* c-exp.y (DOTDOTDOT): New token.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
0b302171 3 Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
ac3aafc7 40
6403aeea
SW
41/* Initialize BADNESS constants. */
42
a9d5ef47 43const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 44
a9d5ef47
SW
45const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 47
a9d5ef47 48const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 49
a9d5ef47
SW
50const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
57const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
58const struct rank BASE_CONVERSION_BADNESS = {2,0};
59const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 60const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 61const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
6403aeea 62
8da61cc4 63/* Floatformat pairs. */
f9e9243a
UW
64const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
65 &floatformat_ieee_half_big,
66 &floatformat_ieee_half_little
67};
8da61cc4
DJ
68const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_single_big,
70 &floatformat_ieee_single_little
71};
72const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_double_big,
74 &floatformat_ieee_double_little
75};
76const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_littlebyte_bigword
79};
80const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_i387_ext,
82 &floatformat_i387_ext
83};
84const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_m68881_ext,
86 &floatformat_m68881_ext
87};
88const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_arm_ext_big,
90 &floatformat_arm_ext_littlebyte_bigword
91};
92const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_ia64_spill_big,
94 &floatformat_ia64_spill_little
95};
96const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_quad_big,
98 &floatformat_ia64_quad_little
99};
100const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_vax_f,
102 &floatformat_vax_f
103};
104const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_d,
106 &floatformat_vax_d
107};
b14d30e1
JM
108const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_ibm_long_double,
110 &floatformat_ibm_long_double
111};
8da61cc4 112
8da61cc4 113
c906108c 114int opaque_type_resolution = 1;
920d2a44
AC
115static void
116show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
117 struct cmd_list_element *c,
118 const char *value)
920d2a44 119{
3e43a32a
MS
120 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
121 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
122 value);
123}
124
5d161b24 125int overload_debug = 0;
920d2a44
AC
126static void
127show_overload_debug (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c, const char *value)
129{
7ba81444
MS
130 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
131 value);
920d2a44 132}
c906108c 133
c5aa993b
JM
134struct extra
135 {
136 char str[128];
137 int len;
7ba81444 138 }; /* Maximum extension is 128! FIXME */
c906108c 139
a14ed312 140static void print_bit_vector (B_TYPE *, int);
ad2f7632 141static void print_arg_types (struct field *, int, int);
a14ed312
KB
142static void dump_fn_fieldlists (struct type *, int);
143static void print_cplus_stuff (struct type *, int);
7a292a7a 144
c906108c 145
e9bb382b
UW
146/* Allocate a new OBJFILE-associated type structure and fill it
147 with some defaults. Space for the type structure is allocated
148 on the objfile's objfile_obstack. */
c906108c
SS
149
150struct type *
fba45db2 151alloc_type (struct objfile *objfile)
c906108c 152{
52f0bd74 153 struct type *type;
c906108c 154
e9bb382b
UW
155 gdb_assert (objfile != NULL);
156
7ba81444 157 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
158 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
159 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
160 struct main_type);
161 OBJSTAT (objfile, n_types++);
c906108c 162
e9bb382b
UW
163 TYPE_OBJFILE_OWNED (type) = 1;
164 TYPE_OWNER (type).objfile = objfile;
c906108c 165
7ba81444 166 /* Initialize the fields that might not be zero. */
c906108c
SS
167
168 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 169 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 170 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 171
c16abbde 172 return type;
c906108c
SS
173}
174
e9bb382b
UW
175/* Allocate a new GDBARCH-associated type structure and fill it
176 with some defaults. Space for the type structure is allocated
177 on the heap. */
178
179struct type *
180alloc_type_arch (struct gdbarch *gdbarch)
181{
182 struct type *type;
183
184 gdb_assert (gdbarch != NULL);
185
186 /* Alloc the structure and start off with all fields zeroed. */
187
188 type = XZALLOC (struct type);
189 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
190
191 TYPE_OBJFILE_OWNED (type) = 0;
192 TYPE_OWNER (type).gdbarch = gdbarch;
193
194 /* Initialize the fields that might not be zero. */
195
196 TYPE_CODE (type) = TYPE_CODE_UNDEF;
197 TYPE_VPTR_FIELDNO (type) = -1;
198 TYPE_CHAIN (type) = type; /* Chain back to itself. */
199
200 return type;
201}
202
203/* If TYPE is objfile-associated, allocate a new type structure
204 associated with the same objfile. If TYPE is gdbarch-associated,
205 allocate a new type structure associated with the same gdbarch. */
206
207struct type *
208alloc_type_copy (const struct type *type)
209{
210 if (TYPE_OBJFILE_OWNED (type))
211 return alloc_type (TYPE_OWNER (type).objfile);
212 else
213 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
214}
215
216/* If TYPE is gdbarch-associated, return that architecture.
217 If TYPE is objfile-associated, return that objfile's architecture. */
218
219struct gdbarch *
220get_type_arch (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return get_objfile_arch (TYPE_OWNER (type).objfile);
224 else
225 return TYPE_OWNER (type).gdbarch;
226}
227
228
2fdde8f8
DJ
229/* Alloc a new type instance structure, fill it with some defaults,
230 and point it at OLDTYPE. Allocate the new type instance from the
231 same place as OLDTYPE. */
232
233static struct type *
234alloc_type_instance (struct type *oldtype)
235{
236 struct type *type;
237
238 /* Allocate the structure. */
239
e9bb382b 240 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 241 type = XZALLOC (struct type);
2fdde8f8 242 else
1deafd4e
PA
243 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
244 struct type);
245
2fdde8f8
DJ
246 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
247
248 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
249
c16abbde 250 return type;
2fdde8f8
DJ
251}
252
253/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 254 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
255static void
256smash_type (struct type *type)
257{
e9bb382b
UW
258 int objfile_owned = TYPE_OBJFILE_OWNED (type);
259 union type_owner owner = TYPE_OWNER (type);
260
2fdde8f8
DJ
261 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
262
e9bb382b
UW
263 /* Restore owner information. */
264 TYPE_OBJFILE_OWNED (type) = objfile_owned;
265 TYPE_OWNER (type) = owner;
266
2fdde8f8
DJ
267 /* For now, delete the rings. */
268 TYPE_CHAIN (type) = type;
269
270 /* For now, leave the pointer/reference types alone. */
271}
272
c906108c
SS
273/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
274 to a pointer to memory where the pointer type should be stored.
275 If *TYPEPTR is zero, update it to point to the pointer type we return.
276 We allocate new memory if needed. */
277
278struct type *
fba45db2 279make_pointer_type (struct type *type, struct type **typeptr)
c906108c 280{
52f0bd74 281 struct type *ntype; /* New type */
053cb41b 282 struct type *chain;
c906108c
SS
283
284 ntype = TYPE_POINTER_TYPE (type);
285
c5aa993b 286 if (ntype)
c906108c 287 {
c5aa993b 288 if (typeptr == 0)
7ba81444
MS
289 return ntype; /* Don't care about alloc,
290 and have new type. */
c906108c 291 else if (*typeptr == 0)
c5aa993b 292 {
7ba81444 293 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 294 return ntype;
c5aa993b 295 }
c906108c
SS
296 }
297
298 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
299 {
e9bb382b 300 ntype = alloc_type_copy (type);
c906108c
SS
301 if (typeptr)
302 *typeptr = ntype;
303 }
7ba81444 304 else /* We have storage, but need to reset it. */
c906108c
SS
305 {
306 ntype = *typeptr;
053cb41b 307 chain = TYPE_CHAIN (ntype);
2fdde8f8 308 smash_type (ntype);
053cb41b 309 TYPE_CHAIN (ntype) = chain;
c906108c
SS
310 }
311
312 TYPE_TARGET_TYPE (ntype) = type;
313 TYPE_POINTER_TYPE (type) = ntype;
314
7ba81444
MS
315 /* FIXME! Assume the machine has only one representation for
316 pointers! */
c906108c 317
50810684
UW
318 TYPE_LENGTH (ntype)
319 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
320 TYPE_CODE (ntype) = TYPE_CODE_PTR;
321
67b2adb2 322 /* Mark pointers as unsigned. The target converts between pointers
76e71323 323 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 324 gdbarch_address_to_pointer. */
876cecd0 325 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 326
c906108c
SS
327 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
328 TYPE_POINTER_TYPE (type) = ntype;
329
053cb41b
JB
330 /* Update the length of all the other variants of this type. */
331 chain = TYPE_CHAIN (ntype);
332 while (chain != ntype)
333 {
334 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
335 chain = TYPE_CHAIN (chain);
336 }
337
c906108c
SS
338 return ntype;
339}
340
341/* Given a type TYPE, return a type of pointers to that type.
342 May need to construct such a type if this is the first use. */
343
344struct type *
fba45db2 345lookup_pointer_type (struct type *type)
c906108c 346{
c5aa993b 347 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
348}
349
7ba81444
MS
350/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
351 points to a pointer to memory where the reference type should be
352 stored. If *TYPEPTR is zero, update it to point to the reference
353 type we return. We allocate new memory if needed. */
c906108c
SS
354
355struct type *
fba45db2 356make_reference_type (struct type *type, struct type **typeptr)
c906108c 357{
52f0bd74 358 struct type *ntype; /* New type */
1e98b326 359 struct type *chain;
c906108c
SS
360
361 ntype = TYPE_REFERENCE_TYPE (type);
362
c5aa993b 363 if (ntype)
c906108c 364 {
c5aa993b 365 if (typeptr == 0)
7ba81444
MS
366 return ntype; /* Don't care about alloc,
367 and have new type. */
c906108c 368 else if (*typeptr == 0)
c5aa993b 369 {
7ba81444 370 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 371 return ntype;
c5aa993b 372 }
c906108c
SS
373 }
374
375 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
376 {
e9bb382b 377 ntype = alloc_type_copy (type);
c906108c
SS
378 if (typeptr)
379 *typeptr = ntype;
380 }
7ba81444 381 else /* We have storage, but need to reset it. */
c906108c
SS
382 {
383 ntype = *typeptr;
1e98b326 384 chain = TYPE_CHAIN (ntype);
2fdde8f8 385 smash_type (ntype);
1e98b326 386 TYPE_CHAIN (ntype) = chain;
c906108c
SS
387 }
388
389 TYPE_TARGET_TYPE (ntype) = type;
390 TYPE_REFERENCE_TYPE (type) = ntype;
391
7ba81444
MS
392 /* FIXME! Assume the machine has only one representation for
393 references, and that it matches the (only) representation for
394 pointers! */
c906108c 395
50810684
UW
396 TYPE_LENGTH (ntype) =
397 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 398 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 399
c906108c
SS
400 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
401 TYPE_REFERENCE_TYPE (type) = ntype;
402
1e98b326
JB
403 /* Update the length of all the other variants of this type. */
404 chain = TYPE_CHAIN (ntype);
405 while (chain != ntype)
406 {
407 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
408 chain = TYPE_CHAIN (chain);
409 }
410
c906108c
SS
411 return ntype;
412}
413
7ba81444
MS
414/* Same as above, but caller doesn't care about memory allocation
415 details. */
c906108c
SS
416
417struct type *
fba45db2 418lookup_reference_type (struct type *type)
c906108c 419{
c5aa993b 420 return make_reference_type (type, (struct type **) 0);
c906108c
SS
421}
422
7ba81444
MS
423/* Lookup a function type that returns type TYPE. TYPEPTR, if
424 nonzero, points to a pointer to memory where the function type
425 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 426 function type we return. We allocate new memory if needed. */
c906108c
SS
427
428struct type *
0c8b41f1 429make_function_type (struct type *type, struct type **typeptr)
c906108c 430{
52f0bd74 431 struct type *ntype; /* New type */
c906108c
SS
432
433 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
434 {
e9bb382b 435 ntype = alloc_type_copy (type);
c906108c
SS
436 if (typeptr)
437 *typeptr = ntype;
438 }
7ba81444 439 else /* We have storage, but need to reset it. */
c906108c
SS
440 {
441 ntype = *typeptr;
2fdde8f8 442 smash_type (ntype);
c906108c
SS
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446
447 TYPE_LENGTH (ntype) = 1;
448 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 449
b6cdc2c1
JK
450 INIT_FUNC_SPECIFIC (ntype);
451
c906108c
SS
452 return ntype;
453}
454
455
456/* Given a type TYPE, return a type of functions that return that type.
457 May need to construct such a type if this is the first use. */
458
459struct type *
fba45db2 460lookup_function_type (struct type *type)
c906108c 461{
0c8b41f1 462 return make_function_type (type, (struct type **) 0);
c906108c
SS
463}
464
71918a86 465/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
466 function type. If the final type in PARAM_TYPES is NULL, make a
467 varargs function. */
71918a86
TT
468
469struct type *
470lookup_function_type_with_arguments (struct type *type,
471 int nparams,
472 struct type **param_types)
473{
474 struct type *fn = make_function_type (type, (struct type **) 0);
475 int i;
476
a6fb9c08
TT
477 if (nparams > 0 && param_types[nparams - 1] == NULL)
478 {
479 --nparams;
480 TYPE_VARARGS (fn) = 1;
481 }
482
71918a86
TT
483 TYPE_NFIELDS (fn) = nparams;
484 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
485 for (i = 0; i < nparams; ++i)
486 TYPE_FIELD_TYPE (fn, i) = param_types[i];
487
488 return fn;
489}
490
47663de5
MS
491/* Identify address space identifier by name --
492 return the integer flag defined in gdbtypes.h. */
493extern int
50810684 494address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 495{
8b2dbe47 496 int type_flags;
d8734c88 497
7ba81444 498 /* Check for known address space delimiters. */
47663de5 499 if (!strcmp (space_identifier, "code"))
876cecd0 500 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 501 else if (!strcmp (space_identifier, "data"))
876cecd0 502 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
503 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
504 && gdbarch_address_class_name_to_type_flags (gdbarch,
505 space_identifier,
506 &type_flags))
8b2dbe47 507 return type_flags;
47663de5 508 else
8a3fe4f8 509 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
510}
511
512/* Identify address space identifier by integer flag as defined in
7ba81444 513 gdbtypes.h -- return the string version of the adress space name. */
47663de5 514
321432c0 515const char *
50810684 516address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 517{
876cecd0 518 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 519 return "code";
876cecd0 520 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 521 return "data";
876cecd0 522 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
523 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
524 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
525 else
526 return NULL;
527}
528
2fdde8f8 529/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
530
531 If STORAGE is non-NULL, create the new type instance there.
532 STORAGE must be in the same obstack as TYPE. */
47663de5 533
b9362cc7 534static struct type *
2fdde8f8
DJ
535make_qualified_type (struct type *type, int new_flags,
536 struct type *storage)
47663de5
MS
537{
538 struct type *ntype;
539
540 ntype = type;
5f61c20e
JK
541 do
542 {
543 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
544 return ntype;
545 ntype = TYPE_CHAIN (ntype);
546 }
547 while (ntype != type);
47663de5 548
2fdde8f8
DJ
549 /* Create a new type instance. */
550 if (storage == NULL)
551 ntype = alloc_type_instance (type);
552 else
553 {
7ba81444
MS
554 /* If STORAGE was provided, it had better be in the same objfile
555 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
556 if one objfile is freed and the other kept, we'd have
557 dangling pointers. */
ad766c0a
JB
558 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
559
2fdde8f8
DJ
560 ntype = storage;
561 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
562 TYPE_CHAIN (ntype) = ntype;
563 }
47663de5
MS
564
565 /* Pointers or references to the original type are not relevant to
2fdde8f8 566 the new type. */
47663de5
MS
567 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
568 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 569
2fdde8f8
DJ
570 /* Chain the new qualified type to the old type. */
571 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
572 TYPE_CHAIN (type) = ntype;
573
574 /* Now set the instance flags and return the new type. */
575 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 576
ab5d3da6
KB
577 /* Set length of new type to that of the original type. */
578 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
579
47663de5
MS
580 return ntype;
581}
582
2fdde8f8
DJ
583/* Make an address-space-delimited variant of a type -- a type that
584 is identical to the one supplied except that it has an address
585 space attribute attached to it (such as "code" or "data").
