Fix build failure when building without Python support.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4c38e0a4
JB
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
4f2aea11 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
c91ecb25 38#include "wrapper.h"
015a42b4 39#include "cp-abi.h"
a02fd225 40#include "gdb_assert.h"
ae5a43e0 41#include "hashtab.h"
c906108c 42
ac3aafc7 43
8da61cc4
DJ
44/* Floatformat pairs. */
45const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_single_big,
47 &floatformat_ieee_single_little
48};
49const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_double_big,
51 &floatformat_ieee_double_little
52};
53const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_littlebyte_bigword
56};
57const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_i387_ext,
59 &floatformat_i387_ext
60};
61const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_m68881_ext,
63 &floatformat_m68881_ext
64};
65const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_arm_ext_big,
67 &floatformat_arm_ext_littlebyte_bigword
68};
69const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ia64_spill_big,
71 &floatformat_ia64_spill_little
72};
73const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_quad_big,
75 &floatformat_ia64_quad_little
76};
77const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_vax_f,
79 &floatformat_vax_f
80};
81const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_d,
83 &floatformat_vax_d
84};
b14d30e1
JM
85const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_ibm_long_double,
87 &floatformat_ibm_long_double
88};
8da61cc4 89
8da61cc4 90
c906108c 91int opaque_type_resolution = 1;
920d2a44
AC
92static void
93show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
94 struct cmd_list_element *c,
95 const char *value)
920d2a44
AC
96{
97 fprintf_filtered (file, _("\
98Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
99 value);
100}
101
5d161b24 102int overload_debug = 0;
920d2a44
AC
103static void
104show_overload_debug (struct ui_file *file, int from_tty,
105 struct cmd_list_element *c, const char *value)
106{
7ba81444
MS
107 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
108 value);
920d2a44 109}
c906108c 110
c5aa993b
JM
111struct extra
112 {
113 char str[128];
114 int len;
7ba81444 115 }; /* Maximum extension is 128! FIXME */
c906108c 116
a14ed312 117static void print_bit_vector (B_TYPE *, int);
ad2f7632 118static void print_arg_types (struct field *, int, int);
a14ed312
KB
119static void dump_fn_fieldlists (struct type *, int);
120static void print_cplus_stuff (struct type *, int);
7a292a7a 121
c906108c 122
e9bb382b
UW
123/* Allocate a new OBJFILE-associated type structure and fill it
124 with some defaults. Space for the type structure is allocated
125 on the objfile's objfile_obstack. */
c906108c
SS
126
127struct type *
fba45db2 128alloc_type (struct objfile *objfile)
c906108c 129{
52f0bd74 130 struct type *type;
c906108c 131
e9bb382b
UW
132 gdb_assert (objfile != NULL);
133
7ba81444 134 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
135 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
136 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
137 struct main_type);
138 OBJSTAT (objfile, n_types++);
c906108c 139
e9bb382b
UW
140 TYPE_OBJFILE_OWNED (type) = 1;
141 TYPE_OWNER (type).objfile = objfile;
c906108c 142
7ba81444 143 /* Initialize the fields that might not be zero. */
c906108c
SS
144
145 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 146 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 147 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 148
c16abbde 149 return type;
c906108c
SS
150}
151
e9bb382b
UW
152/* Allocate a new GDBARCH-associated type structure and fill it
153 with some defaults. Space for the type structure is allocated
154 on the heap. */
155
156struct type *
157alloc_type_arch (struct gdbarch *gdbarch)
158{
159 struct type *type;
160
161 gdb_assert (gdbarch != NULL);
162
163 /* Alloc the structure and start off with all fields zeroed. */
164
165 type = XZALLOC (struct type);
166 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
167
168 TYPE_OBJFILE_OWNED (type) = 0;
169 TYPE_OWNER (type).gdbarch = gdbarch;
170
171 /* Initialize the fields that might not be zero. */
172
173 TYPE_CODE (type) = TYPE_CODE_UNDEF;
174 TYPE_VPTR_FIELDNO (type) = -1;
175 TYPE_CHAIN (type) = type; /* Chain back to itself. */
176
177 return type;
178}
179
180/* If TYPE is objfile-associated, allocate a new type structure
181 associated with the same objfile. If TYPE is gdbarch-associated,
182 allocate a new type structure associated with the same gdbarch. */
183
184struct type *
185alloc_type_copy (const struct type *type)
186{
187 if (TYPE_OBJFILE_OWNED (type))
188 return alloc_type (TYPE_OWNER (type).objfile);
189 else
190 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
191}
192
193/* If TYPE is gdbarch-associated, return that architecture.
194 If TYPE is objfile-associated, return that objfile's architecture. */
195
196struct gdbarch *
197get_type_arch (const struct type *type)
198{
199 if (TYPE_OBJFILE_OWNED (type))
200 return get_objfile_arch (TYPE_OWNER (type).objfile);
201 else
202 return TYPE_OWNER (type).gdbarch;
203}
204
205
2fdde8f8
DJ
206/* Alloc a new type instance structure, fill it with some defaults,
207 and point it at OLDTYPE. Allocate the new type instance from the
208 same place as OLDTYPE. */
209
210static struct type *
211alloc_type_instance (struct type *oldtype)
212{
213 struct type *type;
214
215 /* Allocate the structure. */
216
e9bb382b 217 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 218 type = XZALLOC (struct type);
2fdde8f8 219 else
1deafd4e
PA
220 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
221 struct type);
222
2fdde8f8
DJ
223 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
224
225 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
226
c16abbde 227 return type;
2fdde8f8
DJ
228}
229
230/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 231 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
232static void
233smash_type (struct type *type)
234{
e9bb382b
UW
235 int objfile_owned = TYPE_OBJFILE_OWNED (type);
236 union type_owner owner = TYPE_OWNER (type);
237
2fdde8f8
DJ
238 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
239
e9bb382b
UW
240 /* Restore owner information. */
241 TYPE_OBJFILE_OWNED (type) = objfile_owned;
242 TYPE_OWNER (type) = owner;
243
2fdde8f8
DJ
244 /* For now, delete the rings. */
245 TYPE_CHAIN (type) = type;
246
247 /* For now, leave the pointer/reference types alone. */
248}
249
c906108c
SS
250/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
251 to a pointer to memory where the pointer type should be stored.
252 If *TYPEPTR is zero, update it to point to the pointer type we return.
253 We allocate new memory if needed. */
254
255struct type *
fba45db2 256make_pointer_type (struct type *type, struct type **typeptr)
c906108c 257{
52f0bd74 258 struct type *ntype; /* New type */
053cb41b 259 struct type *chain;
c906108c
SS
260
261 ntype = TYPE_POINTER_TYPE (type);
262
c5aa993b 263 if (ntype)
c906108c 264 {
c5aa993b 265 if (typeptr == 0)
7ba81444
MS
266 return ntype; /* Don't care about alloc,
267 and have new type. */
c906108c 268 else if (*typeptr == 0)
c5aa993b 269 {
7ba81444 270 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 271 return ntype;
c5aa993b 272 }
c906108c
SS
273 }
274
275 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
276 {
e9bb382b 277 ntype = alloc_type_copy (type);
c906108c
SS
278 if (typeptr)
279 *typeptr = ntype;
280 }
7ba81444 281 else /* We have storage, but need to reset it. */
c906108c
SS
282 {
283 ntype = *typeptr;
053cb41b 284 chain = TYPE_CHAIN (ntype);
2fdde8f8 285 smash_type (ntype);
053cb41b 286 TYPE_CHAIN (ntype) = chain;
c906108c
SS
287 }
288
289 TYPE_TARGET_TYPE (ntype) = type;
290 TYPE_POINTER_TYPE (type) = ntype;
291
7ba81444
MS
292 /* FIXME! Assume the machine has only one representation for
293 pointers! */
c906108c 294
50810684
UW
295 TYPE_LENGTH (ntype)
296 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
297 TYPE_CODE (ntype) = TYPE_CODE_PTR;
298
67b2adb2 299 /* Mark pointers as unsigned. The target converts between pointers
76e71323 300 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 301 gdbarch_address_to_pointer. */
876cecd0 302 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 303
c906108c
SS
304 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
305 TYPE_POINTER_TYPE (type) = ntype;
306
053cb41b
JB
307 /* Update the length of all the other variants of this type. */
308 chain = TYPE_CHAIN (ntype);
309 while (chain != ntype)
310 {
311 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
312 chain = TYPE_CHAIN (chain);
313 }
314
c906108c
SS
315 return ntype;
316}
317
318/* Given a type TYPE, return a type of pointers to that type.
319 May need to construct such a type if this is the first use. */
320
321struct type *
fba45db2 322lookup_pointer_type (struct type *type)
c906108c 323{
c5aa993b 324 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
325}
326
7ba81444
MS
327/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
328 points to a pointer to memory where the reference type should be
329 stored. If *TYPEPTR is zero, update it to point to the reference
330 type we return. We allocate new memory if needed. */
c906108c
SS
331
332struct type *
fba45db2 333make_reference_type (struct type *type, struct type **typeptr)
c906108c 334{
52f0bd74 335 struct type *ntype; /* New type */
1e98b326 336 struct type *chain;
c906108c
SS
337
338 ntype = TYPE_REFERENCE_TYPE (type);
339
c5aa993b 340 if (ntype)
c906108c 341 {
c5aa993b 342 if (typeptr == 0)
7ba81444
MS
343 return ntype; /* Don't care about alloc,
344 and have new type. */
c906108c 345 else if (*typeptr == 0)
c5aa993b 346 {
7ba81444 347 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 348 return ntype;
c5aa993b 349 }
c906108c
SS
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
e9bb382b 354 ntype = alloc_type_copy (type);
c906108c
SS
355 if (typeptr)
356 *typeptr = ntype;
357 }
7ba81444 358 else /* We have storage, but need to reset it. */
c906108c
SS
359 {
360 ntype = *typeptr;
1e98b326 361 chain = TYPE_CHAIN (ntype);
2fdde8f8 362 smash_type (ntype);
1e98b326 363 TYPE_CHAIN (ntype) = chain;
c906108c
SS
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_REFERENCE_TYPE (type) = ntype;
368
7ba81444
MS
369 /* FIXME! Assume the machine has only one representation for
370 references, and that it matches the (only) representation for
371 pointers! */
c906108c 372
50810684
UW
373 TYPE_LENGTH (ntype) =
374 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 375 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 376
c906108c
SS
377 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
378 TYPE_REFERENCE_TYPE (type) = ntype;
379
1e98b326
JB
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
c906108c
SS
388 return ntype;
389}
390
7ba81444
MS
391/* Same as above, but caller doesn't care about memory allocation
392 details. */
c906108c
SS
393
394struct type *
fba45db2 395lookup_reference_type (struct type *type)
c906108c 396{
c5aa993b 397 return make_reference_type (type, (struct type **) 0);
c906108c
SS
398}
399
7ba81444
MS
400/* Lookup a function type that returns type TYPE. TYPEPTR, if
401 nonzero, points to a pointer to memory where the function type
402 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 403 function type we return. We allocate new memory if needed. */
c906108c
SS
404
405struct type *
0c8b41f1 406make_function_type (struct type *type, struct type **typeptr)
c906108c 407{
52f0bd74 408 struct type *ntype; /* New type */
c906108c
SS
409
410 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
411 {
e9bb382b 412 ntype = alloc_type_copy (type);
c906108c
SS
413 if (typeptr)
414 *typeptr = ntype;
415 }
7ba81444 416 else /* We have storage, but need to reset it. */
c906108c
SS
417 {
418 ntype = *typeptr;
2fdde8f8 419 smash_type (ntype);
c906108c
SS
420 }
421
422 TYPE_TARGET_TYPE (ntype) = type;
423
424 TYPE_LENGTH (ntype) = 1;
425 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 426
c906108c
SS
427 return ntype;
428}
429
430
431/* Given a type TYPE, return a type of functions that return that type.
432 May need to construct such a type if this is the first use. */
433
434struct type *
fba45db2 435lookup_function_type (struct type *type)
c906108c 436{
0c8b41f1 437 return make_function_type (type, (struct type **) 0);
c906108c
SS
438}
439
47663de5
MS
440/* Identify address space identifier by name --
441 return the integer flag defined in gdbtypes.h. */
442extern int
50810684 443address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 444{
8b2dbe47 445 int type_flags;
7ba81444 446 /* Check for known address space delimiters. */
47663de5 447 if (!strcmp (space_identifier, "code"))
876cecd0 448 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 449 else if (!strcmp (space_identifier, "data"))
876cecd0 450 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
451 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
452 && gdbarch_address_class_name_to_type_flags (gdbarch,
453 space_identifier,
454 &type_flags))
8b2dbe47 455 return type_flags;
47663de5 456 else
8a3fe4f8 457 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
458}
459
460/* Identify address space identifier by integer flag as defined in
7ba81444 461 gdbtypes.h -- return the string version of the adress space name. */
47663de5 462
321432c0 463const char *
50810684 464address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 465{
876cecd0 466 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 467 return "code";
876cecd0 468 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 469 return "data";
876cecd0 470 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
471 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
472 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
473 else
474 return NULL;
475}
476
2fdde8f8 477/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
478
479 If STORAGE is non-NULL, create the new type instance there.
480 STORAGE must be in the same obstack as TYPE. */
47663de5 481
b9362cc7 482static struct type *
2fdde8f8
DJ
483make_qualified_type (struct type *type, int new_flags,
484 struct type *storage)
47663de5
MS
485{
486 struct type *ntype;
487
488 ntype = type;
5f61c20e
JK
489 do
490 {
491 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
492 return ntype;
493 ntype = TYPE_CHAIN (ntype);
494 }
495 while (ntype != type);
47663de5 496
2fdde8f8
DJ
497 /* Create a new type instance. */
498 if (storage == NULL)
499 ntype = alloc_type_instance (type);
500 else
501 {
7ba81444
MS
502 /* If STORAGE was provided, it had better be in the same objfile
503 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
504 if one objfile is freed and the other kept, we'd have
505 dangling pointers. */
ad766c0a
JB
506 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
507
2fdde8f8
DJ
508 ntype = storage;
509 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
510 TYPE_CHAIN (ntype) = ntype;
511 }
47663de5
MS
512
513 /* Pointers or references to the original type are not relevant to
2fdde8f8 514 the new type. */
47663de5
MS
515 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
516 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 517
2fdde8f8
DJ
518 /* Chain the new qualified type to the old type. */
519 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
520 TYPE_CHAIN (type) = ntype;
521
522 /* Now set the instance flags and return the new type. */
523 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 524
ab5d3da6
KB
525 /* Set length of new type to that of the original type. */
526 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
527
47663de5
MS
528 return ntype;
529}
530
2fdde8f8
DJ
531/* Make an address-space-delimited variant of a type -- a type that
532 is identical to the one supplied except that it has an address
533 space attribute attached to it (such as "code" or "data").
