Replace two_file_shared_2.so with two_file_shared_1.so
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
41bf6aca
TT
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2fdde8f8
DJ
255/* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259static struct type *
260alloc_type_instance (struct type *oldtype)
261{
262 struct type *type;
263
264 /* Allocate the structure. */
265
e9bb382b 266 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 267 type = XCNEW (struct type);
2fdde8f8 268 else
1deafd4e
PA
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
2fdde8f8
DJ
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
c16abbde 276 return type;
2fdde8f8
DJ
277}
278
279/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 280 replacing it with something else. Preserve owner information. */
5212577a 281
2fdde8f8
DJ
282static void
283smash_type (struct type *type)
284{
e9bb382b
UW
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
2fdde8f8
DJ
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
e9bb382b
UW
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
2fdde8f8
DJ
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298}
299
c906108c
SS
300/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305struct type *
fba45db2 306make_pointer_type (struct type *type, struct type **typeptr)
c906108c 307{
52f0bd74 308 struct type *ntype; /* New type */
053cb41b 309 struct type *chain;
c906108c
SS
310
311 ntype = TYPE_POINTER_TYPE (type);
312
c5aa993b 313 if (ntype)
c906108c 314 {
c5aa993b 315 if (typeptr == 0)
7ba81444
MS
316 return ntype; /* Don't care about alloc,
317 and have new type. */
c906108c 318 else if (*typeptr == 0)
c5aa993b 319 {
7ba81444 320 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 321 return ntype;
c5aa993b 322 }
c906108c
SS
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
e9bb382b 327 ntype = alloc_type_copy (type);
c906108c
SS
328 if (typeptr)
329 *typeptr = ntype;
330 }
7ba81444 331 else /* We have storage, but need to reset it. */
c906108c
SS
332 {
333 ntype = *typeptr;
053cb41b 334 chain = TYPE_CHAIN (ntype);
2fdde8f8 335 smash_type (ntype);
053cb41b 336 TYPE_CHAIN (ntype) = chain;
c906108c
SS
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
5212577a 342 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 343
50810684
UW
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
67b2adb2 348 /* Mark pointers as unsigned. The target converts between pointers
76e71323 349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 350 gdbarch_address_to_pointer. */
876cecd0 351 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 352
053cb41b
JB
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
c906108c
SS
361 return ntype;
362}
363
364/* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367struct type *
fba45db2 368lookup_pointer_type (struct type *type)
c906108c 369{
c5aa993b 370 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
371}
372
7ba81444
MS
373/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
c906108c
SS
377
378struct type *
fba45db2 379make_reference_type (struct type *type, struct type **typeptr)
c906108c 380{
52f0bd74 381 struct type *ntype; /* New type */
1e98b326 382 struct type *chain;
c906108c
SS
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
c5aa993b 386 if (ntype)
c906108c 387 {
c5aa993b 388 if (typeptr == 0)
7ba81444
MS
389 return ntype; /* Don't care about alloc,
390 and have new type. */
c906108c 391 else if (*typeptr == 0)
c5aa993b 392 {
7ba81444 393 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 394 return ntype;
c5aa993b 395 }
c906108c
SS
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
e9bb382b 400 ntype = alloc_type_copy (type);
c906108c
SS
401 if (typeptr)
402 *typeptr = ntype;
403 }
7ba81444 404 else /* We have storage, but need to reset it. */
c906108c
SS
405 {
406 ntype = *typeptr;
1e98b326 407 chain = TYPE_CHAIN (ntype);
2fdde8f8 408 smash_type (ntype);
1e98b326 409 TYPE_CHAIN (ntype) = chain;
c906108c
SS
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
7ba81444
MS
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
c906108c 418
50810684
UW
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 421 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 422
c906108c
SS
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
1e98b326
JB
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
c906108c
SS
434 return ntype;
435}
436
7ba81444
MS
437/* Same as above, but caller doesn't care about memory allocation
438 details. */
c906108c
SS
439
440struct type *
fba45db2 441lookup_reference_type (struct type *type)
c906108c 442{
c5aa993b 443 return make_reference_type (type, (struct type **) 0);
c906108c
SS
444}
445
7ba81444
MS
446/* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 449 function type we return. We allocate new memory if needed. */
c906108c
SS
450
451struct type *
0c8b41f1 452make_function_type (struct type *type, struct type **typeptr)
c906108c 453{
52f0bd74 454 struct type *ntype; /* New type */
c906108c
SS
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
e9bb382b 458 ntype = alloc_type_copy (type);
c906108c
SS
459 if (typeptr)
460 *typeptr = ntype;
461 }
7ba81444 462 else /* We have storage, but need to reset it. */
c906108c
SS
463 {
464 ntype = *typeptr;
2fdde8f8 465 smash_type (ntype);
c906108c
SS
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 472
b6cdc2c1
JK
473 INIT_FUNC_SPECIFIC (ntype);
474
c906108c
SS
475 return ntype;
476}
477
c906108c
SS
478/* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481struct type *
fba45db2 482lookup_function_type (struct type *type)
c906108c 483{
0c8b41f1 484 return make_function_type (type, (struct type **) 0);
c906108c
SS
485}
486
71918a86 487/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
71918a86
TT
490
491struct type *
492lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495{
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
e314d629 499 if (nparams > 0)
a6fb9c08 500 {
e314d629
TT
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
a6fb9c08
TT
514 }
515
71918a86
TT
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522}
523
47663de5
MS
524/* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
5212577a
DE
526
527int
50810684 528address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 529{
8b2dbe47 530 int type_flags;
d8734c88 531
7ba81444 532 /* Check for known address space delimiters. */
47663de5 533 if (!strcmp (space_identifier, "code"))
876cecd0 534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 535 else if (!strcmp (space_identifier, "data"))
876cecd0 536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
8b2dbe47 541 return type_flags;
47663de5 542 else
8a3fe4f8 543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
544}
545
546/* Identify address space identifier by integer flag as defined in
7ba81444 547 gdbtypes.h -- return the string version of the adress space name. */
47663de5 548
321432c0 549const char *
50810684 550address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 551{
876cecd0 552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 553 return "code";
876cecd0 554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 555 return "data";
876cecd0 556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
559 else
560 return NULL;
561}
562
2fdde8f8 563/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
47663de5 567
b9362cc7 568static struct type *
2fdde8f8
DJ
569make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
47663de5
MS
571{
572 struct type *ntype;
573
574 ntype = type;
5f61c20e
JK
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
47663de5 582
2fdde8f8
DJ
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
7ba81444
MS
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
ad766c0a
JB
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
2fdde8f8
DJ
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
47663de5
MS
598
599 /* Pointers or references to the original type are not relevant to
2fdde8f8 600 the new type. */
47663de5
MS
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 603
2fdde8f8
DJ
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 610
ab5d3da6
KB
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
47663de5
MS
614 return ntype;
615}
616
2fdde8f8
DJ
617/* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
7ba81444
MS
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
2fdde8f8
DJ
625
626struct type *
627make_type_with_address_space (struct type *type, int space_flag)
628{
2fdde8f8 629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636}
c906108c
SS
637
638/* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
c906108c 643
ad766c0a
JB
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
5212577a 649
c906108c 650struct type *
7ba81444
MS
651make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
c906108c 654{
52f0bd74 655 struct type *ntype; /* New type */
c906108c 656
2fdde8f8 657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 660
c906108c 661 if (cnst)
876cecd0 662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
663
664 if (voltl)
876cecd0 665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 666
2fdde8f8 667 if (typeptr && *typeptr != NULL)
a02fd225 668 {
ad766c0a
JB
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
682 }
683
7ba81444
MS
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
c906108c 686
2fdde8f8
DJ
687 if (typeptr != NULL)
688 *typeptr = ntype;
a02fd225 689
2fdde8f8 690 return ntype;
a02fd225 691}
c906108c 692
06d66ee9
TT
693/* Make a 'restrict'-qualified version of TYPE. */
694
695struct type *
696make_restrict_type (struct type *type)
697{
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702}
703
f1660027
TT
704/* Make a type without const, volatile, or restrict. */
705
706struct type *
707make_unqualified_type (struct type *type)
708{
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715}
716
2fdde8f8
DJ
717/* Replace the contents of ntype with the type *type. This changes the
718 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
719 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 720
cda6c68a
JB
721 In order to build recursive types, it's inevitable that we'll need
722 to update types in place --- but this sort of indiscriminate
723 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
724 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
725 clear if more steps are needed. */
5212577a 726
dd6bda65
DJ
727void
728replace_type (struct type *ntype, struct type *type)
729{
ab5d3da6 730 struct type *chain;
dd6bda65 731
ad766c0a
JB
732 /* These two types had better be in the same objfile. Otherwise,
733 the assignment of one type's main type structure to the other
734 will produce a type with references to objects (names; field
735 lists; etc.) allocated on an objfile other than its own. */
736 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
737
2fdde8f8 738 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 739
7ba81444
MS
740 /* The type length is not a part of the main type. Update it for
741 each type on the variant chain. */
ab5d3da6 742 chain = ntype;
5f61c20e
JK
743 do
744 {
745 /* Assert that this element of the chain has no address-class bits
746 set in its flags. Such type variants might have type lengths
747 which are supposed to be different from the non-address-class
748 variants. This assertion shouldn't ever be triggered because
749 symbol readers which do construct address-class variants don't
750 call replace_type(). */
751 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
752
753 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
754 chain = TYPE_CHAIN (chain);
755 }
756 while (ntype != chain);
ab5d3da6 757
2fdde8f8
DJ
758 /* Assert that the two types have equivalent instance qualifiers.
759 This should be true for at least all of our debug readers. */
760 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
761}
762
c906108c
SS
763/* Implement direct support for MEMBER_TYPE in GNU C++.
764 May need to construct such a type if this is the first use.
765 The TYPE is the type of the member. The DOMAIN is the type
766 of the aggregate that the member belongs to. */
767
768struct type *
0d5de010 769lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 770{
52f0bd74 771 struct type *mtype;
c906108c 772
e9bb382b 773 mtype = alloc_type_copy (type);
0d5de010 774 smash_to_memberptr_type (mtype, domain, type);
c16abbde 775 return mtype;
c906108c
SS
776}
777
0d5de010
DJ
778/* Return a pointer-to-method type, for a method of type TO_TYPE. */
779
780struct type *
781lookup_methodptr_type (struct type *to_type)
782{
783 struct type *mtype;
784
e9bb382b 785 mtype = alloc_type_copy (to_type);
0b92b5bb 786 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
787 return mtype;
788}
789
7ba81444
MS
790/* Allocate a stub method whose return type is TYPE. This apparently
791 happens for speed of symbol reading, since parsing out the
792 arguments to the method is cpu-intensive, the way we are doing it.
793 So, we will fill in arguments later. This always returns a fresh
794 type. */
c906108c
SS
795
796struct type *
fba45db2 797allocate_stub_method (struct type *type)
c906108c
SS
798{
799 struct type *mtype;
800
e9bb382b
UW
801 mtype = alloc_type_copy (type);
802 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
803 TYPE_LENGTH (mtype) = 1;
804 TYPE_STUB (mtype) = 1;
c906108c 805 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 806 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 807 return mtype;
c906108c
SS
808}
809
729efb13
SA
810/* Create a range type with a dynamic range from LOW_BOUND to
811 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
812
813struct type *
729efb13
SA
814create_range_type (struct type *result_type, struct type *index_type,
815 const struct dynamic_prop *low_bound,
816 const struct dynamic_prop *high_bound)
c906108c
SS
817{
818 if (result_type == NULL)
e9bb382b 819 result_type = alloc_type_copy (index_type);
c906108c
SS
820 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
821 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 822 if (TYPE_STUB (index_type))
876cecd0 823 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
824 else
825 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 826
43bbcdc2
PH
827 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
828 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
829 TYPE_RANGE_DATA (result_type)->low = *low_bound;
830 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 831
729efb13 832 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 833 TYPE_UNSIGNED (result_type) = 1;
c906108c 834
45e44d27
JB
835 /* Ada allows the declaration of range types whose upper bound is
836 less than the lower bound, so checking the lower bound is not
837 enough. Make sure we do not mark a range type whose upper bound
838 is negative as unsigned. */
839 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
840 TYPE_UNSIGNED (result_type) = 0;
841
262452ec 842 return result_type;
c906108c
SS
843}
844
729efb13
SA
845/* Create a range type using either a blank type supplied in
846 RESULT_TYPE, or creating a new type, inheriting the objfile from
847 INDEX_TYPE.
848
849 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
850 to HIGH_BOUND, inclusive.
851
852 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
853 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
854
855struct type *
856create_static_range_type (struct type *result_type, struct type *index_type,
857 LONGEST low_bound, LONGEST high_bound)
858{
859 struct dynamic_prop low, high;
860
861 low.kind = PROP_CONST;
862 low.data.const_val = low_bound;
863
864 high.kind = PROP_CONST;
865 high.data.const_val = high_bound;
866
867 result_type = create_range_type (result_type, index_type, &low, &high);
868
869 return result_type;
870}
871
80180f79
SA
872/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
873 are static, otherwise returns 0. */
874
875static int
876has_static_range (const struct range_bounds *bounds)
877{
878 return (bounds->low.kind == PROP_CONST
879 && bounds->high.kind == PROP_CONST);
880}
881
882
7ba81444
MS
883/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
884 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
885 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
886
887int
fba45db2 888get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
889{
890 CHECK_TYPEDEF (type);
891 switch (TYPE_CODE (type))
892 {
893 case TYPE_CODE_RANGE:
894 *lowp = TYPE_LOW_BOUND (type);
895 *highp = TYPE_HIGH_BOUND (type);
896 return 1;
897 case TYPE_CODE_ENUM:
898 if (TYPE_NFIELDS (type) > 0)
899 {
900 /* The enums may not be sorted by value, so search all
0963b4bd 901 entries. */
c906108c
SS
902 int i;
903
14e75d8e 904 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
905 for (i = 0; i < TYPE_NFIELDS (type); i++)
906 {
14e75d8e
JK
907 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
908 *lowp = TYPE_FIELD_ENUMVAL (type, i);
909 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
910 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
911 }
912
7ba81444 913 /* Set unsigned indicator if warranted. */
c5aa993b 914 if (*lowp >= 0)
c906108c 915 {
876cecd0 916 TYPE_UNSIGNED (type) = 1;
c906108c
SS
917 }
918 }
919 else
920 {
921 *lowp = 0;
922 *highp = -1;
923 }
924 return 0;
925 case TYPE_CODE_BOOL:
926 *lowp = 0;
927 *highp = 1;
928 return 0;
929 case TYPE_CODE_INT:
c5aa993b 930 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
931 return -1;
932 if (!TYPE_UNSIGNED (type))
933 {
c5aa993b 934 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
935 *highp = -*lowp - 1;
936 return 0;
937 }
7ba81444 938 /* ... fall through for unsigned ints ... */
c906108c
SS
939 case TYPE_CODE_CHAR:
940 *lowp = 0;
941 /* This round-about calculation is to avoid shifting by
7b83ea04 942 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 943 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
944 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
945 *highp = (*highp - 1) | *highp;
946 return 0;
947 default:
948 return -1;
949 }
950}
951
dbc98a8b
KW
952/* Assuming TYPE is a simple, non-empty array type, compute its upper
953 and lower bound. Save the low bound into LOW_BOUND if not NULL.
954 Save the high bound into HIGH_BOUND if not NULL.
955
0963b4bd 956 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
957 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
958
959 We now simply use get_discrete_bounds call to get the values
960 of the low and high bounds.
961 get_discrete_bounds can return three values:
962 1, meaning that index is a range,
963 0, meaning that index is a discrete type,
964 or -1 for failure. */
965
966int
967get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
968{
969 struct type *index = TYPE_INDEX_TYPE (type);
970 LONGEST low = 0;
971 LONGEST high = 0;
972 int res;
973
974 if (index == NULL)
975 return 0;
976
977 res = get_discrete_bounds (index, &low, &high);
978 if (res == -1)
979 return 0;
980
981 /* Check if the array bounds are undefined. */
982 if (res == 1
983 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
984 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
985 return 0;
986
987 if (low_bound)
988 *low_bound = low;
989
990 if (high_bound)
991 *high_bound = high;
992
993 return 1;
994}
995
7ba81444
MS
996/* Create an array type using either a blank type supplied in
997 RESULT_TYPE, or creating a new type, inheriting the objfile from
998 RANGE_TYPE.
c906108c
SS
999
1000 Elements will be of type ELEMENT_TYPE, the indices will be of type
1001 RANGE_TYPE.
1002
dc53a7ad
JB
1003 If BIT_STRIDE is not zero, build a packed array type whose element
1004 size is BIT_STRIDE. Otherwise, ignore this parameter.
1005
7ba81444
MS
1006 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1007 sure it is TYPE_CODE_UNDEF before we bash it into an array
1008 type? */
c906108c
SS
1009
1010struct type *
dc53a7ad
JB
1011create_array_type_with_stride (struct type *result_type,
1012 struct type *element_type,
1013 struct type *range_type,
1014 unsigned int bit_stride)
c906108c 1015{
c906108c 1016 if (result_type == NULL)
e9bb382b
UW
1017 result_type = alloc_type_copy (range_type);
1018
c906108c
SS
1019 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1020 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1021 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1022 {
1023 LONGEST low_bound, high_bound;
1024
1025 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1026 low_bound = high_bound = 0;
1027 CHECK_TYPEDEF (element_type);
1028 /* Be careful when setting the array length. Ada arrays can be
1029 empty arrays with the high_bound being smaller than the low_bound.
