1998-10-13 Jason Molenda (jsm@bugshack.cygnus.com)
[deliverable/binutils-gdb.git] / gdb / gnu-regex.c
CommitLineData
9f85ab1a
JM
1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
6
9408296b
JM
7 NOTE: The canonical source of this file is maintained with the
8 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
9f85ab1a 9
9408296b
JM
10 This program is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 2, or (at your option) any
13 later version.
14
15 This program is distributed in the hope that it will be useful,
9f85ab1a 16 but WITHOUT ANY WARRANTY; without even the implied warranty of
9408296b
JM
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
9f85ab1a 19
9408296b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software Foundation,
22 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
9f85ab1a
JM
23
24/* AIX requires this to be the first thing in the file. */
25#if defined _AIX && !defined REGEX_MALLOC
26 #pragma alloca
27#endif
dd3b648e 28
9f85ab1a
JM
29#undef _GNU_SOURCE
30#define _GNU_SOURCE
dd3b648e 31
9f85ab1a
JM
32#ifdef HAVE_CONFIG_H
33# include <config.h>
34#endif
dd3b648e 35
9f85ab1a
JM
36#ifndef PARAMS
37# if defined __GNUC__ || (defined __STDC__ && __STDC__)
38# define PARAMS(args) args
39# else
40# define PARAMS(args) ()
41# endif /* GCC. */
42#endif /* Not PARAMS. */
dd3b648e 43
9f85ab1a
JM
44#if defined STDC_HEADERS && !defined emacs
45# include <stddef.h>
46#else
a4122443 47/* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
9f85ab1a
JM
48# include <sys/types.h>
49#endif
dd3b648e 50
9f85ab1a
JM
51/* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
9ed669cf 54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
9f85ab1a 55# include <wchar.h>
9ed669cf 56# include <wctype.h>
9f85ab1a 57#endif
dd3b648e 58
9f85ab1a
JM
59/* This is for other GNU distributions with internationalized messages. */
60#if HAVE_LIBINTL_H || defined _LIBC
61# include <libintl.h>
62#else
63# define gettext(msgid) (msgid)
dd3b648e
RP
64#endif
65
9f85ab1a
JM
66#ifndef gettext_noop
67/* This define is so xgettext can find the internationalizable
68 strings. */
69# define gettext_noop(String) String
70#endif
dd3b648e 71
9f85ab1a
JM
72/* The `emacs' switch turns on certain matching commands
73 that make sense only in Emacs. */
74#ifdef emacs
dd3b648e 75
9f85ab1a
JM
76# include "lisp.h"
77# include "buffer.h"
78# include "syntax.h"
dd3b648e 79
9f85ab1a 80#else /* not emacs */
dd3b648e 81
9f85ab1a
JM
82/* If we are not linking with Emacs proper,
83 we can't use the relocating allocator
84 even if config.h says that we can. */
85# undef REL_ALLOC
86
87# if defined STDC_HEADERS || defined _LIBC
88# include <stdlib.h>
89# else
90char *malloc ();
91char *realloc ();
92# endif
93
94/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
95 If nothing else has been done, use the method below. */
96# ifdef INHIBIT_STRING_HEADER
97# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
98# if !defined bzero && !defined bcopy
99# undef INHIBIT_STRING_HEADER
100# endif
101# endif
102# endif
103
104/* This is the normal way of making sure we have a bcopy and a bzero.
105 This is used in most programs--a few other programs avoid this
106 by defining INHIBIT_STRING_HEADER. */
107# ifndef INHIBIT_STRING_HEADER
108# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
109# include <string.h>
110# ifndef bzero
111# ifndef _LIBC
112# define bzero(s, n) (memset (s, '\0', n), (s))
113# else
114# define bzero(s, n) __bzero (s, n)
115# endif
116# endif
117# else
118# include <strings.h>
119# ifndef memcmp
120# define memcmp(s1, s2, n) bcmp (s1, s2, n)
121# endif
122# ifndef memcpy
123# define memcpy(d, s, n) (bcopy (s, d, n), (d))
124# endif
125# endif
126# endif
127
128/* Define the syntax stuff for \<, \>, etc. */
129
130/* This must be nonzero for the wordchar and notwordchar pattern
131 commands in re_match_2. */
132# ifndef Sword
133# define Sword 1
134# endif
135
136# ifdef SWITCH_ENUM_BUG
137# define SWITCH_ENUM_CAST(x) ((int)(x))
138# else
139# define SWITCH_ENUM_CAST(x) (x)
140# endif
141
142/* How many characters in the character set. */
143# define CHAR_SET_SIZE 256
144
ad3b8c4a
JM
145/* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
146#ifndef _REGEX_RE_COMP
46ccc6bf 147#define _REGEX_RE_COMP
ad3b8c4a 148#endif
46ccc6bf 149
9f85ab1a
JM
150# ifdef SYNTAX_TABLE
151
152extern char *re_syntax_table;
153
154# else /* not SYNTAX_TABLE */
155
156static char re_syntax_table[CHAR_SET_SIZE];
dd3b648e
RP
157
158static void
159init_syntax_once ()
160{
161 register int c;
162 static int done = 0;
163
164 if (done)
165 return;
166
9f85ab1a 167 bzero (re_syntax_table, sizeof re_syntax_table);
dd3b648e
RP
168
169 for (c = 'a'; c <= 'z'; c++)
170 re_syntax_table[c] = Sword;
171
172 for (c = 'A'; c <= 'Z'; c++)
173 re_syntax_table[c] = Sword;
174
175 for (c = '0'; c <= '9'; c++)
176 re_syntax_table[c] = Sword;
177
9f85ab1a
JM
178 re_syntax_table['_'] = Sword;
179
dd3b648e
RP
180 done = 1;
181}
182
9f85ab1a 183# endif /* not SYNTAX_TABLE */
dd3b648e 184
9f85ab1a 185# define SYNTAX(c) re_syntax_table[c]
dd3b648e 186
9f85ab1a
JM
187#endif /* not emacs */
188\f
189/* Get the interface, including the syntax bits. */
a4122443
JM
190/* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
191#include "gnu-regex.h"
9f85ab1a
JM
192
193/* isalpha etc. are used for the character classes. */
194#include <ctype.h>
195
196/* Jim Meyering writes:
197
198 "... Some ctype macros are valid only for character codes that
199 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
200 using /bin/cc or gcc but without giving an ansi option). So, all
201 ctype uses should be through macros like ISPRINT... If
202 STDC_HEADERS is defined, then autoconf has verified that the ctype
203 macros don't need to be guarded with references to isascii. ...
204 Defining isascii to 1 should let any compiler worth its salt
205 eliminate the && through constant folding."
206 Solaris defines some of these symbols so we must undefine them first. */
207
208#undef ISASCII
209#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
210# define ISASCII(c) 1
211#else
212# define ISASCII(c) isascii(c)
213#endif
dd3b648e 214
9f85ab1a
JM
215#ifdef isblank
216# define ISBLANK(c) (ISASCII (c) && isblank (c))
217#else
218# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
219#endif
220#ifdef isgraph
221# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
222#else
223# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
224#endif
dd3b648e 225
9f85ab1a
JM
226#undef ISPRINT
227#define ISPRINT(c) (ISASCII (c) && isprint (c))
228#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
229#define ISALNUM(c) (ISASCII (c) && isalnum (c))
230#define ISALPHA(c) (ISASCII (c) && isalpha (c))
231#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
232#define ISLOWER(c) (ISASCII (c) && islower (c))
233#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
234#define ISSPACE(c) (ISASCII (c) && isspace (c))
235#define ISUPPER(c) (ISASCII (c) && isupper (c))
236#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
237
238#ifndef NULL
239# define NULL (void *)0
240#endif
dd3b648e 241
0d98155c
PS
242/* We remove any previous definition of `SIGN_EXTEND_CHAR',
243 since ours (we hope) works properly with all combinations of
244 machines, compilers, `char' and `unsigned char' argument types.
245 (Per Bothner suggested the basic approach.) */
246#undef SIGN_EXTEND_CHAR
247#if __STDC__
9f85ab1a 248# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
0d98155c
PS
249#else /* not __STDC__ */
250/* As in Harbison and Steele. */
9f85ab1a 251# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
dd3b648e
RP
252#endif
253\f
9f85ab1a
JM
254/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
255 use `alloca' instead of `malloc'. This is because using malloc in
256 re_search* or re_match* could cause memory leaks when C-g is used in
257 Emacs; also, malloc is slower and causes storage fragmentation. On
258 the other hand, malloc is more portable, and easier to debug.
dd3b648e 259
9f85ab1a
JM
260 Because we sometimes use alloca, some routines have to be macros,
261 not functions -- `alloca'-allocated space disappears at the end of the
262 function it is called in. */
dd3b648e 263
9f85ab1a 264#ifdef REGEX_MALLOC
dd3b648e 265
9f85ab1a
JM
266# define REGEX_ALLOCATE malloc
267# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
268# define REGEX_FREE free
dd3b648e 269
9f85ab1a 270#else /* not REGEX_MALLOC */
dd3b648e 271
9f85ab1a
JM
272/* Emacs already defines alloca, sometimes. */
273# ifndef alloca
dd3b648e 274
9f85ab1a
JM
275/* Make alloca work the best possible way. */
276# ifdef __GNUC__
277# define alloca __builtin_alloca
278# else /* not __GNUC__ */
279# if HAVE_ALLOCA_H
280# include <alloca.h>
281# endif /* HAVE_ALLOCA_H */
282# endif /* not __GNUC__ */
dd3b648e 283
9f85ab1a 284# endif /* not alloca */
dd3b648e 285
9f85ab1a 286# define REGEX_ALLOCATE alloca
dd3b648e 287
9f85ab1a
JM
288/* Assumes a `char *destination' variable. */
289# define REGEX_REALLOCATE(source, osize, nsize) \
290 (destination = (char *) alloca (nsize), \
291 memcpy (destination, source, osize))
dd3b648e 292
9f85ab1a
JM
293/* No need to do anything to free, after alloca. */
294# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
dd3b648e 295
9f85ab1a 296#endif /* not REGEX_MALLOC */
ee6d646a 297
9f85ab1a 298/* Define how to allocate the failure stack. */
ee6d646a 299
9f85ab1a 300#if defined REL_ALLOC && defined REGEX_MALLOC
dd3b648e 301
9f85ab1a
JM
302# define REGEX_ALLOCATE_STACK(size) \
303 r_alloc (&failure_stack_ptr, (size))
304# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
305 r_re_alloc (&failure_stack_ptr, (nsize))
306# define REGEX_FREE_STACK(ptr) \
307 r_alloc_free (&failure_stack_ptr)
dd3b648e 308
9f85ab1a
JM
309#else /* not using relocating allocator */
310
311# ifdef REGEX_MALLOC
312
313# define REGEX_ALLOCATE_STACK malloc
314# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
315# define REGEX_FREE_STACK free
316
317# else /* not REGEX_MALLOC */
318
319# define REGEX_ALLOCATE_STACK alloca
320
321# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 REGEX_REALLOCATE (source, osize, nsize)
323/* No need to explicitly free anything. */
324# define REGEX_FREE_STACK(arg)
325
326# endif /* not REGEX_MALLOC */
327#endif /* not using relocating allocator */
328
329
330/* True if `size1' is non-NULL and PTR is pointing anywhere inside
331 `string1' or just past its end. This works if PTR is NULL, which is
332 a good thing. */
333#define FIRST_STRING_P(ptr) \
334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
335
336/* (Re)Allocate N items of type T using malloc, or fail. */
337#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
338#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
339#define RETALLOC_IF(addr, n, t) \
340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
341#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
342
343#define BYTEWIDTH 8 /* In bits. */
344
345#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
346
347#undef MAX
348#undef MIN
349#define MAX(a, b) ((a) > (b) ? (a) : (b))
350#define MIN(a, b) ((a) < (b) ? (a) : (b))
351
352typedef char boolean;
353#define false 0
354#define true 1
355
356static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
357 const char *string1, int size1,
358 const char *string2, int size2,
359 int pos,
360 struct re_registers *regs,
361 int stop));
362\f
363/* These are the command codes that appear in compiled regular
364 expressions. Some opcodes are followed by argument bytes. A
365 command code can specify any interpretation whatsoever for its
366 arguments. Zero bytes may appear in the compiled regular expression. */
367
368typedef enum
dd3b648e 369{
9f85ab1a
JM
370 no_op = 0,
371
372 /* Succeed right away--no more backtracking. */
373 succeed,
374
375 /* Followed by one byte giving n, then by n literal bytes. */
376 exactn,
377
378 /* Matches any (more or less) character. */
379 anychar,
380
381 /* Matches any one char belonging to specified set. First
382 following byte is number of bitmap bytes. Then come bytes
383 for a bitmap saying which chars are in. Bits in each byte
384 are ordered low-bit-first. A character is in the set if its
385 bit is 1. A character too large to have a bit in the map is
386 automatically not in the set. */
387 charset,
388
389 /* Same parameters as charset, but match any character that is
390 not one of those specified. */
391 charset_not,
392
393 /* Start remembering the text that is matched, for storing in a
394 register. Followed by one byte with the register number, in
395 the range 0 to one less than the pattern buffer's re_nsub
396 field. Then followed by one byte with the number of groups
397 inner to this one. (This last has to be part of the
398 start_memory only because we need it in the on_failure_jump
399 of re_match_2.) */
400 start_memory,
401
402 /* Stop remembering the text that is matched and store it in a
403 memory register. Followed by one byte with the register
404 number, in the range 0 to one less than `re_nsub' in the
405 pattern buffer, and one byte with the number of inner groups,
406 just like `start_memory'. (We need the number of inner
407 groups here because we don't have any easy way of finding the
408 corresponding start_memory when we're at a stop_memory.) */
409 stop_memory,
410
411 /* Match a duplicate of something remembered. Followed by one
412 byte containing the register number. */
413 duplicate,
414
415 /* Fail unless at beginning of line. */
416 begline,
417
418 /* Fail unless at end of line. */
419 endline,
420
421 /* Succeeds if at beginning of buffer (if emacs) or at beginning
422 of string to be matched (if not). */
423 begbuf,
424
425 /* Analogously, for end of buffer/string. */
426 endbuf,
427
428 /* Followed by two byte relative address to which to jump. */
429 jump,
430
431 /* Same as jump, but marks the end of an alternative. */
432 jump_past_alt,
433
434 /* Followed by two-byte relative address of place to resume at
435 in case of failure. */
436 on_failure_jump,
437
438 /* Like on_failure_jump, but pushes a placeholder instead of the
439 current string position when executed. */
440 on_failure_keep_string_jump,
441
442 /* Throw away latest failure point and then jump to following
443 two-byte relative address. */
444 pop_failure_jump,
445
446 /* Change to pop_failure_jump if know won't have to backtrack to
447 match; otherwise change to jump. This is used to jump
448 back to the beginning of a repeat. If what follows this jump
449 clearly won't match what the repeat does, such that we can be
450 sure that there is no use backtracking out of repetitions
451 already matched, then we change it to a pop_failure_jump.
452 Followed by two-byte address. */
453 maybe_pop_jump,
454
455 /* Jump to following two-byte address, and push a dummy failure
456 point. This failure point will be thrown away if an attempt
457 is made to use it for a failure. A `+' construct makes this
458 before the first repeat. Also used as an intermediary kind
459 of jump when compiling an alternative. */
460 dummy_failure_jump,
461
462 /* Push a dummy failure point and continue. Used at the end of
463 alternatives. */
464 push_dummy_failure,
465
466 /* Followed by two-byte relative address and two-byte number n.
467 After matching N times, jump to the address upon failure. */
468 succeed_n,
469
470 /* Followed by two-byte relative address, and two-byte number n.
471 Jump to the address N times, then fail. */
472 jump_n,
473
474 /* Set the following two-byte relative address to the
475 subsequent two-byte number. The address *includes* the two
476 bytes of number. */
477 set_number_at,
478
479 wordchar, /* Matches any word-constituent character. */
480 notwordchar, /* Matches any char that is not a word-constituent. */
481
482 wordbeg, /* Succeeds if at word beginning. */
483 wordend, /* Succeeds if at word end. */
484
485 wordbound, /* Succeeds if at a word boundary. */
486 notwordbound /* Succeeds if not at a word boundary. */
487
488#ifdef emacs
489 ,before_dot, /* Succeeds if before point. */
490 at_dot, /* Succeeds if at point. */
491 after_dot, /* Succeeds if after point. */
dd3b648e 492
9f85ab1a
JM
493 /* Matches any character whose syntax is specified. Followed by
494 a byte which contains a syntax code, e.g., Sword. */
495 syntaxspec,
dd3b648e 496
9f85ab1a
JM
497 /* Matches any character whose syntax is not that specified. */
498 notsyntaxspec
499#endif /* emacs */
500} re_opcode_t;
501\f
502/* Common operations on the compiled pattern. */
dd3b648e 503
9f85ab1a 504/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
dd3b648e 505
9f85ab1a
JM
506#define STORE_NUMBER(destination, number) \
507 do { \
508 (destination)[0] = (number) & 0377; \
509 (destination)[1] = (number) >> 8; \
510 } while (0)
dd3b648e 511
9f85ab1a
JM
512/* Same as STORE_NUMBER, except increment DESTINATION to
513 the byte after where the number is stored. Therefore, DESTINATION
514 must be an lvalue. */
dd3b648e 515
9f85ab1a
JM
516#define STORE_NUMBER_AND_INCR(destination, number) \
517 do { \
518 STORE_NUMBER (destination, number); \
519 (destination) += 2; \
520 } while (0)
dd3b648e 521
9f85ab1a
JM
522/* Put into DESTINATION a number stored in two contiguous bytes starting
523 at SOURCE. */
dd3b648e 524
9f85ab1a
JM
525#define EXTRACT_NUMBER(destination, source) \
526 do { \
527 (destination) = *(source) & 0377; \
528 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
529 } while (0)
dd3b648e 530
9f85ab1a
JM
531#ifdef DEBUG
532static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
533static void
534extract_number (dest, source)
535 int *dest;
536 unsigned char *source;
537{
538 int temp = SIGN_EXTEND_CHAR (*(source + 1));
539 *dest = *source & 0377;
540 *dest += temp << 8;
541}
dd3b648e 542
9f85ab1a
JM
543# ifndef EXTRACT_MACROS /* To debug the macros. */
544# undef EXTRACT_NUMBER
545# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
546# endif /* not EXTRACT_MACROS */
dd3b648e 547
9f85ab1a 548#endif /* DEBUG */
dd3b648e 549
9f85ab1a
JM
550/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
551 SOURCE must be an lvalue. */
dd3b648e 552
9f85ab1a
JM
553#define EXTRACT_NUMBER_AND_INCR(destination, source) \
554 do { \
555 EXTRACT_NUMBER (destination, source); \
556 (source) += 2; \
557 } while (0)
dd3b648e 558
9f85ab1a
JM
559#ifdef DEBUG
560static void extract_number_and_incr _RE_ARGS ((int *destination,
561 unsigned char **source));
562static void
563extract_number_and_incr (destination, source)
564 int *destination;
565 unsigned char **source;
566{
567 extract_number (destination, *source);
568 *source += 2;
569}
dd3b648e 570
9f85ab1a
JM
571# ifndef EXTRACT_MACROS
572# undef EXTRACT_NUMBER_AND_INCR
573# define EXTRACT_NUMBER_AND_INCR(dest, src) \
574 extract_number_and_incr (&dest, &src)
575# endif /* not EXTRACT_MACROS */
dd3b648e 576
9f85ab1a
JM
577#endif /* DEBUG */
578\f
579/* If DEBUG is defined, Regex prints many voluminous messages about what
580 it is doing (if the variable `debug' is nonzero). If linked with the
581 main program in `iregex.c', you can enter patterns and strings
582 interactively. And if linked with the main program in `main.c' and
583 the other test files, you can run the already-written tests. */
dd3b648e 584
9f85ab1a 585#ifdef DEBUG
dd3b648e 586
9f85ab1a
JM
587/* We use standard I/O for debugging. */
588# include <stdio.h>
589
590/* It is useful to test things that ``must'' be true when debugging. */
591# include <assert.h>
592
593static int debug = 0;
594
595# define DEBUG_STATEMENT(e) e
596# define DEBUG_PRINT1(x) if (debug) printf (x)
597# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
598# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
599# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
600# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
601 if (debug) print_partial_compiled_pattern (s, e)
602# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
603 if (debug) print_double_string (w, s1, sz1, s2, sz2)
604
605
606/* Print the fastmap in human-readable form. */
607
608void
609print_fastmap (fastmap)
610 char *fastmap;
611{
612 unsigned was_a_range = 0;
613 unsigned i = 0;
614
615 while (i < (1 << BYTEWIDTH))
dd3b648e 616 {
9f85ab1a
JM
617 if (fastmap[i++])
618 {
619 was_a_range = 0;
620 putchar (i - 1);
621 while (i < (1 << BYTEWIDTH) && fastmap[i])
622 {
623 was_a_range = 1;
624 i++;
625 }
626 if (was_a_range)
627 {
628 printf ("-");
629 putchar (i - 1);
630 }
631 }
dd3b648e 632 }
9f85ab1a
JM
633 putchar ('\n');
634}
dd3b648e 635
9f85ab1a
JM
636
637/* Print a compiled pattern string in human-readable form, starting at
638 the START pointer into it and ending just before the pointer END. */
639
640void
641print_partial_compiled_pattern (start, end)
642 unsigned char *start;
643 unsigned char *end;
644{
645 int mcnt, mcnt2;
646 unsigned char *p1;
647 unsigned char *p = start;
648 unsigned char *pend = end;
649
650 if (start == NULL)
dd3b648e 651 {
9f85ab1a
JM
652 printf ("(null)\n");
653 return;
654 }
dd3b648e 655
9f85ab1a
JM
656 /* Loop over pattern commands. */
657 while (p < pend)
658 {
659 printf ("%d:\t", p - start);
dd3b648e 660
9f85ab1a 661 switch ((re_opcode_t) *p++)
dd3b648e 662 {
9f85ab1a
JM
663 case no_op:
664 printf ("/no_op");
665 break;
dd3b648e 666
9f85ab1a
JM
667 case exactn:
668 mcnt = *p++;
669 printf ("/exactn/%d", mcnt);
670 do
dd3b648e 671 {
9f85ab1a
JM
672 putchar ('/');
673 putchar (*p++);
674 }
675 while (--mcnt);
676 break;
dd3b648e 677
9f85ab1a
JM
678 case start_memory:
679 mcnt = *p++;
680 printf ("/start_memory/%d/%d", mcnt, *p++);
681 break;
dd3b648e 682
9f85ab1a
JM
683 case stop_memory:
684 mcnt = *p++;
685 printf ("/stop_memory/%d/%d", mcnt, *p++);
686 break;
687
688 case duplicate:
689 printf ("/duplicate/%d", *p++);
dd3b648e
RP
690 break;
691
9f85ab1a
JM
692 case anychar:
693 printf ("/anychar");
694 break;
695
696 case charset:
697 case charset_not:
698 {
699 register int c, last = -100;
700 register int in_range = 0;
701
702 printf ("/charset [%s",
703 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
704
705 assert (p + *p < pend);
706
707 for (c = 0; c < 256; c++)
708 if (c / 8 < *p
709 && (p[1 + (c/8)] & (1 << (c % 8))))
dd3b648e 710 {
9f85ab1a
JM
711 /* Are we starting a range? */
712 if (last + 1 == c && ! in_range)
dd3b648e 713 {
9f85ab1a
JM
714 putchar ('-');
715 in_range = 1;
716 }
717 /* Have we broken a range? */
718 else if (last + 1 != c && in_range)
719 {
720 putchar (last);