586
7ba81444
MS
587 The space attributes "code" and "data" are for Harvard
588 architectures. The address space attributes are for architectures
589 which have alternately sized pointers or pointers with alternate
590 representations. */
2fdde8f8
DJ
591
592struct type *
593make_type_with_address_space (struct type *type, int space_flag)
594{
2fdde8f8 595 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
596 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
597 | TYPE_INSTANCE_FLAG_DATA_SPACE
598 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
599 | space_flag);
600
601 return make_qualified_type (type, new_flags, NULL);
602}
c906108c
SS
603
604/* Make a "c-v" variant of a type -- a type that is identical to the
605 one supplied except that it may have const or volatile attributes
606 CNST is a flag for setting the const attribute
607 VOLTL is a flag for setting the volatile attribute
608 TYPE is the base type whose variant we are creating.
c906108c 609
ad766c0a
JB
610 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
611 storage to hold the new qualified type; *TYPEPTR and TYPE must be
612 in the same objfile. Otherwise, allocate fresh memory for the new
613 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
614 new type we construct. */
c906108c 615struct type *
7ba81444
MS
616make_cv_type (int cnst, int voltl,
617 struct type *type,
618 struct type **typeptr)
c906108c 619{
52f0bd74 620 struct type *ntype; /* New type */
c906108c 621
2fdde8f8 622 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
623 & ~(TYPE_INSTANCE_FLAG_CONST
624 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 625
c906108c 626 if (cnst)
876cecd0 627 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
628
629 if (voltl)
876cecd0 630 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 631
2fdde8f8 632 if (typeptr && *typeptr != NULL)
a02fd225 633 {
ad766c0a
JB
634 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
635 a C-V variant chain that threads across objfiles: if one
636 objfile gets freed, then the other has a broken C-V chain.
637
638 This code used to try to copy over the main type from TYPE to
639 *TYPEPTR if they were in different objfiles, but that's
640 wrong, too: TYPE may have a field list or member function
641 lists, which refer to types of their own, etc. etc. The
642 whole shebang would need to be copied over recursively; you
643 can't have inter-objfile pointers. The only thing to do is
644 to leave stub types as stub types, and look them up afresh by
645 name each time you encounter them. */
646 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
647 }
648
7ba81444
MS
649 ntype = make_qualified_type (type, new_flags,
650 typeptr ? *typeptr : NULL);
c906108c 651
2fdde8f8
DJ
652 if (typeptr != NULL)
653 *typeptr = ntype;
a02fd225 654
2fdde8f8 655 return ntype;
a02fd225 656}
c906108c 657
2fdde8f8
DJ
658/* Replace the contents of ntype with the type *type. This changes the
659 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
660 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 661
cda6c68a
JB
662 In order to build recursive types, it's inevitable that we'll need
663 to update types in place --- but this sort of indiscriminate
664 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
665 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
666 clear if more steps are needed. */
dd6bda65
DJ
667void
668replace_type (struct type *ntype, struct type *type)
669{
ab5d3da6 670 struct type *chain;
dd6bda65 671
ad766c0a
JB
672 /* These two types had better be in the same objfile. Otherwise,
673 the assignment of one type's main type structure to the other
674 will produce a type with references to objects (names; field
675 lists; etc.) allocated on an objfile other than its own. */
676 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
677
2fdde8f8 678 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 679
7ba81444
MS
680 /* The type length is not a part of the main type. Update it for
681 each type on the variant chain. */
ab5d3da6 682 chain = ntype;
5f61c20e
JK
683 do
684 {
685 /* Assert that this element of the chain has no address-class bits
686 set in its flags. Such type variants might have type lengths
687 which are supposed to be different from the non-address-class
688 variants. This assertion shouldn't ever be triggered because
689 symbol readers which do construct address-class variants don't
690 call replace_type(). */
691 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
692
693 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
694 chain = TYPE_CHAIN (chain);
695 }
696 while (ntype != chain);
ab5d3da6 697
2fdde8f8
DJ
698 /* Assert that the two types have equivalent instance qualifiers.
699 This should be true for at least all of our debug readers. */
700 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
701}
702
c906108c
SS
703/* Implement direct support for MEMBER_TYPE in GNU C++.
704 May need to construct such a type if this is the first use.
705 The TYPE is the type of the member. The DOMAIN is the type
706 of the aggregate that the member belongs to. */
707
708struct type *
0d5de010 709lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 710{
52f0bd74 711 struct type *mtype;
c906108c 712
e9bb382b 713 mtype = alloc_type_copy (type);
0d5de010 714 smash_to_memberptr_type (mtype, domain, type);
c16abbde 715 return mtype;
c906108c
SS
716}
717
0d5de010
DJ
718/* Return a pointer-to-method type, for a method of type TO_TYPE. */
719
720struct type *
721lookup_methodptr_type (struct type *to_type)
722{
723 struct type *mtype;
724
e9bb382b 725 mtype = alloc_type_copy (to_type);
0b92b5bb 726 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
727 return mtype;
728}
729
7ba81444
MS
730/* Allocate a stub method whose return type is TYPE. This apparently
731 happens for speed of symbol reading, since parsing out the
732 arguments to the method is cpu-intensive, the way we are doing it.
733 So, we will fill in arguments later. This always returns a fresh
734 type. */
c906108c
SS
735
736struct type *
fba45db2 737allocate_stub_method (struct type *type)
c906108c
SS
738{
739 struct type *mtype;
740
e9bb382b
UW
741 mtype = alloc_type_copy (type);
742 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
743 TYPE_LENGTH (mtype) = 1;
744 TYPE_STUB (mtype) = 1;
c906108c
SS
745 TYPE_TARGET_TYPE (mtype) = type;
746 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 747 return mtype;
c906108c
SS
748}
749
7ba81444
MS
750/* Create a range type using either a blank type supplied in
751 RESULT_TYPE, or creating a new type, inheriting the objfile from
752 INDEX_TYPE.
c906108c 753
7ba81444
MS
754 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
755 to HIGH_BOUND, inclusive.
c906108c 756
7ba81444
MS
757 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
758 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
759
760struct type *
fba45db2 761create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 762 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
763{
764 if (result_type == NULL)
e9bb382b 765 result_type = alloc_type_copy (index_type);
c906108c
SS
766 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
767 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 768 if (TYPE_STUB (index_type))
876cecd0 769 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
770 else
771 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
772 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
773 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
774 TYPE_LOW_BOUND (result_type) = low_bound;
775 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 776
c5aa993b 777 if (low_bound >= 0)
876cecd0 778 TYPE_UNSIGNED (result_type) = 1;
c906108c 779
262452ec 780 return result_type;
c906108c
SS
781}
782
7ba81444
MS
783/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
784 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
785 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
786
787int
fba45db2 788get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
789{
790 CHECK_TYPEDEF (type);
791 switch (TYPE_CODE (type))
792 {
793 case TYPE_CODE_RANGE:
794 *lowp = TYPE_LOW_BOUND (type);
795 *highp = TYPE_HIGH_BOUND (type);
796 return 1;
797 case TYPE_CODE_ENUM:
798 if (TYPE_NFIELDS (type) > 0)
799 {
800 /* The enums may not be sorted by value, so search all
0963b4bd 801 entries. */
c906108c
SS
802 int i;
803
14e75d8e 804 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
805 for (i = 0; i < TYPE_NFIELDS (type); i++)
806 {
14e75d8e
JK
807 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
808 *lowp = TYPE_FIELD_ENUMVAL (type, i);
809 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
810 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
811 }
812
7ba81444 813 /* Set unsigned indicator if warranted. */
c5aa993b 814 if (*lowp >= 0)
c906108c 815 {
876cecd0 816 TYPE_UNSIGNED (type) = 1;
c906108c
SS
817 }
818 }
819 else
820 {
821 *lowp = 0;
822 *highp = -1;
823 }
824 return 0;
825 case TYPE_CODE_BOOL:
826 *lowp = 0;
827 *highp = 1;
828 return 0;
829 case TYPE_CODE_INT:
c5aa993b 830 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
831 return -1;
832 if (!TYPE_UNSIGNED (type))
833 {
c5aa993b 834 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
835 *highp = -*lowp - 1;
836 return 0;
837 }
7ba81444 838 /* ... fall through for unsigned ints ... */
c906108c
SS
839 case TYPE_CODE_CHAR:
840 *lowp = 0;
841 /* This round-about calculation is to avoid shifting by
7b83ea04 842 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 843 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
844 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
845 *highp = (*highp - 1) | *highp;
846 return 0;
847 default:
848 return -1;
849 }
850}
851
dbc98a8b
KW
852/* Assuming TYPE is a simple, non-empty array type, compute its upper
853 and lower bound. Save the low bound into LOW_BOUND if not NULL.
854 Save the high bound into HIGH_BOUND if not NULL.
855
0963b4bd 856 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
857 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
858
859 We now simply use get_discrete_bounds call to get the values
860 of the low and high bounds.
861 get_discrete_bounds can return three values:
862 1, meaning that index is a range,
863 0, meaning that index is a discrete type,
864 or -1 for failure. */
865
866int
867get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
868{
869 struct type *index = TYPE_INDEX_TYPE (type);
870 LONGEST low = 0;
871 LONGEST high = 0;
872 int res;
873
874 if (index == NULL)
875 return 0;
876
877 res = get_discrete_bounds (index, &low, &high);
878 if (res == -1)
879 return 0;
880
881 /* Check if the array bounds are undefined. */
882 if (res == 1
883 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
884 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
885 return 0;
886
887 if (low_bound)
888 *low_bound = low;
889
890 if (high_bound)
891 *high_bound = high;
892
893 return 1;
894}
895
7ba81444
MS
896/* Create an array type using either a blank type supplied in
897 RESULT_TYPE, or creating a new type, inheriting the objfile from
898 RANGE_TYPE.
c906108c
SS
899
900 Elements will be of type ELEMENT_TYPE, the indices will be of type
901 RANGE_TYPE.
902
7ba81444
MS
903 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
904 sure it is TYPE_CODE_UNDEF before we bash it into an array
905 type? */
c906108c
SS
906
907struct type *
7ba81444
MS
908create_array_type (struct type *result_type,
909 struct type *element_type,
fba45db2 910 struct type *range_type)
c906108c
SS
911{
912 LONGEST low_bound, high_bound;
913
914 if (result_type == NULL)
e9bb382b
UW
915 result_type = alloc_type_copy (range_type);
916
c906108c
SS
917 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
918 TYPE_TARGET_TYPE (result_type) = element_type;
919 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
920 low_bound = high_bound = 0;
921 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
922 /* Be careful when setting the array length. Ada arrays can be
923 empty arrays with the high_bound being smaller than the low_bound.
924 In such cases, the array length should be zero. */
925 if (high_bound < low_bound)
926 TYPE_LENGTH (result_type) = 0;
927 else
928 TYPE_LENGTH (result_type) =
929 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
930 TYPE_NFIELDS (result_type) = 1;
931 TYPE_FIELDS (result_type) =
1deafd4e 932 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 933 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
934 TYPE_VPTR_FIELDNO (result_type) = -1;
935
0963b4bd 936 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 937 if (TYPE_LENGTH (result_type) == 0)
876cecd0 938 TYPE_TARGET_STUB (result_type) = 1;
c906108c 939
c16abbde 940 return result_type;
c906108c
SS
941}
942
e3506a9f
UW
943struct type *
944lookup_array_range_type (struct type *element_type,
945 int low_bound, int high_bound)
946{
50810684 947 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
948 struct type *index_type = builtin_type (gdbarch)->builtin_int;
949 struct type *range_type
950 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 951
e3506a9f
UW
952 return create_array_type (NULL, element_type, range_type);
953}
954
7ba81444
MS
955/* Create a string type using either a blank type supplied in
956 RESULT_TYPE, or creating a new type. String types are similar
957 enough to array of char types that we can use create_array_type to
958 build the basic type and then bash it into a string type.
c906108c
SS
959
960 For fixed length strings, the range type contains 0 as the lower
961 bound and the length of the string minus one as the upper bound.
962
7ba81444
MS
963 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
964 sure it is TYPE_CODE_UNDEF before we bash it into a string
965 type? */
c906108c
SS
966
967struct type *
3b7538c0
UW
968create_string_type (struct type *result_type,
969 struct type *string_char_type,
7ba81444 970 struct type *range_type)
c906108c
SS
971{
972 result_type = create_array_type (result_type,
f290d38e 973 string_char_type,
c906108c
SS
974 range_type);
975 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 976 return result_type;
c906108c
SS
977}
978
e3506a9f
UW
979struct type *
980lookup_string_range_type (struct type *string_char_type,
981 int low_bound, int high_bound)
982{
983 struct type *result_type;
d8734c88 984
e3506a9f
UW
985 result_type = lookup_array_range_type (string_char_type,
986 low_bound, high_bound);
987 TYPE_CODE (result_type) = TYPE_CODE_STRING;
988 return result_type;
989}
990
c906108c 991struct type *
fba45db2 992create_set_type (struct type *result_type, struct type *domain_type)
c906108c 993{
c906108c 994 if (result_type == NULL)
e9bb382b
UW
995 result_type = alloc_type_copy (domain_type);
996
c906108c
SS
997 TYPE_CODE (result_type) = TYPE_CODE_SET;
998 TYPE_NFIELDS (result_type) = 1;
1deafd4e 999 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1000
74a9bb82 1001 if (!TYPE_STUB (domain_type))
c906108c 1002 {
f9780d5b 1003 LONGEST low_bound, high_bound, bit_length;
d8734c88 1004
c906108c
SS
1005 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1006 low_bound = high_bound = 0;
1007 bit_length = high_bound - low_bound + 1;
1008 TYPE_LENGTH (result_type)
1009 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1010 if (low_bound >= 0)
876cecd0 1011 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1012 }
1013 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1014
c16abbde 1015 return result_type;
c906108c
SS
1016}
1017
ea37ba09
DJ
1018/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1019 and any array types nested inside it. */
1020
1021void
1022make_vector_type (struct type *array_type)
1023{
1024 struct type *inner_array, *elt_type;
1025 int flags;
1026
1027 /* Find the innermost array type, in case the array is
1028 multi-dimensional. */
1029 inner_array = array_type;
1030 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1031 inner_array = TYPE_TARGET_TYPE (inner_array);
1032
1033 elt_type = TYPE_TARGET_TYPE (inner_array);
1034 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1035 {
2844d6b5 1036 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1037 elt_type = make_qualified_type (elt_type, flags, NULL);
1038 TYPE_TARGET_TYPE (inner_array) = elt_type;
1039 }
1040
876cecd0 1041 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1042}
1043
794ac428 1044struct type *
ac3aafc7
EZ
1045init_vector_type (struct type *elt_type, int n)
1046{
1047 struct type *array_type;
d8734c88 1048
e3506a9f 1049 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1050 make_vector_type (array_type);
ac3aafc7
EZ
1051 return array_type;
1052}
1053
0d5de010
DJ
1054/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1055 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1056 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1057 TYPE doesn't include the offset (that's the value of the MEMBER
1058 itself), but does include the structure type into which it points
1059 (for some reason).
c906108c 1060
7ba81444
MS
1061 When "smashing" the type, we preserve the objfile that the old type
1062 pointed to, since we aren't changing where the type is actually
c906108c
SS
1063 allocated. */
1064
1065void
0d5de010
DJ
1066smash_to_memberptr_type (struct type *type, struct type *domain,
1067 struct type *to_type)
c906108c 1068{
2fdde8f8 1069 smash_type (type);
c906108c
SS
1070 TYPE_TARGET_TYPE (type) = to_type;
1071 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1072 /* Assume that a data member pointer is the same size as a normal
1073 pointer. */
50810684
UW
1074 TYPE_LENGTH (type)
1075 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1076 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1077}
1078
0b92b5bb
TT
1079/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1080
1081 When "smashing" the type, we preserve the objfile that the old type
1082 pointed to, since we aren't changing where the type is actually
1083 allocated. */
1084
1085void
1086smash_to_methodptr_type (struct type *type, struct type *to_type)
1087{
1088 smash_type (type);
1089 TYPE_TARGET_TYPE (type) = to_type;
1090 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1091 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1092 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1093}
1094
c906108c
SS
1095/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1096 METHOD just means `function that gets an extra "this" argument'.
