*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
CommitLineData
c906108c 1/* Target-machine dependent code for Hitachi H8/300, for GDB.
cda5a58a
AC
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
1e698235 4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/*
c5aa993b
JM
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
c906108c
SS
26 */
27
28#include "defs.h"
c906108c 29#include "value.h"
928e48af
CV
30#include "inferior.h"
31#include "symfile.h"
32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
928e48af
CV
34#include "gdbcore.h"
35#include "objfiles.h"
36#include "gdbcmd.h"
4904ba5b 37#include "gdb_assert.h"
c906108c 38
928e48af
CV
39/* Extra info which is saved in each frame_info. */
40struct frame_extra_info
41{
42 CORE_ADDR from_pc;
928e48af 43};
c906108c 44
928e48af
CV
45enum
46{
47 h8300_reg_size = 2,
48 h8300h_reg_size = 4,
49 h8300_max_reg_size = 4,
50};
51#define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
52
53enum gdb_regnum
54{
55 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
0261a0d0
CV
56 E_RET0_REGNUM = E_R0_REGNUM,
57 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
928e48af
CV
58 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
59 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
60 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
61 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
62 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
63 E_SP_REGNUM,
64 E_CCR_REGNUM,
65 E_PC_REGNUM,
66 E_CYCLES_REGNUM,
67 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
68 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
084edea5
CV
69 E_INSTS_REGNUM,
70 E_MACH_REGNUM,
71 E_MACL_REGNUM,
72 E_SBR_REGNUM,
73 E_VBR_REGNUM
928e48af 74};
c906108c 75
4bb1dc5e
CV
76#define E_PSEUDO_CCR_REGNUM (NUM_REGS)
77#define E_PSEUDO_EXR_REGNUM (NUM_REGS+1)
78
c906108c
SS
79#define UNSIGNED_SHORT(X) ((X) & 0xffff)
80
81#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
82#define IS_PUSH_FP(x) (x == 0x6df6)
83#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
84#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
85#define IS_SUB2_SP(x) (x==0x1b87)
86#define IS_SUB4_SP(x) (x==0x1b97)
87#define IS_SUBL_SP(x) (x==0x7a37)
88#define IS_MOVK_R5(x) (x==0x7905)
89#define IS_SUB_R5SP(x) (x==0x1957)
90
928e48af
CV
91/* If the instruction at PC is an argument register spill, return its
92 length. Otherwise, return zero.
c906108c 93
928e48af
CV
94 An argument register spill is an instruction that moves an argument
95 from the register in which it was passed to the stack slot in which
96 it really lives. It is a byte, word, or longword move from an
4bb1dc5e
CV
97 argument register to a negative offset from the frame pointer.
98
99 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
100 is used, it could be a byte, word or long move to registers r3-r5. */
c906108c 101
928e48af
CV
102static int
103h8300_is_argument_spill (CORE_ADDR pc)
104{
105 int w = read_memory_unsigned_integer (pc, 2);
106
4bb1dc5e
CV
107 if (((w & 0xff88) == 0x0c88 /* mov.b Rsl, Rdl */
108 || (w & 0xff88) == 0x0d00 /* mov.w Rs, Rd */
109 || (w & 0xff88) == 0x0f80) /* mov.l Rs, Rd */
110 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
111 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)/* Rd is R3, R4 or R5 */
112 return 2;
113
928e48af
CV
114 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
115 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
116 {
117 int w2 = read_memory_integer (pc + 2, 2);
118
119 /* ... and d:16 is negative. */
120 if (w2 < 0)
121 return 4;
122 }
123 else if (w == 0x7860)
124 {
125 int w2 = read_memory_integer (pc + 2, 2);
c906108c 126
928e48af
CV
127 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
128 {
129 LONGEST disp = read_memory_integer (pc + 4, 4);
c906108c 130
928e48af
CV
131 /* ... and d:24 is negative. */
132 if (disp < 0 && disp > 0xffffff)
133 return 8;
134 }
135 }
136 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
137 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
138 {
139 int w2 = read_memory_integer (pc + 2, 2);
c906108c 140
928e48af
CV
141 /* ... and d:16 is negative. */
142 if (w2 < 0)
143 return 4;
144 }
145 else if (w == 0x78e0)
146 {
147 int w2 = read_memory_integer (pc + 2, 2);
c906108c 148
928e48af
CV
149 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
150 {
151 LONGEST disp = read_memory_integer (pc + 4, 4);
152
153 /* ... and d:24 is negative. */
154 if (disp < 0 && disp > 0xffffff)
155 return 8;
156 }
157 }
158 else if (w == 0x0100)
159 {
160 int w2 = read_memory_integer (pc + 2, 2);
161
162 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
163 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
164 {
165 int w3 = read_memory_integer (pc + 4, 2);
166
167 /* ... and d:16 is negative. */
168 if (w3 < 0)
169 return 6;
170 }
171 else if (w2 == 0x78e0)
172 {
173 int w3 = read_memory_integer (pc + 4, 2);
174
175 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
176 {
177 LONGEST disp = read_memory_integer (pc + 6, 4);
178
179 /* ... and d:24 is negative. */
