* am29k-tdep.c (initialize_29k): Fix call_scratch_address doc.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
CommitLineData
1f46923f
SC
1/* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
ec25d19b 20/*
1f46923f 21 Contributed by Steve Chamberlain
ec25d19b 22 sac@cygnus.com
1f46923f
SC
23 */
24
400943fb 25#include "defs.h"
1f46923f
SC
26#include "frame.h"
27#include "obstack.h"
28#include "symtab.h"
256b4f37
SC
29#undef NUM_REGS
30#define NUM_REGS 11
31
1f46923f 32#define UNSIGNED_SHORT(X) ((X) & 0xffff)
400943fb
SC
33
34/* an easy to debug H8 stack frame looks like:
ec25d19b
SC
350x6df6 push r6
360x0d76 mov.w r7,r6
370x6dfn push reg
380x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
390x1957 sub.w r5,sp
400943fb
SC
40
41 */
1f46923f 42
400943fb 43#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
ec25d19b 44#define IS_PUSH_FP(x) (x == 0x6df6)
1f46923f
SC
45#define IS_MOVE_FP(x) (x == 0x0d76)
46#define IS_MOV_SP_FP(x) (x == 0x0d76)
47#define IS_SUB2_SP(x) (x==0x1b87)
48#define IS_MOVK_R5(x) (x==0x7905)
ec25d19b
SC
49#define IS_SUB_R5SP(x) (x==0x1957)
50CORE_ADDR examine_prologue ();
1f46923f 51
ec25d19b
SC
52void frame_find_saved_regs ();
53CORE_ADDR
54h8300_skip_prologue (start_pc)
55 CORE_ADDR start_pc;
0a8f9d31 56
0a8f9d31 57{
ec25d19b 58 short int w;
1f46923f 59
ec25d19b 60 w = read_memory_short (start_pc);
400943fb 61 /* Skip past all push insns */
ec25d19b
SC
62 while (IS_PUSH_FP (w))
63 {
64 start_pc += 2;
65 w = read_memory_short (start_pc);
66 }
0a8f9d31 67
1f46923f 68 /* Skip past a move to FP */
ec25d19b
SC
69 if (IS_MOVE_FP (w))
70 {
71 start_pc += 2;
72 w = read_memory_short (start_pc);
1f46923f
SC
73 }
74
ec25d19b 75 /* Skip the stack adjust */
0a8f9d31 76
ec25d19b
SC
77 if (IS_MOVK_R5 (w))
78 {
79 start_pc += 2;
80 w = read_memory_short (start_pc);
81 }
82 if (IS_SUB_R5SP (w))
83 {
84 start_pc += 2;
85 w = read_memory_short (start_pc);
86 }
87 while (IS_SUB2_SP (w))
88 {
89 start_pc += 2;
90 w = read_memory_short (start_pc);
91 }
92
93 return start_pc;
94
95}
1f46923f 96
400943fb 97int
ec25d19b
SC
98print_insn (memaddr, stream)
99 CORE_ADDR memaddr;
100 FILE *stream;
0a8f9d31 101{
400943fb 102 /* Nothing is bigger than 8 bytes */
ec25d19b
SC
103 char data[8];
104
105 read_memory (memaddr, data, sizeof (data));
106 return print_insn_h8300 (memaddr, data, stream);
0a8f9d31 107}
ec25d19b 108
1f46923f
SC
109/* Given a GDB frame, determine the address of the calling function's frame.
110 This will be used to create a new GDB frame struct, and then
111 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
112
113 For us, the frame address is its stack pointer value, so we look up
114 the function prologue to determine the caller's sp value, and return it. */
115
116FRAME_ADDR
117FRAME_CHAIN (thisframe)
118 FRAME thisframe;
119{
120
121 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
ec25d19b 122 return thisframe->fsr->regs[SP_REGNUM];
1f46923f
SC
123}
124
1f46923f
SC
125/* Put here the code to store, into a struct frame_saved_regs,
126 the addresses of the saved registers of frame described by FRAME_INFO.
127 This includes special registers such as pc and fp saved in special
128 ways in the stack frame. sp is even more special:
129 the address we return for it IS the sp for the next frame.