1097
7ba81444
MS
1098 When "smashing" the type, we preserve the objfile that the old type
1099 pointed to, since we aren't changing where the type is actually
c906108c
SS
1100 allocated. */
1101
1102void
fba45db2 1103smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1104 struct type *to_type, struct field *args,
1105 int nargs, int varargs)
c906108c 1106{
2fdde8f8 1107 smash_type (type);
c906108c
SS
1108 TYPE_TARGET_TYPE (type) = to_type;
1109 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1110 TYPE_FIELDS (type) = args;
1111 TYPE_NFIELDS (type) = nargs;
1112 if (varargs)
876cecd0 1113 TYPE_VARARGS (type) = 1;
c906108c
SS
1114 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1115 TYPE_CODE (type) = TYPE_CODE_METHOD;
1116}
1117
1118/* Return a typename for a struct/union/enum type without "struct ",
1119 "union ", or "enum ". If the type has a NULL name, return NULL. */
1120
0d5cff50 1121const char *
aa1ee363 1122type_name_no_tag (const struct type *type)
c906108c
SS
1123{
1124 if (TYPE_TAG_NAME (type) != NULL)
1125 return TYPE_TAG_NAME (type);
1126
7ba81444
MS
1127 /* Is there code which expects this to return the name if there is
1128 no tag name? My guess is that this is mainly used for C++ in
1129 cases where the two will always be the same. */
c906108c
SS
1130 return TYPE_NAME (type);
1131}
1132
d8228535
JK
1133/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1134 Since GCC PR debug/47510 DWARF provides associated information to detect the
1135 anonymous class linkage name from its typedef.
1136
1137 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1138 apply it itself. */
1139
1140const char *
1141type_name_no_tag_or_error (struct type *type)
1142{
1143 struct type *saved_type = type;
1144 const char *name;
1145 struct objfile *objfile;
1146
1147 CHECK_TYPEDEF (type);
1148
1149 name = type_name_no_tag (type);
1150 if (name != NULL)
1151 return name;
1152
1153 name = type_name_no_tag (saved_type);
1154 objfile = TYPE_OBJFILE (saved_type);
1155 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1156 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1157}
1158
7ba81444
MS
1159/* Lookup a typedef or primitive type named NAME, visible in lexical
1160 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1161 suitably defined. */
c906108c
SS
1162
1163struct type *
e6c014f2 1164lookup_typename (const struct language_defn *language,
ddd49eee 1165 struct gdbarch *gdbarch, const char *name,
34eaf542 1166 const struct block *block, int noerr)
c906108c 1167{
52f0bd74 1168 struct symbol *sym;
659c9f3a 1169 struct type *type;
c906108c 1170
774b6a14 1171 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1172 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1173 return SYMBOL_TYPE (sym);
1174
659c9f3a
DE
1175 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1176 if (type)
1177 return type;
c51fe631
DE
1178
1179 if (noerr)
1180 return NULL;
1181 error (_("No type named %s."), name);
c906108c
SS
1182}
1183
1184struct type *
e6c014f2 1185lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1186 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1187{
1188 char *uns = alloca (strlen (name) + 10);
1189
1190 strcpy (uns, "unsigned ");
1191 strcpy (uns + 9, name);
e6c014f2 1192 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1193}
1194
1195struct type *
e6c014f2 1196lookup_signed_typename (const struct language_defn *language,
0d5cff50 1197 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1198{
1199 struct type *t;
1200 char *uns = alloca (strlen (name) + 8);
1201
1202 strcpy (uns, "signed ");
1203 strcpy (uns + 7, name);
e6c014f2 1204 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1205 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1206 if (t != NULL)
1207 return t;
e6c014f2 1208 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1209}
1210
1211/* Lookup a structure type named "struct NAME",
1212 visible in lexical block BLOCK. */
1213
1214struct type *
ddd49eee 1215lookup_struct (const char *name, struct block *block)
c906108c 1216{
52f0bd74 1217 struct symbol *sym;
c906108c 1218
2570f2b7 1219 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1220
1221 if (sym == NULL)
1222 {
8a3fe4f8 1223 error (_("No struct type named %s."), name);
c906108c
SS
1224 }
1225 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1226 {
7ba81444
MS
1227 error (_("This context has class, union or enum %s, not a struct."),
1228 name);
c906108c
SS
1229 }
1230 return (SYMBOL_TYPE (sym));
1231}
1232
1233/* Lookup a union type named "union NAME",
1234 visible in lexical block BLOCK. */
1235
1236struct type *
ddd49eee 1237lookup_union (const char *name, struct block *block)
c906108c 1238{
52f0bd74 1239 struct symbol *sym;
c5aa993b 1240 struct type *t;
c906108c 1241
2570f2b7 1242 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1243
1244 if (sym == NULL)
8a3fe4f8 1245 error (_("No union type named %s."), name);
c906108c 1246
c5aa993b 1247 t = SYMBOL_TYPE (sym);
c906108c
SS
1248
1249 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1250 return t;
c906108c 1251
7ba81444
MS
1252 /* If we get here, it's not a union. */
1253 error (_("This context has class, struct or enum %s, not a union."),
1254 name);
c906108c
SS
1255}
1256
1257
1258/* Lookup an enum type named "enum NAME",
1259 visible in lexical block BLOCK. */
1260
1261struct type *
ddd49eee 1262lookup_enum (const char *name, struct block *block)
c906108c 1263{
52f0bd74 1264 struct symbol *sym;
c906108c 1265
2570f2b7 1266 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1267 if (sym == NULL)
1268 {
8a3fe4f8 1269 error (_("No enum type named %s."), name);
c906108c
SS
1270 }
1271 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1272 {
7ba81444
MS
1273 error (_("This context has class, struct or union %s, not an enum."),
1274 name);
c906108c
SS
1275 }
1276 return (SYMBOL_TYPE (sym));
1277}
1278
1279/* Lookup a template type named "template NAME<TYPE>",
1280 visible in lexical block BLOCK. */
1281
1282struct type *
7ba81444
MS
1283lookup_template_type (char *name, struct type *type,
1284 struct block *block)
c906108c
SS
1285{
1286 struct symbol *sym;
7ba81444
MS
1287 char *nam = (char *)
1288 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1289
c906108c
SS
1290 strcpy (nam, name);
1291 strcat (nam, "<");
0004e5a2 1292 strcat (nam, TYPE_NAME (type));
0963b4bd 1293 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1294
2570f2b7 1295 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1296
1297 if (sym == NULL)
1298 {
8a3fe4f8 1299 error (_("No template type named %s."), name);
c906108c
SS
1300 }
1301 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1302 {
7ba81444
MS
1303 error (_("This context has class, union or enum %s, not a struct."),
1304 name);
c906108c
SS
1305 }
1306 return (SYMBOL_TYPE (sym));
1307}
1308
7ba81444
MS
1309/* Given a type TYPE, lookup the type of the component of type named
1310 NAME.
c906108c 1311
7ba81444
MS
1312 TYPE can be either a struct or union, or a pointer or reference to
1313 a struct or union. If it is a pointer or reference, its target
1314 type is automatically used. Thus '.' and '->' are interchangable,
1315 as specified for the definitions of the expression element types
1316 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1317
1318 If NOERR is nonzero, return zero if NAME is not suitably defined.
1319 If NAME is the name of a baseclass type, return that type. */
1320
1321struct type *
fba45db2 1322lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1323{
1324 int i;
c92817ce 1325 char *typename;
c906108c
SS
1326
1327 for (;;)
1328 {
1329 CHECK_TYPEDEF (type);
1330 if (TYPE_CODE (type) != TYPE_CODE_PTR
1331 && TYPE_CODE (type) != TYPE_CODE_REF)
1332 break;
1333 type = TYPE_TARGET_TYPE (type);
1334 }
1335
687d6395
MS
1336 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1337 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1338 {
c92817ce
TT
1339 typename = type_to_string (type);
1340 make_cleanup (xfree, typename);
1341 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1342 }
1343
1344#if 0
7ba81444
MS
1345 /* FIXME: This change put in by Michael seems incorrect for the case
1346 where the structure tag name is the same as the member name.
0963b4bd 1347 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1348 foo; } bell;" Disabled by fnf. */
c906108c
SS
1349 {
1350 char *typename;
1351
1352 typename = type_name_no_tag (type);
762f08a3 1353 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1354 return type;
1355 }
1356#endif
1357
1358 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1359 {
0d5cff50 1360 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1361
db577aea 1362 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1363 {
1364 return TYPE_FIELD_TYPE (type, i);
1365 }
f5a010c0
PM
1366 else if (!t_field_name || *t_field_name == '\0')
1367 {
d8734c88
MS
1368 struct type *subtype
1369 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1370
f5a010c0
PM
1371 if (subtype != NULL)
1372 return subtype;
1373 }
c906108c
SS
1374 }
1375
1376 /* OK, it's not in this class. Recursively check the baseclasses. */
1377 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1378 {
1379 struct type *t;
1380
9733fc94 1381 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1382 if (t != NULL)
1383 {
1384 return t;
1385 }
1386 }
1387
1388 if (noerr)
1389 {
1390 return NULL;
1391 }
c5aa993b 1392
c92817ce
TT
1393 typename = type_to_string (type);
1394 make_cleanup (xfree, typename);
1395 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1396}
1397
81fe8080
DE
1398/* Lookup the vptr basetype/fieldno values for TYPE.
1399 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1400 vptr_fieldno. Also, if found and basetype is from the same objfile,
1401 cache the results.
1402 If not found, return -1 and ignore BASETYPEP.
1403 Callers should be aware that in some cases (for example,
c906108c 1404 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1405 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1406 this function will not be able to find the
7ba81444 1407 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1408 vptr_basetype will remain NULL or incomplete. */
c906108c 1409
81fe8080
DE
1410int
1411get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1412{
1413 CHECK_TYPEDEF (type);
1414
1415 if (TYPE_VPTR_FIELDNO (type) < 0)
1416 {
1417 int i;
1418
7ba81444
MS
1419 /* We must start at zero in case the first (and only) baseclass
1420 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1421 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1422 {
81fe8080
DE
1423 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1424 int fieldno;
1425 struct type *basetype;
1426
1427 fieldno = get_vptr_fieldno (baseclass, &basetype);
1428 if (fieldno >= 0)
c906108c 1429 {
81fe8080 1430 /* If the type comes from a different objfile we can't cache
0963b4bd 1431 it, it may have a different lifetime. PR 2384 */
5ef73790 1432 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1433 {
1434 TYPE_VPTR_FIELDNO (type) = fieldno;
1435 TYPE_VPTR_BASETYPE (type) = basetype;
1436 }
1437 if (basetypep)
1438 *basetypep = basetype;
1439 return fieldno;
c906108c
SS
1440 }
1441 }
81fe8080
DE
1442
1443 /* Not found. */
1444 return -1;
1445 }
1446 else
1447 {
1448 if (basetypep)
1449 *basetypep = TYPE_VPTR_BASETYPE (type);
1450 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1451 }
1452}
1453
44e1a9eb
DJ
1454static void
1455stub_noname_complaint (void)
1456{
e2e0b3e5 1457 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1458}
1459
92163a10
JK
1460/* Find the real type of TYPE. This function returns the real type,
1461 after removing all layers of typedefs, and completing opaque or stub
1462 types. Completion changes the TYPE argument, but stripping of
1463 typedefs does not.
1464
1465 Instance flags (e.g. const/volatile) are preserved as typedefs are
1466 stripped. If necessary a new qualified form of the underlying type
1467 is created.
1468
1469 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1470 not been computed and we're either in the middle of reading symbols, or
1471 there was no name for the typedef in the debug info.
1472
9bc118a5
DE
1473 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1474 QUITs in the symbol reading code can also throw.
1475 Thus this function can throw an exception.
1476
92163a10
JK
1477 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1478 the target type.
c906108c
SS
1479
1480 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1481 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1482 definition, so we can use it in future. There used to be a comment
1483 (but not any code) that if we don't find a full definition, we'd
1484 set a flag so we don't spend time in the future checking the same
1485 type. That would be a mistake, though--we might load in more
92163a10 1486 symbols which contain a full definition for the type. */
c906108c
SS
1487
1488struct type *
a02fd225 1489check_typedef (struct type *type)
c906108c
SS
1490{
1491 struct type *orig_type = type;
92163a10
JK
1492 /* While we're removing typedefs, we don't want to lose qualifiers.
1493 E.g., const/volatile. */
1494 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1495
423c0af8
MS
1496 gdb_assert (type);
1497
c906108c
SS
1498 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1499 {
1500 if (!TYPE_TARGET_TYPE (type))
1501 {
0d5cff50 1502 const char *name;
c906108c
SS
1503 struct symbol *sym;
1504
1505 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1506 reading a symtab. Infinite recursion is one danger. */
c906108c 1507 if (currently_reading_symtab)
92163a10 1508 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1509
1510 name = type_name_no_tag (type);
7ba81444
MS
1511 /* FIXME: shouldn't we separately check the TYPE_NAME and
1512 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1513 VAR_DOMAIN as appropriate? (this code was written before
1514 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1515 if (name == NULL)
1516 {
23136709 1517 stub_noname_complaint ();
92163a10 1518 return make_qualified_type (type, instance_flags, NULL);
c906108c 1519 }
2570f2b7 1520 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1521 if (sym)
1522 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1523 else /* TYPE_CODE_UNDEF */
e9bb382b 1524 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1525 }
1526 type = TYPE_TARGET_TYPE (type);
c906108c 1527
92163a10
JK
1528 /* Preserve the instance flags as we traverse down the typedef chain.
1529
1530 Handling address spaces/classes is nasty, what do we do if there's a
1531 conflict?
1532 E.g., what if an outer typedef marks the type as class_1 and an inner
1533 typedef marks the type as class_2?
1534 This is the wrong place to do such error checking. We leave it to
1535 the code that created the typedef in the first place to flag the
1536 error. We just pick the outer address space (akin to letting the
1537 outer cast in a chain of casting win), instead of assuming
1538 "it can't happen". */
1539 {
1540 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1541 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1542 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1543 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1544
1545 /* Treat code vs data spaces and address classes separately. */
1546 if ((instance_flags & ALL_SPACES) != 0)
1547 new_instance_flags &= ~ALL_SPACES;
1548 if ((instance_flags & ALL_CLASSES) != 0)
1549 new_instance_flags &= ~ALL_CLASSES;
1550
1551 instance_flags |= new_instance_flags;
1552 }
1553 }
a02fd225 1554
7ba81444
MS
1555 /* If this is a struct/class/union with no fields, then check
1556 whether a full definition exists somewhere else. This is for
1557 systems where a type definition with no fields is issued for such
1558 types, instead of identifying them as stub types in the first
1559 place. */
c5aa993b 1560
7ba81444
MS
1561 if (TYPE_IS_OPAQUE (type)
1562 && opaque_type_resolution
1563 && !currently_reading_symtab)
c906108c 1564 {
0d5cff50 1565 const char *name = type_name_no_tag (type);
c5aa993b 1566 struct type *newtype;
d8734c88 1567
c906108c
SS
1568 if (name == NULL)
1569 {
23136709 1570 stub_noname_complaint ();
92163a10 1571 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1572 }
1573 newtype = lookup_transparent_type (name);
ad766c0a 1574
c906108c 1575 if (newtype)
ad766c0a 1576 {
7ba81444
MS
1577 /* If the resolved type and the stub are in the same
1578 objfile, then replace the stub type with the real deal.