534
7ba81444
MS
535 The space attributes "code" and "data" are for Harvard
536 architectures. The address space attributes are for architectures
537 which have alternately sized pointers or pointers with alternate
538 representations. */
2fdde8f8
DJ
539
540struct type *
541make_type_with_address_space (struct type *type, int space_flag)
542{
543 struct type *ntype;
544 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
545 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
546 | TYPE_INSTANCE_FLAG_DATA_SPACE
547 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
548 | space_flag);
549
550 return make_qualified_type (type, new_flags, NULL);
551}
c906108c
SS
552
553/* Make a "c-v" variant of a type -- a type that is identical to the
554 one supplied except that it may have const or volatile attributes
555 CNST is a flag for setting the const attribute
556 VOLTL is a flag for setting the volatile attribute
557 TYPE is the base type whose variant we are creating.
c906108c 558
ad766c0a
JB
559 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
560 storage to hold the new qualified type; *TYPEPTR and TYPE must be
561 in the same objfile. Otherwise, allocate fresh memory for the new
562 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
563 new type we construct. */
c906108c 564struct type *
7ba81444
MS
565make_cv_type (int cnst, int voltl,
566 struct type *type,
567 struct type **typeptr)
c906108c 568{
52f0bd74
AC
569 struct type *ntype; /* New type */
570 struct type *tmp_type = type; /* tmp type */
c906108c
SS
571 struct objfile *objfile;
572
2fdde8f8 573 int new_flags = (TYPE_INSTANCE_FLAGS (type)
876cecd0 574 & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 575
c906108c 576 if (cnst)
876cecd0 577 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
578
579 if (voltl)
876cecd0 580 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 581
2fdde8f8 582 if (typeptr && *typeptr != NULL)
a02fd225 583 {
ad766c0a
JB
584 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
585 a C-V variant chain that threads across objfiles: if one
586 objfile gets freed, then the other has a broken C-V chain.
587
588 This code used to try to copy over the main type from TYPE to
589 *TYPEPTR if they were in different objfiles, but that's
590 wrong, too: TYPE may have a field list or member function
591 lists, which refer to types of their own, etc. etc. The
592 whole shebang would need to be copied over recursively; you
593 can't have inter-objfile pointers. The only thing to do is
594 to leave stub types as stub types, and look them up afresh by
595 name each time you encounter them. */
596 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
597 }
598
7ba81444
MS
599 ntype = make_qualified_type (type, new_flags,
600 typeptr ? *typeptr : NULL);
c906108c 601
2fdde8f8
DJ
602 if (typeptr != NULL)
603 *typeptr = ntype;
a02fd225 604
2fdde8f8 605 return ntype;
a02fd225 606}
c906108c 607
2fdde8f8
DJ
608/* Replace the contents of ntype with the type *type. This changes the
609 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
610 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 611
cda6c68a
JB
612 In order to build recursive types, it's inevitable that we'll need
613 to update types in place --- but this sort of indiscriminate
614 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
615 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
616 clear if more steps are needed. */
dd6bda65
DJ
617void
618replace_type (struct type *ntype, struct type *type)
619{
ab5d3da6 620 struct type *chain;
dd6bda65 621
ad766c0a
JB
622 /* These two types had better be in the same objfile. Otherwise,
623 the assignment of one type's main type structure to the other
624 will produce a type with references to objects (names; field
625 lists; etc.) allocated on an objfile other than its own. */
626 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
627
2fdde8f8 628 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 629
7ba81444
MS
630 /* The type length is not a part of the main type. Update it for
631 each type on the variant chain. */
ab5d3da6 632 chain = ntype;
5f61c20e
JK
633 do
634 {
635 /* Assert that this element of the chain has no address-class bits
636 set in its flags. Such type variants might have type lengths
637 which are supposed to be different from the non-address-class
638 variants. This assertion shouldn't ever be triggered because
639 symbol readers which do construct address-class variants don't
640 call replace_type(). */
641 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
642
643 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
644 chain = TYPE_CHAIN (chain);
645 }
646 while (ntype != chain);
ab5d3da6 647
2fdde8f8
DJ
648 /* Assert that the two types have equivalent instance qualifiers.
649 This should be true for at least all of our debug readers. */
650 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
651}
652
c906108c
SS
653/* Implement direct support for MEMBER_TYPE in GNU C++.
654 May need to construct such a type if this is the first use.
655 The TYPE is the type of the member. The DOMAIN is the type
656 of the aggregate that the member belongs to. */
657
658struct type *
0d5de010 659lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 660{
52f0bd74 661 struct type *mtype;
c906108c 662
e9bb382b 663 mtype = alloc_type_copy (type);
0d5de010 664 smash_to_memberptr_type (mtype, domain, type);
c16abbde 665 return mtype;
c906108c
SS
666}
667
0d5de010
DJ
668/* Return a pointer-to-method type, for a method of type TO_TYPE. */
669
670struct type *
671lookup_methodptr_type (struct type *to_type)
672{
673 struct type *mtype;
674
e9bb382b 675 mtype = alloc_type_copy (to_type);
0d5de010
DJ
676 TYPE_TARGET_TYPE (mtype) = to_type;
677 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
ad4820ab 678 TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
0d5de010
DJ
679 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
680 return mtype;
681}
682
7ba81444
MS
683/* Allocate a stub method whose return type is TYPE. This apparently
684 happens for speed of symbol reading, since parsing out the
685 arguments to the method is cpu-intensive, the way we are doing it.
686 So, we will fill in arguments later. This always returns a fresh
687 type. */
c906108c
SS
688
689struct type *
fba45db2 690allocate_stub_method (struct type *type)
c906108c
SS
691{
692 struct type *mtype;
693
e9bb382b
UW
694 mtype = alloc_type_copy (type);
695 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
696 TYPE_LENGTH (mtype) = 1;
697 TYPE_STUB (mtype) = 1;
c906108c
SS
698 TYPE_TARGET_TYPE (mtype) = type;
699 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 700 return mtype;
c906108c
SS
701}
702
7ba81444
MS
703/* Create a range type using either a blank type supplied in
704 RESULT_TYPE, or creating a new type, inheriting the objfile from
705 INDEX_TYPE.
c906108c 706
7ba81444
MS
707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
708 to HIGH_BOUND, inclusive.
c906108c 709
7ba81444
MS
710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
712
713struct type *
fba45db2 714create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 715 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
716{
717 if (result_type == NULL)
e9bb382b 718 result_type = alloc_type_copy (index_type);
c906108c
SS
719 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
720 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 721 if (TYPE_STUB (index_type))
876cecd0 722 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
723 else
724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
727 TYPE_LOW_BOUND (result_type) = low_bound;
728 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 729
c5aa993b 730 if (low_bound >= 0)
876cecd0 731 TYPE_UNSIGNED (result_type) = 1;
c906108c 732
262452ec 733 return result_type;
c906108c
SS
734}
735
7ba81444
MS
736/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
738 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
739
740int
fba45db2 741get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
742{
743 CHECK_TYPEDEF (type);
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_RANGE:
747 *lowp = TYPE_LOW_BOUND (type);
748 *highp = TYPE_HIGH_BOUND (type);
749 return 1;
750 case TYPE_CODE_ENUM:
751 if (TYPE_NFIELDS (type) > 0)
752 {
753 /* The enums may not be sorted by value, so search all
754 entries */
755 int i;
756
757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
758 for (i = 0; i < TYPE_NFIELDS (type); i++)
759 {
760 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
761 *lowp = TYPE_FIELD_BITPOS (type, i);
762 if (TYPE_FIELD_BITPOS (type, i) > *highp)
763 *highp = TYPE_FIELD_BITPOS (type, i);
764 }
765
7ba81444 766 /* Set unsigned indicator if warranted. */
c5aa993b 767 if (*lowp >= 0)
c906108c 768 {
876cecd0 769 TYPE_UNSIGNED (type) = 1;
c906108c
SS
770 }
771 }
772 else
773 {
774 *lowp = 0;
775 *highp = -1;
776 }
777 return 0;
778 case TYPE_CODE_BOOL:
779 *lowp = 0;
780 *highp = 1;
781 return 0;
782 case TYPE_CODE_INT:
c5aa993b 783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
784 return -1;
785 if (!TYPE_UNSIGNED (type))
786 {
c5aa993b 787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
788 *highp = -*lowp - 1;
789 return 0;
790 }
7ba81444 791 /* ... fall through for unsigned ints ... */
c906108c
SS
792 case TYPE_CODE_CHAR:
793 *lowp = 0;
794 /* This round-about calculation is to avoid shifting by
7b83ea04 795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 796 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
798 *highp = (*highp - 1) | *highp;
799 return 0;
800 default:
801 return -1;
802 }
803}
804
7ba81444
MS
805/* Create an array type using either a blank type supplied in
806 RESULT_TYPE, or creating a new type, inheriting the objfile from
807 RANGE_TYPE.
c906108c
SS
808
809 Elements will be of type ELEMENT_TYPE, the indices will be of type
810 RANGE_TYPE.
811
7ba81444
MS
812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
813 sure it is TYPE_CODE_UNDEF before we bash it into an array
814 type? */
c906108c
SS
815
816struct type *
7ba81444
MS
817create_array_type (struct type *result_type,
818 struct type *element_type,
fba45db2 819 struct type *range_type)
c906108c
SS
820{
821 LONGEST low_bound, high_bound;
822
823 if (result_type == NULL)
e9bb382b
UW
824 result_type = alloc_type_copy (range_type);
825
c906108c
SS
826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
827 TYPE_TARGET_TYPE (result_type) = element_type;
828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
829 low_bound = high_bound = 0;
830 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
831 /* Be careful when setting the array length. Ada arrays can be
832 empty arrays with the high_bound being smaller than the low_bound.
833 In such cases, the array length should be zero. */
834 if (high_bound < low_bound)
835 TYPE_LENGTH (result_type) = 0;
836 else
837 TYPE_LENGTH (result_type) =
838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
839 TYPE_NFIELDS (result_type) = 1;
840 TYPE_FIELDS (result_type) =
1deafd4e 841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 842 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
843 TYPE_VPTR_FIELDNO (result_type) = -1;
844
845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
846 if (TYPE_LENGTH (result_type) == 0)
876cecd0 847 TYPE_TARGET_STUB (result_type) = 1;
c906108c 848
c16abbde 849 return result_type;
c906108c
SS
850}
851
e3506a9f
UW
852struct type *
853lookup_array_range_type (struct type *element_type,
854 int low_bound, int high_bound)
855{
50810684 856 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
857 struct type *index_type = builtin_type (gdbarch)->builtin_int;
858 struct type *range_type
859 = create_range_type (NULL, index_type, low_bound, high_bound);
860 return create_array_type (NULL, element_type, range_type);
861}
862
7ba81444
MS
863/* Create a string type using either a blank type supplied in
864 RESULT_TYPE, or creating a new type. String types are similar
865 enough to array of char types that we can use create_array_type to
866 build the basic type and then bash it into a string type.
c906108c
SS
867
868 For fixed length strings, the range type contains 0 as the lower
869 bound and the length of the string minus one as the upper bound.
870
7ba81444
MS
871 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
872 sure it is TYPE_CODE_UNDEF before we bash it into a string
873 type? */
c906108c
SS
874
875struct type *
3b7538c0
UW
876create_string_type (struct type *result_type,
877 struct type *string_char_type,
7ba81444 878 struct type *range_type)
c906108c
SS
879{
880 result_type = create_array_type (result_type,
f290d38e 881 string_char_type,
c906108c
SS
882 range_type);
883 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 884 return result_type;
c906108c
SS
885}
886
e3506a9f
UW
887struct type *
888lookup_string_range_type (struct type *string_char_type,
889 int low_bound, int high_bound)
890{
891 struct type *result_type;
892 result_type = lookup_array_range_type (string_char_type,
893 low_bound, high_bound);
894 TYPE_CODE (result_type) = TYPE_CODE_STRING;
895 return result_type;
896}
897
c906108c 898struct type *
fba45db2 899create_set_type (struct type *result_type, struct type *domain_type)
c906108c 900{
c906108c 901 if (result_type == NULL)
e9bb382b
UW
902 result_type = alloc_type_copy (domain_type);
903
c906108c
SS
904 TYPE_CODE (result_type) = TYPE_CODE_SET;
905 TYPE_NFIELDS (result_type) = 1;
1deafd4e 906 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 907
74a9bb82 908 if (!TYPE_STUB (domain_type))
c906108c 909 {
f9780d5b 910 LONGEST low_bound, high_bound, bit_length;
c906108c
SS
911 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
912 low_bound = high_bound = 0;
913 bit_length = high_bound - low_bound + 1;
914 TYPE_LENGTH (result_type)
915 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 916 if (low_bound >= 0)
876cecd0 917 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
918 }
919 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
920
c16abbde 921 return result_type;
c906108c
SS
922}
923
ea37ba09
DJ
924/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
925 and any array types nested inside it. */
926
927void
928make_vector_type (struct type *array_type)
929{
930 struct type *inner_array, *elt_type;
931 int flags;
932
933 /* Find the innermost array type, in case the array is
934 multi-dimensional. */
935 inner_array = array_type;
936 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
937 inner_array = TYPE_TARGET_TYPE (inner_array);
938
939 elt_type = TYPE_TARGET_TYPE (inner_array);
940 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
941 {
942 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
943 elt_type = make_qualified_type (elt_type, flags, NULL);
944 TYPE_TARGET_TYPE (inner_array) = elt_type;
945 }
946
876cecd0 947 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
948}
949
794ac428 950struct type *
ac3aafc7
EZ
951init_vector_type (struct type *elt_type, int n)
952{
953 struct type *array_type;
e3506a9f 954 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 955 make_vector_type (array_type);
ac3aafc7
EZ
956 return array_type;
957}
958
0d5de010
DJ
959/* Smash TYPE to be a type of pointers to members of DOMAIN with type
960 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
961 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
962 TYPE doesn't include the offset (that's the value of the MEMBER
963 itself), but does include the structure type into which it points
964 (for some reason).