1030 In such cases, the array length should be zero. */
1031 if (high_bound < low_bound)
1032 TYPE_LENGTH (result_type) = 0;
1033 else if (bit_stride > 0)
1034 TYPE_LENGTH (result_type) =
1035 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1036 else
1037 TYPE_LENGTH (result_type) =
1038 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1039 }
ab0d6e0d 1040 else
80180f79
SA
1041 {
1042 /* This type is dynamic and its length needs to be computed
1043 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1044 undefined by setting it to zero. Although we are not expected
1045 to trust TYPE_LENGTH in this case, setting the size to zero
1046 allows us to avoid allocating objects of random sizes in case
1047 we accidently do. */
1048 TYPE_LENGTH (result_type) = 0;
1049 }
1050
c906108c
SS
1051 TYPE_NFIELDS (result_type) = 1;
1052 TYPE_FIELDS (result_type) =
1deafd4e 1053 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1054 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1055 if (bit_stride > 0)
1056 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1057
0963b4bd 1058 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1059 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1060 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1061
c16abbde 1062 return result_type;
c906108c
SS
1063}
1064
dc53a7ad
JB
1065/* Same as create_array_type_with_stride but with no bit_stride
1066 (BIT_STRIDE = 0), thus building an unpacked array. */
1067
1068struct type *
1069create_array_type (struct type *result_type,
1070 struct type *element_type,
1071 struct type *range_type)
1072{
1073 return create_array_type_with_stride (result_type, element_type,
1074 range_type, 0);
1075}
1076
e3506a9f
UW
1077struct type *
1078lookup_array_range_type (struct type *element_type,
63375b74 1079 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1080{
50810684 1081 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1082 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1083 struct type *range_type
0c9c3474 1084 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1085
e3506a9f
UW
1086 return create_array_type (NULL, element_type, range_type);
1087}
1088
7ba81444
MS
1089/* Create a string type using either a blank type supplied in
1090 RESULT_TYPE, or creating a new type. String types are similar
1091 enough to array of char types that we can use create_array_type to
1092 build the basic type and then bash it into a string type.
c906108c
SS
1093
1094 For fixed length strings, the range type contains 0 as the lower
1095 bound and the length of the string minus one as the upper bound.
1096
7ba81444
MS
1097 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1098 sure it is TYPE_CODE_UNDEF before we bash it into a string
1099 type? */
c906108c
SS
1100
1101struct type *
3b7538c0
UW
1102create_string_type (struct type *result_type,
1103 struct type *string_char_type,
7ba81444 1104 struct type *range_type)
c906108c
SS
1105{
1106 result_type = create_array_type (result_type,
f290d38e 1107 string_char_type,
c906108c
SS
1108 range_type);
1109 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1110 return result_type;
c906108c
SS
1111}
1112
e3506a9f
UW
1113struct type *
1114lookup_string_range_type (struct type *string_char_type,
63375b74 1115 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1116{
1117 struct type *result_type;
d8734c88 1118
e3506a9f
UW
1119 result_type = lookup_array_range_type (string_char_type,
1120 low_bound, high_bound);
1121 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1122 return result_type;
1123}
1124
c906108c 1125struct type *
fba45db2 1126create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1127{
c906108c 1128 if (result_type == NULL)
e9bb382b
UW
1129 result_type = alloc_type_copy (domain_type);
1130
c906108c
SS
1131 TYPE_CODE (result_type) = TYPE_CODE_SET;
1132 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1133 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1134
74a9bb82 1135 if (!TYPE_STUB (domain_type))
c906108c 1136 {
f9780d5b 1137 LONGEST low_bound, high_bound, bit_length;
d8734c88 1138
c906108c
SS
1139 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1140 low_bound = high_bound = 0;
1141 bit_length = high_bound - low_bound + 1;
1142 TYPE_LENGTH (result_type)
1143 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1144 if (low_bound >= 0)
876cecd0 1145 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1146 }
1147 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1148
c16abbde 1149 return result_type;
c906108c
SS
1150}
1151
ea37ba09
DJ
1152/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1153 and any array types nested inside it. */
1154
1155void
1156make_vector_type (struct type *array_type)
1157{
1158 struct type *inner_array, *elt_type;
1159 int flags;
1160
1161 /* Find the innermost array type, in case the array is
1162 multi-dimensional. */
1163 inner_array = array_type;
1164 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1165 inner_array = TYPE_TARGET_TYPE (inner_array);
1166
1167 elt_type = TYPE_TARGET_TYPE (inner_array);
1168 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1169 {
2844d6b5 1170 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1171 elt_type = make_qualified_type (elt_type, flags, NULL);
1172 TYPE_TARGET_TYPE (inner_array) = elt_type;
1173 }
1174
876cecd0 1175 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1176}
1177
794ac428 1178struct type *
ac3aafc7
EZ
1179init_vector_type (struct type *elt_type, int n)
1180{
1181 struct type *array_type;
d8734c88 1182
e3506a9f 1183 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1184 make_vector_type (array_type);
ac3aafc7
EZ
1185 return array_type;
1186}
1187
09e2d7c7
DE
1188/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1189 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1190 confusing. "self" is a common enough replacement for "this".
1191 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1192 TYPE_CODE_METHOD. */
1193
1194struct type *
1195internal_type_self_type (struct type *type)
1196{
1197 switch (TYPE_CODE (type))
1198 {
1199 case TYPE_CODE_METHODPTR:
1200 case TYPE_CODE_MEMBERPTR:
1201 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1202 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1203 case TYPE_CODE_METHOD:
1204 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1205 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1206 default:
1207 gdb_assert_not_reached ("bad type");
1208 }
1209}
1210
1211/* Set the type of the class that TYPE belongs to.
1212 In c++ this is the class of "this".
1213 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1214 TYPE_CODE_METHOD. */
1215
1216void
1217set_type_self_type (struct type *type, struct type *self_type)
1218{
1219 switch (TYPE_CODE (type))
1220 {
1221 case TYPE_CODE_METHODPTR:
1222 case TYPE_CODE_MEMBERPTR:
1223 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1224 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1225 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1226 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1227 break;
1228 case TYPE_CODE_METHOD:
1229 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1230 INIT_FUNC_SPECIFIC (type);
1231 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1232 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1233 break;
1234 default:
1235 gdb_assert_not_reached ("bad type");
1236 }
1237}
1238
1239/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1240 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1241 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1242 TYPE doesn't include the offset (that's the value of the MEMBER
1243 itself), but does include the structure type into which it points
1244 (for some reason).
c906108c 1245
7ba81444
MS
1246 When "smashing" the type, we preserve the objfile that the old type
1247 pointed to, since we aren't changing where the type is actually
c906108c
SS
1248 allocated. */
1249
1250void
09e2d7c7 1251smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1252 struct type *to_type)
c906108c 1253{
2fdde8f8 1254 smash_type (type);
09e2d7c7 1255 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1256 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1257 set_type_self_type (type, self_type);
0d5de010
DJ
1258 /* Assume that a data member pointer is the same size as a normal
1259 pointer. */
50810684
UW
1260 TYPE_LENGTH (type)
1261 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1262}
1263
0b92b5bb
TT
1264/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1265
1266 When "smashing" the type, we preserve the objfile that the old type
1267 pointed to, since we aren't changing where the type is actually
1268 allocated. */
1269
1270void
1271smash_to_methodptr_type (struct type *type, struct type *to_type)
1272{
1273 smash_type (type);
09e2d7c7 1274 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1275 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1276 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1277 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1278}
1279
09e2d7c7 1280/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1281 METHOD just means `function that gets an extra "this" argument'.
1282
7ba81444
MS
1283 When "smashing" the type, we preserve the objfile that the old type
1284 pointed to, since we aren't changing where the type is actually
c906108c
SS
1285 allocated. */
1286
1287void
09e2d7c7 1288smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1289 struct type *to_type, struct field *args,
1290 int nargs, int varargs)
c906108c 1291{
2fdde8f8 1292 smash_type (type);
09e2d7c7 1293 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1294 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1295 set_type_self_type (type, self_type);
ad2f7632
DJ
1296 TYPE_FIELDS (type) = args;
1297 TYPE_NFIELDS (type) = nargs;
1298 if (varargs)
876cecd0 1299 TYPE_VARARGS (type) = 1;
c906108c 1300 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1301}
1302
1303/* Return a typename for a struct/union/enum type without "struct ",
1304 "union ", or "enum ". If the type has a NULL name, return NULL. */
1305
0d5cff50 1306const char *
aa1ee363 1307type_name_no_tag (const struct type *type)
c906108c
SS
1308{
1309 if (TYPE_TAG_NAME (type) != NULL)
1310 return TYPE_TAG_NAME (type);
1311
7ba81444
MS
1312 /* Is there code which expects this to return the name if there is
1313 no tag name? My guess is that this is mainly used for C++ in
1314 cases where the two will always be the same. */
c906108c
SS
1315 return TYPE_NAME (type);
1316}
1317
d8228535
JK
1318/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1319 Since GCC PR debug/47510 DWARF provides associated information to detect the
1320 anonymous class linkage name from its typedef.
1321
1322 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1323 apply it itself. */
1324
1325const char *
1326type_name_no_tag_or_error (struct type *type)
1327{
1328 struct type *saved_type = type;
1329 const char *name;
1330 struct objfile *objfile;
1331
1332 CHECK_TYPEDEF (type);
1333
1334 name = type_name_no_tag (type);
1335 if (name != NULL)
1336 return name;
1337
1338 name = type_name_no_tag (saved_type);
1339 objfile = TYPE_OBJFILE (saved_type);
1340 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1341 name ? name : "<anonymous>",
1342 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1343}
1344
7ba81444
MS
1345/* Lookup a typedef or primitive type named NAME, visible in lexical
1346 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1347 suitably defined. */
c906108c
SS
1348
1349struct type *
e6c014f2 1350lookup_typename (const struct language_defn *language,
ddd49eee 1351 struct gdbarch *gdbarch, const char *name,
34eaf542 1352 const struct block *block, int noerr)
c906108c 1353{
52f0bd74 1354 struct symbol *sym;
659c9f3a 1355 struct type *type;
c906108c 1356
1994afbf
DE
1357 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1358 language->la_language, NULL);
c51fe631
DE
1359 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1360 return SYMBOL_TYPE (sym);
1361
c51fe631
DE
1362 if (noerr)
1363 return NULL;
1364 error (_("No type named %s."), name);
c906108c
SS
1365}
1366
1367struct type *
e6c014f2 1368lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1369 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1370{
1371 char *uns = alloca (strlen (name) + 10);
1372
1373 strcpy (uns, "unsigned ");
1374 strcpy (uns + 9, name);
e6c014f2 1375 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1376}
1377
1378struct type *
e6c014f2 1379lookup_signed_typename (const struct language_defn *language,
0d5cff50 1380 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1381{
1382 struct type *t;
1383 char *uns = alloca (strlen (name) + 8);
1384
1385 strcpy (uns, "signed ");
1386 strcpy (uns + 7, name);
e6c014f2 1387 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1388 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1389 if (t != NULL)
1390 return t;
e6c014f2 1391 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1392}
1393
1394/* Lookup a structure type named "struct NAME",
1395 visible in lexical block BLOCK. */
1396
1397struct type *
270140bd 1398lookup_struct (const char *name, const struct block *block)
c906108c 1399{
52f0bd74 1400 struct symbol *sym;
c906108c 1401
2570f2b7 1402 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1403
1404 if (sym == NULL)
1405 {
8a3fe4f8 1406 error (_("No struct type named %s."), name);
c906108c
SS
1407 }
1408 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1409 {
7ba81444
MS
1410 error (_("This context has class, union or enum %s, not a struct."),
1411 name);
c906108c
SS
1412 }
1413 return (SYMBOL_TYPE (sym));
1414}
1415
1416/* Lookup a union type named "union NAME",
1417 visible in lexical block BLOCK. */
1418
1419struct type *
270140bd 1420lookup_union (const char *name, const struct block *block)
c906108c 1421{
52f0bd74 1422 struct symbol *sym;
c5aa993b 1423 struct type *t;
c906108c 1424
2570f2b7 1425 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1426
1427 if (sym == NULL)
8a3fe4f8 1428 error (_("No union type named %s."), name);
c906108c 1429
c5aa993b 1430 t = SYMBOL_TYPE (sym);
c906108c
SS
1431
1432 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1433 return t;
c906108c 1434
7ba81444
MS
1435 /* If we get here, it's not a union. */
1436 error (_("This context has class, struct or enum %s, not a union."),
1437 name);
c906108c
SS
1438}
1439
c906108c
SS
1440/* Lookup an enum type named "enum NAME",
1441 visible in lexical block BLOCK. */
1442
1443struct type *
270140bd 1444lookup_enum (const char *name, const struct block *block)
c906108c 1445{
52f0bd74 1446 struct symbol *sym;
c906108c 1447
2570f2b7 1448 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1449 if (sym == NULL)
1450 {
8a3fe4f8 1451 error (_("No enum type named %s."), name);
c906108c
SS
1452 }
1453 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1454 {
7ba81444
MS
1455 error (_("This context has class, struct or union %s, not an enum."),
1456 name);
c906108c
SS
1457 }
1458 return (SYMBOL_TYPE (sym));
1459}
1460
1461/* Lookup a template type named "template NAME<TYPE>",
1462 visible in lexical block BLOCK. */
1463
1464struct type *
7ba81444 1465lookup_template_type (char *name, struct type *type,
270140bd 1466 const struct block *block)
c906108c
SS
1467{
1468 struct symbol *sym;
7ba81444
MS
1469 char *nam = (char *)
1470 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1471
c906108c
SS
1472 strcpy (nam, name);
1473 strcat (nam, "<");
0004e5a2 1474 strcat (nam, TYPE_NAME (type));
0963b4bd 1475 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1476
2570f2b7 1477 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1478
1479 if (sym == NULL)
1480 {
8a3fe4f8 1481 error (_("No template type named %s."), name);
c906108c
SS
1482 }
1483 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1484 {
7ba81444
MS
1485 error (_("This context has class, union or enum %s, not a struct."),
1486 name);
c906108c
SS
1487 }
1488 return (SYMBOL_TYPE (sym));
1489}
1490
7ba81444
MS
1491/* Given a type TYPE, lookup the type of the component of type named
1492 NAME.
c906108c 1493
7ba81444
MS
1494 TYPE can be either a struct or union, or a pointer or reference to
1495 a struct or union. If it is a pointer or reference, its target
1496 type is automatically used. Thus '.' and '->' are interchangable,
1497 as specified for the definitions of the expression element types
1498 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1499
1500 If NOERR is nonzero, return zero if NAME is not suitably defined.
1501 If NAME is the name of a baseclass type, return that type. */
1502
1503struct type *
d7561cbb 1504lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1505{
1506 int i;
c92817ce 1507 char *typename;
c906108c
SS
1508
1509 for (;;)
1510 {
1511 CHECK_TYPEDEF (type);
1512 if (TYPE_CODE (type) != TYPE_CODE_PTR
1513 && TYPE_CODE (type) != TYPE_CODE_REF)
1514 break;
1515 type = TYPE_TARGET_TYPE (type);
1516 }
1517
687d6395
MS
1518 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1519 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1520 {
c92817ce
TT
1521 typename = type_to_string (type);
1522 make_cleanup (xfree, typename);
1523 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1524 }
1525
1526#if 0
7ba81444
MS
1527 /* FIXME: This change put in by Michael seems incorrect for the case
1528 where the structure tag name is the same as the member name.
0963b4bd 1529 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1530 foo; } bell;" Disabled by fnf. */
c906108c
SS
1531 {
1532 char *typename;
1533
1534 typename = type_name_no_tag (type);
762f08a3 1535 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1536 return type;
1537 }
1538#endif
1539
1540 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1541 {
0d5cff50 1542 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1543
db577aea 1544 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1545 {
1546 return TYPE_FIELD_TYPE (type, i);
1547 }
f5a010c0
PM
1548 else if (!t_field_name || *t_field_name == '\0')
1549 {
d8734c88
MS
1550 struct type *subtype
1551 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1552
f5a010c0
PM
1553 if (subtype != NULL)
1554 return subtype;
1555 }
c906108c
SS
1556 }
1557
1558 /* OK, it's not in this class. Recursively check the baseclasses. */
1559 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1560 {
1561 struct type *t;
1562
9733fc94 1563 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1564 if (t != NULL)
1565 {
1566 return t;
1567 }
1568 }
1569
1570 if (noerr)
1571 {
1572 return NULL;
1573 }
c5aa993b 1574
c92817ce
TT
1575 typename = type_to_string (type);
1576 make_cleanup (xfree, typename);
1577 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1578}
1579
ed3ef339
DE
1580/* Store in *MAX the largest number representable by unsigned integer type
1581 TYPE. */
1582
1583void
1584get_unsigned_type_max (struct type *type, ULONGEST *max)
1585{
1586 unsigned int n;
1587
1588 CHECK_TYPEDEF (type);
1589 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1590 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1591
1592 /* Written this way to avoid overflow. */
1593 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1594 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1595}
1596
1597/* Store in *MIN, *MAX the smallest and largest numbers representable by
1598 signed integer type TYPE. */
1599
1600void
1601get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1602{
1603 unsigned int n;
1604
1605 CHECK_TYPEDEF (type);
1606 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1607 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1608
1609 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1610 *min = -((ULONGEST) 1 << (n - 1));
1611 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1612}
1613
ae6ae975
DE
1614/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1615 cplus_stuff.vptr_fieldno.