721 in_range = 0;
dd3b648e 722 }
dd3b648e 723
9f85ab1a
JM
724 if (! in_range)
725 putchar (c);
dd3b648e 726
9f85ab1a
JM
727 last = c;
728 }
729
730 if (in_range)
731 putchar (last);
732
733 putchar (']');
734
735 p += 1 + *p;
736 }
dd3b648e
RP
737 break;
738
9f85ab1a
JM
739 case begline:
740 printf ("/begline");
741 break;
742
743 case endline:
744 printf ("/endline");
745 break;
746
747 case on_failure_jump:
748 extract_number_and_incr (&mcnt, &p);
749 printf ("/on_failure_jump to %d", p + mcnt - start);
750 break;
751
752 case on_failure_keep_string_jump:
753 extract_number_and_incr (&mcnt, &p);
754 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
755 break;
756
757 case dummy_failure_jump:
758 extract_number_and_incr (&mcnt, &p);
759 printf ("/dummy_failure_jump to %d", p + mcnt - start);
760 break;
761
762 case push_dummy_failure:
763 printf ("/push_dummy_failure");
764 break;
765
766 case maybe_pop_jump:
767 extract_number_and_incr (&mcnt, &p);
768 printf ("/maybe_pop_jump to %d", p + mcnt - start);
dd3b648e
RP
769 break;
770
9f85ab1a
JM
771 case pop_failure_jump:
772 extract_number_and_incr (&mcnt, &p);
773 printf ("/pop_failure_jump to %d", p + mcnt - start);
774 break;
dd3b648e 775
9f85ab1a
JM
776 case jump_past_alt:
777 extract_number_and_incr (&mcnt, &p);
778 printf ("/jump_past_alt to %d", p + mcnt - start);
dd3b648e
RP
779 break;
780
9f85ab1a
JM
781 case jump:
782 extract_number_and_incr (&mcnt, &p);
783 printf ("/jump to %d", p + mcnt - start);
784 break;
dd3b648e 785
9f85ab1a
JM
786 case succeed_n:
787 extract_number_and_incr (&mcnt, &p);
788 p1 = p + mcnt;
789 extract_number_and_incr (&mcnt2, &p);
790 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
791 break;
792
793 case jump_n:
794 extract_number_and_incr (&mcnt, &p);
795 p1 = p + mcnt;
796 extract_number_and_incr (&mcnt2, &p);
797 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
798 break;
799
800 case set_number_at:
801 extract_number_and_incr (&mcnt, &p);
802 p1 = p + mcnt;
803 extract_number_and_incr (&mcnt2, &p);
804 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
805 break;
806
807 case wordbound:
808 printf ("/wordbound");
809 break;
dd3b648e 810
9f85ab1a
JM
811 case notwordbound:
812 printf ("/notwordbound");
813 break;
dd3b648e 814
9f85ab1a
JM
815 case wordbeg:
816 printf ("/wordbeg");
817 break;
dd3b648e 818
9f85ab1a
JM
819 case wordend:
820 printf ("/wordend");
dd3b648e 821
9f85ab1a
JM
822# ifdef emacs
823 case before_dot:
824 printf ("/before_dot");
825 break;
dd3b648e 826
9f85ab1a
JM
827 case at_dot:
828 printf ("/at_dot");
829 break;
830
831 case after_dot:
832 printf ("/after_dot");
833 break;
834
835 case syntaxspec:
836 printf ("/syntaxspec");
837 mcnt = *p++;
838 printf ("/%d", mcnt);
839 break;
840
841 case notsyntaxspec:
842 printf ("/notsyntaxspec");
843 mcnt = *p++;
844 printf ("/%d", mcnt);
dd3b648e 845 break;
9f85ab1a 846# endif /* emacs */
dd3b648e 847
9f85ab1a
JM
848 case wordchar:
849 printf ("/wordchar");
850 break;
851
852 case notwordchar:
853 printf ("/notwordchar");
854 break;
855
856 case begbuf:
857 printf ("/begbuf");
858 break;
859
860 case endbuf:
861 printf ("/endbuf");
862 break;
863
864 default:
865 printf ("?%d", *(p-1));
dd3b648e 866 }
9f85ab1a
JM
867
868 putchar ('\n');
dd3b648e
RP
869 }
870
9f85ab1a
JM
871 printf ("%d:\tend of pattern.\n", p - start);
872}
dd3b648e 873
dd3b648e 874
9f85ab1a
JM
875void
876print_compiled_pattern (bufp)
877 struct re_pattern_buffer *bufp;
878{
879 unsigned char *buffer = bufp->buffer;
dd3b648e 880
9f85ab1a
JM
881 print_partial_compiled_pattern (buffer, buffer + bufp->used);
882 printf ("%ld bytes used/%ld bytes allocated.\n",
883 bufp->used, bufp->allocated);
dd3b648e 884
9f85ab1a
JM
885 if (bufp->fastmap_accurate && bufp->fastmap)
886 {
887 printf ("fastmap: ");
888 print_fastmap (bufp->fastmap);
889 }
dd3b648e 890
9f85ab1a
JM
891 printf ("re_nsub: %d\t", bufp->re_nsub);
892 printf ("regs_alloc: %d\t", bufp->regs_allocated);
893 printf ("can_be_null: %d\t", bufp->can_be_null);
894 printf ("newline_anchor: %d\n", bufp->newline_anchor);
895 printf ("no_sub: %d\t", bufp->no_sub);
896 printf ("not_bol: %d\t", bufp->not_bol);
897 printf ("not_eol: %d\t", bufp->not_eol);
898 printf ("syntax: %lx\n", bufp->syntax);
899 /* Perhaps we should print the translate table? */
900}
dd3b648e 901
dd3b648e 902
9f85ab1a
JM
903void
904print_double_string (where, string1, size1, string2, size2)
905 const char *where;
906 const char *string1;
907 const char *string2;
908 int size1;
909 int size2;
910{
911 int this_char;
dd3b648e 912
9f85ab1a
JM
913 if (where == NULL)
914 printf ("(null)");
915 else
916 {
917 if (FIRST_STRING_P (where))
918 {
919 for (this_char = where - string1; this_char < size1; this_char++)
920 putchar (string1[this_char]);
dd3b648e 921
9f85ab1a
JM
922 where = string2;
923 }
dd3b648e 924
9f85ab1a
JM
925 for (this_char = where - string2; this_char < size2; this_char++)
926 putchar (string2[this_char]);
927 }
928}
dd3b648e 929
9f85ab1a
JM
930void
931printchar (c)
932 int c;
dd3b648e 933{
9f85ab1a 934 putc (c, stderr);
dd3b648e
RP
935}
936
9f85ab1a 937#else /* not DEBUG */
dd3b648e 938
9f85ab1a
JM
939# undef assert
940# define assert(e)
dd3b648e 941
9f85ab1a
JM
942# define DEBUG_STATEMENT(e)
943# define DEBUG_PRINT1(x)
944# define DEBUG_PRINT2(x1, x2)
945# define DEBUG_PRINT3(x1, x2, x3)
946# define DEBUG_PRINT4(x1, x2, x3, x4)
947# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
948# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
949
950#endif /* not DEBUG */
951\f
952/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
953 also be assigned to arbitrarily: each pattern buffer stores its own
954 syntax, so it can be changed between regex compilations. */
955/* This has no initializer because initialized variables in Emacs
956 become read-only after dumping. */
957reg_syntax_t re_syntax_options;
958
959
960/* Specify the precise syntax of regexps for compilation. This provides
961 for compatibility for various utilities which historically have
962 different, incompatible syntaxes.
963
964 The argument SYNTAX is a bit mask comprised of the various bits
a4122443 965 defined in gnu-regex.h. We return the old syntax. */
9f85ab1a
JM
966
967reg_syntax_t
968re_set_syntax (syntax)
969 reg_syntax_t syntax;
dd3b648e 970{
9f85ab1a
JM
971 reg_syntax_t ret = re_syntax_options;
972
973 re_syntax_options = syntax;
974#ifdef DEBUG
975 if (syntax & RE_DEBUG)
976 debug = 1;
977 else if (debug) /* was on but now is not */
978 debug = 0;
979#endif /* DEBUG */
980 return ret;
dd3b648e 981}
9f85ab1a
JM
982#ifdef _LIBC
983weak_alias (__re_set_syntax, re_set_syntax)
984#endif
dd3b648e 985\f
9f85ab1a 986/* This table gives an error message for each of the error codes listed
a4122443 987 in gnu-regex.h. Obviously the order here has to be same as there.
9f85ab1a
JM
988 POSIX doesn't require that we do anything for REG_NOERROR,
989 but why not be nice? */
990
991static const char *re_error_msgid[] =
992 {
993 gettext_noop ("Success"), /* REG_NOERROR */
994 gettext_noop ("No match"), /* REG_NOMATCH */
995 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
996 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
997 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
998 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
999 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1000 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1001 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1002 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1003 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1004 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1005 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1006 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1007 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1008 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1009 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1010 };
1011\f
1012/* Avoiding alloca during matching, to placate r_alloc. */
1013
1014/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1015 searching and matching functions should not call alloca. On some
1016 systems, alloca is implemented in terms of malloc, and if we're
1017 using the relocating allocator routines, then malloc could cause a
1018 relocation, which might (if the strings being searched are in the
1019 ralloc heap) shift the data out from underneath the regexp
1020 routines.
1021
1022 Here's another reason to avoid allocation: Emacs
1023 processes input from X in a signal handler; processing X input may
1024 call malloc; if input arrives while a matching routine is calling
1025 malloc, then we're scrod. But Emacs can't just block input while
1026 calling matching routines; then we don't notice interrupts when
1027 they come in. So, Emacs blocks input around all regexp calls
1028 except the matching calls, which it leaves unprotected, in the
1029 faith that they will not malloc. */
1030
1031/* Normally, this is fine. */
1032#define MATCH_MAY_ALLOCATE
1033
1034/* When using GNU C, we are not REALLY using the C alloca, no matter
1035 what config.h may say. So don't take precautions for it. */
1036#ifdef __GNUC__
1037# undef C_ALLOCA
1038#endif
dd3b648e 1039
9f85ab1a
JM
1040/* The match routines may not allocate if (1) they would do it with malloc
1041 and (2) it's not safe for them to use malloc.
1042 Note that if REL_ALLOC is defined, matching would not use malloc for the
1043 failure stack, but we would still use it for the register vectors;
1044 so REL_ALLOC should not affect this. */
1045#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1046# undef MATCH_MAY_ALLOCATE
1047#endif
dd3b648e 1048
9f85ab1a
JM
1049\f
1050/* Failure stack declarations and macros; both re_compile_fastmap and
1051 re_match_2 use a failure stack. These have to be macros because of
1052 REGEX_ALLOCATE_STACK. */
1053
1054
1055/* Number of failure points for which to initially allocate space
1056 when matching. If this number is exceeded, we allocate more
1057 space, so it is not a hard limit. */
1058#ifndef INIT_FAILURE_ALLOC
1059# define INIT_FAILURE_ALLOC 5
1060#endif
1061
1062/* Roughly the maximum number of failure points on the stack. Would be
1063 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1064 This is a variable only so users of regex can assign to it; we never
1065 change it ourselves. */
1066
1067#ifdef INT_IS_16BIT
1068
1069# if defined MATCH_MAY_ALLOCATE
1070/* 4400 was enough to cause a crash on Alpha OSF/1,
1071 whose default stack limit is 2mb. */
1072long int re_max_failures = 4000;
1073# else
1074long int re_max_failures = 2000;
1075# endif
1076
1077union fail_stack_elt
dd3b648e 1078{
9f85ab1a
JM
1079 unsigned char *pointer;
1080 long int integer;
1081};
dd3b648e 1082
9f85ab1a 1083typedef union fail_stack_elt fail_stack_elt_t;
dd3b648e 1084
9f85ab1a
JM
1085typedef struct
1086{
1087 fail_stack_elt_t *stack;
1088 unsigned long int size;
1089 unsigned long int avail; /* Offset of next open position. */
1090} fail_stack_type;
1091
1092#else /* not INT_IS_16BIT */
1093
1094# if defined MATCH_MAY_ALLOCATE
1095/* 4400 was enough to cause a crash on Alpha OSF/1,
1096 whose default stack limit is 2mb. */
1097int re_max_failures = 20000;
1098# else
1099int re_max_failures = 2000;
1100# endif
1101
1102union fail_stack_elt
1103{
1104 unsigned char *pointer;
1105 int integer;
1106};
1107
1108typedef union fail_stack_elt fail_stack_elt_t;
1109
1110typedef struct
1111{
1112 fail_stack_elt_t *stack;
1113 unsigned size;
1114 unsigned avail; /* Offset of next open position. */
1115} fail_stack_type;
1116
1117#endif /* INT_IS_16BIT */
1118
1119#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1120#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1121#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1122
1123
1124/* Define macros to initialize and free the failure stack.
1125 Do `return -2' if the alloc fails. */
1126
1127#ifdef MATCH_MAY_ALLOCATE
1128# define INIT_FAIL_STACK() \
1129 do { \
1130 fail_stack.stack = (fail_stack_elt_t *) \
1131 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1132 \
1133 if (fail_stack.stack == NULL) \
1134 return -2; \
1135 \
1136 fail_stack.size = INIT_FAILURE_ALLOC; \
1137 fail_stack.avail = 0; \
1138 } while (0)
1139
1140# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1141#else
1142# define INIT_FAIL_STACK() \
1143 do { \
1144 fail_stack.avail = 0; \
1145 } while (0)
1146
1147# define RESET_FAIL_STACK()
1148#endif
1149
1150
1151/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1152
1153 Return 1 if succeeds, and 0 if either ran out of memory
1154 allocating space for it or it was already too large.
1155
1156 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1157
1158#define DOUBLE_FAIL_STACK(fail_stack) \
1159 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1160 ? 0 \
1161 : ((fail_stack).stack = (fail_stack_elt_t *) \
1162 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1163 (fail_stack).size * sizeof (fail_stack_elt_t), \
1164 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1165 \
1166 (fail_stack).stack == NULL \
1167 ? 0 \
1168 : ((fail_stack).size <<= 1, \
1169 1)))
1170
1171
1172/* Push pointer POINTER on FAIL_STACK.
1173 Return 1 if was able to do so and 0 if ran out of memory allocating
1174 space to do so. */
1175#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1176 ((FAIL_STACK_FULL () \
1177 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1178 ? 0 \
1179 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1180 1))
1181
1182/* Push a pointer value onto the failure stack.
1183 Assumes the variable `fail_stack'. Probably should only
1184 be called from within `PUSH_FAILURE_POINT'. */
1185#define PUSH_FAILURE_POINTER(item) \
1186 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1187
1188/* This pushes an integer-valued item onto the failure stack.
1189 Assumes the variable `fail_stack'. Probably should only
1190 be called from within `PUSH_FAILURE_POINT'. */
1191#define PUSH_FAILURE_INT(item) \
1192 fail_stack.stack[fail_stack.avail++].integer = (item)
1193
1194/* Push a fail_stack_elt_t value onto the failure stack.
1195 Assumes the variable `fail_stack'. Probably should only
1196 be called from within `PUSH_FAILURE_POINT'. */
1197#define PUSH_FAILURE_ELT(item) \
1198 fail_stack.stack[fail_stack.avail++] = (item)
1199
1200/* These three POP... operations complement the three PUSH... operations.
1201 All assume that `fail_stack' is nonempty. */
1202#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1203#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1204#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1205
1206/* Used to omit pushing failure point id's when we're not debugging. */
1207#ifdef DEBUG
1208# define DEBUG_PUSH PUSH_FAILURE_INT
1209# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1210#else
1211# define DEBUG_PUSH(item)
1212# define DEBUG_POP(item_addr)
1213#endif
1214
1215
1216/* Push the information about the state we will need
1217 if we ever fail back to it.
1218
1219 Requires variables fail_stack, regstart, regend, reg_info, and
1220 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1221 be declared.
1222
1223 Does `return FAILURE_CODE' if runs out of memory. */
1224
1225#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1226 do { \
1227 char *destination; \
1228 /* Must be int, so when we don't save any registers, the arithmetic \
1229 of 0 + -1 isn't done as unsigned. */ \
1230 /* Can't be int, since there is not a shred of a guarantee that int \
1231 is wide enough to hold a value of something to which pointer can \
1232 be assigned */ \
1233 active_reg_t this_reg; \
1234 \
1235 DEBUG_STATEMENT (failure_id++); \
1236 DEBUG_STATEMENT (nfailure_points_pushed++); \
1237 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1238 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1239 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1240 \
1241 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1242 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1243 \
1244 /* Ensure we have enough space allocated for what we will push. */ \
1245 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1246 { \
1247 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1248 return failure_code; \
1249 \
1250 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1251 (fail_stack).size); \
1252 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1253 } \
1254 \
1255 /* Push the info, starting with the registers. */ \
1256 DEBUG_PRINT1 ("\n"); \
1257 \
1258 if (1) \
1259 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1260 this_reg++) \
1261 { \
1262 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1263 DEBUG_STATEMENT (num_regs_pushed++); \
1264 \
1265 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1266 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1267 \
1268 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1269 PUSH_FAILURE_POINTER (regend[this_reg]); \
1270 \
1271 DEBUG_PRINT2 (" info: %p\n ", \
1272 reg_info[this_reg].word.pointer); \
1273 DEBUG_PRINT2 (" match_null=%d", \
1274 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1275 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1276 DEBUG_PRINT2 (" matched_something=%d", \
1277 MATCHED_SOMETHING (reg_info[this_reg])); \
1278 DEBUG_PRINT2 (" ever_matched=%d", \
1279 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1280 DEBUG_PRINT1 ("\n"); \
1281 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1282 } \
1283 \
1284 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1285 PUSH_FAILURE_INT (lowest_active_reg); \
1286 \
1287 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1288 PUSH_FAILURE_INT (highest_active_reg); \
1289 \
1290 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1291 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1292 PUSH_FAILURE_POINTER (pattern_place); \
1293 \
1294 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1295 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1296 size2); \
1297 DEBUG_PRINT1 ("'\n"); \
1298 PUSH_FAILURE_POINTER (string_place); \
1299 \
1300 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1301 DEBUG_PUSH (failure_id); \
1302 } while (0)
1303
1304/* This is the number of items that are pushed and popped on the stack
1305 for each register. */
1306#define NUM_REG_ITEMS 3
1307
1308/* Individual items aside from the registers. */
1309#ifdef DEBUG
1310# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1311#else
1312# define NUM_NONREG_ITEMS 4
1313#endif
1314
1315/* We push at most this many items on the stack. */
1316/* We used to use (num_regs - 1), which is the number of registers
1317 this regexp will save; but that was changed to 5
1318 to avoid stack overflow for a regexp with lots of parens. */
1319#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1320
1321/* We actually push this many items. */
1322#define NUM_FAILURE_ITEMS \
1323 (((0 \
1324 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1325 * NUM_REG_ITEMS) \
1326 + NUM_NONREG_ITEMS)
1327
1328/* How many items can still be added to the stack without overflowing it. */
1329#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1330
1331
1332/* Pops what PUSH_FAIL_STACK pushes.
1333
1334 We restore into the parameters, all of which should be lvalues:
1335 STR -- the saved data position.
1336 PAT -- the saved pattern position.
1337 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1338 REGSTART, REGEND -- arrays of string positions.
1339 REG_INFO -- array of information about each subexpression.
1340
1341 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1342 `pend', `string1', `size1', `string2', and `size2'. */
1343
1344#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1345{ \
1346 DEBUG_STATEMENT (unsigned failure_id;) \
1347 active_reg_t this_reg; \
1348 const unsigned char *string_temp; \
1349 \
1350 assert (!FAIL_STACK_EMPTY ()); \
1351 \
1352 /* Remove failure points and point to how many regs pushed. */ \
1353 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1354 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1355 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1356 \
1357 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1358 \
1359 DEBUG_POP (&failure_id); \
1360 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1361 \
1362 /* If the saved string location is NULL, it came from an \
1363 on_failure_keep_string_jump opcode, and we want to throw away the \
1364 saved NULL, thus retaining our current position in the string. */ \
1365 string_temp = POP_FAILURE_POINTER (); \
1366 if (string_temp != NULL) \
1367 str = (const char *) string_temp; \
1368 \
1369 DEBUG_PRINT2 (" Popping string %p: `", str); \
1370 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1371 DEBUG_PRINT1 ("'\n"); \
1372 \
1373 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1374 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1375 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1376 \
1377 /* Restore register info. */ \
1378 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1379 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1380 \
1381 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1382 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1383 \
1384 if (1) \
1385 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1386 { \
1387 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1388 \
1389 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1390 DEBUG_PRINT2 (" info: %p\n", \
1391 reg_info[this_reg].word.pointer); \
1392 \
1393 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1394 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1395 \
1396 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1397 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1398 } \
1399 else \
1400 { \
1401 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1402 { \
1403 reg_info[this_reg].word.integer = 0; \
1404 regend[this_reg] = 0; \
1405 regstart[this_reg] = 0; \
1406 } \
1407 highest_active_reg = high_reg; \
1408 } \
1409 \
1410 set_regs_matched_done = 0; \
1411 DEBUG_STATEMENT (nfailure_points_popped++); \
1412} /* POP_FAILURE_POINT */
1413
1414
1415\f
1416/* Structure for per-register (a.k.a. per-group) information.
1417 Other register information, such as the
1418 starting and ending positions (which are addresses), and the list of
1419 inner groups (which is a bits list) are maintained in separate
1420 variables.