c906108c 965
7ba81444
MS
966 When "smashing" the type, we preserve the objfile that the old type
967 pointed to, since we aren't changing where the type is actually
c906108c
SS
968 allocated. */
969
970void
0d5de010
DJ
971smash_to_memberptr_type (struct type *type, struct type *domain,
972 struct type *to_type)
c906108c 973{
2fdde8f8 974 smash_type (type);
c906108c
SS
975 TYPE_TARGET_TYPE (type) = to_type;
976 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
977 /* Assume that a data member pointer is the same size as a normal
978 pointer. */
50810684
UW
979 TYPE_LENGTH (type)
980 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 981 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
982}
983
984/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
985 METHOD just means `function that gets an extra "this" argument'.
986
7ba81444
MS
987 When "smashing" the type, we preserve the objfile that the old type
988 pointed to, since we aren't changing where the type is actually
c906108c
SS
989 allocated. */
990
991void
fba45db2 992smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
993 struct type *to_type, struct field *args,
994 int nargs, int varargs)
c906108c 995{
2fdde8f8 996 smash_type (type);
c906108c
SS
997 TYPE_TARGET_TYPE (type) = to_type;
998 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
999 TYPE_FIELDS (type) = args;
1000 TYPE_NFIELDS (type) = nargs;
1001 if (varargs)
876cecd0 1002 TYPE_VARARGS (type) = 1;
c906108c
SS
1003 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1004 TYPE_CODE (type) = TYPE_CODE_METHOD;
1005}
1006
1007/* Return a typename for a struct/union/enum type without "struct ",
1008 "union ", or "enum ". If the type has a NULL name, return NULL. */
1009
1010char *
aa1ee363 1011type_name_no_tag (const struct type *type)
c906108c
SS
1012{
1013 if (TYPE_TAG_NAME (type) != NULL)
1014 return TYPE_TAG_NAME (type);
1015
7ba81444
MS
1016 /* Is there code which expects this to return the name if there is
1017 no tag name? My guess is that this is mainly used for C++ in
1018 cases where the two will always be the same. */
c906108c
SS
1019 return TYPE_NAME (type);
1020}
1021
7ba81444
MS
1022/* Lookup a typedef or primitive type named NAME, visible in lexical
1023 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1024 suitably defined. */
c906108c
SS
1025
1026struct type *
e6c014f2
UW
1027lookup_typename (const struct language_defn *language,
1028 struct gdbarch *gdbarch, char *name,
1029 struct block *block, int noerr)
c906108c 1030{
52f0bd74
AC
1031 struct symbol *sym;
1032 struct type *tmp;
c906108c 1033
2570f2b7 1034 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1035 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1036 {
e6c014f2 1037 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1038 if (tmp)
1039 {
c16abbde 1040 return tmp;
c906108c
SS
1041 }
1042 else if (!tmp && noerr)
1043 {
c16abbde 1044 return NULL;
c906108c
SS
1045 }
1046 else
1047 {
8a3fe4f8 1048 error (_("No type named %s."), name);
c906108c
SS
1049 }
1050 }
1051 return (SYMBOL_TYPE (sym));
1052}
1053
1054struct type *
e6c014f2
UW
1055lookup_unsigned_typename (const struct language_defn *language,
1056 struct gdbarch *gdbarch, char *name)
c906108c
SS
1057{
1058 char *uns = alloca (strlen (name) + 10);
1059
1060 strcpy (uns, "unsigned ");
1061 strcpy (uns + 9, name);
e6c014f2 1062 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1063}
1064
1065struct type *
e6c014f2
UW
1066lookup_signed_typename (const struct language_defn *language,
1067 struct gdbarch *gdbarch, char *name)
c906108c
SS
1068{
1069 struct type *t;
1070 char *uns = alloca (strlen (name) + 8);
1071
1072 strcpy (uns, "signed ");
1073 strcpy (uns + 7, name);
e6c014f2 1074 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1075 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1076 if (t != NULL)
1077 return t;
e6c014f2 1078 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1079}
1080
1081/* Lookup a structure type named "struct NAME",
1082 visible in lexical block BLOCK. */
1083
1084struct type *
fba45db2 1085lookup_struct (char *name, struct block *block)
c906108c 1086{
52f0bd74 1087 struct symbol *sym;
c906108c 1088
2570f2b7 1089 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1090
1091 if (sym == NULL)
1092 {
8a3fe4f8 1093 error (_("No struct type named %s."), name);
c906108c
SS
1094 }
1095 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1096 {
7ba81444
MS
1097 error (_("This context has class, union or enum %s, not a struct."),
1098 name);
c906108c
SS
1099 }
1100 return (SYMBOL_TYPE (sym));
1101}
1102
1103/* Lookup a union type named "union NAME",
1104 visible in lexical block BLOCK. */
1105
1106struct type *
fba45db2 1107lookup_union (char *name, struct block *block)
c906108c 1108{
52f0bd74 1109 struct symbol *sym;
c5aa993b 1110 struct type *t;
c906108c 1111
2570f2b7 1112 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1113
1114 if (sym == NULL)
8a3fe4f8 1115 error (_("No union type named %s."), name);
c906108c 1116
c5aa993b 1117 t = SYMBOL_TYPE (sym);
c906108c
SS
1118
1119 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1120 return t;
c906108c
SS
1121
1122 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1123 * a further "declared_type" field to discover it is really a union.
1124 */
c5aa993b
JM
1125 if (HAVE_CPLUS_STRUCT (t))
1126 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c16abbde 1127 return t;
c906108c 1128
7ba81444
MS
1129 /* If we get here, it's not a union. */
1130 error (_("This context has class, struct or enum %s, not a union."),
1131 name);
c906108c
SS
1132}
1133
1134
1135/* Lookup an enum type named "enum NAME",
1136 visible in lexical block BLOCK. */
1137
1138struct type *
fba45db2 1139lookup_enum (char *name, struct block *block)
c906108c 1140{
52f0bd74 1141 struct symbol *sym;
c906108c 1142
2570f2b7 1143 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1144 if (sym == NULL)
1145 {
8a3fe4f8 1146 error (_("No enum type named %s."), name);
c906108c
SS
1147 }
1148 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1149 {
7ba81444
MS
1150 error (_("This context has class, struct or union %s, not an enum."),
1151 name);
c906108c
SS
1152 }
1153 return (SYMBOL_TYPE (sym));
1154}
1155
1156/* Lookup a template type named "template NAME<TYPE>",
1157 visible in lexical block BLOCK. */
1158
1159struct type *
7ba81444
MS
1160lookup_template_type (char *name, struct type *type,
1161 struct block *block)
c906108c
SS
1162{
1163 struct symbol *sym;
7ba81444
MS
1164 char *nam = (char *)
1165 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1166 strcpy (nam, name);
1167 strcat (nam, "<");
0004e5a2 1168 strcat (nam, TYPE_NAME (type));
7ba81444 1169 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1170
2570f2b7 1171 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1172
1173 if (sym == NULL)
1174 {
8a3fe4f8 1175 error (_("No template type named %s."), name);
c906108c
SS
1176 }
1177 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1178 {
7ba81444
MS
1179 error (_("This context has class, union or enum %s, not a struct."),
1180 name);
c906108c
SS
1181 }
1182 return (SYMBOL_TYPE (sym));
1183}
1184
7ba81444
MS
1185/* Given a type TYPE, lookup the type of the component of type named
1186 NAME.
c906108c 1187
7ba81444
MS
1188 TYPE can be either a struct or union, or a pointer or reference to
1189 a struct or union. If it is a pointer or reference, its target
1190 type is automatically used. Thus '.' and '->' are interchangable,
1191 as specified for the definitions of the expression element types
1192 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1193
1194 If NOERR is nonzero, return zero if NAME is not suitably defined.
1195 If NAME is the name of a baseclass type, return that type. */
1196
1197struct type *
fba45db2 1198lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1199{
1200 int i;
1201
1202 for (;;)
1203 {
1204 CHECK_TYPEDEF (type);
1205 if (TYPE_CODE (type) != TYPE_CODE_PTR
1206 && TYPE_CODE (type) != TYPE_CODE_REF)
1207 break;
1208 type = TYPE_TARGET_TYPE (type);
1209 }
1210
687d6395
MS
1211 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1212 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c
SS
1213 {
1214 target_terminal_ours ();
1215 gdb_flush (gdb_stdout);
1216 fprintf_unfiltered (gdb_stderr, "Type ");
1217 type_print (type, "", gdb_stderr, -1);
8a3fe4f8 1218 error (_(" is not a structure or union type."));
c906108c
SS
1219 }
1220
1221#if 0
7ba81444
MS
1222 /* FIXME: This change put in by Michael seems incorrect for the case
1223 where the structure tag name is the same as the member name.
1224 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1225 foo; } bell;" Disabled by fnf. */
c906108c
SS
1226 {
1227 char *typename;
1228
1229 typename = type_name_no_tag (type);
762f08a3 1230 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1231 return type;
1232 }
1233#endif
1234
1235 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1236 {
1237 char *t_field_name = TYPE_FIELD_NAME (type, i);
1238
db577aea 1239 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1240 {
1241 return TYPE_FIELD_TYPE (type, i);
1242 }
1243 }
1244
1245 /* OK, it's not in this class. Recursively check the baseclasses. */
1246 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1247 {
1248 struct type *t;
1249
9733fc94 1250 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1251 if (t != NULL)
1252 {
1253 return t;
1254 }
1255 }
1256
1257 if (noerr)
1258 {
1259 return NULL;
1260 }
c5aa993b 1261
c906108c
SS
1262 target_terminal_ours ();
1263 gdb_flush (gdb_stdout);
1264 fprintf_unfiltered (gdb_stderr, "Type ");
1265 type_print (type, "", gdb_stderr, -1);
1266 fprintf_unfiltered (gdb_stderr, " has no component named ");
1267 fputs_filtered (name, gdb_stderr);
8a3fe4f8 1268 error (("."));
c5aa993b 1269 return (struct type *) -1; /* For lint */
c906108c
SS
1270}
1271
81fe8080
DE
1272/* Lookup the vptr basetype/fieldno values for TYPE.
1273 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1274 vptr_fieldno. Also, if found and basetype is from the same objfile,
1275 cache the results.
1276 If not found, return -1 and ignore BASETYPEP.
1277 Callers should be aware that in some cases (for example,
c906108c 1278 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1279 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1280 this function will not be able to find the
7ba81444 1281 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1282 vptr_basetype will remain NULL or incomplete. */
c906108c 1283
81fe8080
DE
1284int
1285get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1286{
1287 CHECK_TYPEDEF (type);
1288
1289 if (TYPE_VPTR_FIELDNO (type) < 0)
1290 {
1291 int i;
1292
7ba81444
MS
1293 /* We must start at zero in case the first (and only) baseclass
1294 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1295 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1296 {
81fe8080
DE
1297 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1298 int fieldno;
1299 struct type *basetype;
1300
1301 fieldno = get_vptr_fieldno (baseclass, &basetype);
1302 if (fieldno >= 0)
c906108c 1303 {
81fe8080
DE
1304 /* If the type comes from a different objfile we can't cache
1305 it, it may have a different lifetime. PR 2384 */
5ef73790 1306 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1307 {
1308 TYPE_VPTR_FIELDNO (type) = fieldno;
1309 TYPE_VPTR_BASETYPE (type) = basetype;
1310 }
1311 if (basetypep)
1312 *basetypep = basetype;
1313 return fieldno;
c906108c
SS
1314 }
1315 }
81fe8080
DE
1316
1317 /* Not found. */
1318 return -1;
1319 }
1320 else
1321 {
1322 if (basetypep)
1323 *basetypep = TYPE_VPTR_BASETYPE (type);
1324 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1325 }
1326}
1327
44e1a9eb
DJ
1328static void
1329stub_noname_complaint (void)
1330{
e2e0b3e5 1331 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1332}
1333
c906108c
SS
1334/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1335
1336 If this is a stubbed struct (i.e. declared as struct foo *), see if
1337 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1338 definition, so we can use it in future. There used to be a comment
1339 (but not any code) that if we don't find a full definition, we'd
1340 set a flag so we don't spend time in the future checking the same
1341 type. That would be a mistake, though--we might load in more
1342 symbols which contain a full definition for the type.
c906108c 1343
7b83ea04 1344 This used to be coded as a macro, but I don't think it is called
c54eabfa 1345 often enough to merit such treatment.
c906108c 1346
c54eabfa 1347 Find the real type of TYPE. This function returns the real type,
7ba81444
MS
1348 after removing all layers of typedefs and completing opaque or stub
1349 types. Completion changes the TYPE argument, but stripping of
c54eabfa
JK
1350 typedefs does not.