1616
1617 cplus_stuff is initialized to cplus_struct_default which does not
1618 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1619 designated initializers). We cope with that here. */
1620
1621int
1622internal_type_vptr_fieldno (struct type *type)
1623{
1624 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1625 || TYPE_CODE (type) == TYPE_CODE_UNION);
1626 if (!HAVE_CPLUS_STRUCT (type))
1627 return -1;
1628 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1629}
1630
1631/* Set the value of cplus_stuff.vptr_fieldno. */
1632
1633void
1634set_type_vptr_fieldno (struct type *type, int fieldno)
1635{
1636 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1637 || TYPE_CODE (type) == TYPE_CODE_UNION);
1638 if (!HAVE_CPLUS_STRUCT (type))
1639 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1640 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1641}
1642
1643/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1644 cplus_stuff.vptr_basetype. */
1645
1646struct type *
1647internal_type_vptr_basetype (struct type *type)
1648{
1649 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1650 || TYPE_CODE (type) == TYPE_CODE_UNION);
1651 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1652 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1653}
1654
1655/* Set the value of cplus_stuff.vptr_basetype. */
1656
1657void
1658set_type_vptr_basetype (struct type *type, struct type *basetype)
1659{
1660 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1661 || TYPE_CODE (type) == TYPE_CODE_UNION);
1662 if (!HAVE_CPLUS_STRUCT (type))
1663 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1664 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1665}
1666
81fe8080
DE
1667/* Lookup the vptr basetype/fieldno values for TYPE.
1668 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1669 vptr_fieldno. Also, if found and basetype is from the same objfile,
1670 cache the results.
1671 If not found, return -1 and ignore BASETYPEP.
1672 Callers should be aware that in some cases (for example,
c906108c 1673 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1674 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1675 this function will not be able to find the
7ba81444 1676 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1677 vptr_basetype will remain NULL or incomplete. */
c906108c 1678
81fe8080
DE
1679int
1680get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1681{
1682 CHECK_TYPEDEF (type);
1683
1684 if (TYPE_VPTR_FIELDNO (type) < 0)
1685 {
1686 int i;
1687
7ba81444
MS
1688 /* We must start at zero in case the first (and only) baseclass
1689 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1690 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1691 {
81fe8080
DE
1692 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1693 int fieldno;
1694 struct type *basetype;
1695
1696 fieldno = get_vptr_fieldno (baseclass, &basetype);
1697 if (fieldno >= 0)
c906108c 1698 {
81fe8080 1699 /* If the type comes from a different objfile we can't cache
0963b4bd 1700 it, it may have a different lifetime. PR 2384 */
5ef73790 1701 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1702 {
ae6ae975
DE
1703 set_type_vptr_fieldno (type, fieldno);
1704 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1705 }
1706 if (basetypep)
1707 *basetypep = basetype;
1708 return fieldno;
c906108c
SS
1709 }
1710 }
81fe8080
DE
1711
1712 /* Not found. */
1713 return -1;
1714 }
1715 else
1716 {
1717 if (basetypep)
1718 *basetypep = TYPE_VPTR_BASETYPE (type);
1719 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1720 }
1721}
1722
44e1a9eb
DJ
1723static void
1724stub_noname_complaint (void)
1725{
e2e0b3e5 1726 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1727}
1728
d98b7a16 1729/* Worker for is_dynamic_type. */
80180f79 1730
d98b7a16
TT
1731static int
1732is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1733{
1734 type = check_typedef (type);
1735
d98b7a16
TT
1736 /* We only want to recognize references at the outermost level. */
1737 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1738 type = check_typedef (TYPE_TARGET_TYPE (type));
1739
3cdcd0ce
JB
1740 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1741 dynamic, even if the type itself is statically defined.
1742 From a user's point of view, this may appear counter-intuitive;
1743 but it makes sense in this context, because the point is to determine
1744 whether any part of the type needs to be resolved before it can
1745 be exploited. */
1746 if (TYPE_DATA_LOCATION (type) != NULL
1747 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1748 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1749 return 1;
1750
80180f79
SA
1751 switch (TYPE_CODE (type))
1752 {
6f8a3220 1753 case TYPE_CODE_RANGE:
ddb87a81
JB
1754 {
1755 /* A range type is obviously dynamic if it has at least one
1756 dynamic bound. But also consider the range type to be
1757 dynamic when its subtype is dynamic, even if the bounds
1758 of the range type are static. It allows us to assume that
1759 the subtype of a static range type is also static. */
1760 return (!has_static_range (TYPE_RANGE_DATA (type))
1761 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1762 }
6f8a3220 1763
80180f79
SA
1764 case TYPE_CODE_ARRAY:
1765 {
80180f79 1766 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1767
1768 /* The array is dynamic if either the bounds are dynamic,
1769 or the elements it contains have a dynamic contents. */
d98b7a16 1770 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1771 return 1;
d98b7a16 1772 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1773 }
012370f6
TT
1774
1775 case TYPE_CODE_STRUCT:
1776 case TYPE_CODE_UNION:
1777 {
1778 int i;
1779
1780 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1781 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1782 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1783 return 1;
1784 }
1785 break;
80180f79 1786 }
92e2a17f
TT
1787
1788 return 0;
80180f79
SA
1789}
1790
d98b7a16
TT
1791/* See gdbtypes.h. */
1792
1793int
1794is_dynamic_type (struct type *type)
1795{
1796 return is_dynamic_type_internal (type, 1);
1797}
1798
df25ebbd
JB
1799static struct type *resolve_dynamic_type_internal
1800 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1801
df25ebbd
JB
1802/* Given a dynamic range type (dyn_range_type) and a stack of
1803 struct property_addr_info elements, return a static version
1804 of that type. */
d190df30 1805
80180f79 1806static struct type *
df25ebbd
JB
1807resolve_dynamic_range (struct type *dyn_range_type,
1808 struct property_addr_info *addr_stack)
80180f79
SA
1809{
1810 CORE_ADDR value;
ddb87a81 1811 struct type *static_range_type, *static_target_type;
80180f79
SA
1812 const struct dynamic_prop *prop;
1813 const struct dwarf2_locexpr_baton *baton;
1814 struct dynamic_prop low_bound, high_bound;
1815
6f8a3220 1816 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1817
6f8a3220 1818 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
df25ebbd 1819 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1820 {
1821 low_bound.kind = PROP_CONST;
1822 low_bound.data.const_val = value;
1823 }
1824 else
1825 {
1826 low_bound.kind = PROP_UNDEFINED;
1827 low_bound.data.const_val = 0;
1828 }
1829
6f8a3220 1830 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
df25ebbd 1831 if (dwarf2_evaluate_property (prop, addr_stack, &value))
80180f79
SA
1832 {
1833 high_bound.kind = PROP_CONST;
1834 high_bound.data.const_val = value;
c451ebe5 1835
6f8a3220 1836 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1837 high_bound.data.const_val
1838 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1839 }
1840 else
1841 {
1842 high_bound.kind = PROP_UNDEFINED;
1843 high_bound.data.const_val = 0;
1844 }
1845
ddb87a81
JB
1846 static_target_type
1847 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
df25ebbd 1848 addr_stack, 0);
6f8a3220 1849 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1850 static_target_type,
6f8a3220
JB
1851 &low_bound, &high_bound);
1852 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1853 return static_range_type;
1854}
1855
1856/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1857 ADDR_STACK is a stack of struct property_addr_info to be used
1858 if needed during the dynamic resolution. */
6f8a3220
JB
1859
1860static struct type *
df25ebbd
JB
1861resolve_dynamic_array (struct type *type,
1862 struct property_addr_info *addr_stack)
6f8a3220
JB
1863{
1864 CORE_ADDR value;
1865 struct type *elt_type;
1866 struct type *range_type;
1867 struct type *ary_dim;
1868
1869 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1870
1871 elt_type = type;
1872 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1873 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1874
80180f79
SA
1875 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1876
1877 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
df25ebbd 1878 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
80180f79
SA
1879 else
1880 elt_type = TYPE_TARGET_TYPE (type);
1881
80180f79
SA
1882 return create_array_type (copy_type (type),
1883 elt_type,
1884 range_type);
1885}
1886
012370f6 1887/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
1888 bounds. ADDR_STACK is a stack of struct property_addr_info
1889 to be used if needed during the dynamic resolution. */
012370f6
TT
1890
1891static struct type *
df25ebbd
JB
1892resolve_dynamic_union (struct type *type,
1893 struct property_addr_info *addr_stack)
012370f6
TT
1894{
1895 struct type *resolved_type;
1896 int i;
1897 unsigned int max_len = 0;
1898
1899 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1900
1901 resolved_type = copy_type (type);
1902 TYPE_FIELDS (resolved_type)
1903 = TYPE_ALLOC (resolved_type,
1904 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1905 memcpy (TYPE_FIELDS (resolved_type),
1906 TYPE_FIELDS (type),
1907 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1908 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1909 {
1910 struct type *t;
1911
1912 if (field_is_static (&TYPE_FIELD (type, i)))
1913 continue;
1914
d98b7a16 1915 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
df25ebbd 1916 addr_stack, 0);
012370f6
TT
1917 TYPE_FIELD_TYPE (resolved_type, i) = t;
1918 if (TYPE_LENGTH (t) > max_len)
1919 max_len = TYPE_LENGTH (t);
1920 }
1921
1922 TYPE_LENGTH (resolved_type) = max_len;
1923 return resolved_type;
1924}
1925
1926/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
1927 bounds. ADDR_STACK is a stack of struct property_addr_info to
1928 be used if needed during the dynamic resolution. */
012370f6
TT
1929
1930static struct type *
df25ebbd
JB
1931resolve_dynamic_struct (struct type *type,
1932 struct property_addr_info *addr_stack)
012370f6
TT
1933{
1934 struct type *resolved_type;
1935 int i;
6908c509 1936 unsigned resolved_type_bit_length = 0;
012370f6
TT
1937
1938 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1939 gdb_assert (TYPE_NFIELDS (type) > 0);
1940
1941 resolved_type = copy_type (type);
1942 TYPE_FIELDS (resolved_type)
1943 = TYPE_ALLOC (resolved_type,
1944 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1945 memcpy (TYPE_FIELDS (resolved_type),
1946 TYPE_FIELDS (type),
1947 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1948 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1949 {
6908c509 1950 unsigned new_bit_length;
df25ebbd 1951 struct property_addr_info pinfo;
012370f6
TT
1952
1953 if (field_is_static (&TYPE_FIELD (type, i)))
1954 continue;
1955
6908c509
JB
1956 /* As we know this field is not a static field, the field's
1957 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1958 this is the case, but only trigger a simple error rather
1959 than an internal error if that fails. While failing
1960 that verification indicates a bug in our code, the error
1961 is not severe enough to suggest to the user he stops
1962 his debugging session because of it. */
df25ebbd 1963 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
1964 error (_("Cannot determine struct field location"
1965 " (invalid location kind)"));
df25ebbd
JB
1966
1967 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1968 pinfo.addr = addr_stack->addr;
1969 pinfo.next = addr_stack;
1970
1971 TYPE_FIELD_TYPE (resolved_type, i)
1972 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1973 &pinfo, 0);
1974 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1975 == FIELD_LOC_KIND_BITPOS);
1976
6908c509
JB
1977 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1978 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1979 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1980 else
1981 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1982 * TARGET_CHAR_BIT);
1983
1984 /* Normally, we would use the position and size of the last field
1985 to determine the size of the enclosing structure. But GCC seems
1986 to be encoding the position of some fields incorrectly when
1987 the struct contains a dynamic field that is not placed last.
1988 So we compute the struct size based on the field that has
1989 the highest position + size - probably the best we can do. */
1990 if (new_bit_length > resolved_type_bit_length)
1991 resolved_type_bit_length = new_bit_length;
012370f6
TT
1992 }
1993
012370f6 1994 TYPE_LENGTH (resolved_type)
6908c509
JB
1995 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1996
012370f6
TT
1997 return resolved_type;
1998}
1999
d98b7a16 2000/* Worker for resolved_dynamic_type. */
80180f79 2001
d98b7a16 2002static struct type *
df25ebbd
JB
2003resolve_dynamic_type_internal (struct type *type,
2004 struct property_addr_info *addr_stack,
d98b7a16 2005 int top_level)
80180f79
SA
2006{
2007 struct type *real_type = check_typedef (type);
6f8a3220 2008 struct type *resolved_type = type;
3cdcd0ce
JB
2009 const struct dynamic_prop *prop;
2010 CORE_ADDR value;
80180f79 2011
d98b7a16 2012 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2013 return type;
2014
5537b577 2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2016 {
cac9b138
JK
2017 resolved_type = copy_type (type);
2018 TYPE_TARGET_TYPE (resolved_type)
df25ebbd 2019 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
cac9b138 2020 top_level);
5537b577
JK
2021 }
2022 else
2023 {
2024 /* Before trying to resolve TYPE, make sure it is not a stub. */
2025 type = real_type;
012370f6 2026
5537b577
JK
2027 switch (TYPE_CODE (type))
2028 {
2029 case TYPE_CODE_REF:
2030 {
df25ebbd
JB
2031 struct property_addr_info pinfo;
2032
2033 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2034 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2035 pinfo.next = addr_stack;
5537b577
JK
2036
2037 resolved_type = copy_type (type);
2038 TYPE_TARGET_TYPE (resolved_type)
2039 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
df25ebbd 2040 &pinfo, top_level);
5537b577
JK
2041 break;
2042 }
2043
2044 case TYPE_CODE_ARRAY:
df25ebbd 2045 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2046 break;
2047
2048 case TYPE_CODE_RANGE:
df25ebbd 2049 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2050 break;
2051
2052 case TYPE_CODE_UNION:
df25ebbd 2053 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2054 break;
2055
2056 case TYPE_CODE_STRUCT:
df25ebbd 2057 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2058 break;
2059 }
6f8a3220 2060 }
80180f79 2061
3cdcd0ce
JB
2062 /* Resolve data_location attribute. */
2063 prop = TYPE_DATA_LOCATION (resolved_type);
df25ebbd 2064 if (dwarf2_evaluate_property (prop, addr_stack, &value))
3cdcd0ce
JB
2065 {
2066 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2067 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2068 }
2069 else
2070 TYPE_DATA_LOCATION (resolved_type) = NULL;
2071
80180f79
SA
2072 return resolved_type;
2073}
2074
d98b7a16
TT
2075/* See gdbtypes.h */
2076
2077struct type *
2078resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2079{
df25ebbd
JB
2080 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2081
2082 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2083}
2084
92163a10
JK
2085/* Find the real type of TYPE. This function returns the real type,
2086 after removing all layers of typedefs, and completing opaque or stub
2087 types. Completion changes the TYPE argument, but stripping of
2088 typedefs does not.
2089
2090 Instance flags (e.g. const/volatile) are preserved as typedefs are
2091 stripped. If necessary a new qualified form of the underlying type
2092 is created.
2093
2094 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2095 not been computed and we're either in the middle of reading symbols, or
2096 there was no name for the typedef in the debug info.
2097
9bc118a5
DE
2098 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2099 QUITs in the symbol reading code can also throw.
2100 Thus this function can throw an exception.
2101
92163a10
JK
2102 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2103 the target type.
c906108c
SS
2104
2105 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2106 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2107 definition, so we can use it in future. There used to be a comment
2108 (but not any code) that if we don't find a full definition, we'd
2109 set a flag so we don't spend time in the future checking the same
2110 type. That would be a mistake, though--we might load in more
92163a10 2111 symbols which contain a full definition for the type. */
c906108c
SS
2112
2113struct type *
a02fd225 2114check_typedef (struct type *type)
c906108c
SS
2115{
2116 struct type *orig_type = type;
92163a10
JK
2117 /* While we're removing typedefs, we don't want to lose qualifiers.
2118 E.g., const/volatile. */
2119 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2120
423c0af8
MS
2121 gdb_assert (type);
2122
c906108c
SS
2123 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2124 {
2125 if (!TYPE_TARGET_TYPE (type))
2126 {
0d5cff50 2127 const char *name;
c906108c
SS
2128 struct symbol *sym;
2129
2130 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2131 reading a symtab. Infinite recursion is one danger. */
c906108c 2132 if (currently_reading_symtab)
92163a10 2133 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2134
2135 name = type_name_no_tag (type);
7ba81444
MS
2136 /* FIXME: shouldn't we separately check the TYPE_NAME and
2137 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2138 VAR_DOMAIN as appropriate? (this code was written before
2139 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2140 if (name == NULL)
2141 {
23136709 2142 stub_noname_complaint ();
92163a10 2143 return make_qualified_type (type, instance_flags, NULL);
c906108c 2144 }
2570f2b7 2145 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
2146 if (sym)
2147 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2148 else /* TYPE_CODE_UNDEF */
e9bb382b 2149 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2150 }
2151 type = TYPE_TARGET_TYPE (type);
c906108c 2152
92163a10
JK
2153 /* Preserve the instance flags as we traverse down the typedef chain.
2154
2155 Handling address spaces/classes is nasty, what do we do if there's a
2156 conflict?
2157 E.g., what if an outer typedef marks the type as class_1 and an inner
2158 typedef marks the type as class_2?
