Introduce assign_operation
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
CommitLineData
7ed49443
JB
1/* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
451fbdda 3
3666a048 4 Copyright (C) 2001-2021 Free Software Foundation, Inc.
7ed49443
JB
5
6 This file is part of GDB.
7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
7ed49443
JB
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
7ed49443
JB
20
21#include "defs.h"
22#include "value.h"
23#include "cp-abi.h"
362ff856 24#include "cp-support.h"
7ed49443 25#include "demangle.h"
62bf63d7 26#include "dwarf2.h"
b18be20d 27#include "objfiles.h"
0d5de010 28#include "valprint.h"
94af9270 29#include "c-lang.h"
79d43c61 30#include "typeprint.h"
59d3651b 31#include <algorithm>
7f6aba03 32#include "cli/cli-style.h"
7d79de9a 33#include "dwarf2/loc.h"
0d5de010 34
b27b8843 35static struct cp_abi_ops gnu_v3_abi_ops;
7ed49443 36
6e72ca20
TT
37/* A gdbarch key for std::type_info, in the event that it can't be
38 found in the debug info. */
39
40static struct gdbarch_data *std_type_info_gdbarch_data;
41
42
7ed49443
JB
43static int
44gnuv3_is_vtable_name (const char *name)
45{
61012eef 46 return startswith (name, "_ZTV");
7ed49443
JB
47}
48
49static int
50gnuv3_is_operator_name (const char *name)
51{
8090b426 52 return startswith (name, CP_OPERATOR_STR);
7ed49443
JB
53}
54
55
56/* To help us find the components of a vtable, we build ourselves a
57 GDB type object representing the vtable structure. Following the
58 V3 ABI, it goes something like this:
59
60 struct gdb_gnu_v3_abi_vtable {
61
62 / * An array of virtual call and virtual base offsets. The real
dda83cd7
SM
63 length of this array depends on the class hierarchy; we use
64 negative subscripts to access the elements. Yucky, but
65 better than the alternatives. * /
7ed49443
JB
66 ptrdiff_t vcall_and_vbase_offsets[0];
67
68 / * The offset from a virtual pointer referring to this table
dda83cd7 69 to the top of the complete object. * /
7ed49443
JB
70 ptrdiff_t offset_to_top;
71
72 / * The type_info pointer for this class. This is really a
dda83cd7
SM
73 std::type_info *, but GDB doesn't really look at the
74 type_info object itself, so we don't bother to get the type
75 exactly right. * /
7ed49443
JB
76 void *type_info;
77
78 / * Virtual table pointers in objects point here. * /
79
80 / * Virtual function pointers. Like the vcall/vbase array, the
dda83cd7 81 real length of this table depends on the class hierarchy. * /
7ed49443
JB
82 void (*virtual_functions[0]) ();
83
84 };
85
86 The catch, of course, is that the exact layout of this table
87 depends on the ABI --- word size, endianness, alignment, etc. So
88 the GDB type object is actually a per-architecture kind of thing.
89
90 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
91 which refers to the struct type * for this structure, laid out
92 appropriately for the architecture. */
b27b8843 93static struct gdbarch_data *vtable_type_gdbarch_data;
7ed49443
JB
94
95
96/* Human-readable names for the numbers of the fields above. */
97enum {
98 vtable_field_vcall_and_vbase_offsets,
99 vtable_field_offset_to_top,
100 vtable_field_type_info,
101 vtable_field_virtual_functions
102};
103
104
105/* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
106 described above, laid out appropriately for ARCH.
107
108 We use this function as the gdbarch per-architecture data
9970f04b 109 initialization function. */
7ed49443
JB
110static void *
111build_gdb_vtable_type (struct gdbarch *arch)
112{
113 struct type *t;
114 struct field *field_list, *field;
115 int offset;
116
117 struct type *void_ptr_type
fde6c819 118 = builtin_type (arch)->builtin_data_ptr;
7ed49443 119 struct type *ptr_to_void_fn_type
fde6c819 120 = builtin_type (arch)->builtin_func_ptr;
7ed49443
JB
121
122 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
123 struct type *ptrdiff_type
e9bb382b 124 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
7ed49443
JB
125
126 /* We assume no padding is necessary, since GDB doesn't know
127 anything about alignment at the moment. If this assumption bites
128 us, we should add a gdbarch method which, given a type, returns
129 the alignment that type requires, and then use that here. */
130
131 /* Build the field list. */
8d749320 132 field_list = XCNEWVEC (struct field, 4);
7ed49443
JB
133 field = &field_list[0];
134 offset = 0;
135
136 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
137 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
5d14b6e5 138 field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1));
f41f5e61 139 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
b6cdac4b 140 offset += TYPE_LENGTH (field->type ());
7ed49443
JB
141 field++;
142
143 /* ptrdiff_t offset_to_top; */
144 FIELD_NAME (*field) = "offset_to_top";
5d14b6e5 145 field->set_type (ptrdiff_type);
f41f5e61 146 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
b6cdac4b 147 offset += TYPE_LENGTH (field->type ());
7ed49443
JB
148 field++;
149
150 /* void *type_info; */
151 FIELD_NAME (*field) = "type_info";
5d14b6e5 152 field->set_type (void_ptr_type);
f41f5e61 153 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
b6cdac4b 154 offset += TYPE_LENGTH (field->type ());
7ed49443
JB
155 field++;
156
157 /* void (*virtual_functions[0]) (); */
158 FIELD_NAME (*field) = "virtual_functions";
5d14b6e5 159 field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1));
f41f5e61 160 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
b6cdac4b 161 offset += TYPE_LENGTH (field->type ());
7ed49443
JB
162 field++;
163
164 /* We assumed in the allocation above that there were four fields. */
3d499020 165 gdb_assert (field == (field_list + 4));
7ed49443 166
77b7c781 167 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
5e33d5f4 168 t->set_num_fields (field - field_list);
3cabb6b0 169 t->set_fields (field_list);
d0e39ea2 170 t->set_name ("gdb_gnu_v3_abi_vtable");
e9bb382b 171 INIT_CPLUS_SPECIFIC (t);
7ed49443 172
706d0883 173 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
7ed49443
JB
174}
175
176
ed09d7da
KB
177/* Return the ptrdiff_t type used in the vtable type. */
178static struct type *
179vtable_ptrdiff_type (struct gdbarch *gdbarch)
180{
9a3c8263
SM
181 struct type *vtable_type
182 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
ed09d7da
KB
183
184 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
940da03e 185 return vtable_type->field (vtable_field_offset_to_top).type ();
ed09d7da
KB
186}
187
7ed49443
JB
188/* Return the offset from the start of the imaginary `struct
189 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
190 (i.e., where objects' virtual table pointers point). */
191static int
ad4820ab 192vtable_address_point_offset (struct gdbarch *gdbarch)
7ed49443 193{
9a3c8263
SM
194 struct type *vtable_type
195 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
7ed49443
JB
196
197 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
dda83cd7 198 / TARGET_CHAR_BIT);
7ed49443
JB
199}
200
201
d48cc9dd
DJ
202/* Determine whether structure TYPE is a dynamic class. Cache the
203 result. */
204
205static int
206gnuv3_dynamic_class (struct type *type)
207{
208 int fieldnum, fieldelem;
209
f168693b 210 type = check_typedef (type);
78134374
SM
211 gdb_assert (type->code () == TYPE_CODE_STRUCT
212 || type->code () == TYPE_CODE_UNION);
5f4ce105 213
78134374 214 if (type->code () == TYPE_CODE_UNION)
5f4ce105
DE
215 return 0;
216
d48cc9dd
DJ
217 if (TYPE_CPLUS_DYNAMIC (type))
218 return TYPE_CPLUS_DYNAMIC (type) == 1;
219
220 ALLOCATE_CPLUS_STRUCT_TYPE (type);
221
222 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
223 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
940da03e 224 || gnuv3_dynamic_class (type->field (fieldnum).type ()))
d48cc9dd
DJ
225 {
226 TYPE_CPLUS_DYNAMIC (type) = 1;
227 return 1;
228 }
229
230 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
231 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
232 fieldelem++)
233 {
234 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
235
236 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
237 {
238 TYPE_CPLUS_DYNAMIC (type) = 1;
239 return 1;
240 }
241 }
242
243 TYPE_CPLUS_DYNAMIC (type) = -1;
244 return 0;
245}
246
247/* Find the vtable for a value of CONTAINER_TYPE located at
248 CONTAINER_ADDR. Return a value of the correct vtable type for this
249 architecture, or NULL if CONTAINER does not have a vtable. */
250
251static struct value *
252gnuv3_get_vtable (struct gdbarch *gdbarch,
253 struct type *container_type, CORE_ADDR container_addr)
254{
9a3c8263
SM
255 struct type *vtable_type
256 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
d48cc9dd
DJ
257 struct type *vtable_pointer_type;
258 struct value *vtable_pointer;
259 CORE_ADDR vtable_address;
260
f168693b 261 container_type = check_typedef (container_type);
78134374 262 gdb_assert (container_type->code () == TYPE_CODE_STRUCT);
5f4ce105 263
d48cc9dd
DJ
264 /* If this type does not have a virtual table, don't read the first
265 field. */
5f4ce105 266 if (!gnuv3_dynamic_class (container_type))
d48cc9dd
DJ
267 return NULL;
268
269 /* We do not consult the debug information to find the virtual table.