180 if (disp < 0 && disp > 0xffffff)
181 return 10;
182 }
183 }
184 }
185
186 return 0;
187}
188
189static CORE_ADDR
fba45db2 190h8300_skip_prologue (CORE_ADDR start_pc)
c906108c
SS
191{
192 short int w;
193 int adjust = 0;
194
195 /* Skip past all push and stm insns. */
196 while (1)
197 {
198 w = read_memory_unsigned_integer (start_pc, 2);
199 /* First look for push insns. */
200 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
201 {
202 w = read_memory_unsigned_integer (start_pc + 2, 2);
203 adjust = 2;
204 }
205
206 if (IS_PUSH (w))
207 {
208 start_pc += 2 + adjust;
209 w = read_memory_unsigned_integer (start_pc, 2);
210 continue;
211 }
212 adjust = 0;
213 break;
214 }
215
216 /* Skip past a move to FP, either word or long sized */
217 w = read_memory_unsigned_integer (start_pc, 2);
218 if (w == 0x0100)
219 {
220 w = read_memory_unsigned_integer (start_pc + 2, 2);
221 adjust += 2;
222 }
223
224 if (IS_MOVE_FP (w))
225 {
226 start_pc += 2 + adjust;
227 w = read_memory_unsigned_integer (start_pc, 2);
228 }
229
230 /* Check for loading either a word constant into r5;
231 long versions are handled by the SUBL_SP below. */
232 if (IS_MOVK_R5 (w))
233 {
234 start_pc += 2;
235 w = read_memory_unsigned_integer (start_pc, 2);
236 }
237
238 /* Now check for subtracting r5 from sp, word sized only. */
239 if (IS_SUB_R5SP (w))
240 {
241 start_pc += 2 + adjust;
242 w = read_memory_unsigned_integer (start_pc, 2);
243 }
244
245 /* Check for subs #2 and subs #4. */
246 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
247 {
248 start_pc += 2 + adjust;
249 w = read_memory_unsigned_integer (start_pc, 2);
250 }
251
252 /* Check for a 32bit subtract. */
253 if (IS_SUBL_SP (w))
254 start_pc += 6 + adjust;
255
4bb1dc5e
CV
256 /* Skip past another possible stm insn for registers R3 to R5 (possibly used
257 for register qualified arguments. */
258 w = read_memory_unsigned_integer (start_pc, 2);
259 /* First look for push insns. */
260 if (w == 0x0110 || w == 0x0120 || w == 0x0130)
261 {
262 w = read_memory_unsigned_integer (start_pc + 2, 2);
263 if (IS_PUSH (w) && (w & 0xf) >= 0x3 && (w & 0xf) <= 0x5)
264 start_pc += 4;
265 }
266
928e48af
CV
267 /* Check for spilling an argument register to the stack frame.
268 This could also be an initializing store from non-prologue code,
269 but I don't think there's any harm in skipping that. */
270 for (;;)
271 {
272 int spill_size = h8300_is_argument_spill (start_pc);
273 if (spill_size == 0)
274 break;
275 start_pc += spill_size;
276 }
277
c906108c
SS
278 return start_pc;
279}
280
c906108c
SS
281/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
282 is not the address of a valid instruction, the address of the next
283 instruction beyond ADDR otherwise. *PWORD1 receives the first word
c5aa993b 284 of the instruction. */
c906108c 285
928e48af 286static CORE_ADDR
884a26c8
MS
287h8300_next_prologue_insn (CORE_ADDR addr,
288 CORE_ADDR lim,
289 unsigned short* pword1)
c906108c
SS
290{
291 char buf[2];
292 if (addr < lim + 8)
293 {
294 read_memory (addr, buf, 2);
295 *pword1 = extract_signed_integer (buf, 2);
296
297 return addr + 2;
298 }
299 return 0;
300}
301
302/* Examine the prologue of a function. `ip' points to the first instruction.
303 `limit' is the limit of the prologue (e.g. the addr of the first
304 linenumber, or perhaps the program counter if we're stepping through).
305 `frame_sp' is the stack pointer value in use in this frame.
306 `fsr' is a pointer to a frame_saved_regs structure into which we put
307 info about the registers saved by this frame.
308 `fi' is a struct frame_info pointer; we fill in various fields in it
309 to reflect the offsets of the arg pointer and the locals pointer. */
310
928e48af
CV
311/* Any function with a frame looks like this
312 SECOND ARG
313 FIRST ARG
314 RET PC
315 SAVED R2
316 SAVED R3
317 SAVED FP <-FP POINTS HERE
318 LOCALS0
319 LOCALS1 <-SP POINTS HERE
320 */
321
c906108c 322static CORE_ADDR
928e48af
CV
323h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
324 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
325 struct frame_info *fi)
c906108c
SS
326{
327 register CORE_ADDR next_ip;
328 int r;
329 int have_fp = 0;
928e48af 330 unsigned short insn_word;
c906108c
SS
331 /* Number of things pushed onto stack, starts at 2/4, 'cause the
332 PC is already there */
928e48af 333 unsigned int reg_save_depth = BINWORD;
c906108c
SS
334
335 unsigned int auto_depth = 0; /* Number of bytes of autos */
336
337 char in_frame[11]; /* One for each reg */
338
339 int adjust = 0;
340
341 memset (in_frame, 1, 11);
342 for (r = 0; r < 8; r++)
343 {
928e48af 344 fsr[r] = 0;
c906108c
SS
345 }
346 if (after_prolog_fp == 0)
347 {
928e48af 348 after_prolog_fp = read_register (E_SP_REGNUM);
c906108c
SS
349 }
350
351 /* If the PC isn't valid, quit now. */
352 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
353 return 0;
354
d1a8e808 355 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c 356
4bb1dc5e 357 if (insn_word == 0x0100) /* mov.l */
c906108c
SS
358 {
359 insn_word = read_memory_unsigned_integer (ip + 2, 2);