130
131 We cache the result of doing this in the frame_cache_obstack, since
132 it is fairly expensive. */
133
134void
135frame_find_saved_regs (fi, fsr)
136 struct frame_info *fi;
137 struct frame_saved_regs *fsr;
138{
139 register CORE_ADDR next_addr;
140 register CORE_ADDR *saved_regs;
141 register int regnum;
142 register struct frame_saved_regs *cache_fsr;
143 extern struct obstack frame_cache_obstack;
144 CORE_ADDR ip;
145 struct symtab_and_line sal;
146 CORE_ADDR limit;
147
148 if (!fi->fsr)
149 {
150 cache_fsr = (struct frame_saved_regs *)
ec25d19b
SC
151 obstack_alloc (&frame_cache_obstack,
152 sizeof (struct frame_saved_regs));
1f46923f 153 bzero (cache_fsr, sizeof (struct frame_saved_regs));
ec25d19b 154
1f46923f
SC
155 fi->fsr = cache_fsr;
156
157 /* Find the start and end of the function prologue. If the PC
158 is in the function prologue, we only consider the part that
159 has executed already. */
ec25d19b 160
1f46923f
SC
161 ip = get_pc_function_start (fi->pc);
162 sal = find_pc_line (ip, 0);
ec25d19b 163 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
1f46923f
SC
164
165 /* This will fill in fields in *fi as well as in cache_fsr. */
166 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
167 }
168
169 if (fsr)
170 *fsr = *fi->fsr;
171}
1f46923f
SC
172
173/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
174 is not the address of a valid instruction, the address of the next
175 instruction beyond ADDR otherwise. *PWORD1 receives the first word
176 of the instruction.*/
177
1f46923f 178CORE_ADDR
ec25d19b
SC
179NEXT_PROLOGUE_INSN (addr, lim, pword1)
180 CORE_ADDR addr;
181 CORE_ADDR lim;
182 short *pword1;
1f46923f 183{
ec25d19b
SC
184 if (addr < lim + 8)
185 {
186 read_memory (addr, pword1, sizeof (*pword1));
187 SWAP_TARGET_AND_HOST (pword1, sizeof (short));
1f46923f 188
ec25d19b
SC
189 return addr + 2;
190 }
1f46923f 191 return 0;
1f46923f
SC
192}
193
194/* Examine the prologue of a function. `ip' points to the first instruction.
ec25d19b 195 `limit' is the limit of the prologue (e.g. the addr of the first
1f46923f 196 linenumber, or perhaps the program counter if we're stepping through).
ec25d19b 197 `frame_sp' is the stack pointer value in use in this frame.
1f46923f 198 `fsr' is a pointer to a frame_saved_regs structure into which we put
ec25d19b 199 info about the registers saved by this frame.
1f46923f
SC
200 `fi' is a struct frame_info pointer; we fill in various fields in it
201 to reflect the offsets of the arg pointer and the locals pointer. */
202
1f46923f
SC
203static CORE_ADDR
204examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
205 register CORE_ADDR ip;
206 register CORE_ADDR limit;
207 FRAME_ADDR after_prolog_fp;
208 struct frame_saved_regs *fsr;
209 struct frame_info *fi;
210{
211 register CORE_ADDR next_ip;
212 int r;
213 int i;
214 int have_fp = 0;
ec25d19b 215
1f46923f
SC
216 register int src;
217 register struct pic_prologue_code *pcode;
218 INSN_WORD insn_word;
219 int size, offset;
ec25d19b 220 unsigned int reg_save_depth = 2; /* Number of things pushed onto
1f46923f
SC
221 stack, starts at 2, 'cause the
222 PC is already there */
223
224 unsigned int auto_depth = 0; /* Number of bytes of autos */
1f46923f 225
256b4f37 226 char in_frame[8]; /* One for each reg */
1f46923f 227
256b4f37
SC
228 memset (in_frame, 1, 8);
229 for (r = 0; r < 8; r++)
ec25d19b
SC
230 {
231 fsr->regs[r] = 0;
232 }
233 if (after_prolog_fp == 0)
234 {
235 after_prolog_fp = read_register (SP_REGNUM);
236 }
237 if (ip == 0 || ip & ~0xffff)
238 return 0;
1f46923f 239
ec25d19b 240 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
1f46923f 241
ec25d19b
SC
242 /* Skip over any fp push instructions */
243 fsr->regs[6] = after_prolog_fp;
244 while (next_ip && IS_PUSH_FP (insn_word))
245 {
246 ip = next_ip;
1f46923f 247
ec25d19b
SC
248 in_frame[insn_word & 0x7] = reg_save_depth;
249 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
250 reg_save_depth += 2;
251 }
1f46923f
SC
252
253 /* Is this a move into the fp */
ec25d19b
SC
254 if (next_ip && IS_MOV_SP_FP (insn_word))
255 {
256 ip = next_ip;
257 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
258 have_fp = 1;
259 }
1f46923f
SC
260
261 /* Skip over any stack adjustment, happens either with a number of
262 sub#2,sp or a mov #x,r5 sub r5,sp */
263
ec25d19b 264 if (next_ip && IS_SUB2_SP (insn_word))
1f46923f 265 {
ec25d19b
SC
266 while (next_ip && IS_SUB2_SP (insn_word))
267 {
268 auto_depth += 2;
269 ip = next_ip;
270 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
271 }
1f46923f 272 }
ec25d19b
SC
273 else
274 {
275 if (next_ip && IS_MOVK_R5 (insn_word))
276 {
277 ip = next_ip;
278 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
279 auto_depth += insn_word;
280
281 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
282 auto_depth += insn_word;
283
284 }
285 }
286 /* Work out which regs are stored where */
287 while (next_ip && IS_PUSH (insn_word))
1f46923f
SC
288 {
289 ip = next_ip;
ec25d19b
SC
290 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
291 fsr->regs[r] = after_prolog_fp + auto_depth;
292 auto_depth += 2;
1f46923f 293 }
1f46923f 294
1f46923f 295 /* The args are always reffed based from the stack pointer */
ec25d19b 296 fi->args_pointer = after_prolog_fp;
1f46923f 297 /* Locals are always reffed based from the fp */
ec25d19b 298 fi->locals_pointer = after_prolog_fp;
1f46923f 299 /* The PC is at a known place */
ec25d19b 300 fi->from_pc = read_memory_short (after_prolog_fp + 2);
1f46923f
SC
301
302 /* Rememeber any others too */
1f46923f 303 in_frame[PC_REGNUM] = 0;
ec25d19b
SC
304
305 if (have_fp)
306 /* We keep the old FP in the SP spot */
307 fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6]));
308 else
309 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
310
1f46923f
SC
311 return (ip);
312}
313
314void
315init_extra_frame_info (fromleaf, fi)
316 int fromleaf;
317 struct frame_info *fi;
318{
319 fi->fsr = 0; /* Not yet allocated */
320 fi->args_pointer = 0; /* Unknown */
321 fi->locals_pointer = 0; /* Unknown */
322 fi->from_pc = 0;
ec25d19b 323
1f46923f 324}
ec25d19b 325
1f46923f
SC
326/* Return the saved PC from this frame.
