 /* Are we dealing with an array or string of known dimensions? */
2685 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2686 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2687 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2688 {
2689 LONGEST low_bound, high_bound;
2690 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2691
2692 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2693
2694 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2695 }
2696 /* Are we dealing with a struct with one element? */
2697 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2698 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2699 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2700 {
2701 int i, n = TYPE_NFIELDS (t);
2702
2703 /* If all elements of the union are scalar, then the union is scalar. */
2704 for (i = 0; i < n; i++)
2705 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2706 return 0;
2707
2708 return 1;
2709 }
2710
2711 return 0;
2712}
2713
6c659fc2
SC
2714/* Return true is T is a class or a union. False otherwise. */
2715
2716int
2717class_or_union_p (const struct type *t)
2718{
2719 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2720 || TYPE_CODE (t) == TYPE_CODE_UNION);
2721}
2722
4e8f195d
TT
2723/* A helper function which returns true if types A and B represent the
2724 "same" class type. This is true if the types have the same main
2725 type, or the same name. */
2726
2727int
2728class_types_same_p (const struct type *a, const struct type *b)
2729{
2730 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2731 || (TYPE_NAME (a) && TYPE_NAME (b)
2732 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2733}
2734
a9d5ef47
SW
2735/* If BASE is an ancestor of DCLASS return the distance between them.
2736 otherwise return -1;
2737 eg:
2738
2739 class A {};
2740 class B: public A {};
2741 class C: public B {};
2742 class D: C {};
2743
2744 distance_to_ancestor (A, A, 0) = 0
2745 distance_to_ancestor (A, B, 0) = 1
2746 distance_to_ancestor (A, C, 0) = 2
2747 distance_to_ancestor (A, D, 0) = 3
2748
2749 If PUBLIC is 1 then only public ancestors are considered,
2750 and the function returns the distance only if BASE is a public ancestor
2751 of DCLASS.
2752 Eg:
2753
0963b4bd 2754 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2755
0526b37a 2756static int
fe978cb0 2757distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
2758{
2759 int i;
a9d5ef47 2760 int d;
c5aa993b 2761
c906108c
SS
2762 CHECK_TYPEDEF (base);
2763 CHECK_TYPEDEF (dclass);
2764
4e8f195d 2765 if (class_types_same_p (base, dclass))
a9d5ef47 2766 return 0;
c906108c
SS
2767
2768 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2769 {
fe978cb0 2770 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
2771 continue;
2772
fe978cb0 2773 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
2774 if (d >= 0)
2775 return 1 + d;
4e8f195d 2776 }
c906108c 2777
a9d5ef47 2778 return -1;
c906108c 2779}
4e8f195d 2780
0526b37a
SW
2781/* Check whether BASE is an ancestor or base class or DCLASS
2782 Return 1 if so, and 0 if not.
2783 Note: If BASE and DCLASS are of the same type, this function
2784 will return 1. So for some class A, is_ancestor (A, A) will
2785 return 1. */
2786
2787int
2788is_ancestor (struct type *base, struct type *dclass)
2789{
a9d5ef47 2790 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2791}
2792
4e8f195d
TT
2793/* Like is_ancestor, but only returns true when BASE is a public
2794 ancestor of DCLASS. */
2795
2796int
2797is_public_ancestor (struct type *base, struct type *dclass)
2798{
a9d5ef47 2799 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2800}
2801
2802/* A helper function for is_unique_ancestor. */
2803
2804static int
2805is_unique_ancestor_worker (struct type *base, struct type *dclass,
2806 int *offset,
8af8e3bc
PA
2807 const gdb_byte *valaddr, int embedded_offset,
2808 CORE_ADDR address, struct value *val)
4e8f195d
TT
2809{
2810 int i, count = 0;
2811
2812 CHECK_TYPEDEF (base);
2813 CHECK_TYPEDEF (dclass);
2814
2815 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2816 {
8af8e3bc
PA
2817 struct type *iter;
2818 int this_offset;
4e8f195d 2819
8af8e3bc
PA
2820 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2821
2822 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2823 address, val);
4e8f195d
TT
2824
2825 if (class_types_same_p (base, iter))
2826 {
2827 /* If this is the first subclass, set *OFFSET and set count
2828 to 1. Otherwise, if this is at the same offset as
2829 previous instances, do nothing. Otherwise, increment
2830 count. */
2831 if (*offset == -1)
2832 {
2833 *offset = this_offset;
2834 count = 1;
2835 }
2836 else if (this_offset == *offset)
2837 {
2838 /* Nothing. */
2839 }
2840 else
2841 ++count;
2842 }
2843 else
2844 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2845 valaddr,
2846 embedded_offset + this_offset,
2847 address, val);
4e8f195d
TT
2848 }
2849
2850 return count;
2851}
2852
2853/* Like is_ancestor, but only returns true if BASE is a unique base
2854 class of the type of VAL. */
2855
2856int
2857is_unique_ancestor (struct type *base, struct value *val)
2858{
2859 int offset = -1;
2860
2861 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2862 value_contents_for_printing (val),
2863 value_embedded_offset (val),
2864 value_address (val), val) == 1;
4e8f195d
TT
2865}
2866
c906108c 2867\f
5212577a 2868/* Overload resolution. */
c906108c 2869
6403aeea
SW
2870/* Return the sum of the rank of A with the rank of B. */
2871
2872struct rank
2873sum_ranks (struct rank a, struct rank b)
2874{
2875 struct rank c;
2876 c.rank = a.rank + b.rank;
a9d5ef47 2877 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2878 return c;
2879}
2880
2881/* Compare rank A and B and return:
2882 0 if a = b
2883 1 if a is better than b
2884 -1 if b is better than a. */
2885
2886int
2887compare_ranks (struct rank a, struct rank b)
2888{
2889 if (a.rank == b.rank)
a9d5ef47
SW
2890 {
2891 if (a.subrank == b.subrank)
2892 return 0;
2893 if (a.subrank < b.subrank)
2894 return 1;
2895 if (a.subrank > b.subrank)
2896 return -1;
2897 }
6403aeea
SW
2898
2899 if (a.rank < b.rank)
2900 return 1;
2901
0963b4bd 2902 /* a.rank > b.rank */
6403aeea
SW
2903 return -1;
2904}
c5aa993b 2905
0963b4bd 2906/* Functions for overload resolution begin here. */
c906108c
SS
2907
2908/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2909 0 => A and B are identical
2910 1 => A and B are incomparable
2911 2 => A is better than B
2912 3 => A is worse than B */
c906108c
SS
2913
2914int
fba45db2 2915compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2916{
2917 int i;
2918 int tmp;
c5aa993b
JM
2919 short found_pos = 0; /* any positives in c? */
2920 short found_neg = 0; /* any negatives in c? */
2921
2922 /* differing lengths => incomparable */
c906108c
SS
2923 if (a->length != b->length)
2924 return 1;
2925
c5aa993b
JM
2926 /* Subtract b from a */
2927 for (i = 0; i < a->length; i++)
c906108c 2928 {
6403aeea 2929 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2930 if (tmp > 0)
c5aa993b 2931 found_pos = 1;
c906108c 2932 else if (tmp < 0)
c5aa993b 2933 found_neg = 1;
c906108c
SS
2934 }
2935
2936 if (found_pos)
2937 {
2938 if (found_neg)
c5aa993b 2939 return 1; /* incomparable */
c906108c 2940 else
c5aa993b 2941 return 3; /* A > B */
c906108c 2942 }
c5aa993b
JM
2943 else
2944 /* no positives */
c906108c
SS
2945 {
2946 if (found_neg)
c5aa993b 2947 return 2; /* A < B */
c906108c 2948 else
c5aa993b 2949 return 0; /* A == B */
c906108c
SS
2950 }
2951}
2952
7ba81444
MS
2953/* Rank a function by comparing its parameter types (PARMS, length
2954 NPARMS), to the types of an argument list (ARGS, length NARGS).
2955 Return a pointer to a badness vector. This has NARGS + 1
2956 entries. */
c906108c
SS
2957
2958struct badness_vector *
7ba81444 2959rank_function (struct type **parms, int nparms,
da096638 2960 struct value **args, int nargs)
c906108c
SS
2961{
2962 int i;
c5aa993b 2963 struct badness_vector *bv;
c906108c
SS
2964 int min_len = nparms < nargs ? nparms : nargs;
2965
2966 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2967 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2968 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2969
2970 /* First compare the lengths of the supplied lists.