1579 But if they're in separate objfiles, leave the stub
1580 alone; we'll just look up the transparent type every time
1581 we call check_typedef. We can't create pointers between
1582 types allocated to different objfiles, since they may
1583 have different lifetimes. Trying to copy NEWTYPE over to
1584 TYPE's objfile is pointless, too, since you'll have to
1585 move over any other types NEWTYPE refers to, which could
1586 be an unbounded amount of stuff. */
ad766c0a 1587 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1588 type = make_qualified_type (newtype,
1589 TYPE_INSTANCE_FLAGS (type),
1590 type);
ad766c0a
JB
1591 else
1592 type = newtype;
1593 }
c906108c 1594 }
7ba81444
MS
1595 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1596 types. */
74a9bb82 1597 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1598 {
0d5cff50 1599 const char *name = type_name_no_tag (type);
c906108c 1600 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1601 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1602 as appropriate? (this code was written before TYPE_NAME and
1603 TYPE_TAG_NAME were separate). */
c906108c 1604 struct symbol *sym;
d8734c88 1605
c906108c
SS
1606 if (name == NULL)
1607 {
23136709 1608 stub_noname_complaint ();
92163a10 1609 return make_qualified_type (type, instance_flags, NULL);
c906108c 1610 }
2570f2b7 1611 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1612 if (sym)
c26f2453
JB
1613 {
1614 /* Same as above for opaque types, we can replace the stub
92163a10 1615 with the complete type only if they are in the same
c26f2453
JB
1616 objfile. */
1617 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1618 type = make_qualified_type (SYMBOL_TYPE (sym),
1619 TYPE_INSTANCE_FLAGS (type),
1620 type);
c26f2453
JB
1621 else
1622 type = SYMBOL_TYPE (sym);
1623 }
c906108c
SS
1624 }
1625
74a9bb82 1626 if (TYPE_TARGET_STUB (type))
c906108c
SS
1627 {
1628 struct type *range_type;
1629 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1630
74a9bb82 1631 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1632 {
73e2eb35 1633 /* Nothing we can do. */
c5aa993b 1634 }
c906108c
SS
1635 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1636 && TYPE_NFIELDS (type) == 1
262452ec 1637 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1638 == TYPE_CODE_RANGE))
1639 {
1640 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1641 number of elements and the target type's length.
1642 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1643 is smaller than the low bound. */
43bbcdc2
PH
1644 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1645 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1646 ULONGEST len;
1647
ab0d6e0d 1648 if (high_bound < low_bound)
43bbcdc2 1649 len = 0;
d8734c88
MS
1650 else
1651 {
1652 /* For now, we conservatively take the array length to be 0
1653 if its length exceeds UINT_MAX. The code below assumes
1654 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1655 which is technically not guaranteed by C, but is usually true
1656 (because it would be true if x were unsigned with its
0963b4bd 1657 high-order bit on). It uses the fact that
d8734c88
MS
1658 high_bound-low_bound is always representable in
1659 ULONGEST and that if high_bound-low_bound+1 overflows,
1660 it overflows to 0. We must change these tests if we
1661 decide to increase the representation of TYPE_LENGTH
0963b4bd 1662 from unsigned int to ULONGEST. */
d8734c88
MS
1663 ULONGEST ulow = low_bound, uhigh = high_bound;
1664 ULONGEST tlen = TYPE_LENGTH (target_type);
1665
1666 len = tlen * (uhigh - ulow + 1);
1667 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1668 || len > UINT_MAX)
1669 len = 0;
1670 }
43bbcdc2 1671 TYPE_LENGTH (type) = len;
876cecd0 1672 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1673 }
1674 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1675 {
1676 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1677 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1678 }
1679 }
92163a10
JK
1680
1681 type = make_qualified_type (type, instance_flags, NULL);
1682
7ba81444 1683 /* Cache TYPE_LENGTH for future use. */
c906108c 1684 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1685
c906108c
SS
1686 return type;
1687}
1688
7ba81444 1689/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1690 occurs, silently return a void type. */
c91ecb25 1691
b9362cc7 1692static struct type *
48319d1f 1693safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1694{
1695 struct ui_file *saved_gdb_stderr;
34365054 1696 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 1697 volatile struct gdb_exception except;
c91ecb25 1698
7ba81444 1699 /* Suppress error messages. */
c91ecb25
ND
1700 saved_gdb_stderr = gdb_stderr;
1701 gdb_stderr = ui_file_new ();
1702
7ba81444 1703 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
1704 TRY_CATCH (except, RETURN_MASK_ERROR)
1705 {
1706 type = parse_and_eval_type (p, length);
1707 }
1708
1709 if (except.reason < 0)
48319d1f 1710 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1711
7ba81444 1712 /* Stop suppressing error messages. */
c91ecb25
ND
1713 ui_file_delete (gdb_stderr);
1714 gdb_stderr = saved_gdb_stderr;
1715
1716 return type;
1717}
1718
c906108c
SS
1719/* Ugly hack to convert method stubs into method types.
1720
7ba81444
MS
1721 He ain't kiddin'. This demangles the name of the method into a
1722 string including argument types, parses out each argument type,
1723 generates a string casting a zero to that type, evaluates the
1724 string, and stuffs the resulting type into an argtype vector!!!
1725 Then it knows the type of the whole function (including argument
1726 types for overloading), which info used to be in the stab's but was
1727 removed to hack back the space required for them. */
c906108c 1728
de17c821 1729static void
fba45db2 1730check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1731{
50810684 1732 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1733 struct fn_field *f;
1734 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1735 char *demangled_name = cplus_demangle (mangled_name,
1736 DMGL_PARAMS | DMGL_ANSI);
1737 char *argtypetext, *p;
1738 int depth = 0, argcount = 1;
ad2f7632 1739 struct field *argtypes;
c906108c
SS
1740 struct type *mtype;
1741
1742 /* Make sure we got back a function string that we can use. */
1743 if (demangled_name)
1744 p = strchr (demangled_name, '(');
502dcf4e
AC
1745 else
1746 p = NULL;
c906108c
SS
1747
1748 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1749 error (_("Internal: Cannot demangle mangled name `%s'."),
1750 mangled_name);
c906108c
SS
1751
1752 /* Now, read in the parameters that define this type. */
1753 p += 1;
1754 argtypetext = p;
1755 while (*p)
1756 {
070ad9f0 1757 if (*p == '(' || *p == '<')
c906108c
SS
1758 {
1759 depth += 1;
1760 }
070ad9f0 1761 else if (*p == ')' || *p == '>')
c906108c
SS
1762 {
1763 depth -= 1;
1764 }
1765 else if (*p == ',' && depth == 0)
1766 {
1767 argcount += 1;
1768 }
1769
1770 p += 1;
1771 }
1772
ad2f7632
DJ
1773 /* If we read one argument and it was ``void'', don't count it. */
1774 if (strncmp (argtypetext, "(void)", 6) == 0)
1775 argcount -= 1;
c906108c 1776
ad2f7632
DJ
1777 /* We need one extra slot, for the THIS pointer. */
1778
1779 argtypes = (struct field *)
1780 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1781 p = argtypetext;
4a1970e4
DJ
1782
1783 /* Add THIS pointer for non-static methods. */
1784 f = TYPE_FN_FIELDLIST1 (type, method_id);
1785 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1786 argcount = 0;
1787 else
1788 {
ad2f7632 1789 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1790 argcount = 1;
1791 }
c906108c 1792
0963b4bd 1793 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1794 {
1795 depth = 0;
1796 while (*p)
1797 {
1798 if (depth <= 0 && (*p == ',' || *p == ')'))
1799 {
ad2f7632
DJ
1800 /* Avoid parsing of ellipsis, they will be handled below.
1801 Also avoid ``void'' as above. */
1802 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1803 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1804 {
ad2f7632 1805 argtypes[argcount].type =
48319d1f 1806 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1807 argcount += 1;
1808 }
1809 argtypetext = p + 1;
1810 }
1811
070ad9f0 1812 if (*p == '(' || *p == '<')
c906108c
SS
1813 {
1814 depth += 1;
1815 }
070ad9f0 1816 else if (*p == ')' || *p == '>')
c906108c
SS
1817 {
1818 depth -= 1;
1819 }
1820
1821 p += 1;
1822 }
1823 }
1824
c906108c
SS
1825 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1826
1827 /* Now update the old "stub" type into a real type. */
1828 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1829 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1830 TYPE_FIELDS (mtype) = argtypes;
1831 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1832 TYPE_STUB (mtype) = 0;
c906108c 1833 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1834 if (p[-2] == '.')
876cecd0 1835 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1836
1837 xfree (demangled_name);
c906108c
SS
1838}
1839
7ba81444
MS
1840/* This is the external interface to check_stub_method, above. This
1841 function unstubs all of the signatures for TYPE's METHOD_ID method
1842 name. After calling this function TYPE_FN_FIELD_STUB will be
1843 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1844 correct.
de17c821
DJ
1845
1846 This function unfortunately can not die until stabs do. */
1847
1848void
1849check_stub_method_group (struct type *type, int method_id)
1850{
1851 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1852 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1853 int j, found_stub = 0;
de17c821
DJ
1854
1855 for (j = 0; j < len; j++)
1856 if (TYPE_FN_FIELD_STUB (f, j))
1857 {
1858 found_stub = 1;
1859 check_stub_method (type, method_id, j);
1860 }
1861
7ba81444
MS
1862 /* GNU v3 methods with incorrect names were corrected when we read
1863 in type information, because it was cheaper to do it then. The
1864 only GNU v2 methods with incorrect method names are operators and
1865 destructors; destructors were also corrected when we read in type
1866 information.
de17c821
DJ
1867
1868 Therefore the only thing we need to handle here are v2 operator
1869 names. */
1870 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1871 {
1872 int ret;
1873 char dem_opname[256];
1874
7ba81444
MS
1875 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1876 method_id),
de17c821
DJ
1877 dem_opname, DMGL_ANSI);
1878 if (!ret)
7ba81444
MS
1879 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1880 method_id),
de17c821
DJ
1881 dem_opname, 0);
1882 if (ret)
1883 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1884 }
1885}
1886
9655fd1a
JK
1887/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1888const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1889
1890void
fba45db2 1891allocate_cplus_struct_type (struct type *type)
c906108c 1892{
b4ba55a1
JB
1893 if (HAVE_CPLUS_STRUCT (type))
1894 /* Structure was already allocated. Nothing more to do. */
1895 return;
1896
1897 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1898 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1899 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1900 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1901}
1902
b4ba55a1
JB
1903const struct gnat_aux_type gnat_aux_default =
1904 { NULL };
1905
1906/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1907 and allocate the associated gnat-specific data. The gnat-specific
1908 data is also initialized to gnat_aux_default. */
1909void
1910allocate_gnat_aux_type (struct type *type)
1911{
1912 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1913 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1914 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1915 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1916}
1917
1918
c906108c
SS
1919/* Helper function to initialize the standard scalar types.
1920
e9bb382b
UW
1921 If NAME is non-NULL, then we make a copy of the string pointed
1922 to by name in the objfile_obstack for that objfile, and initialize
1923 the type name to that copy. There are places (mipsread.c in particular),
1924 where init_type is called with a NULL value for NAME). */
c906108c
SS
1925
1926struct type *
7ba81444
MS
1927init_type (enum type_code code, int length, int flags,
1928 char *name, struct objfile *objfile)
c906108c 1929{
52f0bd74 1930 struct type *type;
c906108c
SS
1931
1932 type = alloc_type (objfile);
1933 TYPE_CODE (type) = code;
1934 TYPE_LENGTH (type) = length;
876cecd0
TT
1935
1936 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1937 if (flags & TYPE_FLAG_UNSIGNED)
1938 TYPE_UNSIGNED (type) = 1;
1939 if (flags & TYPE_FLAG_NOSIGN)
1940 TYPE_NOSIGN (type) = 1;
1941 if (flags & TYPE_FLAG_STUB)
1942 TYPE_STUB (type) = 1;
1943 if (flags & TYPE_FLAG_TARGET_STUB)
1944 TYPE_TARGET_STUB (type) = 1;
1945 if (flags & TYPE_FLAG_STATIC)
1946 TYPE_STATIC (type) = 1;
1947 if (flags & TYPE_FLAG_PROTOTYPED)
1948 TYPE_PROTOTYPED (type) = 1;
1949 if (flags & TYPE_FLAG_INCOMPLETE)
1950 TYPE_INCOMPLETE (type) = 1;
1951 if (flags & TYPE_FLAG_VARARGS)
1952 TYPE_VARARGS (type) = 1;
1953 if (flags & TYPE_FLAG_VECTOR)
1954 TYPE_VECTOR (type) = 1;
1955 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1956 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1957 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1958 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1959 if (flags & TYPE_FLAG_GNU_IFUNC)
1960 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1961
e9bb382b
UW
1962 if (name)
1963 TYPE_NAME (type) = obsavestring (name, strlen (name),
1964 &objfile->objfile_obstack);
c906108c
SS
1965
1966 /* C++ fancies. */
1967
973ccf8b 1968 if (name && strcmp (name, "char") == 0)
876cecd0 1969 TYPE_NOSIGN (type) = 1;
973ccf8b 1970
b4ba55a1 1971 switch (code)
c906108c 1972 {
b4ba55a1
JB
1973 case TYPE_CODE_STRUCT:
1974 case TYPE_CODE_UNION:
1975 case TYPE_CODE_NAMESPACE:
1976 INIT_CPLUS_SPECIFIC (type);
1977 break;
1978 case TYPE_CODE_FLT:
1979 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1980 break;
1981 case TYPE_CODE_FUNC:
b6cdc2c1 1982 INIT_FUNC_SPECIFIC (type);
b4ba55a1 1983 break;
c906108c 1984 }
c16abbde 1985 return type;
c906108c
SS
1986}
1987
c906108c 1988int
fba45db2 1989can_dereference (struct type *t)
c906108c 1990{
7ba81444
MS
1991 /* FIXME: Should we return true for references as well as
1992 pointers? */
c906108c
SS
1993 CHECK_TYPEDEF (t);
1994 return
1995 (t != NULL
1996 && TYPE_CODE (t) == TYPE_CODE_PTR
1997 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1998}
1999
adf40b2e 2000int
fba45db2 2001is_integral_type (struct type *t)
adf40b2e
JM
2002{
2003 CHECK_TYPEDEF (t);
2004 return
2005 ((t != NULL)
d4f3574e
SS
2006 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2007 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2008 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2009 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2010 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2011 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2012}
2013
e09342b5
TJB
2014/* Return true if TYPE is scalar. */
2015
2016static int
2017is_scalar_type (struct type *type)
2018{
2019 CHECK_TYPEDEF (type);
2020
2021 switch (TYPE_CODE (type))
2022 {
2023 case TYPE_CODE_ARRAY:
2024 case TYPE_CODE_STRUCT:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_SET:
2027 case TYPE_CODE_STRING:
2028 case TYPE_CODE_BITSTRING:
2029 return 0;
2030 default:
2031 return 1;
2032 }
2033}
2034
2035/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2036 the memory layout of a scalar type. E.g., an array or struct with only
2037 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2038
2039int
2040is_scalar_type_recursive (struct type *t)
2041{
2042 CHECK_TYPEDEF (t);
2043
2044 if (is_scalar_type (t))
2045 return 1;
2046 /* Are we dealing with an array or string of known dimensions? */
2047 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2048 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2049 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2050 {
2051 LONGEST low_bound, high_bound;
2052 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2053
2054 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2055
2056 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2057 }
2058 /* Are we dealing with a struct with one element? */
2059 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2060 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2061 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2062 {
2063 int i, n = TYPE_NFIELDS (t);
2064
2065 /* If all elements of the union are scalar, then the union is scalar. */
2066 for (i = 0; i < n; i++)
2067 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2068 return 0;
2069
2070 return 1;
2071 }
2072
2073 return 0;
2074}
2075
4e8f195d
TT
2076/* A helper function which returns true if types A and B represent the
2077 "same" class type. This is true if the types have the same main
2078 type, or the same name. */
2079
2080int
2081class_types_same_p (const struct type *a, const struct type *b)
2082{
2083 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2084 || (TYPE_NAME (a) && TYPE_NAME (b)
2085 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2086}
2087
a9d5ef47
SW
2088/* If BASE is an ancestor of DCLASS return the distance between them.