2159 This is the wrong place to do such error checking. We leave it to
2160 the code that created the typedef in the first place to flag the
2161 error. We just pick the outer address space (akin to letting the
2162 outer cast in a chain of casting win), instead of assuming
2163 "it can't happen". */
2164 {
2165 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2166 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2167 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2168 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2169
2170 /* Treat code vs data spaces and address classes separately. */
2171 if ((instance_flags & ALL_SPACES) != 0)
2172 new_instance_flags &= ~ALL_SPACES;
2173 if ((instance_flags & ALL_CLASSES) != 0)
2174 new_instance_flags &= ~ALL_CLASSES;
2175
2176 instance_flags |= new_instance_flags;
2177 }
2178 }
a02fd225 2179
7ba81444
MS
2180 /* If this is a struct/class/union with no fields, then check
2181 whether a full definition exists somewhere else. This is for
2182 systems where a type definition with no fields is issued for such
2183 types, instead of identifying them as stub types in the first
2184 place. */
c5aa993b 2185
7ba81444
MS
2186 if (TYPE_IS_OPAQUE (type)
2187 && opaque_type_resolution
2188 && !currently_reading_symtab)
c906108c 2189 {
0d5cff50 2190 const char *name = type_name_no_tag (type);
c5aa993b 2191 struct type *newtype;
d8734c88 2192
c906108c
SS
2193 if (name == NULL)
2194 {
23136709 2195 stub_noname_complaint ();
92163a10 2196 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2197 }
2198 newtype = lookup_transparent_type (name);
ad766c0a 2199
c906108c 2200 if (newtype)
ad766c0a 2201 {
7ba81444
MS
2202 /* If the resolved type and the stub are in the same
2203 objfile, then replace the stub type with the real deal.
2204 But if they're in separate objfiles, leave the stub
2205 alone; we'll just look up the transparent type every time
2206 we call check_typedef. We can't create pointers between
2207 types allocated to different objfiles, since they may
2208 have different lifetimes. Trying to copy NEWTYPE over to
2209 TYPE's objfile is pointless, too, since you'll have to
2210 move over any other types NEWTYPE refers to, which could
2211 be an unbounded amount of stuff. */
ad766c0a 2212 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2213 type = make_qualified_type (newtype,
2214 TYPE_INSTANCE_FLAGS (type),
2215 type);
ad766c0a
JB
2216 else
2217 type = newtype;
2218 }
c906108c 2219 }
7ba81444
MS
2220 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2221 types. */
74a9bb82 2222 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2223 {
0d5cff50 2224 const char *name = type_name_no_tag (type);
c906108c 2225 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2226 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2227 as appropriate? (this code was written before TYPE_NAME and
2228 TYPE_TAG_NAME were separate). */
c906108c 2229 struct symbol *sym;
d8734c88 2230
c906108c
SS
2231 if (name == NULL)
2232 {
23136709 2233 stub_noname_complaint ();
92163a10 2234 return make_qualified_type (type, instance_flags, NULL);
c906108c 2235 }
2570f2b7 2236 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2237 if (sym)
c26f2453
JB
2238 {
2239 /* Same as above for opaque types, we can replace the stub
92163a10 2240 with the complete type only if they are in the same
c26f2453
JB
2241 objfile. */
2242 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2243 type = make_qualified_type (SYMBOL_TYPE (sym),
2244 TYPE_INSTANCE_FLAGS (type),
2245 type);
c26f2453
JB
2246 else
2247 type = SYMBOL_TYPE (sym);
2248 }
c906108c
SS
2249 }
2250
74a9bb82 2251 if (TYPE_TARGET_STUB (type))
c906108c
SS
2252 {
2253 struct type *range_type;
2254 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2255
74a9bb82 2256 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2257 {
73e2eb35 2258 /* Nothing we can do. */
c5aa993b 2259 }
c906108c
SS
2260 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2261 {
2262 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2263 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2264 }
2265 }
92163a10
JK
2266
2267 type = make_qualified_type (type, instance_flags, NULL);
2268
7ba81444 2269 /* Cache TYPE_LENGTH for future use. */
c906108c 2270 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2271
c906108c
SS
2272 return type;
2273}
2274
7ba81444 2275/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2276 occurs, silently return a void type. */
c91ecb25 2277
b9362cc7 2278static struct type *
48319d1f 2279safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2280{
2281 struct ui_file *saved_gdb_stderr;
34365054 2282 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 2283 volatile struct gdb_exception except;
c91ecb25 2284
7ba81444 2285 /* Suppress error messages. */
c91ecb25
ND
2286 saved_gdb_stderr = gdb_stderr;
2287 gdb_stderr = ui_file_new ();
2288
7ba81444 2289 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
2290 TRY_CATCH (except, RETURN_MASK_ERROR)
2291 {
2292 type = parse_and_eval_type (p, length);
2293 }
2294
2295 if (except.reason < 0)
48319d1f 2296 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 2297
7ba81444 2298 /* Stop suppressing error messages. */
c91ecb25
ND
2299 ui_file_delete (gdb_stderr);
2300 gdb_stderr = saved_gdb_stderr;
2301
2302 return type;
2303}
2304
c906108c
SS
2305/* Ugly hack to convert method stubs into method types.
2306
7ba81444
MS
2307 He ain't kiddin'. This demangles the name of the method into a
2308 string including argument types, parses out each argument type,
2309 generates a string casting a zero to that type, evaluates the
2310 string, and stuffs the resulting type into an argtype vector!!!
2311 Then it knows the type of the whole function (including argument
2312 types for overloading), which info used to be in the stab's but was
2313 removed to hack back the space required for them. */
c906108c 2314
de17c821 2315static void
fba45db2 2316check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2317{
50810684 2318 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2319 struct fn_field *f;
2320 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2321 char *demangled_name = gdb_demangle (mangled_name,
2322 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2323 char *argtypetext, *p;
2324 int depth = 0, argcount = 1;
ad2f7632 2325 struct field *argtypes;
c906108c
SS
2326 struct type *mtype;
2327
2328 /* Make sure we got back a function string that we can use. */
2329 if (demangled_name)
2330 p = strchr (demangled_name, '(');
502dcf4e
AC
2331 else
2332 p = NULL;
c906108c
SS
2333
2334 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2335 error (_("Internal: Cannot demangle mangled name `%s'."),
2336 mangled_name);
c906108c
SS
2337
2338 /* Now, read in the parameters that define this type. */
2339 p += 1;
2340 argtypetext = p;
2341 while (*p)
2342 {
070ad9f0 2343 if (*p == '(' || *p == '<')
c906108c
SS
2344 {
2345 depth += 1;
2346 }
070ad9f0 2347 else if (*p == ')' || *p == '>')
c906108c
SS
2348 {
2349 depth -= 1;
2350 }
2351 else if (*p == ',' && depth == 0)
2352 {
2353 argcount += 1;
2354 }
2355
2356 p += 1;
2357 }
2358
ad2f7632
DJ
2359 /* If we read one argument and it was ``void'', don't count it. */
2360 if (strncmp (argtypetext, "(void)", 6) == 0)
2361 argcount -= 1;
c906108c 2362
ad2f7632
DJ
2363 /* We need one extra slot, for the THIS pointer. */
2364
2365 argtypes = (struct field *)
2366 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2367 p = argtypetext;
4a1970e4
DJ
2368
2369 /* Add THIS pointer for non-static methods. */
2370 f = TYPE_FN_FIELDLIST1 (type, method_id);
2371 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2372 argcount = 0;
2373 else
2374 {
ad2f7632 2375 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2376 argcount = 1;
2377 }
c906108c 2378
0963b4bd 2379 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2380 {
2381 depth = 0;
2382 while (*p)
2383 {
2384 if (depth <= 0 && (*p == ',' || *p == ')'))
2385 {
ad2f7632
DJ
2386 /* Avoid parsing of ellipsis, they will be handled below.
2387 Also avoid ``void'' as above. */
2388 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2389 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2390 {
ad2f7632 2391 argtypes[argcount].type =
48319d1f 2392 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2393 argcount += 1;
2394 }
2395 argtypetext = p + 1;
2396 }
2397
070ad9f0 2398 if (*p == '(' || *p == '<')
c906108c
SS
2399 {
2400 depth += 1;
2401 }
070ad9f0 2402 else if (*p == ')' || *p == '>')
c906108c
SS
2403 {
2404 depth -= 1;
2405 }
2406
2407 p += 1;
2408 }
2409 }
2410
c906108c
SS
2411 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2412
2413 /* Now update the old "stub" type into a real type. */
2414 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2415 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2416 We want a method (TYPE_CODE_METHOD). */
2417 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2418 argtypes, argcount, p[-2] == '.');
876cecd0 2419 TYPE_STUB (mtype) = 0;
c906108c 2420 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2421
2422 xfree (demangled_name);
c906108c
SS
2423}
2424
7ba81444
MS
2425/* This is the external interface to check_stub_method, above. This
2426 function unstubs all of the signatures for TYPE's METHOD_ID method
2427 name. After calling this function TYPE_FN_FIELD_STUB will be
2428 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2429 correct.
de17c821
DJ
2430
2431 This function unfortunately can not die until stabs do. */
2432
2433void
2434check_stub_method_group (struct type *type, int method_id)
2435{
2436 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2437 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2438 int j, found_stub = 0;
de17c821
DJ
2439
2440 for (j = 0; j < len; j++)
2441 if (TYPE_FN_FIELD_STUB (f, j))
2442 {
2443 found_stub = 1;
2444 check_stub_method (type, method_id, j);
2445 }
2446
7ba81444
MS
2447 /* GNU v3 methods with incorrect names were corrected when we read
2448 in type information, because it was cheaper to do it then. The
2449 only GNU v2 methods with incorrect method names are operators and
2450 destructors; destructors were also corrected when we read in type
2451 information.
de17c821
DJ
2452
2453 Therefore the only thing we need to handle here are v2 operator
2454 names. */
2455 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2456 {
2457 int ret;
2458 char dem_opname[256];
2459
7ba81444
MS
2460 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2461 method_id),
de17c821
DJ
2462 dem_opname, DMGL_ANSI);
2463 if (!ret)
7ba81444
MS
2464 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2465 method_id),
de17c821
DJ
2466 dem_opname, 0);
2467 if (ret)
2468 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2469 }
2470}
2471
9655fd1a
JK
2472/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2473const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2474
2475void
fba45db2 2476allocate_cplus_struct_type (struct type *type)
c906108c 2477{
b4ba55a1
JB
2478 if (HAVE_CPLUS_STRUCT (type))
2479 /* Structure was already allocated. Nothing more to do. */
2480 return;
2481
2482 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2483 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2484 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2485 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2486 set_type_vptr_fieldno (type, -1);
c906108c
SS
2487}
2488
b4ba55a1
JB
2489const struct gnat_aux_type gnat_aux_default =
2490 { NULL };
2491
2492/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2493 and allocate the associated gnat-specific data. The gnat-specific
2494 data is also initialized to gnat_aux_default. */
5212577a 2495
b4ba55a1
JB
2496void
2497allocate_gnat_aux_type (struct type *type)
2498{
2499 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2500 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2501 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2502 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2503}
2504
c906108c
SS
2505/* Helper function to initialize the standard scalar types.
2506
86f62fd7
TT
2507 If NAME is non-NULL, then it is used to initialize the type name.
2508 Note that NAME is not copied; it is required to have a lifetime at
2509 least as long as OBJFILE. */
c906108c
SS
2510
2511struct type *
7ba81444 2512init_type (enum type_code code, int length, int flags,
748e18ae 2513 const char *name, struct objfile *objfile)
c906108c 2514{
52f0bd74 2515 struct type *type;
c906108c
SS
2516
2517 type = alloc_type (objfile);
2518 TYPE_CODE (type) = code;
2519 TYPE_LENGTH (type) = length;
876cecd0
TT
2520
2521 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2522 if (flags & TYPE_FLAG_UNSIGNED)
2523 TYPE_UNSIGNED (type) = 1;
2524 if (flags & TYPE_FLAG_NOSIGN)
2525 TYPE_NOSIGN (type) = 1;
2526 if (flags & TYPE_FLAG_STUB)
2527 TYPE_STUB (type) = 1;
2528 if (flags & TYPE_FLAG_TARGET_STUB)
2529 TYPE_TARGET_STUB (type) = 1;
2530 if (flags & TYPE_FLAG_STATIC)
2531 TYPE_STATIC (type) = 1;
2532 if (flags & TYPE_FLAG_PROTOTYPED)
2533 TYPE_PROTOTYPED (type) = 1;
2534 if (flags & TYPE_FLAG_INCOMPLETE)
2535 TYPE_INCOMPLETE (type) = 1;
2536 if (flags & TYPE_FLAG_VARARGS)
2537 TYPE_VARARGS (type) = 1;
2538 if (flags & TYPE_FLAG_VECTOR)
2539 TYPE_VECTOR (type) = 1;
2540 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2541 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2542 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2543 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2544 if (flags & TYPE_FLAG_GNU_IFUNC)
2545 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2546
86f62fd7 2547 TYPE_NAME (type) = name;
c906108c
SS
2548
2549 /* C++ fancies. */
2550
973ccf8b 2551 if (name && strcmp (name, "char") == 0)
876cecd0 2552 TYPE_NOSIGN (type) = 1;
973ccf8b 2553
b4ba55a1 2554 switch (code)
c906108c 2555 {
b4ba55a1
JB
2556 case TYPE_CODE_STRUCT:
2557 case TYPE_CODE_UNION:
2558 case TYPE_CODE_NAMESPACE:
2559 INIT_CPLUS_SPECIFIC (type);
2560 break;
2561 case TYPE_CODE_FLT:
2562 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2563 break;
2564 case TYPE_CODE_FUNC:
b6cdc2c1 2565 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2566 break;
c906108c 2567 }
c16abbde 2568 return type;
c906108c 2569}
5212577a
DE
2570\f
2571/* Queries on types. */
c906108c 2572
c906108c 2573int
fba45db2 2574can_dereference (struct type *t)
c906108c 2575{
7ba81444
MS
2576 /* FIXME: Should we return true for references as well as
2577 pointers? */
c906108c
SS
2578 CHECK_TYPEDEF (t);
2579 return
2580 (t != NULL
2581 && TYPE_CODE (t) == TYPE_CODE_PTR
2582 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2583}
2584
adf40b2e 2585int
fba45db2 2586is_integral_type (struct type *t)
adf40b2e
JM
2587{
2588 CHECK_TYPEDEF (t);
2589 return
2590 ((t != NULL)
d4f3574e
SS
2591 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2592 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2593 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2594 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2595 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2596 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2597}
2598
e09342b5
TJB
2599/* Return true if TYPE is scalar. */
2600
2601static int
2602is_scalar_type (struct type *type)
2603{
2604 CHECK_TYPEDEF (type);
2605
2606 switch (TYPE_CODE (type))
2607 {
2608 case TYPE_CODE_ARRAY:
2609 case TYPE_CODE_STRUCT:
2610 case TYPE_CODE_UNION:
2611 case TYPE_CODE_SET:
2612 case TYPE_CODE_STRING:
e09342b5
TJB
2613 return 0;
2614 default:
2615 return 1;
2616 }
2617}
2618
2619/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2620 the memory layout of a scalar type. E.g., an array or struct with only
2621 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2622
2623int
2624is_scalar_type_recursive (struct type *t)
2625{
2626 CHECK_TYPEDEF (t);
2627
2628 if (is_scalar_type (t))
2629 return 1;
2630 /* Are we dealing with an array or string of known dimensions? */
2631 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2632 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2633 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2634 {
2635 LONGEST low_bound, high_bound;
2636 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2637
2638 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2639
2640 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2641 }
2642 /* Are we dealing with a struct with one element? */
2643 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2644 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2645 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2646 {
2647 int i, n = TYPE_NFIELDS (t);
2648
2649 /* If all elements of the union are scalar, then the union is scalar. */
2650 for (i = 0; i < n; i++)
2651 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2652 return 0;
2653
2654 return 1;
2655 }
2656
2657 return 0;
2658}
2659
6c659fc2
SC
2660/* Return true is T is a class or a union. False otherwise. */
2661
2662int
2663class_or_union_p (const struct type *t)
2664{
2665 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2666 || TYPE_CODE (t) == TYPE_CODE_UNION);
2667}
2668
4e8f195d
TT
2669/* A helper function which returns true if types A and B represent the
2670 "same" class type. This is true if the types have the same main
2671 type, or the same name. */
2672
2673int
2674class_types_same_p (const struct type *a, const struct type *b)
2675{
2676 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2677 || (TYPE_NAME (a) && TYPE_NAME (b)
2678 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2679}
2680
a9d5ef47
SW
2681/* If BASE is an ancestor of DCLASS return the distance between them.
2682 otherwise return -1;
2683 eg:
2684
2685 class A {};
2686 class B: public A {};
2687 class C: public B {};
2688 class D: C {};
2689
2690 distance_to_ancestor (A, A, 0) = 0
2691 distance_to_ancestor (A, B, 0) = 1
2692 distance_to_ancestor (A, C, 0) = 2
2693 distance_to_ancestor (A, D, 0) = 3
2694
2695 If PUBLIC is 1 then only public ancestors are considered,
2696 and the function returns the distance only if BASE is a public ancestor
2697 of DCLASS.