7ba81444 2971 If there is a mismatch, set it to a high value. */
c5aa993b 2972
c906108c 2973 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2974 arguments and ellipsis parameter lists, we should consider those
2975 and rank the length-match more finely. */
c906108c 2976
6403aeea
SW
2977 LENGTH_MATCH (bv) = (nargs != nparms)
2978 ? LENGTH_MISMATCH_BADNESS
2979 : EXACT_MATCH_BADNESS;
c906108c 2980
0963b4bd 2981 /* Now rank all the parameters of the candidate function. */
74cc24b0 2982 for (i = 1; i <= min_len; i++)
da096638
KS
2983 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2984 args[i - 1]);
c906108c 2985
0963b4bd 2986 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2987 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2988 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2989
2990 return bv;
2991}
2992
973ccf8b
DJ
2993/* Compare the names of two integer types, assuming that any sign
2994 qualifiers have been checked already. We do it this way because
2995 there may be an "int" in the name of one of the types. */
2996
2997static int
2998integer_types_same_name_p (const char *first, const char *second)
2999{
3000 int first_p, second_p;
3001
7ba81444
MS
3002 /* If both are shorts, return 1; if neither is a short, keep
3003 checking. */
973ccf8b
DJ
3004 first_p = (strstr (first, "short") != NULL);
3005 second_p = (strstr (second, "short") != NULL);
3006 if (first_p && second_p)
3007 return 1;
3008 if (first_p || second_p)
3009 return 0;
3010
3011 /* Likewise for long. */
3012 first_p = (strstr (first, "long") != NULL);
3013 second_p = (strstr (second, "long") != NULL);
3014 if (first_p && second_p)
3015 return 1;
3016 if (first_p || second_p)
3017 return 0;
3018
3019 /* Likewise for char. */
3020 first_p = (strstr (first, "char") != NULL);
3021 second_p = (strstr (second, "char") != NULL);
3022 if (first_p && second_p)
3023 return 1;
3024 if (first_p || second_p)
3025 return 0;
3026
3027 /* They must both be ints. */
3028 return 1;
3029}
3030
7062b0a0
SW
3031/* Compares type A to type B returns 1 if the represent the same type
3032 0 otherwise. */
3033
bd69fc68 3034int
7062b0a0
SW
3035types_equal (struct type *a, struct type *b)
3036{
3037 /* Identical type pointers. */
3038 /* However, this still doesn't catch all cases of same type for b
3039 and a. The reason is that builtin types are different from
3040 the same ones constructed from the object. */
3041 if (a == b)
3042 return 1;
3043
3044 /* Resolve typedefs */
3045 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3046 a = check_typedef (a);
3047 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3048 b = check_typedef (b);
3049
3050 /* If after resolving typedefs a and b are not of the same type
3051 code then they are not equal. */
3052 if (TYPE_CODE (a) != TYPE_CODE (b))
3053 return 0;
3054
3055 /* If a and b are both pointers types or both reference types then
3056 they are equal of the same type iff the objects they refer to are
3057 of the same type. */
3058 if (TYPE_CODE (a) == TYPE_CODE_PTR
3059 || TYPE_CODE (a) == TYPE_CODE_REF)
3060 return types_equal (TYPE_TARGET_TYPE (a),
3061 TYPE_TARGET_TYPE (b));
3062
0963b4bd 3063 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3064 are exactly the same. This happens when we generate method
3065 stubs. The types won't point to the same address, but they
0963b4bd 3066 really are the same. */
7062b0a0
SW
3067
3068 if (TYPE_NAME (a) && TYPE_NAME (b)
3069 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3070 return 1;
3071
3072 /* Check if identical after resolving typedefs. */
3073 if (a == b)
3074 return 1;
3075
9ce98649
TT
3076 /* Two function types are equal if their argument and return types
3077 are equal. */
3078 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3079 {
3080 int i;
3081
3082 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3083 return 0;
3084
3085 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3086 return 0;
3087
3088 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3089 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3090 return 0;
3091
3092 return 1;
3093 }
3094
7062b0a0
SW
3095 return 0;
3096}
ca092b61
DE
3097\f
3098/* Deep comparison of types. */
3099
3100/* An entry in the type-equality bcache. */
3101
3102typedef struct type_equality_entry
3103{
3104 struct type *type1, *type2;
3105} type_equality_entry_d;
3106
3107DEF_VEC_O (type_equality_entry_d);
3108
3109/* A helper function to compare two strings. Returns 1 if they are
3110 the same, 0 otherwise. Handles NULLs properly. */
3111
3112static int
3113compare_maybe_null_strings (const char *s, const char *t)
3114{
3115 if (s == NULL && t != NULL)
3116 return 0;
3117 else if (s != NULL && t == NULL)
3118 return 0;
3119 else if (s == NULL && t== NULL)
3120 return 1;
3121 return strcmp (s, t) == 0;
3122}
3123
3124/* A helper function for check_types_worklist that checks two types for
3125 "deep" equality. Returns non-zero if the types are considered the
3126 same, zero otherwise. */
3127
3128static int
3129check_types_equal (struct type *type1, struct type *type2,
3130 VEC (type_equality_entry_d) **worklist)
3131{
3132 CHECK_TYPEDEF (type1);
3133 CHECK_TYPEDEF (type2);
3134
3135 if (type1 == type2)
3136 return 1;
3137
3138 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3139 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3140 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3141 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3142 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3143 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3144 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3145 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3146 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3147 return 0;
3148
3149 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3150 TYPE_TAG_NAME (type2)))
3151 return 0;
3152 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3153 return 0;
3154
3155 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3156 {
3157 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3158 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3159 return 0;
3160 }
3161 else
3162 {
3163 int i;
3164
3165 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3166 {
3167 const struct field *field1 = &TYPE_FIELD (type1, i);
3168 const struct field *field2 = &TYPE_FIELD (type2, i);
3169 struct type_equality_entry entry;
3170
3171 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3172 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3173 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3174 return 0;
3175 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3176 FIELD_NAME (*field2)))
3177 return 0;
3178 switch (FIELD_LOC_KIND (*field1))
3179 {
3180 case FIELD_LOC_KIND_BITPOS:
3181 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3182 return 0;
3183 break;
3184 case FIELD_LOC_KIND_ENUMVAL:
3185 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3186 return 0;
3187 break;
3188 case FIELD_LOC_KIND_PHYSADDR:
3189 if (FIELD_STATIC_PHYSADDR (*field1)
3190 != FIELD_STATIC_PHYSADDR (*field2))
3191 return 0;
3192 break;
3193 case FIELD_LOC_KIND_PHYSNAME:
3194 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3195 FIELD_STATIC_PHYSNAME (*field2)))
3196 return 0;
3197 break;
3198 case FIELD_LOC_KIND_DWARF_BLOCK:
3199 {
3200 struct dwarf2_locexpr_baton *block1, *block2;
3201
3202 block1 = FIELD_DWARF_BLOCK (*field1);
3203 block2 = FIELD_DWARF_BLOCK (*field2);
3204 if (block1->per_cu != block2->per_cu
3205 || block1->size != block2->size
3206 || memcmp (block1->data, block2->data, block1->size) != 0)
3207 return 0;
3208 }
3209 break;
3210 default:
3211 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3212 "%d by check_types_equal"),
3213 FIELD_LOC_KIND (*field1));
3214 }
3215
3216 entry.type1 = FIELD_TYPE (*field1);
3217 entry.type2 = FIELD_TYPE (*field2);
3218 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3219 }
3220 }
3221
3222 if (TYPE_TARGET_TYPE (type1) != NULL)
3223 {
3224 struct type_equality_entry entry;
3225
3226 if (TYPE_TARGET_TYPE (type2) == NULL)
3227 return 0;
3228
3229 entry.type1 = TYPE_TARGET_TYPE (type1);
3230 entry.type2 = TYPE_TARGET_TYPE (type2);
3231 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3232 }
3233 else if (TYPE_TARGET_TYPE (type2) != NULL)
3234 return 0;
3235
3236 return 1;
3237}
3238
3239/* Check types on a worklist for equality. Returns zero if any pair
3240 is not equal, non-zero if they are all considered equal. */
3241
3242static int
3243check_types_worklist (VEC (type_equality_entry_d) **worklist,
3244 struct bcache *cache)
3245{
3246 while (!VEC_empty (type_equality_entry_d, *worklist))
3247 {
3248 struct type_equality_entry entry;
3249 int added;
3250
3251 entry = *VEC_last (type_equality_entry_d, *worklist);
3252 VEC_pop (type_equality_entry_d, *worklist);
3253
3254 /* If the type pair has already been visited, we know it is
3255 ok. */
3256 bcache_full (&entry, sizeof (entry), cache, &added);
3257 if (!added)
3258 continue;
3259
3260 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3261 return 0;
3262 }
7062b0a0 3263
ca092b61
DE
3264 return 1;
3265}
3266
3267/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3268 "deep comparison". Otherwise return zero. */
3269
3270int
3271types_deeply_equal (struct type *type1, struct type *type2)
3272{
6c63c96a 3273 struct gdb_exception except = exception_none;
ca092b61
DE
3274 int result = 0;
3275 struct bcache *cache;
3276 VEC (type_equality_entry_d) *worklist = NULL;
3277 struct type_equality_entry entry;
3278
3279 gdb_assert (type1 != NULL && type2 != NULL);
3280
3281 /* Early exit for the simple case. */
3282 if (type1 == type2)
3283 return 1;
3284
3285 cache = bcache_xmalloc (NULL, NULL);
3286
3287 entry.type1 = type1;
3288 entry.type2 = type2;
3289 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3290
6c63c96a
PA
3291 /* check_types_worklist calls several nested helper functions, some
3292 of which can raise a GDB exception, so we just check and rethrow
3293 here. If there is a GDB exception, a comparison is not capable
3294 (or trusted), so exit. */
492d29ea 3295 TRY
ca092b61
DE
3296 {
3297 result = check_types_worklist (&worklist, cache);
3298 }
6c63c96a 3299 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3300 {
6c63c96a 3301 except = ex;
492d29ea
PA
3302 }
3303 END_CATCH
ca092b61 3304
6c63c96a
PA
3305 bcache_xfree (cache);
3306 VEC_free (type_equality_entry_d, worklist);
3307
3308 /* Rethrow if there was a problem. */
3309 if (except.reason < 0)
3310 throw_exception (except);
3311
ca092b61
DE
3312 return result;
3313}
3314\f
c906108c
SS
3315/* Compare one type (PARM) for compatibility with another (ARG).