2089 otherwise return -1;
2090 eg:
2091
2092 class A {};
2093 class B: public A {};
2094 class C: public B {};
2095 class D: C {};
2096
2097 distance_to_ancestor (A, A, 0) = 0
2098 distance_to_ancestor (A, B, 0) = 1
2099 distance_to_ancestor (A, C, 0) = 2
2100 distance_to_ancestor (A, D, 0) = 3
2101
2102 If PUBLIC is 1 then only public ancestors are considered,
2103 and the function returns the distance only if BASE is a public ancestor
2104 of DCLASS.
2105 Eg:
2106
0963b4bd 2107 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2108
0526b37a 2109static int
a9d5ef47 2110distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2111{
2112 int i;
a9d5ef47 2113 int d;
c5aa993b 2114
c906108c
SS
2115 CHECK_TYPEDEF (base);
2116 CHECK_TYPEDEF (dclass);
2117
4e8f195d 2118 if (class_types_same_p (base, dclass))
a9d5ef47 2119 return 0;
c906108c
SS
2120
2121 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2122 {
0526b37a
SW
2123 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2124 continue;
2125
a9d5ef47
SW
2126 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2127 if (d >= 0)
2128 return 1 + d;
4e8f195d 2129 }
c906108c 2130
a9d5ef47 2131 return -1;
c906108c 2132}
4e8f195d 2133
0526b37a
SW
2134/* Check whether BASE is an ancestor or base class or DCLASS
2135 Return 1 if so, and 0 if not.
2136 Note: If BASE and DCLASS are of the same type, this function
2137 will return 1. So for some class A, is_ancestor (A, A) will
2138 return 1. */
2139
2140int
2141is_ancestor (struct type *base, struct type *dclass)
2142{
a9d5ef47 2143 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2144}
2145
4e8f195d
TT
2146/* Like is_ancestor, but only returns true when BASE is a public
2147 ancestor of DCLASS. */
2148
2149int
2150is_public_ancestor (struct type *base, struct type *dclass)
2151{
a9d5ef47 2152 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2153}
2154
2155/* A helper function for is_unique_ancestor. */
2156
2157static int
2158is_unique_ancestor_worker (struct type *base, struct type *dclass,
2159 int *offset,
8af8e3bc
PA
2160 const gdb_byte *valaddr, int embedded_offset,
2161 CORE_ADDR address, struct value *val)
4e8f195d
TT
2162{
2163 int i, count = 0;
2164
2165 CHECK_TYPEDEF (base);
2166 CHECK_TYPEDEF (dclass);
2167
2168 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2169 {
8af8e3bc
PA
2170 struct type *iter;
2171 int this_offset;
4e8f195d 2172
8af8e3bc
PA
2173 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2174
2175 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2176 address, val);
4e8f195d
TT
2177
2178 if (class_types_same_p (base, iter))
2179 {
2180 /* If this is the first subclass, set *OFFSET and set count
2181 to 1. Otherwise, if this is at the same offset as
2182 previous instances, do nothing. Otherwise, increment
2183 count. */
2184 if (*offset == -1)
2185 {
2186 *offset = this_offset;
2187 count = 1;
2188 }
2189 else if (this_offset == *offset)
2190 {
2191 /* Nothing. */
2192 }
2193 else
2194 ++count;
2195 }
2196 else
2197 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2198 valaddr,
2199 embedded_offset + this_offset,
2200 address, val);
4e8f195d
TT
2201 }
2202
2203 return count;
2204}
2205
2206/* Like is_ancestor, but only returns true if BASE is a unique base
2207 class of the type of VAL. */
2208
2209int
2210is_unique_ancestor (struct type *base, struct value *val)
2211{
2212 int offset = -1;
2213
2214 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2215 value_contents_for_printing (val),
2216 value_embedded_offset (val),
2217 value_address (val), val) == 1;
4e8f195d
TT
2218}
2219
c906108c
SS
2220\f
2221
6403aeea
SW
2222/* Return the sum of the rank of A with the rank of B. */
2223
2224struct rank
2225sum_ranks (struct rank a, struct rank b)
2226{
2227 struct rank c;
2228 c.rank = a.rank + b.rank;
a9d5ef47 2229 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2230 return c;
2231}
2232
2233/* Compare rank A and B and return:
2234 0 if a = b
2235 1 if a is better than b
2236 -1 if b is better than a. */
2237
2238int
2239compare_ranks (struct rank a, struct rank b)
2240{
2241 if (a.rank == b.rank)
a9d5ef47
SW
2242 {
2243 if (a.subrank == b.subrank)
2244 return 0;
2245 if (a.subrank < b.subrank)
2246 return 1;
2247 if (a.subrank > b.subrank)
2248 return -1;
2249 }
6403aeea
SW
2250
2251 if (a.rank < b.rank)
2252 return 1;
2253
0963b4bd 2254 /* a.rank > b.rank */
6403aeea
SW
2255 return -1;
2256}
c5aa993b 2257
0963b4bd 2258/* Functions for overload resolution begin here. */
c906108c
SS
2259
2260/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2261 0 => A and B are identical
2262 1 => A and B are incomparable
2263 2 => A is better than B
2264 3 => A is worse than B */
c906108c
SS
2265
2266int
fba45db2 2267compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2268{
2269 int i;
2270 int tmp;
c5aa993b
JM
2271 short found_pos = 0; /* any positives in c? */
2272 short found_neg = 0; /* any negatives in c? */
2273
2274 /* differing lengths => incomparable */
c906108c
SS
2275 if (a->length != b->length)
2276 return 1;
2277
c5aa993b
JM
2278 /* Subtract b from a */
2279 for (i = 0; i < a->length; i++)
c906108c 2280 {
6403aeea 2281 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2282 if (tmp > 0)
c5aa993b 2283 found_pos = 1;
c906108c 2284 else if (tmp < 0)
c5aa993b 2285 found_neg = 1;
c906108c
SS
2286 }
2287
2288 if (found_pos)
2289 {
2290 if (found_neg)
c5aa993b 2291 return 1; /* incomparable */
c906108c 2292 else
c5aa993b 2293 return 3; /* A > B */
c906108c 2294 }
c5aa993b
JM
2295 else
2296 /* no positives */
c906108c
SS
2297 {
2298 if (found_neg)
c5aa993b 2299 return 2; /* A < B */
c906108c 2300 else
c5aa993b 2301 return 0; /* A == B */
c906108c
SS
2302 }
2303}
2304
7ba81444
MS
2305/* Rank a function by comparing its parameter types (PARMS, length
2306 NPARMS), to the types of an argument list (ARGS, length NARGS).
2307 Return a pointer to a badness vector. This has NARGS + 1
2308 entries. */
c906108c
SS
2309
2310struct badness_vector *
7ba81444 2311rank_function (struct type **parms, int nparms,
da096638 2312 struct value **args, int nargs)
c906108c
SS
2313{
2314 int i;
c5aa993b 2315 struct badness_vector *bv;
c906108c
SS
2316 int min_len = nparms < nargs ? nparms : nargs;
2317
2318 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2319 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2320 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2321
2322 /* First compare the lengths of the supplied lists.
7ba81444 2323 If there is a mismatch, set it to a high value. */
c5aa993b 2324
c906108c 2325 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2326 arguments and ellipsis parameter lists, we should consider those
2327 and rank the length-match more finely. */
c906108c 2328
6403aeea
SW
2329 LENGTH_MATCH (bv) = (nargs != nparms)
2330 ? LENGTH_MISMATCH_BADNESS
2331 : EXACT_MATCH_BADNESS;
c906108c 2332
0963b4bd 2333 /* Now rank all the parameters of the candidate function. */
74cc24b0 2334 for (i = 1; i <= min_len; i++)
da096638
KS
2335 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2336 args[i - 1]);
c906108c 2337
0963b4bd 2338 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2339 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2340 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2341
2342 return bv;
2343}
2344
973ccf8b
DJ
2345/* Compare the names of two integer types, assuming that any sign
2346 qualifiers have been checked already. We do it this way because
2347 there may be an "int" in the name of one of the types. */
2348
2349static int
2350integer_types_same_name_p (const char *first, const char *second)
2351{
2352 int first_p, second_p;
2353
7ba81444
MS
2354 /* If both are shorts, return 1; if neither is a short, keep
2355 checking. */
973ccf8b
DJ
2356 first_p = (strstr (first, "short") != NULL);
2357 second_p = (strstr (second, "short") != NULL);
2358 if (first_p && second_p)
2359 return 1;
2360 if (first_p || second_p)
2361 return 0;
2362
2363 /* Likewise for long. */
2364 first_p = (strstr (first, "long") != NULL);
2365 second_p = (strstr (second, "long") != NULL);
2366 if (first_p && second_p)
2367 return 1;
2368 if (first_p || second_p)
2369 return 0;
2370
2371 /* Likewise for char. */
2372 first_p = (strstr (first, "char") != NULL);
2373 second_p = (strstr (second, "char") != NULL);
2374 if (first_p && second_p)
2375 return 1;
2376 if (first_p || second_p)
2377 return 0;
2378
2379 /* They must both be ints. */
2380 return 1;
2381}
2382
7062b0a0
SW
2383/* Compares type A to type B returns 1 if the represent the same type
2384 0 otherwise. */
2385
2386static int
2387types_equal (struct type *a, struct type *b)
2388{
2389 /* Identical type pointers. */
2390 /* However, this still doesn't catch all cases of same type for b
2391 and a. The reason is that builtin types are different from
2392 the same ones constructed from the object. */
2393 if (a == b)
2394 return 1;
2395
2396 /* Resolve typedefs */
2397 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2398 a = check_typedef (a);
2399 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2400 b = check_typedef (b);
2401
2402 /* If after resolving typedefs a and b are not of the same type
2403 code then they are not equal. */
2404 if (TYPE_CODE (a) != TYPE_CODE (b))
2405 return 0;
2406
2407 /* If a and b are both pointers types or both reference types then
2408 they are equal of the same type iff the objects they refer to are
2409 of the same type. */
2410 if (TYPE_CODE (a) == TYPE_CODE_PTR
2411 || TYPE_CODE (a) == TYPE_CODE_REF)
2412 return types_equal (TYPE_TARGET_TYPE (a),
2413 TYPE_TARGET_TYPE (b));
2414
0963b4bd 2415 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2416 are exactly the same. This happens when we generate method
2417 stubs. The types won't point to the same address, but they
0963b4bd 2418 really are the same. */
7062b0a0
SW
2419
2420 if (TYPE_NAME (a) && TYPE_NAME (b)
2421 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2422 return 1;
2423
2424 /* Check if identical after resolving typedefs. */
2425 if (a == b)
2426 return 1;
2427
2428 return 0;
2429}
2430
c906108c
SS
2431/* Compare one type (PARM) for compatibility with another (ARG).
2432 * PARM is intended to be the parameter type of a function; and
2433 * ARG is the supplied argument's type. This function tests if
2434 * the latter can be converted to the former.
da096638 2435 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2436 *
2437 * Return 0 if they are identical types;
2438 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2439 * PARM is to ARG. The higher the return value, the worse the match.
2440 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2441
6403aeea 2442struct rank
da096638 2443rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2444{
a9d5ef47 2445 struct rank rank = {0,0};
7062b0a0
SW
2446
2447 if (types_equal (parm, arg))
6403aeea 2448 return EXACT_MATCH_BADNESS;
c906108c
SS
2449
2450 /* Resolve typedefs */
2451 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2452 parm = check_typedef (parm);
2453 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2454 arg = check_typedef (arg);
2455
db577aea 2456 /* See through references, since we can almost make non-references
7ba81444 2457 references. */
db577aea 2458 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2459 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2460 REFERENCE_CONVERSION_BADNESS));
db577aea 2461 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2462 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2463 REFERENCE_CONVERSION_BADNESS));
5d161b24 2464 if (overload_debug)
7ba81444
MS
2465 /* Debugging only. */
2466 fprintf_filtered (gdb_stderr,
2467 "------ Arg is %s [%d], parm is %s [%d]\n",
2468 TYPE_NAME (arg), TYPE_CODE (arg),
2469 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2470
0963b4bd 2471 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2472
2473 switch (TYPE_CODE (parm))
2474 {
c5aa993b
JM
2475 case TYPE_CODE_PTR:
2476 switch (TYPE_CODE (arg))
2477 {
2478 case TYPE_CODE_PTR:
7062b0a0
SW
2479
2480 /* Allowed pointer conversions are:
2481 (a) pointer to void-pointer conversion. */
2482 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2483 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2484
2485 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2486 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2487 TYPE_TARGET_TYPE (arg),
2488 0);
2489 if (rank.subrank >= 0)
2490 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2491
2492 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2493 case TYPE_CODE_ARRAY:
7062b0a0
SW
2494 if (types_equal (TYPE_TARGET_TYPE (parm),
2495 TYPE_TARGET_TYPE (arg)))
6403aeea 2496 return EXACT_MATCH_BADNESS;
7062b0a0 2497 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2498 case TYPE_CODE_FUNC:
da096638 2499 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2500 case TYPE_CODE_INT:
da096638
KS
2501 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2502 && value_as_long (value) == 0)
2503 {
2504 /* Null pointer conversion: allow it to be cast to a pointer.