2698 Eg:
2699
0963b4bd 2700 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2701
0526b37a 2702static int
a9d5ef47 2703distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2704{
2705 int i;
a9d5ef47 2706 int d;
c5aa993b 2707
c906108c
SS
2708 CHECK_TYPEDEF (base);
2709 CHECK_TYPEDEF (dclass);
2710
4e8f195d 2711 if (class_types_same_p (base, dclass))
a9d5ef47 2712 return 0;
c906108c
SS
2713
2714 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2715 {
0526b37a
SW
2716 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2717 continue;
2718
a9d5ef47
SW
2719 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2720 if (d >= 0)
2721 return 1 + d;
4e8f195d 2722 }
c906108c 2723
a9d5ef47 2724 return -1;
c906108c 2725}
4e8f195d 2726
0526b37a
SW
2727/* Check whether BASE is an ancestor or base class or DCLASS
2728 Return 1 if so, and 0 if not.
2729 Note: If BASE and DCLASS are of the same type, this function
2730 will return 1. So for some class A, is_ancestor (A, A) will
2731 return 1. */
2732
2733int
2734is_ancestor (struct type *base, struct type *dclass)
2735{
a9d5ef47 2736 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2737}
2738
4e8f195d
TT
2739/* Like is_ancestor, but only returns true when BASE is a public
2740 ancestor of DCLASS. */
2741
2742int
2743is_public_ancestor (struct type *base, struct type *dclass)
2744{
a9d5ef47 2745 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2746}
2747
2748/* A helper function for is_unique_ancestor. */
2749
2750static int
2751is_unique_ancestor_worker (struct type *base, struct type *dclass,
2752 int *offset,
8af8e3bc
PA
2753 const gdb_byte *valaddr, int embedded_offset,
2754 CORE_ADDR address, struct value *val)
4e8f195d
TT
2755{
2756 int i, count = 0;
2757
2758 CHECK_TYPEDEF (base);
2759 CHECK_TYPEDEF (dclass);
2760
2761 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2762 {
8af8e3bc
PA
2763 struct type *iter;
2764 int this_offset;
4e8f195d 2765
8af8e3bc
PA
2766 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2767
2768 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2769 address, val);
4e8f195d
TT
2770
2771 if (class_types_same_p (base, iter))
2772 {
2773 /* If this is the first subclass, set *OFFSET and set count
2774 to 1. Otherwise, if this is at the same offset as
2775 previous instances, do nothing. Otherwise, increment
2776 count. */
2777 if (*offset == -1)
2778 {
2779 *offset = this_offset;
2780 count = 1;
2781 }
2782 else if (this_offset == *offset)
2783 {
2784 /* Nothing. */
2785 }
2786 else
2787 ++count;
2788 }
2789 else
2790 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2791 valaddr,
2792 embedded_offset + this_offset,
2793 address, val);
4e8f195d
TT
2794 }
2795
2796 return count;
2797}
2798
2799/* Like is_ancestor, but only returns true if BASE is a unique base
2800 class of the type of VAL. */
2801
2802int
2803is_unique_ancestor (struct type *base, struct value *val)
2804{
2805 int offset = -1;
2806
2807 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2808 value_contents_for_printing (val),
2809 value_embedded_offset (val),
2810 value_address (val), val) == 1;
4e8f195d
TT
2811}
2812
c906108c 2813\f
5212577a 2814/* Overload resolution. */
c906108c 2815
6403aeea
SW
2816/* Return the sum of the rank of A with the rank of B. */
2817
2818struct rank
2819sum_ranks (struct rank a, struct rank b)
2820{
2821 struct rank c;
2822 c.rank = a.rank + b.rank;
a9d5ef47 2823 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2824 return c;
2825}
2826
2827/* Compare rank A and B and return:
2828 0 if a = b
2829 1 if a is better than b
2830 -1 if b is better than a. */
2831
2832int
2833compare_ranks (struct rank a, struct rank b)
2834{
2835 if (a.rank == b.rank)
a9d5ef47
SW
2836 {
2837 if (a.subrank == b.subrank)
2838 return 0;
2839 if (a.subrank < b.subrank)
2840 return 1;
2841 if (a.subrank > b.subrank)
2842 return -1;
2843 }
6403aeea
SW
2844
2845 if (a.rank < b.rank)
2846 return 1;
2847
0963b4bd 2848 /* a.rank > b.rank */
6403aeea
SW
2849 return -1;
2850}
c5aa993b 2851
0963b4bd 2852/* Functions for overload resolution begin here. */
c906108c
SS
2853
2854/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2855 0 => A and B are identical
2856 1 => A and B are incomparable
2857 2 => A is better than B
2858 3 => A is worse than B */
c906108c
SS
2859
2860int
fba45db2 2861compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2862{
2863 int i;
2864 int tmp;
c5aa993b
JM
2865 short found_pos = 0; /* any positives in c? */
2866 short found_neg = 0; /* any negatives in c? */
2867
2868 /* differing lengths => incomparable */
c906108c
SS
2869 if (a->length != b->length)
2870 return 1;
2871
c5aa993b
JM
2872 /* Subtract b from a */
2873 for (i = 0; i < a->length; i++)
c906108c 2874 {
6403aeea 2875 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2876 if (tmp > 0)
c5aa993b 2877 found_pos = 1;
c906108c 2878 else if (tmp < 0)
c5aa993b 2879 found_neg = 1;
c906108c
SS
2880 }
2881
2882 if (found_pos)
2883 {
2884 if (found_neg)
c5aa993b 2885 return 1; /* incomparable */
c906108c 2886 else
c5aa993b 2887 return 3; /* A > B */
c906108c 2888 }
c5aa993b
JM
2889 else
2890 /* no positives */
c906108c
SS
2891 {
2892 if (found_neg)
c5aa993b 2893 return 2; /* A < B */
c906108c 2894 else
c5aa993b 2895 return 0; /* A == B */
c906108c
SS
2896 }
2897}
2898
7ba81444
MS
2899/* Rank a function by comparing its parameter types (PARMS, length
2900 NPARMS), to the types of an argument list (ARGS, length NARGS).
2901 Return a pointer to a badness vector. This has NARGS + 1
2902 entries. */
c906108c
SS
2903
2904struct badness_vector *
7ba81444 2905rank_function (struct type **parms, int nparms,
da096638 2906 struct value **args, int nargs)
c906108c
SS
2907{
2908 int i;
c5aa993b 2909 struct badness_vector *bv;
c906108c
SS
2910 int min_len = nparms < nargs ? nparms : nargs;
2911
2912 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2913 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2914 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2915
2916 /* First compare the lengths of the supplied lists.
7ba81444 2917 If there is a mismatch, set it to a high value. */
c5aa993b 2918
c906108c 2919 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2920 arguments and ellipsis parameter lists, we should consider those
2921 and rank the length-match more finely. */
c906108c 2922
6403aeea
SW
2923 LENGTH_MATCH (bv) = (nargs != nparms)
2924 ? LENGTH_MISMATCH_BADNESS
2925 : EXACT_MATCH_BADNESS;
c906108c 2926
0963b4bd 2927 /* Now rank all the parameters of the candidate function. */
74cc24b0 2928 for (i = 1; i <= min_len; i++)
da096638
KS
2929 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2930 args[i - 1]);
c906108c 2931
0963b4bd 2932 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2933 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2934 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2935
2936 return bv;
2937}
2938
973ccf8b
DJ
2939/* Compare the names of two integer types, assuming that any sign
2940 qualifiers have been checked already. We do it this way because
2941 there may be an "int" in the name of one of the types. */
2942
2943static int
2944integer_types_same_name_p (const char *first, const char *second)
2945{
2946 int first_p, second_p;
2947
7ba81444
MS
2948 /* If both are shorts, return 1; if neither is a short, keep
2949 checking. */
973ccf8b
DJ
2950 first_p = (strstr (first, "short") != NULL);
2951 second_p = (strstr (second, "short") != NULL);
2952 if (first_p && second_p)
2953 return 1;
2954 if (first_p || second_p)
2955 return 0;
2956
2957 /* Likewise for long. */
2958 first_p = (strstr (first, "long") != NULL);
2959 second_p = (strstr (second, "long") != NULL);
2960 if (first_p && second_p)
2961 return 1;
2962 if (first_p || second_p)
2963 return 0;
2964
2965 /* Likewise for char. */
2966 first_p = (strstr (first, "char") != NULL);
2967 second_p = (strstr (second, "char") != NULL);
2968 if (first_p && second_p)
2969 return 1;
2970 if (first_p || second_p)
2971 return 0;
2972
2973 /* They must both be ints. */
2974 return 1;
2975}
2976
7062b0a0
SW
2977/* Compares type A to type B returns 1 if the represent the same type
2978 0 otherwise. */
2979
bd69fc68 2980int
7062b0a0
SW
2981types_equal (struct type *a, struct type *b)
2982{
2983 /* Identical type pointers. */
2984 /* However, this still doesn't catch all cases of same type for b
2985 and a. The reason is that builtin types are different from
2986 the same ones constructed from the object. */
2987 if (a == b)
2988 return 1;
2989
2990 /* Resolve typedefs */
2991 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2992 a = check_typedef (a);
2993 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2994 b = check_typedef (b);
2995
2996 /* If after resolving typedefs a and b are not of the same type
2997 code then they are not equal. */
2998 if (TYPE_CODE (a) != TYPE_CODE (b))
2999 return 0;
3000
3001 /* If a and b are both pointers types or both reference types then
3002 they are equal of the same type iff the objects they refer to are
3003 of the same type. */
3004 if (TYPE_CODE (a) == TYPE_CODE_PTR
3005 || TYPE_CODE (a) == TYPE_CODE_REF)
3006 return types_equal (TYPE_TARGET_TYPE (a),
3007 TYPE_TARGET_TYPE (b));
3008
0963b4bd 3009 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3010 are exactly the same. This happens when we generate method
3011 stubs. The types won't point to the same address, but they
0963b4bd 3012 really are the same. */
7062b0a0
SW
3013
3014 if (TYPE_NAME (a) && TYPE_NAME (b)
3015 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3016 return 1;
3017
3018 /* Check if identical after resolving typedefs. */
3019 if (a == b)
3020 return 1;
3021
9ce98649
TT
3022 /* Two function types are equal if their argument and return types
3023 are equal. */
3024 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3025 {
3026 int i;
3027
3028 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3029 return 0;
3030
3031 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3032 return 0;
3033
3034 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3035 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3036 return 0;
3037
3038 return 1;
3039 }
3040
7062b0a0
SW
3041 return 0;
3042}
ca092b61
DE
3043\f
3044/* Deep comparison of types. */
3045
3046/* An entry in the type-equality bcache. */
3047
3048typedef struct type_equality_entry
3049{
3050 struct type *type1, *type2;
3051} type_equality_entry_d;
3052
3053DEF_VEC_O (type_equality_entry_d);
3054
3055/* A helper function to compare two strings. Returns 1 if they are
3056 the same, 0 otherwise. Handles NULLs properly. */
3057
3058static int
3059compare_maybe_null_strings (const char *s, const char *t)
3060{
3061 if (s == NULL && t != NULL)
3062 return 0;
3063 else if (s != NULL && t == NULL)
3064 return 0;
3065 else if (s == NULL && t== NULL)
3066 return 1;
3067 return strcmp (s, t) == 0;
3068}
3069
3070/* A helper function for check_types_worklist that checks two types for
3071 "deep" equality. Returns non-zero if the types are considered the
3072 same, zero otherwise. */
3073
3074static int
3075check_types_equal (struct type *type1, struct type *type2,
3076 VEC (type_equality_entry_d) **worklist)
3077{
3078 CHECK_TYPEDEF (type1);
3079 CHECK_TYPEDEF (type2);
3080
3081 if (type1 == type2)
3082 return 1;
3083
3084 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3085 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3086 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3087 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3088 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3089 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3090 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3091 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3092 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3093 return 0;
3094
3095 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3096 TYPE_TAG_NAME (type2)))
3097 return 0;
3098 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3099 return 0;
3100
3101 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3102 {
3103 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3104 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3105 return 0;
3106 }
3107 else
3108 {
3109 int i;
3110
3111 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3112 {
3113 const struct field *field1 = &TYPE_FIELD (type1, i);
3114 const struct field *field2 = &TYPE_FIELD (type2, i);
3115 struct type_equality_entry entry;
3116
3117 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3118 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3119 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3120 return 0;
3121 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3122 FIELD_NAME (*field2)))
3123 return 0;
3124 switch (FIELD_LOC_KIND (*field1))
3125 {
3126 case FIELD_LOC_KIND_BITPOS:
3127 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3128 return 0;
3129 break;
3130 case FIELD_LOC_KIND_ENUMVAL:
3131 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3132 return 0;
3133 break;
3134 case FIELD_LOC_KIND_PHYSADDR:
3135 if (FIELD_STATIC_PHYSADDR (*field1)
3136 != FIELD_STATIC_PHYSADDR (*field2))
3137 return 0;
3138 break;
3139 case FIELD_LOC_KIND_PHYSNAME:
3140 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3141 FIELD_STATIC_PHYSNAME (*field2)))
3142 return 0;
3143 break;
3144 case FIELD_LOC_KIND_DWARF_BLOCK:
3145 {
3146 struct dwarf2_locexpr_baton *block1, *block2;
3147
3148 block1 = FIELD_DWARF_BLOCK (*field1);
3149 block2 = FIELD_DWARF_BLOCK (*field2);
3150 if (block1->per_cu != block2->per_cu
3151 || block1->size != block2->size
3152 || memcmp (block1->data, block2->data, block1->size) != 0)
3153 return 0;
3154 }
3155 break;
3156 default:
3157 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3158 "%d by check_types_equal"),
3159 FIELD_LOC_KIND (*field1));
3160 }
3161
3162 entry.type1 = FIELD_TYPE (*field1);
3163 entry.type2 = FIELD_TYPE (*field2);
3164 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3165 }
3166 }
3167
3168 if (TYPE_TARGET_TYPE (type1) != NULL)
3169 {
3170 struct type_equality_entry entry;
3171
3172 if (TYPE_TARGET_TYPE (type2) == NULL)
3173 return 0;
3174
3175 entry.type1 = TYPE_TARGET_TYPE (type1);
3176 entry.type2 = TYPE_TARGET_TYPE (type2);
3177 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3178 }
3179 else if (TYPE_TARGET_TYPE (type2) != NULL)
3180 return 0;
3181
3182 return 1;
3183}
3184
3185/* Check types on a worklist for equality. Returns zero if any pair
3186 is not equal, non-zero if they are all considered equal. */
3187
3188static int
3189check_types_worklist (VEC (type_equality_entry_d) **worklist,
3190 struct bcache *cache)
3191{
3192 while (!VEC_empty (type_equality_entry_d, *worklist))
3193 {
3194 struct type_equality_entry entry;
3195 int added;
3196
3197 entry = *VEC_last (type_equality_entry_d, *worklist);
3198 VEC_pop (type_equality_entry_d, *worklist);
3199
3200 /* If the type pair has already been visited, we know it is
3201 ok. */
3202 bcache_full (&entry, sizeof (entry), cache, &added);
3203 if (!added)
3204 continue;
3205
3206 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3207 return 0;
3208 }
7062b0a0 3209
ca092b61
DE
3210 return 1;
3211}
3212
3213/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3214 "deep comparison". Otherwise return zero. */
3215
3216int
3217types_deeply_equal (struct type *type1, struct type *type2)
3218{
3219 volatile struct gdb_exception except;
3220 int result = 0;
3221 struct bcache *cache;
3222 VEC (type_equality_entry_d) *worklist = NULL;
3223 struct type_equality_entry entry;
3224
3225 gdb_assert (type1 != NULL && type2 != NULL);
3226
3227 /* Early exit for the simple case. */
3228 if (type1 == type2)
3229 return 1;
3230
3231 cache = bcache_xmalloc (NULL, NULL);
3232
3233 entry.type1 = type1;
3234 entry.type2 = type2;
3235 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3236
3237 TRY_CATCH (except, RETURN_MASK_ALL)
3238 {
3239 result = check_types_worklist (&worklist, cache);
3240 }
3241 /* check_types_worklist calls several nested helper functions,
3242 some of which can raise a GDB Exception, so we just check
3243 and rethrow here. If there is a GDB exception, a comparison
3244 is not capable (or trusted), so exit. */
3245 bcache_xfree (cache);
3246 VEC_free (type_equality_entry_d, worklist);
3247 /* Rethrow if there was a problem. */
3248 if (except.reason < 0)
3249 throw_exception (except);
3250
3251 return result;
3252}
3253\f
c906108c
SS
3254/* Compare one type (PARM) for compatibility with another (ARG).
3255 * PARM is intended to be the parameter type of a function; and
3256 * ARG is the supplied argument's type. This function tests if
3257 * the latter can be converted to the former.
da096638 3258 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3259 *
3260 * Return 0 if they are identical types;
3261 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3262 * PARM is to ARG. The higher the return value, the worse the match.
3263 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3264
6403aeea 3265struct rank
da096638 3266rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3267{
a9d5ef47 3268 struct rank rank = {0,0};
7062b0a0
SW
3269
3270 if (types_equal (parm, arg))
6403aeea 3271 return EXACT_MATCH_BADNESS;
c906108c
SS
3272
3273 /* Resolve typedefs */
3274 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3275 parm = check_typedef (parm);
3276 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3277 arg = check_typedef (arg);
3278
db577aea 3279 /* See through references, since we can almost make non-references
7ba81444 3280 references. */
db577aea 3281 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3282 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3283 REFERENCE_CONVERSION_BADNESS));
db577aea 3284 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3285 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3286 REFERENCE_CONVERSION_BADNESS));
5d161b24 3287 if (overload_debug)
7ba81444
MS
3288 /* Debugging only. */
3289 fprintf_filtered (gdb_stderr,
3290 "------ Arg is %s [%d], parm is %s [%d]\n",
3291 TYPE_NAME (arg), TYPE_CODE (arg),
3292 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3293
0963b4bd 3294 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3295
3296 switch (TYPE_CODE (parm))
3297 {
c5aa993b
JM
3298 case TYPE_CODE_PTR:
3299 switch (TYPE_CODE (arg))
3300 {
3301 case TYPE_CODE_PTR:
7062b0a0
SW
3302
3303 /* Allowed pointer conversions are:
3304 (a) pointer to void-pointer conversion. */
3305 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3306 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3307
3308 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3309 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3310 TYPE_TARGET_TYPE (arg),
3311 0);
3312 if (rank.subrank >= 0)
3313 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3314
3315 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3316 case TYPE_CODE_ARRAY:
7062b0a0
SW
3317 if (types_equal (TYPE_TARGET_TYPE (parm),
3318 TYPE_TARGET_TYPE (arg)))
6403aeea 3319 return EXACT_MATCH_BADNESS;
7062b0a0 3320 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3321 case TYPE_CODE_FUNC:
da096638 3322 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3323 case TYPE_CODE_INT:
a451cb65 3324 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3325 {
a451cb65
KS
3326 if (value_as_long (value) == 0)
3327 {
3328 /* Null pointer conversion: allow it to be cast to a pointer.