1421
1422 We are making a (strictly speaking) nonportable assumption here: that
1423 the compiler will pack our bit fields into something that fits into
1424 the type of `word', i.e., is something that fits into one item on the
1425 failure stack. */
1426
1427
1428/* Declarations and macros for re_match_2. */
1429
1430typedef union
1431{
1432 fail_stack_elt_t word;
1433 struct
1434 {
1435 /* This field is one if this group can match the empty string,
1436 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1437#define MATCH_NULL_UNSET_VALUE 3
1438 unsigned match_null_string_p : 2;
1439 unsigned is_active : 1;
1440 unsigned matched_something : 1;
1441 unsigned ever_matched_something : 1;
1442 } bits;
1443} register_info_type;
1444
1445#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1446#define IS_ACTIVE(R) ((R).bits.is_active)
1447#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1448#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1449
1450
1451/* Call this when have matched a real character; it sets `matched' flags
1452 for the subexpressions which we are currently inside. Also records
1453 that those subexprs have matched. */
1454#define SET_REGS_MATCHED() \
1455 do \
1456 { \
1457 if (!set_regs_matched_done) \
1458 { \
1459 active_reg_t r; \
1460 set_regs_matched_done = 1; \
1461 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1462 { \
1463 MATCHED_SOMETHING (reg_info[r]) \
1464 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1465 = 1; \
1466 } \
1467 } \
1468 } \
1469 while (0)
1470
1471/* Registers are set to a sentinel when they haven't yet matched. */
1472static char reg_unset_dummy;
1473#define REG_UNSET_VALUE (&reg_unset_dummy)
1474#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1475\f
1476/* Subroutine declarations and macros for regex_compile. */
1477
1478static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1479 reg_syntax_t syntax,
1480 struct re_pattern_buffer *bufp));
1481static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1482static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1483 int arg1, int arg2));
1484static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1485 int arg, unsigned char *end));
1486static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1487 int arg1, int arg2, unsigned char *end));
1488static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1489 reg_syntax_t syntax));
1490static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1491 reg_syntax_t syntax));
1492static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1493 const char *pend,
1494 char *translate,
1495 reg_syntax_t syntax,
1496 unsigned char *b));
1497
1498/* Fetch the next character in the uncompiled pattern---translating it
1499 if necessary. Also cast from a signed character in the constant
1500 string passed to us by the user to an unsigned char that we can use
1501 as an array index (in, e.g., `translate'). */
1502#ifndef PATFETCH
1503# define PATFETCH(c) \
1504 do {if (p == pend) return REG_EEND; \
1505 c = (unsigned char) *p++; \
1506 if (translate) c = (unsigned char) translate[c]; \
1507 } while (0)
1508#endif
1509
1510/* Fetch the next character in the uncompiled pattern, with no
1511 translation. */
1512#define PATFETCH_RAW(c) \
1513 do {if (p == pend) return REG_EEND; \
1514 c = (unsigned char) *p++; \
1515 } while (0)
1516
1517/* Go backwards one character in the pattern. */
1518#define PATUNFETCH p--
1519
1520
1521/* If `translate' is non-null, return translate[D], else just D. We
1522 cast the subscript to translate because some data is declared as
1523 `char *', to avoid warnings when a string constant is passed. But
1524 when we use a character as a subscript we must make it unsigned. */
1525#ifndef TRANSLATE
1526# define TRANSLATE(d) \
1527 (translate ? (char) translate[(unsigned char) (d)] : (d))
1528#endif
1529
1530
1531/* Macros for outputting the compiled pattern into `buffer'. */
1532
1533/* If the buffer isn't allocated when it comes in, use this. */
1534#define INIT_BUF_SIZE 32
1535
1536/* Make sure we have at least N more bytes of space in buffer. */
1537#define GET_BUFFER_SPACE(n) \
1538 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1539 EXTEND_BUFFER ()
1540
1541/* Make sure we have one more byte of buffer space and then add C to it. */
1542#define BUF_PUSH(c) \
1543 do { \
1544 GET_BUFFER_SPACE (1); \
1545 *b++ = (unsigned char) (c); \
1546 } while (0)
1547
1548
1549/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1550#define BUF_PUSH_2(c1, c2) \
1551 do { \
1552 GET_BUFFER_SPACE (2); \
1553 *b++ = (unsigned char) (c1); \
1554 *b++ = (unsigned char) (c2); \
1555 } while (0)
1556
1557
1558/* As with BUF_PUSH_2, except for three bytes. */
1559#define BUF_PUSH_3(c1, c2, c3) \
1560 do { \
1561 GET_BUFFER_SPACE (3); \
1562 *b++ = (unsigned char) (c1); \
1563 *b++ = (unsigned char) (c2); \
1564 *b++ = (unsigned char) (c3); \
1565 } while (0)
1566
1567
1568/* Store a jump with opcode OP at LOC to location TO. We store a
1569 relative address offset by the three bytes the jump itself occupies. */
1570#define STORE_JUMP(op, loc, to) \
1571 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1572
1573/* Likewise, for a two-argument jump. */
1574#define STORE_JUMP2(op, loc, to, arg) \
1575 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1576
1577/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1578#define INSERT_JUMP(op, loc, to) \
1579 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1580
1581/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1582#define INSERT_JUMP2(op, loc, to, arg) \
1583 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1584
1585
1586/* This is not an arbitrary limit: the arguments which represent offsets
1587 into the pattern are two bytes long. So if 2^16 bytes turns out to
1588 be too small, many things would have to change. */
1589/* Any other compiler which, like MSC, has allocation limit below 2^16
1590 bytes will have to use approach similar to what was done below for
1591 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1592 reallocating to 0 bytes. Such thing is not going to work too well.
1593 You have been warned!! */
1594#if defined _MSC_VER && !defined WIN32
1595/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1596 The REALLOC define eliminates a flurry of conversion warnings,
1597 but is not required. */
1598# define MAX_BUF_SIZE 65500L
1599# define REALLOC(p,s) realloc ((p), (size_t) (s))
1600#else
1601# define MAX_BUF_SIZE (1L << 16)
1602# define REALLOC(p,s) realloc ((p), (s))
1603#endif
1604
1605/* Extend the buffer by twice its current size via realloc and
1606 reset the pointers that pointed into the old block to point to the
1607 correct places in the new one. If extending the buffer results in it
1608 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1609#define EXTEND_BUFFER() \
1610 do { \
1611 unsigned char *old_buffer = bufp->buffer; \
1612 if (bufp->allocated == MAX_BUF_SIZE) \
1613 return REG_ESIZE; \
1614 bufp->allocated <<= 1; \
1615 if (bufp->allocated > MAX_BUF_SIZE) \
1616 bufp->allocated = MAX_BUF_SIZE; \
1617 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1618 if (bufp->buffer == NULL) \
1619 return REG_ESPACE; \
1620 /* If the buffer moved, move all the pointers into it. */ \
1621 if (old_buffer != bufp->buffer) \
1622 { \
1623 b = (b - old_buffer) + bufp->buffer; \
1624 begalt = (begalt - old_buffer) + bufp->buffer; \
1625 if (fixup_alt_jump) \
1626 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1627 if (laststart) \
1628 laststart = (laststart - old_buffer) + bufp->buffer; \
1629 if (pending_exact) \
1630 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1631 } \
1632 } while (0)
1633
1634
1635/* Since we have one byte reserved for the register number argument to
1636 {start,stop}_memory, the maximum number of groups we can report
1637 things about is what fits in that byte. */
1638#define MAX_REGNUM 255
1639
1640/* But patterns can have more than `MAX_REGNUM' registers. We just
1641 ignore the excess. */
1642typedef unsigned regnum_t;
1643
1644
1645/* Macros for the compile stack. */
1646
1647/* Since offsets can go either forwards or backwards, this type needs to
1648 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1649/* int may be not enough when sizeof(int) == 2. */
1650typedef long pattern_offset_t;
1651
1652typedef struct
1653{
1654 pattern_offset_t begalt_offset;
1655 pattern_offset_t fixup_alt_jump;
1656 pattern_offset_t inner_group_offset;
1657 pattern_offset_t laststart_offset;
1658 regnum_t regnum;
1659} compile_stack_elt_t;
1660
1661
1662typedef struct
1663{
1664 compile_stack_elt_t *stack;
1665 unsigned size;
1666 unsigned avail; /* Offset of next open position. */
1667} compile_stack_type;
1668
1669
1670#define INIT_COMPILE_STACK_SIZE 32
1671
1672#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1673#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1674
1675/* The next available element. */
1676#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1677
1678
1679/* Set the bit for character C in a list. */
1680#define SET_LIST_BIT(c) \
1681 (b[((unsigned char) (c)) / BYTEWIDTH] \
1682 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1683
1684
1685/* Get the next unsigned number in the uncompiled pattern. */
1686#define GET_UNSIGNED_NUMBER(num) \
1687 { if (p != pend) \
1688 { \
1689 PATFETCH (c); \
1690 while (ISDIGIT (c)) \
1691 { \
1692 if (num < 0) \
1693 num = 0; \
1694 num = num * 10 + c - '0'; \
1695 if (p == pend) \
1696 break; \
1697 PATFETCH (c); \
1698 } \
1699 } \
1700 }
1701
1702#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1703/* The GNU C library provides support for user-defined character classes
1704 and the functions from ISO C amendement 1. */
1705# ifdef CHARCLASS_NAME_MAX
1706# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1707# else
1708/* This shouldn't happen but some implementation might still have this
1709 problem. Use a reasonable default value. */
1710# define CHAR_CLASS_MAX_LENGTH 256
1711# endif
1712
1713# ifdef _LIBC
1714# define IS_CHAR_CLASS(string) __wctype (string)
1715# else
1716# define IS_CHAR_CLASS(string) wctype (string)
1717# endif
1718#else
1719# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1720
1721# define IS_CHAR_CLASS(string) \
1722 (STREQ (string, "alpha") || STREQ (string, "upper") \
1723 || STREQ (string, "lower") || STREQ (string, "digit") \
1724 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1725 || STREQ (string, "space") || STREQ (string, "print") \
1726 || STREQ (string, "punct") || STREQ (string, "graph") \
1727 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1728#endif
1729\f
1730#ifndef MATCH_MAY_ALLOCATE
1731
1732/* If we cannot allocate large objects within re_match_2_internal,
1733 we make the fail stack and register vectors global.
1734 The fail stack, we grow to the maximum size when a regexp
1735 is compiled.
1736 The register vectors, we adjust in size each time we
1737 compile a regexp, according to the number of registers it needs. */
1738
1739static fail_stack_type fail_stack;
1740
1741/* Size with which the following vectors are currently allocated.
1742 That is so we can make them bigger as needed,
1743 but never make them smaller. */
1744static int regs_allocated_size;
1745
1746static const char ** regstart, ** regend;
1747static const char ** old_regstart, ** old_regend;
1748static const char **best_regstart, **best_regend;
1749static register_info_type *reg_info;
1750static const char **reg_dummy;
1751static register_info_type *reg_info_dummy;
1752
1753/* Make the register vectors big enough for NUM_REGS registers,
1754 but don't make them smaller. */
1755
1756static
1757regex_grow_registers (num_regs)
1758 int num_regs;
1759{
1760 if (num_regs > regs_allocated_size)
dd3b648e 1761 {
9f85ab1a
JM
1762 RETALLOC_IF (regstart, num_regs, const char *);
1763 RETALLOC_IF (regend, num_regs, const char *);
1764 RETALLOC_IF (old_regstart, num_regs, const char *);
1765 RETALLOC_IF (old_regend, num_regs, const char *);
1766 RETALLOC_IF (best_regstart, num_regs, const char *);
1767 RETALLOC_IF (best_regend, num_regs, const char *);
1768 RETALLOC_IF (reg_info, num_regs, register_info_type);
1769 RETALLOC_IF (reg_dummy, num_regs, const char *);
1770 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1771
1772 regs_allocated_size = num_regs;
1773 }
1774}
1775
1776#endif /* not MATCH_MAY_ALLOCATE */
1777\f
1778static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1779 compile_stack,
1780 regnum_t regnum));
1781
1782/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
a4122443 1783 Returns one of error codes defined in `gnu-regex.h', or zero for success.
9f85ab1a
JM
1784
1785 Assumes the `allocated' (and perhaps `buffer') and `translate'
1786 fields are set in BUFP on entry.
1787
1788 If it succeeds, results are put in BUFP (if it returns an error, the
1789 contents of BUFP are undefined):
1790 `buffer' is the compiled pattern;
1791 `syntax' is set to SYNTAX;
1792 `used' is set to the length of the compiled pattern;
1793 `fastmap_accurate' is zero;
1794 `re_nsub' is the number of subexpressions in PATTERN;
1795 `not_bol' and `not_eol' are zero;
1796
1797 The `fastmap' and `newline_anchor' fields are neither
1798 examined nor set. */
1799
1800/* Return, freeing storage we allocated. */
1801#define FREE_STACK_RETURN(value) \
1802 return (free (compile_stack.stack), value)
1803
1804static reg_errcode_t
1805regex_compile (pattern, size, syntax, bufp)
1806 const char *pattern;
1807 size_t size;
1808 reg_syntax_t syntax;
1809 struct re_pattern_buffer *bufp;
1810{
1811 /* We fetch characters from PATTERN here. Even though PATTERN is
1812 `char *' (i.e., signed), we declare these variables as unsigned, so
1813 they can be reliably used as array indices. */
1814 register unsigned char c, c1;
1815
1816 /* A random temporary spot in PATTERN. */
1817 const char *p1;
1818
1819 /* Points to the end of the buffer, where we should append. */
1820 register unsigned char *b;
1821
1822 /* Keeps track of unclosed groups. */
1823 compile_stack_type compile_stack;
1824
1825 /* Points to the current (ending) position in the pattern. */
1826 const char *p = pattern;
1827 const char *pend = pattern + size;
1828
1829 /* How to translate the characters in the pattern. */
1830 RE_TRANSLATE_TYPE translate = bufp->translate;
1831
1832 /* Address of the count-byte of the most recently inserted `exactn'
1833 command. This makes it possible to tell if a new exact-match
1834 character can be added to that command or if the character requires
1835 a new `exactn' command. */
1836 unsigned char *pending_exact = 0;
1837
1838 /* Address of start of the most recently finished expression.
1839 This tells, e.g., postfix * where to find the start of its
1840 operand. Reset at the beginning of groups and alternatives. */
1841 unsigned char *laststart = 0;
1842
1843 /* Address of beginning of regexp, or inside of last group. */
1844 unsigned char *begalt;
1845
1846 /* Place in the uncompiled pattern (i.e., the {) to
1847 which to go back if the interval is invalid. */
1848 const char *beg_interval;
1849
1850 /* Address of the place where a forward jump should go to the end of
1851 the containing expression. Each alternative of an `or' -- except the
1852 last -- ends with a forward jump of this sort. */
1853 unsigned char *fixup_alt_jump = 0;
1854
1855 /* Counts open-groups as they are encountered. Remembered for the
1856 matching close-group on the compile stack, so the same register
1857 number is put in the stop_memory as the start_memory. */
1858 regnum_t regnum = 0;
1859
1860#ifdef DEBUG
1861 DEBUG_PRINT1 ("\nCompiling pattern: ");
1862 if (debug)
1863 {
1864 unsigned debug_count;
1865
1866 for (debug_count = 0; debug_count < size; debug_count++)
1867 putchar (pattern[debug_count]);
1868 putchar ('\n');
1869 }
1870#endif /* DEBUG */
1871
1872 /* Initialize the compile stack. */
1873 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1874 if (compile_stack.stack == NULL)
1875 return REG_ESPACE;
1876
1877 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1878 compile_stack.avail = 0;
1879
1880 /* Initialize the pattern buffer. */
1881 bufp->syntax = syntax;
1882 bufp->fastmap_accurate = 0;
1883 bufp->not_bol = bufp->not_eol = 0;
1884
1885 /* Set `used' to zero, so that if we return an error, the pattern
1886 printer (for debugging) will think there's no pattern. We reset it
1887 at the end. */
1888 bufp->used = 0;
1889
1890 /* Always count groups, whether or not bufp->no_sub is set. */
1891 bufp->re_nsub = 0;
1892
1893#if !defined emacs && !defined SYNTAX_TABLE
1894 /* Initialize the syntax table. */
1895 init_syntax_once ();
1896#endif
1897
1898 if (bufp->allocated == 0)
1899 {
1900 if (bufp->buffer)
1901 { /* If zero allocated, but buffer is non-null, try to realloc
1902 enough space. This loses if buffer's address is bogus, but
1903 that is the user's responsibility. */
1904 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1905 }
1906 else
1907 { /* Caller did not allocate a buffer. Do it for them. */
1908 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1909 }
1910 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1911
1912 bufp->allocated = INIT_BUF_SIZE;
1913 }
1914
1915 begalt = b = bufp->buffer;
1916
1917 /* Loop through the uncompiled pattern until we're at the end. */
1918 while (p != pend)
1919 {
1920 PATFETCH (c);
1921
1922 switch (c)
1923 {
1924 case '^':
1925 {
1926 if ( /* If at start of pattern, it's an operator. */
1927 p == pattern + 1
1928 /* If context independent, it's an operator. */
1929 || syntax & RE_CONTEXT_INDEP_ANCHORS
1930 /* Otherwise, depends on what's come before. */
1931 || at_begline_loc_p (pattern, p, syntax))
1932 BUF_PUSH (begline);
1933 else
1934 goto normal_char;
1935 }
1936 break;
1937
1938
1939 case '$':
1940 {
1941 if ( /* If at end of pattern, it's an operator. */
1942 p == pend
1943 /* If context independent, it's an operator. */
1944 || syntax & RE_CONTEXT_INDEP_ANCHORS
1945 /* Otherwise, depends on what's next. */
1946 || at_endline_loc_p (p, pend, syntax))
1947 BUF_PUSH (endline);
1948 else
1949 goto normal_char;
1950 }
1951 break;
1952
1953
1954 case '+':
1955 case '?':
1956 if ((syntax & RE_BK_PLUS_QM)
1957 || (syntax & RE_LIMITED_OPS))
1958 goto normal_char;
1959 handle_plus:
1960 case '*':
1961 /* If there is no previous pattern... */
1962 if (!laststart)
1963 {
1964 if (syntax & RE_CONTEXT_INVALID_OPS)
1965 FREE_STACK_RETURN (REG_BADRPT);
1966 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1967 goto normal_char;
1968 }
1969
1970 {
1971 /* Are we optimizing this jump? */
1972 boolean keep_string_p = false;
1973
1974 /* 1 means zero (many) matches is allowed. */
1975 char zero_times_ok = 0, many_times_ok = 0;
1976
1977 /* If there is a sequence of repetition chars, collapse it
1978 down to just one (the right one). We can't combine
1979 interval operators with these because of, e.g., `a{2}*',
1980 which should only match an even number of `a's. */
1981
1982 for (;;)
1983 {
1984 zero_times_ok |= c != '+';
1985 many_times_ok |= c != '?';
1986
1987 if (p == pend)
1988 break;
1989
1990 PATFETCH (c);
1991
1992 if (c == '*'
1993 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1994 ;
1995
1996 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1997 {
1998 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1999
2000 PATFETCH (c1);
2001 if (!(c1 == '+' || c1 == '?'))
2002 {
2003 PATUNFETCH;
2004 PATUNFETCH;
2005 break;
2006 }
2007
2008 c = c1;
2009 }
2010 else
2011 {
2012 PATUNFETCH;
2013 break;
2014 }
2015
2016 /* If we get here, we found another repeat character. */
2017 }
2018
2019 /* Star, etc. applied to an empty pattern is equivalent
2020 to an empty pattern. */
2021 if (!laststart)
2022 break;
2023
2024 /* Now we know whether or not zero matches is allowed
2025 and also whether or not two or more matches is allowed. */
2026 if (many_times_ok)
2027 { /* More than one repetition is allowed, so put in at the
2028 end a backward relative jump from `b' to before the next
2029 jump we're going to put in below (which jumps from
2030 laststart to after this jump).