1351
1352 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1353 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1354 check_typedef can still return different type than the original TYPE
1355 pointer. */
c906108c
SS
1356
1357struct type *
a02fd225 1358check_typedef (struct type *type)
c906108c
SS
1359{
1360 struct type *orig_type = type;
a02fd225
DJ
1361 int is_const, is_volatile;
1362
423c0af8
MS
1363 gdb_assert (type);
1364
c906108c
SS
1365 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1366 {
1367 if (!TYPE_TARGET_TYPE (type))
1368 {
c5aa993b 1369 char *name;
c906108c
SS
1370 struct symbol *sym;
1371
1372 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1373 reading a symtab. Infinite recursion is one danger. */
c906108c
SS
1374 if (currently_reading_symtab)
1375 return type;
1376
1377 name = type_name_no_tag (type);
7ba81444
MS
1378 /* FIXME: shouldn't we separately check the TYPE_NAME and
1379 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1380 VAR_DOMAIN as appropriate? (this code was written before
1381 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1382 if (name == NULL)
1383 {
23136709 1384 stub_noname_complaint ();
c906108c
SS
1385 return type;
1386 }
2570f2b7 1387 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1388 if (sym)
1389 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1390 else /* TYPE_CODE_UNDEF */
e9bb382b 1391 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1392 }
1393 type = TYPE_TARGET_TYPE (type);
1394 }
1395
a02fd225
DJ
1396 is_const = TYPE_CONST (type);
1397 is_volatile = TYPE_VOLATILE (type);
1398
7ba81444
MS
1399 /* If this is a struct/class/union with no fields, then check
1400 whether a full definition exists somewhere else. This is for
1401 systems where a type definition with no fields is issued for such
1402 types, instead of identifying them as stub types in the first
1403 place. */
c5aa993b 1404
7ba81444
MS
1405 if (TYPE_IS_OPAQUE (type)
1406 && opaque_type_resolution
1407 && !currently_reading_symtab)
c906108c 1408 {
c5aa993b
JM
1409 char *name = type_name_no_tag (type);
1410 struct type *newtype;
c906108c
SS
1411 if (name == NULL)
1412 {
23136709 1413 stub_noname_complaint ();
c906108c
SS
1414 return type;
1415 }
1416 newtype = lookup_transparent_type (name);
ad766c0a 1417
c906108c 1418 if (newtype)
ad766c0a 1419 {
7ba81444
MS
1420 /* If the resolved type and the stub are in the same
1421 objfile, then replace the stub type with the real deal.
1422 But if they're in separate objfiles, leave the stub
1423 alone; we'll just look up the transparent type every time
1424 we call check_typedef. We can't create pointers between
1425 types allocated to different objfiles, since they may
1426 have different lifetimes. Trying to copy NEWTYPE over to
1427 TYPE's objfile is pointless, too, since you'll have to
1428 move over any other types NEWTYPE refers to, which could
1429 be an unbounded amount of stuff. */
ad766c0a
JB
1430 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1431 make_cv_type (is_const, is_volatile, newtype, &type);
1432 else
1433 type = newtype;
1434 }
c906108c 1435 }
7ba81444
MS
1436 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1437 types. */
74a9bb82 1438 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1439 {
c5aa993b 1440 char *name = type_name_no_tag (type);
c906108c 1441 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1442 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1443 as appropriate? (this code was written before TYPE_NAME and
1444 TYPE_TAG_NAME were separate). */
c906108c
SS
1445 struct symbol *sym;
1446 if (name == NULL)
1447 {
23136709 1448 stub_noname_complaint ();
c906108c
SS
1449 return type;
1450 }
2570f2b7 1451 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1452 if (sym)
c26f2453
JB
1453 {
1454 /* Same as above for opaque types, we can replace the stub
1455 with the complete type only if they are int the same
1456 objfile. */
1457 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
7ba81444
MS
1458 make_cv_type (is_const, is_volatile,
1459 SYMBOL_TYPE (sym), &type);
c26f2453
JB
1460 else
1461 type = SYMBOL_TYPE (sym);
1462 }
c906108c
SS
1463 }
1464
74a9bb82 1465 if (TYPE_TARGET_STUB (type))
c906108c
SS
1466 {
1467 struct type *range_type;
1468 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1469
74a9bb82 1470 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1471 {
7ba81444 1472 /* Empty. */
c5aa993b 1473 }
c906108c
SS
1474 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1475 && TYPE_NFIELDS (type) == 1
262452ec 1476 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1477 == TYPE_CODE_RANGE))
1478 {
1479 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1480 number of elements and the target type's length.
1481 Watch out for Ada null Ada arrays where the high bound
43bbcdc2
PH
1482 is smaller than the low bound. */
1483 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1484 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1485 ULONGEST len;
1486
ab0d6e0d 1487 if (high_bound < low_bound)
43bbcdc2
PH
1488 len = 0;
1489 else {
1490 /* For now, we conservatively take the array length to be 0
1491 if its length exceeds UINT_MAX. The code below assumes
1492 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1493 which is technically not guaranteed by C, but is usually true
1494 (because it would be true if x were unsigned with its
1495 high-order bit on). It uses the fact that
1496 high_bound-low_bound is always representable in
1497 ULONGEST and that if high_bound-low_bound+1 overflows,
1498 it overflows to 0. We must change these tests if we
1499 decide to increase the representation of TYPE_LENGTH
1500 from unsigned int to ULONGEST. */
1501 ULONGEST ulow = low_bound, uhigh = high_bound;
1502 ULONGEST tlen = TYPE_LENGTH (target_type);
1503
1504 len = tlen * (uhigh - ulow + 1);
1505 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1506 || len > UINT_MAX)
1507 len = 0;
1508 }
1509 TYPE_LENGTH (type) = len;
876cecd0 1510 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1511 }
1512 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1513 {
1514 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1515 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1516 }
1517 }
7ba81444 1518 /* Cache TYPE_LENGTH for future use. */
c906108c
SS
1519 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1520 return type;
1521}
1522
7ba81444 1523/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1524 occurs, silently return a void type. */
c91ecb25 1525
b9362cc7 1526static struct type *
48319d1f 1527safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1528{
1529 struct ui_file *saved_gdb_stderr;
1530 struct type *type;
1531
7ba81444 1532 /* Suppress error messages. */
c91ecb25
ND
1533 saved_gdb_stderr = gdb_stderr;
1534 gdb_stderr = ui_file_new ();
1535
7ba81444 1536 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1537 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1538 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1539
7ba81444 1540 /* Stop suppressing error messages. */
c91ecb25
ND
1541 ui_file_delete (gdb_stderr);
1542 gdb_stderr = saved_gdb_stderr;
1543
1544 return type;
1545}
1546
c906108c
SS
1547/* Ugly hack to convert method stubs into method types.
1548
7ba81444
MS
1549 He ain't kiddin'. This demangles the name of the method into a
1550 string including argument types, parses out each argument type,
1551 generates a string casting a zero to that type, evaluates the
1552 string, and stuffs the resulting type into an argtype vector!!!
1553 Then it knows the type of the whole function (including argument
1554 types for overloading), which info used to be in the stab's but was
1555 removed to hack back the space required for them. */
c906108c 1556
de17c821 1557static void
fba45db2 1558check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1559{
50810684 1560 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1561 struct fn_field *f;
1562 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1563 char *demangled_name = cplus_demangle (mangled_name,
1564 DMGL_PARAMS | DMGL_ANSI);
1565 char *argtypetext, *p;
1566 int depth = 0, argcount = 1;
ad2f7632 1567 struct field *argtypes;
c906108c
SS
1568 struct type *mtype;
1569
1570 /* Make sure we got back a function string that we can use. */
1571 if (demangled_name)
1572 p = strchr (demangled_name, '(');
502dcf4e
AC
1573 else
1574 p = NULL;
c906108c
SS
1575
1576 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1577 error (_("Internal: Cannot demangle mangled name `%s'."),
1578 mangled_name);
c906108c
SS
1579
1580 /* Now, read in the parameters that define this type. */
1581 p += 1;
1582 argtypetext = p;
1583 while (*p)
1584 {
070ad9f0 1585 if (*p == '(' || *p == '<')
c906108c
SS
1586 {
1587 depth += 1;
1588 }
070ad9f0 1589 else if (*p == ')' || *p == '>')
c906108c
SS
1590 {
1591 depth -= 1;
1592 }
1593 else if (*p == ',' && depth == 0)
1594 {
1595 argcount += 1;
1596 }
1597
1598 p += 1;
1599 }
1600
ad2f7632
DJ
1601 /* If we read one argument and it was ``void'', don't count it. */
1602 if (strncmp (argtypetext, "(void)", 6) == 0)
1603 argcount -= 1;
c906108c 1604
ad2f7632
DJ
1605 /* We need one extra slot, for the THIS pointer. */
1606
1607 argtypes = (struct field *)
1608 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1609 p = argtypetext;
4a1970e4
DJ
1610
1611 /* Add THIS pointer for non-static methods. */
1612 f = TYPE_FN_FIELDLIST1 (type, method_id);
1613 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1614 argcount = 0;
1615 else
1616 {
ad2f7632 1617 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1618 argcount = 1;
1619 }
c906108c 1620
c5aa993b 1621 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1622 {
1623 depth = 0;
1624 while (*p)
1625 {
1626 if (depth <= 0 && (*p == ',' || *p == ')'))
1627 {
ad2f7632
DJ
1628 /* Avoid parsing of ellipsis, they will be handled below.
1629 Also avoid ``void'' as above. */
1630 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1631 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1632 {
ad2f7632 1633 argtypes[argcount].type =
48319d1f 1634 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1635 argcount += 1;
1636 }
1637 argtypetext = p + 1;
1638 }
1639
070ad9f0 1640 if (*p == '(' || *p == '<')
c906108c
SS
1641 {
1642 depth += 1;
1643 }
070ad9f0 1644 else if (*p == ')' || *p == '>')
c906108c
SS
1645 {
1646 depth -= 1;
1647 }
1648
1649 p += 1;
1650 }
1651 }
1652
c906108c
SS
1653 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1654
1655 /* Now update the old "stub" type into a real type. */
1656 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1657 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1658 TYPE_FIELDS (mtype) = argtypes;
1659 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1660 TYPE_STUB (mtype) = 0;
c906108c 1661 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1662 if (p[-2] == '.')
876cecd0 1663 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1664
1665 xfree (demangled_name);
c906108c
SS
1666}
1667
7ba81444
MS
1668/* This is the external interface to check_stub_method, above. This
1669 function unstubs all of the signatures for TYPE's METHOD_ID method
1670 name. After calling this function TYPE_FN_FIELD_STUB will be
1671 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1672 correct.
de17c821
DJ
1673
1674 This function unfortunately can not die until stabs do. */
1675
1676void
1677check_stub_method_group (struct type *type, int method_id)
1678{
1679 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1680 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1681 int j, found_stub = 0;
de17c821
DJ
1682
1683 for (j = 0; j < len; j++)
1684 if (TYPE_FN_FIELD_STUB (f, j))
1685 {
1686 found_stub = 1;
1687 check_stub_method (type, method_id, j);
1688 }
1689
7ba81444
MS
1690 /* GNU v3 methods with incorrect names were corrected when we read
1691 in type information, because it was cheaper to do it then. The
1692 only GNU v2 methods with incorrect method names are operators and
1693 destructors; destructors were also corrected when we read in type
1694 information.
de17c821
DJ
1695
1696 Therefore the only thing we need to handle here are v2 operator
1697 names. */
1698 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1699 {
1700 int ret;
1701 char dem_opname[256];
1702
7ba81444
MS
1703 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1704 method_id),
de17c821
DJ
1705 dem_opname, DMGL_ANSI);
1706 if (!ret)
7ba81444
MS
1707 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1708 method_id),
de17c821
DJ
1709 dem_opname, 0);
1710 if (ret)
1711 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1712 }
1713}
1714
c906108c
SS
1715const struct cplus_struct_type cplus_struct_default;
1716
1717void
fba45db2 1718allocate_cplus_struct_type (struct type *type)
c906108c 1719{
b4ba55a1
JB
1720 if (HAVE_CPLUS_STRUCT (type))
1721 /* Structure was already allocated. Nothing more to do. */
1722 return;
1723
1724 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1725 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1726 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1727 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1728}
1729
b4ba55a1
JB
1730const struct gnat_aux_type gnat_aux_default =
1731 { NULL };
1732
1733/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1734 and allocate the associated gnat-specific data. The gnat-specific
1735 data is also initialized to gnat_aux_default. */
1736void
1737allocate_gnat_aux_type (struct type *type)
1738{
1739 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1740 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1741 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1742 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1743}
1744
1745
c906108c
SS
1746/* Helper function to initialize the standard scalar types.
1747
e9bb382b
UW
1748 If NAME is non-NULL, then we make a copy of the string pointed
1749 to by name in the objfile_obstack for that objfile, and initialize
1750 the type name to that copy. There are places (mipsread.c in particular),
1751 where init_type is called with a NULL value for NAME). */
c906108c
SS
1752
1753struct type *
7ba81444
MS
1754init_type (enum type_code code, int length, int flags,
1755 char *name, struct objfile *objfile)
c906108c 1756{
52f0bd74 1757 struct type *type;
c906108c
SS
1758
1759 type = alloc_type (objfile);
1760 TYPE_CODE (type) = code;
1761 TYPE_LENGTH (type) = length;
876cecd0
TT
1762
1763 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1764 if (flags & TYPE_FLAG_UNSIGNED)
1765 TYPE_UNSIGNED (type) = 1;
1766 if (flags & TYPE_FLAG_NOSIGN)
1767 TYPE_NOSIGN (type) = 1;
1768 if (flags & TYPE_FLAG_STUB)
1769 TYPE_STUB (type) = 1;
1770 if (flags & TYPE_FLAG_TARGET_STUB)
1771 TYPE_TARGET_STUB (type) = 1;
1772 if (flags & TYPE_FLAG_STATIC)
1773 TYPE_STATIC (type) = 1;
1774 if (flags & TYPE_FLAG_PROTOTYPED)
1775 TYPE_PROTOTYPED (type) = 1;
1776 if (flags & TYPE_FLAG_INCOMPLETE)
1777 TYPE_INCOMPLETE (type) = 1;
1778 if (flags & TYPE_FLAG_VARARGS)
1779 TYPE_VARARGS (type) = 1;
1780 if (flags & TYPE_FLAG_VECTOR)
1781 TYPE_VECTOR (type) = 1;
1782 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1783 TYPE_STUB_SUPPORTED (type) = 1;
1784 if (flags & TYPE_FLAG_NOTTEXT)
1785 TYPE_NOTTEXT (type) = 1;
1786 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1787 TYPE_FIXED_INSTANCE (type) = 1;
1788
e9bb382b
UW
1789 if (name)
1790 TYPE_NAME (type) = obsavestring (name, strlen (name),
1791 &objfile->objfile_obstack);
c906108c
SS
1792
1793 /* C++ fancies. */
1794
973ccf8b 1795 if (name && strcmp (name, "char") == 0)
876cecd0 1796 TYPE_NOSIGN (type) = 1;
973ccf8b 1797
b4ba55a1 1798 switch (code)
c906108c 1799 {
b4ba55a1
JB
1800 case TYPE_CODE_STRUCT:
1801 case TYPE_CODE_UNION:
1802 case TYPE_CODE_NAMESPACE:
1803 INIT_CPLUS_SPECIFIC (type);
1804 break;
1805 case TYPE_CODE_FLT:
1806 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1807 break;
1808 case TYPE_CODE_FUNC:
1809 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1810 break;
c906108c 1811 }
c16abbde 1812 return type;
c906108c
SS
1813}
1814
c906108c 1815int
fba45db2 1816can_dereference (struct type *t)
c906108c 1817{
7ba81444
MS
1818 /* FIXME: Should we return true for references as well as
1819 pointers? */
c906108c
SS
1820 CHECK_TYPEDEF (t);
1821 return
1822 (t != NULL
1823 && TYPE_CODE (t) == TYPE_CODE_PTR
1824 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1825}
1826
adf40b2e 1827int
fba45db2 1828is_integral_type (struct type *t)
adf40b2e
JM
1829{
1830 CHECK_TYPEDEF (t);
1831 return
1832 ((t != NULL)
d4f3574e
SS
1833 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1834 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1835 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1836 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1837 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1838 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1839}
1840
7b83ea04 1841/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1842 Return 1 if so, and 0 if not.