270 The ABI specifies that it is always at offset zero in any class,
271 and debug information may not represent it.
272
273 We avoid using value_contents on principle, because the object might
274 be large. */
275
276 /* Find the type "pointer to virtual table". */
277 vtable_pointer_type = lookup_pointer_type (vtable_type);
278
279 /* Load it from the start of the class. */
280 vtable_pointer = value_at (vtable_pointer_type, container_addr);
281 vtable_address = value_as_address (vtable_pointer);
282
283 /* Correct it to point at the start of the virtual table, rather
284 than the address point. */
285 return value_at_lazy (vtable_type,
0963b4bd
MS
286 vtable_address
287 - vtable_address_point_offset (gdbarch));
d48cc9dd
DJ
288}
289
290
7ed49443
JB
291static struct type *
292gnuv3_rtti_type (struct value *value,
dda83cd7 293 int *full_p, LONGEST *top_p, int *using_enc_p)
7ed49443 294{
ad4820ab 295 struct gdbarch *gdbarch;
df407dfe 296 struct type *values_type = check_typedef (value_type (value));
7ed49443
JB
297 struct value *vtable;
298 struct minimal_symbol *vtable_symbol;
299 const char *vtable_symbol_name;
300 const char *class_name;
7ed49443
JB
301 struct type *run_time_type;
302 LONGEST offset_to_top;
e6a959d6 303 const char *atsign;
7ed49443 304
e95a97d4 305 /* We only have RTTI for dynamic class objects. */
78134374 306 if (values_type->code () != TYPE_CODE_STRUCT
e95a97d4 307 || !gnuv3_dynamic_class (values_type))
7ed49443
JB
308 return NULL;
309
ad4820ab 310 /* Determine architecture. */
8ee511af 311 gdbarch = values_type->arch ();
7ed49443 312
21cfb3b6
DJ
313 if (using_enc_p)
314 *using_enc_p = 0;
315
5f4ce105 316 vtable = gnuv3_get_vtable (gdbarch, values_type,
d48cc9dd
DJ
317 value_as_address (value_addr (value)));
318 if (vtable == NULL)
319 return NULL;
320
7ed49443
JB
321 /* Find the linker symbol for this vtable. */
322 vtable_symbol
42ae5230 323 = lookup_minimal_symbol_by_pc (value_address (vtable)
dda83cd7 324 + value_embedded_offset (vtable)).minsym;
7ed49443
JB
325 if (! vtable_symbol)
326 return NULL;
327
328 /* The symbol's demangled name should be something like "vtable for
329 CLASS", where CLASS is the name of the run-time type of VALUE.
330 If we didn't like this approach, we could instead look in the
331 type_info object itself to get the class name. But this way
332 should work just as well, and doesn't read target memory. */
c9d95fa3 333 vtable_symbol_name = vtable_symbol->demangled_name ();
98081e55 334 if (vtable_symbol_name == NULL
61012eef 335 || !startswith (vtable_symbol_name, "vtable for "))
f773fdbb 336 {
8a3fe4f8 337 warning (_("can't find linker symbol for virtual table for `%s' value"),
0a07729b 338 TYPE_SAFE_NAME (values_type));
f773fdbb 339 if (vtable_symbol_name)
8a3fe4f8 340 warning (_(" found `%s' instead"), vtable_symbol_name);
f773fdbb
JM
341 return NULL;
342 }
7ed49443
JB
343 class_name = vtable_symbol_name + 11;
344
8de20a37
TT
345 /* Strip off @plt and version suffixes. */
346 atsign = strchr (class_name, '@');
347 if (atsign != NULL)
348 {
349 char *copy;
350
224c3ddb 351 copy = (char *) alloca (atsign - class_name + 1);
8de20a37
TT
352 memcpy (copy, class_name, atsign - class_name);
353 copy[atsign - class_name] = '\0';
354 class_name = copy;
355 }
356
7ed49443 357 /* Try to look up the class name as a type name. */
0963b4bd 358 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
362ff856
MC
359 run_time_type = cp_lookup_rtti_type (class_name, NULL);
360 if (run_time_type == NULL)
361 return NULL;
7ed49443
JB
362
363 /* Get the offset from VALUE to the top of the complete object.