2031
2032 But if we are at the `*' in the exact sequence `.*\n',
2033 insert an unconditional jump backwards to the .,
2034 instead of the beginning of the loop. This way we only
2035 push a failure point once, instead of every time
2036 through the loop. */
2037 assert (p - 1 > pattern);
2038
2039 /* Allocate the space for the jump. */
2040 GET_BUFFER_SPACE (3);
2041
2042 /* We know we are not at the first character of the pattern,
2043 because laststart was nonzero. And we've already
2044 incremented `p', by the way, to be the character after
2045 the `*'. Do we have to do something analogous here
2046 for null bytes, because of RE_DOT_NOT_NULL? */
2047 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2048 && zero_times_ok
2049 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2050 && !(syntax & RE_DOT_NEWLINE))
2051 { /* We have .*\n. */
2052 STORE_JUMP (jump, b, laststart);
2053 keep_string_p = true;
2054 }
2055 else
2056 /* Anything else. */
2057 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2058
2059 /* We've added more stuff to the buffer. */
2060 b += 3;
2061 }
2062
2063 /* On failure, jump from laststart to b + 3, which will be the
2064 end of the buffer after this jump is inserted. */
2065 GET_BUFFER_SPACE (3);
2066 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2067 : on_failure_jump,
2068 laststart, b + 3);
2069 pending_exact = 0;
2070 b += 3;
2071
2072 if (!zero_times_ok)
2073 {
2074 /* At least one repetition is required, so insert a
2075 `dummy_failure_jump' before the initial
2076 `on_failure_jump' instruction of the loop. This
2077 effects a skip over that instruction the first time
2078 we hit that loop. */
2079 GET_BUFFER_SPACE (3);
2080 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2081 b += 3;
2082 }
2083 }
dd3b648e 2084 break;
9f85ab1a
JM
2085
2086
2087 case '.':
2088 laststart = b;
2089 BUF_PUSH (anychar);
2090 break;
2091
2092
2093 case '[':
2094 {
2095 boolean had_char_class = false;
2096
2097 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2098
2099 /* Ensure that we have enough space to push a charset: the
2100 opcode, the length count, and the bitset; 34 bytes in all. */
2101 GET_BUFFER_SPACE (34);
2102
2103 laststart = b;
2104
2105 /* We test `*p == '^' twice, instead of using an if
2106 statement, so we only need one BUF_PUSH. */
2107 BUF_PUSH (*p == '^' ? charset_not : charset);
2108 if (*p == '^')
2109 p++;
2110
2111 /* Remember the first position in the bracket expression. */
2112 p1 = p;
2113
2114 /* Push the number of bytes in the bitmap. */
2115 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2116
2117 /* Clear the whole map. */
2118 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2119
2120 /* charset_not matches newline according to a syntax bit. */
2121 if ((re_opcode_t) b[-2] == charset_not
2122 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2123 SET_LIST_BIT ('\n');
2124
2125 /* Read in characters and ranges, setting map bits. */
2126 for (;;)
2127 {
2128 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2129
2130 PATFETCH (c);
2131
2132 /* \ might escape characters inside [...] and [^...]. */
2133 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2134 {
2135 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2136
2137 PATFETCH (c1);
2138 SET_LIST_BIT (c1);
2139 continue;
2140 }
2141
2142 /* Could be the end of the bracket expression. If it's
2143 not (i.e., when the bracket expression is `[]' so
2144 far), the ']' character bit gets set way below. */
2145 if (c == ']' && p != p1 + 1)
2146 break;
2147
2148 /* Look ahead to see if it's a range when the last thing
2149 was a character class. */
2150 if (had_char_class && c == '-' && *p != ']')
2151 FREE_STACK_RETURN (REG_ERANGE);
2152
2153 /* Look ahead to see if it's a range when the last thing
2154 was a character: if this is a hyphen not at the
2155 beginning or the end of a list, then it's the range
2156 operator. */
2157 if (c == '-'
2158 && !(p - 2 >= pattern && p[-2] == '[')
2159 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2160 && *p != ']')
2161 {
2162 reg_errcode_t ret
2163 = compile_range (&p, pend, translate, syntax, b);
2164 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2165 }
2166
2167 else if (p[0] == '-' && p[1] != ']')
2168 { /* This handles ranges made up of characters only. */
2169 reg_errcode_t ret;
2170
2171 /* Move past the `-'. */
2172 PATFETCH (c1);
2173
2174 ret = compile_range (&p, pend, translate, syntax, b);
2175 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2176 }
2177
2178 /* See if we're at the beginning of a possible character
2179 class. */
2180
2181 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2182 { /* Leave room for the null. */
2183 char str[CHAR_CLASS_MAX_LENGTH + 1];
2184
2185 PATFETCH (c);
2186 c1 = 0;
2187
2188 /* If pattern is `[[:'. */
2189 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2190
2191 for (;;)
2192 {
2193 PATFETCH (c);
2194 if ((c == ':' && *p == ']') || p == pend
2195 || c1 == CHAR_CLASS_MAX_LENGTH)
2196 break;
2197 str[c1++] = c;
2198 }
2199 str[c1] = '\0';
2200
2201 /* If isn't a word bracketed by `[:' and `:]':
2202 undo the ending character, the letters, and leave
2203 the leading `:' and `[' (but set bits for them). */
2204 if (c == ':' && *p == ']')
2205 {
46ccc6bf
JM
2206/* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2207/* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2208/* systems where we have wchar.h and wctype.h. */
2209#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
9f85ab1a
JM
2210 boolean is_lower = STREQ (str, "lower");
2211 boolean is_upper = STREQ (str, "upper");
2212 wctype_t wt;
2213 int ch;
2214
2215 wt = IS_CHAR_CLASS (str);
2216 if (wt == 0)
2217 FREE_STACK_RETURN (REG_ECTYPE);
2218
2219 /* Throw away the ] at the end of the character
2220 class. */
2221 PATFETCH (c);
2222
2223 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2224
2225 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2226 {
2227# ifdef _LIBC
2228 if (__iswctype (__btowc (ch), wt))
2229 SET_LIST_BIT (ch);
dd3b648e 2230#else
9f85ab1a
JM
2231 if (iswctype (btowc (ch), wt))
2232 SET_LIST_BIT (ch);
dd3b648e 2233#endif
9f85ab1a
JM
2234
2235 if (translate && (is_upper || is_lower)
2236 && (ISUPPER (ch) || ISLOWER (ch)))
2237 SET_LIST_BIT (ch);
2238 }
2239
2240 had_char_class = true;
2241#else
2242 int ch;
2243 boolean is_alnum = STREQ (str, "alnum");
2244 boolean is_alpha = STREQ (str, "alpha");
2245 boolean is_blank = STREQ (str, "blank");
2246 boolean is_cntrl = STREQ (str, "cntrl");
2247 boolean is_digit = STREQ (str, "digit");
2248 boolean is_graph = STREQ (str, "graph");
2249 boolean is_lower = STREQ (str, "lower");
2250 boolean is_print = STREQ (str, "print");
2251 boolean is_punct = STREQ (str, "punct");
2252 boolean is_space = STREQ (str, "space");
2253 boolean is_upper = STREQ (str, "upper");
2254 boolean is_xdigit = STREQ (str, "xdigit");
2255
2256 if (!IS_CHAR_CLASS (str))
2257 FREE_STACK_RETURN (REG_ECTYPE);
2258
2259 /* Throw away the ] at the end of the character
2260 class. */
2261 PATFETCH (c);
2262
2263 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2264
2265 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2266 {
2267 /* This was split into 3 if's to
2268 avoid an arbitrary limit in some compiler. */
2269 if ( (is_alnum && ISALNUM (ch))
2270 || (is_alpha && ISALPHA (ch))
2271 || (is_blank && ISBLANK (ch))
2272 || (is_cntrl && ISCNTRL (ch)))
2273 SET_LIST_BIT (ch);
2274 if ( (is_digit && ISDIGIT (ch))
2275 || (is_graph && ISGRAPH (ch))
2276 || (is_lower && ISLOWER (ch))
2277 || (is_print && ISPRINT (ch)))
2278 SET_LIST_BIT (ch);
2279 if ( (is_punct && ISPUNCT (ch))
2280 || (is_space && ISSPACE (ch))
2281 || (is_upper && ISUPPER (ch))
2282 || (is_xdigit && ISXDIGIT (ch)))
2283 SET_LIST_BIT (ch);
2284 if ( translate && (is_upper || is_lower)
2285 && (ISUPPER (ch) || ISLOWER (ch)))
2286 SET_LIST_BIT (ch);
2287 }
2288 had_char_class = true;
2289#endif /* libc || wctype.h */
2290 }
2291 else
2292 {
2293 c1++;
2294 while (c1--)
2295 PATUNFETCH;
2296 SET_LIST_BIT ('[');
2297 SET_LIST_BIT (':');
2298 had_char_class = false;
2299 }
2300 }
2301 else
2302 {
2303 had_char_class = false;
2304 SET_LIST_BIT (c);
2305 }
2306 }
2307
2308 /* Discard any (non)matching list bytes that are all 0 at the
2309 end of the map. Decrease the map-length byte too. */
2310 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2311 b[-1]--;
2312 b += b[-1];
2313 }
2314 break;
2315
2316
2317 case '(':
2318 if (syntax & RE_NO_BK_PARENS)
2319 goto handle_open;
2320 else
2321 goto normal_char;
2322
2323
2324 case ')':
2325 if (syntax & RE_NO_BK_PARENS)
2326 goto handle_close;
2327 else
2328 goto normal_char;
2329
2330
2331 case '\n':
2332 if (syntax & RE_NEWLINE_ALT)
2333 goto handle_alt;
2334 else
2335 goto normal_char;
2336
2337
2338 case '|':
2339 if (syntax & RE_NO_BK_VBAR)
2340 goto handle_alt;
2341 else
2342 goto normal_char;
2343
2344
2345 case '{':
2346 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2347 goto handle_interval;
2348 else
2349 goto normal_char;
2350
2351
2352 case '\\':
2353 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2354
2355 /* Do not translate the character after the \, so that we can
2356 distinguish, e.g., \B from \b, even if we normally would
2357 translate, e.g., B to b. */
2358 PATFETCH_RAW (c);
2359
2360 switch (c)
2361 {
2362 case '(':
2363 if (syntax & RE_NO_BK_PARENS)
2364 goto normal_backslash;
2365
2366 handle_open:
2367 bufp->re_nsub++;
2368 regnum++;
2369
2370 if (COMPILE_STACK_FULL)
2371 {
2372 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2373 compile_stack_elt_t);
2374 if (compile_stack.stack == NULL) return REG_ESPACE;
2375
2376 compile_stack.size <<= 1;
2377 }
2378
2379 /* These are the values to restore when we hit end of this
2380 group. They are all relative offsets, so that if the
2381 whole pattern moves because of realloc, they will still
2382 be valid. */
2383 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2384 COMPILE_STACK_TOP.fixup_alt_jump
2385 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2386 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2387 COMPILE_STACK_TOP.regnum = regnum;
2388
2389 /* We will eventually replace the 0 with the number of
2390 groups inner to this one. But do not push a
2391 start_memory for groups beyond the last one we can
2392 represent in the compiled pattern. */
2393 if (regnum <= MAX_REGNUM)
2394 {
2395 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2396 BUF_PUSH_3 (start_memory, regnum, 0);
2397 }
2398
2399 compile_stack.avail++;
2400
2401 fixup_alt_jump = 0;
2402 laststart = 0;
2403 begalt = b;
2404 /* If we've reached MAX_REGNUM groups, then this open
2405 won't actually generate any code, so we'll have to
2406 clear pending_exact explicitly. */
2407 pending_exact = 0;
2408 break;
2409
2410
2411 case ')':
2412 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2413
2414 if (COMPILE_STACK_EMPTY)
2415 {
2416 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2417 goto normal_backslash;
2418 else
2419 FREE_STACK_RETURN (REG_ERPAREN);
2420 }
2421
2422 handle_close:
2423 if (fixup_alt_jump)
2424 { /* Push a dummy failure point at the end of the
2425 alternative for a possible future
2426 `pop_failure_jump' to pop. See comments at
2427 `push_dummy_failure' in `re_match_2'. */
2428 BUF_PUSH (push_dummy_failure);
2429
2430 /* We allocated space for this jump when we assigned
2431 to `fixup_alt_jump', in the `handle_alt' case below. */
2432 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2433 }
2434
2435 /* See similar code for backslashed left paren above. */
2436 if (COMPILE_STACK_EMPTY)
2437 {
2438 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2439 goto normal_char;
2440 else
2441 FREE_STACK_RETURN (REG_ERPAREN);
2442 }
2443
2444 /* Since we just checked for an empty stack above, this
2445 ``can't happen''. */
2446 assert (compile_stack.avail != 0);
2447 {
2448 /* We don't just want to restore into `regnum', because
2449 later groups should continue to be numbered higher,
2450 as in `(ab)c(de)' -- the second group is #2. */
2451 regnum_t this_group_regnum;
2452
2453 compile_stack.avail--;
2454 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2455 fixup_alt_jump
2456 = COMPILE_STACK_TOP.fixup_alt_jump
2457 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2458 : 0;
2459 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2460 this_group_regnum = COMPILE_STACK_TOP.regnum;
2461 /* If we've reached MAX_REGNUM groups, then this open
2462 won't actually generate any code, so we'll have to
2463 clear pending_exact explicitly. */
2464 pending_exact = 0;
2465
2466 /* We're at the end of the group, so now we know how many
2467 groups were inside this one. */
2468 if (this_group_regnum <= MAX_REGNUM)
2469 {
2470 unsigned char *inner_group_loc
2471 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2472
2473 *inner_group_loc = regnum - this_group_regnum;
2474 BUF_PUSH_3 (stop_memory, this_group_regnum,
2475 regnum - this_group_regnum);
2476 }
2477 }
2478 break;
2479
2480
2481 case '|': /* `\|'. */
2482 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2483 goto normal_backslash;
2484 handle_alt:
2485 if (syntax & RE_LIMITED_OPS)
2486 goto normal_char;
2487
2488 /* Insert before the previous alternative a jump which
2489 jumps to this alternative if the former fails. */
2490 GET_BUFFER_SPACE (3);
2491 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2492 pending_exact = 0;
2493 b += 3;
2494
2495 /* The alternative before this one has a jump after it
2496 which gets executed if it gets matched. Adjust that
2497 jump so it will jump to this alternative's analogous
2498 jump (put in below, which in turn will jump to the next
2499 (if any) alternative's such jump, etc.). The last such
2500 jump jumps to the correct final destination. A picture:
2501 _____ _____
2502 | | | |
2503 | v | v
2504 a | b | c
2505
2506 If we are at `b', then fixup_alt_jump right now points to a
2507 three-byte space after `a'. We'll put in the jump, set
2508 fixup_alt_jump to right after `b', and leave behind three
2509 bytes which we'll fill in when we get to after `c'. */
2510
2511 if (fixup_alt_jump)
2512 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2513
2514 /* Mark and leave space for a jump after this alternative,
2515 to be filled in later either by next alternative or
2516 when know we're at the end of a series of alternatives. */
2517 fixup_alt_jump = b;
2518 GET_BUFFER_SPACE (3);
2519 b += 3;
2520
2521 laststart = 0;
2522 begalt = b;
2523 break;
2524
2525
2526 case '{':
2527 /* If \{ is a literal. */
2528 if (!(syntax & RE_INTERVALS)
2529 /* If we're at `\{' and it's not the open-interval
2530 operator. */
2531 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2532 || (p - 2 == pattern && p == pend))
2533 goto normal_backslash;
2534
2535 handle_interval:
2536 {
2537 /* If got here, then the syntax allows intervals. */
2538
2539 /* At least (most) this many matches must be made. */
2540 int lower_bound = -1, upper_bound = -1;
2541
2542 beg_interval = p - 1;
2543
2544 if (p == pend)
2545 {
2546 if (syntax & RE_NO_BK_BRACES)
2547 goto unfetch_interval;
2548 else
2549 FREE_STACK_RETURN (REG_EBRACE);
2550 }
2551
2552 GET_UNSIGNED_NUMBER (lower_bound);
2553
2554 if (c == ',')
2555 {
2556 GET_UNSIGNED_NUMBER (upper_bound);
2557 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2558 }
2559 else
2560 /* Interval such as `{1}' => match exactly once. */
2561 upper_bound = lower_bound;
2562
2563 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2564 || lower_bound > upper_bound)
2565 {
2566 if (syntax & RE_NO_BK_BRACES)
2567 goto unfetch_interval;
2568 else
2569 FREE_STACK_RETURN (REG_BADBR);
2570 }
2571
2572 if (!(syntax & RE_NO_BK_BRACES))
2573 {
2574 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2575
2576 PATFETCH (c);
2577 }
2578
2579 if (c != '}')
2580 {
2581 if (syntax & RE_NO_BK_BRACES)
2582 goto unfetch_interval;
2583 else
2584 FREE_STACK_RETURN (REG_BADBR);
2585 }
2586
2587 /* We just parsed a valid interval. */
2588
2589 /* If it's invalid to have no preceding re. */
2590 if (!laststart)
2591 {
2592 if (syntax & RE_CONTEXT_INVALID_OPS)
2593 FREE_STACK_RETURN (REG_BADRPT);
2594 else if (syntax & RE_CONTEXT_INDEP_OPS)
2595 laststart = b;
2596 else
2597 goto unfetch_interval;
2598 }
2599
2600 /* If the upper bound is zero, don't want to succeed at
2601 all; jump from `laststart' to `b + 3', which will be
2602 the end of the buffer after we insert the jump. */
2603 if (upper_bound == 0)
2604 {
2605 GET_BUFFER_SPACE (3);
2606 INSERT_JUMP (jump, laststart, b + 3);
2607 b += 3;
2608 }
2609
2610 /* Otherwise, we have a nontrivial interval. When
2611 we're all done, the pattern will look like:
2612 set_number_at <jump count> <upper bound>
2613 set_number_at <succeed_n count> <lower bound>
2614 succeed_n <after jump addr> <succeed_n count>
2615 <body of loop>
2616 jump_n <succeed_n addr> <jump count>
2617 (The upper bound and `jump_n' are omitted if
2618 `upper_bound' is 1, though.) */
2619 else
2620 { /* If the upper bound is > 1, we need to insert
2621 more at the end of the loop. */
2622 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2623
2624 GET_BUFFER_SPACE (nbytes);
2625
2626 /* Initialize lower bound of the `succeed_n', even
2627 though it will be set during matching by its
2628 attendant `set_number_at' (inserted next),
2629 because `re_compile_fastmap' needs to know.
2630 Jump to the `jump_n' we might insert below. */
2631 INSERT_JUMP2 (succeed_n, laststart,
2632 b + 5 + (upper_bound > 1) * 5,
2633 lower_bound);
2634 b += 5;
2635
2636 /* Code to initialize the lower bound. Insert
2637 before the `succeed_n'. The `5' is the last two
2638 bytes of this `set_number_at', plus 3 bytes of
2639 the following `succeed_n'. */
2640 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2641 b += 5;
2642
2643 if (upper_bound > 1)
2644 { /* More than one repetition is allowed, so
2645 append a backward jump to the `succeed_n'
2646 that starts this interval.
2647
2648 When we've reached this during matching,
2649 we'll have matched the interval once, so
2650 jump back only `upper_bound - 1' times. */
2651 STORE_JUMP2 (jump_n, b, laststart + 5,
2652 upper_bound - 1);
2653 b += 5;
2654
2655 /* The location we want to set is the second
2656 parameter of the `jump_n'; that is `b-2' as
2657 an absolute address. `laststart' will be
2658 the `set_number_at' we're about to insert;
2659 `laststart+3' the number to set, the source
2660 for the relative address. But we are
2661 inserting into the middle of the pattern --
2662 so everything is getting moved up by 5.
2663 Conclusion: (b - 2) - (laststart + 3) + 5,
2664 i.e., b - laststart.
2665
2666 We insert this at the beginning of the loop
2667 so that if we fail during matching, we'll
2668 reinitialize the bounds. */
2669 insert_op2 (set_number_at, laststart, b - laststart,
2670 upper_bound - 1, b);
2671 b += 5;
2672 }
2673 }
2674 pending_exact = 0;
2675 beg_interval = NULL;
2676 }
2677 break;
2678
2679 unfetch_interval:
2680 /* If an invalid interval, match the characters as literals. */
2681 assert (beg_interval);
2682 p = beg_interval;
2683 beg_interval = NULL;
2684
2685 /* normal_char and normal_backslash need `c'. */
2686 PATFETCH (c);
2687
2688 if (!(syntax & RE_NO_BK_BRACES))
2689 {
2690 if (p > pattern && p[-1] == '\\')
2691 goto normal_backslash;
2692 }
2693 goto normal_char;
2694
2695#ifdef emacs
2696 /* There is no way to specify the before_dot and after_dot
2697 operators. rms says this is ok. --karl */
2698 case '=':
2699 BUF_PUSH (at_dot);
2700 break;
2701
2702 case 's':
2703 laststart = b;
2704 PATFETCH (c);
2705 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2706 break;
2707
2708 case 'S':
2709 laststart = b;
2710 PATFETCH (c);
2711 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2712 break;
2713#endif /* emacs */
2714
2715
2716 case 'w':
2717 if (syntax & RE_NO_GNU_OPS)
2718 goto normal_char;
2719 laststart = b;
2720 BUF_PUSH (wordchar);
2721 break;
2722
2723
2724 case 'W':
2725 if (syntax & RE_NO_GNU_OPS)
2726 goto normal_char;
2727 laststart = b;
2728 BUF_PUSH (notwordchar);
2729 break;
2730
2731
2732 case '<':
2733 if (syntax & RE_NO_GNU_OPS)
2734 goto normal_char;
2735 BUF_PUSH (wordbeg);
2736 break;
2737
2738 case '>':
2739 if (syntax & RE_NO_GNU_OPS)
2740 goto normal_char;
2741 BUF_PUSH (wordend);
2742 break;
2743
2744 case 'b':
2745 if (syntax & RE_NO_GNU_OPS)
2746 goto normal_char;
2747 BUF_PUSH (wordbound);
2748 break;
2749
2750 case 'B':
2751 if (syntax & RE_NO_GNU_OPS)
2752 goto normal_char;
2753 BUF_PUSH (notwordbound);
2754 break;
2755
2756 case '`':
2757 if (syntax & RE_NO_GNU_OPS)
2758 goto normal_char;
2759 BUF_PUSH (begbuf);
2760 break;
2761
2762 case '\'':
2763 if (syntax & RE_NO_GNU_OPS)
2764 goto normal_char;
2765 BUF_PUSH (endbuf);
2766 break;
2767
2768 case '1': case '2': case '3': case '4': case '5':
2769 case '6': case '7': case '8': case '9':
2770 if (syntax & RE_NO_BK_REFS)
2771 goto normal_char;
2772
2773 c1 = c - '0';
2774
2775 if (c1 > regnum)
2776 FREE_STACK_RETURN (REG_ESUBREG);
2777
2778 /* Can't back reference to a subexpression if inside of it. */
2779 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2780 goto normal_char;
2781
2782 laststart = b;
2783 BUF_PUSH_2 (duplicate, c1);
2784 break;
2785
2786
2787 case '+':
2788 case '?':
2789 if (syntax & RE_BK_PLUS_QM)
2790 goto handle_plus;
2791 else
2792 goto normal_backslash;
2793
2794 default:
2795 normal_backslash:
2796 /* You might think it would be useful for \ to mean
2797 not to translate; but if we don't translate it
2798 it will never match anything. */
2799 c = TRANSLATE (c);
2800 goto normal_char;
2801 }
2802 break;
2803
2804
2805 default:
2806 /* Expects the character in `c'. */
2807 normal_char:
2808 /* If no exactn currently being built. */
2809 if (!pending_exact
2810
2811 /* If last exactn not at current position. */
2812 || pending_exact + *pending_exact + 1 != b
2813
2814 /* We have only one byte following the exactn for the count. */
2815 || *pending_exact == (1 << BYTEWIDTH) - 1
2816
2817 /* If followed by a repetition operator. */
2818 || *p == '*' || *p == '^'
2819 || ((syntax & RE_BK_PLUS_QM)
2820 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2821 : (*p == '+' || *p == '?'))