2505 [4.10.1 of C++ standard draft n3290] */
2506 return NULL_POINTER_CONVERSION_BADNESS;
2507 }
2508 /* fall through */
c5aa993b 2509 case TYPE_CODE_ENUM:
4f2aea11 2510 case TYPE_CODE_FLAGS:
c5aa993b
JM
2511 case TYPE_CODE_CHAR:
2512 case TYPE_CODE_RANGE:
2513 case TYPE_CODE_BOOL:
c5aa993b
JM
2514 default:
2515 return INCOMPATIBLE_TYPE_BADNESS;
2516 }
2517 case TYPE_CODE_ARRAY:
2518 switch (TYPE_CODE (arg))
2519 {
2520 case TYPE_CODE_PTR:
2521 case TYPE_CODE_ARRAY:
7ba81444 2522 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 2523 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2524 default:
2525 return INCOMPATIBLE_TYPE_BADNESS;
2526 }
2527 case TYPE_CODE_FUNC:
2528 switch (TYPE_CODE (arg))
2529 {
2530 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 2531 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2532 default:
2533 return INCOMPATIBLE_TYPE_BADNESS;
2534 }
2535 case TYPE_CODE_INT:
2536 switch (TYPE_CODE (arg))
2537 {
2538 case TYPE_CODE_INT:
2539 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2540 {
2541 /* Deal with signed, unsigned, and plain chars and
7ba81444 2542 signed and unsigned ints. */
c5aa993b
JM
2543 if (TYPE_NOSIGN (parm))
2544 {
0963b4bd 2545 /* This case only for character types. */
7ba81444 2546 if (TYPE_NOSIGN (arg))
6403aeea 2547 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2548 else /* signed/unsigned char -> plain char */
2549 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2550 }
2551 else if (TYPE_UNSIGNED (parm))
2552 {
2553 if (TYPE_UNSIGNED (arg))
2554 {
7ba81444
MS
2555 /* unsigned int -> unsigned int, or
2556 unsigned long -> unsigned long */
2557 if (integer_types_same_name_p (TYPE_NAME (parm),
2558 TYPE_NAME (arg)))
6403aeea 2559 return EXACT_MATCH_BADNESS;
7ba81444
MS
2560 else if (integer_types_same_name_p (TYPE_NAME (arg),
2561 "int")
2562 && integer_types_same_name_p (TYPE_NAME (parm),
2563 "long"))
3e43a32a
MS
2564 /* unsigned int -> unsigned long */
2565 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2566 else
3e43a32a
MS
2567 /* unsigned long -> unsigned int */
2568 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2569 }
2570 else
2571 {
7ba81444
MS
2572 if (integer_types_same_name_p (TYPE_NAME (arg),
2573 "long")
2574 && integer_types_same_name_p (TYPE_NAME (parm),
2575 "int"))
3e43a32a
MS
2576 /* signed long -> unsigned int */
2577 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2578 else
3e43a32a
MS
2579 /* signed int/long -> unsigned int/long */
2580 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2581 }
2582 }
2583 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2584 {
7ba81444
MS
2585 if (integer_types_same_name_p (TYPE_NAME (parm),
2586 TYPE_NAME (arg)))
6403aeea 2587 return EXACT_MATCH_BADNESS;
7ba81444
MS
2588 else if (integer_types_same_name_p (TYPE_NAME (arg),
2589 "int")
2590 && integer_types_same_name_p (TYPE_NAME (parm),
2591 "long"))
c5aa993b
JM
2592 return INTEGER_PROMOTION_BADNESS;
2593 else
1c5cb38e 2594 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2595 }
2596 else
1c5cb38e 2597 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2598 }
2599 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2600 return INTEGER_PROMOTION_BADNESS;
2601 else
1c5cb38e 2602 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2603 case TYPE_CODE_ENUM:
4f2aea11 2604 case TYPE_CODE_FLAGS:
c5aa993b
JM
2605 case TYPE_CODE_CHAR:
2606 case TYPE_CODE_RANGE:
2607 case TYPE_CODE_BOOL:
2608 return INTEGER_PROMOTION_BADNESS;
2609 case TYPE_CODE_FLT:
2610 return INT_FLOAT_CONVERSION_BADNESS;
2611 case TYPE_CODE_PTR:
2612 return NS_POINTER_CONVERSION_BADNESS;
2613 default:
2614 return INCOMPATIBLE_TYPE_BADNESS;
2615 }
2616 break;
2617 case TYPE_CODE_ENUM:
2618 switch (TYPE_CODE (arg))
2619 {
2620 case TYPE_CODE_INT:
2621 case TYPE_CODE_CHAR:
2622 case TYPE_CODE_RANGE:
2623 case TYPE_CODE_BOOL:
2624 case TYPE_CODE_ENUM:
1c5cb38e 2625 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2626 case TYPE_CODE_FLT:
2627 return INT_FLOAT_CONVERSION_BADNESS;
2628 default:
2629 return INCOMPATIBLE_TYPE_BADNESS;
2630 }
2631 break;
2632 case TYPE_CODE_CHAR:
2633 switch (TYPE_CODE (arg))
2634 {
2635 case TYPE_CODE_RANGE:
2636 case TYPE_CODE_BOOL:
2637 case TYPE_CODE_ENUM:
1c5cb38e 2638 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2639 case TYPE_CODE_FLT:
2640 return INT_FLOAT_CONVERSION_BADNESS;
2641 case TYPE_CODE_INT:
2642 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2643 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2644 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2645 return INTEGER_PROMOTION_BADNESS;
2646 /* >>> !! else fall through !! <<< */
2647 case TYPE_CODE_CHAR:
7ba81444
MS
2648 /* Deal with signed, unsigned, and plain chars for C++ and
2649 with int cases falling through from previous case. */
c5aa993b
JM
2650 if (TYPE_NOSIGN (parm))
2651 {
2652 if (TYPE_NOSIGN (arg))
6403aeea 2653 return EXACT_MATCH_BADNESS;
c5aa993b 2654 else
1c5cb38e 2655 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2656 }
2657 else if (TYPE_UNSIGNED (parm))
2658 {
2659 if (TYPE_UNSIGNED (arg))
6403aeea 2660 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2661 else
2662 return INTEGER_PROMOTION_BADNESS;
2663 }
2664 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2665 return EXACT_MATCH_BADNESS;
c5aa993b 2666 else
1c5cb38e 2667 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2668 default:
2669 return INCOMPATIBLE_TYPE_BADNESS;
2670 }
2671 break;
2672 case TYPE_CODE_RANGE:
2673 switch (TYPE_CODE (arg))
2674 {
2675 case TYPE_CODE_INT:
2676 case TYPE_CODE_CHAR:
2677 case TYPE_CODE_RANGE:
2678 case TYPE_CODE_BOOL:
2679 case TYPE_CODE_ENUM:
1c5cb38e 2680 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2681 case TYPE_CODE_FLT:
2682 return INT_FLOAT_CONVERSION_BADNESS;
2683 default:
2684 return INCOMPATIBLE_TYPE_BADNESS;
2685 }
2686 break;
2687 case TYPE_CODE_BOOL:
2688 switch (TYPE_CODE (arg))
2689 {
2690 case TYPE_CODE_INT:
2691 case TYPE_CODE_CHAR:
2692 case TYPE_CODE_RANGE:
2693 case TYPE_CODE_ENUM:
2694 case TYPE_CODE_FLT:
026ffab7 2695 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2696 case TYPE_CODE_PTR:
026ffab7 2697 return BOOL_PTR_CONVERSION_BADNESS;
c5aa993b 2698 case TYPE_CODE_BOOL:
6403aeea 2699 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2700 default:
2701 return INCOMPATIBLE_TYPE_BADNESS;
2702 }
2703 break;
2704 case TYPE_CODE_FLT:
2705 switch (TYPE_CODE (arg))
2706 {
2707 case TYPE_CODE_FLT:
2708 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2709 return FLOAT_PROMOTION_BADNESS;
2710 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2711 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2712 else
2713 return FLOAT_CONVERSION_BADNESS;
2714 case TYPE_CODE_INT:
2715 case TYPE_CODE_BOOL:
2716 case TYPE_CODE_ENUM:
2717 case TYPE_CODE_RANGE:
2718 case TYPE_CODE_CHAR:
2719 return INT_FLOAT_CONVERSION_BADNESS;
2720 default:
2721 return INCOMPATIBLE_TYPE_BADNESS;
2722 }
2723 break;
2724 case TYPE_CODE_COMPLEX:
2725 switch (TYPE_CODE (arg))
7ba81444 2726 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2727 case TYPE_CODE_FLT:
2728 return FLOAT_PROMOTION_BADNESS;
2729 case TYPE_CODE_COMPLEX:
6403aeea 2730 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2731 default:
2732 return INCOMPATIBLE_TYPE_BADNESS;
2733 }
2734 break;
2735 case TYPE_CODE_STRUCT:
0963b4bd 2736 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2737 switch (TYPE_CODE (arg))
2738 {
2739 case TYPE_CODE_STRUCT:
2740 /* Check for derivation */
a9d5ef47
SW
2741 rank.subrank = distance_to_ancestor (parm, arg, 0);
2742 if (rank.subrank >= 0)
2743 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2744 /* else fall through */
2745 default:
2746 return INCOMPATIBLE_TYPE_BADNESS;
2747 }
2748 break;
2749 case TYPE_CODE_UNION:
2750 switch (TYPE_CODE (arg))
2751 {
2752 case TYPE_CODE_UNION:
2753 default:
2754 return INCOMPATIBLE_TYPE_BADNESS;
2755 }
2756 break;
0d5de010 2757 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2758 switch (TYPE_CODE (arg))
2759 {
2760 default:
2761 return INCOMPATIBLE_TYPE_BADNESS;
2762 }
2763 break;
2764 case TYPE_CODE_METHOD:
2765 switch (TYPE_CODE (arg))
2766 {
2767
2768 default:
2769 return INCOMPATIBLE_TYPE_BADNESS;
2770 }
2771 break;
2772 case TYPE_CODE_REF:
2773 switch (TYPE_CODE (arg))
2774 {
2775
2776 default:
2777 return INCOMPATIBLE_TYPE_BADNESS;
2778 }
2779
2780 break;
2781 case TYPE_CODE_SET:
2782 switch (TYPE_CODE (arg))
2783 {
2784 /* Not in C++ */
2785 case TYPE_CODE_SET:
7ba81444 2786 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 2787 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
2788 default:
2789 return INCOMPATIBLE_TYPE_BADNESS;
2790 }
2791 break;
2792 case TYPE_CODE_VOID:
2793 default:
2794 return INCOMPATIBLE_TYPE_BADNESS;
2795 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2796}
2797
c5aa993b 2798
0963b4bd 2799/* End of functions for overload resolution. */
c906108c 2800
c906108c 2801static void
fba45db2 2802print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2803{
2804 int bitno;
2805
2806 for (bitno = 0; bitno < nbits; bitno++)
2807 {
2808 if ((bitno % 8) == 0)
2809 {
2810 puts_filtered (" ");
2811 }
2812 if (B_TST (bits, bitno))
a3f17187 2813 printf_filtered (("1"));
c906108c 2814 else
a3f17187 2815 printf_filtered (("0"));
c906108c
SS
2816 }
2817}
2818
ad2f7632 2819/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2820 include it since we may get into a infinitely recursive
2821 situation. */
c906108c
SS
2822
2823static void
ad2f7632 2824print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2825{
2826 if (args != NULL)
2827 {
ad2f7632
DJ
2828 int i;
2829
2830 for (i = 0; i < nargs; i++)
2831 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2832 }
2833}
2834
d6a843b5
JK
2835int
2836field_is_static (struct field *f)
2837{
2838 /* "static" fields are the fields whose location is not relative
2839 to the address of the enclosing struct. It would be nice to
2840 have a dedicated flag that would be set for static fields when
2841 the type is being created. But in practice, checking the field
254e6b9e 2842 loc_kind should give us an accurate answer. */
d6a843b5
JK
2843 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2844 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2845}
2846
c906108c 2847static void
fba45db2 2848dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2849{
2850 int method_idx;
2851 int overload_idx;
2852 struct fn_field *f;
2853
2854 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2855 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2856 printf_filtered ("\n");
2857 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2858 {
2859 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2860 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2861 method_idx,
2862 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2863 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2864 gdb_stdout);
a3f17187 2865 printf_filtered (_(") length %d\n"),
c906108c
SS
2866 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2867 for (overload_idx = 0;
2868 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2869 overload_idx++)
2870 {
2871 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2872 overload_idx,
2873 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2874 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2875 gdb_stdout);
c906108c
SS
2876 printf_filtered (")\n");
2877 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2878 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2879 gdb_stdout);
c906108c
SS
2880 printf_filtered ("\n");
2881
2882 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2883 spaces + 8 + 2);
2884
2885 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2886 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2887 gdb_stdout);
c906108c
SS
2888 printf_filtered ("\n");
2889
ad2f7632 2890 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2891 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2892 overload_idx)),
ad2f7632 2893 spaces);
c906108c 2894 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2895 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2896 gdb_stdout);
c906108c
SS
2897 printf_filtered ("\n");
2898
2899 printfi_filtered (spaces + 8, "is_const %d\n",
2900 TYPE_FN_FIELD_CONST (f, overload_idx));
2901 printfi_filtered (spaces + 8, "is_volatile %d\n",
2902 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2903 printfi_filtered (spaces + 8, "is_private %d\n",
2904 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2905 printfi_filtered (spaces + 8, "is_protected %d\n",
2906 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2907 printfi_filtered (spaces + 8, "is_stub %d\n",
2908 TYPE_FN_FIELD_STUB (f, overload_idx));
2909 printfi_filtered (spaces + 8, "voffset %u\n",
2910 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2911 }
2912 }
2913}
2914
2915static void
fba45db2 2916print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2917{
2918 printfi_filtered (spaces, "n_baseclasses %d\n",
2919 TYPE_N_BASECLASSES (type));
2920 printfi_filtered (spaces, "nfn_fields %d\n",
2921 TYPE_NFN_FIELDS (type));
c906108c
SS
2922 if (TYPE_N_BASECLASSES (type) > 0)
2923 {
2924 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2925 TYPE_N_BASECLASSES (type));
7ba81444
MS
2926 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2927 gdb_stdout);
c906108c
SS
2928 printf_filtered (")");
2929
2930 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2931 TYPE_N_BASECLASSES (type));
2932 puts_filtered ("\n");
2933 }
2934 if (TYPE_NFIELDS (type) > 0)
2935 {
2936 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2937 {
7ba81444
MS
2938 printfi_filtered (spaces,
2939 "private_field_bits (%d bits at *",
c906108c 2940 TYPE_NFIELDS (type));
7ba81444
MS
2941 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2942 gdb_stdout);
c906108c
SS
2943 printf_filtered (")");
2944 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2945 TYPE_NFIELDS (type));
2946 puts_filtered ("\n");
2947 }
2948 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2949 {
7ba81444
MS
2950 printfi_filtered (spaces,
2951 "protected_field_bits (%d bits at *",
c906108c 2952 TYPE_NFIELDS (type));
7ba81444
MS
2953 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2954 gdb_stdout);
c906108c
SS
2955 printf_filtered (")");
2956 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2957 TYPE_NFIELDS (type));
2958 puts_filtered ("\n");
2959 }
2960 }
2961 if (TYPE_NFN_FIELDS (type) > 0)
2962 {
2963 dump_fn_fieldlists (type, spaces);
2964 }
2965}
2966
b4ba55a1
JB
2967/* Print the contents of the TYPE's type_specific union, assuming that
2968 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2969
2970static void
2971print_gnat_stuff (struct type *type, int spaces)
2972{
2973 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2974
2975 recursive_dump_type (descriptive_type, spaces + 2);
2976}
2977
c906108c
SS
2978static struct obstack dont_print_type_obstack;
2979
2980void
fba45db2 2981recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2982{
2983 int idx;
2984
2985 if (spaces == 0)
2986 obstack_begin (&dont_print_type_obstack, 0);
2987
2988 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2989 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2990 {
2991 struct type **first_dont_print
7ba81444 2992 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2993
7ba81444
MS
2994 int i = (struct type **)
2995 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2996
2997 while (--i >= 0)
2998 {
2999 if (type == first_dont_print[i])
3000 {
3001 printfi_filtered (spaces, "type node ");
d4f3574e 3002 gdb_print_host_address (type, gdb_stdout);
a3f17187 3003 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3004 return;
3005 }
3006 }
3007