364 NOTE: this is the reverse of the meaning of *TOP_P. */
365 offset_to_top
366 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
367
368 if (full_p)
13c3b5f5 369 *full_p = (- offset_to_top == value_embedded_offset (value)
dda83cd7
SM
370 && (TYPE_LENGTH (value_enclosing_type (value))
371 >= TYPE_LENGTH (run_time_type)));
7ed49443
JB
372 if (top_p)
373 *top_p = - offset_to_top;
7ed49443
JB
374 return run_time_type;
375}
376
0d5de010
DJ
377/* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
378 function, of type FNTYPE. */
7ed49443 379
0d5de010 380static struct value *
ad4820ab
UW
381gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
382 struct type *fntype, int vtable_index)
0d5de010 383{
d48cc9dd
DJ
384 struct value *vtable, *vfn;
385
386 /* Every class with virtual functions must have a vtable. */
387 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
388 value_as_address (value_addr (container)));
389 gdb_assert (vtable != NULL);
7ed49443
JB
390
391 /* Fetch the appropriate function pointer from the vtable. */
392 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
dda83cd7 393 vtable_index);
7ed49443 394
0d5de010
DJ
395 /* If this architecture uses function descriptors directly in the vtable,
396 then the address of the vtable entry is actually a "function pointer"
397 (i.e. points to the descriptor). We don't need to scale the index
85102364 398 by the size of a function descriptor; GCC does that before outputting
0d5de010 399 debug information. */
ad4820ab 400 if (gdbarch_vtable_function_descriptors (gdbarch))
0d5de010 401 vfn = value_addr (vfn);
7ed49443 402
0d5de010
DJ
403 /* Cast the function pointer to the appropriate type. */
404 vfn = value_cast (lookup_pointer_type (fntype), vfn);
76b79d6e 405
7ed49443
JB
406 return vfn;
407}
408
0d5de010
DJ
409/* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
410 for a description of the arguments. */
411
412static struct value *
413gnuv3_virtual_fn_field (struct value **value_p,
dda83cd7 414 struct fn_field *f, int j,
0d5de010
DJ
415 struct type *vfn_base, int offset)
416{
417 struct type *values_type = check_typedef (value_type (*value_p));
ad4820ab 418 struct gdbarch *gdbarch;
0d5de010
DJ
419
420 /* Some simple sanity checks. */
78134374 421 if (values_type->code () != TYPE_CODE_STRUCT)
0d5de010
DJ
422 error (_("Only classes can have virtual functions."));
423
ad4820ab 424 /* Determine architecture. */
8ee511af 425 gdbarch = values_type->arch ();
ad4820ab 426
0d5de010
DJ
427 /* Cast our value to the base class which defines this virtual
428 function. This takes care of any necessary `this'
429 adjustments. */
430 if (vfn_base != values_type)
431 *value_p = value_cast (vfn_base, *value_p);
432
ad4820ab 433 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
0d5de010
DJ
434 TYPE_FN_FIELD_VOFFSET (f, j));
435}
436
1514d34e
DJ
437/* Compute the offset of the baseclass which is
438 the INDEXth baseclass of class TYPE,
439 for value at VALADDR (in host) at ADDRESS (in target).
440 The result is the offset of the baseclass value relative
441 to (the address of)(ARG) + OFFSET.
442
0963b4bd
MS
443 -1 is returned on error. */
444
b9362cc7 445static int
8af8e3bc 446gnuv3_baseclass_offset (struct type *type, int index,
6b850546 447 const bfd_byte *valaddr, LONGEST embedded_offset,
8af8e3bc 448 CORE_ADDR address, const struct value *val)
1514d34e 449{
ad4820ab 450 struct gdbarch *gdbarch;
ad4820ab 451 struct type *ptr_type;
79d5b63a 452 struct value *vtable;
2497b498 453 struct value *vbase_array;
1514d34e 454 long int cur_base_offset, base_offset;
1514d34e 455
ad4820ab 456 /* Determine architecture. */
8ee511af 457 gdbarch = type->arch ();
ad4820ab
UW
458 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
459
1514d34e 460 /* If it isn't a virtual base, this is easy. The offset is in the
9c37b5ae
TT
461 type definition. */
462 if (!BASETYPE_VIA_VIRTUAL (type, index))
1514d34e
DJ
463 return TYPE_BASECLASS_BITPOS (type, index) / 8;
464
7d79de9a
TT
465 /* If we have a DWARF expression for the offset, evaluate it. */
466 if (TYPE_FIELD_LOC_KIND (type, index) == FIELD_LOC_KIND_DWARF_BLOCK)
467 {
468 struct dwarf2_property_baton baton;
469 baton.property_type
940da03e 470 = lookup_pointer_type (type->field (index).type ());
7d79de9a
TT
471 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (type, index);
472
473 struct dynamic_prop prop;
8c2e4e06 474 prop.set_locexpr (&baton);
7d79de9a
TT
475
476 struct property_addr_info addr_stack;
477 addr_stack.type = type;
478 /* Note that we don't set "valaddr" here. Doing so causes
479 regressions. FIXME. */
480 addr_stack.addr = address + embedded_offset;
481 addr_stack.next = nullptr;
482
483 CORE_ADDR result;
484 if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
485 true))
486 return (int) (result - addr_stack.addr);
487 }
488
1514d34e
DJ
489 /* To access a virtual base, we need to use the vbase offset stored in
490 our vtable. Recent GCC versions provide this information. If it isn't
491 available, we could get what we needed from RTTI, or from drawing the
492 complete inheritance graph based on the debug info. Neither is
493 worthwhile. */
494 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
ad4820ab 495 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
8a3fe4f8 496 error (_("Expected a negative vbase offset (old compiler?)"));
1514d34e 497
ad4820ab
UW
498 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
499 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
8a3fe4f8 500 error (_("Misaligned vbase offset."));
ad4820ab 501 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
1514d34e 502
8af8e3bc 503 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
d48cc9dd 504 gdb_assert (vtable != NULL);
1514d34e 505 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
2497b498 506 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
1514d34e
DJ
507 return base_offset;
508}
7ed49443 509
0d5de010
DJ
510/* Locate a virtual method in DOMAIN or its non-virtual base classes
511 which has virtual table index VOFFSET. The method has an associated
512 "this" adjustment of ADJUSTMENT bytes. */
513
2c0b251b 514static const char *
0d5de010
DJ
515gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
516 LONGEST adjustment)
517{
518 int i;
0d5de010
DJ
519
520 /* Search this class first. */
0d5de010
DJ
521 if (adjustment == 0)
522 {
523 int len;
524
525 len = TYPE_NFN_FIELDS (domain);
526 for (i = 0; i < len; i++)
527 {
528 int len2, j;
529 struct fn_field *f;
530
531 f = TYPE_FN_FIELDLIST1 (domain, i);
532 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
533
534 check_stub_method_group (domain, i);
535 for (j = 0; j < len2; j++)
536 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
537 return TYPE_FN_FIELD_PHYSNAME (f, j);
538 }
539 }
540
541 /* Next search non-virtual bases. If it's in a virtual base,
542 we're out of luck. */
543 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
544 {
545 int pos;
546 struct type *basetype;
547
548 if (BASETYPE_VIA_VIRTUAL (domain, i))
549 continue;
550
551 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
940da03e 552 basetype = domain->field (i).type ();
0d5de010
DJ
553 /* Recurse with a modified adjustment. We don't need to adjust
554 voffset. */
555 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
556 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