2822 || ((syntax & RE_INTERVALS)
2823 && ((syntax & RE_NO_BK_BRACES)
2824 ? *p == '{'
2825 : (p[0] == '\\' && p[1] == '{'))))
2826 {
2827 /* Start building a new exactn. */
2828
2829 laststart = b;
2830
2831 BUF_PUSH_2 (exactn, 0);
2832 pending_exact = b - 1;
2833 }
2834
2835 BUF_PUSH (c);
2836 (*pending_exact)++;
dd3b648e 2837 break;
9f85ab1a
JM
2838 } /* switch (c) */
2839 } /* while p != pend */
dd3b648e 2840
dd3b648e 2841
9f85ab1a
JM
2842 /* Through the pattern now. */
2843
2844 if (fixup_alt_jump)
2845 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2846
2847 if (!COMPILE_STACK_EMPTY)
2848 FREE_STACK_RETURN (REG_EPAREN);
2849
2850 /* If we don't want backtracking, force success
2851 the first time we reach the end of the compiled pattern. */
2852 if (syntax & RE_NO_POSIX_BACKTRACKING)
2853 BUF_PUSH (succeed);
2854
2855 free (compile_stack.stack);
2856
2857 /* We have succeeded; set the length of the buffer. */
2858 bufp->used = b - bufp->buffer;
2859
2860#ifdef DEBUG
2861 if (debug)
2862 {
2863 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2864 print_compiled_pattern (bufp);
2865 }
2866#endif /* DEBUG */
2867
2868#ifndef MATCH_MAY_ALLOCATE
2869 /* Initialize the failure stack to the largest possible stack. This
2870 isn't necessary unless we're trying to avoid calling alloca in
2871 the search and match routines. */
2872 {
2873 int num_regs = bufp->re_nsub + 1;
2874
2875 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2876 is strictly greater than re_max_failures, the largest possible stack
2877 is 2 * re_max_failures failure points. */
2878 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2879 {
2880 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2881
2882# ifdef emacs
2883 if (! fail_stack.stack)
2884 fail_stack.stack
2885 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2886 * sizeof (fail_stack_elt_t));
2887 else
2888 fail_stack.stack
2889 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2890 (fail_stack.size
2891 * sizeof (fail_stack_elt_t)));
2892# else /* not emacs */
2893 if (! fail_stack.stack)
2894 fail_stack.stack
2895 = (fail_stack_elt_t *) malloc (fail_stack.size
2896 * sizeof (fail_stack_elt_t));
2897 else
2898 fail_stack.stack
2899 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2900 (fail_stack.size
2901 * sizeof (fail_stack_elt_t)));
2902# endif /* not emacs */
2903 }
2904
2905 regex_grow_registers (num_regs);
2906 }
2907#endif /* not MATCH_MAY_ALLOCATE */
2908
2909 return REG_NOERROR;
2910} /* regex_compile */
2911\f
2912/* Subroutines for `regex_compile'. */
2913
2914/* Store OP at LOC followed by two-byte integer parameter ARG. */
2915
2916static void
2917store_op1 (op, loc, arg)
2918 re_opcode_t op;
2919 unsigned char *loc;
2920 int arg;
2921{
2922 *loc = (unsigned char) op;
2923 STORE_NUMBER (loc + 1, arg);
2924}
2925
2926
2927/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2928
2929static void
2930store_op2 (op, loc, arg1, arg2)
2931 re_opcode_t op;
2932 unsigned char *loc;
2933 int arg1, arg2;
2934{
2935 *loc = (unsigned char) op;
2936 STORE_NUMBER (loc + 1, arg1);
2937 STORE_NUMBER (loc + 3, arg2);
2938}
2939
2940
2941/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2942 for OP followed by two-byte integer parameter ARG. */
2943
2944static void
2945insert_op1 (op, loc, arg, end)
2946 re_opcode_t op;
2947 unsigned char *loc;
2948 int arg;
2949 unsigned char *end;
2950{
2951 register unsigned char *pfrom = end;
2952 register unsigned char *pto = end + 3;
2953
2954 while (pfrom != loc)
2955 *--pto = *--pfrom;
2956
2957 store_op1 (op, loc, arg);
2958}
2959
2960
2961/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2962
2963static void
2964insert_op2 (op, loc, arg1, arg2, end)
2965 re_opcode_t op;
2966 unsigned char *loc;
2967 int arg1, arg2;
2968 unsigned char *end;
2969{
2970 register unsigned char *pfrom = end;
2971 register unsigned char *pto = end + 5;
2972
2973 while (pfrom != loc)
2974 *--pto = *--pfrom;
2975
2976 store_op2 (op, loc, arg1, arg2);
2977}
2978
2979
2980/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2981 after an alternative or a begin-subexpression. We assume there is at
2982 least one character before the ^. */
2983
2984static boolean
2985at_begline_loc_p (pattern, p, syntax)
2986 const char *pattern, *p;
2987 reg_syntax_t syntax;
2988{
2989 const char *prev = p - 2;
2990 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2991
2992 return
2993 /* After a subexpression? */
2994 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2995 /* After an alternative? */
2996 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2997}
2998
2999
3000/* The dual of at_begline_loc_p. This one is for $. We assume there is
3001 at least one character after the $, i.e., `P < PEND'. */
3002
3003static boolean
3004at_endline_loc_p (p, pend, syntax)
3005 const char *p, *pend;
3006 reg_syntax_t syntax;
3007{
3008 const char *next = p;
3009 boolean next_backslash = *next == '\\';
3010 const char *next_next = p + 1 < pend ? p + 1 : 0;
3011
3012 return
3013 /* Before a subexpression? */
3014 (syntax & RE_NO_BK_PARENS ? *next == ')'
3015 : next_backslash && next_next && *next_next == ')')
3016 /* Before an alternative? */
3017 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3018 : next_backslash && next_next && *next_next == '|');
3019}
3020
3021
3022/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3023 false if it's not. */
3024
3025static boolean
3026group_in_compile_stack (compile_stack, regnum)
3027 compile_stack_type compile_stack;
3028 regnum_t regnum;
3029{
3030 int this_element;
3031
3032 for (this_element = compile_stack.avail - 1;
3033 this_element >= 0;
3034 this_element--)
3035 if (compile_stack.stack[this_element].regnum == regnum)
3036 return true;
3037
3038 return false;
3039}
3040
3041
3042/* Read the ending character of a range (in a bracket expression) from the
3043 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3044 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3045 Then we set the translation of all bits between the starting and
3046 ending characters (inclusive) in the compiled pattern B.
3047
3048 Return an error code.
3049
3050 We use these short variable names so we can use the same macros as
3051 `regex_compile' itself. */
3052
3053static reg_errcode_t
3054compile_range (p_ptr, pend, translate, syntax, b)
3055 const char **p_ptr, *pend;
3056 RE_TRANSLATE_TYPE translate;
3057 reg_syntax_t syntax;
3058 unsigned char *b;
3059{
3060 unsigned this_char;
3061
3062 const char *p = *p_ptr;
3063 unsigned int range_start, range_end;
3064
3065 if (p == pend)
3066 return REG_ERANGE;
3067
3068 /* Even though the pattern is a signed `char *', we need to fetch
3069 with unsigned char *'s; if the high bit of the pattern character
3070 is set, the range endpoints will be negative if we fetch using a
3071 signed char *.
3072
3073 We also want to fetch the endpoints without translating them; the
3074 appropriate translation is done in the bit-setting loop below. */
3075 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3076 range_start = ((const unsigned char *) p)[-2];
3077 range_end = ((const unsigned char *) p)[0];
3078
3079 /* Have to increment the pointer into the pattern string, so the
3080 caller isn't still at the ending character. */
3081 (*p_ptr)++;
3082
3083 /* If the start is after the end, the range is empty. */
3084 if (range_start > range_end)
3085 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3086
3087 /* Here we see why `this_char' has to be larger than an `unsigned
3088 char' -- the range is inclusive, so if `range_end' == 0xff
3089 (assuming 8-bit characters), we would otherwise go into an infinite
3090 loop, since all characters <= 0xff. */
3091 for (this_char = range_start; this_char <= range_end; this_char++)
3092 {
3093 SET_LIST_BIT (TRANSLATE (this_char));
3094 }
3095
3096 return REG_NOERROR;
3097}
3098\f
3099/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3100 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3101 characters can start a string that matches the pattern. This fastmap
3102 is used by re_search to skip quickly over impossible starting points.
3103
3104 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3105 area as BUFP->fastmap.
3106
3107 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3108 the pattern buffer.
3109
3110 Returns 0 if we succeed, -2 if an internal error. */
3111
3112int
3113re_compile_fastmap (bufp)
3114 struct re_pattern_buffer *bufp;
3115{
3116 int j, k;
3117#ifdef MATCH_MAY_ALLOCATE
3118 fail_stack_type fail_stack;
3119#endif
3120#ifndef REGEX_MALLOC
3121 char *destination;
3122#endif
3123
3124 register char *fastmap = bufp->fastmap;
3125 unsigned char *pattern = bufp->buffer;
3126 unsigned char *p = pattern;
3127 register unsigned char *pend = pattern + bufp->used;
3128
3129#ifdef REL_ALLOC
3130 /* This holds the pointer to the failure stack, when
3131 it is allocated relocatably. */
3132 fail_stack_elt_t *failure_stack_ptr;
3133#endif
3134
3135 /* Assume that each path through the pattern can be null until
3136 proven otherwise. We set this false at the bottom of switch
3137 statement, to which we get only if a particular path doesn't
3138 match the empty string. */
3139 boolean path_can_be_null = true;
3140
3141 /* We aren't doing a `succeed_n' to begin with. */
3142 boolean succeed_n_p = false;
3143
3144 assert (fastmap != NULL && p != NULL);
3145
3146 INIT_FAIL_STACK ();
3147 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3148 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3149 bufp->can_be_null = 0;
3150
3151 while (1)
3152 {
3153 if (p == pend || *p == succeed)
3154 {
3155 /* We have reached the (effective) end of pattern. */
3156 if (!FAIL_STACK_EMPTY ())
3157 {
3158 bufp->can_be_null |= path_can_be_null;
3159
3160 /* Reset for next path. */
3161 path_can_be_null = true;
3162
3163 p = fail_stack.stack[--fail_stack.avail].pointer;
3164
3165 continue;
3166 }
dd3b648e 3167 else
9f85ab1a
JM
3168 break;
3169 }
dd3b648e 3170
9f85ab1a
JM
3171 /* We should never be about to go beyond the end of the pattern. */
3172 assert (p < pend);
dd3b648e 3173
9f85ab1a
JM
3174 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3175 {
dd3b648e 3176
9f85ab1a
JM
3177 /* I guess the idea here is to simply not bother with a fastmap
3178 if a backreference is used, since it's too hard to figure out
3179 the fastmap for the corresponding group. Setting
3180 `can_be_null' stops `re_search_2' from using the fastmap, so
3181 that is all we do. */
dd3b648e
RP
3182 case duplicate:
3183 bufp->can_be_null = 1;
9f85ab1a
JM
3184 goto done;
3185
3186
3187 /* Following are the cases which match a character. These end
3188 with `break'. */
3189
3190 case exactn:
3191 fastmap[p[1]] = 1;
dd3b648e
RP
3192 break;
3193
9f85ab1a
JM
3194
3195 case charset:
3196 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3197 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3198 fastmap[j] = 1;
3199 break;
3200
3201
3202 case charset_not:
3203 /* Chars beyond end of map must be allowed. */
3204 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3205 fastmap[j] = 1;
3206
3207 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3208 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3209 fastmap[j] = 1;
3210 break;
3211
3212
dd3b648e
RP
3213 case wordchar:
3214 for (j = 0; j < (1 << BYTEWIDTH); j++)
3215 if (SYNTAX (j) == Sword)
3216 fastmap[j] = 1;
3217 break;
3218
9f85ab1a 3219
dd3b648e
RP
3220 case notwordchar:
3221 for (j = 0; j < (1 << BYTEWIDTH); j++)
3222 if (SYNTAX (j) != Sword)
3223 fastmap[j] = 1;
3224 break;
3225
9f85ab1a
JM
3226
3227 case anychar:
3228 {
3229 int fastmap_newline = fastmap['\n'];
3230
3231 /* `.' matches anything ... */
3232 for (j = 0; j < (1 << BYTEWIDTH); j++)
3233 fastmap[j] = 1;
3234
3235 /* ... except perhaps newline. */
3236 if (!(bufp->syntax & RE_DOT_NEWLINE))
3237 fastmap['\n'] = fastmap_newline;
3238
3239 /* Return if we have already set `can_be_null'; if we have,
3240 then the fastmap is irrelevant. Something's wrong here. */
3241 else if (bufp->can_be_null)
3242 goto done;
3243
3244 /* Otherwise, have to check alternative paths. */
3245 break;
3246 }
3247
dd3b648e 3248#ifdef emacs
9f85ab1a 3249 case syntaxspec:
dd3b648e
RP
3250 k = *p++;
3251 for (j = 0; j < (1 << BYTEWIDTH); j++)
3252 if (SYNTAX (j) == (enum syntaxcode) k)
3253 fastmap[j] = 1;
3254 break;
3255
9f85ab1a 3256
dd3b648e
RP
3257 case notsyntaxspec:
3258 k = *p++;
3259 for (j = 0; j < (1 << BYTEWIDTH); j++)
3260 if (SYNTAX (j) != (enum syntaxcode) k)
3261 fastmap[j] = 1;
3262 break;
9f85ab1a
JM
3263
3264
3265 /* All cases after this match the empty string. These end with
3266 `continue'. */
3267
3268
3269 case before_dot:
3270 case at_dot:
3271 case after_dot:
3272 continue;
dd3b648e
RP
3273#endif /* emacs */
3274
dd3b648e 3275
9f85ab1a
JM
3276 case no_op:
3277 case begline:
3278 case endline:
3279 case begbuf:
3280 case endbuf:
3281 case wordbound:
3282 case notwordbound:
3283 case wordbeg:
3284 case wordend:
3285 case push_dummy_failure:
3286 continue;
3287
3288
3289 case jump_n:
3290 case pop_failure_jump:
3291 case maybe_pop_jump:
3292 case jump:
3293 case jump_past_alt:
3294 case dummy_failure_jump:
3295 EXTRACT_NUMBER_AND_INCR (j, p);
3296 p += j;
3297 if (j > 0)
3298 continue;
3299
3300 /* Jump backward implies we just went through the body of a
3301 loop and matched nothing. Opcode jumped to should be
3302 `on_failure_jump' or `succeed_n'. Just treat it like an
3303 ordinary jump. For a * loop, it has pushed its failure
3304 point already; if so, discard that as redundant. */
3305 if ((re_opcode_t) *p != on_failure_jump
3306 && (re_opcode_t) *p != succeed_n)
3307 continue;
3308
3309 p++;
3310 EXTRACT_NUMBER_AND_INCR (j, p);
3311 p += j;
3312
3313 /* If what's on the stack is where we are now, pop it. */
3314 if (!FAIL_STACK_EMPTY ()
3315 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3316 fail_stack.avail--;
3317
3318 continue;
3319
3320
3321 case on_failure_jump:
3322 case on_failure_keep_string_jump:
3323 handle_on_failure_jump:
3324 EXTRACT_NUMBER_AND_INCR (j, p);
3325
3326 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3327 end of the pattern. We don't want to push such a point,
3328 since when we restore it above, entering the switch will
3329 increment `p' past the end of the pattern. We don't need
3330 to push such a point since we obviously won't find any more
3331 fastmap entries beyond `pend'. Such a pattern can match
3332 the null string, though. */
3333 if (p + j < pend)
3334 {
3335 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3336 {
3337 RESET_FAIL_STACK ();
3338 return -2;
3339 }
3340 }
3341 else
3342 bufp->can_be_null = 1;
3343
3344 if (succeed_n_p)
3345 {
3346 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3347 succeed_n_p = false;
3348 }
3349
3350 continue;
3351
3352
3353 case succeed_n:
3354 /* Get to the number of times to succeed. */
3355 p += 2;
3356
3357 /* Increment p past the n for when k != 0. */
3358 EXTRACT_NUMBER_AND_INCR (k, p);
3359 if (k == 0)
3360 {
3361 p -= 4;
3362 succeed_n_p = true; /* Spaghetti code alert. */
3363 goto handle_on_failure_jump;
3364 }
3365 continue;
3366
3367
3368 case set_number_at:
3369 p += 4;
3370 continue;
3371
3372
3373 case start_memory:
3374 case stop_memory:
3375 p += 2;
3376 continue;
3377
dd3b648e 3378
6b14af2b 3379 default:
9f85ab1a
JM
3380 abort (); /* We have listed all the cases. */
3381 } /* switch *p++ */
3382
3383 /* Getting here means we have found the possible starting
3384 characters for one path of the pattern -- and that the empty
3385 string does not match. We need not follow this path further.
3386 Instead, look at the next alternative (remembered on the
3387 stack), or quit if no more. The test at the top of the loop
3388 does these things. */
3389 path_can_be_null = false;
3390 p = pend;
3391 } /* while p */
3392
3393 /* Set `can_be_null' for the last path (also the first path, if the
3394 pattern is empty). */
3395 bufp->can_be_null |= path_can_be_null;
3396
3397 done:
3398 RESET_FAIL_STACK ();
3399 return 0;
3400} /* re_compile_fastmap */
3401#ifdef _LIBC
3402weak_alias (__re_compile_fastmap, re_compile_fastmap)
3403#endif
3404\f
3405/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3406 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3407 this memory for recording register information. STARTS and ENDS
3408 must be allocated using the malloc library routine, and must each
3409 be at least NUM_REGS * sizeof (regoff_t) bytes long.
dd3b648e 3410
9f85ab1a
JM
3411 If NUM_REGS == 0, then subsequent matches should allocate their own
3412 register data.
3413
3414 Unless this function is called, the first search or match using
3415 PATTERN_BUFFER will allocate its own register data, without
3416 freeing the old data. */
3417
3418void
3419re_set_registers (bufp, regs, num_regs, starts, ends)
3420 struct re_pattern_buffer *bufp;
3421 struct re_registers *regs;
3422 unsigned num_regs;
3423 regoff_t *starts, *ends;
3424{
3425 if (num_regs)
3426 {
3427 bufp->regs_allocated = REGS_REALLOCATE;
3428 regs->num_regs = num_regs;
3429 regs->start = starts;
3430 regs->end = ends;
3431 }
3432 else
3433 {
3434 bufp->regs_allocated = REGS_UNALLOCATED;
3435 regs->num_regs = 0;
3436 regs->start = regs->end = (regoff_t *) 0;
dd3b648e
RP
3437 }
3438}
9f85ab1a
JM
3439#ifdef _LIBC
3440weak_alias (__re_set_registers, re_set_registers)
3441#endif
dd3b648e 3442\f
9f85ab1a
JM
3443/* Searching routines. */
3444
3445/* Like re_search_2, below, but only one string is specified, and
3446 doesn't let you say where to stop matching. */
dd3b648e
RP
3447
3448int
9f85ab1a
JM
3449re_search (bufp, string, size, startpos, range, regs)
3450 struct re_pattern_buffer *bufp;
3451 const char *string;
dd3b648e
RP
3452 int size, startpos, range;
3453 struct re_registers *regs;
3454{
9f85ab1a
JM
3455 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3456 regs, size);
dd3b648e 3457}
9f85ab1a
JM
3458#ifdef _LIBC
3459weak_alias (__re_search, re_search)
3460#endif
dd3b648e 3461
dd3b648e 3462
9f85ab1a
JM
3463/* Using the compiled pattern in BUFP->buffer, first tries to match the
3464 virtual concatenation of STRING1 and STRING2, starting first at index
3465 STARTPOS, then at STARTPOS + 1, and so on.
3466
3467 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3468
3469 RANGE is how far to scan while trying to match. RANGE = 0 means try
3470 only at STARTPOS; in general, the last start tried is STARTPOS +
3471 RANGE.
3472
3473 In REGS, return the indices of the virtual concatenation of STRING1
3474 and STRING2 that matched the entire BUFP->buffer and its contained
3475 subexpressions.
3476
3477 Do not consider matching one past the index STOP in the virtual
3478 concatenation of STRING1 and STRING2.
3479
3480 We return either the position in the strings at which the match was
3481 found, -1 if no match, or -2 if error (such as failure
3482 stack overflow). */
dd3b648e
RP
3483
3484int
9f85ab1a
JM
3485re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3486 struct re_pattern_buffer *bufp;
3487 const char *string1, *string2;
dd3b648e
RP
3488 int size1, size2;
3489 int startpos;
9f85ab1a 3490 int range;
dd3b648e 3491 struct re_registers *regs;
9f85ab1a 3492 int stop;
dd3b648e 3493{
dd3b648e 3494 int val;
9f85ab1a
JM
3495 register char *fastmap = bufp->fastmap;
3496 register RE_TRANSLATE_TYPE translate = bufp->translate;
3497 int total_size = size1 + size2;
3498 int endpos = startpos + range;
3499
3500 /* Check for out-of-range STARTPOS. */
3501 if (startpos < 0 || startpos > total_size)
3502 return -1;
3503
3504 /* Fix up RANGE if it might eventually take us outside
3505 the virtual concatenation of STRING1 and STRING2.
3506 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3507 if (endpos < 0)
3508 range = 0 - startpos;
3509 else if (endpos > total_size)
3510 range = total_size - startpos;
3511
3512 /* If the search isn't to be a backwards one, don't waste time in a
3513 search for a pattern that must be anchored. */
3514 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
dd3b648e
RP
3515 {
3516 if (startpos > 0)
3517 return -1;
3518 else
3519 range = 1;
3520 }
3521
9f85ab1a
JM
3522#ifdef emacs
3523 /* In a forward search for something that starts with \=.
3524 don't keep searching past point. */
3525 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
dd3b648e 3526 {
9f85ab1a
JM
3527 range = PT - startpos;
3528 if (range <= 0)
3529 return -1;
3530 }
3531#endif /* emacs */
3532
3533 /* Update the fastmap now if not correct already. */
3534 if (fastmap && !bufp->fastmap_accurate)
3535 if (re_compile_fastmap (bufp) == -2)
3536 return -2;
dd3b648e 3537
9f85ab1a
JM
3538 /* Loop through the string, looking for a place to start matching. */
3539 for (;;)
3540 {
3541 /* If a fastmap is supplied, skip quickly over characters that
3542 cannot be the start of a match. If the pattern can match the
3543 null string, however, we don't need to skip characters; we want
3544 the first null string. */
3545 if (fastmap && startpos < total_size && !bufp->can_be_null)
dd3b648e 3546 {
9f85ab1a 3547 if (range > 0) /* Searching forwards. */
dd3b648e 3548 {
9f85ab1a 3549 register const char *d;
dd3b648e 3550 register int lim = 0;
dd3b648e 3551 int irange = range;
dd3b648e 3552
9f85ab1a
JM
3553 if (startpos < size1 && startpos + range >= size1)
3554 lim = range - (size1 - startpos);
3555
3556 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
dd3b648e 3557
9f85ab1a
JM
3558 /* Written out as an if-else to avoid testing `translate'
3559 inside the loop. */
dd3b648e 3560 if (translate)
9f85ab1a
JM
3561 while (range > lim
3562 && !fastmap[(unsigned char)
3563 translate[(unsigned char) *d++]])
3564 range--;
dd3b648e 3565 else
9f85ab1a
JM
3566 while (range > lim && !fastmap[(unsigned char) *d++])
3567 range--;
3568
dd3b648e
RP
3569 startpos += irange - range;
3570 }
9f85ab1a 3571 else /* Searching backwards. */
dd3b648e 3572 {
9f85ab1a
JM
3573 register char c = (size1 == 0 || startpos >= size1
3574 ? string2[startpos - size1]
3575 : string1[startpos]);
3576
3577 if (!fastmap[(unsigned char) TRANSLATE (c)])
dd3b648e
RP
3578 goto advance;
3579 }
3580 }
3581
9f85ab1a
JM
3582 /* If can't match the null string, and that's all we have left, fail. */
3583 if (range >= 0 && startpos == total_size && fastmap
3584 && !bufp->can_be_null)
dd3b648e
RP
3585 return -1;
3586
9f85ab1a
JM
3587 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3588 startpos, regs, stop);
3589#ifndef REGEX_MALLOC
3590# ifdef C_ALLOCA
dd3b648e 3591 alloca (0);
9f85ab1a
JM
3592# endif
3593#endif
3594
3595 if (val >= 0)
3596 return startpos;
3597
3598 if (val == -2)
3599 return -2;
dd3b648e
RP
3600
3601 advance:
9f85ab1a
JM
3602 if (!range)
3603 break;
3604 else if (range > 0)
3605 {
3606 range--;
3607 startpos++;
3608 }
3609 else
3610 {
3611 range++;
3612 startpos--;
3613 }
dd3b648e
RP
3614 }
3615 return -1;
9f85ab1a
JM
3616} /* re_search_2 */
3617#ifdef _LIBC
3618weak_alias (__re_search_2, re_search_2)
3619#endif
dd3b648e 3620\f
9f85ab1a
JM
3621/* This converts PTR, a pointer into one of the search strings `string1'
3622 and `string2' into an offset from the beginning of that string. */
3623#define POINTER_TO_OFFSET(ptr) \
3624 (FIRST_STRING_P (ptr) \
3625 ? ((regoff_t) ((ptr) - string1)) \
3626 : ((regoff_t) ((ptr) - string2 + size1)))
3627
3628/* Macros for dealing with the split strings in re_match_2. */
3629
3630#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3631
3632/* Call before fetching a character with *d. This switches over to
3633 string2 if necessary. */
3634#define PREFETCH() \
3635 while (d == dend) \
3636 { \
3637 /* End of string2 => fail. */ \
3638 if (dend == end_match_2) \
3639 goto fail; \
3640 /* End of string1 => advance to string2. */ \
3641 d = string2; \
3642 dend = end_match_2; \
3643 }
dd3b648e 3644
dd3b648e 3645
9f85ab1a
JM
3646/* Test if at very beginning or at very end of the virtual concatenation
3647 of `string1' and `string2'. If only one string, it's `string2'. */
3648#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3649#define AT_STRINGS_END(d) ((d) == end2)
3650
3651
3652/* Test if D points to a character which is word-constituent. We have
3653 two special cases to check for: if past the end of string1, look at
3654 the first character in string2; and if before the beginning of
3655 string2, look at the last character in string1. */
3656#define WORDCHAR_P(d) \
3657 (SYNTAX ((d) == end1 ? *string2 \
3658 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3659 == Sword)
3660
3661/* Disabled due to a compiler bug -- see comment at case wordbound */
3662#if 0
3663/* Test if the character before D and the one at D differ with respect
3664 to being word-constituent. */
3665#define AT_WORD_BOUNDARY(d) \
3666 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3667 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3668#endif
dd3b648e 3669
9f85ab1a
JM
3670/* Free everything we malloc. */
3671#ifdef MATCH_MAY_ALLOCATE
3672# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3673# define FREE_VARIABLES() \
3674 do { \
3675 REGEX_FREE_STACK (fail_stack.stack); \
3676 FREE_VAR (regstart); \
3677 FREE_VAR (regend); \
3678 FREE_VAR (old_regstart); \
3679 FREE_VAR (old_regend); \
3680 FREE_VAR (best_regstart); \
3681 FREE_VAR (best_regend); \
3682 FREE_VAR (reg_info); \
3683 FREE_VAR (reg_dummy); \
3684 FREE_VAR (reg_info_dummy); \
3685 } while (0)
3686#else
3687# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3688#endif /* not MATCH_MAY_ALLOCATE */
3689
3690/* These values must meet several constraints. They must not be valid
3691 register values; since we have a limit of 255 registers (because
3692 we use only one byte in the pattern for the register number), we can
3693 use numbers larger than 255. They must differ by 1, because of
3694 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3695 be larger than the value for the highest register, so we do not try
3696 to actually save any registers when none are active. */
3697#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3698#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3699\f
3700/* Matching routines. */
dd3b648e 3701
9f85ab1a
JM
3702#ifndef emacs /* Emacs never uses this. */
3703/* re_match is like re_match_2 except it takes only a single string. */
dd3b648e 3704
9f85ab1a
JM
3705int
3706re_match (bufp, string, size, pos, regs)
3707 struct re_pattern_buffer *bufp;
3708 const char *string;
3709 int size, pos;
3710 struct re_registers *regs;
3711{
3712 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3713 pos, regs, size);
3714# ifndef REGEX_MALLOC
3715# ifdef C_ALLOCA
3716 alloca (0);
3717# endif
3718# endif
3719 return result;
3720}
3721# ifdef _LIBC
3722weak_alias (__re_match, re_match)
3723# endif
3724#endif /* not emacs */
dd3b648e 3725
9f85ab1a
JM
3726static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3727 unsigned char *end,
3728 register_info_type *reg_info));
3729static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3730 unsigned char *end,
3731 register_info_type *reg_info));
3732static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3733 unsigned char *end,
3734 register_info_type *reg_info));
3735static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3736 int len, char *translate));
3737
3738/* re_match_2 matches the compiled pattern in BUFP against the
3739 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3740 and SIZE2, respectively). We start matching at POS, and stop
3741 matching at STOP.