3316 * PARM is intended to be the parameter type of a function; and
3317 * ARG is the supplied argument's type. This function tests if
3318 * the latter can be converted to the former.
da096638 3319 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3320 *
3321 * Return 0 if they are identical types;
3322 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3323 * PARM is to ARG. The higher the return value, the worse the match.
3324 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3325
6403aeea 3326struct rank
da096638 3327rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3328{
a9d5ef47 3329 struct rank rank = {0,0};
7062b0a0
SW
3330
3331 if (types_equal (parm, arg))
6403aeea 3332 return EXACT_MATCH_BADNESS;
c906108c
SS
3333
3334 /* Resolve typedefs */
3335 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3336 parm = check_typedef (parm);
3337 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3338 arg = check_typedef (arg);
3339
db577aea 3340 /* See through references, since we can almost make non-references
7ba81444 3341 references. */
db577aea 3342 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3343 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3344 REFERENCE_CONVERSION_BADNESS));
db577aea 3345 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3346 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3347 REFERENCE_CONVERSION_BADNESS));
5d161b24 3348 if (overload_debug)
7ba81444
MS
3349 /* Debugging only. */
3350 fprintf_filtered (gdb_stderr,
3351 "------ Arg is %s [%d], parm is %s [%d]\n",
3352 TYPE_NAME (arg), TYPE_CODE (arg),
3353 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3354
0963b4bd 3355 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3356
3357 switch (TYPE_CODE (parm))
3358 {
c5aa993b
JM
3359 case TYPE_CODE_PTR:
3360 switch (TYPE_CODE (arg))
3361 {
3362 case TYPE_CODE_PTR:
7062b0a0
SW
3363
3364 /* Allowed pointer conversions are:
3365 (a) pointer to void-pointer conversion. */
3366 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3367 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3368
3369 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3370 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3371 TYPE_TARGET_TYPE (arg),
3372 0);
3373 if (rank.subrank >= 0)
3374 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3375
3376 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3377 case TYPE_CODE_ARRAY:
7062b0a0
SW
3378 if (types_equal (TYPE_TARGET_TYPE (parm),
3379 TYPE_TARGET_TYPE (arg)))
6403aeea 3380 return EXACT_MATCH_BADNESS;
7062b0a0 3381 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3382 case TYPE_CODE_FUNC:
da096638 3383 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3384 case TYPE_CODE_INT:
a451cb65 3385 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3386 {
a451cb65
KS
3387 if (value_as_long (value) == 0)
3388 {
3389 /* Null pointer conversion: allow it to be cast to a pointer.
3390 [4.10.1 of C++ standard draft n3290] */
3391 return NULL_POINTER_CONVERSION_BADNESS;
3392 }
3393 else
3394 {
3395 /* If type checking is disabled, allow the conversion. */
3396 if (!strict_type_checking)
3397 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3398 }
da096638
KS
3399 }
3400 /* fall through */
c5aa993b 3401 case TYPE_CODE_ENUM:
4f2aea11 3402 case TYPE_CODE_FLAGS:
c5aa993b
JM
3403 case TYPE_CODE_CHAR:
3404 case TYPE_CODE_RANGE:
3405 case TYPE_CODE_BOOL:
c5aa993b
JM
3406 default:
3407 return INCOMPATIBLE_TYPE_BADNESS;
3408 }
3409 case TYPE_CODE_ARRAY:
3410 switch (TYPE_CODE (arg))
3411 {
3412 case TYPE_CODE_PTR:
3413 case TYPE_CODE_ARRAY:
7ba81444 3414 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3415 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3416 default:
3417 return INCOMPATIBLE_TYPE_BADNESS;
3418 }
3419 case TYPE_CODE_FUNC:
3420 switch (TYPE_CODE (arg))
3421 {
3422 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3423 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3424 default:
3425 return INCOMPATIBLE_TYPE_BADNESS;
3426 }
3427 case TYPE_CODE_INT:
3428 switch (TYPE_CODE (arg))
3429 {
3430 case TYPE_CODE_INT:
3431 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3432 {
3433 /* Deal with signed, unsigned, and plain chars and
7ba81444 3434 signed and unsigned ints. */
c5aa993b
JM
3435 if (TYPE_NOSIGN (parm))
3436 {
0963b4bd 3437 /* This case only for character types. */
7ba81444 3438 if (TYPE_NOSIGN (arg))
6403aeea 3439 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3440 else /* signed/unsigned char -> plain char */
3441 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3442 }
3443 else if (TYPE_UNSIGNED (parm))
3444 {
3445 if (TYPE_UNSIGNED (arg))
3446 {
7ba81444
MS
3447 /* unsigned int -> unsigned int, or
3448 unsigned long -> unsigned long */
3449 if (integer_types_same_name_p (TYPE_NAME (parm),
3450 TYPE_NAME (arg)))
6403aeea 3451 return EXACT_MATCH_BADNESS;
7ba81444
MS
3452 else if (integer_types_same_name_p (TYPE_NAME (arg),
3453 "int")
3454 && integer_types_same_name_p (TYPE_NAME (parm),
3455 "long"))
3e43a32a
MS
3456 /* unsigned int -> unsigned long */
3457 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3458 else
3e43a32a
MS
3459 /* unsigned long -> unsigned int */
3460 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3461 }
3462 else
3463 {
7ba81444
MS
3464 if (integer_types_same_name_p (TYPE_NAME (arg),
3465 "long")
3466 && integer_types_same_name_p (TYPE_NAME (parm),
3467 "int"))
3e43a32a
MS
3468 /* signed long -> unsigned int */
3469 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3470 else
3e43a32a
MS
3471 /* signed int/long -> unsigned int/long */
3472 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3473 }
3474 }
3475 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3476 {
7ba81444
MS
3477 if (integer_types_same_name_p (TYPE_NAME (parm),
3478 TYPE_NAME (arg)))
6403aeea 3479 return EXACT_MATCH_BADNESS;
7ba81444
MS
3480 else if (integer_types_same_name_p (TYPE_NAME (arg),
3481 "int")
3482 && integer_types_same_name_p (TYPE_NAME (parm),
3483 "long"))
c5aa993b
JM
3484 return INTEGER_PROMOTION_BADNESS;
3485 else
1c5cb38e 3486 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3487 }
3488 else
1c5cb38e 3489 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3490 }
3491 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3492 return INTEGER_PROMOTION_BADNESS;
3493 else
1c5cb38e 3494 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3495 case TYPE_CODE_ENUM:
4f2aea11 3496 case TYPE_CODE_FLAGS:
c5aa993b
JM
3497 case TYPE_CODE_CHAR:
3498 case TYPE_CODE_RANGE:
3499 case TYPE_CODE_BOOL:
3d567982
TT
3500 if (TYPE_DECLARED_CLASS (arg))
3501 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3502 return INTEGER_PROMOTION_BADNESS;
3503 case TYPE_CODE_FLT:
3504 return INT_FLOAT_CONVERSION_BADNESS;
3505 case TYPE_CODE_PTR:
3506 return NS_POINTER_CONVERSION_BADNESS;
3507 default:
3508 return INCOMPATIBLE_TYPE_BADNESS;
3509 }
3510 break;
3511 case TYPE_CODE_ENUM:
3512 switch (TYPE_CODE (arg))
3513 {
3514 case TYPE_CODE_INT:
3515 case TYPE_CODE_CHAR:
3516 case TYPE_CODE_RANGE:
3517 case TYPE_CODE_BOOL:
3518 case TYPE_CODE_ENUM:
3d567982
TT
3519 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3520 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3521 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3522 case TYPE_CODE_FLT:
3523 return INT_FLOAT_CONVERSION_BADNESS;
3524 default:
3525 return INCOMPATIBLE_TYPE_BADNESS;
3526 }
3527 break;
3528 case TYPE_CODE_CHAR:
3529 switch (TYPE_CODE (arg))
3530 {
3531 case TYPE_CODE_RANGE:
3532 case TYPE_CODE_BOOL:
3533 case TYPE_CODE_ENUM:
3d567982
TT
3534 if (TYPE_DECLARED_CLASS (arg))
3535 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3536 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3537 case TYPE_CODE_FLT:
3538 return INT_FLOAT_CONVERSION_BADNESS;
3539 case TYPE_CODE_INT:
3540 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3541 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3542 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3543 return INTEGER_PROMOTION_BADNESS;
3544 /* >>> !! else fall through !! <<< */
3545 case TYPE_CODE_CHAR:
7ba81444
MS
3546 /* Deal with signed, unsigned, and plain chars for C++ and
3547 with int cases falling through from previous case. */
c5aa993b
JM
3548 if (TYPE_NOSIGN (parm))
3549 {
3550 if (TYPE_NOSIGN (arg))
6403aeea 3551 return EXACT_MATCH_BADNESS;
c5aa993b 3552 else
1c5cb38e 3553 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3554 }
3555 else if (TYPE_UNSIGNED (parm))
3556 {
3557 if (TYPE_UNSIGNED (arg))
6403aeea 3558 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3559 else
3560 return INTEGER_PROMOTION_BADNESS;
3561 }
3562 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3563 return EXACT_MATCH_BADNESS;
c5aa993b 3564 else
1c5cb38e 3565 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3566 default:
3567 return INCOMPATIBLE_TYPE_BADNESS;
3568 }
3569 break;
3570 case TYPE_CODE_RANGE:
3571 switch (TYPE_CODE (arg))
3572 {
3573 case TYPE_CODE_INT:
3574 case TYPE_CODE_CHAR:
3575 case TYPE_CODE_RANGE:
3576 case TYPE_CODE_BOOL:
3577 case TYPE_CODE_ENUM:
1c5cb38e 3578 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3579 case TYPE_CODE_FLT:
3580 return INT_FLOAT_CONVERSION_BADNESS;
3581 default:
3582 return INCOMPATIBLE_TYPE_BADNESS;
3583 }
3584 break;
3585 case TYPE_CODE_BOOL:
3586 switch (TYPE_CODE (arg))
3587 {
5b4f6e25
KS
3588 /* n3290 draft, section 4.12.1 (conv.bool):
3589
3590 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3591 pointer to member type can be converted to a prvalue of type
3592 bool. A zero value, null pointer value, or null member pointer
3593 value is converted to false; any other value is converted to
3594 true. A prvalue of type std::nullptr_t can be converted to a
3595 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3596 case TYPE_CODE_INT:
3597 case TYPE_CODE_CHAR:
c5aa993b
JM
3598 case TYPE_CODE_ENUM:
3599 case TYPE_CODE_FLT:
5b4f6e25 3600 case TYPE_CODE_MEMBERPTR:
c5aa993b 3601 case TYPE_CODE_PTR:
5b4f6e25
KS
3602 return BOOL_CONVERSION_BADNESS;
3603 case TYPE_CODE_RANGE:
3604 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3605 case TYPE_CODE_BOOL:
6403aeea 3606 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3607 default:
3608 return INCOMPATIBLE_TYPE_BADNESS;
3609 }
3610 break;
3611 case TYPE_CODE_FLT:
3612 switch (TYPE_CODE (arg))
3613 {
3614 case TYPE_CODE_FLT:
3615 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3616 return FLOAT_PROMOTION_BADNESS;
3617 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3618 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3619 else
3620 return FLOAT_CONVERSION_BADNESS;
3621 case TYPE_CODE_INT:
3622 case TYPE_CODE_BOOL:
3623 case TYPE_CODE_ENUM:
3624 case TYPE_CODE_RANGE:
3625 case TYPE_CODE_CHAR:
3626 return INT_FLOAT_CONVERSION_BADNESS;
3627 default:
3628 return INCOMPATIBLE_TYPE_BADNESS;
3629 }
3630 break;
3631 case TYPE_CODE_COMPLEX:
3632 switch (TYPE_CODE (arg))
7ba81444 3633 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3634 case TYPE_CODE_FLT:
3635 return FLOAT_PROMOTION_BADNESS;
3636 case TYPE_CODE_COMPLEX:
6403aeea 3637 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3638 default:
3639 return INCOMPATIBLE_TYPE_BADNESS;
3640 }
3641 break;
3642 case TYPE_CODE_STRUCT:
c5aa993b
JM
3643 switch (TYPE_CODE (arg))
3644 {
3645 case TYPE_CODE_STRUCT:
3646 /* Check for derivation */
a9d5ef47
SW
3647 rank.subrank = distance_to_ancestor (parm, arg, 0);
3648 if (rank.subrank >= 0)
3649 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3650 /* else fall through */
3651 default:
3652 return INCOMPATIBLE_TYPE_BADNESS;
3653 }
3654 break;
3655 case TYPE_CODE_UNION:
3656 switch (TYPE_CODE (arg))
3657 {
3658 case TYPE_CODE_UNION:
3659 default:
3660 return INCOMPATIBLE_TYPE_BADNESS;
3661 }
3662 break;
0d5de010 3663 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3664 switch (TYPE_CODE (arg))
3665 {
3666 default:
3667 return INCOMPATIBLE_TYPE_BADNESS;
3668 }
3669 break;
3670 case TYPE_CODE_METHOD:
3671 switch (TYPE_CODE (arg))
3672 {
3673
3674 default:
3675 return INCOMPATIBLE_TYPE_BADNESS;
3676 }
3677 break;
3678 case TYPE_CODE_REF:
3679 switch (TYPE_CODE (arg))
3680 {
3681
3682 default:
3683 return INCOMPATIBLE_TYPE_BADNESS;
3684 }
3685
3686 break;
3687 case TYPE_CODE_SET:
3688 switch (TYPE_CODE (arg))
3689 {
3690 /* Not in C++ */
3691 case TYPE_CODE_SET:
7ba81444 3692 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3693 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3694 default:
3695 return INCOMPATIBLE_TYPE_BADNESS;
3696 }
3697 break;
3698 case TYPE_CODE_VOID:
3699 default:
3700 return INCOMPATIBLE_TYPE_BADNESS;
3701 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3702}
3703
0963b4bd 3704/* End of functions for overload resolution. */
5212577a
DE
3705\f
3706/* Routines to pretty-print types. */
c906108c 3707
c906108c 3708static void
fba45db2 3709print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3710{
3711 int bitno;
3712
3713 for (bitno = 0; bitno < nbits; bitno++)
3714 {
3715 if ((bitno % 8) == 0)
3716 {
3717 puts_filtered (" ");
3718 }
3719 if (B_TST (bits, bitno))
a3f17187 3720 printf_filtered (("1"));
c906108c 3721 else
a3f17187 3722 printf_filtered (("0"));
c906108c
SS
3723 }
3724}
3725
ad2f7632 3726/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3727 include it since we may get into a infinitely recursive
3728 situation. */
c906108c
SS
3729
3730static void
4c9e8482 3731print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3732{
3733 if (args != NULL)
3734 {
ad2f7632
DJ
3735 int i;
3736
3737 for (i = 0; i < nargs; i++)
4c9e8482
DE
3738 {
3739 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3740 args[i].name != NULL ? args[i].name : "<NULL>");
3741 recursive_dump_type (args[i].type, spaces + 2);
3742 }
c906108c
SS
3743 }
3744}
3745
d6a843b5
JK
3746int
3747field_is_static (struct field *f)
3748{
3749 /* "static" fields are the fields whose location is not relative
3750 to the address of the enclosing struct. It would be nice to
3751 have a dedicated flag that would be set for static fields when
3752 the type is being created. But in practice, checking the field
254e6b9e 3753 loc_kind should give us an accurate answer. */
d6a843b5
JK
3754 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3755 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3756}
3757
c906108c 3758static void
fba45db2 3759dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3760{
3761 int method_idx;
3762 int overload_idx;
3763 struct fn_field *f;
3764
3765 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3766 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3767 printf_filtered ("\n");
3768 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3769 {
3770 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3771 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3772 method_idx,
3773 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3774 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3775 gdb_stdout);
a3f17187 3776 printf_filtered (_(") length %d\n"),
c906108c
SS
3777 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3778 for (overload_idx = 0;
3779 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3780 overload_idx++)
3781 {
3782 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3783 overload_idx,
3784 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3785 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3786 gdb_stdout);
c906108c
SS
3787 printf_filtered (")\n");
3788 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3789 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3790 gdb_stdout);
c906108c
SS
3791 printf_filtered ("\n");
3792
3793 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3794 spaces + 8 + 2);
3795
3796 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3797 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3798 gdb_stdout);
c906108c 3799 printf_filtered ("\n");
4c9e8482
DE
3800 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3801 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3802 spaces + 8 + 2);
c906108c 3803 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3804 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3805 gdb_stdout);
c906108c
SS
3806 printf_filtered ("\n");
3807
3808 printfi_filtered (spaces + 8, "is_const %d\n",
3809 TYPE_FN_FIELD_CONST (f, overload_idx));
3810 printfi_filtered (spaces + 8, "is_volatile %d\n",
3811 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3812 printfi_filtered (spaces + 8, "is_private %d\n",
3813 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3814 printfi_filtered (spaces + 8, "is_protected %d\n",
3815 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3816 printfi_filtered (spaces + 8, "is_stub %d\n",
3817 TYPE_FN_FIELD_STUB (f, overload_idx));
3818 printfi_filtered (spaces + 8, "voffset %u\n",
3819 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3820 }
3821 }
3822}
3823
3824static void
fba45db2 3825print_cplus_stuff (struct type *type, int spaces)
c906108c 3826{
ae6ae975
DE
3827 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3828 printfi_filtered (spaces, "vptr_basetype ");
3829 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3830 puts_filtered ("\n");
3831 if (TYPE_VPTR_BASETYPE (type) != NULL)
3832 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3833
c906108c
SS
3834 printfi_filtered (spaces, "n_baseclasses %d\n",
3835 TYPE_N_BASECLASSES (type));
3836 printfi_filtered (spaces, "nfn_fields %d\n",
3837 TYPE_NFN_FIELDS (type));
c906108c
SS
3838 if (TYPE_N_BASECLASSES (type) > 0)
3839 {
3840 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3841 TYPE_N_BASECLASSES (type));
7ba81444
MS
3842 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3843 gdb_stdout);
c906108c
SS
3844 printf_filtered (")");
3845
3846 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3847 TYPE_N_BASECLASSES (type));
3848 puts_filtered ("\n");
3849 }
3850 if (TYPE_NFIELDS (type) > 0)
3851 {
3852 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3853 {