557 }
558
559 return NULL;
560}
561
fead6908
UW
562/* Decode GNU v3 method pointer. */
563
564static int
ad4820ab
UW
565gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
566 const gdb_byte *contents,
fead6908
UW
567 CORE_ADDR *value_p,
568 LONGEST *adjustment_p)
569{
ad4820ab 570 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
ed09d7da 571 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
e17a4113 572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fead6908
UW
573 CORE_ADDR ptr_value;
574 LONGEST voffset, adjustment;
575 int vbit;
576
577 /* Extract the pointer to member. The first element is either a pointer
578 or a vtable offset. For pointers, we need to use extract_typed_address
579 to allow the back-end to convert the pointer to a GDB address -- but
580 vtable offsets we must handle as integers. At this point, we do not
581 yet know which case we have, so we extract the value under both
582 interpretations and choose the right one later on. */
583 ptr_value = extract_typed_address (contents, funcptr_type);
e17a4113
UW
584 voffset = extract_signed_integer (contents,
585 TYPE_LENGTH (funcptr_type), byte_order);
fead6908 586 contents += TYPE_LENGTH (funcptr_type);
e17a4113
UW
587 adjustment = extract_signed_integer (contents,
588 TYPE_LENGTH (offset_type), byte_order);
fead6908 589
ad4820ab 590 if (!gdbarch_vbit_in_delta (gdbarch))
fead6908
UW
591 {
592 vbit = voffset & 1;
593 voffset = voffset ^ vbit;
594 }
595 else
596 {
597 vbit = adjustment & 1;
598 adjustment = adjustment >> 1;
599 }
600
601 *value_p = vbit? voffset : ptr_value;
602 *adjustment_p = adjustment;
603 return vbit;
604}
605
0d5de010
DJ
606/* GNU v3 implementation of cplus_print_method_ptr. */
607
608static void
609gnuv3_print_method_ptr (const gdb_byte *contents,
610 struct type *type,
611 struct ui_file *stream)
612{
09e2d7c7 613 struct type *self_type = TYPE_SELF_TYPE (type);
8ee511af 614 struct gdbarch *gdbarch = self_type->arch ();
0d5de010
DJ
615 CORE_ADDR ptr_value;
616 LONGEST adjustment;
0d5de010
DJ
617 int vbit;
618
0d5de010 619 /* Extract the pointer to member. */
ad4820ab 620 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
0d5de010
DJ
621
622 /* Check for NULL. */
623 if (ptr_value == 0 && vbit == 0)
624 {
625 fprintf_filtered (stream, "NULL");
626 return;
627 }
628
629 /* Search for a virtual method. */
630 if (vbit)
631 {
632 CORE_ADDR voffset;
633 const char *physname;
634
635 /* It's a virtual table offset, maybe in this class. Search
636 for a field with the correct vtable offset. First convert it
637 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
ed09d7da 638 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
0d5de010 639
09e2d7c7 640 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
0d5de010
DJ
641
642 /* If we found a method, print that. We don't bother to disambiguate
643 possible paths to the method based on the adjustment. */
644 if (physname)
645 {
8de20a37
TT
646 char *demangled_name = gdb_demangle (physname,
647 DMGL_ANSI | DMGL_PARAMS);
d8734c88 648
94af9270
KS
649 fprintf_filtered (stream, "&virtual ");
650 if (demangled_name == NULL)
651 fputs_filtered (physname, stream);
652 else
0d5de010 653 {
0d5de010
DJ
654 fputs_filtered (demangled_name, stream);
655 xfree (demangled_name);
0d5de010 656 }
94af9270 657 return;
0d5de010
DJ
658 }
659 }
94af9270
KS
660 else if (ptr_value != 0)
661 {
662 /* Found a non-virtual function: print out the type. */
663 fputs_filtered ("(", stream);
79d43c61 664 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
94af9270
KS
665 fputs_filtered (") ", stream);
666 }
0d5de010
DJ
667
668 /* We didn't find it; print the raw data. */
669 if (vbit)
670 {
671 fprintf_filtered (stream, "&virtual table offset ");
672 print_longest (stream, 'd', 1, ptr_value);
673 }
674 else
edf0c1b7
TT
675 {
676 struct value_print_options opts;
677
678 get_user_print_options (&opts);
679 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
680 }
0d5de010
DJ
681
682 if (adjustment)
683 {
684 fprintf_filtered (stream, ", this adjustment ");
685 print_longest (stream, 'd', 1, adjustment);
686 }
687}
688
689/* GNU v3 implementation of cplus_method_ptr_size. */
690
691static int
ad4820ab 692gnuv3_method_ptr_size (struct type *type)
0d5de010 693{
8ee511af 694 return 2 * TYPE_LENGTH (builtin_type (type->arch ())->builtin_data_ptr);
0d5de010
DJ
695}
696
697/* GNU v3 implementation of cplus_make_method_ptr. */
698
699static void
ad4820ab
UW
700gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
701 CORE_ADDR value, int is_virtual)
0d5de010 702{
8ee511af 703 struct gdbarch *gdbarch = type->arch ();
ad4820ab 704 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
34877895 705 enum bfd_endian byte_order = type_byte_order (type);
0d5de010
DJ
706
707 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
708 always zero, since the method pointer is of the correct type.
709 But if the method pointer came from a base class, this is
710 incorrect - it should be the offset to the base. The best
711 fix might be to create the pointer to member pointing at the
712 base class and cast it to the derived class, but that requires
713 support for adjusting pointers to members when casting them -
714 not currently supported by GDB. */
715
ad4820ab 716 if (!gdbarch_vbit_in_delta (gdbarch))
0d5de010 717 {
e17a4113
UW
718 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
719 store_unsigned_integer (contents + size, size, byte_order, 0);
0d5de010
DJ
720 }
721 else
722 {
e17a4113
UW
723 store_unsigned_integer (contents, size, byte_order, value);
724 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
0d5de010
DJ
725 }
726}
727
728/* GNU v3 implementation of cplus_method_ptr_to_value. */
729
730static struct value *
731gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
732{
ad4820ab 733 struct gdbarch *gdbarch;
0d5de010
DJ
734 const gdb_byte *contents = value_contents (method_ptr);
735 CORE_ADDR ptr_value;
09e2d7c7 736 struct type *self_type, *final_type, *method_type;
0d5de010 737 LONGEST adjustment;
0d5de010
DJ
738 int vbit;
739
09e2d7c7
DE
740 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
741 final_type = lookup_pointer_type (self_type);
0d5de010
DJ
742
743 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
744
fead6908 745 /* Extract the pointer to member. */
8ee511af 746 gdbarch = self_type->arch ();
ad4820ab 747 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
0d5de010
DJ
748
749 /* First convert THIS to match the containing type of the pointer to
750 member. This cast may adjust the value of THIS. */
751 *this_p = value_cast (final_type, *this_p);
752
753 /* Then apply whatever adjustment is necessary. This creates a somewhat
754 strange pointer: it claims to have type FINAL_TYPE, but in fact it
755 might not be a valid FINAL_TYPE. For instance, it might be a
756 base class of FINAL_TYPE. And if it's not the primary base class,
757 then printing it out as a FINAL_TYPE object would produce some pretty
758 garbage.
759
760 But we don't really know the type of the first argument in
761 METHOD_TYPE either, which is why this happens. We can't
762 dereference this later as a FINAL_TYPE, but once we arrive in the
763 called method we'll have debugging information for the type of
764 "this" - and that'll match the value we produce here.