3742
3743 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3744 store offsets for the substring each group matched in REGS. See the
3745 documentation for exactly how many groups we fill.
3746
3747 We return -1 if no match, -2 if an internal error (such as the
3748 failure stack overflowing). Otherwise, we return the length of the
3749 matched substring. */
dd3b648e
RP
3750
3751int
9f85ab1a
JM
3752re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3753 struct re_pattern_buffer *bufp;
3754 const char *string1, *string2;
3755 int size1, size2;
3756 int pos;
3757 struct re_registers *regs;
3758 int stop;
3759{
3760 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3761 pos, regs, stop);
3762#ifndef REGEX_MALLOC
3763# ifdef C_ALLOCA
3764 alloca (0);
3765# endif
3766#endif
3767 return result;
3768}
3769#ifdef _LIBC
3770weak_alias (__re_match_2, re_match_2)
3771#endif
3772
3773/* This is a separate function so that we can force an alloca cleanup
3774 afterwards. */
3775static int
3776re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3777 struct re_pattern_buffer *bufp;
3778 const char *string1, *string2;
dd3b648e
RP
3779 int size1, size2;
3780 int pos;
3781 struct re_registers *regs;
9f85ab1a 3782 int stop;
dd3b648e 3783{
9f85ab1a
JM
3784 /* General temporaries. */
3785 int mcnt;
3786 unsigned char *p1;
3787
3788 /* Just past the end of the corresponding string. */
3789 const char *end1, *end2;
3790
3791 /* Pointers into string1 and string2, just past the last characters in
3792 each to consider matching. */
3793 const char *end_match_1, *end_match_2;
3794
3795 /* Where we are in the data, and the end of the current string. */
3796 const char *d, *dend;
3797
3798 /* Where we are in the pattern, and the end of the pattern. */
3799 unsigned char *p = bufp->buffer;
3800 register unsigned char *pend = p + bufp->used;
3801
3802 /* Mark the opcode just after a start_memory, so we can test for an
3803 empty subpattern when we get to the stop_memory. */
3804 unsigned char *just_past_start_mem = 0;
3805
3806 /* We use this to map every character in the string. */
3807 RE_TRANSLATE_TYPE translate = bufp->translate;
3808
3809 /* Failure point stack. Each place that can handle a failure further
3810 down the line pushes a failure point on this stack. It consists of
3811 restart, regend, and reg_info for all registers corresponding to
3812 the subexpressions we're currently inside, plus the number of such
3813 registers, and, finally, two char *'s. The first char * is where
3814 to resume scanning the pattern; the second one is where to resume
3815 scanning the strings. If the latter is zero, the failure point is
3816 a ``dummy''; if a failure happens and the failure point is a dummy,
3817 it gets discarded and the next next one is tried. */
3818#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3819 fail_stack_type fail_stack;
3820#endif
3821#ifdef DEBUG
3822 static unsigned failure_id = 0;
3823 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3824#endif
3825
3826#ifdef REL_ALLOC
3827 /* This holds the pointer to the failure stack, when
3828 it is allocated relocatably. */
3829 fail_stack_elt_t *failure_stack_ptr;
3830#endif
3831
3832 /* We fill all the registers internally, independent of what we
3833 return, for use in backreferences. The number here includes
3834 an element for register zero. */
3835 size_t num_regs = bufp->re_nsub + 1;
3836
3837 /* The currently active registers. */
3838 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3839 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3840
3841 /* Information on the contents of registers. These are pointers into
3842 the input strings; they record just what was matched (on this
3843 attempt) by a subexpression part of the pattern, that is, the
3844 regnum-th regstart pointer points to where in the pattern we began
3845 matching and the regnum-th regend points to right after where we
3846 stopped matching the regnum-th subexpression. (The zeroth register
3847 keeps track of what the whole pattern matches.) */
3848#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3849 const char **regstart, **regend;
3850#endif
3851
3852 /* If a group that's operated upon by a repetition operator fails to
3853 match anything, then the register for its start will need to be
3854 restored because it will have been set to wherever in the string we
3855 are when we last see its open-group operator. Similarly for a
3856 register's end. */
3857#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3858 const char **old_regstart, **old_regend;
3859#endif
3860
3861 /* The is_active field of reg_info helps us keep track of which (possibly
3862 nested) subexpressions we are currently in. The matched_something
3863 field of reg_info[reg_num] helps us tell whether or not we have
3864 matched any of the pattern so far this time through the reg_num-th
3865 subexpression. These two fields get reset each time through any
3866 loop their register is in. */
3867#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3868 register_info_type *reg_info;
3869#endif
3870
3871 /* The following record the register info as found in the above
3872 variables when we find a match better than any we've seen before.
3873 This happens as we backtrack through the failure points, which in
3874 turn happens only if we have not yet matched the entire string. */
3875 unsigned best_regs_set = false;
3876#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3877 const char **best_regstart, **best_regend;
3878#endif
3879
3880 /* Logically, this is `best_regend[0]'. But we don't want to have to
3881 allocate space for that if we're not allocating space for anything
3882 else (see below). Also, we never need info about register 0 for
3883 any of the other register vectors, and it seems rather a kludge to
3884 treat `best_regend' differently than the rest. So we keep track of
3885 the end of the best match so far in a separate variable. We
3886 initialize this to NULL so that when we backtrack the first time
3887 and need to test it, it's not garbage. */
3888 const char *match_end = NULL;
3889
3890 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3891 int set_regs_matched_done = 0;
3892
3893 /* Used when we pop values we don't care about. */
3894#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3895 const char **reg_dummy;
3896 register_info_type *reg_info_dummy;
3897#endif
3898
3899#ifdef DEBUG
3900 /* Counts the total number of registers pushed. */
3901 unsigned num_regs_pushed = 0;
3902#endif
3903
3904 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3905
3906 INIT_FAIL_STACK ();
3907
3908#ifdef MATCH_MAY_ALLOCATE
3909 /* Do not bother to initialize all the register variables if there are
3910 no groups in the pattern, as it takes a fair amount of time. If
3911 there are groups, we include space for register 0 (the whole
3912 pattern), even though we never use it, since it simplifies the
3913 array indexing. We should fix this. */
3914 if (bufp->re_nsub)
3915 {
3916 regstart = REGEX_TALLOC (num_regs, const char *);
3917 regend = REGEX_TALLOC (num_regs, const char *);
3918 old_regstart = REGEX_TALLOC (num_regs, const char *);
3919 old_regend = REGEX_TALLOC (num_regs, const char *);
3920 best_regstart = REGEX_TALLOC (num_regs, const char *);
3921 best_regend = REGEX_TALLOC (num_regs, const char *);
3922 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3923 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3924 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3925
3926 if (!(regstart && regend && old_regstart && old_regend && reg_info
3927 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3928 {
3929 FREE_VARIABLES ();
3930 return -2;
3931 }
3932 }
3933 else
3934 {
3935 /* We must initialize all our variables to NULL, so that
3936 `FREE_VARIABLES' doesn't try to free them. */
3937 regstart = regend = old_regstart = old_regend = best_regstart
3938 = best_regend = reg_dummy = NULL;
3939 reg_info = reg_info_dummy = (register_info_type *) NULL;
3940 }
3941#endif /* MATCH_MAY_ALLOCATE */
3942
3943 /* The starting position is bogus. */
3944 if (pos < 0 || pos > size1 + size2)
3945 {
3946 FREE_VARIABLES ();
3947 return -1;
3948 }
3949
3950 /* Initialize subexpression text positions to -1 to mark ones that no
3951 start_memory/stop_memory has been seen for. Also initialize the
3952 register information struct. */
3953 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3954 {
3955 regstart[mcnt] = regend[mcnt]
3956 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3957
3958 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3959 IS_ACTIVE (reg_info[mcnt]) = 0;
3960 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3961 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3962 }
3963
3964 /* We move `string1' into `string2' if the latter's empty -- but not if
3965 `string1' is null. */
3966 if (size2 == 0 && string1 != NULL)
dd3b648e
RP
3967 {
3968 string2 = string1;
3969 size2 = size1;
3970 string1 = 0;
3971 size1 = 0;
3972 }
3973 end1 = string1 + size1;
3974 end2 = string2 + size2;
3975
9f85ab1a
JM
3976 /* Compute where to stop matching, within the two strings. */
3977 if (stop <= size1)
dd3b648e 3978 {
9f85ab1a 3979 end_match_1 = string1 + stop;
dd3b648e
RP
3980 end_match_2 = string2;
3981 }
3982 else
3983 {
3984 end_match_1 = end1;
9f85ab1a 3985 end_match_2 = string2 + stop - size1;
dd3b648e
RP
3986 }
3987
dd3b648e 3988 /* `p' scans through the pattern as `d' scans through the data.
9f85ab1a
JM
3989 `dend' is the end of the input string that `d' points within. `d'
3990 is advanced into the following input string whenever necessary, but
3991 this happens before fetching; therefore, at the beginning of the
3992 loop, `d' can be pointing at the end of a string, but it cannot
3993 equal `string2'. */
3994 if (size1 > 0 && pos <= size1)
3995 {
3996 d = string1 + pos;
3997 dend = end_match_1;
3998 }
dd3b648e 3999 else
9f85ab1a
JM
4000 {
4001 d = string2 + pos - size1;
4002 dend = end_match_2;
4003 }
dd3b648e 4004
9f85ab1a
JM
4005 DEBUG_PRINT1 ("The compiled pattern is:\n");
4006 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4007 DEBUG_PRINT1 ("The string to match is: `");
4008 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4009 DEBUG_PRINT1 ("'\n");
dd3b648e 4010
9f85ab1a
JM
4011 /* This loops over pattern commands. It exits by returning from the
4012 function if the match is complete, or it drops through if the match
4013 fails at this starting point in the input data. */
4014 for (;;)
dd3b648e 4015 {
9f85ab1a
JM
4016#ifdef _LIBC
4017 DEBUG_PRINT2 ("\n%p: ", p);
4018#else
4019 DEBUG_PRINT2 ("\n0x%x: ", p);
4020#endif
4021
dd3b648e 4022 if (p == pend)
9f85ab1a
JM
4023 { /* End of pattern means we might have succeeded. */
4024 DEBUG_PRINT1 ("end of pattern ... ");
4025
4026 /* If we haven't matched the entire string, and we want the
4027 longest match, try backtracking. */
4028 if (d != end_match_2)
dd3b648e 4029 {
9f85ab1a
JM
4030 /* 1 if this match ends in the same string (string1 or string2)
4031 as the best previous match. */
4032 boolean same_str_p = (FIRST_STRING_P (match_end)
4033 == MATCHING_IN_FIRST_STRING);
4034 /* 1 if this match is the best seen so far. */
4035 boolean best_match_p;
4036
4037 /* AIX compiler got confused when this was combined
4038 with the previous declaration. */
4039 if (same_str_p)
4040 best_match_p = d > match_end;
4041 else
4042 best_match_p = !MATCHING_IN_FIRST_STRING;
4043
4044 DEBUG_PRINT1 ("backtracking.\n");
4045
4046 if (!FAIL_STACK_EMPTY ())
4047 { /* More failure points to try. */
4048
4049 /* If exceeds best match so far, save it. */
4050 if (!best_regs_set || best_match_p)
4051 {
4052 best_regs_set = true;
4053 match_end = d;
4054
4055 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4056
4057 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4058 {
4059 best_regstart[mcnt] = regstart[mcnt];
4060 best_regend[mcnt] = regend[mcnt];
4061 }
4062 }
4063 goto fail;
4064 }
4065
4066 /* If no failure points, don't restore garbage. And if
4067 last match is real best match, don't restore second
4068 best one. */
4069 else if (best_regs_set && !best_match_p)
4070 {
4071 restore_best_regs:
4072 /* Restore best match. It may happen that `dend ==
4073 end_match_1' while the restored d is in string2.
4074 For example, the pattern `x.*y.*z' against the
4075 strings `x-' and `y-z-', if the two strings are
4076 not consecutive in memory. */
4077 DEBUG_PRINT1 ("Restoring best registers.\n");
4078
4079 d = match_end;
4080 dend = ((d >= string1 && d <= end1)
4081 ? end_match_1 : end_match_2);
4082
4083 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
dd3b648e 4084 {
9f85ab1a
JM
4085 regstart[mcnt] = best_regstart[mcnt];
4086 regend[mcnt] = best_regend[mcnt];
dd3b648e 4087 }
9f85ab1a
JM
4088 }
4089 } /* d != end_match_2 */
4090
4091 succeed_label:
4092 DEBUG_PRINT1 ("Accepting match.\n");
4093
4094 /* If caller wants register contents data back, do it. */
4095 if (regs && !bufp->no_sub)
4096 {
4097 /* Have the register data arrays been allocated? */
4098 if (bufp->regs_allocated == REGS_UNALLOCATED)
4099 { /* No. So allocate them with malloc. We need one
4100 extra element beyond `num_regs' for the `-1' marker
4101 GNU code uses. */
4102 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4103 regs->start = TALLOC (regs->num_regs, regoff_t);
4104 regs->end = TALLOC (regs->num_regs, regoff_t);
4105 if (regs->start == NULL || regs->end == NULL)
4106 {
4107 FREE_VARIABLES ();
4108 return -2;
4109 }
4110 bufp->regs_allocated = REGS_REALLOCATE;
4111 }
4112 else if (bufp->regs_allocated == REGS_REALLOCATE)
4113 { /* Yes. If we need more elements than were already
4114 allocated, reallocate them. If we need fewer, just
4115 leave it alone. */
4116 if (regs->num_regs < num_regs + 1)
4117 {
4118 regs->num_regs = num_regs + 1;
4119 RETALLOC (regs->start, regs->num_regs, regoff_t);
4120 RETALLOC (regs->end, regs->num_regs, regoff_t);
4121 if (regs->start == NULL || regs->end == NULL)
4122 {
4123 FREE_VARIABLES ();
4124 return -2;
4125 }
4126 }
4127 }
4128 else
4129 {
4130 /* These braces fend off a "empty body in an else-statement"
4131 warning under GCC when assert expands to nothing. */
4132 assert (bufp->regs_allocated == REGS_FIXED);
4133 }
4134
4135 /* Convert the pointer data in `regstart' and `regend' to
4136 indices. Register zero has to be set differently,
4137 since we haven't kept track of any info for it. */
4138 if (regs->num_regs > 0)
4139 {
4140 regs->start[0] = pos;
4141 regs->end[0] = (MATCHING_IN_FIRST_STRING
4142 ? ((regoff_t) (d - string1))
4143 : ((regoff_t) (d - string2 + size1)));
4144 }
4145
4146 /* Go through the first `min (num_regs, regs->num_regs)'
4147 registers, since that is all we initialized. */
4148 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4149 mcnt++)
4150 {
4151 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4152 regs->start[mcnt] = regs->end[mcnt] = -1;
4153 else
4154 {
4155 regs->start[mcnt]
4156 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4157 regs->end[mcnt]
4158 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4159 }
4160 }
4161
4162 /* If the regs structure we return has more elements than
4163 were in the pattern, set the extra elements to -1. If
4164 we (re)allocated the registers, this is the case,
4165 because we always allocate enough to have at least one
4166 -1 at the end. */
4167 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4168 regs->start[mcnt] = regs->end[mcnt] = -1;
4169 } /* regs && !bufp->no_sub */
4170
4171 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4172 nfailure_points_pushed, nfailure_points_popped,
4173 nfailure_points_pushed - nfailure_points_popped);
4174 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4175
4176 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4177 ? string1
4178 : string2 - size1);
4179
4180 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4181
4182 FREE_VARIABLES ();
4183 return mcnt;
4184 }
4185
4186 /* Otherwise match next pattern command. */
4187 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4188 {
4189 /* Ignore these. Used to ignore the n of succeed_n's which
4190 currently have n == 0. */
4191 case no_op:
4192 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4193 break;
4194
4195 case succeed:
4196 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4197 goto succeed_label;
4198
4199 /* Match the next n pattern characters exactly. The following
4200 byte in the pattern defines n, and the n bytes after that
4201 are the characters to match. */
4202 case exactn:
4203 mcnt = *p++;
4204 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4205
4206 /* This is written out as an if-else so we don't waste time
4207 testing `translate' inside the loop. */
4208 if (translate)
4209 {
4210 do
4211 {
4212 PREFETCH ();
4213 if ((unsigned char) translate[(unsigned char) *d++]
4214 != (unsigned char) *p++)
4215 goto fail;
dd3b648e 4216 }
9f85ab1a 4217 while (--mcnt);
dd3b648e 4218 }
dd3b648e 4219 else
9f85ab1a
JM
4220 {
4221 do
4222 {
4223 PREFETCH ();
4224 if (*d++ != (char) *p++) goto fail;
4225 }
4226 while (--mcnt);
4227 }
4228 SET_REGS_MATCHED ();
4229 break;
dd3b648e 4230
dd3b648e 4231
9f85ab1a
JM
4232 /* Match any character except possibly a newline or a null. */
4233 case anychar:
4234 DEBUG_PRINT1 ("EXECUTING anychar.\n");
dd3b648e 4235
9f85ab1a
JM
4236 PREFETCH ();
4237
4238 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4239 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4240 goto fail;
4241
4242 SET_REGS_MATCHED ();
4243 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4244 d++;
dd3b648e
RP
4245 break;
4246
9f85ab1a
JM
4247
4248 case charset:
4249 case charset_not:
4250 {
4251 register unsigned char c;
4252 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4253
4254 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4255
4256 PREFETCH ();
4257 c = TRANSLATE (*d); /* The character to match. */
4258
4259 /* Cast to `unsigned' instead of `unsigned char' in case the
4260 bit list is a full 32 bytes long. */
4261 if (c < (unsigned) (*p * BYTEWIDTH)
4262 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4263 not = !not;
4264
4265 p += 1 + *p;
4266
4267 if (!not) goto fail;
4268
4269 SET_REGS_MATCHED ();
4270 d++;
4271 break;
4272 }
4273
4274
4275 /* The beginning of a group is represented by start_memory.
4276 The arguments are the register number in the next byte, and the
4277 number of groups inner to this one in the next. The text
4278 matched within the group is recorded (in the internal
4279 registers data structure) under the register number. */
4280 case start_memory:
4281 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4282
4283 /* Find out if this group can match the empty string. */
4284 p1 = p; /* To send to group_match_null_string_p. */
4285
4286 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4287 REG_MATCH_NULL_STRING_P (reg_info[*p])
4288 = group_match_null_string_p (&p1, pend, reg_info);
4289
4290 /* Save the position in the string where we were the last time
4291 we were at this open-group operator in case the group is
4292 operated upon by a repetition operator, e.g., with `(a*)*b'
4293 against `ab'; then we want to ignore where we are now in
4294 the string in case this attempt to match fails. */
4295 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4296 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4297 : regstart[*p];
4298 DEBUG_PRINT2 (" old_regstart: %d\n",
4299 POINTER_TO_OFFSET (old_regstart[*p]));
4300
4301 regstart[*p] = d;
4302 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4303
4304 IS_ACTIVE (reg_info[*p]) = 1;
4305 MATCHED_SOMETHING (reg_info[*p]) = 0;
4306
4307 /* Clear this whenever we change the register activity status. */
4308 set_regs_matched_done = 0;
4309
4310 /* This is the new highest active register. */
4311 highest_active_reg = *p;
4312
4313 /* If nothing was active before, this is the new lowest active
4314 register. */
4315 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4316 lowest_active_reg = *p;
4317
4318 /* Move past the register number and inner group count. */
4319 p += 2;
4320 just_past_start_mem = p;
4321
4322 break;
4323
4324
4325 /* The stop_memory opcode represents the end of a group. Its
4326 arguments are the same as start_memory's: the register
4327 number, and the number of inner groups. */
dd3b648e 4328 case stop_memory:
9f85ab1a
JM
4329 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4330
4331 /* We need to save the string position the last time we were at
4332 this close-group operator in case the group is operated
4333 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4334 against `aba'; then we want to ignore where we are now in
4335 the string in case this attempt to match fails. */
4336 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4337 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4338 : regend[*p];
4339 DEBUG_PRINT2 (" old_regend: %d\n",
4340 POINTER_TO_OFFSET (old_regend[*p]));
4341
4342 regend[*p] = d;
4343 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4344
4345 /* This register isn't active anymore. */
4346 IS_ACTIVE (reg_info[*p]) = 0;
4347
4348 /* Clear this whenever we change the register activity status. */
4349 set_regs_matched_done = 0;
4350
4351 /* If this was the only register active, nothing is active
4352 anymore. */
4353 if (lowest_active_reg == highest_active_reg)
4354 {
4355 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4356 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4357 }
4358 else
4359 { /* We must scan for the new highest active register, since
4360 it isn't necessarily one less than now: consider
4361 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4362 new highest active register is 1. */
4363 unsigned char r = *p - 1;
4364 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4365 r--;
4366
4367 /* If we end up at register zero, that means that we saved
4368 the registers as the result of an `on_failure_jump', not
4369 a `start_memory', and we jumped to past the innermost
4370 `stop_memory'. For example, in ((.)*) we save
4371 registers 1 and 2 as a result of the *, but when we pop
4372 back to the second ), we are at the stop_memory 1.