360 adjust = 2;
361 }
362
363 /* Skip over any fp push instructions */
928e48af 364 fsr[E_FP_REGNUM] = after_prolog_fp;
c906108c
SS
365 while (next_ip && IS_PUSH_FP (insn_word))
366 {
367 ip = next_ip + adjust;
368
369 in_frame[insn_word & 0x7] = reg_save_depth;
d1a8e808 370 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
371 reg_save_depth += 2 + adjust;
372 }
373
374 /* Is this a move into the fp */
375 if (next_ip && IS_MOV_SP_FP (insn_word))
376 {
377 ip = next_ip;
d1a8e808 378 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
379 have_fp = 1;
380 }
381
382 /* Skip over any stack adjustment, happens either with a number of
383 sub#2,sp or a mov #x,r5 sub r5,sp */
384
385 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
386 {
387 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
388 {
389 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
390 ip = next_ip;
d1a8e808 391 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
392 }
393 }
394 else
395 {
396 if (next_ip && IS_MOVK_R5 (insn_word))
397 {
398 ip = next_ip;
d1a8e808 399 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
400 auto_depth += insn_word;
401
d1a8e808 402 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
c906108c
SS
403 auto_depth += insn_word;
404 }
405 if (next_ip && IS_SUBL_SP (insn_word))
406 {
407 ip = next_ip;
408 auto_depth += read_memory_unsigned_integer (ip, 4);
409 ip += 4;
410
d1a8e808 411 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
412 }
413 }
414
415 /* Now examine the push insns to determine where everything lives
416 on the stack. */
417 while (1)
418 {
419 adjust = 0;
420 if (!next_ip)
421 break;
422
423 if (insn_word == 0x0100)
424 {
425 ip = next_ip;
d1a8e808 426 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
427 adjust = 2;
428 }
429
430 if (IS_PUSH (insn_word))
431 {
ddd216ea
CV
432 auto_depth += 2 + adjust;
433 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
c906108c 434 ip = next_ip;
d1a8e808 435 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
436 continue;
437 }
438
439 /* Now check for push multiple insns. */
440 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
441 {
442 int count = ((insn_word >> 4) & 0xf) + 1;
443 int start, i;
444
445 ip = next_ip;
d1a8e808 446 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
447 start = insn_word & 0x7;
448
6d305052 449 for (i = start; i < start + count; i++)
c906108c 450 {
c906108c 451 auto_depth += 4;
ddd216ea 452 fsr[i] = after_prolog_fp - auto_depth;
c906108c
SS
453 }
454 }
455 break;
456 }
457
c906108c 458 /* The PC is at a known place */
da50a4b7 459 get_frame_extra_info (fi)->from_pc =
7e78f0ca 460 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
c906108c
SS
461
462 /* Rememeber any others too */
928e48af 463 in_frame[E_PC_REGNUM] = 0;
c5aa993b 464
c906108c
SS
465 if (have_fp)
466 /* We keep the old FP in the SP spot */
884a26c8
MS
467 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM],
468 BINWORD);
c906108c 469 else
928e48af 470 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
c906108c
SS
471
472 return (ip);
473}
474
928e48af
CV
475static void
476h8300_frame_init_saved_regs (struct frame_info *fi)
c906108c 477{
928e48af
CV
478 CORE_ADDR func_addr, func_end;
479
b2fb4676 480 if (!get_frame_saved_regs (fi))
928e48af
CV
481 {
482 frame_saved_regs_zalloc (fi);
483
484 /* Find the beginning of this function, so we can analyze its
485 prologue. */
884a26c8
MS
486 if (find_pc_partial_function (get_frame_pc (fi), NULL,
487 &func_addr, &func_end))
928e48af
CV
488 {
489 struct symtab_and_line sal = find_pc_line (func_addr, 0);
884a26c8
MS
490 CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi))
491 ? sal.end : get_frame_pc (fi);
928e48af 492 /* This will fill in fields in fi. */
1e2330ba
AC
493 h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
494 get_frame_saved_regs (fi), fi);
928e48af
CV
495 }
496 /* Else we're out of luck (can't debug completely stripped code).
497 FIXME. */
498 }
499}
500
a5afb99f
AC
501/* Given a GDB frame, determine the address of the calling function's
502 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
503 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
504 will be called for the new frame.
928e48af
CV
505
506 For us, the frame address is its stack pointer value, so we look up
884a26c8
MS
507 the function prologue to determine the caller's sp value, and
508 return it. */
928e48af
CV
509
510static CORE_ADDR
511h8300_frame_chain (struct frame_info *thisframe)
512{
1e2330ba
AC
513 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
514 get_frame_base (thisframe),
515 get_frame_base (thisframe)))
928e48af 516 { /* initialize the from_pc now */
da50a4b7 517 get_frame_extra_info (thisframe)->from_pc =
1e2330ba
AC
518 deprecated_read_register_dummy (get_frame_pc (thisframe),
519 get_frame_base (thisframe),
135c175f 520 E_PC_REGNUM);
1e2330ba 521 return get_frame_base (thisframe);
c906108c 522 }
b2fb4676 523 return get_frame_saved_regs (thisframe)[E_SP_REGNUM];
c906108c
SS
524}
525
526/* Return the saved PC from this frame.