765
766 You can provoke this case by casting a Base::* to a Derived::*, for
767 instance. */
ad4820ab 768 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
2497b498 769 *this_p = value_ptradd (*this_p, adjustment);
0d5de010
DJ
770 *this_p = value_cast (final_type, *this_p);
771
772 if (vbit)
773 {
ad4820ab 774 LONGEST voffset;
d8734c88 775
ed09d7da 776 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
ad4820ab
UW
777 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
778 method_type, voffset);
0d5de010
DJ
779 }
780 else
781 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
782}
783
c4aeac85
TT
784/* Objects of this type are stored in a hash table and a vector when
785 printing the vtables for a class. */
786
787struct value_and_voffset
788{
789 /* The value representing the object. */
790 struct value *value;
791
792 /* The maximum vtable offset we've found for any object at this
793 offset in the outermost object. */
794 int max_voffset;
795};
796
c4aeac85
TT
797/* Hash function for value_and_voffset. */
798
799static hashval_t
800hash_value_and_voffset (const void *p)
801{
9a3c8263 802 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
c4aeac85
TT
803
804 return value_address (o->value) + value_embedded_offset (o->value);
805}
806
807/* Equality function for value_and_voffset. */
808
809static int
810eq_value_and_voffset (const void *a, const void *b)
811{
9a3c8263
SM
812 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
813 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
c4aeac85
TT
814
815 return (value_address (ova->value) + value_embedded_offset (ova->value)
816 == value_address (ovb->value) + value_embedded_offset (ovb->value));
817}
818
59d3651b 819/* Comparison function for value_and_voffset. */
c4aeac85 820
59d3651b
TT
821static bool
822compare_value_and_voffset (const struct value_and_voffset *va,
823 const struct value_and_voffset *vb)
c4aeac85 824{
59d3651b
TT
825 CORE_ADDR addra = (value_address (va->value)
826 + value_embedded_offset (va->value));
827 CORE_ADDR addrb = (value_address (vb->value)
828 + value_embedded_offset (vb->value));
829
830 return addra < addrb;
c4aeac85
TT
831}
832
833/* A helper function used when printing vtables. This determines the
834 key (most derived) sub-object at each address and also computes the
835 maximum vtable offset seen for the corresponding vtable. Updates
836 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
837 needed. VALUE is the object to examine. */
838
839static void
840compute_vtable_size (htab_t offset_hash,
59d3651b 841 std::vector<value_and_voffset *> *offset_vec,
c4aeac85
TT
842 struct value *value)
843{
844 int i;
845 struct type *type = check_typedef (value_type (value));
846 void **slot;
847 struct value_and_voffset search_vo, *current_vo;
c4aeac85 848
78134374 849 gdb_assert (type->code () == TYPE_CODE_STRUCT);
5f4ce105 850
c4aeac85
TT
851 /* If the object is not dynamic, then we are done; as it cannot have
852 dynamic base types either. */
853 if (!gnuv3_dynamic_class (type))
854 return;
855
856 /* Update the hash and the vec, if needed. */
857 search_vo.value = value;
858 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
859 if (*slot)
9a3c8263 860 current_vo = (struct value_and_voffset *) *slot;
c4aeac85
TT
861 else
862 {
863 current_vo = XNEW (struct value_and_voffset);
864 current_vo->value = value;
865 current_vo->max_voffset = -1;
866 *slot = current_vo;
59d3651b 867 offset_vec->push_back (current_vo);
c4aeac85
TT
868 }
869
870 /* Update the value_and_voffset object with the highest vtable
871 offset from this class. */
872 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
873 {
874 int j;
875 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
876
877 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
878 {
879 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
880 {
881 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
882
883 if (voffset > current_vo->max_voffset)
884 current_vo->max_voffset = voffset;
885 }
886 }
887 }
888
889 /* Recurse into base classes. */
890 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
891 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
892}
893
894/* Helper for gnuv3_print_vtable that prints a single vtable. */
895
896static void
897print_one_vtable (struct gdbarch *gdbarch, struct value *value,
898 int max_voffset,
899 struct value_print_options *opts)
900{
901 int i;
902 struct type *type = check_typedef (value_type (value));
903 struct value *vtable;
904 CORE_ADDR vt_addr;
905
906 vtable = gnuv3_get_vtable (gdbarch, type,
907 value_address (value)
908 + value_embedded_offset (value));
909 vt_addr = value_address (value_field (vtable,
910 vtable_field_virtual_functions));
911
912 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
913 TYPE_SAFE_NAME (type),
914 paddress (gdbarch, vt_addr),
915 paddress (gdbarch, (value_address (value)
916 + value_embedded_offset (value))));
917
918 for (i = 0; i <= max_voffset; ++i)
919 {
cafe75b0
JK
920 /* Initialize it just to avoid a GCC false warning. */
921 CORE_ADDR addr = 0;
492d29ea 922 int got_error = 0;
c4aeac85 923 struct value *vfn;
c4aeac85
TT
924
925 printf_filtered ("[%d]: ", i);
926
927 vfn = value_subscript (value_field (vtable,
928 vtable_field_virtual_functions),
929 i);
930
931 if (gdbarch_vtable_function_descriptors (gdbarch))
932 vfn = value_addr (vfn);
933
a70b8144 934 try
c4aeac85
TT
935 {
936 addr = value_as_address (vfn);
937 }
230d2906 938 catch (const gdb_exception_error &ex)
492d29ea 939 {
7f6aba03
TT
940 fprintf_styled (gdb_stdout, metadata_style.style (),
941 _("<error: %s>"), ex.what ());
492d29ea
PA
942 got_error = 1;
943 }
492d29ea
PA
944
945 if (!got_error)
edf0c1b7 946 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
c4aeac85
TT
947 printf_filtered ("\n");
948 }
949}
950
951/* Implementation of the print_vtable method. */
952
953static void
954gnuv3_print_vtable (struct value *value)
955{
956 struct gdbarch *gdbarch;
957 struct type *type;
958 struct value *vtable;
959 struct value_print_options opts;
59d3651b 960 int count;
c4aeac85
TT
961
962 value = coerce_ref (value);
963 type = check_typedef (value_type (value));
78134374 964 if (type->code () == TYPE_CODE_PTR)
c4aeac85
TT
965 {
966 value = value_ind (value);
967 type = check_typedef (value_type (value));
968 }
969
970 get_user_print_options (&opts);
971
972 /* Respect 'set print object'. */
973 if (opts.objectprint)
974 {
975 value = value_full_object (value, NULL, 0, 0, 0);
976 type = check_typedef (value_type (value));
977 }
978
8ee511af 979 gdbarch = type->arch ();
5f4ce105
DE
980
981 vtable = NULL;
78134374 982 if (type->code () == TYPE_CODE_STRUCT)
5f4ce105
DE
983 vtable = gnuv3_get_vtable (gdbarch, type,
984 value_as_address (value_addr (value)));
c4aeac85
TT
985
986 if (!vtable)
987 {
988 printf_filtered (_("This object does not have a virtual function table\n"));
989 return;
990 }
991
fc4007c9
TT
992 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
993 eq_value_and_voffset,
994 xfree, xcalloc, xfree));
59d3651b 995 std::vector<value_and_voffset *> result_vec;
c4aeac85 996
fc4007c9 997 compute_vtable_size (offset_hash.get (), &result_vec, value);
59d3651b
TT
998 std::sort (result_vec.begin (), result_vec.end (),
999 compare_value_and_voffset);
c4aeac85
TT
1000
1001 count = 0;
59d3651b 1002 for (value_and_voffset *iter : result_vec)
c4aeac85
TT
1003 {
1004 if (iter->max_voffset >= 0)
1005 {
1006 if (count > 0)
1007 printf_filtered ("\n");
1008 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
1009 ++count;
1010 }
1011 }
c4aeac85
TT
1012}
1013
6e72ca20
TT
1014/* Return a GDB type representing `struct std::type_info', laid out
1015 appropriately for ARCH.