3329 [4.10.1 of C++ standard draft n3290] */
3330 return NULL_POINTER_CONVERSION_BADNESS;
3331 }
3332 else
3333 {
3334 /* If type checking is disabled, allow the conversion. */
3335 if (!strict_type_checking)
3336 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3337 }
da096638
KS
3338 }
3339 /* fall through */
c5aa993b 3340 case TYPE_CODE_ENUM:
4f2aea11 3341 case TYPE_CODE_FLAGS:
c5aa993b
JM
3342 case TYPE_CODE_CHAR:
3343 case TYPE_CODE_RANGE:
3344 case TYPE_CODE_BOOL:
c5aa993b
JM
3345 default:
3346 return INCOMPATIBLE_TYPE_BADNESS;
3347 }
3348 case TYPE_CODE_ARRAY:
3349 switch (TYPE_CODE (arg))
3350 {
3351 case TYPE_CODE_PTR:
3352 case TYPE_CODE_ARRAY:
7ba81444 3353 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3354 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3355 default:
3356 return INCOMPATIBLE_TYPE_BADNESS;
3357 }
3358 case TYPE_CODE_FUNC:
3359 switch (TYPE_CODE (arg))
3360 {
3361 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3362 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3363 default:
3364 return INCOMPATIBLE_TYPE_BADNESS;
3365 }
3366 case TYPE_CODE_INT:
3367 switch (TYPE_CODE (arg))
3368 {
3369 case TYPE_CODE_INT:
3370 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3371 {
3372 /* Deal with signed, unsigned, and plain chars and
7ba81444 3373 signed and unsigned ints. */
c5aa993b
JM
3374 if (TYPE_NOSIGN (parm))
3375 {
0963b4bd 3376 /* This case only for character types. */
7ba81444 3377 if (TYPE_NOSIGN (arg))
6403aeea 3378 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3379 else /* signed/unsigned char -> plain char */
3380 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3381 }
3382 else if (TYPE_UNSIGNED (parm))
3383 {
3384 if (TYPE_UNSIGNED (arg))
3385 {
7ba81444
MS
3386 /* unsigned int -> unsigned int, or
3387 unsigned long -> unsigned long */
3388 if (integer_types_same_name_p (TYPE_NAME (parm),
3389 TYPE_NAME (arg)))
6403aeea 3390 return EXACT_MATCH_BADNESS;
7ba81444
MS
3391 else if (integer_types_same_name_p (TYPE_NAME (arg),
3392 "int")
3393 && integer_types_same_name_p (TYPE_NAME (parm),
3394 "long"))
3e43a32a
MS
3395 /* unsigned int -> unsigned long */
3396 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3397 else
3e43a32a
MS
3398 /* unsigned long -> unsigned int */
3399 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3400 }
3401 else
3402 {
7ba81444
MS
3403 if (integer_types_same_name_p (TYPE_NAME (arg),
3404 "long")
3405 && integer_types_same_name_p (TYPE_NAME (parm),
3406 "int"))
3e43a32a
MS
3407 /* signed long -> unsigned int */
3408 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3409 else
3e43a32a
MS
3410 /* signed int/long -> unsigned int/long */
3411 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3412 }
3413 }
3414 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3415 {
7ba81444
MS
3416 if (integer_types_same_name_p (TYPE_NAME (parm),
3417 TYPE_NAME (arg)))
6403aeea 3418 return EXACT_MATCH_BADNESS;
7ba81444
MS
3419 else if (integer_types_same_name_p (TYPE_NAME (arg),
3420 "int")
3421 && integer_types_same_name_p (TYPE_NAME (parm),
3422 "long"))
c5aa993b
JM
3423 return INTEGER_PROMOTION_BADNESS;
3424 else
1c5cb38e 3425 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3426 }
3427 else
1c5cb38e 3428 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3429 }
3430 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3431 return INTEGER_PROMOTION_BADNESS;
3432 else
1c5cb38e 3433 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3434 case TYPE_CODE_ENUM:
4f2aea11 3435 case TYPE_CODE_FLAGS:
c5aa993b
JM
3436 case TYPE_CODE_CHAR:
3437 case TYPE_CODE_RANGE:
3438 case TYPE_CODE_BOOL:
3d567982
TT
3439 if (TYPE_DECLARED_CLASS (arg))
3440 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3441 return INTEGER_PROMOTION_BADNESS;
3442 case TYPE_CODE_FLT:
3443 return INT_FLOAT_CONVERSION_BADNESS;
3444 case TYPE_CODE_PTR:
3445 return NS_POINTER_CONVERSION_BADNESS;
3446 default:
3447 return INCOMPATIBLE_TYPE_BADNESS;
3448 }
3449 break;
3450 case TYPE_CODE_ENUM:
3451 switch (TYPE_CODE (arg))
3452 {
3453 case TYPE_CODE_INT:
3454 case TYPE_CODE_CHAR:
3455 case TYPE_CODE_RANGE:
3456 case TYPE_CODE_BOOL:
3457 case TYPE_CODE_ENUM:
3d567982
TT
3458 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3459 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3460 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3461 case TYPE_CODE_FLT:
3462 return INT_FLOAT_CONVERSION_BADNESS;
3463 default:
3464 return INCOMPATIBLE_TYPE_BADNESS;
3465 }
3466 break;
3467 case TYPE_CODE_CHAR:
3468 switch (TYPE_CODE (arg))
3469 {
3470 case TYPE_CODE_RANGE:
3471 case TYPE_CODE_BOOL:
3472 case TYPE_CODE_ENUM:
3d567982
TT
3473 if (TYPE_DECLARED_CLASS (arg))
3474 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3475 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3476 case TYPE_CODE_FLT:
3477 return INT_FLOAT_CONVERSION_BADNESS;
3478 case TYPE_CODE_INT:
3479 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3480 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3481 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3482 return INTEGER_PROMOTION_BADNESS;
3483 /* >>> !! else fall through !! <<< */
3484 case TYPE_CODE_CHAR:
7ba81444
MS
3485 /* Deal with signed, unsigned, and plain chars for C++ and
3486 with int cases falling through from previous case. */
c5aa993b
JM
3487 if (TYPE_NOSIGN (parm))
3488 {
3489 if (TYPE_NOSIGN (arg))
6403aeea 3490 return EXACT_MATCH_BADNESS;
c5aa993b 3491 else
1c5cb38e 3492 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3493 }
3494 else if (TYPE_UNSIGNED (parm))
3495 {
3496 if (TYPE_UNSIGNED (arg))
6403aeea 3497 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3498 else
3499 return INTEGER_PROMOTION_BADNESS;
3500 }
3501 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3502 return EXACT_MATCH_BADNESS;
c5aa993b 3503 else
1c5cb38e 3504 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3505 default:
3506 return INCOMPATIBLE_TYPE_BADNESS;
3507 }
3508 break;
3509 case TYPE_CODE_RANGE:
3510 switch (TYPE_CODE (arg))
3511 {
3512 case TYPE_CODE_INT:
3513 case TYPE_CODE_CHAR:
3514 case TYPE_CODE_RANGE:
3515 case TYPE_CODE_BOOL:
3516 case TYPE_CODE_ENUM:
1c5cb38e 3517 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3518 case TYPE_CODE_FLT:
3519 return INT_FLOAT_CONVERSION_BADNESS;
3520 default:
3521 return INCOMPATIBLE_TYPE_BADNESS;
3522 }
3523 break;
3524 case TYPE_CODE_BOOL:
3525 switch (TYPE_CODE (arg))
3526 {
5b4f6e25
KS
3527 /* n3290 draft, section 4.12.1 (conv.bool):
3528
3529 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3530 pointer to member type can be converted to a prvalue of type
3531 bool. A zero value, null pointer value, or null member pointer
3532 value is converted to false; any other value is converted to
3533 true. A prvalue of type std::nullptr_t can be converted to a
3534 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3535 case TYPE_CODE_INT:
3536 case TYPE_CODE_CHAR:
c5aa993b
JM
3537 case TYPE_CODE_ENUM:
3538 case TYPE_CODE_FLT:
5b4f6e25 3539 case TYPE_CODE_MEMBERPTR:
c5aa993b 3540 case TYPE_CODE_PTR:
5b4f6e25
KS
3541 return BOOL_CONVERSION_BADNESS;
3542 case TYPE_CODE_RANGE:
3543 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3544 case TYPE_CODE_BOOL:
6403aeea 3545 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3546 default:
3547 return INCOMPATIBLE_TYPE_BADNESS;
3548 }
3549 break;
3550 case TYPE_CODE_FLT:
3551 switch (TYPE_CODE (arg))
3552 {
3553 case TYPE_CODE_FLT:
3554 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3555 return FLOAT_PROMOTION_BADNESS;
3556 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3557 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3558 else
3559 return FLOAT_CONVERSION_BADNESS;
3560 case TYPE_CODE_INT:
3561 case TYPE_CODE_BOOL:
3562 case TYPE_CODE_ENUM:
3563 case TYPE_CODE_RANGE:
3564 case TYPE_CODE_CHAR:
3565 return INT_FLOAT_CONVERSION_BADNESS;
3566 default:
3567 return INCOMPATIBLE_TYPE_BADNESS;
3568 }
3569 break;
3570 case TYPE_CODE_COMPLEX:
3571 switch (TYPE_CODE (arg))
7ba81444 3572 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3573 case TYPE_CODE_FLT:
3574 return FLOAT_PROMOTION_BADNESS;
3575 case TYPE_CODE_COMPLEX:
6403aeea 3576 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3577 default:
3578 return INCOMPATIBLE_TYPE_BADNESS;
3579 }
3580 break;
3581 case TYPE_CODE_STRUCT:
c5aa993b
JM
3582 switch (TYPE_CODE (arg))
3583 {
3584 case TYPE_CODE_STRUCT:
3585 /* Check for derivation */
a9d5ef47
SW
3586 rank.subrank = distance_to_ancestor (parm, arg, 0);
3587 if (rank.subrank >= 0)
3588 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3589 /* else fall through */
3590 default:
3591 return INCOMPATIBLE_TYPE_BADNESS;
3592 }
3593 break;
3594 case TYPE_CODE_UNION:
3595 switch (TYPE_CODE (arg))
3596 {
3597 case TYPE_CODE_UNION:
3598 default:
3599 return INCOMPATIBLE_TYPE_BADNESS;
3600 }
3601 break;
0d5de010 3602 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3603 switch (TYPE_CODE (arg))
3604 {
3605 default:
3606 return INCOMPATIBLE_TYPE_BADNESS;
3607 }
3608 break;
3609 case TYPE_CODE_METHOD:
3610 switch (TYPE_CODE (arg))
3611 {
3612
3613 default:
3614 return INCOMPATIBLE_TYPE_BADNESS;
3615 }
3616 break;
3617 case TYPE_CODE_REF:
3618 switch (TYPE_CODE (arg))
3619 {
3620
3621 default:
3622 return INCOMPATIBLE_TYPE_BADNESS;
3623 }
3624
3625 break;
3626 case TYPE_CODE_SET:
3627 switch (TYPE_CODE (arg))
3628 {
3629 /* Not in C++ */
3630 case TYPE_CODE_SET:
7ba81444 3631 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3632 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3633 default:
3634 return INCOMPATIBLE_TYPE_BADNESS;
3635 }
3636 break;
3637 case TYPE_CODE_VOID:
3638 default:
3639 return INCOMPATIBLE_TYPE_BADNESS;
3640 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3641}
3642
0963b4bd 3643/* End of functions for overload resolution. */
5212577a
DE
3644\f
3645/* Routines to pretty-print types. */
c906108c 3646
c906108c 3647static void
fba45db2 3648print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3649{
3650 int bitno;
3651
3652 for (bitno = 0; bitno < nbits; bitno++)
3653 {
3654 if ((bitno % 8) == 0)
3655 {
3656 puts_filtered (" ");
3657 }
3658 if (B_TST (bits, bitno))
a3f17187 3659 printf_filtered (("1"));
c906108c 3660 else
a3f17187 3661 printf_filtered (("0"));
c906108c
SS
3662 }
3663}
3664
ad2f7632 3665/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3666 include it since we may get into a infinitely recursive
3667 situation. */
c906108c
SS
3668
3669static void
4c9e8482 3670print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3671{
3672 if (args != NULL)
3673 {
ad2f7632
DJ
3674 int i;
3675
3676 for (i = 0; i < nargs; i++)
4c9e8482
DE
3677 {
3678 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3679 args[i].name != NULL ? args[i].name : "<NULL>");
3680 recursive_dump_type (args[i].type, spaces + 2);
3681 }
c906108c
SS
3682 }
3683}
3684
d6a843b5
JK
3685int
3686field_is_static (struct field *f)
3687{
3688 /* "static" fields are the fields whose location is not relative
3689 to the address of the enclosing struct. It would be nice to
3690 have a dedicated flag that would be set for static fields when
3691 the type is being created. But in practice, checking the field
254e6b9e 3692 loc_kind should give us an accurate answer. */
d6a843b5
JK
3693 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3694 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3695}
3696
c906108c 3697static void
fba45db2 3698dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3699{
3700 int method_idx;
3701 int overload_idx;
3702 struct fn_field *f;
3703
3704 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3705 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3706 printf_filtered ("\n");
3707 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3708 {
3709 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3710 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3711 method_idx,
3712 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3713 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3714 gdb_stdout);
a3f17187 3715 printf_filtered (_(") length %d\n"),
c906108c
SS
3716 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3717 for (overload_idx = 0;
3718 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3719 overload_idx++)
3720 {
3721 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3722 overload_idx,
3723 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3724 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3725 gdb_stdout);
c906108c
SS
3726 printf_filtered (")\n");
3727 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3728 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3729 gdb_stdout);
c906108c
SS
3730 printf_filtered ("\n");
3731
3732 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3733 spaces + 8 + 2);
3734
3735 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3736 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3737 gdb_stdout);
c906108c 3738 printf_filtered ("\n");
4c9e8482
DE
3739 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3740 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3741 spaces + 8 + 2);
c906108c 3742 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3743 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3744 gdb_stdout);
c906108c
SS
3745 printf_filtered ("\n");
3746
3747 printfi_filtered (spaces + 8, "is_const %d\n",
3748 TYPE_FN_FIELD_CONST (f, overload_idx));
3749 printfi_filtered (spaces + 8, "is_volatile %d\n",
3750 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3751 printfi_filtered (spaces + 8, "is_private %d\n",
3752 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3753 printfi_filtered (spaces + 8, "is_protected %d\n",
3754 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3755 printfi_filtered (spaces + 8, "is_stub %d\n",
3756 TYPE_FN_FIELD_STUB (f, overload_idx));
3757 printfi_filtered (spaces + 8, "voffset %u\n",
3758 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3759 }
3760 }
3761}
3762
3763static void
fba45db2 3764print_cplus_stuff (struct type *type, int spaces)
c906108c 3765{
ae6ae975
DE
3766 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3767 printfi_filtered (spaces, "vptr_basetype ");
3768 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3769 puts_filtered ("\n");
3770 if (TYPE_VPTR_BASETYPE (type) != NULL)
3771 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3772
c906108c
SS
3773 printfi_filtered (spaces, "n_baseclasses %d\n",
3774 TYPE_N_BASECLASSES (type));
3775 printfi_filtered (spaces, "nfn_fields %d\n",
3776 TYPE_NFN_FIELDS (type));
c906108c
SS
3777 if (TYPE_N_BASECLASSES (type) > 0)
3778 {
3779 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3780 TYPE_N_BASECLASSES (type));
7ba81444
MS
3781 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3782 gdb_stdout);
c906108c
SS
3783 printf_filtered (")");
3784
3785 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3786 TYPE_N_BASECLASSES (type));
3787 puts_filtered ("\n");
3788 }
3789 if (TYPE_NFIELDS (type) > 0)
3790 {
3791 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3792 {
7ba81444
MS
3793 printfi_filtered (spaces,
3794 "private_field_bits (%d bits at *",
c906108c 3795 TYPE_NFIELDS (type));
7ba81444
MS
3796 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3797 gdb_stdout);
c906108c
SS
3798 printf_filtered (")");
3799 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3800 TYPE_NFIELDS (type));
3801 puts_filtered ("\n");
3802 }
3803 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3804 {
7ba81444
MS
3805 printfi_filtered (spaces,
3806 "protected_field_bits (%d bits at *",
c906108c 3807 TYPE_NFIELDS (type));
7ba81444
MS
3808 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3809 gdb_stdout);
c906108c
SS
3810 printf_filtered (")");
3811 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3812 TYPE_NFIELDS (type));
3813 puts_filtered ("\n");
3814 }
3815 }
3816 if (TYPE_NFN_FIELDS (type) > 0)
3817 {
3818 dump_fn_fieldlists (type, spaces);
3819 }
3820}
3821
b4ba55a1
JB
3822/* Print the contents of the TYPE's type_specific union, assuming that
3823 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3824
3825static void
3826print_gnat_stuff (struct type *type, int spaces)
3827{
3828 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3829
3830 recursive_dump_type (descriptive_type, spaces + 2);
3831}
3832
c906108c
SS
3833static struct obstack dont_print_type_obstack;
3834
3835void
fba45db2 3836recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3837{
3838 int idx;
3839
3840 if (spaces == 0)
3841 obstack_begin (&dont_print_type_obstack, 0);
3842
3843 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3844 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3845 {
3846 struct type **first_dont_print
