Commit | Line | Data |
---|---|---|
f0bdd87d YS |
1 | /* Target-machine dependent code for Renesas H8/300, for GDB. |
2 | ||
3 | Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, | |
862ba188 | 4 | 1999, 2000, 2001, 2002, 2003, 2005 Free Software Foundation, Inc. |
f0bdd87d YS |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | /* | |
24 | Contributed by Steve Chamberlain | |
25 | sac@cygnus.com | |
26 | */ | |
27 | ||
28 | #include "defs.h" | |
29 | #include "value.h" | |
f0bdd87d YS |
30 | #include "arch-utils.h" |
31 | #include "regcache.h" | |
32 | #include "gdbcore.h" | |
33 | #include "objfiles.h" | |
f0bdd87d YS |
34 | #include "gdb_assert.h" |
35 | #include "dis-asm.h" | |
36 | #include "dwarf2-frame.h" | |
f0bdd87d YS |
37 | #include "frame-base.h" |
38 | #include "frame-unwind.h" | |
39 | ||
f0bdd87d YS |
40 | enum gdb_regnum |
41 | { | |
42 | E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM, | |
43 | E_RET0_REGNUM = E_R0_REGNUM, | |
44 | E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM, | |
45 | E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM, | |
46 | E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM, | |
47 | E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM, | |
48 | E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM, | |
49 | E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM, | |
50 | E_SP_REGNUM, | |
51 | E_CCR_REGNUM, | |
52 | E_PC_REGNUM, | |
53 | E_CYCLES_REGNUM, | |
54 | E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM, | |
55 | E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM, | |
56 | E_INSTS_REGNUM, | |
57 | E_MACH_REGNUM, | |
58 | E_MACL_REGNUM, | |
59 | E_SBR_REGNUM, | |
60 | E_VBR_REGNUM | |
61 | }; | |
62 | ||
63 | #define H8300_MAX_NUM_REGS 18 | |
64 | ||
65 | #define E_PSEUDO_CCR_REGNUM (NUM_REGS) | |
66 | #define E_PSEUDO_EXR_REGNUM (NUM_REGS+1) | |
67 | ||
862ba188 CV |
68 | struct h8300_frame_cache |
69 | { | |
70 | /* Base address. */ | |
71 | CORE_ADDR base; | |
72 | CORE_ADDR sp_offset; | |
73 | CORE_ADDR pc; | |
74 | ||
75 | /* Flag showing that a frame has been created in the prologue code. */ | |
76 | int uses_fp; | |
f0bdd87d | 77 | |
862ba188 CV |
78 | /* Saved registers. */ |
79 | CORE_ADDR saved_regs[H8300_MAX_NUM_REGS]; | |
80 | CORE_ADDR saved_sp; | |
81 | }; | |
82 | ||
83 | enum | |
84 | { | |
85 | h8300_reg_size = 2, | |
86 | h8300h_reg_size = 4, | |
87 | h8300_max_reg_size = 4, | |
88 | }; | |
89 | ||
90 | static int is_h8300hmode (struct gdbarch *gdbarch); | |
91 | static int is_h8300smode (struct gdbarch *gdbarch); | |
92 | static int is_h8300sxmode (struct gdbarch *gdbarch); | |
93 | static int is_h8300_normal_mode (struct gdbarch *gdbarch); | |
94 | ||
95 | #define BINWORD ((is_h8300hmode (current_gdbarch) \ | |
96 | && !is_h8300_normal_mode (current_gdbarch)) \ | |
97 | ? h8300h_reg_size : h8300_reg_size) | |
98 | ||
99 | static CORE_ADDR | |
100 | h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
101 | { | |
102 | return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM); | |
103 | } | |
104 | ||
105 | static CORE_ADDR | |
106 | h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
107 | { | |
108 | return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM); | |
109 | } | |
110 | ||
111 | static struct frame_id | |
112 | h8300_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
113 | { | |
114 | return frame_id_build (h8300_unwind_sp (gdbarch, next_frame), | |
115 | frame_pc_unwind (next_frame)); | |
116 | } | |
117 | ||
118 | /* Normal frames. */ | |
119 | ||
120 | /* Allocate and initialize a frame cache. */ | |
121 | ||
122 | static void | |
123 | h8300_init_frame_cache (struct h8300_frame_cache *cache) | |
124 | { | |
125 | int i; | |
126 | ||
127 | /* Base address. */ | |
128 | cache->base = 0; | |
129 | cache->sp_offset = 0; | |
130 | cache->pc = 0; | |
131 | ||