1016
1017 We use this function as the gdbarch per-architecture data
1018 initialization function. */
1019
1020static void *
1021build_std_type_info_type (struct gdbarch *arch)
1022{
1023 struct type *t;
1024 struct field *field_list, *field;
1025 int offset;
1026 struct type *void_ptr_type
1027 = builtin_type (arch)->builtin_data_ptr;
1028 struct type *char_type
1029 = builtin_type (arch)->builtin_char;
1030 struct type *char_ptr_type
1031 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1032
8d749320 1033 field_list = XCNEWVEC (struct field, 2);
6e72ca20
TT
1034 field = &field_list[0];
1035 offset = 0;
1036
1037 /* The vtable. */
1038 FIELD_NAME (*field) = "_vptr.type_info";
5d14b6e5 1039 field->set_type (void_ptr_type);
6e72ca20 1040 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
b6cdac4b 1041 offset += TYPE_LENGTH (field->type ());
6e72ca20
TT
1042 field++;
1043
1044 /* The name. */
1045 FIELD_NAME (*field) = "__name";
5d14b6e5 1046 field->set_type (char_ptr_type);
6e72ca20 1047 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
b6cdac4b 1048 offset += TYPE_LENGTH (field->type ());
6e72ca20
TT
1049 field++;
1050
1051 gdb_assert (field == (field_list + 2));
1052
77b7c781 1053 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
5e33d5f4 1054 t->set_num_fields (field - field_list);
3cabb6b0 1055 t->set_fields (field_list);
d0e39ea2 1056 t->set_name ("gdb_gnu_v3_type_info");
6e72ca20
TT
1057 INIT_CPLUS_SPECIFIC (t);
1058
1059 return t;
1060}
1061
1062/* Implement the 'get_typeid_type' method. */
1063
1064static struct type *
1065gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1066{
1067 struct symbol *typeinfo;
1068 struct type *typeinfo_type;
1069
d12307c1
PMR
1070 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1071 NULL).symbol;
6e72ca20 1072 if (typeinfo == NULL)
9a3c8263
SM
1073 typeinfo_type
1074 = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
6e72ca20
TT
1075 else
1076 typeinfo_type = SYMBOL_TYPE (typeinfo);
1077
1078 return typeinfo_type;
1079}
1080
1081/* Implement the 'get_typeid' method. */
1082
1083static struct value *
1084gnuv3_get_typeid (struct value *value)
1085{
1086 struct type *typeinfo_type;
1087 struct type *type;
1088 struct gdbarch *gdbarch;
6e72ca20 1089 struct value *result;
596dc4ad
TT
1090 std::string type_name;
1091 gdb::unique_xmalloc_ptr<char> canonical;
6e72ca20
TT
1092
1093 /* We have to handle values a bit trickily here, to allow this code
1094 to work properly with non_lvalue values that are really just
1095 disguised types. */
1096 if (value_lval_const (value) == lval_memory)
1097 value = coerce_ref (value);
1098
1099 type = check_typedef (value_type (value));
1100
1101 /* In the non_lvalue case, a reference might have slipped through
1102 here. */
78134374 1103 if (type->code () == TYPE_CODE_REF)
6e72ca20
TT
1104 type = check_typedef (TYPE_TARGET_TYPE (type));
1105
1106 /* Ignore top-level cv-qualifiers. */
1107 type = make_cv_type (0, 0, type, NULL);
8ee511af 1108 gdbarch = type->arch ();
6e72ca20 1109
fe978cb0 1110 type_name = type_to_string (type);
2f408ecb 1111 if (type_name.empty ())
6e72ca20 1112 error (_("cannot find typeinfo for unnamed type"));
6e72ca20
TT
1113
1114 /* We need to canonicalize the type name here, because we do lookups
1115 using the demangled name, and so we must match the format it
1116 uses. E.g., GDB tends to use "const char *" as a type name, but
1117 the demangler uses "char const *". */
2f408ecb 1118 canonical = cp_canonicalize_string (type_name.c_str ());
596dc4ad
TT
1119 const char *name = (canonical == nullptr
1120 ? type_name.c_str ()
1121 : canonical.get ());
6e72ca20
TT
1122
1123 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1124
1125 /* We check for lval_memory because in the "typeid (type-id)" case,
1126 the type is passed via a not_lval value object. */
78134374 1127 if (type->code () == TYPE_CODE_STRUCT
6e72ca20
TT
1128 && value_lval_const (value) == lval_memory
1129 && gnuv3_dynamic_class (type))
1130 {
1131 struct value *vtable, *typeinfo_value;
1132 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1133
1134 vtable = gnuv3_get_vtable (gdbarch, type, address);
1135 if (vtable == NULL)
2f408ecb 1136 error (_("cannot find typeinfo for object of type '%s'"),
596dc4ad 1137 name);
6e72ca20
TT
1138 typeinfo_value = value_field (vtable, vtable_field_type_info);
1139 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1140 typeinfo_value));
1141 }
1142 else
1143 {
596dc4ad 1144 std::string sym_name = std::string ("typeinfo for ") + name;
2f408ecb
PA
1145 bound_minimal_symbol minsym
1146 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
6e72ca20 1147
3b7344d5 1148 if (minsym.minsym == NULL)
596dc4ad 1149 error (_("could not find typeinfo symbol for '%s'"), name);
6e72ca20 1150
77e371c0 1151 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
6e72ca20
TT
1152 }
1153
6e72ca20
TT
1154 return result;
1155}
1156
cc16e6c9 1157/* Implement the 'get_typename_from_type_info' method. */
72f1fe8a 1158
2f408ecb 1159static std::string
72f1fe8a
TT
1160gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1161{
8ee511af 1162 struct gdbarch *gdbarch = value_type (type_info_ptr)->arch ();
72f1fe8a
TT
1163 struct bound_minimal_symbol typeinfo_sym;
1164 CORE_ADDR addr;
1165 const char *symname;
1166 const char *class_name;
1167 const char *atsign;
1168
1169 addr = value_as_address (type_info_ptr);
1170 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1171 if (typeinfo_sym.minsym == NULL)
1172 error (_("could not find minimal symbol for typeinfo address %s"),
1173 paddress (gdbarch, addr));
1174
1175#define TYPEINFO_PREFIX "typeinfo for "
1176#define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
c9d95fa3 1177 symname = typeinfo_sym.minsym->demangled_name ();
72f1fe8a
TT
1178 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1179 TYPEINFO_PREFIX_LEN))
1180 error (_("typeinfo symbol '%s' has unexpected name"),
c9d95fa3 1181 typeinfo_sym.minsym->linkage_name ());
72f1fe8a
TT
1182 class_name = symname + TYPEINFO_PREFIX_LEN;
1183
1184 /* Strip off @plt and version suffixes. */
1185 atsign = strchr (class_name, '@');
1186 if (atsign != NULL)
2f408ecb
PA
1187 return std::string (class_name, atsign - class_name);
1188 return class_name;
72f1fe8a
TT
1189}
1190
1191/* Implement the 'get_type_from_type_info' method. */
1192
1193static struct type *
1194gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1195{
72f1fe8a
TT
1196 /* We have to parse the type name, since in general there is not a
1197 symbol for a type. This is somewhat bogus since there may be a
1198 mis-parse. Another approach might be to re-use the demangler's
1199 internal form to reconstruct the type somehow. */
2f408ecb
PA
1200 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1201 expression_up expr (parse_expression (type_name.c_str ()));
1202 struct value *type_val = evaluate_type (expr.get ());
1203 return value_type (type_val);
72f1fe8a
TT
1204}
1205
b18be20d
DJ
1206/* Determine if we are currently in a C++ thunk. If so, get the address
1207 of the routine we are thunking to and continue to there instead. */
1208
1209static CORE_ADDR
52f729a7 1210gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
b18be20d 1211{
a513d1e8 1212 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
9970f04b 1213 struct gdbarch *gdbarch = get_frame_arch (frame);
3b7344d5 1214 struct bound_minimal_symbol thunk_sym, fn_sym;