7ba81444 3847 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3848
7ba81444
MS
3849 int i = (struct type **)
3850 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3851
3852 while (--i >= 0)
3853 {
3854 if (type == first_dont_print[i])
3855 {
3856 printfi_filtered (spaces, "type node ");
d4f3574e 3857 gdb_print_host_address (type, gdb_stdout);
a3f17187 3858 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3859 return;
3860 }
3861 }
3862
3863 obstack_ptr_grow (&dont_print_type_obstack, type);
3864 }
3865
3866 printfi_filtered (spaces, "type node ");
d4f3574e 3867 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3868 printf_filtered ("\n");
3869 printfi_filtered (spaces, "name '%s' (",
3870 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3871 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3872 printf_filtered (")\n");
e9e79dd9
FF
3873 printfi_filtered (spaces, "tagname '%s' (",
3874 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3875 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3876 printf_filtered (")\n");
c906108c
SS
3877 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3878 switch (TYPE_CODE (type))
3879 {
c5aa993b
JM
3880 case TYPE_CODE_UNDEF:
3881 printf_filtered ("(TYPE_CODE_UNDEF)");
3882 break;
3883 case TYPE_CODE_PTR:
3884 printf_filtered ("(TYPE_CODE_PTR)");
3885 break;
3886 case TYPE_CODE_ARRAY:
3887 printf_filtered ("(TYPE_CODE_ARRAY)");
3888 break;
3889 case TYPE_CODE_STRUCT:
3890 printf_filtered ("(TYPE_CODE_STRUCT)");
3891 break;
3892 case TYPE_CODE_UNION:
3893 printf_filtered ("(TYPE_CODE_UNION)");
3894 break;
3895 case TYPE_CODE_ENUM:
3896 printf_filtered ("(TYPE_CODE_ENUM)");
3897 break;
4f2aea11
MK
3898 case TYPE_CODE_FLAGS:
3899 printf_filtered ("(TYPE_CODE_FLAGS)");
3900 break;
c5aa993b
JM
3901 case TYPE_CODE_FUNC:
3902 printf_filtered ("(TYPE_CODE_FUNC)");
3903 break;
3904 case TYPE_CODE_INT:
3905 printf_filtered ("(TYPE_CODE_INT)");
3906 break;
3907 case TYPE_CODE_FLT:
3908 printf_filtered ("(TYPE_CODE_FLT)");
3909 break;
3910 case TYPE_CODE_VOID:
3911 printf_filtered ("(TYPE_CODE_VOID)");
3912 break;
3913 case TYPE_CODE_SET:
3914 printf_filtered ("(TYPE_CODE_SET)");
3915 break;
3916 case TYPE_CODE_RANGE:
3917 printf_filtered ("(TYPE_CODE_RANGE)");
3918 break;
3919 case TYPE_CODE_STRING:
3920 printf_filtered ("(TYPE_CODE_STRING)");
3921 break;
3922 case TYPE_CODE_ERROR:
3923 printf_filtered ("(TYPE_CODE_ERROR)");
3924 break;
0d5de010
DJ
3925 case TYPE_CODE_MEMBERPTR:
3926 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3927 break;
3928 case TYPE_CODE_METHODPTR:
3929 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3930 break;
3931 case TYPE_CODE_METHOD:
3932 printf_filtered ("(TYPE_CODE_METHOD)");
3933 break;
3934 case TYPE_CODE_REF:
3935 printf_filtered ("(TYPE_CODE_REF)");
3936 break;
3937 case TYPE_CODE_CHAR:
3938 printf_filtered ("(TYPE_CODE_CHAR)");
3939 break;
3940 case TYPE_CODE_BOOL:
3941 printf_filtered ("(TYPE_CODE_BOOL)");
3942 break;
e9e79dd9
FF
3943 case TYPE_CODE_COMPLEX:
3944 printf_filtered ("(TYPE_CODE_COMPLEX)");
3945 break;
c5aa993b
JM
3946 case TYPE_CODE_TYPEDEF:
3947 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3948 break;
5c4e30ca
DC
3949 case TYPE_CODE_NAMESPACE:
3950 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3951 break;
c5aa993b
JM
3952 default:
3953 printf_filtered ("(UNKNOWN TYPE CODE)");
3954 break;
c906108c
SS
3955 }
3956 puts_filtered ("\n");
3957 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3958 if (TYPE_OBJFILE_OWNED (type))
3959 {
3960 printfi_filtered (spaces, "objfile ");
3961 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3962 }
3963 else
3964 {
3965 printfi_filtered (spaces, "gdbarch ");
3966 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3967 }
c906108c
SS
3968 printf_filtered ("\n");
3969 printfi_filtered (spaces, "target_type ");
d4f3574e 3970 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3971 printf_filtered ("\n");
3972 if (TYPE_TARGET_TYPE (type) != NULL)
3973 {
3974 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3975 }
3976 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3977 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3978 printf_filtered ("\n");
3979 printfi_filtered (spaces, "reference_type ");
d4f3574e 3980 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3981 printf_filtered ("\n");
2fdde8f8
DJ
3982 printfi_filtered (spaces, "type_chain ");
3983 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3984 printf_filtered ("\n");
7ba81444
MS
3985 printfi_filtered (spaces, "instance_flags 0x%x",
3986 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3987 if (TYPE_CONST (type))
3988 {
3989 puts_filtered (" TYPE_FLAG_CONST");
3990 }
3991 if (TYPE_VOLATILE (type))
3992 {
3993 puts_filtered (" TYPE_FLAG_VOLATILE");
3994 }
3995 if (TYPE_CODE_SPACE (type))
3996 {
3997 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3998 }
3999 if (TYPE_DATA_SPACE (type))
4000 {
4001 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4002 }
8b2dbe47
KB
4003 if (TYPE_ADDRESS_CLASS_1 (type))
4004 {
4005 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4006 }
4007 if (TYPE_ADDRESS_CLASS_2 (type))
4008 {
4009 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4010 }
06d66ee9
TT
4011 if (TYPE_RESTRICT (type))
4012 {
4013 puts_filtered (" TYPE_FLAG_RESTRICT");
4014 }
2fdde8f8 4015 puts_filtered ("\n");
876cecd0
TT
4016
4017 printfi_filtered (spaces, "flags");
762a036f 4018 if (TYPE_UNSIGNED (type))
c906108c
SS
4019 {
4020 puts_filtered (" TYPE_FLAG_UNSIGNED");
4021 }
762a036f
FF
4022 if (TYPE_NOSIGN (type))
4023 {
4024 puts_filtered (" TYPE_FLAG_NOSIGN");
4025 }
4026 if (TYPE_STUB (type))
c906108c
SS
4027 {
4028 puts_filtered (" TYPE_FLAG_STUB");
4029 }
762a036f
FF
4030 if (TYPE_TARGET_STUB (type))
4031 {
4032 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4033 }
4034 if (TYPE_STATIC (type))
4035 {
4036 puts_filtered (" TYPE_FLAG_STATIC");
4037 }
762a036f
FF
4038 if (TYPE_PROTOTYPED (type))
4039 {
4040 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4041 }
4042 if (TYPE_INCOMPLETE (type))
4043 {
4044 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4045 }
762a036f
FF
4046 if (TYPE_VARARGS (type))
4047 {
4048 puts_filtered (" TYPE_FLAG_VARARGS");
4049 }
f5f8a009
EZ
4050 /* This is used for things like AltiVec registers on ppc. Gcc emits
4051 an attribute for the array type, which tells whether or not we
4052 have a vector, instead of a regular array. */
4053 if (TYPE_VECTOR (type))
4054 {
4055 puts_filtered (" TYPE_FLAG_VECTOR");
4056 }
876cecd0
TT
4057 if (TYPE_FIXED_INSTANCE (type))
4058 {
4059 puts_filtered (" TYPE_FIXED_INSTANCE");
4060 }
4061 if (TYPE_STUB_SUPPORTED (type))
4062 {
4063 puts_filtered (" TYPE_STUB_SUPPORTED");
4064 }
4065 if (TYPE_NOTTEXT (type))
4066 {
4067 puts_filtered (" TYPE_NOTTEXT");
4068 }
c906108c
SS
4069 puts_filtered ("\n");
4070 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4071 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4072 puts_filtered ("\n");
4073 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4074 {
14e75d8e
JK
4075 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4076 printfi_filtered (spaces + 2,
4077 "[%d] enumval %s type ",
4078 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4079 else
4080 printfi_filtered (spaces + 2,
4081 "[%d] bitpos %d bitsize %d type ",
4082 idx, TYPE_FIELD_BITPOS (type, idx),
4083 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4084 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4085 printf_filtered (" name '%s' (",
4086 TYPE_FIELD_NAME (type, idx) != NULL
4087 ? TYPE_FIELD_NAME (type, idx)
4088 : "<NULL>");
d4f3574e 4089 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4090 printf_filtered (")\n");
4091 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4092 {
4093 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4094 }
4095 }
43bbcdc2
PH
4096 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4097 {
4098 printfi_filtered (spaces, "low %s%s high %s%s\n",
4099 plongest (TYPE_LOW_BOUND (type)),
4100 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4101 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4102 TYPE_HIGH_BOUND_UNDEFINED (type)
4103 ? " (undefined)" : "");
43bbcdc2 4104 }
c906108c 4105
b4ba55a1
JB
4106 switch (TYPE_SPECIFIC_FIELD (type))
4107 {
4108 case TYPE_SPECIFIC_CPLUS_STUFF:
4109 printfi_filtered (spaces, "cplus_stuff ");
4110 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4111 gdb_stdout);
4112 puts_filtered ("\n");
4113 print_cplus_stuff (type, spaces);
4114 break;
8da61cc4 4115
b4ba55a1
JB
4116 case TYPE_SPECIFIC_GNAT_STUFF:
4117 printfi_filtered (spaces, "gnat_stuff ");
4118 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4119 puts_filtered ("\n");
4120 print_gnat_stuff (type, spaces);
4121 break;
701c159d 4122
b4ba55a1
JB
4123 case TYPE_SPECIFIC_FLOATFORMAT:
4124 printfi_filtered (spaces, "floatformat ");
4125 if (TYPE_FLOATFORMAT (type) == NULL)
4126 puts_filtered ("(null)");
4127 else
4128 {
4129 puts_filtered ("{ ");
4130 if (TYPE_FLOATFORMAT (type)[0] == NULL
4131 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4132 puts_filtered ("(null)");
4133 else
4134 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4135
4136 puts_filtered (", ");
4137 if (TYPE_FLOATFORMAT (type)[1] == NULL
4138 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4139 puts_filtered ("(null)");
4140 else
4141 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4142
4143 puts_filtered (" }");
4144 }
4145 puts_filtered ("\n");
4146 break;
c906108c 4147
b6cdc2c1 4148 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4149 printfi_filtered (spaces, "calling_convention %d\n",
4150 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4151 /* tail_call_list is not printed. */
b4ba55a1 4152 break;
09e2d7c7
DE
4153
4154 case TYPE_SPECIFIC_SELF_TYPE:
4155 printfi_filtered (spaces, "self_type ");
4156 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4157 puts_filtered ("\n");
4158 break;
c906108c 4159 }
b4ba55a1 4160
c906108c
SS
4161 if (spaces == 0)
4162 obstack_free (&dont_print_type_obstack, NULL);
4163}
5212577a 4164\f
ae5a43e0
DJ
4165/* Trivial helpers for the libiberty hash table, for mapping one
4166 type to another. */
4167
4168struct type_pair
4169{
4170 struct type *old, *new;
4171};
4172
4173static hashval_t
4174type_pair_hash (const void *item)
4175{
4176 const struct type_pair *pair = item;
d8734c88 4177
ae5a43e0
DJ
4178 return htab_hash_pointer (pair->old);
4179}
4180
4181static int
4182type_pair_eq (const void *item_lhs, const void *item_rhs)
4183{
4184 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4185
ae5a43e0
DJ
4186 return lhs->old == rhs->old;
4187}
4188
4189/* Allocate the hash table used by copy_type_recursive to walk
4190 types without duplicates. We use OBJFILE's obstack, because
4191 OBJFILE is about to be deleted. */
4192
4193htab_t
4194create_copied_types_hash (struct objfile *objfile)
4195{
4196 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4197 NULL, &objfile->objfile_obstack,
4198 hashtab_obstack_allocate,
4199 dummy_obstack_deallocate);
4200}
4201
7ba81444
MS
4202/* Recursively copy (deep copy) TYPE, if it is associated with
4203 OBJFILE. Return a new type allocated using malloc, a saved type if
4204 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4205 not associated with OBJFILE. */
ae5a43e0
DJ
4206
4207struct type *
7ba81444
MS
4208copy_type_recursive (struct objfile *objfile,
4209 struct type *type,
ae5a43e0
DJ
4210 htab_t copied_types)
4211{
4212 struct type_pair *stored, pair;
4213 void **slot;
4214 struct type *new_type;
4215
e9bb382b 4216 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4217 return type;
4218
7ba81444
MS
4219 /* This type shouldn't be pointing to any types in other objfiles;
4220 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4221 gdb_assert (TYPE_OBJFILE (type) == objfile);
4222
4223 pair.old = type;
4224 slot = htab_find_slot (copied_types, &pair, INSERT);
4225 if (*slot != NULL)
4226 return ((struct type_pair *) *slot)->new;
4227
e9bb382b 4228 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4229
4230 /* We must add the new type to the hash table immediately, in case
4231 we encounter this type again during a recursive call below. */
3e43a32a
MS
4232 stored
4233 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
4234 stored->old = type;
4235 stored->new = new_type;
4236 *slot = stored;
4237
876cecd0
TT
4238 /* Copy the common fields of types. For the main type, we simply
4239 copy the entire thing and then update specific fields as needed. */
4240 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4241 TYPE_OBJFILE_OWNED (new_type) = 0;
4242 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4243
ae5a43e0
DJ
4244 if (TYPE_NAME (type))
4245 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4246 if (TYPE_TAG_NAME (type))
4247 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4248
4249 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4250 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4251
4252 /* Copy the fields. */
ae5a43e0
DJ
4253 if (TYPE_NFIELDS (type))
4254 {
4255 int i, nfields;
4256
4257 nfields = TYPE_NFIELDS (type);
fc270c35 4258 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4259 for (i = 0; i < nfields; i++)
4260 {
7ba81444
MS
4261 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4262 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4263 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4264 if (TYPE_FIELD_TYPE (type, i))
4265 TYPE_FIELD_TYPE (new_type, i)
4266 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4267 copied_types);
4268 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4269 TYPE_FIELD_NAME (new_type, i) =
4270 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4271 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4272 {
d6a843b5
JK
4273 case FIELD_LOC_KIND_BITPOS:
4274 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4275 TYPE_FIELD_BITPOS (type, i));
4276 break;
14e75d8e
JK
4277 case FIELD_LOC_KIND_ENUMVAL:
4278 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4279 TYPE_FIELD_ENUMVAL (type, i));
4280 break;
d6a843b5
JK
4281 case FIELD_LOC_KIND_PHYSADDR:
4282 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4283 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4284 break;
4285 case FIELD_LOC_KIND_PHYSNAME:
4286 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4287 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4288 i)));
4289 break;
4290 default:
4291 internal_error (__FILE__, __LINE__,
4292 _("Unexpected type field location kind: %d"),
4293 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4294 }
4295 }
4296 }
4297
0963b4bd 4298 /* For range types, copy the bounds information. */
43bbcdc2
PH
4299 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4300 {
4301 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4302 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4303 }
4304
3cdcd0ce
JB
4305 /* Copy the data location information. */
4306 if (TYPE_DATA_LOCATION (type) != NULL)
4307 {
4308 TYPE_DATA_LOCATION (new_type)
4309 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4310 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4311 sizeof (struct dynamic_prop));
4312 }
4313
ae5a43e0
DJ
4314 /* Copy pointers to other types. */
4315 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4316 TYPE_TARGET_TYPE (new_type) =
4317 copy_type_recursive (objfile,
4318 TYPE_TARGET_TYPE (type),
4319 copied_types);
f6b3afbf 4320
ae5a43e0
DJ
4321 /* Maybe copy the type_specific bits.
4322
4323 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4324 base classes and methods. There's no fundamental reason why we
4325 can't, but at the moment it is not needed. */
4326
f6b3afbf
DE
4327 switch (TYPE_SPECIFIC_FIELD (type))
4328 {
4329 case TYPE_SPECIFIC_NONE:
4330 break;
4331 case TYPE_SPECIFIC_FUNC:
4332 INIT_FUNC_SPECIFIC (new_type);
4333 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4334 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4335 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4336 break;
4337 case TYPE_SPECIFIC_FLOATFORMAT:
4338 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4339 break;
4340 case TYPE_SPECIFIC_CPLUS_STUFF:
4341 INIT_CPLUS_SPECIFIC (new_type);
4342 break;
4343 case TYPE_SPECIFIC_GNAT_STUFF:
4344 INIT_GNAT_SPECIFIC (new_type);
4345 break;
09e2d7c7
DE
4346 case TYPE_SPECIFIC_SELF_TYPE:
4347 set_type_self_type (new_type,
4348 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4349 copied_types));
4350 break;
f6b3afbf
DE
4351 default:
4352 gdb_assert_not_reached ("bad type_specific_kind");
4353 }
ae5a43e0
DJ
4354
4355 return new_type;
4356}
4357
4af88198
JB
4358/* Make a copy of the given TYPE, except that the pointer & reference
4359 types are not preserved.