527
528 If the frame has a memory copy of SRP_REGNUM, use that. If not,
529 just use the register SRP_REGNUM itself. */
530
928e48af 531static CORE_ADDR
fba45db2 532h8300_frame_saved_pc (struct frame_info *frame)
c906108c 533{
1e2330ba
AC
534 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
535 get_frame_base (frame),
536 get_frame_base (frame)))
537 return deprecated_read_register_dummy (get_frame_pc (frame),
538 get_frame_base (frame),
135c175f 539 E_PC_REGNUM);
c906108c 540 else
da50a4b7 541 return get_frame_extra_info (frame)->from_pc;
c906108c
SS
542}
543
928e48af
CV
544static void
545h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
546{
da50a4b7 547 if (!get_frame_extra_info (fi))
928e48af 548 {
a00a19e9 549 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
da50a4b7 550 get_frame_extra_info (fi)->from_pc = 0;
928e48af 551
50abf9e5 552 if (!get_frame_pc (fi))
928e48af 553 {
11c02a10
AC
554 if (get_next_frame (fi))
555 deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
928e48af
CV
556 }
557 h8300_frame_init_saved_regs (fi);
558 }
559}
560
928e48af
CV
561/* Round N up or down to the nearest multiple of UNIT.
562 Evaluate N only once, UNIT several times.
563 UNIT must be a power of two. */
564#define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
565#define round_down(n, unit) ((n) & -(unit))
566
63d47a7d 567/* Function: push_dummy_call
c906108c 568 Setup the function arguments for calling a function in the inferior.
928e48af
CV
569 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
570 on the H8/300H.
571
572 There are actually two ABI's here: -mquickcall (the default) and
573 -mno-quickcall. With -mno-quickcall, all arguments are passed on
574 the stack after the return address, word-aligned. With
575 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
576 GCC doesn't indicate in the object file which ABI was used to
577 compile it, GDB only supports the default --- -mquickcall.
578
579 Here are the rules for -mquickcall, in detail:
580
581 Each argument, whether scalar or aggregate, is padded to occupy a
582 whole number of words. Arguments smaller than a word are padded at
583 the most significant end; those larger than a word are padded at
584 the least significant end.
585
586 The initial arguments are passed in r0 -- r2. Earlier arguments go in
587 lower-numbered registers. Multi-word arguments are passed in
588 consecutive registers, with the most significant end in the
589 lower-numbered register.
590
591 If an argument doesn't fit entirely in the remaining registers, it
592 is passed entirely on the stack. Stack arguments begin just after
593 the return address. Once an argument has overflowed onto the stack
594 this way, all subsequent arguments are passed on the stack.
595
596 The above rule has odd consequences. For example, on the h8/300s,
597 if a function takes two longs and an int as arguments:
598 - the first long will be passed in r0/r1,
599 - the second long will be passed entirely on the stack, since it
600 doesn't fit in r2,
601 - and the int will be passed on the stack, even though it could fit
602 in r2.
603
604 A weird exception: if an argument is larger than a word, but not a
605 whole number of words in length (before padding), it is passed on
606 the stack following the rules for stack arguments above, even if
607 there are sufficient registers available to hold it. Stranger
608 still, the argument registers are still `used up' --- even though
609 there's nothing in them.
610
611 So, for example, on the h8/300s, if a function expects a three-byte
612 structure and an int, the structure will go on the stack, and the
613 int will go in r2, not r0.
614
615 If the function returns an aggregate type (struct, union, or class)
616 by value, the caller must allocate space to hold the return value,
617 and pass the callee a pointer to this space as an invisible first
618 argument, in R0.
619
620 For varargs functions, the last fixed argument and all the variable
621 arguments are always passed on the stack. This means that calls to
622 varargs functions don't work properly unless there is a prototype
623 in scope.
624
625 Basically, this ABI is not good, for the following reasons:
626 - You can't call vararg functions properly unless a prototype is in scope.
627 - Structure passing is inconsistent, to no purpose I can see.
628 - It often wastes argument registers, of which there are only three
629 to begin with. */
c906108c 630
928e48af 631static CORE_ADDR
63d47a7d
CV
632h8300_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
633 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
634 struct value **args, CORE_ADDR sp, int struct_return,
635 CORE_ADDR struct_addr)
c906108c 636{
63d47a7d 637 int stack_alloc = 0, stack_offset = 0;
928e48af 638 int wordsize = BINWORD;
63d47a7d 639 int reg = E_ARG0_REGNUM;
928e48af
CV
640 int argument;
641
642 /* First, make sure the stack is properly aligned. */
643 sp = round_down (sp, wordsize);
644
645 /* Now make sure there's space on the stack for the arguments. We
646 may over-allocate a little here, but that won't hurt anything. */
928e48af
CV
647 for (argument = 0; argument < nargs; argument++)
648 stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
649 wordsize);
650 sp -= stack_alloc;
651
652 /* Now load as many arguments as possible into registers, and push
63d47a7d
CV
653 the rest onto the stack.
654 If we're returning a structure by value, then we must pass a
928e48af
CV
655 pointer to the buffer for the return value as an invisible first
656 argument. */
657 if (struct_return)
63d47a7d 658 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
928e48af
CV
659
660 for (argument = 0; argument < nargs; argument++)
c906108c 661 {
928e48af
CV
662 struct type *type = VALUE_TYPE (args[argument]);
663 int len = TYPE_LENGTH (type);
664 char *contents = (char *) VALUE_CONTENTS (args[argument]);
665
666 /* Pad the argument appropriately. */
667 int padded_len = round_up (len, wordsize);
668 char *padded = alloca (padded_len);
669
670 memset (padded, 0, padded_len);
671 memcpy (len < wordsize ? padded + padded_len - len : padded,
672 contents, len);
673
674 /* Could the argument fit in the remaining registers? */
675 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
676 {
677 /* Are we going to pass it on the stack anyway, for no good
678 reason? */
679 if (len > wordsize && len % wordsize)
680 {
681 /* I feel so unclean. */
682 write_memory (sp + stack_offset, padded, padded_len);
683 stack_offset += padded_len;
684
685 /* That's right --- even though we passed the argument
686 on the stack, we consume the registers anyway! Love
687 me, love my dog. */
688 reg += padded_len / wordsize;
689 }
690 else
691 {
692 /* Heavens to Betsy --- it's really going in registers!