3008 obstack_ptr_grow (&dont_print_type_obstack, type);
3009 }
3010
3011 printfi_filtered (spaces, "type node ");
d4f3574e 3012 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3013 printf_filtered ("\n");
3014 printfi_filtered (spaces, "name '%s' (",
3015 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3016 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3017 printf_filtered (")\n");
e9e79dd9
FF
3018 printfi_filtered (spaces, "tagname '%s' (",
3019 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3020 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3021 printf_filtered (")\n");
c906108c
SS
3022 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3023 switch (TYPE_CODE (type))
3024 {
c5aa993b
JM
3025 case TYPE_CODE_UNDEF:
3026 printf_filtered ("(TYPE_CODE_UNDEF)");
3027 break;
3028 case TYPE_CODE_PTR:
3029 printf_filtered ("(TYPE_CODE_PTR)");
3030 break;
3031 case TYPE_CODE_ARRAY:
3032 printf_filtered ("(TYPE_CODE_ARRAY)");
3033 break;
3034 case TYPE_CODE_STRUCT:
3035 printf_filtered ("(TYPE_CODE_STRUCT)");
3036 break;
3037 case TYPE_CODE_UNION:
3038 printf_filtered ("(TYPE_CODE_UNION)");
3039 break;
3040 case TYPE_CODE_ENUM:
3041 printf_filtered ("(TYPE_CODE_ENUM)");
3042 break;
4f2aea11
MK
3043 case TYPE_CODE_FLAGS:
3044 printf_filtered ("(TYPE_CODE_FLAGS)");
3045 break;
c5aa993b
JM
3046 case TYPE_CODE_FUNC:
3047 printf_filtered ("(TYPE_CODE_FUNC)");
3048 break;
3049 case TYPE_CODE_INT:
3050 printf_filtered ("(TYPE_CODE_INT)");
3051 break;
3052 case TYPE_CODE_FLT:
3053 printf_filtered ("(TYPE_CODE_FLT)");
3054 break;
3055 case TYPE_CODE_VOID:
3056 printf_filtered ("(TYPE_CODE_VOID)");
3057 break;
3058 case TYPE_CODE_SET:
3059 printf_filtered ("(TYPE_CODE_SET)");
3060 break;
3061 case TYPE_CODE_RANGE:
3062 printf_filtered ("(TYPE_CODE_RANGE)");
3063 break;
3064 case TYPE_CODE_STRING:
3065 printf_filtered ("(TYPE_CODE_STRING)");
3066 break;
e9e79dd9
FF
3067 case TYPE_CODE_BITSTRING:
3068 printf_filtered ("(TYPE_CODE_BITSTRING)");
3069 break;
c5aa993b
JM
3070 case TYPE_CODE_ERROR:
3071 printf_filtered ("(TYPE_CODE_ERROR)");
3072 break;
0d5de010
DJ
3073 case TYPE_CODE_MEMBERPTR:
3074 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3075 break;
3076 case TYPE_CODE_METHODPTR:
3077 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3078 break;
3079 case TYPE_CODE_METHOD:
3080 printf_filtered ("(TYPE_CODE_METHOD)");
3081 break;
3082 case TYPE_CODE_REF:
3083 printf_filtered ("(TYPE_CODE_REF)");
3084 break;
3085 case TYPE_CODE_CHAR:
3086 printf_filtered ("(TYPE_CODE_CHAR)");
3087 break;
3088 case TYPE_CODE_BOOL:
3089 printf_filtered ("(TYPE_CODE_BOOL)");
3090 break;
e9e79dd9
FF
3091 case TYPE_CODE_COMPLEX:
3092 printf_filtered ("(TYPE_CODE_COMPLEX)");
3093 break;
c5aa993b
JM
3094 case TYPE_CODE_TYPEDEF:
3095 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3096 break;
5c4e30ca
DC
3097 case TYPE_CODE_NAMESPACE:
3098 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3099 break;
c5aa993b
JM
3100 default:
3101 printf_filtered ("(UNKNOWN TYPE CODE)");
3102 break;
c906108c
SS
3103 }
3104 puts_filtered ("\n");
3105 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3106 if (TYPE_OBJFILE_OWNED (type))
3107 {
3108 printfi_filtered (spaces, "objfile ");
3109 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3110 }
3111 else
3112 {
3113 printfi_filtered (spaces, "gdbarch ");
3114 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3115 }
c906108c
SS
3116 printf_filtered ("\n");
3117 printfi_filtered (spaces, "target_type ");
d4f3574e 3118 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3119 printf_filtered ("\n");
3120 if (TYPE_TARGET_TYPE (type) != NULL)
3121 {
3122 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3123 }
3124 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3125 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3126 printf_filtered ("\n");
3127 printfi_filtered (spaces, "reference_type ");
d4f3574e 3128 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3129 printf_filtered ("\n");
2fdde8f8
DJ
3130 printfi_filtered (spaces, "type_chain ");
3131 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3132 printf_filtered ("\n");
7ba81444
MS
3133 printfi_filtered (spaces, "instance_flags 0x%x",
3134 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3135 if (TYPE_CONST (type))
3136 {
3137 puts_filtered (" TYPE_FLAG_CONST");
3138 }
3139 if (TYPE_VOLATILE (type))
3140 {
3141 puts_filtered (" TYPE_FLAG_VOLATILE");
3142 }
3143 if (TYPE_CODE_SPACE (type))
3144 {
3145 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3146 }
3147 if (TYPE_DATA_SPACE (type))
3148 {
3149 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3150 }
8b2dbe47
KB
3151 if (TYPE_ADDRESS_CLASS_1 (type))
3152 {
3153 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3154 }
3155 if (TYPE_ADDRESS_CLASS_2 (type))
3156 {
3157 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3158 }
2fdde8f8 3159 puts_filtered ("\n");
876cecd0
TT
3160
3161 printfi_filtered (spaces, "flags");
762a036f 3162 if (TYPE_UNSIGNED (type))
c906108c
SS
3163 {
3164 puts_filtered (" TYPE_FLAG_UNSIGNED");
3165 }
762a036f
FF
3166 if (TYPE_NOSIGN (type))
3167 {
3168 puts_filtered (" TYPE_FLAG_NOSIGN");
3169 }
3170 if (TYPE_STUB (type))
c906108c
SS
3171 {
3172 puts_filtered (" TYPE_FLAG_STUB");
3173 }
762a036f
FF
3174 if (TYPE_TARGET_STUB (type))
3175 {
3176 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3177 }
3178 if (TYPE_STATIC (type))
3179 {
3180 puts_filtered (" TYPE_FLAG_STATIC");
3181 }
762a036f
FF
3182 if (TYPE_PROTOTYPED (type))
3183 {
3184 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3185 }
3186 if (TYPE_INCOMPLETE (type))
3187 {
3188 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3189 }
762a036f
FF
3190 if (TYPE_VARARGS (type))
3191 {
3192 puts_filtered (" TYPE_FLAG_VARARGS");
3193 }
f5f8a009
EZ
3194 /* This is used for things like AltiVec registers on ppc. Gcc emits
3195 an attribute for the array type, which tells whether or not we
3196 have a vector, instead of a regular array. */
3197 if (TYPE_VECTOR (type))
3198 {
3199 puts_filtered (" TYPE_FLAG_VECTOR");
3200 }
876cecd0
TT
3201 if (TYPE_FIXED_INSTANCE (type))
3202 {
3203 puts_filtered (" TYPE_FIXED_INSTANCE");
3204 }
3205 if (TYPE_STUB_SUPPORTED (type))
3206 {
3207 puts_filtered (" TYPE_STUB_SUPPORTED");
3208 }
3209 if (TYPE_NOTTEXT (type))
3210 {
3211 puts_filtered (" TYPE_NOTTEXT");
3212 }
c906108c
SS
3213 puts_filtered ("\n");
3214 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3215 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3216 puts_filtered ("\n");
3217 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3218 {
14e75d8e
JK
3219 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3220 printfi_filtered (spaces + 2,
3221 "[%d] enumval %s type ",
3222 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3223 else
3224 printfi_filtered (spaces + 2,
3225 "[%d] bitpos %d bitsize %d type ",
3226 idx, TYPE_FIELD_BITPOS (type, idx),
3227 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3228 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3229 printf_filtered (" name '%s' (",
3230 TYPE_FIELD_NAME (type, idx) != NULL
3231 ? TYPE_FIELD_NAME (type, idx)
3232 : "<NULL>");
d4f3574e 3233 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3234 printf_filtered (")\n");
3235 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3236 {
3237 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3238 }
3239 }
43bbcdc2
PH
3240 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3241 {
3242 printfi_filtered (spaces, "low %s%s high %s%s\n",
3243 plongest (TYPE_LOW_BOUND (type)),
3244 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3245 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3246 TYPE_HIGH_BOUND_UNDEFINED (type)
3247 ? " (undefined)" : "");
43bbcdc2 3248 }
c906108c 3249 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3250 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3251 puts_filtered ("\n");
3252 if (TYPE_VPTR_BASETYPE (type) != NULL)
3253 {
3254 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3255 }
7ba81444
MS
3256 printfi_filtered (spaces, "vptr_fieldno %d\n",
3257 TYPE_VPTR_FIELDNO (type));
c906108c 3258
b4ba55a1
JB
3259 switch (TYPE_SPECIFIC_FIELD (type))
3260 {
3261 case TYPE_SPECIFIC_CPLUS_STUFF:
3262 printfi_filtered (spaces, "cplus_stuff ");
3263 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3264 gdb_stdout);
3265 puts_filtered ("\n");
3266 print_cplus_stuff (type, spaces);
3267 break;
8da61cc4 3268
b4ba55a1
JB
3269 case TYPE_SPECIFIC_GNAT_STUFF:
3270 printfi_filtered (spaces, "gnat_stuff ");
3271 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3272 puts_filtered ("\n");
3273 print_gnat_stuff (type, spaces);
3274 break;
701c159d 3275
b4ba55a1
JB
3276 case TYPE_SPECIFIC_FLOATFORMAT:
3277 printfi_filtered (spaces, "floatformat ");
3278 if (TYPE_FLOATFORMAT (type) == NULL)
3279 puts_filtered ("(null)");
3280 else
3281 {
3282 puts_filtered ("{ ");
3283 if (TYPE_FLOATFORMAT (type)[0] == NULL
3284 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3285 puts_filtered ("(null)");
3286 else
3287 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3288
3289 puts_filtered (", ");
3290 if (TYPE_FLOATFORMAT (type)[1] == NULL
3291 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3292 puts_filtered ("(null)");
3293 else
3294 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3295
3296 puts_filtered (" }");
3297 }
3298 puts_filtered ("\n");
3299 break;
c906108c 3300
b6cdc2c1 3301 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3302 printfi_filtered (spaces, "calling_convention %d\n",
3303 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3304 /* tail_call_list is not printed. */
b4ba55a1 3305 break;
c906108c 3306 }
b4ba55a1 3307
c906108c
SS
3308 if (spaces == 0)
3309 obstack_free (&dont_print_type_obstack, NULL);
3310}
3311
ae5a43e0
DJ
3312/* Trivial helpers for the libiberty hash table, for mapping one
3313 type to another. */
3314
3315struct type_pair
3316{
3317 struct type *old, *new;
3318};
3319
3320static hashval_t
3321type_pair_hash (const void *item)
3322{
3323 const struct type_pair *pair = item;
d8734c88 3324
ae5a43e0
DJ
3325 return htab_hash_pointer (pair->old);
3326}
3327
3328static int
3329type_pair_eq (const void *item_lhs, const void *item_rhs)
3330{
3331 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3332
ae5a43e0
DJ
3333 return lhs->old == rhs->old;
3334}
3335
3336/* Allocate the hash table used by copy_type_recursive to walk
3337 types without duplicates. We use OBJFILE's obstack, because
3338 OBJFILE is about to be deleted. */
3339
3340htab_t
3341create_copied_types_hash (struct objfile *objfile)
3342{
3343 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3344 NULL, &objfile->objfile_obstack,
3345 hashtab_obstack_allocate,
3346 dummy_obstack_deallocate);
3347}
3348
7ba81444
MS
3349/* Recursively copy (deep copy) TYPE, if it is associated with
3350 OBJFILE. Return a new type allocated using malloc, a saved type if
3351 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3352 not associated with OBJFILE. */
ae5a43e0
DJ
3353
3354struct type *
7ba81444
MS
3355copy_type_recursive (struct objfile *objfile,
3356 struct type *type,
ae5a43e0
DJ
3357 htab_t copied_types)
3358{
3359 struct type_pair *stored, pair;
3360 void **slot;
3361 struct type *new_type;
3362
e9bb382b 3363 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3364 return type;
3365
7ba81444
MS
3366 /* This type shouldn't be pointing to any types in other objfiles;
3367 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3368 gdb_assert (TYPE_OBJFILE (type) == objfile);
3369
3370 pair.old = type;
3371 slot = htab_find_slot (copied_types, &pair, INSERT);
3372 if (*slot != NULL)
3373 return ((struct type_pair *) *slot)->new;
3374
e9bb382b 3375 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3376
3377 /* We must add the new type to the hash table immediately, in case
3378 we encounter this type again during a recursive call below. */
3e43a32a
MS
3379 stored
3380 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3381 stored->old = type;
3382 stored->new = new_type;
3383 *slot = stored;
3384
876cecd0
TT
3385 /* Copy the common fields of types. For the main type, we simply
3386 copy the entire thing and then update specific fields as needed. */
3387 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3388 TYPE_OBJFILE_OWNED (new_type) = 0;
3389 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3390
ae5a43e0
DJ
3391 if (TYPE_NAME (type))
3392 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3393 if (TYPE_TAG_NAME (type))
3394 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3395
3396 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3397 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3398
3399 /* Copy the fields. */
ae5a43e0
DJ
3400 if (TYPE_NFIELDS (type))
3401 {
3402 int i, nfields;
3403
3404 nfields = TYPE_NFIELDS (type);
1deafd4e 3405 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3406 for (i = 0; i < nfields; i++)
3407 {
7ba81444
MS
3408 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3409 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3410 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3411 if (TYPE_FIELD_TYPE (type, i))
3412 TYPE_FIELD_TYPE (new_type, i)
3413 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3414 copied_types);
3415 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3416 TYPE_FIELD_NAME (new_type, i) =
3417 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3418 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3419 {
d6a843b5
JK
3420 case FIELD_LOC_KIND_BITPOS:
3421 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3422 TYPE_FIELD_BITPOS (type, i));
3423 break;
14e75d8e
JK
3424 case FIELD_LOC_KIND_ENUMVAL:
3425 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3426 TYPE_FIELD_ENUMVAL (type, i));
3427 break;
d6a843b5
JK
3428 case FIELD_LOC_KIND_PHYSADDR:
3429 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3430 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3431 break;
3432 case FIELD_LOC_KIND_PHYSNAME:
3433 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3434 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3435 i)));
3436 break;
3437 default:
3438 internal_error (__FILE__, __LINE__,
3439 _("Unexpected type field location kind: %d"),
3440 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3441 }
3442 }
3443 }
3444
0963b4bd 3445 /* For range types, copy the bounds information. */
43bbcdc2
PH
3446 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3447 {
3448 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3449 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3450 }
3451
ae5a43e0
DJ
3452 /* Copy pointers to other types. */
3453 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3454 TYPE_TARGET_TYPE (new_type) =
3455 copy_type_recursive (objfile,
3456 TYPE_TARGET_TYPE (type),
3457 copied_types);
ae5a43e0 3458 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3459 TYPE_VPTR_BASETYPE (new_type) =
3460 copy_type_recursive (objfile,
3461 TYPE_VPTR_BASETYPE (type),
3462 copied_types);
ae5a43e0
DJ
3463 /* Maybe copy the type_specific bits.
3464
3465 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3466 base classes and methods. There's no fundamental reason why we
3467 can't, but at the moment it is not needed. */
3468
3469 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3470 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3471 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3472 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3473 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3474 INIT_CPLUS_SPECIFIC (new_type);
3475
3476 return new_type;
3477}
3478
4af88198
JB
3479/* Make a copy of the given TYPE, except that the pointer & reference
3480 types are not preserved.