1843 Note: callers may want to check for identity of the types before
1844 calling this function -- identical types are considered to satisfy
7ba81444 1845 the ancestor relationship even if they're identical. */
c906108c
SS
1846
1847int
fba45db2 1848is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1849{
1850 int i;
c5aa993b 1851
c906108c
SS
1852 CHECK_TYPEDEF (base);
1853 CHECK_TYPEDEF (dclass);
1854
1855 if (base == dclass)
1856 return 1;
687d6395
MS
1857 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1858 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
6b1ba9a0 1859 return 1;
c906108c
SS
1860
1861 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1862 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1863 return 1;
1864
1865 return 0;
1866}
c906108c
SS
1867\f
1868
c5aa993b 1869
c906108c
SS
1870/* Functions for overload resolution begin here */
1871
1872/* Compare two badness vectors A and B and return the result.
7ba81444
MS
1873 0 => A and B are identical
1874 1 => A and B are incomparable
1875 2 => A is better than B
1876 3 => A is worse than B */
c906108c
SS
1877
1878int
fba45db2 1879compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
1880{
1881 int i;
1882 int tmp;
c5aa993b
JM
1883 short found_pos = 0; /* any positives in c? */
1884 short found_neg = 0; /* any negatives in c? */
1885
1886 /* differing lengths => incomparable */
c906108c
SS
1887 if (a->length != b->length)
1888 return 1;
1889
c5aa993b
JM
1890 /* Subtract b from a */
1891 for (i = 0; i < a->length; i++)
c906108c
SS
1892 {
1893 tmp = a->rank[i] - b->rank[i];
1894 if (tmp > 0)
c5aa993b 1895 found_pos = 1;
c906108c 1896 else if (tmp < 0)
c5aa993b 1897 found_neg = 1;
c906108c
SS
1898 }
1899
1900 if (found_pos)
1901 {
1902 if (found_neg)
c5aa993b 1903 return 1; /* incomparable */
c906108c 1904 else
c5aa993b 1905 return 3; /* A > B */
c906108c 1906 }
c5aa993b
JM
1907 else
1908 /* no positives */
c906108c
SS
1909 {
1910 if (found_neg)
c5aa993b 1911 return 2; /* A < B */
c906108c 1912 else
c5aa993b 1913 return 0; /* A == B */
c906108c
SS
1914 }
1915}
1916
7ba81444
MS
1917/* Rank a function by comparing its parameter types (PARMS, length
1918 NPARMS), to the types of an argument list (ARGS, length NARGS).
1919 Return a pointer to a badness vector. This has NARGS + 1
1920 entries. */
c906108c
SS
1921
1922struct badness_vector *
7ba81444
MS
1923rank_function (struct type **parms, int nparms,
1924 struct type **args, int nargs)
c906108c
SS
1925{
1926 int i;
c5aa993b 1927 struct badness_vector *bv;
c906108c
SS
1928 int min_len = nparms < nargs ? nparms : nargs;
1929
1930 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 1931 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
1932 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1933
1934 /* First compare the lengths of the supplied lists.
7ba81444 1935 If there is a mismatch, set it to a high value. */
c5aa993b 1936
c906108c 1937 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
1938 arguments and ellipsis parameter lists, we should consider those
1939 and rank the length-match more finely. */
c906108c
SS
1940
1941 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1942
1943 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
1944 for (i = 1; i <= min_len; i++)
1945 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 1946
c5aa993b
JM
1947 /* If more arguments than parameters, add dummy entries */
1948 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
1949 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1950
1951 return bv;
1952}
1953
973ccf8b
DJ
1954/* Compare the names of two integer types, assuming that any sign
1955 qualifiers have been checked already. We do it this way because
1956 there may be an "int" in the name of one of the types. */
1957
1958static int
1959integer_types_same_name_p (const char *first, const char *second)
1960{
1961 int first_p, second_p;
1962
7ba81444
MS
1963 /* If both are shorts, return 1; if neither is a short, keep
1964 checking. */
973ccf8b
DJ
1965 first_p = (strstr (first, "short") != NULL);
1966 second_p = (strstr (second, "short") != NULL);
1967 if (first_p && second_p)
1968 return 1;
1969 if (first_p || second_p)
1970 return 0;
1971
1972 /* Likewise for long. */
1973 first_p = (strstr (first, "long") != NULL);
1974 second_p = (strstr (second, "long") != NULL);
1975 if (first_p && second_p)
1976 return 1;
1977 if (first_p || second_p)
1978 return 0;
1979
1980 /* Likewise for char. */
1981 first_p = (strstr (first, "char") != NULL);
1982 second_p = (strstr (second, "char") != NULL);
1983 if (first_p && second_p)
1984 return 1;
1985 if (first_p || second_p)
1986 return 0;
1987
1988 /* They must both be ints. */
1989 return 1;
1990}
1991
c906108c
SS
1992/* Compare one type (PARM) for compatibility with another (ARG).
1993 * PARM is intended to be the parameter type of a function; and
1994 * ARG is the supplied argument's type. This function tests if
1995 * the latter can be converted to the former.
1996 *
1997 * Return 0 if they are identical types;
1998 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
1999 * PARM is to ARG. The higher the return value, the worse the match.
2000 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c
SS
2001
2002int
fba45db2 2003rank_one_type (struct type *parm, struct type *arg)
c906108c 2004{
7ba81444 2005 /* Identical type pointers. */
c906108c 2006 /* However, this still doesn't catch all cases of same type for arg
7ba81444
MS
2007 and param. The reason is that builtin types are different from
2008 the same ones constructed from the object. */
c906108c
SS
2009 if (parm == arg)
2010 return 0;
2011
2012 /* Resolve typedefs */
2013 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2014 parm = check_typedef (parm);
2015 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2016 arg = check_typedef (arg);
2017
070ad9f0 2018 /*
7ba81444
MS
2019 Well, damnit, if the names are exactly the same, I'll say they
2020 are exactly the same. This happens when we generate method
2021 stubs. The types won't point to the same address, but they
070ad9f0
DB
2022 really are the same.
2023 */
2024
687d6395
MS
2025 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2026 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
7ba81444 2027 return 0;
070ad9f0 2028
7ba81444 2029 /* Check if identical after resolving typedefs. */
c906108c
SS
2030 if (parm == arg)
2031 return 0;
2032
db577aea 2033 /* See through references, since we can almost make non-references
7ba81444 2034 references. */
db577aea 2035 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2036 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2037 + REFERENCE_CONVERSION_BADNESS);
2038 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2039 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2040 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2041 if (overload_debug)
7ba81444
MS
2042 /* Debugging only. */
2043 fprintf_filtered (gdb_stderr,
2044 "------ Arg is %s [%d], parm is %s [%d]\n",
2045 TYPE_NAME (arg), TYPE_CODE (arg),
2046 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2047
2048 /* x -> y means arg of type x being supplied for parameter of type y */
2049
2050 switch (TYPE_CODE (parm))
2051 {
c5aa993b
JM
2052 case TYPE_CODE_PTR:
2053 switch (TYPE_CODE (arg))
2054 {
2055 case TYPE_CODE_PTR:
66c53f2b
KS
2056 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2057 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
c5aa993b
JM
2058 return VOID_PTR_CONVERSION_BADNESS;
2059 else
7ba81444
MS
2060 return rank_one_type (TYPE_TARGET_TYPE (parm),
2061 TYPE_TARGET_TYPE (arg));
c5aa993b 2062 case TYPE_CODE_ARRAY:
7ba81444
MS
2063 return rank_one_type (TYPE_TARGET_TYPE (parm),
2064 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2065 case TYPE_CODE_FUNC:
2066 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2067 case TYPE_CODE_INT:
2068 case TYPE_CODE_ENUM:
4f2aea11 2069 case TYPE_CODE_FLAGS:
c5aa993b
JM
2070 case TYPE_CODE_CHAR:
2071 case TYPE_CODE_RANGE:
2072 case TYPE_CODE_BOOL:
2073 return POINTER_CONVERSION_BADNESS;
2074 default:
2075 return INCOMPATIBLE_TYPE_BADNESS;
2076 }
2077 case TYPE_CODE_ARRAY:
2078 switch (TYPE_CODE (arg))
2079 {
2080 case TYPE_CODE_PTR:
2081 case TYPE_CODE_ARRAY:
7ba81444
MS
2082 return rank_one_type (TYPE_TARGET_TYPE (parm),
2083 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2084 default:
2085 return INCOMPATIBLE_TYPE_BADNESS;
2086 }
2087 case TYPE_CODE_FUNC:
2088 switch (TYPE_CODE (arg))
2089 {
2090 case TYPE_CODE_PTR: /* funcptr -> func */
2091 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2092 default:
2093 return INCOMPATIBLE_TYPE_BADNESS;
2094 }
2095 case TYPE_CODE_INT:
2096 switch (TYPE_CODE (arg))
2097 {
2098 case TYPE_CODE_INT:
2099 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2100 {
2101 /* Deal with signed, unsigned, and plain chars and
7ba81444 2102 signed and unsigned ints. */
c5aa993b
JM
2103 if (TYPE_NOSIGN (parm))
2104 {
2105 /* This case only for character types */
7ba81444
MS
2106 if (TYPE_NOSIGN (arg))
2107 return 0; /* plain char -> plain char */
2108 else /* signed/unsigned char -> plain char */
2109 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2110 }
2111 else if (TYPE_UNSIGNED (parm))
2112 {
2113 if (TYPE_UNSIGNED (arg))
2114 {
7ba81444
MS
2115 /* unsigned int -> unsigned int, or
2116 unsigned long -> unsigned long */
2117 if (integer_types_same_name_p (TYPE_NAME (parm),
2118 TYPE_NAME (arg)))
973ccf8b 2119 return 0;
7ba81444
MS
2120 else if (integer_types_same_name_p (TYPE_NAME (arg),
2121 "int")
2122 && integer_types_same_name_p (TYPE_NAME (parm),
2123 "long"))
c5aa993b
JM
2124 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2125 else
1c5cb38e 2126 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2127 }
2128 else
2129 {
7ba81444
MS
2130 if (integer_types_same_name_p (TYPE_NAME (arg),
2131 "long")
2132 && integer_types_same_name_p (TYPE_NAME (parm),
2133 "int"))
1c5cb38e 2134 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2135 else
2136 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2137 }
2138 }
2139 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2140 {
7ba81444
MS
2141 if (integer_types_same_name_p (TYPE_NAME (parm),
2142 TYPE_NAME (arg)))
c5aa993b 2143 return 0;
7ba81444
MS
2144 else if (integer_types_same_name_p (TYPE_NAME (arg),
2145 "int")
2146 && integer_types_same_name_p (TYPE_NAME (parm),
2147 "long"))
c5aa993b
JM
2148 return INTEGER_PROMOTION_BADNESS;
2149 else
1c5cb38e 2150 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2151 }
2152 else
1c5cb38e 2153 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2154 }
2155 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2156 return INTEGER_PROMOTION_BADNESS;
2157 else
1c5cb38e 2158 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2159 case TYPE_CODE_ENUM:
4f2aea11 2160 case TYPE_CODE_FLAGS:
c5aa993b
JM
2161 case TYPE_CODE_CHAR:
2162 case TYPE_CODE_RANGE:
2163 case TYPE_CODE_BOOL:
2164 return INTEGER_PROMOTION_BADNESS;
2165 case TYPE_CODE_FLT:
2166 return INT_FLOAT_CONVERSION_BADNESS;
2167 case TYPE_CODE_PTR:
2168 return NS_POINTER_CONVERSION_BADNESS;
2169 default:
2170 return INCOMPATIBLE_TYPE_BADNESS;
2171 }
2172 break;
2173 case TYPE_CODE_ENUM:
2174 switch (TYPE_CODE (arg))
2175 {
2176 case TYPE_CODE_INT:
2177 case TYPE_CODE_CHAR:
2178 case TYPE_CODE_RANGE:
2179 case TYPE_CODE_BOOL:
2180 case TYPE_CODE_ENUM:
1c5cb38e 2181 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2182 case TYPE_CODE_FLT:
2183 return INT_FLOAT_CONVERSION_BADNESS;
2184 default:
2185 return INCOMPATIBLE_TYPE_BADNESS;
2186 }
2187 break;
2188 case TYPE_CODE_CHAR:
2189 switch (TYPE_CODE (arg))
2190 {
2191 case TYPE_CODE_RANGE:
2192 case TYPE_CODE_BOOL:
2193 case TYPE_CODE_ENUM:
1c5cb38e 2194 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2195 case TYPE_CODE_FLT:
2196 return INT_FLOAT_CONVERSION_BADNESS;
2197 case TYPE_CODE_INT:
2198 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2199 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2200 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2201 return INTEGER_PROMOTION_BADNESS;
2202 /* >>> !! else fall through !! <<< */
2203 case TYPE_CODE_CHAR:
7ba81444
MS
2204 /* Deal with signed, unsigned, and plain chars for C++ and
2205 with int cases falling through from previous case. */
c5aa993b
JM
2206 if (TYPE_NOSIGN (parm))
2207 {
2208 if (TYPE_NOSIGN (arg))
2209 return 0;
2210 else
1c5cb38e 2211 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2212 }
2213 else if (TYPE_UNSIGNED (parm))
2214 {
2215 if (TYPE_UNSIGNED (arg))
2216 return 0;
2217 else
2218 return INTEGER_PROMOTION_BADNESS;
2219 }
2220 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2221 return 0;
2222 else
1c5cb38e 2223 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2224 default:
2225 return INCOMPATIBLE_TYPE_BADNESS;
2226 }
2227 break;