4373 Thus, nothing is active. */
4374 if (r == 0)
4375 {
4376 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4377 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4378 }
4379 else
4380 highest_active_reg = r;
4381 }
4382
4383 /* If just failed to match something this time around with a
4384 group that's operated on by a repetition operator, try to
4385 force exit from the ``loop'', and restore the register
4386 information for this group that we had before trying this
4387 last match. */
4388 if ((!MATCHED_SOMETHING (reg_info[*p])
4389 || just_past_start_mem == p - 1)
4390 && (p + 2) < pend)
4391 {
4392 boolean is_a_jump_n = false;
4393
4394 p1 = p + 2;
4395 mcnt = 0;
4396 switch ((re_opcode_t) *p1++)
4397 {
4398 case jump_n:
4399 is_a_jump_n = true;
4400 case pop_failure_jump:
4401 case maybe_pop_jump:
4402 case jump:
4403 case dummy_failure_jump:
4404 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4405 if (is_a_jump_n)
4406 p1 += 2;
4407 break;
4408
4409 default:
4410 /* do nothing */ ;
4411 }
4412 p1 += mcnt;
4413
4414 /* If the next operation is a jump backwards in the pattern
4415 to an on_failure_jump right before the start_memory
4416 corresponding to this stop_memory, exit from the loop
4417 by forcing a failure after pushing on the stack the
4418 on_failure_jump's jump in the pattern, and d. */
4419 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4420 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4421 {
4422 /* If this group ever matched anything, then restore
4423 what its registers were before trying this last
4424 failed match, e.g., with `(a*)*b' against `ab' for
4425 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4426 against `aba' for regend[3].
dd3b648e 4427
9f85ab1a
JM
4428 Also restore the registers for inner groups for,
4429 e.g., `((a*)(b*))*' against `aba' (register 3 would
4430 otherwise get trashed). */
4431
4432 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4433 {
4434 unsigned r;
4435
4436 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4437
4438 /* Restore this and inner groups' (if any) registers. */
4439 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4440 r++)
4441 {
4442 regstart[r] = old_regstart[r];
4443
4444 /* xx why this test? */
4445 if (old_regend[r] >= regstart[r])
4446 regend[r] = old_regend[r];
4447 }
4448 }
4449 p1++;
4450 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4451 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4452
4453 goto fail;
4454 }
4455 }
4456
4457 /* Move past the register number and the inner group count. */
4458 p += 2;
4459 break;
4460
4461
4462 /* \<digit> has been turned into a `duplicate' command which is
4463 followed by the numeric value of <digit> as the register number. */
4464 case duplicate:
dd3b648e 4465 {
9f85ab1a
JM
4466 register const char *d2, *dend2;
4467 int regno = *p++; /* Get which register to match against. */
4468 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4469
4470 /* Can't back reference a group which we've never matched. */
4471 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4472 goto fail;
4473
4474 /* Where in input to try to start matching. */
4475 d2 = regstart[regno];
4476
4477 /* Where to stop matching; if both the place to start and
4478 the place to stop matching are in the same string, then
4479 set to the place to stop, otherwise, for now have to use
4480 the end of the first string. */
dd3b648e 4481
9f85ab1a
JM
4482 dend2 = ((FIRST_STRING_P (regstart[regno])
4483 == FIRST_STRING_P (regend[regno]))
dd3b648e 4484 ? regend[regno] : end_match_1);
9f85ab1a 4485 for (;;)
dd3b648e 4486 {
9f85ab1a
JM
4487 /* If necessary, advance to next segment in register
4488 contents. */
dd3b648e
RP
4489 while (d2 == dend2)
4490 {
4491 if (dend2 == end_match_2) break;
4492 if (dend2 == regend[regno]) break;
9f85ab1a
JM
4493
4494 /* End of string1 => advance to string2. */
4495 d2 = string2;
4496 dend2 = regend[regno];
dd3b648e
RP
4497 }
4498 /* At end of register contents => success */
4499 if (d2 == dend2) break;
4500
9f85ab1a
JM
4501 /* If necessary, advance to next segment in data. */
4502 PREFETCH ();
dd3b648e 4503
9f85ab1a 4504 /* How many characters left in this segment to match. */
dd3b648e 4505 mcnt = dend - d;
9f85ab1a
JM
4506
4507 /* Want how many consecutive characters we can match in
4508 one shot, so, if necessary, adjust the count. */
4509 if (mcnt > dend2 - d2)
dd3b648e 4510 mcnt = dend2 - d2;
9f85ab1a
JM
4511
4512 /* Compare that many; failure if mismatch, else move
4513 past them. */
4514 if (translate
4515 ? bcmp_translate (d, d2, mcnt, translate)
4516 : memcmp (d, d2, mcnt))
dd3b648e
RP
4517 goto fail;
4518 d += mcnt, d2 += mcnt;
9f85ab1a
JM
4519
4520 /* Do this because we've match some characters. */
4521 SET_REGS_MATCHED ();
dd3b648e
RP
4522 }
4523 }
4524 break;
4525
dd3b648e 4526
9f85ab1a
JM
4527 /* begline matches the empty string at the beginning of the string
4528 (unless `not_bol' is set in `bufp'), and, if
4529 `newline_anchor' is set, after newlines. */
4530 case begline:
4531 DEBUG_PRINT1 ("EXECUTING begline.\n");
dd3b648e 4532
9f85ab1a
JM
4533 if (AT_STRINGS_BEG (d))
4534 {
4535 if (!bufp->not_bol) break;
4536 }
4537 else if (d[-1] == '\n' && bufp->newline_anchor)
4538 {
4539 break;
4540 }
4541 /* In all other cases, we fail. */
4542 goto fail;
dd3b648e 4543
dd3b648e 4544
9f85ab1a
JM
4545 /* endline is the dual of begline. */
4546 case endline:
4547 DEBUG_PRINT1 ("EXECUTING endline.\n");
4548
4549 if (AT_STRINGS_END (d))
4550 {
4551 if (!bufp->not_eol) break;
4552 }
4553
4554 /* We have to ``prefetch'' the next character. */
4555 else if ((d == end1 ? *string2 : *d) == '\n'
4556 && bufp->newline_anchor)
4557 {
4558 break;
4559 }
4560 goto fail;
4561
4562
4563 /* Match at the very beginning of the data. */
4564 case begbuf:
4565 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4566 if (AT_STRINGS_BEG (d))
4567 break;
4568 goto fail;
4569
4570
4571 /* Match at the very end of the data. */
4572 case endbuf:
4573 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4574 if (AT_STRINGS_END (d))
4575 break;
4576 goto fail;
4577
4578
4579 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4580 pushes NULL as the value for the string on the stack. Then
4581 `pop_failure_point' will keep the current value for the
4582 string, instead of restoring it. To see why, consider
4583 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4584 then the . fails against the \n. But the next thing we want
4585 to do is match the \n against the \n; if we restored the
4586 string value, we would be back at the foo.
4587
4588 Because this is used only in specific cases, we don't need to
4589 check all the things that `on_failure_jump' does, to make
4590 sure the right things get saved on the stack. Hence we don't
4591 share its code. The only reason to push anything on the
4592 stack at all is that otherwise we would have to change
4593 `anychar's code to do something besides goto fail in this
4594 case; that seems worse than this. */
4595 case on_failure_keep_string_jump:
4596 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4597
4598 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4599#ifdef _LIBC
4600 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4601#else
4602 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4603#endif
dd3b648e 4604
9f85ab1a
JM
4605 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4606 break;
dd3b648e 4607
dd3b648e 4608
9f85ab1a 4609 /* Uses of on_failure_jump:
dd3b648e 4610
9f85ab1a
JM
4611 Each alternative starts with an on_failure_jump that points
4612 to the beginning of the next alternative. Each alternative
4613 except the last ends with a jump that in effect jumps past
4614 the rest of the alternatives. (They really jump to the
4615 ending jump of the following alternative, because tensioning
4616 these jumps is a hassle.)
dd3b648e 4617
9f85ab1a
JM
4618 Repeats start with an on_failure_jump that points past both
4619 the repetition text and either the following jump or
4620 pop_failure_jump back to this on_failure_jump. */
4621 case on_failure_jump:
4622 on_failure:
4623 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
dd3b648e 4624
9f85ab1a
JM
4625 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4626#ifdef _LIBC
4627 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4628#else
4629 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4630#endif
dd3b648e 4631
9f85ab1a
JM
4632 /* If this on_failure_jump comes right before a group (i.e.,
4633 the original * applied to a group), save the information
4634 for that group and all inner ones, so that if we fail back
4635 to this point, the group's information will be correct.
4636 For example, in \(a*\)*\1, we need the preceding group,
4637 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4638
4639 /* We can't use `p' to check ahead because we push
4640 a failure point to `p + mcnt' after we do this. */
4641 p1 = p;
4642
4643 /* We need to skip no_op's before we look for the
4644 start_memory in case this on_failure_jump is happening as
4645 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4646 against aba. */
4647 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4648 p1++;
4649
4650 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4651 {
4652 /* We have a new highest active register now. This will
4653 get reset at the start_memory we are about to get to,
4654 but we will have saved all the registers relevant to
4655 this repetition op, as described above. */
4656 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4657 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4658 lowest_active_reg = *(p1 + 1);
4659 }
4660
4661 DEBUG_PRINT1 (":\n");
4662 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4663 break;
4664
4665
4666 /* A smart repeat ends with `maybe_pop_jump'.
4667 We change it to either `pop_failure_jump' or `jump'. */
4668 case maybe_pop_jump:
4669 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4670 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4671 {
4672 register unsigned char *p2 = p;
dd3b648e 4673
9f85ab1a
JM
4674 /* Compare the beginning of the repeat with what in the
4675 pattern follows its end. If we can establish that there
4676 is nothing that they would both match, i.e., that we
4677 would have to backtrack because of (as in, e.g., `a*a')
4678 then we can change to pop_failure_jump, because we'll
4679 never have to backtrack.
4680
4681 This is not true in the case of alternatives: in
4682 `(a|ab)*' we do need to backtrack to the `ab' alternative
4683 (e.g., if the string was `ab'). But instead of trying to
4684 detect that here, the alternative has put on a dummy
4685 failure point which is what we will end up popping. */
4686
4687 /* Skip over open/close-group commands.
4688 If what follows this loop is a ...+ construct,
4689 look at what begins its body, since we will have to
4690 match at least one of that. */
4691 while (1)
4692 {
4693 if (p2 + 2 < pend
4694 && ((re_opcode_t) *p2 == stop_memory
4695 || (re_opcode_t) *p2 == start_memory))
4696 p2 += 3;
4697 else if (p2 + 6 < pend
4698 && (re_opcode_t) *p2 == dummy_failure_jump)
4699 p2 += 6;
4700 else
4701 break;
4702 }
dd3b648e 4703
9f85ab1a
JM
4704 p1 = p + mcnt;
4705 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4706 to the `maybe_finalize_jump' of this case. Examine what
4707 follows. */
dd3b648e 4708
9f85ab1a
JM
4709 /* If we're at the end of the pattern, we can change. */
4710 if (p2 == pend)
4711 {
4712 /* Consider what happens when matching ":\(.*\)"
4713 against ":/". I don't really understand this code
4714 yet. */
4715 p[-3] = (unsigned char) pop_failure_jump;
4716 DEBUG_PRINT1
4717 (" End of pattern: change to `pop_failure_jump'.\n");
4718 }
4719
4720 else if ((re_opcode_t) *p2 == exactn
4721 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
dd3b648e 4722 {
9f85ab1a
JM
4723 register unsigned char c
4724 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4725
4726 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4727 {
4728 p[-3] = (unsigned char) pop_failure_jump;
4729 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4730 c, p1[5]);
4731 }
4732
4733 else if ((re_opcode_t) p1[3] == charset
4734 || (re_opcode_t) p1[3] == charset_not)
dd3b648e 4735 {
9f85ab1a
JM
4736 int not = (re_opcode_t) p1[3] == charset_not;
4737
4738 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
dd3b648e
RP
4739 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4740 not = !not;
9f85ab1a
JM
4741
4742 /* `not' is equal to 1 if c would match, which means
4743 that we can't change to pop_failure_jump. */
dd3b648e 4744 if (!not)
9f85ab1a
JM
4745 {
4746 p[-3] = (unsigned char) pop_failure_jump;
4747 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4748 }
4749 }
4750 }
4751 else if ((re_opcode_t) *p2 == charset)
4752 {
4753#ifdef DEBUG
4754 register unsigned char c
4755 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4756#endif
4757
4758#if 0
4759 if ((re_opcode_t) p1[3] == exactn
4760 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4761 && (p2[2 + p1[5] / BYTEWIDTH]
4762 & (1 << (p1[5] % BYTEWIDTH)))))
4763#else
4764 if ((re_opcode_t) p1[3] == exactn
4765 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4766 && (p2[2 + p1[4] / BYTEWIDTH]
4767 & (1 << (p1[4] % BYTEWIDTH)))))
4768#endif
4769 {
4770 p[-3] = (unsigned char) pop_failure_jump;
4771 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4772 c, p1[5]);
4773 }
4774
4775 else if ((re_opcode_t) p1[3] == charset_not)
4776 {
4777 int idx;
4778 /* We win if the charset_not inside the loop
4779 lists every character listed in the charset after. */
4780 for (idx = 0; idx < (int) p2[1]; idx++)
4781 if (! (p2[2 + idx] == 0
4782 || (idx < (int) p1[4]
4783 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4784 break;
4785
4786 if (idx == p2[1])
4787 {
4788 p[-3] = (unsigned char) pop_failure_jump;
4789 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4790 }
4791 }
4792 else if ((re_opcode_t) p1[3] == charset)
4793 {
4794 int idx;
4795 /* We win if the charset inside the loop
4796 has no overlap with the one after the loop. */
4797 for (idx = 0;
4798 idx < (int) p2[1] && idx < (int) p1[4];
4799 idx++)
4800 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4801 break;
4802
4803 if (idx == p2[1] || idx == p1[4])
4804 {
4805 p[-3] = (unsigned char) pop_failure_jump;
4806 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4807 }
dd3b648e
RP
4808 }
4809 }
4810 }
9f85ab1a
JM
4811 p -= 2; /* Point at relative address again. */
4812 if ((re_opcode_t) p[-1] != pop_failure_jump)
dd3b648e
RP
4813 {
4814 p[-1] = (unsigned char) jump;
9f85ab1a
JM
4815 DEBUG_PRINT1 (" Match => jump.\n");
4816 goto unconditional_jump;
dd3b648e 4817 }
9f85ab1a
JM
4818 /* Note fall through. */
4819
4820
4821 /* The end of a simple repeat has a pop_failure_jump back to
4822 its matching on_failure_jump, where the latter will push a
4823 failure point. The pop_failure_jump takes off failure
4824 points put on by this pop_failure_jump's matching
4825 on_failure_jump; we got through the pattern to here from the
4826 matching on_failure_jump, so didn't fail. */
4827 case pop_failure_jump:
4828 {
4829 /* We need to pass separate storage for the lowest and
4830 highest registers, even though we don't care about the
4831 actual values. Otherwise, we will restore only one
4832 register from the stack, since lowest will == highest in
4833 `pop_failure_point'. */
4834 active_reg_t dummy_low_reg, dummy_high_reg;
4835 unsigned char *pdummy;
4836 const char *sdummy;
4837
4838 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4839 POP_FAILURE_POINT (sdummy, pdummy,
4840 dummy_low_reg, dummy_high_reg,
4841 reg_dummy, reg_dummy, reg_info_dummy);
4842 }
4843 /* Note fall through. */
4844
4845 unconditional_jump:
4846#ifdef _LIBC
4847 DEBUG_PRINT2 ("\n%p: ", p);
4848#else
4849 DEBUG_PRINT2 ("\n0x%x: ", p);
4850#endif
4851 /* Note fall through. */
4852
4853 /* Unconditionally jump (without popping any failure points). */
4854 case jump:
4855 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4856 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4857 p += mcnt; /* Do the jump. */
4858#ifdef _LIBC
4859 DEBUG_PRINT2 ("(to %p).\n", p);
4860#else
4861 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4862#endif
4863 break;
dd3b648e 4864
dd3b648e 4865
9f85ab1a
JM
4866 /* We need this opcode so we can detect where alternatives end
4867 in `group_match_null_string_p' et al. */
4868 case jump_past_alt:
4869 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4870 goto unconditional_jump;
4871
4872
4873 /* Normally, the on_failure_jump pushes a failure point, which
4874 then gets popped at pop_failure_jump. We will end up at
4875 pop_failure_jump, also, and with a pattern of, say, `a+', we
4876 are skipping over the on_failure_jump, so we have to push
4877 something meaningless for pop_failure_jump to pop. */
4878 case dummy_failure_jump:
4879 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4880 /* It doesn't matter what we push for the string here. What
4881 the code at `fail' tests is the value for the pattern. */
4882 PUSH_FAILURE_POINT (NULL, NULL, -2);
4883 goto unconditional_jump;
4884
4885
4886 /* At the end of an alternative, we need to push a dummy failure
4887 point in case we are followed by a `pop_failure_jump', because
4888 we don't want the failure point for the alternative to be
4889 popped. For example, matching `(a|ab)*' against `aab'
4890 requires that we match the `ab' alternative. */
4891 case push_dummy_failure:
4892 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4893 /* See comments just above at `dummy_failure_jump' about the
4894 two zeroes. */
4895 PUSH_FAILURE_POINT (NULL, NULL, -2);
4896 break;
4897
4898 /* Have to succeed matching what follows at least n times.
4899 After that, handle like `on_failure_jump'. */
4900 case succeed_n:
4901 EXTRACT_NUMBER (mcnt, p + 2);
4902 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4903
4904 assert (mcnt >= 0);
4905 /* Originally, this is how many times we HAVE to succeed. */
4906 if (mcnt > 0)
4907 {
4908 mcnt--;
4909 p += 2;
4910 STORE_NUMBER_AND_INCR (p, mcnt);
4911#ifdef _LIBC
4912 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4913#else
4914 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4915#endif
4916 }
4917 else if (mcnt == 0)
4918 {
4919#ifdef _LIBC
4920 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4921#else
4922 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4923#endif
4924 p[2] = (unsigned char) no_op;
4925 p[3] = (unsigned char) no_op;
4926 goto on_failure;
4927 }
4928 break;
4929
4930 case jump_n:
4931 EXTRACT_NUMBER (mcnt, p + 2);
4932 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4933
4934 /* Originally, this is how many times we CAN jump. */
4935 if (mcnt)
4936 {
4937 mcnt--;
4938 STORE_NUMBER (p + 2, mcnt);
4939#ifdef _LIBC
4940 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4941#else
4942 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4943#endif
4944 goto unconditional_jump;
4945 }
4946 /* If don't have to jump any more, skip over the rest of command. */
4947 else
4948 p += 4;
4949 break;
4950
4951 case set_number_at:
4952 {
4953 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
dd3b648e 4954
9f85ab1a
JM
4955 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4956 p1 = p + mcnt;
4957 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4958#ifdef _LIBC
4959 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4960#else
4961 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4962#endif
4963 STORE_NUMBER (p1, mcnt);
4964 break;
4965 }
dd3b648e 4966
9f85ab1a
JM
4967#if 0
4968 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4969 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4970 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4971 macro and introducing temporary variables works around the bug. */
dd3b648e
RP
4972
4973 case wordbound:
9f85ab1a
JM
4974 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4975 if (AT_WORD_BOUNDARY (d))
dd3b648e
RP
4976 break;
4977 goto fail;
4978
4979 case notwordbound:
9f85ab1a
JM
4980 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4981 if (AT_WORD_BOUNDARY (d))
dd3b648e
RP
4982 goto fail;
4983 break;
9f85ab1a
JM
4984#else
4985 case wordbound:
4986 {
4987 boolean prevchar, thischar;
dd3b648e 4988
9f85ab1a
JM
4989 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4990 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
dd3b648e 4991 break;
dd3b648e 4992
9f85ab1a
JM
4993 prevchar = WORDCHAR_P (d - 1);
4994 thischar = WORDCHAR_P (d);
4995 if (prevchar != thischar)
dd3b648e
RP
4996 break;
4997 goto fail;
9f85ab1a 4998 }
dd3b648e 4999
9f85ab1a
JM
5000 case notwordbound:
5001 {
5002 boolean prevchar, thischar;
dd3b648e 5003
9f85ab1a
JM
5004 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5005 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
dd3b648e 5006 goto fail;
dd3b648e 5007
9f85ab1a
JM
5008 prevchar = WORDCHAR_P (d - 1);
5009 thischar = WORDCHAR_P (d);
5010 if (prevchar != thischar)
dd3b648e
RP
5011 goto fail;
5012 break;
9f85ab1a
JM
5013 }
5014#endif
dd3b648e 5015
9f85ab1a
JM
5016 case wordbeg:
5017 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5018 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5019 break;
5020 goto fail;
5021
5022 case wordend:
5023 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5024 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5025 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5026 break;
5027 goto fail;
5028
5029#ifdef emacs
5030 case before_dot:
5031 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5032 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5033 goto fail;
5034 break;
5035
5036 case at_dot:
5037 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5038 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5039 goto fail;
5040 break;
5041
5042 case after_dot:
5043 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5044 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5045 goto fail;
5046 break;
dd3b648e
RP
5047
5048 case syntaxspec:
9f85ab1a 5049 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
dd3b648e 5050 mcnt = *p++;
9f85ab1a
JM
5051 goto matchsyntax;
5052
5053 case wordchar:
5054 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
dd3b648e 5055 mcnt = (int) Sword;
9f85ab1a
JM
5056 matchsyntax:
5057 PREFETCH ();
5058 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5059 d++;
5060 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5061 goto fail;
5062 SET_REGS_MATCHED ();
5063 break;
dd3b648e
RP
5064
5065 case notsyntaxspec:
9f85ab1a 5066 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
dd3b648e 5067 mcnt = *p++;
9f85ab1a
JM
5068 goto matchnotsyntax;
5069
5070 case notwordchar:
5071 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5072 mcnt = (int) Sword;
5073 matchnotsyntax:
5074 PREFETCH ();
5075 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5076 d++;
5077 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5078 goto fail;
5079 SET_REGS_MATCHED ();
5080 break;
5081
5082#else /* not emacs */
dd3b648e 5083 case wordchar:
9f85ab1a
JM
5084 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5085 PREFETCH ();
5086 if (!WORDCHAR_P (d))
5087 goto fail;
5088 SET_REGS_MATCHED ();
5089 d++;
dd3b648e 5090 break;
9f85ab1a 5091
dd3b648e 5092 case notwordchar:
9f85ab1a
JM
5093 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5094 PREFETCH ();
5095 if (WORDCHAR_P (d))
5096 goto fail;
5097 SET_REGS_MATCHED ();
5098 d++;
dd3b648e
RP
5099 break;
5100#endif /* not emacs */
5101
9f85ab1a
JM
5102 default:
5103 abort ();
5104 }
5105 continue; /* Successfully executed one pattern command; keep going. */
dd3b648e 5106
dd3b648e 5107
9f85ab1a
JM
5108 /* We goto here if a matching operation fails. */
5109 fail:
5110 if (!FAIL_STACK_EMPTY ())
5111 { /* A restart point is known. Restore to that state. */
5112 DEBUG_PRINT1 ("\nFAIL:\n");
5113 POP_FAILURE_POINT (d, p,
5114 lowest_active_reg, highest_active_reg,
5115 regstart, regend, reg_info);
5116
5117 /* If this failure point is a dummy, try the next one. */
5118 if (!p)
5119 goto fail;
5120
5121 /* If we failed to the end of the pattern, don't examine *p. */
5122 assert (p <= pend);
5123 if (p < pend)
5124 {
5125 boolean is_a_jump_n = false;
5126
5127 /* If failed to a backwards jump that's part of a repetition
5128 loop, need to pop this failure point and use the next one. */
5129 switch ((re_opcode_t) *p)
5130 {
5131 case jump_n:
5132 is_a_jump_n = true;
5133 case maybe_pop_jump:
5134 case pop_failure_jump:
5135 case jump:
5136 p1 = p + 1;
5137 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5138 p1 += mcnt;
5139
5140 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5141 || (!is_a_jump_n
5142 && (re_opcode_t) *p1 == on_failure_jump))
5143 goto fail;
5144 break;
5145 default:
5146 /* do nothing */ ;
5147 }
5148 }
5149
5150 if (d >= string1 && d <= end1)
5151 dend = end_match_1;
5152 }
5153 else
5154 break; /* Matching at this starting point really fails. */
5155 } /* for (;;) */
5156
5157 if (best_regs_set)
5158 goto restore_best_regs;
5159
5160 FREE_VARIABLES ();
5161
5162 return -1; /* Failure to match. */
5163} /* re_match_2 */
5164\f
5165/* Subroutine definitions for re_match_2. */
5166
5167
5168/* We are passed P pointing to a register number after a start_memory.