693 It would be nice if we could use write_register_bytes
694 here, but on the h8/300s, there are gaps between
695 the registers in the register file. */
696 int offset;
697
698 for (offset = 0; offset < padded_len; offset += wordsize)
699 {
884a26c8
MS
700 ULONGEST word = extract_unsigned_integer (padded + offset,
701 wordsize);
63d47a7d 702 regcache_cooked_write_unsigned (regcache, reg++, word);
928e48af
CV
703 }
704 }
705 }
c906108c 706 else
928e48af
CV
707 {
708 /* It doesn't fit in registers! Onto the stack it goes. */
709 write_memory (sp + stack_offset, padded, padded_len);
710 stack_offset += padded_len;
711
712 /* Once one argument has spilled onto the stack, all
713 subsequent arguments go on the stack. */
714 reg = E_ARGLAST_REGNUM + 1;
715 }
c906108c 716 }
928e48af 717
63d47a7d
CV
718 /* Store return address. */
719 sp -= wordsize;
720 write_memory_unsigned_integer (sp, wordsize, bp_addr);
c906108c 721
63d47a7d
CV
722 /* Update stack pointer. */
723 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
c906108c 724
c906108c
SS
725 return sp;
726}
727
7256e1a5 728/* Function: h8300_pop_frame
c906108c
SS
729 Restore the machine to the state it had before the current frame
730 was created. Usually used either by the "RETURN" command, or by
731 call_function_by_hand after the dummy_frame is finished. */
732
928e48af 733static void
fba45db2 734h8300_pop_frame (void)
c906108c 735{
928e48af 736 unsigned regno;
c906108c
SS
737 struct frame_info *frame = get_current_frame ();
738
1e2330ba
AC
739 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
740 get_frame_base (frame),
741 get_frame_base (frame)))
c906108c 742 {
c5aa993b 743 generic_pop_dummy_frame ();
c906108c
SS
744 }
745 else
746 {
928e48af 747 for (regno = 0; regno < 8; regno++)
c906108c 748 {
928e48af 749 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
c906108c 750 actual value we want, not the address of the value we want. */
b2fb4676 751 if (get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
928e48af 752 write_register (regno,
884a26c8
MS
753 read_memory_integer
754 (get_frame_saved_regs (frame)[regno], BINWORD));
b2fb4676 755 else if (get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
1e2330ba 756 write_register (regno, get_frame_base (frame) + 2 * BINWORD);
c906108c
SS
757 }
758
928e48af 759 /* Don't forget to update the PC too! */
da50a4b7 760 write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
c906108c
SS
761 }
762 flush_cached_frames ();
763}
764
765/* Function: extract_return_value
766 Figure out where in REGBUF the called function has left its return value.
767 Copy that into VALBUF. Be sure to account for CPU type. */
768
928e48af 769static void
0261a0d0
CV
770h8300_extract_return_value (struct type *type, struct regcache *regcache,
771 void *valbuf)
c906108c 772{
928e48af 773 int len = TYPE_LENGTH (type);
0261a0d0 774 ULONGEST c;
c5aa993b
JM
775
776 switch (len)
777 {
0261a0d0
CV
778 case 1:
779 case 2:
780 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
781 store_unsigned_integer (valbuf, len, c);
782 break;
783 case 4: /* Needs two registers on plain H8/300 */
784 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
785 store_unsigned_integer (valbuf, 2, c);
786 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
787 store_unsigned_integer ((void*)((char *)valbuf + 2), 2, c);
788 break;
789 case 8: /* long long, double and long double are all defined
790 as 4 byte types so far so this shouldn't happen. */
791 error ("I don't know how a 8 byte value is returned.");
792 break;
793 }
794}
795
796static void
797h8300h_extract_return_value (struct type *type, struct regcache *regcache,
798 void *valbuf)
799{
800 int len = TYPE_LENGTH (type);
801 ULONGEST c;
802
803 switch (len)
804 {
805 case 1:
806 case 2:
807 case 4:
808 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
809 store_unsigned_integer (valbuf, len, c);
810 break;
811 case 8: /* long long, double and long double are all defined
812 as 4 byte types so far so this shouldn't happen. */
813 error ("I don't know how a 8 byte value is returned.");
814 break;