2228 case TYPE_CODE_RANGE:
2229 switch (TYPE_CODE (arg))
2230 {
2231 case TYPE_CODE_INT:
2232 case TYPE_CODE_CHAR:
2233 case TYPE_CODE_RANGE:
2234 case TYPE_CODE_BOOL:
2235 case TYPE_CODE_ENUM:
1c5cb38e 2236 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2237 case TYPE_CODE_FLT:
2238 return INT_FLOAT_CONVERSION_BADNESS;
2239 default:
2240 return INCOMPATIBLE_TYPE_BADNESS;
2241 }
2242 break;
2243 case TYPE_CODE_BOOL:
2244 switch (TYPE_CODE (arg))
2245 {
2246 case TYPE_CODE_INT:
2247 case TYPE_CODE_CHAR:
2248 case TYPE_CODE_RANGE:
2249 case TYPE_CODE_ENUM:
2250 case TYPE_CODE_FLT:
2251 case TYPE_CODE_PTR:
2252 return BOOLEAN_CONVERSION_BADNESS;
2253 case TYPE_CODE_BOOL:
2254 return 0;
2255 default:
2256 return INCOMPATIBLE_TYPE_BADNESS;
2257 }
2258 break;
2259 case TYPE_CODE_FLT:
2260 switch (TYPE_CODE (arg))
2261 {
2262 case TYPE_CODE_FLT:
2263 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2264 return FLOAT_PROMOTION_BADNESS;
2265 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2266 return 0;
2267 else
2268 return FLOAT_CONVERSION_BADNESS;
2269 case TYPE_CODE_INT:
2270 case TYPE_CODE_BOOL:
2271 case TYPE_CODE_ENUM:
2272 case TYPE_CODE_RANGE:
2273 case TYPE_CODE_CHAR:
2274 return INT_FLOAT_CONVERSION_BADNESS;
2275 default:
2276 return INCOMPATIBLE_TYPE_BADNESS;
2277 }
2278 break;
2279 case TYPE_CODE_COMPLEX:
2280 switch (TYPE_CODE (arg))
7ba81444 2281 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2282 case TYPE_CODE_FLT:
2283 return FLOAT_PROMOTION_BADNESS;
2284 case TYPE_CODE_COMPLEX:
2285 return 0;
2286 default:
2287 return INCOMPATIBLE_TYPE_BADNESS;
2288 }
2289 break;
2290 case TYPE_CODE_STRUCT:
c906108c 2291 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2292 switch (TYPE_CODE (arg))
2293 {
2294 case TYPE_CODE_STRUCT:
2295 /* Check for derivation */
2296 if (is_ancestor (parm, arg))
2297 return BASE_CONVERSION_BADNESS;
2298 /* else fall through */
2299 default:
2300 return INCOMPATIBLE_TYPE_BADNESS;
2301 }
2302 break;
2303 case TYPE_CODE_UNION:
2304 switch (TYPE_CODE (arg))
2305 {
2306 case TYPE_CODE_UNION:
2307 default:
2308 return INCOMPATIBLE_TYPE_BADNESS;
2309 }
2310 break;
0d5de010 2311 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2312 switch (TYPE_CODE (arg))
2313 {
2314 default:
2315 return INCOMPATIBLE_TYPE_BADNESS;
2316 }
2317 break;
2318 case TYPE_CODE_METHOD:
2319 switch (TYPE_CODE (arg))
2320 {
2321
2322 default:
2323 return INCOMPATIBLE_TYPE_BADNESS;
2324 }
2325 break;
2326 case TYPE_CODE_REF:
2327 switch (TYPE_CODE (arg))
2328 {
2329
2330 default:
2331 return INCOMPATIBLE_TYPE_BADNESS;
2332 }
2333
2334 break;
2335 case TYPE_CODE_SET:
2336 switch (TYPE_CODE (arg))
2337 {
2338 /* Not in C++ */
2339 case TYPE_CODE_SET:
7ba81444
MS
2340 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2341 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2342 default:
2343 return INCOMPATIBLE_TYPE_BADNESS;
2344 }
2345 break;
2346 case TYPE_CODE_VOID:
2347 default:
2348 return INCOMPATIBLE_TYPE_BADNESS;
2349 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2350}
2351
c5aa993b
JM
2352
2353/* End of functions for overload resolution */
c906108c 2354
c906108c 2355static void
fba45db2 2356print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2357{
2358 int bitno;
2359
2360 for (bitno = 0; bitno < nbits; bitno++)
2361 {
2362 if ((bitno % 8) == 0)
2363 {
2364 puts_filtered (" ");
2365 }
2366 if (B_TST (bits, bitno))
a3f17187 2367 printf_filtered (("1"));
c906108c 2368 else
a3f17187 2369 printf_filtered (("0"));
c906108c
SS
2370 }
2371}
2372
ad2f7632 2373/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2374 include it since we may get into a infinitely recursive
2375 situation. */
c906108c
SS
2376
2377static void
ad2f7632 2378print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2379{
2380 if (args != NULL)
2381 {
ad2f7632
DJ
2382 int i;
2383
2384 for (i = 0; i < nargs; i++)
2385 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2386 }
2387}
2388
d6a843b5
JK
2389int
2390field_is_static (struct field *f)
2391{
2392 /* "static" fields are the fields whose location is not relative
2393 to the address of the enclosing struct. It would be nice to
2394 have a dedicated flag that would be set for static fields when
2395 the type is being created. But in practice, checking the field
2396 loc_kind should give us an accurate answer (at least as long as
2397 we assume that DWARF block locations are not going to be used
2398 for static fields). FIXME? */
2399 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2400 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2401}
2402
c906108c 2403static void
fba45db2 2404dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2405{
2406 int method_idx;
2407 int overload_idx;
2408 struct fn_field *f;
2409
2410 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2411 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2412 printf_filtered ("\n");
2413 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2414 {
2415 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2416 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2417 method_idx,
2418 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2419 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2420 gdb_stdout);
a3f17187 2421 printf_filtered (_(") length %d\n"),
c906108c
SS
2422 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2423 for (overload_idx = 0;
2424 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2425 overload_idx++)
2426 {
2427 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2428 overload_idx,
2429 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2430 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2431 gdb_stdout);
c906108c
SS
2432 printf_filtered (")\n");
2433 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2434 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2435 gdb_stdout);
c906108c
SS
2436 printf_filtered ("\n");
2437
2438 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2439 spaces + 8 + 2);
2440
2441 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2442 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2443 gdb_stdout);
c906108c
SS
2444 printf_filtered ("\n");
2445
ad2f7632 2446 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2447 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2448 overload_idx)),
ad2f7632 2449 spaces);
c906108c 2450 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2451 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2452 gdb_stdout);
c906108c
SS
2453 printf_filtered ("\n");
2454
2455 printfi_filtered (spaces + 8, "is_const %d\n",
2456 TYPE_FN_FIELD_CONST (f, overload_idx));
2457 printfi_filtered (spaces + 8, "is_volatile %d\n",
2458 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2459 printfi_filtered (spaces + 8, "is_private %d\n",
2460 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2461 printfi_filtered (spaces + 8, "is_protected %d\n",
2462 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2463 printfi_filtered (spaces + 8, "is_stub %d\n",
2464 TYPE_FN_FIELD_STUB (f, overload_idx));
2465 printfi_filtered (spaces + 8, "voffset %u\n",
2466 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2467 }
2468 }
2469}
2470
2471static void
fba45db2 2472print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2473{
2474 printfi_filtered (spaces, "n_baseclasses %d\n",
2475 TYPE_N_BASECLASSES (type));
2476 printfi_filtered (spaces, "nfn_fields %d\n",
2477 TYPE_NFN_FIELDS (type));
2478 printfi_filtered (spaces, "nfn_fields_total %d\n",
2479 TYPE_NFN_FIELDS_TOTAL (type));
2480 if (TYPE_N_BASECLASSES (type) > 0)
2481 {
2482 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2483 TYPE_N_BASECLASSES (type));
7ba81444
MS
2484 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2485 gdb_stdout);
c906108c
SS
2486 printf_filtered (")");
2487
2488 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2489 TYPE_N_BASECLASSES (type));
2490 puts_filtered ("\n");
2491 }
2492 if (TYPE_NFIELDS (type) > 0)
2493 {
2494 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2495 {
7ba81444
MS
2496 printfi_filtered (spaces,
2497 "private_field_bits (%d bits at *",
c906108c 2498 TYPE_NFIELDS (type));
7ba81444
MS
2499 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2500 gdb_stdout);
c906108c
SS
2501 printf_filtered (")");
2502 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2503 TYPE_NFIELDS (type));
2504 puts_filtered ("\n");
2505 }
2506 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2507 {
7ba81444
MS
2508 printfi_filtered (spaces,
2509 "protected_field_bits (%d bits at *",
c906108c 2510 TYPE_NFIELDS (type));
7ba81444
MS
2511 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2512 gdb_stdout);
c906108c
SS
2513 printf_filtered (")");
2514 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2515 TYPE_NFIELDS (type));
2516 puts_filtered ("\n");
2517 }
2518 }
2519 if (TYPE_NFN_FIELDS (type) > 0)
2520 {
2521 dump_fn_fieldlists (type, spaces);
2522 }
2523}
2524
b4ba55a1
JB
2525/* Print the contents of the TYPE's type_specific union, assuming that
2526 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2527
2528static void
2529print_gnat_stuff (struct type *type, int spaces)
2530{
2531 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2532
2533 recursive_dump_type (descriptive_type, spaces + 2);
2534}
2535
c906108c
SS
2536static struct obstack dont_print_type_obstack;
2537
2538void
fba45db2 2539recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2540{
2541 int idx;
2542
2543 if (spaces == 0)
2544 obstack_begin (&dont_print_type_obstack, 0);
2545
2546 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2547 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2548 {
2549 struct type **first_dont_print
7ba81444 2550 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2551
7ba81444
MS
2552 int i = (struct type **)
2553 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2554
2555 while (--i >= 0)
2556 {
2557 if (type == first_dont_print[i])
2558 {
2559 printfi_filtered (spaces, "type node ");
d4f3574e 2560 gdb_print_host_address (type, gdb_stdout);
a3f17187 2561 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2562 return;
2563 }
2564 }
2565
2566 obstack_ptr_grow (&dont_print_type_obstack, type);
2567 }
2568
2569 printfi_filtered (spaces, "type node ");
d4f3574e 2570 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2571 printf_filtered ("\n");
2572 printfi_filtered (spaces, "name '%s' (",
2573 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2574 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2575 printf_filtered (")\n");
e9e79dd9
FF
2576 printfi_filtered (spaces, "tagname '%s' (",
2577 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2578 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2579 printf_filtered (")\n");
c906108c
SS
2580 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2581 switch (TYPE_CODE (type))
2582 {
c5aa993b
JM
2583 case TYPE_CODE_UNDEF:
2584 printf_filtered ("(TYPE_CODE_UNDEF)");
2585 break;
2586 case TYPE_CODE_PTR:
2587 printf_filtered ("(TYPE_CODE_PTR)");
2588 break;
2589 case TYPE_CODE_ARRAY:
2590 printf_filtered ("(TYPE_CODE_ARRAY)");
2591 break;
2592 case TYPE_CODE_STRUCT:
2593 printf_filtered ("(TYPE_CODE_STRUCT)");
2594 break;
2595 case TYPE_CODE_UNION:
2596 printf_filtered ("(TYPE_CODE_UNION)");
2597 break;
2598 case TYPE_CODE_ENUM:
2599 printf_filtered ("(TYPE_CODE_ENUM)");
2600 break;
4f2aea11
MK
2601 case TYPE_CODE_FLAGS:
2602 printf_filtered ("(TYPE_CODE_FLAGS)");
2603 break;
c5aa993b
JM
2604 case TYPE_CODE_FUNC:
2605 printf_filtered ("(TYPE_CODE_FUNC)");
2606 break;
2607 case TYPE_CODE_INT:
2608 printf_filtered ("(TYPE_CODE_INT)");
2609 break;
2610 case TYPE_CODE_FLT:
2611 printf_filtered ("(TYPE_CODE_FLT)");
2612 break;
2613 case TYPE_CODE_VOID:
2614 printf_filtered ("(TYPE_CODE_VOID)");
2615 break;
2616 case TYPE_CODE_SET:
2617 printf_filtered ("(TYPE_CODE_SET)");
2618 break;
2619 case TYPE_CODE_RANGE:
2620 printf_filtered ("(TYPE_CODE_RANGE)");
2621 break;
2622 case TYPE_CODE_STRING:
2623 printf_filtered ("(TYPE_CODE_STRING)");
2624 break;
e9e79dd9
FF
2625 case TYPE_CODE_BITSTRING:
2626 printf_filtered ("(TYPE_CODE_BITSTRING)");
2627 break;
c5aa993b
JM
2628 case TYPE_CODE_ERROR:
2629 printf_filtered ("(TYPE_CODE_ERROR)");
2630 break;
0d5de010
DJ
2631 case TYPE_CODE_MEMBERPTR:
2632 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2633 break;
2634 case TYPE_CODE_METHODPTR:
2635 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2636 break;
2637 case TYPE_CODE_METHOD:
2638 printf_filtered ("(TYPE_CODE_METHOD)");
2639 break;
2640 case TYPE_CODE_REF:
2641 printf_filtered ("(TYPE_CODE_REF)");
2642 break;
2643 case TYPE_CODE_CHAR:
2644 printf_filtered ("(TYPE_CODE_CHAR)");
2645 break;
2646 case TYPE_CODE_BOOL:
2647 printf_filtered ("(TYPE_CODE_BOOL)");
2648 break;
e9e79dd9
FF
2649 case TYPE_CODE_COMPLEX:
2650 printf_filtered ("(TYPE_CODE_COMPLEX)");
2651 break;
c5aa993b
JM
2652 case TYPE_CODE_TYPEDEF:
2653 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2654 break;
e9e79dd9
FF
2655 case TYPE_CODE_TEMPLATE:
2656 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2657 break;
2658 case TYPE_CODE_TEMPLATE_ARG:
2659 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2660 break;
5c4e30ca
DC
2661 case TYPE_CODE_NAMESPACE:
2662 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2663 break;
c5aa993b
JM
2664 default:
2665 printf_filtered ("(UNKNOWN TYPE CODE)");
2666 break;
c906108c
SS
2667 }
2668 puts_filtered ("\n");
2669 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
2670 if (TYPE_OBJFILE_OWNED (type))
2671 {
2672 printfi_filtered (spaces, "objfile ");
2673 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2674 }
2675 else
2676 {
2677 printfi_filtered (spaces, "gdbarch ");
2678 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2679 }
c906108c
SS
2680 printf_filtered ("\n");
2681 printfi_filtered (spaces, "target_type ");
d4f3574e 2682 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2683 printf_filtered ("\n");
2684 if (TYPE_TARGET_TYPE (type) != NULL)
2685 {
2686 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2687 }
2688 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2689 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2690 printf_filtered ("\n");
2691 printfi_filtered (spaces, "reference_type ");
d4f3574e 2692 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2693 printf_filtered ("\n");
2fdde8f8
DJ
2694 printfi_filtered (spaces, "type_chain ");
2695 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2696 printf_filtered ("\n");
7ba81444
MS
2697 printfi_filtered (spaces, "instance_flags 0x%x",
2698 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2699 if (TYPE_CONST (type))
2700 {
2701 puts_filtered (" TYPE_FLAG_CONST");
2702 }
2703 if (TYPE_VOLATILE (type))
2704 {
2705 puts_filtered (" TYPE_FLAG_VOLATILE");
2706 }
2707 if (TYPE_CODE_SPACE (type))
2708 {
2709 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2710 }
2711 if (TYPE_DATA_SPACE (type))
2712 {
2713 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2714 }
8b2dbe47
KB
2715 if (TYPE_ADDRESS_CLASS_1 (type))
2716 {
2717 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2718 }
2719 if (TYPE_ADDRESS_CLASS_2 (type))
2720 {
2721 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2722 }
2fdde8f8 2723 puts_filtered ("\n");
876cecd0
TT
2724
2725 printfi_filtered (spaces, "flags");
762a036f 2726 if (TYPE_UNSIGNED (type))
c906108c
SS
2727 {
2728 puts_filtered (" TYPE_FLAG_UNSIGNED");
2729 }
762a036f
FF
2730 if (TYPE_NOSIGN (type))
2731 {
2732 puts_filtered (" TYPE_FLAG_NOSIGN");
2733 }
2734 if (TYPE_STUB (type))
c906108c
SS
2735 {
2736 puts_filtered (" TYPE_FLAG_STUB");
2737 }
762a036f
FF
2738 if (TYPE_TARGET_STUB (type))
2739 {
2740 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2741 }
2742 if (TYPE_STATIC (type))
2743 {
2744 puts_filtered (" TYPE_FLAG_STATIC");
2745 }
762a036f
FF
2746 if (TYPE_PROTOTYPED (type))
2747 {
2748 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2749 }
2750 if (TYPE_INCOMPLETE (type))
2751 {
2752 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2753 }
762a036f
FF
2754 if (TYPE_VARARGS (type))
2755 {
2756 puts_filtered (" TYPE_FLAG_VARARGS");
2757 }
f5f8a009
EZ
2758 /* This is used for things like AltiVec registers on ppc. Gcc emits
2759 an attribute for the array type, which tells whether or not we
2760 have a vector, instead of a regular array. */
2761 if (TYPE_VECTOR (type))
2762 {
2763 puts_filtered (" TYPE_FLAG_VECTOR");
2764 }
876cecd0
TT
2765 if (TYPE_FIXED_INSTANCE (type))
2766 {
2767 puts_filtered (" TYPE_FIXED_INSTANCE");
2768 }
2769 if (TYPE_STUB_SUPPORTED (type))
2770 {
2771 puts_filtered (" TYPE_STUB_SUPPORTED");
2772 }
2773 if (TYPE_NOTTEXT (type))
2774 {
2775 puts_filtered (" TYPE_NOTTEXT");
2776 }
c906108c
SS
2777 puts_filtered ("\n");
2778 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 2779 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
2780 puts_filtered ("\n");
2781 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2782 {
2783 printfi_filtered (spaces + 2,
2784 "[%d] bitpos %d bitsize %d type ",
2785 idx, TYPE_FIELD_BITPOS (type, idx),
2786 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 2787 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
2788 printf_filtered (" name '%s' (",
2789 TYPE_FIELD_NAME (type, idx) != NULL
2790 ? TYPE_FIELD_NAME (type, idx)
2791 : "<NULL>");
d4f3574e 2792 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
2793 printf_filtered (")\n");
2794 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2795 {
2796 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2797 }
2798 }
43bbcdc2
PH
2799 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2800 {
2801 printfi_filtered (spaces, "low %s%s high %s%s\n",
2802 plongest (TYPE_LOW_BOUND (type)),
2803 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2804 plongest (TYPE_HIGH_BOUND (type)),
2805 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2806 }
c906108c 2807 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 2808 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
2809 puts_filtered ("\n");
2810 if (TYPE_VPTR_BASETYPE (type) != NULL)
2811 {
2812 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2813 }
7ba81444
MS
2814 printfi_filtered (spaces, "vptr_fieldno %d\n",
2815 TYPE_VPTR_FIELDNO (type));
c906108c 2816
b4ba55a1
JB
2817 switch (TYPE_SPECIFIC_FIELD (type))
2818 {
2819 case TYPE_SPECIFIC_CPLUS_STUFF:
2820 printfi_filtered (spaces, "cplus_stuff ");
2821 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2822 gdb_stdout);
2823 puts_filtered ("\n");
2824 print_cplus_stuff (type, spaces);
2825 break;
8da61cc4 2826
b4ba55a1
JB
2827 case TYPE_SPECIFIC_GNAT_STUFF:
2828 printfi_filtered (spaces, "gnat_stuff ");
2829 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2830 puts_filtered ("\n");
2831 print_gnat_stuff (type, spaces);
2832 break;
701c159d 2833
b4ba55a1
JB
2834 case TYPE_SPECIFIC_FLOATFORMAT:
2835 printfi_filtered (spaces, "floatformat ");
2836 if (TYPE_FLOATFORMAT (type) == NULL)
2837 puts_filtered ("(null)");
2838 else
2839 {
2840 puts_filtered ("{ ");
2841 if (TYPE_FLOATFORMAT (type)[0] == NULL
2842 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2843 puts_filtered ("(null)");
2844 else
2845 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2846
2847 puts_filtered (", ");
2848 if (TYPE_FLOATFORMAT (type)[1] == NULL
2849 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2850 puts_filtered ("(null)");
2851 else
2852 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2853
2854 puts_filtered (" }");
2855 }
2856 puts_filtered ("\n");
2857 break;
c906108c 2858
b4ba55a1
JB
2859 case TYPE_SPECIFIC_CALLING_CONVENTION:
2860 printfi_filtered (spaces, "calling_convention %d\n",
2861 TYPE_CALLING_CONVENTION (type));
2862 break;
c906108c 2863 }
b4ba55a1 2864
c906108c
SS
2865 if (spaces == 0)
2866 obstack_free (&dont_print_type_obstack, NULL);
2867}
2868
ae5a43e0
DJ
2869/* Trivial helpers for the libiberty hash table, for mapping one
2870 type to another. */
2871
2872struct type_pair
2873{
2874 struct type *old, *new;
2875};
2876
2877static hashval_t
2878type_pair_hash (const void *item)
2879{
2880 const struct type_pair *pair = item;
2881 return htab_hash_pointer (pair->old);
2882}
2883
2884static int
2885type_pair_eq (const void *item_lhs, const void *item_rhs)
2886{
2887 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2888 return lhs->old == rhs->old;
2889}
2890
2891/* Allocate the hash table used by copy_type_recursive to walk
2892 types without duplicates. We use OBJFILE's obstack, because
2893 OBJFILE is about to be deleted. */
2894
2895htab_t
2896create_copied_types_hash (struct objfile *objfile)
2897{
2898 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2899 NULL, &objfile->objfile_obstack,
2900 hashtab_obstack_allocate,
2901 dummy_obstack_deallocate);
2902}
2903
7ba81444
MS
2904/* Recursively copy (deep copy) TYPE, if it is associated with
2905 OBJFILE. Return a new type allocated using malloc, a saved type if
2906 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2907 not associated with OBJFILE. */
ae5a43e0
DJ
2908
2909struct type *
7ba81444
MS
2910copy_type_recursive (struct objfile *objfile,
2911 struct type *type,
ae5a43e0
DJ
2912 htab_t copied_types)
2913{
2914 struct type_pair *stored, pair;
2915 void **slot;
2916 struct type *new_type;
2917
e9bb382b 2918 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
2919 return type;
2920
7ba81444
MS
2921 /* This type shouldn't be pointing to any types in other objfiles;
2922 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
2923 gdb_assert (TYPE_OBJFILE (type) == objfile);
2924
2925 pair.old = type;
2926 slot = htab_find_slot (copied_types, &pair, INSERT);
2927 if (*slot != NULL)
2928 return ((struct type_pair *) *slot)->new;
2929
e9bb382b 2930 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
2931
2932 /* We must add the new type to the hash table immediately, in case
2933 we encounter this type again during a recursive call below. */
d87ecdfb 2934 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
2935 stored->old = type;
2936 stored->new = new_type;
2937 *slot = stored;
2938
876cecd0
TT
2939 /* Copy the common fields of types. For the main type, we simply
2940 copy the entire thing and then update specific fields as needed. */
2941 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
2942 TYPE_OBJFILE_OWNED (new_type) = 0;
2943 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 2944
ae5a43e0
DJ
2945 if (TYPE_NAME (type))
2946 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2947 if (TYPE_TAG_NAME (type))
2948 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
2949
2950 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2951 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2952
2953 /* Copy the fields. */
ae5a43e0
DJ
2954 if (TYPE_NFIELDS (type))
2955 {
2956 int i, nfields;
2957
2958 nfields = TYPE_NFIELDS (type);
1deafd4e 2959 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
2960 for (i = 0; i < nfields; i++)
2961 {
7ba81444
MS
2962 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2963 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
2964 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2965 if (TYPE_FIELD_TYPE (type, i))
2966 TYPE_FIELD_TYPE (new_type, i)
2967 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2968 copied_types);
2969 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
2970 TYPE_FIELD_NAME (new_type, i) =
2971 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 2972 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 2973 {
d6a843b5
JK
2974 case FIELD_LOC_KIND_BITPOS:
2975 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
2976 TYPE_FIELD_BITPOS (type, i));
2977 break;
2978 case FIELD_LOC_KIND_PHYSADDR:
2979 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
2980 TYPE_FIELD_STATIC_PHYSADDR (type, i));
2981 break;
2982 case FIELD_LOC_KIND_PHYSNAME:
2983 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
2984 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
2985 i)));
2986 break;
2987 default:
2988 internal_error (__FILE__, __LINE__,
2989 _("Unexpected type field location kind: %d"),
2990 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
2991 }
2992 }
2993 }
2994
43bbcdc2
PH
2995 /* For range types, copy the bounds information. */
2996 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2997 {
2998 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
2999 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3000 }
3001
ae5a43e0
DJ
3002 /* Copy pointers to other types. */
3003 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3004 TYPE_TARGET_TYPE (new_type) =
3005 copy_type_recursive (objfile,
3006 TYPE_TARGET_TYPE (type),
3007 copied_types);
ae5a43e0 3008 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3009 TYPE_VPTR_BASETYPE (new_type) =
3010 copy_type_recursive (objfile,
3011 TYPE_VPTR_BASETYPE (type),
3012 copied_types);
ae5a43e0
DJ
3013 /* Maybe copy the type_specific bits.
3014
3015 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3016 base classes and methods. There's no fundamental reason why we
3017 can't, but at the moment it is not needed. */
3018
3019 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3020 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3021 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3022 || TYPE_CODE (type) == TYPE_CODE_UNION
3023 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3024 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3025 INIT_CPLUS_SPECIFIC (new_type);
3026
3027 return new_type;
3028}
3029
4af88198
JB
3030/* Make a copy of the given TYPE, except that the pointer & reference
3031 types are not preserved.