4360
4361 This function assumes that the given type has an associated objfile.
4362 This objfile is used to allocate the new type. */
4363
4364struct type *
4365copy_type (const struct type *type)
4366{
4367 struct type *new_type;
4368
e9bb382b 4369 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4370
e9bb382b 4371 new_type = alloc_type_copy (type);
4af88198
JB
4372 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4373 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4374 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4375 sizeof (struct main_type));
3cdcd0ce
JB
4376 if (TYPE_DATA_LOCATION (type) != NULL)
4377 {
4378 TYPE_DATA_LOCATION (new_type)
4379 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4380 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4381 sizeof (struct dynamic_prop));
4382 }
4af88198
JB
4383
4384 return new_type;
4385}
5212577a 4386\f
e9bb382b
UW
4387/* Helper functions to initialize architecture-specific types. */
4388
4389/* Allocate a type structure associated with GDBARCH and set its
4390 CODE, LENGTH, and NAME fields. */
5212577a 4391
e9bb382b
UW
4392struct type *
4393arch_type (struct gdbarch *gdbarch,
4394 enum type_code code, int length, char *name)
4395{
4396 struct type *type;
4397
4398 type = alloc_type_arch (gdbarch);
4399 TYPE_CODE (type) = code;
4400 TYPE_LENGTH (type) = length;
4401
4402 if (name)
4403 TYPE_NAME (type) = xstrdup (name);
4404
4405 return type;
4406}
4407
4408/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4409 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4410 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4411
e9bb382b
UW
4412struct type *
4413arch_integer_type (struct gdbarch *gdbarch,
4414 int bit, int unsigned_p, char *name)
4415{
4416 struct type *t;
4417
4418 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4419 if (unsigned_p)
4420 TYPE_UNSIGNED (t) = 1;
4421 if (name && strcmp (name, "char") == 0)
4422 TYPE_NOSIGN (t) = 1;
4423
4424 return t;
4425}
4426
4427/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4428 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4429 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4430
e9bb382b
UW
4431struct type *
4432arch_character_type (struct gdbarch *gdbarch,
4433 int bit, int unsigned_p, char *name)
4434{
4435 struct type *t;
4436
4437 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4438 if (unsigned_p)
4439 TYPE_UNSIGNED (t) = 1;
4440
4441 return t;
4442}
4443
4444/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4445 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4446 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4447
e9bb382b
UW
4448struct type *
4449arch_boolean_type (struct gdbarch *gdbarch,
4450 int bit, int unsigned_p, char *name)
4451{
4452 struct type *t;
4453
4454 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4455 if (unsigned_p)
4456 TYPE_UNSIGNED (t) = 1;
4457
4458 return t;
4459}
4460
4461/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4462 BIT is the type size in bits; if BIT equals -1, the size is
4463 determined by the floatformat. NAME is the type name. Set the
4464 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4465
27067745 4466struct type *
e9bb382b
UW
4467arch_float_type (struct gdbarch *gdbarch,
4468 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4469{
4470 struct type *t;
4471
4472 if (bit == -1)
4473 {
4474 gdb_assert (floatformats != NULL);
4475 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4476 bit = floatformats[0]->totalsize;
4477 }
4478 gdb_assert (bit >= 0);
4479
e9bb382b 4480 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4481 TYPE_FLOATFORMAT (t) = floatformats;
4482 return t;
4483}
4484
e9bb382b
UW
4485/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4486 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4487
27067745 4488struct type *
e9bb382b
UW
4489arch_complex_type (struct gdbarch *gdbarch,
4490 char *name, struct type *target_type)
27067745
UW
4491{
4492 struct type *t;
d8734c88 4493
e9bb382b
UW
4494 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4495 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4496 TYPE_TARGET_TYPE (t) = target_type;
4497 return t;
4498}
4499
e9bb382b 4500/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4501 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4502
e9bb382b
UW
4503struct type *
4504arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4505{
4506 int nfields = length * TARGET_CHAR_BIT;
4507 struct type *type;
4508
4509 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4510 TYPE_UNSIGNED (type) = 1;
4511 TYPE_NFIELDS (type) = nfields;
4512 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4513
4514 return type;
4515}
4516
4517/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4518 position BITPOS is called NAME. */
5212577a 4519
e9bb382b
UW
4520void
4521append_flags_type_flag (struct type *type, int bitpos, char *name)
4522{
4523 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4524 gdb_assert (bitpos < TYPE_NFIELDS (type));
4525 gdb_assert (bitpos >= 0);
4526
4527 if (name)
4528 {
4529 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4530 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4531 }
4532 else
4533 {
4534 /* Don't show this field to the user. */
945b3a32 4535 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4536 }
4537}
4538
4539/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4540 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4541
e9bb382b
UW
4542struct type *
4543arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4544{
4545 struct type *t;
d8734c88 4546
e9bb382b
UW
4547 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4548 t = arch_type (gdbarch, code, 0, NULL);
4549 TYPE_TAG_NAME (t) = name;
4550 INIT_CPLUS_SPECIFIC (t);
4551 return t;
4552}
4553
4554/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4555 Do not set the field's position or adjust the type's length;
4556 the caller should do so. Return the new field. */
5212577a 4557
f5dff777
DJ
4558struct field *
4559append_composite_type_field_raw (struct type *t, char *name,
4560 struct type *field)
e9bb382b
UW
4561{
4562 struct field *f;
d8734c88 4563
e9bb382b
UW
4564 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4565 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4566 sizeof (struct field) * TYPE_NFIELDS (t));
4567 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4568 memset (f, 0, sizeof f[0]);
4569 FIELD_TYPE (f[0]) = field;
4570 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4571 return f;
4572}
4573
4574/* Add new field with name NAME and type FIELD to composite type T.
4575 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4576
f5dff777
DJ
4577void
4578append_composite_type_field_aligned (struct type *t, char *name,
4579 struct type *field, int alignment)
4580{
4581 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4582
e9bb382b
UW
4583 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4584 {
4585 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4586 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4587 }
4588 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4589 {
4590 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4591 if (TYPE_NFIELDS (t) > 1)
4592 {
f41f5e61
PA
4593 SET_FIELD_BITPOS (f[0],
4594 (FIELD_BITPOS (f[-1])
4595 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4596 * TARGET_CHAR_BIT)));
e9bb382b
UW
4597
4598 if (alignment)
4599 {
86c3c1fc
AB
4600 int left;
4601
4602 alignment *= TARGET_CHAR_BIT;
4603 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4604
e9bb382b
UW
4605 if (left)
4606 {
f41f5e61 4607 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4608 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4609 }
4610 }
4611 }
4612 }
4613}
4614
4615/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4616
e9bb382b
UW
4617void
4618append_composite_type_field (struct type *t, char *name,
4619 struct type *field)
4620{
4621 append_composite_type_field_aligned (t, name, field, 0);
4622}
4623
000177f0
AC
4624static struct gdbarch_data *gdbtypes_data;
4625
4626const struct builtin_type *
4627builtin_type (struct gdbarch *gdbarch)
4628{
4629 return gdbarch_data (gdbarch, gdbtypes_data);
4630}
4631
4632static void *
4633gdbtypes_post_init (struct gdbarch *gdbarch)
4634{
4635 struct builtin_type *builtin_type
4636 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4637
46bf5051 4638 /* Basic types. */
e9bb382b
UW
4639 builtin_type->builtin_void
4640 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4641 builtin_type->builtin_char
4642 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4643 !gdbarch_char_signed (gdbarch), "char");
4644 builtin_type->builtin_signed_char
4645 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4646 0, "signed char");
4647 builtin_type->builtin_unsigned_char
4648 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4649 1, "unsigned char");
4650 builtin_type->builtin_short
4651 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4652 0, "short");
4653 builtin_type->builtin_unsigned_short
4654 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4655 1, "unsigned short");
4656 builtin_type->builtin_int
4657 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4658 0, "int");
4659 builtin_type->builtin_unsigned_int
4660 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4661 1, "unsigned int");
4662 builtin_type->builtin_long
4663 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4664 0, "long");
4665 builtin_type->builtin_unsigned_long
4666 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4667 1, "unsigned long");
4668 builtin_type->builtin_long_long
4669 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4670 0, "long long");
4671 builtin_type->builtin_unsigned_long_long
4672 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4673 1, "unsigned long long");
70bd8e24 4674 builtin_type->builtin_float
e9bb382b 4675 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4676 "float", gdbarch_float_format (gdbarch));
70bd8e24 4677 builtin_type->builtin_double
e9bb382b 4678 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4679 "double", gdbarch_double_format (gdbarch));
70bd8e24 4680 builtin_type->builtin_long_double
e9bb382b 4681 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4682 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4683 builtin_type->builtin_complex
e9bb382b
UW
4684 = arch_complex_type (gdbarch, "complex",
4685 builtin_type->builtin_float);
70bd8e24 4686 builtin_type->builtin_double_complex
e9bb382b
UW
4687 = arch_complex_type (gdbarch, "double complex",
4688 builtin_type->builtin_double);
4689 builtin_type->builtin_string
4690 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4691 builtin_type->builtin_bool
4692 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4693
7678ef8f
TJB
4694 /* The following three are about decimal floating point types, which
4695 are 32-bits, 64-bits and 128-bits respectively. */
4696 builtin_type->builtin_decfloat
e9bb382b 4697 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4698 builtin_type->builtin_decdouble
e9bb382b 4699 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4700 builtin_type->builtin_declong
e9bb382b 4701 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4702
69feb676 4703 /* "True" character types. */
e9bb382b
UW
4704 builtin_type->builtin_true_char
4705 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4706 builtin_type->builtin_true_unsigned_char
4707 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4708
df4df182 4709 /* Fixed-size integer types. */
e9bb382b
UW
4710 builtin_type->builtin_int0
4711 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4712 builtin_type->builtin_int8
4713 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4714 builtin_type->builtin_uint8
4715 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4716 builtin_type->builtin_int16
4717 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4718 builtin_type->builtin_uint16
4719 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4720 builtin_type->builtin_int32
4721 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4722 builtin_type->builtin_uint32
4723 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4724 builtin_type->builtin_int64
4725 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4726 builtin_type->builtin_uint64
4727 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4728 builtin_type->builtin_int128
4729 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4730 builtin_type->builtin_uint128
4731 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4732 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4733 TYPE_INSTANCE_FLAG_NOTTEXT;
4734 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4735 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4736
9a22f0d0
PM
4737 /* Wide character types. */
4738 builtin_type->builtin_char16
4739 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4740 builtin_type->builtin_char32
4741 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4742
4743
46bf5051 4744 /* Default data/code pointer types. */
e9bb382b
UW
4745 builtin_type->builtin_data_ptr
4746 = lookup_pointer_type (builtin_type->builtin_void);
4747 builtin_type->builtin_func_ptr
4748 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4749 builtin_type->builtin_func_func
4750 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4751
78267919 4752 /* This type represents a GDB internal function. */
e9bb382b
UW
4753 builtin_type->internal_fn
4754 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4755 "<internal function>");
78267919 4756
e81e7f5e
SC
4757 /* This type represents an xmethod. */
4758 builtin_type->xmethod
4759 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4760
46bf5051
UW
4761 return builtin_type;
4762}
4763
46bf5051
UW
4764/* This set of objfile-based types is intended to be used by symbol
4765 readers as basic types. */
4766
4767static const struct objfile_data *objfile_type_data;
4768
4769const struct objfile_type *
4770objfile_type (struct objfile *objfile)
4771{
4772 struct gdbarch *gdbarch;
4773 struct objfile_type *objfile_type
4774 = objfile_data (objfile, objfile_type_data);
4775
4776 if (objfile_type)
4777 return objfile_type;
4778
4779 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4780 1, struct objfile_type);
4781
4782 /* Use the objfile architecture to determine basic type properties. */
4783 gdbarch = get_objfile_arch (objfile);
4784
4785 /* Basic types. */
4786 objfile_type->builtin_void
4787 = init_type (TYPE_CODE_VOID, 1,
4788 0,
4789 "void", objfile);
4790
4791 objfile_type->builtin_char
4792 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4793 (TYPE_FLAG_NOSIGN
4794 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4795 "char", objfile);
4796 objfile_type->builtin_signed_char
4797 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4798 0,
4799 "signed char", objfile);
4800 objfile_type->builtin_unsigned_char
4801 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4802 TYPE_FLAG_UNSIGNED,
4803 "unsigned char", objfile);
4804 objfile_type->builtin_short
4805 = init_type (TYPE_CODE_INT,
4806 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4807 0, "short", objfile);
4808 objfile_type->builtin_unsigned_short
4809 = init_type (TYPE_CODE_INT,
4810 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4811 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4812 objfile_type->builtin_int
4813 = init_type (TYPE_CODE_INT,
4814 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4815 0, "int", objfile);
4816 objfile_type->builtin_unsigned_int
4817 = init_type (TYPE_CODE_INT,
4818 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4819 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4820 objfile_type->builtin_long
4821 = init_type (TYPE_CODE_INT,
4822 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4823 0, "long", objfile);
4824 objfile_type->builtin_unsigned_long
4825 = init_type (TYPE_CODE_INT,
4826 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4827 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4828 objfile_type->builtin_long_long
4829 = init_type (TYPE_CODE_INT,
4830 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4831 0, "long long", objfile);
4832 objfile_type->builtin_unsigned_long_long
4833 = init_type (TYPE_CODE_INT,
4834 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4835 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4836
4837 objfile_type->builtin_float
4838 = init_type (TYPE_CODE_FLT,
4839 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4840 0, "float", objfile);
4841 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4842 = gdbarch_float_format (gdbarch);
4843 objfile_type->builtin_double
4844 = init_type (TYPE_CODE_FLT,
4845 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4846 0, "double", objfile);
4847 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4848 = gdbarch_double_format (gdbarch);
4849 objfile_type->builtin_long_double
4850 = init_type (TYPE_CODE_FLT,
4851 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4852 0, "long double", objfile);
4853 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4854 = gdbarch_long_double_format (gdbarch);
4855
4856 /* This type represents a type that was unrecognized in symbol read-in. */
4857 objfile_type->builtin_error
4858 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4859
4860 /* The following set of types is used for symbols with no
4861 debug information. */
4862 objfile_type->nodebug_text_symbol
4863 = init_type (TYPE_CODE_FUNC, 1, 0,
4864 "<text variable, no debug info>", objfile);
4865 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4866 = objfile_type->builtin_int;
0875794a
JK
4867 objfile_type->nodebug_text_gnu_ifunc_symbol
4868 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4869 "<text gnu-indirect-function variable, no debug info>",
4870 objfile);
4871 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4872 = objfile_type->nodebug_text_symbol;
4873 objfile_type->nodebug_got_plt_symbol
4874 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4875 "<text from jump slot in .got.plt, no debug info>",
4876 objfile);
4877 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4878 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4879 objfile_type->nodebug_data_symbol
4880 = init_type (TYPE_CODE_INT,
4881 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4882 "<data variable, no debug info>", objfile);
4883 objfile_type->nodebug_unknown_symbol
4884 = init_type (TYPE_CODE_INT, 1, 0,
4885 "<variable (not text or data), no debug info>", objfile);
4886 objfile_type->nodebug_tls_symbol
4887 = init_type (TYPE_CODE_INT,
4888 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4889 "<thread local variable, no debug info>", objfile);
000177f0
AC
4890
4891 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4892 the same.
000177f0
AC
4893
4894 The upshot is:
4895 - gdb's `struct type' always describes the target's
4896 representation.
4897 - gdb's `struct value' objects should always hold values in
4898 target form.
4899 - gdb's CORE_ADDR values are addresses in the unified virtual
4900 address space that the assembler and linker work with. Thus,
4901 since target_read_memory takes a CORE_ADDR as an argument, it
4902 can access any memory on the target, even if the processor has
4903 separate code and data address spaces.
4904
46bf5051
UW
4905 In this context, objfile_type->builtin_core_addr is a bit odd:
4906 it's a target type for a value the target will never see. It's
4907 only used to hold the values of (typeless) linker symbols, which
4908 are indeed in the unified virtual address space. */
000177f0 4909
46bf5051
UW
4910 objfile_type->builtin_core_addr
4911 = init_type (TYPE_CODE_INT,
4912 gdbarch_addr_bit (gdbarch) / 8,
4913 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4914
46bf5051
UW
4915 set_objfile_data (objfile, objfile_type_data, objfile_type);
4916 return objfile_type;
000177f0
AC
4917}
4918
5212577a 4919extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4920
c906108c 4921void
fba45db2 4922_initialize_gdbtypes (void)
c906108c 4923{
5674de60 4924 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4925 objfile_type_data = register_objfile_data ();
5674de60 4926
ccce17b0
YQ
4927 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4928 _("Set debugging of C++ overloading."),
4929 _("Show debugging of C++ overloading."),
4930 _("When enabled, ranking of the "
4931 "functions is displayed."),
4932 NULL,
4933 show_overload_debug,
4934 &setdebuglist, &showdebuglist);
5674de60 4935
7ba81444 4936 /* Add user knob for controlling resolution of opaque types. */
5674de60 4937 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4938 &opaque_type_resolution,
4939 _("Set resolution of opaque struct/class/union"
4940 " types (if set before loading symbols)."),
4941 _("Show resolution of opaque struct/class/union"
4942 " types (if set before loading symbols)."),
4943 NULL, NULL,
5674de60
UW
4944 show_opaque_type_resolution,
4945 &setlist, &showlist);
a451cb65
KS
4946
4947 /* Add an option to permit non-strict type checking. */
4948 add_setshow_boolean_cmd ("type", class_support,
4949 &strict_type_checking,
4950 _("Set strict type checking."),
4951 _("Show strict type checking."),
4952 NULL, NULL,
4953 show_strict_type_checking,
4954 &setchecklist, &showchecklist);
c906108c 4955}
This page took 1.54409 seconds and 4 git commands to generate.