c5aa993b 815 }
c906108c
SS
816}
817
0261a0d0 818
c906108c
SS
819/* Function: store_return_value
820 Place the appropriate value in the appropriate registers.
821 Primarily used by the RETURN command. */
822
928e48af 823static void
0261a0d0
CV
824h8300_store_return_value (struct type *type, struct regcache *regcache,
825 const void *valbuf)
c906108c 826{
928e48af 827 int len = TYPE_LENGTH (type);
0261a0d0 828 ULONGEST val;
c906108c 829
c5aa993b
JM
830 switch (len)
831 {
0261a0d0
CV
832 case 1:
833 case 2:
834 val = extract_unsigned_integer (valbuf, len);
835 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
836 break;
837 case 4: /* long, float */
838 val = extract_unsigned_integer (valbuf, len);
839 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
840 (val >> 16) &0xffff);
841 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
842 break;
843 case 8: /* long long, double and long double are all defined
844 as 4 byte types so far so this shouldn't happen. */
845 error ("I don't know how to return a 8 byte value.");
846 break;
847 }
848}
849
850static void
851h8300h_store_return_value (struct type *type, struct regcache *regcache,
852 const void *valbuf)
853{
854 int len = TYPE_LENGTH (type);
855 ULONGEST val;
856
857 switch (len)
858 {
859 case 1:
860 case 2:
861 case 4: /* long, float */
862 val = extract_unsigned_integer (valbuf, len);
863 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
864 break;
865 case 8: /* long long, double and long double are all defined
866 as 4 byte types so far so this shouldn't happen. */
867 error ("I don't know how to return a 8 byte value.");
868 break;
c5aa993b 869 }
c906108c
SS
870}
871
928e48af 872static struct cmd_list_element *setmachinelist;
c906108c 873
928e48af
CV
874static const char *
875h8300_register_name (int regno)
c906108c 876{
084edea5 877 /* The register names change depending on which h8300 processor
928e48af 878 type is selected. */
084edea5 879 static char *register_names[] = {
928e48af 880 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
4bb1dc5e
CV
881 "sp", "","pc","cycles", "tick", "inst",
882 "ccr", /* pseudo register */
928e48af 883 };
084edea5
CV
884 if (regno < 0
885 || regno >= (sizeof (register_names) / sizeof (*register_names)))
886 internal_error (__FILE__, __LINE__,
887 "h8300_register_name: illegal register number %d", regno);
888 else
889 return register_names[regno];
890}
891
892static const char *
893h8300s_register_name (int regno)
894{
895 static char *register_names[] = {
928e48af 896 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
4bb1dc5e 897 "sp", "", "pc", "cycles", "", "tick", "inst",
7be04a68 898 "mach", "macl",
4bb1dc5e 899 "ccr", "exr" /* pseudo registers */
928e48af 900 };
084edea5
CV
901 if (regno < 0
902 || regno >= (sizeof (register_names) / sizeof (*register_names)))
903 internal_error (__FILE__, __LINE__,
904 "h8300s_register_name: illegal register number %d", regno);
905 else
906 return register_names[regno];
907}
908
909static const char *
910h8300sx_register_name (int regno)
911{
912 static char *register_names[] = {
913 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
4bb1dc5e
CV
914 "sp", "", "pc", "cycles", "", "tick", "inst",
915 "mach", "macl", "sbr", "vbr",
916 "ccr", "exr" /* pseudo registers */
084edea5
CV
917 };
918 if (regno < 0
919 || regno >= (sizeof (register_names) / sizeof (*register_names)))
928e48af 920 internal_error (__FILE__, __LINE__,
084edea5 921 "h8300sx_register_name: illegal register number %d", regno);
c906108c 922 else
928e48af 923 return register_names[regno];
c906108c
SS
924}
925
926static void
4904ba5b
AC
927h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
928 struct frame_info *frame, int regno)
c906108c 929{
084edea5
CV
930 LONGEST rval;
931 const char *name = gdbarch_register_name (gdbarch, regno);
c906108c 932
928e48af
CV
933 if (!name || !*name)
934 return;
c906108c 935
084edea5 936 frame_read_signed_register (frame, regno, &rval);
4904ba5b
AC
937
938 fprintf_filtered (file, "%-14s ", name);
4bb1dc5e 939 if (regno == E_PSEUDO_CCR_REGNUM || (regno == E_PSEUDO_EXR_REGNUM && h8300smode))
c906108c 940 {
084edea5
CV
941 fprintf_filtered (file, "0x%02x ", (unsigned char)rval);
942 print_longest (file, 'u', 1, rval);
c906108c
SS
943 }
944 else
945 {
084edea5
CV
946 fprintf_filtered (file, "0x%s ", phex ((ULONGEST)rval, BINWORD));
947 print_longest (file, 'd', 1, rval);
c906108c 948 }
4bb1dc5e 949 if (regno == E_PSEUDO_CCR_REGNUM)
c906108c
SS
950 {
951 /* CCR register */
952 int C, Z, N, V;
084edea5 953 unsigned char l = rval & 0xff;
4904ba5b
AC
954 fprintf_filtered (file, "\t");
955 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
956 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
957 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
958 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
c906108c
SS
959 N = (l & 0x8) != 0;
960 Z = (l & 0x4) != 0;
961 V = (l & 0x2) != 0;
962 C = (l & 0x1) != 0;
4904ba5b
AC
963 fprintf_filtered (file, "N-%d ", N);
964 fprintf_filtered (file, "Z-%d ", Z);
965 fprintf_filtered (file, "V-%d ", V);
966 fprintf_filtered (file, "C-%d ", C);
c906108c 967 if ((C | Z) == 0)
4904ba5b 968 fprintf_filtered (file, "u> ");
c906108c 969 if ((C | Z) == 1)
4904ba5b 970 fprintf_filtered (file, "u<= ");
c906108c 971 if ((C == 0))
4904ba5b 972 fprintf_filtered (file, "u>= ");
c906108c 973 if (C == 1)
4904ba5b 974 fprintf_filtered (file, "u< ");
c906108c 975 if (Z == 0)
4904ba5b 976 fprintf_filtered (file, "!= ");
c906108c 977 if (Z == 1)
4904ba5b 978 fprintf_filtered (file, "== ");
c906108c 979 if ((N ^ V) == 0)
4904ba5b 980 fprintf_filtered (file, ">= ");
c906108c 981 if ((N ^ V) == 1)
4904ba5b 982 fprintf_filtered (file, "< ");
c906108c 983 if ((Z | (N ^ V)) == 0)
4904ba5b 984 fprintf_filtered (file, "> ");
c906108c 985 if ((Z | (N ^ V)) == 1)
4904ba5b 986 fprintf_filtered (file, "<= ");
c906108c 987 }
4bb1dc5e 988 else if (regno == E_PSEUDO_EXR_REGNUM && h8300smode)
fc974602
AV
989 {
990 /* EXR register */
084edea5 991 unsigned char l = rval & 0xff;
4904ba5b
AC
992 fprintf_filtered (file, "\t");
993 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
994 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
995 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
996 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
d194345b 997 }