327
328 If the frame has a memory copy of SRP_REGNUM, use that. If not,
329 just use the register SRP_REGNUM itself. */
330
331CORE_ADDR
332frame_saved_pc (frame)
ec25d19b 333 FRAME frame;
1f46923f
SC
334
335{
336 return frame->from_pc;
337}
338
1f46923f
SC
339CORE_ADDR
340frame_locals_address (fi)
341 struct frame_info *fi;
342{
ec25d19b
SC
343 if (!fi->locals_pointer)
344 {
345 struct frame_saved_regs ignore;
346
347 get_frame_saved_regs (fi, &ignore);
1f46923f 348
ec25d19b 349 }
1f46923f
SC
350 return fi->locals_pointer;
351}
352
353/* Return the address of the argument block for the frame
354 described by FI. Returns 0 if the address is unknown. */
355
356CORE_ADDR
357frame_args_address (fi)
358 struct frame_info *fi;
359{
ec25d19b
SC
360 if (!fi->args_pointer)
361 {
362 struct frame_saved_regs ignore;
363
364 get_frame_saved_regs (fi, &ignore);
365
366 }
1f46923f 367
1f46923f
SC
368 return fi->args_pointer;
369}
370
ec25d19b
SC
371void
372h8300_pop_frame ()
1f46923f
SC
373{
374 unsigned regnum;
375 struct frame_saved_regs fsr;
376 struct frame_info *fi;
377
ec25d19b 378 FRAME frame = get_current_frame ();
1f46923f 379
ec25d19b
SC
380 fi = get_frame_info (frame);
381 get_frame_saved_regs (fi, &fsr);
382
256b4f37 383 for (regnum = 0; regnum < 8; regnum++)
1f46923f 384 {
ec25d19b
SC
385 if (fsr.regs[regnum])
386 {
387 write_register (regnum, read_memory_short (fsr.regs[regnum]));
388 }
389
390 flush_cached_frames ();
391 set_current_frame (create_new_frame (read_register (FP_REGNUM),
392 read_pc ()));
393
1f46923f 394 }
1f46923f
SC
395
396}
ec25d19b
SC
397
398void
399print_register_hook (regno)
400{
401 if (regno == 8)
402 {
403 /* CCR register */
404
405 int C, Z, N, V;
406 unsigned char b[2];
407 unsigned char l;
408
409 read_relative_register_raw_bytes (regno, b);
410 l = b[1];
411 printf ("\t");
412 printf ("I-%d - ", (l & 0x80) != 0);
413 printf ("H-%d - ", (l & 0x20) != 0);
414 N = (l & 0x8) != 0;
415 Z = (l & 0x4) != 0;
416 V = (l & 0x2) != 0;
417 C = (l & 0x1) != 0;
418 printf ("N-%d ", N);
419 printf ("Z-%d ", Z);
420 printf ("V-%d ", V);
421 printf ("C-%d ", C);
422 if ((C | Z) == 0)
423 printf ("u> ");
424 if ((C | Z) == 1)
425 printf ("u<= ");
426 if ((C == 0))
427 printf ("u>= ");
428 if (C == 1)
429 printf ("u< ");
430 if (Z == 0)
431 printf ("!= ");
432 if (Z == 1)
433 printf ("== ");
434 if ((N ^ V) == 0)
435 printf (">= ");
436 if ((N ^ V) == 1)
437 printf ("< ");
438 if ((Z | (N ^ V)) == 0)
439 printf ("> ");
440 if ((Z | (N ^ V)) == 1)
441 printf ("<= ");
442 }
443}
This page took 0.07762 seconds and 4 git commands to generate.