b18be20d 1215 struct obj_section *section;
0d5cff50 1216 const char *thunk_name, *fn_name;
b18be20d 1217
9970f04b 1218 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
b18be20d
DJ
1219 if (real_stop_pc == 0)
1220 real_stop_pc = stop_pc;
1221
1222 /* Find the linker symbol for this potential thunk. */
3b7344d5 1223 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
b18be20d 1224 section = find_pc_section (real_stop_pc);
3b7344d5 1225 if (thunk_sym.minsym == NULL || section == NULL)
b18be20d
DJ
1226 return 0;
1227
1228 /* The symbol's demangled name should be something like "virtual
1229 thunk to FUNCTION", where FUNCTION is the name of the function
1230 being thunked to. */
c9d95fa3 1231 thunk_name = thunk_sym.minsym->demangled_name ();
b18be20d
DJ
1232 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1233 return 0;
1234
1235 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1236 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
3b7344d5 1237 if (fn_sym.minsym == NULL)
b18be20d
DJ
1238 return 0;
1239
77e371c0 1240 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
a513d1e8
LM
1241
1242 /* Some targets have minimal symbols pointing to function descriptors
1243 (powerpc 64 for example). Make sure to retrieve the address
1244 of the real function from the function descriptor before passing on
1245 the address to other layers of GDB. */
1246 func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
8b88a78e 1247 current_top_target ());
a513d1e8
LM
1248 if (func_addr != 0)
1249 method_stop_pc = func_addr;
1250
e76f05fa 1251 real_stop_pc = gdbarch_skip_trampoline_code
9970f04b 1252 (gdbarch, frame, method_stop_pc);
b18be20d
DJ
1253 if (real_stop_pc == 0)
1254 real_stop_pc = method_stop_pc;
1255
1256 return real_stop_pc;
1257}
1258
62bf63d7
TBA
1259/* A member function is in one these states. */
1260
1261enum definition_style
1262{
1263 DOES_NOT_EXIST_IN_SOURCE,
1264 DEFAULTED_INSIDE,
1265 DEFAULTED_OUTSIDE,
1266 DELETED,
1267 EXPLICIT,
1268};
1269
1270/* Return how the given field is defined. */
1271
1272static definition_style
1273get_def_style (struct fn_field *fn, int fieldelem)
1274{
1275 if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
1276 return DELETED;
1277
1278 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1279 return DOES_NOT_EXIST_IN_SOURCE;
1280
1281 switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
1282 {
1283 case DW_DEFAULTED_no:
1284 return EXPLICIT;
1285 case DW_DEFAULTED_in_class:
1286 return DEFAULTED_INSIDE;
1287 case DW_DEFAULTED_out_of_class:
1288 return DEFAULTED_OUTSIDE;
1289 default:
1290 break;
1291 }
1292
1293 return EXPLICIT;
1294}
1295
1296/* Helper functions to determine whether the given definition style
1297 denotes that the definition is user-provided or implicit.
1298 Being defaulted outside the class decl counts as an explicit
1299 user-definition, while being defaulted inside is implicit. */
1300
1301static bool
1302is_user_provided_def (definition_style def)
1303{
1304 return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
1305}
1306
1307static bool
1308is_implicit_def (definition_style def)
1309{
1310 return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
1311}
1312
1313/* Helper function to decide if METHOD_TYPE is a copy/move
1314 constructor type for CLASS_TYPE. EXPECTED is the expected
1315 type code for the "right-hand-side" argument.
1316 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1317 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1318 not need to call this directly. */
1319
1320static bool
1321is_copy_or_move_constructor_type (struct type *class_type,
1322 struct type *method_type,
1323 type_code expected)
1324{
1325 /* The method should take at least two arguments... */
1f704f76 1326 if (method_type->num_fields () < 2)
62bf63d7
TBA
1327 return false;
1328
1329 /* ...and the second argument should be the same as the class
1330 type, with the expected type code... */
940da03e 1331 struct type *arg_type = method_type->field (1).type ();
62bf63d7 1332
78134374 1333 if (arg_type->code () != expected)
62bf63d7
TBA
1334 return false;
1335
1336 struct type *target = check_typedef (TYPE_TARGET_TYPE (arg_type));
1337 if (!(class_types_same_p (target, class_type)))
1338 return false;
1339
1340 /* ...and if any of the remaining arguments don't have a default value
1341 then this is not a copy or move constructor, but just a
1342 constructor. */
1f704f76 1343 for (int i = 2; i < method_type->num_fields (); i++)
62bf63d7 1344 {
940da03e 1345 arg_type = method_type->field (i).type ();
62bf63d7
TBA
1346 /* FIXME aktemur/2019-10-31: As of this date, neither
1347 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1348 attribute. GDB is also not set to read this attribute, yet.
1349 Hence, we immediately return false if there are more than
1350 2 parameters.
1351 GCC bug link:
1352 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1353 */
1354 return false;
1355 }
1356
1357 return true;
1358}
1359
1360/* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1361
1362static bool
1363is_copy_constructor_type (struct type *class_type,
1364 struct type *method_type)
1365{
1366 return is_copy_or_move_constructor_type (class_type, method_type,
1367 TYPE_CODE_REF);
1368}
1369
1370/* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1371
1372static bool
1373is_move_constructor_type (struct type *class_type,
1374 struct type *method_type)
1375{
1376 return is_copy_or_move_constructor_type (class_type, method_type,
1377 TYPE_CODE_RVALUE_REF);
1378}
1379
9d084466 1380/* Return pass-by-reference information for the given TYPE.
41f1b697
DJ
1381
1382 The rule in the v3 ABI document comes from section 3.1.1. If the
1383 type has a non-trivial copy constructor or destructor, then the
1384 caller must make a copy (by calling the copy constructor if there
1385 is one or perform the copy itself otherwise), pass the address of
1386 the copy, and then destroy the temporary (if necessary).
1387
62bf63d7 1388 For return values with non-trivial copy/move constructors or
41f1b697
DJ
1389 destructors, space will be allocated in the caller, and a pointer
1390 will be passed as the first argument (preceding "this").
1391
1392 We don't have a bulletproof mechanism for determining whether a
62bf63d7
TBA
1393 constructor or destructor is trivial. For GCC and DWARF5 debug
1394 information, we can check the calling_convention attribute,
1395 the 'artificial' flag, the 'defaulted' attribute, and the
1396 'deleted' attribute. */
9d084466
TBA
1397
1398static struct language_pass_by_ref_info
41f1b697
DJ
1399gnuv3_pass_by_reference (struct type *type)
1400{
1401 int fieldnum, fieldelem;
1402
f168693b 1403 type = check_typedef (type);
41f1b697 1404
9d084466 1405 /* Start with the default values. */
48448202 1406 struct language_pass_by_ref_info info;
9d084466 1407
62bf63d7
TBA
1408 bool has_cc_attr = false;
1409 bool is_pass_by_value = false;
1410 bool is_dynamic = false;
1411 definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
1412 definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
1413 definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;
9d084466 1414
41f1b697 1415 /* We're only interested in things that can have methods. */
78134374
SM
1416 if (type->code () != TYPE_CODE_STRUCT
1417 && type->code () != TYPE_CODE_UNION)
9d084466 1418 return info;
41f1b697 1419
62bf63d7
TBA
1420 /* The compiler may have emitted the calling convention attribute.