4904ba5b 998 fprintf_filtered (file, "\n");
928e48af
CV
999}
1000
1001static void
4904ba5b
AC
1002h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1003 struct frame_info *frame, int regno, int cpregs)
928e48af
CV
1004{
1005 if (regno < 0)
4bb1dc5e
CV
1006 {
1007 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1008 h8300_print_register (gdbarch, file, frame, regno);
1009 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1010 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1011 if (h8300smode)
1012 {
1013 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1014 if (h8300sxmode)
1015 {
1016 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1017 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
4bb1dc5e 1018 }
7be04a68
MS
1019 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1020 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
4bb1dc5e
CV
1021 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1022 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1023 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1024 }
1025 else
1026 {
1027 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1028 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1029 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1030 }
1031 }
928e48af 1032 else
4bb1dc5e
CV
1033 {
1034 if (regno == E_CCR_REGNUM)
1035 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1036 else if (regno == E_PSEUDO_EXR_REGNUM && h8300smode)
1037 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1038 else
1039 h8300_print_register (gdbarch, file, frame, regno);
1040 }
928e48af
CV
1041}
1042
1043static CORE_ADDR
1044h8300_saved_pc_after_call (struct frame_info *ignore)
1045{
1046 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
1047}
1048
928e48af 1049static struct type *
055c394a 1050h8300_register_type (struct gdbarch *gdbarch, int regno)
928e48af 1051{
4bb1dc5e 1052 if (regno < 0 || regno >= NUM_REGS + NUM_PSEUDO_REGS)
928e48af 1053 internal_error (__FILE__, __LINE__,
055c394a 1054 "h8300_register_type: illegal register number %d",
928e48af
CV
1055 regno);
1056 else
084edea5
CV
1057 {
1058 switch (regno)
1059 {
1060 case E_PC_REGNUM:
1061 return builtin_type_void_func_ptr;
1062 case E_SP_REGNUM:
1063 case E_FP_REGNUM:
1064 return builtin_type_void_data_ptr;
084edea5 1065 default:
4bb1dc5e
CV
1066 if (regno == E_PSEUDO_CCR_REGNUM)
1067 return builtin_type_uint8;
1068 else if (regno == E_PSEUDO_EXR_REGNUM)
1069 return builtin_type_uint8;
1070 else if (h8300hmode)
1071 return builtin_type_int32;
1072 else
1073 return builtin_type_int16;
084edea5
CV
1074 }
1075 }
928e48af
CV
1076}
1077
4bb1dc5e
CV
1078static void
1079h8300_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1080 int regno, void *buf)
1081{
1082 if (regno == E_PSEUDO_CCR_REGNUM)
1083 regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1084 else if (regno == E_PSEUDO_EXR_REGNUM)
1085 regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1086 else
1087 regcache_raw_read (regcache, regno, buf);
1088}
1089
1090static void
1091h8300_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1092 int regno, const void *buf)
1093{
1094 if (regno == E_PSEUDO_CCR_REGNUM)
1095 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1096 else if (regno == E_PSEUDO_EXR_REGNUM)
1097 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1098 else
1099 regcache_raw_write (regcache, regno, buf);
1100}
1101
1102static int
1103h8300_dbg_reg_to_regnum (int regno)
1104{
1105 if (regno == E_CCR_REGNUM)
1106 return E_PSEUDO_CCR_REGNUM;
1107 return regno;
1108}
1109
1110static int
1111h8300s_dbg_reg_to_regnum (int regno)
1112{
1113 if (regno == E_CCR_REGNUM)
1114 return E_PSEUDO_CCR_REGNUM;
1115 if (regno == E_EXR_REGNUM)
1116 return E_PSEUDO_EXR_REGNUM;
1117 return regno;
1118}
1119
928e48af 1120static CORE_ADDR
0261a0d0 1121h8300_extract_struct_value_address (struct regcache *regcache)
928e48af 1122{
0261a0d0
CV
1123 ULONGEST addr;
1124 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
1125 return addr;
928e48af
CV
1126}
1127
1128const static unsigned char *
1129h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1130{
1131 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1132 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1133
1134 *lenptr = sizeof (breakpoint);
1135 return breakpoint;
1136}
1137
0261a0d0
CV
1138static CORE_ADDR
1139h8300_push_dummy_code (struct gdbarch *gdbarch,
1140 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
1141 struct value **args, int nargs,
1142 struct type *value_type,
1143 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
1144{
1145 /* Allocate space sufficient for a breakpoint. */
1146 sp = (sp - 2) & ~1;
1147 /* Store the address of that breakpoint */
1148 *bp_addr = sp;
1149 /* h8300 always starts the call at the callee's entry point. */
1150 *real_pc = funaddr;
1151 return sp;
1152}
1153
928e48af
CV
1154static void
1155h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1156 struct frame_info *frame, const char *args)
1157{
1158 fprintf_filtered (file, "\
1159No floating-point info available for this processor.\n");
1160}
1161
1162static struct gdbarch *
1163h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1164{
928e48af
CV
1165 struct gdbarch_tdep *tdep = NULL;
1166 struct gdbarch *gdbarch;
1167
1168 arches = gdbarch_list_lookup_by_info (arches, &info);
1169 if (arches != NULL)
1170 return arches->gdbarch;
1171
1172#if 0
1173 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1174#endif
1175
1176 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1177 return NULL;
1178
084edea5
CV
1179 gdbarch = gdbarch_alloc (&info, 0);
1180
928e48af
CV
1181 switch (info.bfd_arch_info->mach)
1182 {
0a48e7e8
MS
1183 case bfd_mach_h8300:
1184 h8300sxmode = 0;
1185 h8300smode = 0;
1186 h8300hmode = 0;
084edea5 1187 set_gdbarch_num_regs (gdbarch, 13);
4bb1dc5e
CV
1188 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1189 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1190 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1191 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1192 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
084edea5 1193 set_gdbarch_register_name (gdbarch, h8300_register_name);
084edea5
CV
1194 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1195 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