3032
3033 This function assumes that the given type has an associated objfile.
3034 This objfile is used to allocate the new type. */
3035
3036struct type *
3037copy_type (const struct type *type)
3038{
3039 struct type *new_type;
3040
e9bb382b 3041 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3042
e9bb382b 3043 new_type = alloc_type_copy (type);
4af88198
JB
3044 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3045 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3046 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3047 sizeof (struct main_type));
3048
3049 return new_type;
3050}
3051
e9bb382b
UW
3052
3053/* Helper functions to initialize architecture-specific types. */
3054
3055/* Allocate a type structure associated with GDBARCH and set its
3056 CODE, LENGTH, and NAME fields. */
3057struct type *
3058arch_type (struct gdbarch *gdbarch,
3059 enum type_code code, int length, char *name)
3060{
3061 struct type *type;
3062
3063 type = alloc_type_arch (gdbarch);
3064 TYPE_CODE (type) = code;
3065 TYPE_LENGTH (type) = length;
3066
3067 if (name)
3068 TYPE_NAME (type) = xstrdup (name);
3069
3070 return type;
3071}
3072
3073/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3074 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3075 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3076struct type *
3077arch_integer_type (struct gdbarch *gdbarch,
3078 int bit, int unsigned_p, char *name)
3079{
3080 struct type *t;
3081
3082 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3083 if (unsigned_p)
3084 TYPE_UNSIGNED (t) = 1;
3085 if (name && strcmp (name, "char") == 0)
3086 TYPE_NOSIGN (t) = 1;
3087
3088 return t;
3089}
3090
3091/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3092 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3093 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3094struct type *
3095arch_character_type (struct gdbarch *gdbarch,
3096 int bit, int unsigned_p, char *name)
3097{
3098 struct type *t;
3099
3100 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3101 if (unsigned_p)
3102 TYPE_UNSIGNED (t) = 1;
3103
3104 return t;
3105}
3106
3107/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3108 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3109 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3110struct type *
3111arch_boolean_type (struct gdbarch *gdbarch,
3112 int bit, int unsigned_p, char *name)
3113{
3114 struct type *t;
3115
3116 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3117 if (unsigned_p)
3118 TYPE_UNSIGNED (t) = 1;
3119
3120 return t;
3121}
3122
3123/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3124 BIT is the type size in bits; if BIT equals -1, the size is
3125 determined by the floatformat. NAME is the type name. Set the
3126 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3127struct type *
e9bb382b
UW
3128arch_float_type (struct gdbarch *gdbarch,
3129 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3130{
3131 struct type *t;
3132
3133 if (bit == -1)
3134 {
3135 gdb_assert (floatformats != NULL);
3136 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3137 bit = floatformats[0]->totalsize;
3138 }
3139 gdb_assert (bit >= 0);
3140
e9bb382b 3141 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3142 TYPE_FLOATFORMAT (t) = floatformats;
3143 return t;
3144}
3145
e9bb382b
UW
3146/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3147 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3148struct type *
e9bb382b
UW
3149arch_complex_type (struct gdbarch *gdbarch,
3150 char *name, struct type *target_type)
27067745
UW
3151{
3152 struct type *t;
e9bb382b
UW
3153 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3154 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3155 TYPE_TARGET_TYPE (t) = target_type;
3156 return t;
3157}
3158
e9bb382b 3159/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3160 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3161struct type *
3162arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3163{
3164 int nfields = length * TARGET_CHAR_BIT;
3165 struct type *type;
3166
3167 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3168 TYPE_UNSIGNED (type) = 1;
3169 TYPE_NFIELDS (type) = nfields;
3170 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3171
3172 return type;
3173}
3174
3175/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3176 position BITPOS is called NAME. */
3177void
3178append_flags_type_flag (struct type *type, int bitpos, char *name)
3179{
3180 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3181 gdb_assert (bitpos < TYPE_NFIELDS (type));
3182 gdb_assert (bitpos >= 0);
3183
3184 if (name)
3185 {
3186 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3187 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3188 }
3189 else
3190 {
3191 /* Don't show this field to the user. */
3192 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3193 }
3194}
3195
3196/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3197 specified by CODE) associated with GDBARCH. NAME is the type name. */
3198struct type *
3199arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3200{
3201 struct type *t;
3202 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3203 t = arch_type (gdbarch, code, 0, NULL);
3204 TYPE_TAG_NAME (t) = name;
3205 INIT_CPLUS_SPECIFIC (t);
3206 return t;
3207}
3208
3209/* Add new field with name NAME and type FIELD to composite type T.
3210 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3211void
3212append_composite_type_field_aligned (struct type *t, char *name,
3213 struct type *field, int alignment)
3214{
3215 struct field *f;
3216 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3217 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3218 sizeof (struct field) * TYPE_NFIELDS (t));
3219 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3220 memset (f, 0, sizeof f[0]);
3221 FIELD_TYPE (f[0]) = field;
3222 FIELD_NAME (f[0]) = name;
3223 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3224 {
3225 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3226 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3227 }
3228 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3229 {
3230 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3231 if (TYPE_NFIELDS (t) > 1)
3232 {
3233 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3234 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3235 * TARGET_CHAR_BIT));
3236
3237 if (alignment)
3238 {
3239 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3240 if (left)
3241 {
3242 FIELD_BITPOS (f[0]) += left;
3243 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3244 }
3245 }
3246 }
3247 }
3248}
3249
3250/* Add new field with name NAME and type FIELD to composite type T. */
3251void
3252append_composite_type_field (struct type *t, char *name,
3253 struct type *field)
3254{
3255 append_composite_type_field_aligned (t, name, field, 0);
3256}
3257
3258
000177f0
AC
3259static struct gdbarch_data *gdbtypes_data;
3260
3261const struct builtin_type *
3262builtin_type (struct gdbarch *gdbarch)
3263{
3264 return gdbarch_data (gdbarch, gdbtypes_data);
3265}
3266
3267static void *
3268gdbtypes_post_init (struct gdbarch *gdbarch)
3269{
3270 struct builtin_type *builtin_type
3271 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3272
46bf5051 3273 /* Basic types. */
e9bb382b
UW
3274 builtin_type->builtin_void
3275 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3276 builtin_type->builtin_char
3277 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3278 !gdbarch_char_signed (gdbarch), "char");
3279 builtin_type->builtin_signed_char
3280 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3281 0, "signed char");
3282 builtin_type->builtin_unsigned_char
3283 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3284 1, "unsigned char");
3285 builtin_type->builtin_short
3286 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3287 0, "short");
3288 builtin_type->builtin_unsigned_short
3289 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3290 1, "unsigned short");
3291 builtin_type->builtin_int
3292 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3293 0, "int");
3294 builtin_type->builtin_unsigned_int
3295 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3296 1, "unsigned int");
3297 builtin_type->builtin_long
3298 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3299 0, "long");
3300 builtin_type->builtin_unsigned_long
3301 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3302 1, "unsigned long");
3303 builtin_type->builtin_long_long
3304 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3305 0, "long long");
3306 builtin_type->builtin_unsigned_long_long
3307 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3308 1, "unsigned long long");
70bd8e24 3309 builtin_type->builtin_float
e9bb382b 3310 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3311 "float", gdbarch_float_format (gdbarch));
70bd8e24 3312 builtin_type->builtin_double
e9bb382b 3313 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3314 "double", gdbarch_double_format (gdbarch));
70bd8e24 3315 builtin_type->builtin_long_double
e9bb382b 3316 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3317 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3318 builtin_type->builtin_complex
e9bb382b
UW
3319 = arch_complex_type (gdbarch, "complex",
3320 builtin_type->builtin_float);
70bd8e24 3321 builtin_type->builtin_double_complex
e9bb382b
UW
3322 = arch_complex_type (gdbarch, "double complex",
3323 builtin_type->builtin_double);
3324 builtin_type->builtin_string
3325 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3326 builtin_type->builtin_bool
3327 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3328
7678ef8f
TJB
3329 /* The following three are about decimal floating point types, which
3330 are 32-bits, 64-bits and 128-bits respectively. */
3331 builtin_type->builtin_decfloat
e9bb382b 3332 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3333 builtin_type->builtin_decdouble
e9bb382b 3334 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3335 builtin_type->builtin_declong
e9bb382b 3336 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3337
69feb676 3338 /* "True" character types. */
e9bb382b
UW
3339 builtin_type->builtin_true_char
3340 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3341 builtin_type->builtin_true_unsigned_char
3342 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3343
df4df182 3344 /* Fixed-size integer types. */
e9bb382b
UW
3345 builtin_type->builtin_int0
3346 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3347 builtin_type->builtin_int8
3348 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3349 builtin_type->builtin_uint8
3350 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3351 builtin_type->builtin_int16
3352 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3353 builtin_type->builtin_uint16
3354 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3355 builtin_type->builtin_int32
3356 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3357 builtin_type->builtin_uint32
3358 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3359 builtin_type->builtin_int64
3360 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3361 builtin_type->builtin_uint64
3362 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3363 builtin_type->builtin_int128
3364 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3365 builtin_type->builtin_uint128
3366 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3367 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3368 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
df4df182 3369
46bf5051 3370 /* Default data/code pointer types. */
e9bb382b
UW
3371 builtin_type->builtin_data_ptr
3372 = lookup_pointer_type (builtin_type->builtin_void);
3373 builtin_type->builtin_func_ptr
3374 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
46bf5051 3375
78267919 3376 /* This type represents a GDB internal function. */
e9bb382b
UW
3377 builtin_type->internal_fn
3378 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3379 "<internal function>");
78267919 3380
46bf5051
UW
3381 return builtin_type;
3382}
3383
3384
3385/* This set of objfile-based types is intended to be used by symbol
3386 readers as basic types. */
3387
3388static const struct objfile_data *objfile_type_data;
3389
3390const struct objfile_type *
3391objfile_type (struct objfile *objfile)
3392{
3393 struct gdbarch *gdbarch;
3394 struct objfile_type *objfile_type
3395 = objfile_data (objfile, objfile_type_data);
3396
3397 if (objfile_type)
3398 return objfile_type;
3399
3400 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3401 1, struct objfile_type);
3402
3403 /* Use the objfile architecture to determine basic type properties. */
3404 gdbarch = get_objfile_arch (objfile);
3405
3406 /* Basic types. */
3407 objfile_type->builtin_void
3408 = init_type (TYPE_CODE_VOID, 1,
3409 0,
3410 "void", objfile);
3411
3412 objfile_type->builtin_char
3413 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3414 (TYPE_FLAG_NOSIGN
3415 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3416 "char", objfile);
3417 objfile_type->builtin_signed_char
3418 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3419 0,
3420 "signed char", objfile);
3421 objfile_type->builtin_unsigned_char
3422 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3423 TYPE_FLAG_UNSIGNED,
3424 "unsigned char", objfile);
3425 objfile_type->builtin_short
3426 = init_type (TYPE_CODE_INT,
3427 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3428 0, "short", objfile);
3429 objfile_type->builtin_unsigned_short
3430 = init_type (TYPE_CODE_INT,
3431 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3432 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3433 objfile_type->builtin_int
3434 = init_type (TYPE_CODE_INT,
3435 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3436 0, "int", objfile);
3437 objfile_type->builtin_unsigned_int
3438 = init_type (TYPE_CODE_INT,
3439 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3440 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3441 objfile_type->builtin_long
3442 = init_type (TYPE_CODE_INT,
3443 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3444 0, "long", objfile);
3445 objfile_type->builtin_unsigned_long
3446 = init_type (TYPE_CODE_INT,
3447 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3448 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3449 objfile_type->builtin_long_long
3450 = init_type (TYPE_CODE_INT,
3451 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3452 0, "long long", objfile);
3453 objfile_type->builtin_unsigned_long_long
3454 = init_type (TYPE_CODE_INT,
3455 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3456 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3457
3458 objfile_type->builtin_float
3459 = init_type (TYPE_CODE_FLT,
3460 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3461 0, "float", objfile);
3462 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3463 = gdbarch_float_format (gdbarch);
3464 objfile_type->builtin_double
3465 = init_type (TYPE_CODE_FLT,
3466 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3467 0, "double", objfile);
3468 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3469 = gdbarch_double_format (gdbarch);
3470 objfile_type->builtin_long_double
3471 = init_type (TYPE_CODE_FLT,
3472 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3473 0, "long double", objfile);
3474 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3475 = gdbarch_long_double_format (gdbarch);
3476
3477 /* This type represents a type that was unrecognized in symbol read-in. */
3478 objfile_type->builtin_error
3479 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3480
3481 /* The following set of types is used for symbols with no
3482 debug information. */
3483 objfile_type->nodebug_text_symbol
3484 = init_type (TYPE_CODE_FUNC, 1, 0,
3485 "<text variable, no debug info>", objfile);
3486 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3487 = objfile_type->builtin_int;
3488 objfile_type->nodebug_data_symbol
3489 = init_type (TYPE_CODE_INT,
3490 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3491 "<data variable, no debug info>", objfile);
3492 objfile_type->nodebug_unknown_symbol
3493 = init_type (TYPE_CODE_INT, 1, 0,
3494 "<variable (not text or data), no debug info>", objfile);
3495 objfile_type->nodebug_tls_symbol
3496 = init_type (TYPE_CODE_INT,
3497 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3498 "<thread local variable, no debug info>", objfile);
000177f0
AC
3499
3500 /* NOTE: on some targets, addresses and pointers are not necessarily
3501 the same --- for example, on the D10V, pointers are 16 bits long,
3502 but addresses are 32 bits long. See doc/gdbint.texinfo,
3503 ``Pointers Are Not Always Addresses''.
3504
3505 The upshot is:
3506 - gdb's `struct type' always describes the target's
3507 representation.
3508 - gdb's `struct value' objects should always hold values in
3509 target form.
3510 - gdb's CORE_ADDR values are addresses in the unified virtual
3511 address space that the assembler and linker work with. Thus,
3512 since target_read_memory takes a CORE_ADDR as an argument, it
3513 can access any memory on the target, even if the processor has
3514 separate code and data address spaces.
3515
3516 So, for example:
3517 - If v is a value holding a D10V code pointer, its contents are
3518 in target form: a big-endian address left-shifted two bits.
3519 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3520 sizeof (void *) == 2 on the target.
3521
46bf5051
UW
3522 In this context, objfile_type->builtin_core_addr is a bit odd:
3523 it's a target type for a value the target will never see. It's
3524 only used to hold the values of (typeless) linker symbols, which
3525 are indeed in the unified virtual address space. */
000177f0 3526
46bf5051
UW
3527 objfile_type->builtin_core_addr
3528 = init_type (TYPE_CODE_INT,
3529 gdbarch_addr_bit (gdbarch) / 8,
3530 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3531
46bf5051
UW
3532 set_objfile_data (objfile, objfile_type_data, objfile_type);
3533 return objfile_type;
000177f0
AC
3534}
3535
46bf5051 3536
a14ed312 3537extern void _initialize_gdbtypes (void);
c906108c 3538void
fba45db2 3539_initialize_gdbtypes (void)
c906108c 3540{
5674de60 3541 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 3542 objfile_type_data = register_objfile_data ();
5674de60 3543
85c07804
AC
3544 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3545Set debugging of C++ overloading."), _("\
3546Show debugging of C++ overloading."), _("\
3547When enabled, ranking of the functions is displayed."),
3548 NULL,
920d2a44 3549 show_overload_debug,
85c07804 3550 &setdebuglist, &showdebuglist);
5674de60 3551
7ba81444 3552 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3553 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3554 &opaque_type_resolution, _("\
3555Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3556Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3557 NULL,
3558 show_opaque_type_resolution,
3559 &setlist, &showlist);
c906108c 3560}
This page took 0.981627 seconds and 4 git commands to generate.