7ba81444
MS
3854 printfi_filtered (spaces,
3855 "private_field_bits (%d bits at *",
c906108c 3856 TYPE_NFIELDS (type));
7ba81444
MS
3857 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3858 gdb_stdout);
c906108c
SS
3859 printf_filtered (")");
3860 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3861 TYPE_NFIELDS (type));
3862 puts_filtered ("\n");
3863 }
3864 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3865 {
7ba81444
MS
3866 printfi_filtered (spaces,
3867 "protected_field_bits (%d bits at *",
c906108c 3868 TYPE_NFIELDS (type));
7ba81444
MS
3869 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3870 gdb_stdout);
c906108c
SS
3871 printf_filtered (")");
3872 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3873 TYPE_NFIELDS (type));
3874 puts_filtered ("\n");
3875 }
3876 }
3877 if (TYPE_NFN_FIELDS (type) > 0)
3878 {
3879 dump_fn_fieldlists (type, spaces);
3880 }
3881}
3882
b4ba55a1
JB
3883/* Print the contents of the TYPE's type_specific union, assuming that
3884 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3885
3886static void
3887print_gnat_stuff (struct type *type, int spaces)
3888{
3889 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3890
3891 recursive_dump_type (descriptive_type, spaces + 2);
3892}
3893
c906108c
SS
3894static struct obstack dont_print_type_obstack;
3895
3896void
fba45db2 3897recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3898{
3899 int idx;
3900
3901 if (spaces == 0)
3902 obstack_begin (&dont_print_type_obstack, 0);
3903
3904 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3905 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3906 {
3907 struct type **first_dont_print
7ba81444 3908 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3909
7ba81444
MS
3910 int i = (struct type **)
3911 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3912
3913 while (--i >= 0)
3914 {
3915 if (type == first_dont_print[i])
3916 {
3917 printfi_filtered (spaces, "type node ");
d4f3574e 3918 gdb_print_host_address (type, gdb_stdout);
a3f17187 3919 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3920 return;
3921 }
3922 }
3923
3924 obstack_ptr_grow (&dont_print_type_obstack, type);
3925 }
3926
3927 printfi_filtered (spaces, "type node ");
d4f3574e 3928 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3929 printf_filtered ("\n");
3930 printfi_filtered (spaces, "name '%s' (",
3931 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3932 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3933 printf_filtered (")\n");
e9e79dd9
FF
3934 printfi_filtered (spaces, "tagname '%s' (",
3935 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3936 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3937 printf_filtered (")\n");
c906108c
SS
3938 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3939 switch (TYPE_CODE (type))
3940 {
c5aa993b
JM
3941 case TYPE_CODE_UNDEF:
3942 printf_filtered ("(TYPE_CODE_UNDEF)");
3943 break;
3944 case TYPE_CODE_PTR:
3945 printf_filtered ("(TYPE_CODE_PTR)");
3946 break;
3947 case TYPE_CODE_ARRAY:
3948 printf_filtered ("(TYPE_CODE_ARRAY)");
3949 break;
3950 case TYPE_CODE_STRUCT:
3951 printf_filtered ("(TYPE_CODE_STRUCT)");
3952 break;
3953 case TYPE_CODE_UNION:
3954 printf_filtered ("(TYPE_CODE_UNION)");
3955 break;
3956 case TYPE_CODE_ENUM:
3957 printf_filtered ("(TYPE_CODE_ENUM)");
3958 break;
4f2aea11
MK
3959 case TYPE_CODE_FLAGS:
3960 printf_filtered ("(TYPE_CODE_FLAGS)");
3961 break;
c5aa993b
JM
3962 case TYPE_CODE_FUNC:
3963 printf_filtered ("(TYPE_CODE_FUNC)");
3964 break;
3965 case TYPE_CODE_INT:
3966 printf_filtered ("(TYPE_CODE_INT)");
3967 break;
3968 case TYPE_CODE_FLT:
3969 printf_filtered ("(TYPE_CODE_FLT)");
3970 break;
3971 case TYPE_CODE_VOID:
3972 printf_filtered ("(TYPE_CODE_VOID)");
3973 break;
3974 case TYPE_CODE_SET:
3975 printf_filtered ("(TYPE_CODE_SET)");
3976 break;
3977 case TYPE_CODE_RANGE:
3978 printf_filtered ("(TYPE_CODE_RANGE)");
3979 break;
3980 case TYPE_CODE_STRING:
3981 printf_filtered ("(TYPE_CODE_STRING)");
3982 break;
3983 case TYPE_CODE_ERROR:
3984 printf_filtered ("(TYPE_CODE_ERROR)");
3985 break;
0d5de010
DJ
3986 case TYPE_CODE_MEMBERPTR:
3987 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3988 break;
3989 case TYPE_CODE_METHODPTR:
3990 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3991 break;
3992 case TYPE_CODE_METHOD:
3993 printf_filtered ("(TYPE_CODE_METHOD)");
3994 break;
3995 case TYPE_CODE_REF:
3996 printf_filtered ("(TYPE_CODE_REF)");
3997 break;
3998 case TYPE_CODE_CHAR:
3999 printf_filtered ("(TYPE_CODE_CHAR)");
4000 break;
4001 case TYPE_CODE_BOOL:
4002 printf_filtered ("(TYPE_CODE_BOOL)");
4003 break;
e9e79dd9
FF
4004 case TYPE_CODE_COMPLEX:
4005 printf_filtered ("(TYPE_CODE_COMPLEX)");
4006 break;
c5aa993b
JM
4007 case TYPE_CODE_TYPEDEF:
4008 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4009 break;
5c4e30ca
DC
4010 case TYPE_CODE_NAMESPACE:
4011 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4012 break;
c5aa993b
JM
4013 default:
4014 printf_filtered ("(UNKNOWN TYPE CODE)");
4015 break;
c906108c
SS
4016 }
4017 puts_filtered ("\n");
4018 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4019 if (TYPE_OBJFILE_OWNED (type))
4020 {
4021 printfi_filtered (spaces, "objfile ");
4022 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4023 }
4024 else
4025 {
4026 printfi_filtered (spaces, "gdbarch ");
4027 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4028 }
c906108c
SS
4029 printf_filtered ("\n");
4030 printfi_filtered (spaces, "target_type ");
d4f3574e 4031 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4032 printf_filtered ("\n");
4033 if (TYPE_TARGET_TYPE (type) != NULL)
4034 {
4035 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4036 }
4037 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4038 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4039 printf_filtered ("\n");
4040 printfi_filtered (spaces, "reference_type ");
d4f3574e 4041 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4042 printf_filtered ("\n");
2fdde8f8
DJ
4043 printfi_filtered (spaces, "type_chain ");
4044 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4045 printf_filtered ("\n");
7ba81444
MS
4046 printfi_filtered (spaces, "instance_flags 0x%x",
4047 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4048 if (TYPE_CONST (type))
4049 {
4050 puts_filtered (" TYPE_FLAG_CONST");
4051 }
4052 if (TYPE_VOLATILE (type))
4053 {
4054 puts_filtered (" TYPE_FLAG_VOLATILE");
4055 }
4056 if (TYPE_CODE_SPACE (type))
4057 {
4058 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4059 }
4060 if (TYPE_DATA_SPACE (type))
4061 {
4062 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4063 }
8b2dbe47
KB
4064 if (TYPE_ADDRESS_CLASS_1 (type))
4065 {
4066 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4067 }
4068 if (TYPE_ADDRESS_CLASS_2 (type))
4069 {
4070 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4071 }
06d66ee9
TT
4072 if (TYPE_RESTRICT (type))
4073 {
4074 puts_filtered (" TYPE_FLAG_RESTRICT");
4075 }
a2c2acaf
MW
4076 if (TYPE_ATOMIC (type))
4077 {
4078 puts_filtered (" TYPE_FLAG_ATOMIC");
4079 }
2fdde8f8 4080 puts_filtered ("\n");
876cecd0
TT
4081
4082 printfi_filtered (spaces, "flags");
762a036f 4083 if (TYPE_UNSIGNED (type))
c906108c
SS
4084 {
4085 puts_filtered (" TYPE_FLAG_UNSIGNED");
4086 }
762a036f
FF
4087 if (TYPE_NOSIGN (type))
4088 {
4089 puts_filtered (" TYPE_FLAG_NOSIGN");
4090 }
4091 if (TYPE_STUB (type))
c906108c
SS
4092 {
4093 puts_filtered (" TYPE_FLAG_STUB");
4094 }
762a036f
FF
4095 if (TYPE_TARGET_STUB (type))
4096 {
4097 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4098 }
4099 if (TYPE_STATIC (type))
4100 {
4101 puts_filtered (" TYPE_FLAG_STATIC");
4102 }
762a036f
FF
4103 if (TYPE_PROTOTYPED (type))
4104 {
4105 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4106 }
4107 if (TYPE_INCOMPLETE (type))
4108 {
4109 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4110 }
762a036f
FF
4111 if (TYPE_VARARGS (type))
4112 {
4113 puts_filtered (" TYPE_FLAG_VARARGS");
4114 }
f5f8a009
EZ
4115 /* This is used for things like AltiVec registers on ppc. Gcc emits
4116 an attribute for the array type, which tells whether or not we
4117 have a vector, instead of a regular array. */
4118 if (TYPE_VECTOR (type))
4119 {
4120 puts_filtered (" TYPE_FLAG_VECTOR");
4121 }
876cecd0
TT
4122 if (TYPE_FIXED_INSTANCE (type))
4123 {
4124 puts_filtered (" TYPE_FIXED_INSTANCE");
4125 }
4126 if (TYPE_STUB_SUPPORTED (type))
4127 {
4128 puts_filtered (" TYPE_STUB_SUPPORTED");
4129 }
4130 if (TYPE_NOTTEXT (type))
4131 {
4132 puts_filtered (" TYPE_NOTTEXT");
4133 }
c906108c
SS
4134 puts_filtered ("\n");
4135 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4136 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4137 puts_filtered ("\n");
4138 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4139 {
14e75d8e
JK
4140 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4141 printfi_filtered (spaces + 2,
4142 "[%d] enumval %s type ",
4143 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4144 else