1421 Note: GCC does not produce this attribute as of version 9.2.1.
1422 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1423 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
1424 {
1425 has_cc_attr = true;
1426 is_pass_by_value = true;
1427 /* Do not return immediately. We have to find out if this type
1428 is copy_constructible and destructible. */
1429 }
1430
1431 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
1432 {
1433 has_cc_attr = true;
1434 is_pass_by_value = false;
1435 }
1436
ebb8ece2
SC
1437 /* A dynamic class has a non-trivial copy constructor.
1438 See c++98 section 12.8 Copying class objects [class.copy]. */
1439 if (gnuv3_dynamic_class (type))
62bf63d7 1440 is_dynamic = true;
ebb8ece2 1441
41f1b697
DJ
1442 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1443 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1444 fieldelem++)
1445 {
1446 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
0d5cff50 1447 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
41f1b697
DJ
1448 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1449
41f1b697 1450 if (name[0] == '~')
9d084466 1451 {
62bf63d7
TBA
1452 /* We've found a destructor.
1453 There should be at most one dtor definition. */
1454 gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
1455 dtor_def = get_def_style (fn, fieldelem);
9d084466 1456 }
62bf63d7
TBA
1457 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1458 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
82c48ac7 1459 {
62bf63d7
TBA
1460 /* FIXME drow/2007-09-23: We could do this using the name of
1461 the method and the name of the class instead of dealing
1462 with the mangled name. We don't have a convenient function
1463 to strip off both leading scope qualifiers and trailing
1464 template arguments yet. */
1465 if (is_copy_constructor_type (type, fieldtype))
1466 {
1467 /* There may be more than one cctors. E.g.: one that
1468 take a const parameter and another that takes a
1469 non-const parameter. Such as:
1470
1471 class K {
1472 K (const K &k)...
1473 K (K &k)...
1474 };
1475
1476 It is sufficient for the type to be non-trivial
1477 even only one of the cctors is explicit.
1478 Therefore, update the cctor_def value in the
1479 implicit -> explicit direction, not backwards. */
1480
1481 if (is_implicit_def (cctor_def))
1482 cctor_def = get_def_style (fn, fieldelem);
1483 }
1484 else if (is_move_constructor_type (type, fieldtype))
3433cfa5 1485 {
62bf63d7
TBA
1486 /* Again, there may be multiple move ctors. Update the
1487 mctor_def value if we found an explicit def and the
1488 existing one is not explicit. Otherwise retain the
1489 existing value. */
1490 if (is_implicit_def (mctor_def))
1491 mctor_def = get_def_style (fn, fieldelem);
3433cfa5 1492 }
82c48ac7 1493 }
41f1b697
DJ
1494 }
1495
62bf63d7
TBA
1496 bool cctor_implicitly_deleted
1497 = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
1498 && cctor_def == DOES_NOT_EXIST_IN_SOURCE);
1499
1500 bool cctor_explicitly_deleted = (cctor_def == DELETED);
1501
1502 if (cctor_implicitly_deleted || cctor_explicitly_deleted)
1503 info.copy_constructible = false;
1504
1505 if (dtor_def == DELETED)
1506 info.destructible = false;
1507
1508 info.trivially_destructible = is_implicit_def (dtor_def);
1509
1510 info.trivially_copy_constructible
1511 = (is_implicit_def (cctor_def)
1512 && !is_dynamic);
1513
1514 info.trivially_copyable
1515 = (info.trivially_copy_constructible
1516 && info.trivially_destructible
1517 && !is_user_provided_def (mctor_def));
1518
41f1b697
DJ
1519 /* Even if all the constructors and destructors were artificial, one
1520 of them may have invoked a non-artificial constructor or
1521 destructor in a base class. If any base class needs to be passed
1522 by reference, so does this class. Similarly for members, which
1523 are constructed whenever this class is. We do not need to worry
1524 about recursive loops here, since we are only looking at members
bceffbf3 1525 of complete class type. Also ignore any static members. */
1f704f76 1526 for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
ceacbf6e 1527 if (!field_is_static (&type->field (fieldnum)))
9d084466 1528 {
940da03e 1529 struct type *field_type = type->field (fieldnum).type ();
62bf63d7
TBA
1530
1531 /* For arrays, make the decision based on the element type. */
78134374 1532 if (field_type->code () == TYPE_CODE_ARRAY)
62bf63d7
TBA
1533 field_type = check_typedef (TYPE_TARGET_TYPE (field_type));
1534
9d084466 1535 struct language_pass_by_ref_info field_info
62bf63d7
TBA
1536 = gnuv3_pass_by_reference (field_type);
1537
1538 if (!field_info.copy_constructible)
1539 info.copy_constructible = false;
1540 if (!field_info.destructible)
1541 info.destructible = false;
9d084466 1542 if (!field_info.trivially_copyable)
62bf63d7
TBA
1543 info.trivially_copyable = false;
1544 if (!field_info.trivially_copy_constructible)
1545 info.trivially_copy_constructible = false;
1546 if (!field_info.trivially_destructible)
1547 info.trivially_destructible = false;
9d084466 1548 }
41f1b697 1549
62bf63d7
TBA
1550 /* Consistency check. */
1551 if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
1552 {
1553 /* DWARF CC attribute is not the same as the inferred value;
1554 use the DWARF attribute. */
1555 info.trivially_copyable = is_pass_by_value;
1556 }
1557
9d084466 1558 return info;
41f1b697
DJ
1559}
1560
7ed49443
JB
1561static void
1562init_gnuv3_ops (void)
1563{
0963b4bd
MS
1564 vtable_type_gdbarch_data
1565 = gdbarch_data_register_post_init (build_gdb_vtable_type);
6e72ca20
TT
1566 std_type_info_gdbarch_data
1567 = gdbarch_data_register_post_init (build_std_type_info_type);
7ed49443
JB
1568
1569 gnu_v3_abi_ops.shortname = "gnu-v3";
1570 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1571 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
358777b0
EZ
1572 gnu_v3_abi_ops.is_destructor_name =
1573 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1574 gnu_v3_abi_ops.is_constructor_name =
1575 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
7ed49443
JB
1576 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1577 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1578 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1579 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1514d34e 1580 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
0d5de010
DJ
1581 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1582 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1583 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1584 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
c4aeac85 1585 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
6e72ca20
TT
1586 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1587 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
72f1fe8a 1588 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
cc16e6c9
TT
1589 gnu_v3_abi_ops.get_typename_from_type_info
1590 = gnuv3_get_typename_from_type_info;
b18be20d 1591 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
41f1b697 1592 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
7ed49443
JB
1593}
1594
6c265988 1595void _initialize_gnu_v3_abi ();
7ed49443 1596void
6c265988 1597_initialize_gnu_v3_abi ()
7ed49443
JB
1598{
1599 init_gnuv3_ops ();
1600
fe1f4a5e 1601 register_cp_abi (&gnu_v3_abi_ops);
1605ef26 1602 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
7ed49443 1603}
This page took 1.662136 seconds and 4 git commands to generate.