5169
5170 Return true if the pattern up to the corresponding stop_memory can
5171 match the empty string, and false otherwise.
5172
5173 If we find the matching stop_memory, sets P to point to one past its number.
5174 Otherwise, sets P to an undefined byte less than or equal to END.
5175
5176 We don't handle duplicates properly (yet). */
5177
5178static boolean
5179group_match_null_string_p (p, end, reg_info)
5180 unsigned char **p, *end;
5181 register_info_type *reg_info;
5182{
5183 int mcnt;
5184 /* Point to after the args to the start_memory. */
5185 unsigned char *p1 = *p + 2;
5186
5187 while (p1 < end)
5188 {
5189 /* Skip over opcodes that can match nothing, and return true or
5190 false, as appropriate, when we get to one that can't, or to the
5191 matching stop_memory. */
5192
5193 switch ((re_opcode_t) *p1)
5194 {
5195 /* Could be either a loop or a series of alternatives. */
5196 case on_failure_jump:
5197 p1++;
5198 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5199
5200 /* If the next operation is not a jump backwards in the
5201 pattern. */
5202
5203 if (mcnt >= 0)
dd3b648e 5204 {
9f85ab1a
JM
5205 /* Go through the on_failure_jumps of the alternatives,
5206 seeing if any of the alternatives cannot match nothing.
5207 The last alternative starts with only a jump,
5208 whereas the rest start with on_failure_jump and end
5209 with a jump, e.g., here is the pattern for `a|b|c':
5210
5211 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5212 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5213 /exactn/1/c
5214
5215 So, we have to first go through the first (n-1)
5216 alternatives and then deal with the last one separately. */
5217
5218
5219 /* Deal with the first (n-1) alternatives, which start
5220 with an on_failure_jump (see above) that jumps to right
5221 past a jump_past_alt. */
5222
5223 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5224 {
5225 /* `mcnt' holds how many bytes long the alternative
5226 is, including the ending `jump_past_alt' and
5227 its number. */
5228
5229 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5230 reg_info))
5231 return false;
5232
5233 /* Move to right after this alternative, including the
5234 jump_past_alt. */
5235 p1 += mcnt;
5236
5237 /* Break if it's the beginning of an n-th alternative
5238 that doesn't begin with an on_failure_jump. */
5239 if ((re_opcode_t) *p1 != on_failure_jump)
5240 break;
5241
5242 /* Still have to check that it's not an n-th
5243 alternative that starts with an on_failure_jump. */
5244 p1++;
5245 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5246 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5247 {
5248 /* Get to the beginning of the n-th alternative. */
5249 p1 -= 3;
5250 break;
5251 }
5252 }
5253
5254 /* Deal with the last alternative: go back and get number
5255 of the `jump_past_alt' just before it. `mcnt' contains
5256 the length of the alternative. */
5257 EXTRACT_NUMBER (mcnt, p1 - 2);
5258
5259 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5260 return false;
5261
5262 p1 += mcnt; /* Get past the n-th alternative. */
5263 } /* if mcnt > 0 */
5264 break;
5265
5266
5267 case stop_memory:
5268 assert (p1[1] == **p);
5269 *p = p1 + 2;
5270 return true;
5271
5272
5273 default:
5274 if (!common_op_match_null_string_p (&p1, end, reg_info))
5275 return false;
5276 }
5277 } /* while p1 < end */
5278
5279 return false;
5280} /* group_match_null_string_p */
5281
5282
5283/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5284 It expects P to be the first byte of a single alternative and END one
5285 byte past the last. The alternative can contain groups. */
5286
5287static boolean
5288alt_match_null_string_p (p, end, reg_info)
5289 unsigned char *p, *end;
5290 register_info_type *reg_info;
5291{
5292 int mcnt;
5293 unsigned char *p1 = p;
5294
5295 while (p1 < end)
5296 {
5297 /* Skip over opcodes that can match nothing, and break when we get
5298 to one that can't. */
5299
5300 switch ((re_opcode_t) *p1)
5301 {
5302 /* It's a loop. */
5303 case on_failure_jump:
5304 p1++;
5305 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5306 p1 += mcnt;
5307 break;
5308
6b14af2b 5309 default:
9f85ab1a
JM
5310 if (!common_op_match_null_string_p (&p1, end, reg_info))
5311 return false;
5312 }
5313 } /* while p1 < end */
dd3b648e 5314
9f85ab1a
JM
5315 return true;
5316} /* alt_match_null_string_p */
5317
5318
5319/* Deals with the ops common to group_match_null_string_p and
5320 alt_match_null_string_p.
5321
5322 Sets P to one after the op and its arguments, if any. */
5323
5324static boolean
5325common_op_match_null_string_p (p, end, reg_info)
5326 unsigned char **p, *end;
5327 register_info_type *reg_info;
5328{
5329 int mcnt;
5330 boolean ret;
5331 int reg_no;
5332 unsigned char *p1 = *p;
5333
5334 switch ((re_opcode_t) *p1++)
5335 {
5336 case no_op:
5337 case begline:
5338 case endline:
5339 case begbuf:
5340 case endbuf:
5341 case wordbeg:
5342 case wordend:
5343 case wordbound:
5344 case notwordbound:
5345#ifdef emacs
5346 case before_dot:
5347 case at_dot:
5348 case after_dot:
5349#endif
5350 break;
5351
5352 case start_memory:
5353 reg_no = *p1;
5354 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5355 ret = group_match_null_string_p (&p1, end, reg_info);
5356
5357 /* Have to set this here in case we're checking a group which
5358 contains a group and a back reference to it. */
5359
5360 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5361 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5362
5363 if (!ret)
5364 return false;
5365 break;
5366
5367 /* If this is an optimized succeed_n for zero times, make the jump. */
5368 case jump:
5369 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5370 if (mcnt >= 0)
5371 p1 += mcnt;
5372 else
5373 return false;
5374 break;
5375
5376 case succeed_n:
5377 /* Get to the number of times to succeed. */
5378 p1 += 2;
5379 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5380
5381 if (mcnt == 0)
5382 {
5383 p1 -= 4;
5384 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5385 p1 += mcnt;
5386 }
5387 else
5388 return false;
5389 break;
5390
5391 case duplicate:
5392 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5393 return false;
5394 break;
5395
5396 case set_number_at:
5397 p1 += 4;
5398
5399 default:
5400 /* All other opcodes mean we cannot match the empty string. */
5401 return false;
5402 }
5403
5404 *p = p1;
5405 return true;
5406} /* common_op_match_null_string_p */
5407
5408
5409/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5410 bytes; nonzero otherwise. */
dd3b648e
RP
5411
5412static int
9f85ab1a
JM
5413bcmp_translate (s1, s2, len, translate)
5414 const char *s1, *s2;
dd3b648e 5415 register int len;
9f85ab1a 5416 RE_TRANSLATE_TYPE translate;
dd3b648e 5417{
9f85ab1a
JM
5418 register const unsigned char *p1 = (const unsigned char *) s1;
5419 register const unsigned char *p2 = (const unsigned char *) s2;
dd3b648e
RP
5420 while (len)
5421 {
9f85ab1a 5422 if (translate[*p1++] != translate[*p2++]) return 1;
dd3b648e
RP
5423 len--;
5424 }
5425 return 0;
5426}
5427\f
9f85ab1a 5428/* Entry points for GNU code. */
dd3b648e 5429
9f85ab1a
JM
5430/* re_compile_pattern is the GNU regular expression compiler: it
5431 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5432 Returns 0 if the pattern was valid, otherwise an error string.
5433
5434 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5435 are set in BUFP on entry.
5436
5437 We call regex_compile to do the actual compilation. */
5438
5439const char *
5440re_compile_pattern (pattern, length, bufp)
5441 const char *pattern;
5442 size_t length;
5443 struct re_pattern_buffer *bufp;
5444{
5445 reg_errcode_t ret;
dd3b648e 5446
9f85ab1a
JM
5447 /* GNU code is written to assume at least RE_NREGS registers will be set
5448 (and at least one extra will be -1). */
5449 bufp->regs_allocated = REGS_UNALLOCATED;
5450
5451 /* And GNU code determines whether or not to get register information
5452 by passing null for the REGS argument to re_match, etc., not by
5453 setting no_sub. */
5454 bufp->no_sub = 0;
5455
5456 /* Match anchors at newline. */
5457 bufp->newline_anchor = 1;
5458
5459 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5460
5461 if (!ret)
5462 return NULL;
5463 return gettext (re_error_msgid[(int) ret]);
5464}
5465#ifdef _LIBC
5466weak_alias (__re_compile_pattern, re_compile_pattern)
5467#endif
5468\f
5469/* Entry points compatible with 4.2 BSD regex library. We don't define
5470 them unless specifically requested. */
5471
5472#if defined _REGEX_RE_COMP || defined _LIBC
5473
5474/* BSD has one and only one pattern buffer. */
dd3b648e
RP
5475static struct re_pattern_buffer re_comp_buf;
5476
5477char *
9f85ab1a
JM
5478#ifdef _LIBC
5479/* Make these definitions weak in libc, so POSIX programs can redefine
5480 these names if they don't use our functions, and still use
5481 regcomp/regexec below without link errors. */
5482weak_function
5483#endif
dd3b648e 5484re_comp (s)
9f85ab1a 5485 const char *s;
dd3b648e 5486{
9f85ab1a
JM
5487 reg_errcode_t ret;
5488
dd3b648e
RP
5489 if (!s)
5490 {
5491 if (!re_comp_buf.buffer)
9f85ab1a 5492 return gettext ("No previous regular expression");
dd3b648e
RP
5493 return 0;
5494 }
5495
5496 if (!re_comp_buf.buffer)
5497 {
9f85ab1a
JM
5498 re_comp_buf.buffer = (unsigned char *) malloc (200);
5499 if (re_comp_buf.buffer == NULL)
d40d5880 5500 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
dd3b648e 5501 re_comp_buf.allocated = 200;
9f85ab1a
JM
5502
5503 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5504 if (re_comp_buf.fastmap == NULL)
d40d5880 5505 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
dd3b648e 5506 }
9f85ab1a
JM
5507
5508 /* Since `re_exec' always passes NULL for the `regs' argument, we
5509 don't need to initialize the pattern buffer fields which affect it. */
5510
5511 /* Match anchors at newlines. */
5512 re_comp_buf.newline_anchor = 1;
5513
5514 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5515
5516 if (!ret)
5517 return NULL;
5518
5519 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5520 return (char *) gettext (re_error_msgid[(int) ret]);
dd3b648e
RP
5521}
5522
9f85ab1a 5523
dd3b648e 5524int
9f85ab1a
JM
5525#ifdef _LIBC
5526weak_function
5527#endif
dd3b648e 5528re_exec (s)
9f85ab1a 5529 const char *s;
dd3b648e 5530{
9f85ab1a
JM
5531 const int len = strlen (s);
5532 return
5533 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
dd3b648e
RP
5534}
5535
9f85ab1a 5536#endif /* _REGEX_RE_COMP */
dd3b648e 5537\f
9f85ab1a 5538/* POSIX.2 functions. Don't define these for Emacs. */
dd3b648e 5539
9f85ab1a 5540#ifndef emacs
dd3b648e 5541
9f85ab1a 5542/* regcomp takes a regular expression as a string and compiles it.
dd3b648e 5543
9f85ab1a
JM
5544 PREG is a regex_t *. We do not expect any fields to be initialized,
5545 since POSIX says we shouldn't. Thus, we set
dd3b648e 5546
9f85ab1a
JM
5547 `buffer' to the compiled pattern;
5548 `used' to the length of the compiled pattern;
5549 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5550 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5551 RE_SYNTAX_POSIX_BASIC;
5552 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5553 `fastmap' and `fastmap_accurate' to zero;
5554 `re_nsub' to the number of subexpressions in PATTERN.
dd3b648e 5555
9f85ab1a 5556 PATTERN is the address of the pattern string.
dd3b648e 5557
9f85ab1a 5558 CFLAGS is a series of bits which affect compilation.
dd3b648e 5559
9f85ab1a
JM
5560 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5561 use POSIX basic syntax.
dd3b648e 5562
9f85ab1a
JM
5563 If REG_NEWLINE is set, then . and [^...] don't match newline.
5564 Also, regexec will try a match beginning after every newline.
dd3b648e 5565
9f85ab1a
JM
5566 If REG_ICASE is set, then we considers upper- and lowercase
5567 versions of letters to be equivalent when matching.
5568
5569 If REG_NOSUB is set, then when PREG is passed to regexec, that
5570 routine will report only success or failure, and nothing about the
5571 registers.
5572
a4122443 5573 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
9f85ab1a
JM
5574 the return codes and their meanings.) */
5575
5576int
5577regcomp (preg, pattern, cflags)
5578 regex_t *preg;
5579 const char *pattern;
5580 int cflags;
5581{
5582 reg_errcode_t ret;
5583 reg_syntax_t syntax
5584 = (cflags & REG_EXTENDED) ?
5585 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5586
5587 /* regex_compile will allocate the space for the compiled pattern. */
5588 preg->buffer = 0;
5589 preg->allocated = 0;
5590 preg->used = 0;
5591
5592 /* Don't bother to use a fastmap when searching. This simplifies the
5593 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5594 characters after newlines into the fastmap. This way, we just try
5595 every character. */
5596 preg->fastmap = 0;
5597
5598 if (cflags & REG_ICASE)
5599 {
5600 unsigned i;
dd3b648e 5601
9f85ab1a
JM
5602 preg->translate
5603 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5604 * sizeof (*(RE_TRANSLATE_TYPE)0));
5605 if (preg->translate == NULL)
5606 return (int) REG_ESPACE;
dd3b648e 5607
9f85ab1a
JM
5608 /* Map uppercase characters to corresponding lowercase ones. */
5609 for (i = 0; i < CHAR_SET_SIZE; i++)
5610 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5611 }
5612 else
5613 preg->translate = NULL;
5614
5615 /* If REG_NEWLINE is set, newlines are treated differently. */
5616 if (cflags & REG_NEWLINE)
5617 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5618 syntax &= ~RE_DOT_NEWLINE;
5619 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5620 /* It also changes the matching behavior. */
5621 preg->newline_anchor = 1;
dd3b648e 5622 }
9f85ab1a
JM
5623 else
5624 preg->newline_anchor = 0;
5625
5626 preg->no_sub = !!(cflags & REG_NOSUB);
5627
5628 /* POSIX says a null character in the pattern terminates it, so we
5629 can use strlen here in compiling the pattern. */
5630 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5631
5632 /* POSIX doesn't distinguish between an unmatched open-group and an
5633 unmatched close-group: both are REG_EPAREN. */
5634 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5635
5636 return (int) ret;
dd3b648e 5637}
9f85ab1a
JM
5638#ifdef _LIBC
5639weak_alias (__regcomp, regcomp)
5640#endif
dd3b648e 5641
9f85ab1a
JM
5642
5643/* regexec searches for a given pattern, specified by PREG, in the
5644 string STRING.
5645
5646 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5647 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5648 least NMATCH elements, and we set them to the offsets of the
5649 corresponding matched substrings.
5650
5651 EFLAGS specifies `execution flags' which affect matching: if
5652 REG_NOTBOL is set, then ^ does not match at the beginning of the
5653 string; if REG_NOTEOL is set, then $ does not match at the end.
5654
5655 We return 0 if we find a match and REG_NOMATCH if not. */
5656
5657int
5658regexec (preg, string, nmatch, pmatch, eflags)
5659 const regex_t *preg;
5660 const char *string;
5661 size_t nmatch;
5662 regmatch_t pmatch[];
5663 int eflags;
dd3b648e 5664{
9f85ab1a
JM
5665 int ret;
5666 struct re_registers regs;
5667 regex_t private_preg;
5668 int len = strlen (string);
5669 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5670
5671 private_preg = *preg;
5672
5673 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5674 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5675
5676 /* The user has told us exactly how many registers to return
5677 information about, via `nmatch'. We have to pass that on to the
5678 matching routines. */
5679 private_preg.regs_allocated = REGS_FIXED;
5680
5681 if (want_reg_info)
5682 {
5683 regs.num_regs = nmatch;
5684 regs.start = TALLOC (nmatch, regoff_t);
5685 regs.end = TALLOC (nmatch, regoff_t);
5686 if (regs.start == NULL || regs.end == NULL)
5687 return (int) REG_NOMATCH;
5688 }
5689
5690 /* Perform the searching operation. */
5691 ret = re_search (&private_preg, string, len,
5692 /* start: */ 0, /* range: */ len,
5693 want_reg_info ? &regs : (struct re_registers *) 0);
5694
5695 /* Copy the register information to the POSIX structure. */
5696 if (want_reg_info)
5697 {
5698 if (ret >= 0)
5699 {
5700 unsigned r;
5701
5702 for (r = 0; r < nmatch; r++)
5703 {
5704 pmatch[r].rm_so = regs.start[r];
5705 pmatch[r].rm_eo = regs.end[r];
5706 }
5707 }
5708
5709 /* If we needed the temporary register info, free the space now. */
5710 free (regs.start);
5711 free (regs.end);
5712 }
5713
5714 /* We want zero return to mean success, unlike `re_search'. */
5715 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
dd3b648e 5716}
9f85ab1a
JM
5717#ifdef _LIBC
5718weak_alias (__regexec, regexec)
dd3b648e
RP
5719#endif
5720
9f85ab1a
JM
5721
5722/* Returns a message corresponding to an error code, ERRCODE, returned
5723 from either regcomp or regexec. We don't use PREG here. */
5724
5725size_t
5726__regerror (errcode, preg, errbuf, errbuf_size)
5727 int errcode;
5728 const regex_t *preg;
5729 char *errbuf;
5730 size_t errbuf_size;
dd3b648e 5731{
9f85ab1a
JM
5732 const char *msg;
5733 size_t msg_size;
5734
5735 if (errcode < 0
5736 || errcode >= (int) (sizeof (re_error_msgid)
5737 / sizeof (re_error_msgid[0])))
5738 /* Only error codes returned by the rest of the code should be passed
5739 to this routine. If we are given anything else, or if other regex
5740 code generates an invalid error code, then the program has a bug.
5741 Dump core so we can fix it. */
5742 abort ();
5743
5744 msg = gettext (re_error_msgid[errcode]);
5745
5746 msg_size = strlen (msg) + 1; /* Includes the null. */
5747
5748 if (errbuf_size != 0)
dd3b648e 5749 {
9f85ab1a
JM
5750 if (msg_size > errbuf_size)
5751 {
5752#if defined HAVE_MEMPCPY || defined _LIBC
5753 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5754#else
5755 memcpy (errbuf, msg, errbuf_size - 1);
5756 errbuf[errbuf_size - 1] = 0;
5757#endif
5758 }
5759 else
5760 memcpy (errbuf, msg, msg_size);
dd3b648e 5761 }
9f85ab1a
JM
5762
5763 return msg_size;
dd3b648e 5764}
9f85ab1a
JM
5765#ifdef _LIBC
5766weak_alias (__regerror, regerror)
5767#endif
5768
dd3b648e 5769
9f85ab1a
JM
5770/* Free dynamically allocated space used by PREG. */
5771
5772void
5773regfree (preg)
5774 regex_t *preg;
dd3b648e 5775{
9f85ab1a
JM
5776 if (preg->buffer != NULL)
5777 free (preg->buffer);
5778 preg->buffer = NULL;
5779
5780 preg->allocated = 0;
5781 preg->used = 0;
5782
5783 if (preg->fastmap != NULL)
5784 free (preg->fastmap);
5785 preg->fastmap = NULL;
5786 preg->fastmap_accurate = 0;
5787
5788 if (preg->translate != NULL)
5789 free (preg->translate);
5790 preg->translate = NULL;
dd3b648e 5791}
9f85ab1a
JM
5792#ifdef _LIBC
5793weak_alias (__regfree, regfree)
5794#endif
dd3b648e 5795
9f85ab1a 5796#endif /* not emacs */
This page took 0.591763 seconds and 4 git commands to generate.