4145 printfi_filtered (spaces + 2,
4146 "[%d] bitpos %d bitsize %d type ",
4147 idx, TYPE_FIELD_BITPOS (type, idx),
4148 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4149 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4150 printf_filtered (" name '%s' (",
4151 TYPE_FIELD_NAME (type, idx) != NULL
4152 ? TYPE_FIELD_NAME (type, idx)
4153 : "<NULL>");
d4f3574e 4154 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4155 printf_filtered (")\n");
4156 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4157 {
4158 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4159 }
4160 }
43bbcdc2
PH
4161 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4162 {
4163 printfi_filtered (spaces, "low %s%s high %s%s\n",
4164 plongest (TYPE_LOW_BOUND (type)),
4165 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4166 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4167 TYPE_HIGH_BOUND_UNDEFINED (type)
4168 ? " (undefined)" : "");
43bbcdc2 4169 }
c906108c 4170
b4ba55a1
JB
4171 switch (TYPE_SPECIFIC_FIELD (type))
4172 {
4173 case TYPE_SPECIFIC_CPLUS_STUFF:
4174 printfi_filtered (spaces, "cplus_stuff ");
4175 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4176 gdb_stdout);
4177 puts_filtered ("\n");
4178 print_cplus_stuff (type, spaces);
4179 break;
8da61cc4 4180
b4ba55a1
JB
4181 case TYPE_SPECIFIC_GNAT_STUFF:
4182 printfi_filtered (spaces, "gnat_stuff ");
4183 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4184 puts_filtered ("\n");
4185 print_gnat_stuff (type, spaces);
4186 break;
701c159d 4187
b4ba55a1
JB
4188 case TYPE_SPECIFIC_FLOATFORMAT:
4189 printfi_filtered (spaces, "floatformat ");
4190 if (TYPE_FLOATFORMAT (type) == NULL)
4191 puts_filtered ("(null)");
4192 else
4193 {
4194 puts_filtered ("{ ");
4195 if (TYPE_FLOATFORMAT (type)[0] == NULL
4196 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4197 puts_filtered ("(null)");
4198 else
4199 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4200
4201 puts_filtered (", ");
4202 if (TYPE_FLOATFORMAT (type)[1] == NULL
4203 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4204 puts_filtered ("(null)");
4205 else
4206 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4207
4208 puts_filtered (" }");
4209 }
4210 puts_filtered ("\n");
4211 break;
c906108c 4212
b6cdc2c1 4213 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4214 printfi_filtered (spaces, "calling_convention %d\n",
4215 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4216 /* tail_call_list is not printed. */
b4ba55a1 4217 break;
09e2d7c7
DE
4218
4219 case TYPE_SPECIFIC_SELF_TYPE:
4220 printfi_filtered (spaces, "self_type ");
4221 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4222 puts_filtered ("\n");
4223 break;
c906108c 4224 }
b4ba55a1 4225
c906108c
SS
4226 if (spaces == 0)
4227 obstack_free (&dont_print_type_obstack, NULL);
4228}
5212577a 4229\f
ae5a43e0
DJ
4230/* Trivial helpers for the libiberty hash table, for mapping one
4231 type to another. */
4232
4233struct type_pair
4234{
fe978cb0 4235 struct type *old, *newobj;
ae5a43e0
DJ
4236};
4237
4238static hashval_t
4239type_pair_hash (const void *item)
4240{
4241 const struct type_pair *pair = item;
d8734c88 4242
ae5a43e0
DJ
4243 return htab_hash_pointer (pair->old);
4244}
4245
4246static int
4247type_pair_eq (const void *item_lhs, const void *item_rhs)
4248{
4249 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4250
ae5a43e0
DJ
4251 return lhs->old == rhs->old;
4252}
4253
4254/* Allocate the hash table used by copy_type_recursive to walk
4255 types without duplicates. We use OBJFILE's obstack, because
4256 OBJFILE is about to be deleted. */
4257
4258htab_t
4259create_copied_types_hash (struct objfile *objfile)
4260{
4261 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4262 NULL, &objfile->objfile_obstack,
4263 hashtab_obstack_allocate,
4264 dummy_obstack_deallocate);
4265}
4266
d9823cbb
KB
4267/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4268
4269static struct dynamic_prop_list *
4270copy_dynamic_prop_list (struct obstack *objfile_obstack,
4271 struct dynamic_prop_list *list)
4272{
4273 struct dynamic_prop_list *copy = list;
4274 struct dynamic_prop_list **node_ptr = &copy;
4275
4276 while (*node_ptr != NULL)
4277 {
4278 struct dynamic_prop_list *node_copy;
4279
4280 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4281 sizeof (struct dynamic_prop_list));
4282 node_copy->prop = obstack_copy (objfile_obstack, (*node_ptr)->prop,
4283 sizeof (struct dynamic_prop));
4284 *node_ptr = node_copy;
4285
4286 node_ptr = &node_copy->next;
4287 }
4288
4289 return copy;
4290}
4291
7ba81444
MS
4292/* Recursively copy (deep copy) TYPE, if it is associated with
4293 OBJFILE. Return a new type allocated using malloc, a saved type if
4294 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4295 not associated with OBJFILE. */
ae5a43e0
DJ
4296
4297struct type *
7ba81444
MS
4298copy_type_recursive (struct objfile *objfile,
4299 struct type *type,
ae5a43e0
DJ
4300 htab_t copied_types)
4301{
4302 struct type_pair *stored, pair;
4303 void **slot;
4304 struct type *new_type;
4305
e9bb382b 4306 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4307 return type;
4308
7ba81444
MS
4309 /* This type shouldn't be pointing to any types in other objfiles;
4310 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4311 gdb_assert (TYPE_OBJFILE (type) == objfile);
4312
4313 pair.old = type;
4314 slot = htab_find_slot (copied_types, &pair, INSERT);
4315 if (*slot != NULL)
fe978cb0 4316 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4317
e9bb382b 4318 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4319
4320 /* We must add the new type to the hash table immediately, in case
4321 we encounter this type again during a recursive call below. */
3e43a32a
MS
4322 stored
4323 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0 4324 stored->old = type;
fe978cb0 4325 stored->newobj = new_type;
ae5a43e0
DJ
4326 *slot = stored;
4327
876cecd0
TT
4328 /* Copy the common fields of types. For the main type, we simply
4329 copy the entire thing and then update specific fields as needed. */
4330 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4331 TYPE_OBJFILE_OWNED (new_type) = 0;
4332 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4333
ae5a43e0
DJ
4334 if (TYPE_NAME (type))
4335 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4336 if (TYPE_TAG_NAME (type))
4337 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4338
4339 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4340 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4341
4342 /* Copy the fields. */
ae5a43e0
DJ
4343 if (TYPE_NFIELDS (type))
4344 {
4345 int i, nfields;
4346
4347 nfields = TYPE_NFIELDS (type);
fc270c35 4348 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4349 for (i = 0; i < nfields; i++)
4350 {
7ba81444
MS
4351 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4352 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4353 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4354 if (TYPE_FIELD_TYPE (type, i))
4355 TYPE_FIELD_TYPE (new_type, i)
4356 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4357 copied_types);
4358 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4359 TYPE_FIELD_NAME (new_type, i) =
4360 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4361 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4362 {
d6a843b5
JK
4363 case FIELD_LOC_KIND_BITPOS:
4364 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4365 TYPE_FIELD_BITPOS (type, i));
4366 break;
14e75d8e
JK
4367 case FIELD_LOC_KIND_ENUMVAL:
4368 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4369 TYPE_FIELD_ENUMVAL (type, i));
4370 break;
d6a843b5
JK
4371 case FIELD_LOC_KIND_PHYSADDR:
4372 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4373 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4374 break;
4375 case FIELD_LOC_KIND_PHYSNAME:
4376 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4377 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4378 i)));
4379 break;
4380 default:
4381 internal_error (__FILE__, __LINE__,
4382 _("Unexpected type field location kind: %d"),
4383 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4384 }
4385 }
4386 }
4387
0963b4bd 4388 /* For range types, copy the bounds information. */
43bbcdc2
PH
4389 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4390 {
4391 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4392 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4393 }
4394
d9823cbb
KB
4395 if (TYPE_DYN_PROP_LIST (type) != NULL)
4396 TYPE_DYN_PROP_LIST (new_type)
4397 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4398 TYPE_DYN_PROP_LIST (type));
4399
3cdcd0ce 4400
ae5a43e0
DJ
4401 /* Copy pointers to other types. */
4402 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4403 TYPE_TARGET_TYPE (new_type) =
4404 copy_type_recursive (objfile,
4405 TYPE_TARGET_TYPE (type),
4406 copied_types);
f6b3afbf 4407
ae5a43e0
DJ
4408 /* Maybe copy the type_specific bits.