3481
3482 This function assumes that the given type has an associated objfile.
3483 This objfile is used to allocate the new type. */
3484
3485struct type *
3486copy_type (const struct type *type)
3487{
3488 struct type *new_type;
3489
e9bb382b 3490 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3491
e9bb382b 3492 new_type = alloc_type_copy (type);
4af88198
JB
3493 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3494 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3495 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3496 sizeof (struct main_type));
3497
3498 return new_type;
3499}
3500
e9bb382b
UW
3501
3502/* Helper functions to initialize architecture-specific types. */
3503
3504/* Allocate a type structure associated with GDBARCH and set its
3505 CODE, LENGTH, and NAME fields. */
3506struct type *
3507arch_type (struct gdbarch *gdbarch,
3508 enum type_code code, int length, char *name)
3509{
3510 struct type *type;
3511
3512 type = alloc_type_arch (gdbarch);
3513 TYPE_CODE (type) = code;
3514 TYPE_LENGTH (type) = length;
3515
3516 if (name)
3517 TYPE_NAME (type) = xstrdup (name);
3518
3519 return type;
3520}
3521
3522/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3523 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3524 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3525struct type *
3526arch_integer_type (struct gdbarch *gdbarch,
3527 int bit, int unsigned_p, char *name)
3528{
3529 struct type *t;
3530
3531 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3532 if (unsigned_p)
3533 TYPE_UNSIGNED (t) = 1;
3534 if (name && strcmp (name, "char") == 0)
3535 TYPE_NOSIGN (t) = 1;
3536
3537 return t;
3538}
3539
3540/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3541 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3542 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3543struct type *
3544arch_character_type (struct gdbarch *gdbarch,
3545 int bit, int unsigned_p, char *name)
3546{
3547 struct type *t;
3548
3549 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3550 if (unsigned_p)
3551 TYPE_UNSIGNED (t) = 1;
3552
3553 return t;
3554}
3555
3556/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3557 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3558 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3559struct type *
3560arch_boolean_type (struct gdbarch *gdbarch,
3561 int bit, int unsigned_p, char *name)
3562{
3563 struct type *t;
3564
3565 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3566 if (unsigned_p)
3567 TYPE_UNSIGNED (t) = 1;
3568
3569 return t;
3570}
3571
3572/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3573 BIT is the type size in bits; if BIT equals -1, the size is
3574 determined by the floatformat. NAME is the type name. Set the
3575 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3576struct type *
e9bb382b
UW
3577arch_float_type (struct gdbarch *gdbarch,
3578 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3579{
3580 struct type *t;
3581
3582 if (bit == -1)
3583 {
3584 gdb_assert (floatformats != NULL);
3585 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3586 bit = floatformats[0]->totalsize;
3587 }
3588 gdb_assert (bit >= 0);
3589
e9bb382b 3590 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3591 TYPE_FLOATFORMAT (t) = floatformats;
3592 return t;
3593}
3594
e9bb382b
UW
3595/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3596 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3597struct type *
e9bb382b
UW
3598arch_complex_type (struct gdbarch *gdbarch,
3599 char *name, struct type *target_type)
27067745
UW
3600{
3601 struct type *t;
d8734c88 3602
e9bb382b
UW
3603 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3604 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3605 TYPE_TARGET_TYPE (t) = target_type;
3606 return t;
3607}
3608
e9bb382b 3609/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3610 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3611struct type *
3612arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3613{
3614 int nfields = length * TARGET_CHAR_BIT;
3615 struct type *type;
3616
3617 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3618 TYPE_UNSIGNED (type) = 1;
3619 TYPE_NFIELDS (type) = nfields;
3620 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3621
3622 return type;
3623}
3624
3625/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3626 position BITPOS is called NAME. */
3627void
3628append_flags_type_flag (struct type *type, int bitpos, char *name)
3629{
3630 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3631 gdb_assert (bitpos < TYPE_NFIELDS (type));
3632 gdb_assert (bitpos >= 0);
3633
3634 if (name)
3635 {
3636 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 3637 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
3638 }
3639 else
3640 {
3641 /* Don't show this field to the user. */
945b3a32 3642 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
3643 }
3644}
3645
3646/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3647 specified by CODE) associated with GDBARCH. NAME is the type name. */
3648struct type *
3649arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3650{
3651 struct type *t;
d8734c88 3652
e9bb382b
UW
3653 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3654 t = arch_type (gdbarch, code, 0, NULL);
3655 TYPE_TAG_NAME (t) = name;
3656 INIT_CPLUS_SPECIFIC (t);
3657 return t;
3658}
3659
3660/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3661 Do not set the field's position or adjust the type's length;
3662 the caller should do so. Return the new field. */
3663struct field *
3664append_composite_type_field_raw (struct type *t, char *name,
3665 struct type *field)
e9bb382b
UW
3666{
3667 struct field *f;
d8734c88 3668
e9bb382b
UW
3669 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3670 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3671 sizeof (struct field) * TYPE_NFIELDS (t));
3672 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3673 memset (f, 0, sizeof f[0]);
3674 FIELD_TYPE (f[0]) = field;
3675 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3676 return f;
3677}
3678
3679/* Add new field with name NAME and type FIELD to composite type T.
3680 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3681void
3682append_composite_type_field_aligned (struct type *t, char *name,
3683 struct type *field, int alignment)
3684{
3685 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3686
e9bb382b
UW
3687 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3688 {
3689 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3690 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3691 }
3692 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3693 {
3694 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3695 if (TYPE_NFIELDS (t) > 1)
3696 {
f41f5e61
PA
3697 SET_FIELD_BITPOS (f[0],
3698 (FIELD_BITPOS (f[-1])
3699 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3700 * TARGET_CHAR_BIT)));
e9bb382b
UW
3701
3702 if (alignment)
3703 {
86c3c1fc
AB
3704 int left;
3705
3706 alignment *= TARGET_CHAR_BIT;
3707 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3708
e9bb382b
UW
3709 if (left)
3710 {
f41f5e61 3711 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 3712 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3713 }
3714 }
3715 }
3716 }
3717}
3718
3719/* Add new field with name NAME and type FIELD to composite type T. */
3720void
3721append_composite_type_field (struct type *t, char *name,
3722 struct type *field)
3723{
3724 append_composite_type_field_aligned (t, name, field, 0);
3725}
3726
3727
000177f0
AC
3728static struct gdbarch_data *gdbtypes_data;
3729
3730const struct builtin_type *
3731builtin_type (struct gdbarch *gdbarch)
3732{
3733 return gdbarch_data (gdbarch, gdbtypes_data);
3734}
3735
3736static void *
3737gdbtypes_post_init (struct gdbarch *gdbarch)
3738{
3739 struct builtin_type *builtin_type
3740 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3741
46bf5051 3742 /* Basic types. */
e9bb382b
UW
3743 builtin_type->builtin_void
3744 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3745 builtin_type->builtin_char
3746 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3747 !gdbarch_char_signed (gdbarch), "char");
3748 builtin_type->builtin_signed_char
3749 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3750 0, "signed char");
3751 builtin_type->builtin_unsigned_char
3752 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3753 1, "unsigned char");
3754 builtin_type->builtin_short
3755 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3756 0, "short");
3757 builtin_type->builtin_unsigned_short
3758 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3759 1, "unsigned short");
3760 builtin_type->builtin_int
3761 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3762 0, "int");
3763 builtin_type->builtin_unsigned_int
3764 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3765 1, "unsigned int");
3766 builtin_type->builtin_long
3767 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3768 0, "long");
3769 builtin_type->builtin_unsigned_long
3770 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3771 1, "unsigned long");
3772 builtin_type->builtin_long_long
3773 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3774 0, "long long");
3775 builtin_type->builtin_unsigned_long_long
3776 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3777 1, "unsigned long long");
70bd8e24 3778 builtin_type->builtin_float
e9bb382b 3779 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3780 "float", gdbarch_float_format (gdbarch));
70bd8e24 3781 builtin_type->builtin_double
e9bb382b 3782 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3783 "double", gdbarch_double_format (gdbarch));
70bd8e24 3784 builtin_type->builtin_long_double
e9bb382b 3785 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3786 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3787 builtin_type->builtin_complex
e9bb382b
UW
3788 = arch_complex_type (gdbarch, "complex",
3789 builtin_type->builtin_float);
70bd8e24 3790 builtin_type->builtin_double_complex
e9bb382b
UW
3791 = arch_complex_type (gdbarch, "double complex",
3792 builtin_type->builtin_double);
3793 builtin_type->builtin_string
3794 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3795 builtin_type->builtin_bool
3796 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3797
7678ef8f
TJB
3798 /* The following three are about decimal floating point types, which
3799 are 32-bits, 64-bits and 128-bits respectively. */
3800 builtin_type->builtin_decfloat
e9bb382b 3801 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3802 builtin_type->builtin_decdouble
e9bb382b 3803 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3804 builtin_type->builtin_declong
e9bb382b 3805 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3806
69feb676 3807 /* "True" character types. */
e9bb382b
UW
3808 builtin_type->builtin_true_char
3809 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3810 builtin_type->builtin_true_unsigned_char
3811 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3812
df4df182 3813 /* Fixed-size integer types. */
e9bb382b
UW
3814 builtin_type->builtin_int0
3815 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3816 builtin_type->builtin_int8
3817 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3818 builtin_type->builtin_uint8
3819 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3820 builtin_type->builtin_int16
3821 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3822 builtin_type->builtin_uint16
3823 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3824 builtin_type->builtin_int32
3825 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3826 builtin_type->builtin_uint32
3827 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3828 builtin_type->builtin_int64
3829 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3830 builtin_type->builtin_uint64
3831 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3832 builtin_type->builtin_int128
3833 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3834 builtin_type->builtin_uint128
3835 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3836 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3837 TYPE_INSTANCE_FLAG_NOTTEXT;
3838 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3839 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3840
9a22f0d0
PM
3841 /* Wide character types. */
3842 builtin_type->builtin_char16
3843 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3844 builtin_type->builtin_char32
3845 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3846
3847
46bf5051 3848 /* Default data/code pointer types. */
e9bb382b
UW
3849 builtin_type->builtin_data_ptr
3850 = lookup_pointer_type (builtin_type->builtin_void);
3851 builtin_type->builtin_func_ptr
3852 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3853 builtin_type->builtin_func_func
3854 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3855
78267919 3856 /* This type represents a GDB internal function. */
e9bb382b
UW
3857 builtin_type->internal_fn
3858 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3859 "<internal function>");
78267919 3860
46bf5051
UW
3861 return builtin_type;
3862}
3863
3864
3865/* This set of objfile-based types is intended to be used by symbol
3866 readers as basic types. */
3867
3868static const struct objfile_data *objfile_type_data;
3869
3870const struct objfile_type *
3871objfile_type (struct objfile *objfile)
3872{
3873 struct gdbarch *gdbarch;
3874 struct objfile_type *objfile_type
3875 = objfile_data (objfile, objfile_type_data);
3876
3877 if (objfile_type)
3878 return objfile_type;
3879
3880 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3881 1, struct objfile_type);
3882
3883 /* Use the objfile architecture to determine basic type properties. */
3884 gdbarch = get_objfile_arch (objfile);
3885
3886 /* Basic types. */
3887 objfile_type->builtin_void
3888 = init_type (TYPE_CODE_VOID, 1,
3889 0,
3890 "void", objfile);
3891
3892 objfile_type->builtin_char
3893 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3894 (TYPE_FLAG_NOSIGN
3895 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3896 "char", objfile);
3897 objfile_type->builtin_signed_char
3898 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3899 0,
3900 "signed char", objfile);
3901 objfile_type->builtin_unsigned_char
3902 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3903 TYPE_FLAG_UNSIGNED,
3904 "unsigned char", objfile);
3905 objfile_type->builtin_short
3906 = init_type (TYPE_CODE_INT,
3907 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3908 0, "short", objfile);
3909 objfile_type->builtin_unsigned_short
3910 = init_type (TYPE_CODE_INT,
3911 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3912 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3913 objfile_type->builtin_int
3914 = init_type (TYPE_CODE_INT,
3915 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3916 0, "int", objfile);
3917 objfile_type->builtin_unsigned_int
3918 = init_type (TYPE_CODE_INT,
3919 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3920 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3921 objfile_type->builtin_long
3922 = init_type (TYPE_CODE_INT,
3923 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3924 0, "long", objfile);
3925 objfile_type->builtin_unsigned_long
3926 = init_type (TYPE_CODE_INT,
3927 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3928 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3929 objfile_type->builtin_long_long
3930 = init_type (TYPE_CODE_INT,
3931 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3932 0, "long long", objfile);
3933 objfile_type->builtin_unsigned_long_long
3934 = init_type (TYPE_CODE_INT,
3935 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3936 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3937
3938 objfile_type->builtin_float
3939 = init_type (TYPE_CODE_FLT,
3940 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3941 0, "float", objfile);
3942 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3943 = gdbarch_float_format (gdbarch);
3944 objfile_type->builtin_double
3945 = init_type (TYPE_CODE_FLT,
3946 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3947 0, "double", objfile);
3948 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3949 = gdbarch_double_format (gdbarch);
3950 objfile_type->builtin_long_double
3951 = init_type (TYPE_CODE_FLT,
3952 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3953 0, "long double", objfile);
3954 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3955 = gdbarch_long_double_format (gdbarch);
3956
3957 /* This type represents a type that was unrecognized in symbol read-in. */
3958 objfile_type->builtin_error
3959 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3960
3961 /* The following set of types is used for symbols with no
3962 debug information. */
3963 objfile_type->nodebug_text_symbol
3964 = init_type (TYPE_CODE_FUNC, 1, 0,
3965 "<text variable, no debug info>", objfile);
3966 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3967 = objfile_type->builtin_int;
0875794a
JK
3968 objfile_type->nodebug_text_gnu_ifunc_symbol
3969 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3970 "<text gnu-indirect-function variable, no debug info>",
3971 objfile);
3972 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3973 = objfile_type->nodebug_text_symbol;
3974 objfile_type->nodebug_got_plt_symbol
3975 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3976 "<text from jump slot in .got.plt, no debug info>",
3977 objfile);
3978 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3979 = objfile_type->nodebug_text_symbol;
46bf5051
UW
3980 objfile_type->nodebug_data_symbol
3981 = init_type (TYPE_CODE_INT,
3982 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3983 "<data variable, no debug info>", objfile);
3984 objfile_type->nodebug_unknown_symbol
3985 = init_type (TYPE_CODE_INT, 1, 0,
3986 "<variable (not text or data), no debug info>", objfile);
3987 objfile_type->nodebug_tls_symbol
3988 = init_type (TYPE_CODE_INT,
3989 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3990 "<thread local variable, no debug info>", objfile);
000177f0
AC
3991
3992 /* NOTE: on some targets, addresses and pointers are not necessarily
3993 the same --- for example, on the D10V, pointers are 16 bits long,
3994 but addresses are 32 bits long. See doc/gdbint.texinfo,
3995 ``Pointers Are Not Always Addresses''.
3996
3997 The upshot is:
3998 - gdb's `struct type' always describes the target's
3999 representation.
4000 - gdb's `struct value' objects should always hold values in
4001 target form.
4002 - gdb's CORE_ADDR values are addresses in the unified virtual
4003 address space that the assembler and linker work with. Thus,
4004 since target_read_memory takes a CORE_ADDR as an argument, it
4005 can access any memory on the target, even if the processor has
4006 separate code and data address spaces.
4007
4008 So, for example:
4009 - If v is a value holding a D10V code pointer, its contents are
4010 in target form: a big-endian address left-shifted two bits.
4011 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
4012 sizeof (void *) == 2 on the target.
4013
46bf5051
UW
4014 In this context, objfile_type->builtin_core_addr is a bit odd:
4015 it's a target type for a value the target will never see. It's
4016 only used to hold the values of (typeless) linker symbols, which
4017 are indeed in the unified virtual address space. */
000177f0 4018
46bf5051
UW
4019 objfile_type->builtin_core_addr
4020 = init_type (TYPE_CODE_INT,
4021 gdbarch_addr_bit (gdbarch) / 8,
4022 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4023
46bf5051
UW
4024 set_objfile_data (objfile, objfile_type_data, objfile_type);
4025 return objfile_type;
000177f0
AC
4026}
4027
46bf5051 4028
a14ed312 4029extern void _initialize_gdbtypes (void);
c906108c 4030void
fba45db2 4031_initialize_gdbtypes (void)
c906108c 4032{
5674de60 4033 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4034 objfile_type_data = register_objfile_data ();
5674de60 4035
3e43a32a
MS
4036 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
4037 _("Set debugging of C++ overloading."),
4038 _("Show debugging of C++ overloading."),
4039 _("When enabled, ranking of the "
4040 "functions is displayed."),
85c07804 4041 NULL,
920d2a44 4042 show_overload_debug,
85c07804 4043 &setdebuglist, &showdebuglist);
5674de60 4044
7ba81444 4045 /* Add user knob for controlling resolution of opaque types. */
5674de60 4046 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4047 &opaque_type_resolution,
4048 _("Set resolution of opaque struct/class/union"
4049 " types (if set before loading symbols)."),
4050 _("Show resolution of opaque struct/class/union"
4051 " types (if set before loading symbols)."),
4052 NULL, NULL,
5674de60
UW
4053 show_opaque_type_resolution,
4054 &setlist, &showlist);
c906108c 4055}
This page took 1.238768 seconds and 4 git commands to generate.