0261a0d0
CV
1196 set_gdbarch_extract_return_value (gdbarch, h8300_extract_return_value);
1197 set_gdbarch_store_return_value (gdbarch, h8300_store_return_value);
4bb1dc5e 1198 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
0a48e7e8
MS
1199 break;
1200 case bfd_mach_h8300h:
8efca6ba 1201 case bfd_mach_h8300hn:
0a48e7e8
MS
1202 h8300sxmode = 0;
1203 h8300smode = 0;
1204 h8300hmode = 1;
084edea5 1205 set_gdbarch_num_regs (gdbarch, 13);
4bb1dc5e
CV
1206 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1207 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1208 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1209 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1210 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
084edea5 1211 set_gdbarch_register_name (gdbarch, h8300_register_name);
084edea5
CV
1212 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1213 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
0261a0d0
CV
1214 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1215 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
4bb1dc5e 1216 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
0a48e7e8
MS
1217 break;
1218 case bfd_mach_h8300s:
8efca6ba 1219 case bfd_mach_h8300sn:
0a48e7e8
MS
1220 h8300sxmode = 0;
1221 h8300smode = 1;
1222 h8300hmode = 1;
7be04a68 1223 set_gdbarch_num_regs (gdbarch, 16);
4bb1dc5e
CV
1224 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1225 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1226 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1227 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1228 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
084edea5 1229 set_gdbarch_register_name (gdbarch, h8300s_register_name);
084edea5
CV
1230 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1231 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
0261a0d0
CV
1232 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1233 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
4bb1dc5e 1234 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
0a48e7e8
MS
1235 break;
1236 case bfd_mach_h8300sx:
084edea5 1237 case bfd_mach_h8300sxn:
0a48e7e8
MS
1238 h8300sxmode = 1;
1239 h8300smode = 1;
1240 h8300hmode = 1;
084edea5 1241 set_gdbarch_num_regs (gdbarch, 18);
4bb1dc5e
CV
1242 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1243 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1244 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1245 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1246 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
084edea5 1247 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
084edea5
CV
1248 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1249 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
0261a0d0
CV
1250 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1251 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
4bb1dc5e 1252 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
0a48e7e8 1253 break;
928e48af
CV
1254 }
1255
4bb1dc5e
CV
1256 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1257 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1258
a5afb99f
AC
1259 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1260 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1261 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1262
928e48af
CV
1263 /*
1264 * Basic register fields and methods.
1265 */
1266
928e48af 1267 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
0ba6dca9 1268 set_gdbarch_deprecated_fp_regnum (gdbarch, E_FP_REGNUM);
928e48af 1269 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
055c394a 1270 set_gdbarch_register_type (gdbarch, h8300_register_type);
4904ba5b 1271 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
928e48af
CV
1272 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1273
1274 /*
1275 * Frame Info
1276 */
0261a0d0
CV
1277 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1278
884a26c8
MS
1279 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1280 h8300_frame_init_saved_regs);
1281 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1282 h8300_init_extra_frame_info);
618ce49f 1283 set_gdbarch_deprecated_frame_chain (gdbarch, h8300_frame_chain);
884a26c8
MS
1284 set_gdbarch_deprecated_saved_pc_after_call (gdbarch,
1285 h8300_saved_pc_after_call);
8bedc050 1286 set_gdbarch_deprecated_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
63d47a7d 1287 set_gdbarch_deprecated_pop_frame (gdbarch, h8300_pop_frame);
928e48af
CV
1288
1289 /*
1290 * Miscelany
1291 */
1292 /* Stack grows up. */
1293 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1294 /* PC stops zero byte after a trap instruction
1295 (which means: exactly on trap instruction). */
1296 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1297 /* This value is almost never non-zero... */
1298 set_gdbarch_function_start_offset (gdbarch, 0);
1299 /* This value is almost never non-zero... */
1300 set_gdbarch_frame_args_skip (gdbarch, 0);
928e48af
CV
1301 set_gdbarch_frameless_function_invocation (gdbarch,
1302 frameless_look_for_prologue);
1303
0261a0d0
CV
1304 set_gdbarch_extract_struct_value_address (gdbarch,
1305 h8300_extract_struct_value_address);
1fd35568 1306 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
928e48af 1307 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
0261a0d0 1308 set_gdbarch_push_dummy_code (gdbarch, h8300_push_dummy_code);
63d47a7d 1309 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
928e48af
CV
1310
1311 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1312 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
084edea5
CV
1313 set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1314 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1315 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
928e48af 1316
5247b418 1317 /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
928e48af
CV
1318 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1319
1320 return gdbarch;
c906108c
SS
1321}
1322
a78f21af
AC
1323extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1324
c906108c 1325void
fba45db2 1326_initialize_h8300_tdep (void)
c906108c 1327{
928e48af 1328 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
c906108c 1329}
This page took 0.350217 seconds and 4 git commands to generate.