4409
4410 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4411 base classes and methods. There's no fundamental reason why we
4412 can't, but at the moment it is not needed. */
4413
f6b3afbf
DE
4414 switch (TYPE_SPECIFIC_FIELD (type))
4415 {
4416 case TYPE_SPECIFIC_NONE:
4417 break;
4418 case TYPE_SPECIFIC_FUNC:
4419 INIT_FUNC_SPECIFIC (new_type);
4420 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4421 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4422 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4423 break;
4424 case TYPE_SPECIFIC_FLOATFORMAT:
4425 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4426 break;
4427 case TYPE_SPECIFIC_CPLUS_STUFF:
4428 INIT_CPLUS_SPECIFIC (new_type);
4429 break;
4430 case TYPE_SPECIFIC_GNAT_STUFF:
4431 INIT_GNAT_SPECIFIC (new_type);
4432 break;
09e2d7c7
DE
4433 case TYPE_SPECIFIC_SELF_TYPE:
4434 set_type_self_type (new_type,
4435 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4436 copied_types));
4437 break;
f6b3afbf
DE
4438 default:
4439 gdb_assert_not_reached ("bad type_specific_kind");
4440 }
ae5a43e0
DJ
4441
4442 return new_type;
4443}
4444
4af88198
JB
4445/* Make a copy of the given TYPE, except that the pointer & reference
4446 types are not preserved.
4447
4448 This function assumes that the given type has an associated objfile.
4449 This objfile is used to allocate the new type. */
4450
4451struct type *
4452copy_type (const struct type *type)
4453{
4454 struct type *new_type;
4455
e9bb382b 4456 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4457
e9bb382b 4458 new_type = alloc_type_copy (type);
4af88198
JB
4459 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4460 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4461 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4462 sizeof (struct main_type));
d9823cbb
KB
4463 if (TYPE_DYN_PROP_LIST (type) != NULL)
4464 TYPE_DYN_PROP_LIST (new_type)
4465 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4466 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4467
4468 return new_type;
4469}
5212577a 4470\f
e9bb382b
UW
4471/* Helper functions to initialize architecture-specific types. */
4472
4473/* Allocate a type structure associated with GDBARCH and set its
4474 CODE, LENGTH, and NAME fields. */
5212577a 4475
e9bb382b
UW
4476struct type *
4477arch_type (struct gdbarch *gdbarch,
4478 enum type_code code, int length, char *name)
4479{
4480 struct type *type;
4481
4482 type = alloc_type_arch (gdbarch);
4483 TYPE_CODE (type) = code;
4484 TYPE_LENGTH (type) = length;
4485
4486 if (name)
4487 TYPE_NAME (type) = xstrdup (name);
4488
4489 return type;
4490}
4491
4492/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4493 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4494 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4495
e9bb382b
UW
4496struct type *
4497arch_integer_type (struct gdbarch *gdbarch,
4498 int bit, int unsigned_p, char *name)
4499{
4500 struct type *t;
4501
4502 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4503 if (unsigned_p)
4504 TYPE_UNSIGNED (t) = 1;
4505 if (name && strcmp (name, "char") == 0)
4506 TYPE_NOSIGN (t) = 1;
4507
4508 return t;
4509}
4510
4511/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4512 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4513 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4514
e9bb382b
UW
4515struct type *
4516arch_character_type (struct gdbarch *gdbarch,
4517 int bit, int unsigned_p, char *name)
4518{
4519 struct type *t;
4520
4521 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4522 if (unsigned_p)
4523 TYPE_UNSIGNED (t) = 1;
4524
4525 return t;
4526}
4527
4528/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4529 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4530 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4531
e9bb382b
UW
4532struct type *
4533arch_boolean_type (struct gdbarch *gdbarch,
4534 int bit, int unsigned_p, char *name)
4535{
4536 struct type *t;
4537
4538 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4539 if (unsigned_p)
4540 TYPE_UNSIGNED (t) = 1;
4541
4542 return t;
4543}
4544
4545/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4546 BIT is the type size in bits; if BIT equals -1, the size is
4547 determined by the floatformat. NAME is the type name. Set the
4548 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4549
27067745 4550struct type *
e9bb382b
UW
4551arch_float_type (struct gdbarch *gdbarch,
4552 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4553{
4554 struct type *t;
4555
4556 if (bit == -1)
4557 {
4558 gdb_assert (floatformats != NULL);
4559 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4560 bit = floatformats[0]->totalsize;
4561 }
4562 gdb_assert (bit >= 0);
4563
e9bb382b 4564 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4565 TYPE_FLOATFORMAT (t) = floatformats;
4566 return t;
4567}
4568
e9bb382b
UW
4569/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4570 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4571
27067745 4572struct type *
e9bb382b
UW
4573arch_complex_type (struct gdbarch *gdbarch,
4574 char *name, struct type *target_type)
27067745
UW
4575{
4576 struct type *t;
d8734c88 4577
e9bb382b
UW
4578 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4579 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4580 TYPE_TARGET_TYPE (t) = target_type;
4581 return t;
4582}
4583
e9bb382b 4584/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4585 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4586
e9bb382b
UW
4587struct type *
4588arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4589{
4590 int nfields = length * TARGET_CHAR_BIT;
4591 struct type *type;
4592
4593 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4594 TYPE_UNSIGNED (type) = 1;
4595 TYPE_NFIELDS (type) = nfields;
4596 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4597
4598 return type;
4599}
4600
4601/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4602 position BITPOS is called NAME. */
5212577a 4603
e9bb382b
UW
4604void
4605append_flags_type_flag (struct type *type, int bitpos, char *name)
4606{
4607 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4608 gdb_assert (bitpos < TYPE_NFIELDS (type));
4609 gdb_assert (bitpos >= 0);
4610
4611 if (name)
4612 {
4613 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4614 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4615 }
4616 else
4617 {
4618 /* Don't show this field to the user. */
945b3a32 4619 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4620 }
4621}
4622
4623/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4624 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4625
e9bb382b
UW
4626struct type *
4627arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4628{
4629 struct type *t;
d8734c88 4630
e9bb382b
UW
4631 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4632 t = arch_type (gdbarch, code, 0, NULL);
4633 TYPE_TAG_NAME (t) = name;
4634 INIT_CPLUS_SPECIFIC (t);
4635 return t;
4636}
4637
4638/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4639 Do not set the field's position or adjust the type's length;
4640 the caller should do so. Return the new field. */
5212577a 4641
f5dff777
DJ
4642struct field *
4643append_composite_type_field_raw (struct type *t, char *name,
4644 struct type *field)
e9bb382b
UW
4645{
4646 struct field *f;
d8734c88 4647
e9bb382b
UW
4648 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4649 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4650 sizeof (struct field) * TYPE_NFIELDS (t));
4651 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4652 memset (f, 0, sizeof f[0]);
4653 FIELD_TYPE (f[0]) = field;
4654 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4655 return f;
4656}
4657
4658/* Add new field with name NAME and type FIELD to composite type T.
4659 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4660
f5dff777
DJ
4661void
4662append_composite_type_field_aligned (struct type *t, char *name,
4663 struct type *field, int alignment)
4664{
4665 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4666
e9bb382b
UW
4667 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4668 {
4669 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4670 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4671 }
4672 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4673 {
4674 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4675 if (TYPE_NFIELDS (t) > 1)
4676 {
f41f5e61
PA
4677 SET_FIELD_BITPOS (f[0],
4678 (FIELD_BITPOS (f[-1])
4679 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4680 * TARGET_CHAR_BIT)));
e9bb382b
UW
4681
4682 if (alignment)
4683 {
86c3c1fc
AB
4684 int left;
4685
4686 alignment *= TARGET_CHAR_BIT;
4687 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4688
e9bb382b
UW
4689 if (left)
4690 {
f41f5e61 4691 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4692 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4693 }
4694 }
4695 }
4696 }
4697}
4698
4699/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4700
e9bb382b
UW
4701void
4702append_composite_type_field (struct type *t, char *name,
4703 struct type *field)
4704{
4705 append_composite_type_field_aligned (t, name, field, 0);
4706}
4707
000177f0
AC
4708static struct gdbarch_data *gdbtypes_data;
4709
4710const struct builtin_type *
4711builtin_type (struct gdbarch *gdbarch)
4712{
4713 return gdbarch_data (gdbarch, gdbtypes_data);
4714}
4715
4716static void *
4717gdbtypes_post_init (struct gdbarch *gdbarch)
4718{
4719 struct builtin_type *builtin_type
4720 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4721
46bf5051 4722 /* Basic types. */
e9bb382b
UW
4723 builtin_type->builtin_void
4724 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4725 builtin_type->builtin_char
4726 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4727 !gdbarch_char_signed (gdbarch), "char");
4728 builtin_type->builtin_signed_char
4729 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4730 0, "signed char");
4731 builtin_type->builtin_unsigned_char
4732 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4733 1, "unsigned char");
4734 builtin_type->builtin_short
4735 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4736 0, "short");
4737 builtin_type->builtin_unsigned_short
4738 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4739 1, "unsigned short");
4740 builtin_type->builtin_int
4741 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4742 0, "int");
4743 builtin_type->builtin_unsigned_int
4744 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4745 1, "unsigned int");
4746 builtin_type->builtin_long
4747 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4748 0, "long");
4749 builtin_type->builtin_unsigned_long
4750 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4751 1, "unsigned long");
4752 builtin_type->builtin_long_long
4753 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4754 0, "long long");
4755 builtin_type->builtin_unsigned_long_long
4756 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4757 1, "unsigned long long");
70bd8e24 4758 builtin_type->builtin_float
e9bb382b 4759 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4760 "float", gdbarch_float_format (gdbarch));
70bd8e24 4761 builtin_type->builtin_double
e9bb382b 4762 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4763 "double", gdbarch_double_format (gdbarch));
70bd8e24 4764 builtin_type->builtin_long_double
e9bb382b 4765 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4766 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4767 builtin_type->builtin_complex
e9bb382b
UW
4768 = arch_complex_type (gdbarch, "complex",
4769 builtin_type->builtin_float);
70bd8e24 4770 builtin_type->builtin_double_complex
e9bb382b
UW
4771 = arch_complex_type (gdbarch, "double complex",
4772 builtin_type->builtin_double);
4773 builtin_type->builtin_string
4774 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4775 builtin_type->builtin_bool
4776 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4777
7678ef8f
TJB
4778 /* The following three are about decimal floating point types, which
4779 are 32-bits, 64-bits and 128-bits respectively. */
4780 builtin_type->builtin_decfloat
e9bb382b 4781 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4782 builtin_type->builtin_decdouble
e9bb382b 4783 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4784 builtin_type->builtin_declong
e9bb382b 4785 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4786
69feb676 4787 /* "True" character types. */
e9bb382b
UW
4788 builtin_type->builtin_true_char
4789 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4790 builtin_type->builtin_true_unsigned_char
4791 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4792
df4df182 4793 /* Fixed-size integer types. */
e9bb382b
UW
4794 builtin_type->builtin_int0
4795 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4796 builtin_type->builtin_int8
4797 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4798 builtin_type->builtin_uint8
4799 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4800 builtin_type->builtin_int16
4801 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4802 builtin_type->builtin_uint16
4803 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4804 builtin_type->builtin_int32
4805 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4806 builtin_type->builtin_uint32
4807 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4808 builtin_type->builtin_int64
4809 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4810 builtin_type->builtin_uint64
4811 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4812 builtin_type->builtin_int128
4813 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4814 builtin_type->builtin_uint128
4815 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4816 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4817 TYPE_INSTANCE_FLAG_NOTTEXT;
4818 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4819 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4820
9a22f0d0
PM
4821 /* Wide character types. */
4822 builtin_type->builtin_char16
4823 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4824 builtin_type->builtin_char32
4825 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4826
4827
46bf5051 4828 /* Default data/code pointer types. */
e9bb382b
UW
4829 builtin_type->builtin_data_ptr
4830 = lookup_pointer_type (builtin_type->builtin_void);
4831 builtin_type->builtin_func_ptr
4832 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4833 builtin_type->builtin_func_func
4834 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4835
78267919 4836 /* This type represents a GDB internal function. */
e9bb382b
UW
4837 builtin_type->internal_fn
4838 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4839 "<internal function>");
78267919 4840
e81e7f5e
SC
4841 /* This type represents an xmethod. */
4842 builtin_type->xmethod
4843 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4844
46bf5051
UW
4845 return builtin_type;
4846}
4847
46bf5051
UW
4848/* This set of objfile-based types is intended to be used by symbol
4849 readers as basic types. */
4850
4851static const struct objfile_data *objfile_type_data;
4852
4853const struct objfile_type *
4854objfile_type (struct objfile *objfile)
4855{
4856 struct gdbarch *gdbarch;
4857 struct objfile_type *objfile_type
4858 = objfile_data (objfile, objfile_type_data);
4859
4860 if (objfile_type)
4861 return objfile_type;
4862
4863 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4864 1, struct objfile_type);
4865
4866 /* Use the objfile architecture to determine basic type properties. */
4867 gdbarch = get_objfile_arch (objfile);
4868
4869 /* Basic types. */
4870 objfile_type->builtin_void
4871 = init_type (TYPE_CODE_VOID, 1,
4872 0,
4873 "void", objfile);
4874
4875 objfile_type->builtin_char
4876 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4877 (TYPE_FLAG_NOSIGN
4878 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4879 "char", objfile);
4880 objfile_type->builtin_signed_char
4881 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4882 0,
4883 "signed char", objfile);
4884 objfile_type->builtin_unsigned_char
4885 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4886 TYPE_FLAG_UNSIGNED,
4887 "unsigned char", objfile);
4888 objfile_type->builtin_short
4889 = init_type (TYPE_CODE_INT,
4890 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4891 0, "short", objfile);
4892 objfile_type->builtin_unsigned_short
4893 = init_type (TYPE_CODE_INT,
4894 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4895 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4896 objfile_type->builtin_int
4897 = init_type (TYPE_CODE_INT,
4898 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4899 0, "int", objfile);
4900 objfile_type->builtin_unsigned_int
4901 = init_type (TYPE_CODE_INT,
4902 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4903 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4904 objfile_type->builtin_long
4905 = init_type (TYPE_CODE_INT,
4906 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4907 0, "long", objfile);
4908 objfile_type->builtin_unsigned_long
4909 = init_type (TYPE_CODE_INT,
4910 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4911 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4912 objfile_type->builtin_long_long
4913 = init_type (TYPE_CODE_INT,
4914 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4915 0, "long long", objfile);
4916 objfile_type->builtin_unsigned_long_long
4917 = init_type (TYPE_CODE_INT,
4918 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4919 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4920
4921 objfile_type->builtin_float
4922 = init_type (TYPE_CODE_FLT,
4923 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4924 0, "float", objfile);
4925 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4926 = gdbarch_float_format (gdbarch);
4927 objfile_type->builtin_double
4928 = init_type (TYPE_CODE_FLT,
4929 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4930 0, "double", objfile);
4931 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4932 = gdbarch_double_format (gdbarch);
4933 objfile_type->builtin_long_double
4934 = init_type (TYPE_CODE_FLT,
4935 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4936 0, "long double", objfile);
4937 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4938 = gdbarch_long_double_format (gdbarch);
4939
4940 /* This type represents a type that was unrecognized in symbol read-in. */
4941 objfile_type->builtin_error
4942 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4943
4944 /* The following set of types is used for symbols with no
4945 debug information. */
4946 objfile_type->nodebug_text_symbol
4947 = init_type (TYPE_CODE_FUNC, 1, 0,
4948 "<text variable, no debug info>", objfile);
4949 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4950 = objfile_type->builtin_int;
0875794a
JK
4951 objfile_type->nodebug_text_gnu_ifunc_symbol
4952 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4953 "<text gnu-indirect-function variable, no debug info>",
4954 objfile);
4955 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4956 = objfile_type->nodebug_text_symbol;
4957 objfile_type->nodebug_got_plt_symbol
4958 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4959 "<text from jump slot in .got.plt, no debug info>",
4960 objfile);
4961 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4962 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4963 objfile_type->nodebug_data_symbol
4964 = init_type (TYPE_CODE_INT,
4965 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4966 "<data variable, no debug info>", objfile);
4967 objfile_type->nodebug_unknown_symbol
4968 = init_type (TYPE_CODE_INT, 1, 0,
4969 "<variable (not text or data), no debug info>", objfile);
4970 objfile_type->nodebug_tls_symbol
4971 = init_type (TYPE_CODE_INT,
4972 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4973 "<thread local variable, no debug info>", objfile);
000177f0
AC
4974
4975 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4976 the same.
000177f0
AC
4977
4978 The upshot is:
4979 - gdb's `struct type' always describes the target's
4980 representation.
4981 - gdb's `struct value' objects should always hold values in
4982 target form.
4983 - gdb's CORE_ADDR values are addresses in the unified virtual
4984 address space that the assembler and linker work with. Thus,
4985 since target_read_memory takes a CORE_ADDR as an argument, it
4986 can access any memory on the target, even if the processor has
4987 separate code and data address spaces.
4988
46bf5051
UW
4989 In this context, objfile_type->builtin_core_addr is a bit odd:
4990 it's a target type for a value the target will never see. It's
4991 only used to hold the values of (typeless) linker symbols, which
4992 are indeed in the unified virtual address space. */
000177f0 4993
46bf5051
UW
4994 objfile_type->builtin_core_addr
4995 = init_type (TYPE_CODE_INT,
4996 gdbarch_addr_bit (gdbarch) / 8,
4997 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4998
46bf5051
UW
4999 set_objfile_data (objfile, objfile_type_data, objfile_type);
5000 return objfile_type;
000177f0
AC
5001}
5002
5212577a 5003extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 5004
c906108c 5005void
fba45db2 5006_initialize_gdbtypes (void)
c906108c 5007{
5674de60 5008 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5009 objfile_type_data = register_objfile_data ();
5674de60 5010
ccce17b0
YQ
5011 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5012 _("Set debugging of C++ overloading."),
5013 _("Show debugging of C++ overloading."),
5014 _("When enabled, ranking of the "
5015 "functions is displayed."),
5016 NULL,
5017 show_overload_debug,
5018 &setdebuglist, &showdebuglist);
5674de60 5019
7ba81444 5020 /* Add user knob for controlling resolution of opaque types. */
5674de60 5021 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5022 &opaque_type_resolution,
5023 _("Set resolution of opaque struct/class/union"
5024 " types (if set before loading symbols)."),
5025 _("Show resolution of opaque struct/class/union"
5026 " types (if set before loading symbols)."),
5027 NULL, NULL,
5674de60
UW
5028 show_opaque_type_resolution,
5029 &setlist, &showlist);
a451cb65
KS
5030
5031 /* Add an option to permit non-strict type checking. */
5032 add_setshow_boolean_cmd ("type", class_support,
5033 &strict_type_checking,
5034 _("Set strict type checking."),
5035 _("Show strict type checking."),
5036 NULL, NULL,
5037 show_strict_type_checking,
5038 &setchecklist, &showchecklist);
c906108c 5039}
This page took 2.214885 seconds and 4 git commands to generate.