132 | /* Frameless until proven otherwise. */ | |
133 | cache->uses_fp = 0; | |
134 | ||
135 | /* Saved registers. We initialize these to -1 since zero is a valid | |
136 | offset (that's where %fp is supposed to be stored). */ | |
137 | for (i = 0; i < NUM_REGS; i++) | |
138 | cache->saved_regs[i] = -1; | |
139 | } | |
140 | ||
141 | #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88) | |
142 | #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00) | |
143 | #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80) | |
144 | #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0) | |
145 | #define IS_MOVB_EXT(x) ((x) == 0x7860) | |
146 | #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0) | |
147 | #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0) | |
148 | #define IS_MOVW_EXT(x) ((x) == 0x78e0) | |
149 | #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0) | |
150 | /* Same instructions as mov.w, just prefixed with 0x0100 */ | |
151 | #define IS_MOVL_PRE(x) ((x) == 0x0100) | |
152 | #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0) | |
153 | #define IS_MOVL_EXT(x) ((x) == 0x78e0) | |
154 | #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0) | |
155 | ||
156 | #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76) | |
157 | #define IS_PUSH_FP(x) ((x) == 0x01006df6) | |
158 | #define IS_MOV_SP_FP(x) ((x) == 0x0ff6) | |
159 | #define IS_SUB2_SP(x) ((x) == 0x1b87) | |
160 | #define IS_SUB4_SP(x) ((x) == 0x1b97) | |
161 | #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f) | |
162 | #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f) | |
163 | #define IS_SUBL4_SP(x) ((x) == 0x1acf) | |
164 | #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905) | |
165 | #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907) | |
166 | #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907) | |
167 | #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0) | |
f0bdd87d YS |
168 | |
169 | /* If the instruction at PC is an argument register spill, return its | |
170 | length. Otherwise, return zero. | |
171 | ||
172 | An argument register spill is an instruction that moves an argument | |
173 | from the register in which it was passed to the stack slot in which | |
174 | it really lives. It is a byte, word, or longword move from an | |
175 | argument register to a negative offset from the frame pointer. | |
176 | ||
177 | CV, 2003-06-16: Or, in optimized code or when the `register' qualifier | |
178 | is used, it could be a byte, word or long move to registers r3-r5. */ | |
179 | ||
180 | static int | |
181 | h8300_is_argument_spill (CORE_ADDR pc) | |
182 | { | |
183 | int w = read_memory_unsigned_integer (pc, 2); | |
184 | ||
862ba188 | 185 | if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w)) |
f0bdd87d YS |
186 | && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */ |
187 | && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */ | |
188 | return 2; | |
189 | ||
862ba188 | 190 | if (IS_MOVB_Rn16_SP (w) |
f0bdd87d YS |
191 | && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */ |
192 | { | |
862ba188 | 193 | if (read_memory_integer (pc + 2, 2) < 0) /* ... and d:16 is negative. */ |
f0bdd87d YS |
194 | return 4; |
195 | } | |
862ba188 | 196 | else if (IS_MOVB_EXT (w)) |
f0bdd87d | 197 | { |
862ba188 | 198 | if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2))) |
f0bdd87d YS |
199 | { |
200 | LONGEST disp = read_memory_integer (pc + 4, 4); | |
201 | ||
202 | /* ... and d:24 is negative. */ | |
203 | if (disp < 0 && disp > 0xffffff) | |
204 | return 8; | |
205 | } | |
206 | } | |
862ba188 | 207 | else if (IS_MOVW_Rn16_SP (w) |
f0bdd87d YS |
208 | && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */ |
209 | { | |
f0bdd87d | 210 | /* ... and d:16 is negative. */ |
862ba188 | 211 | if (read_memory_integer (pc + 2, 2) < 0) |
f0bdd87d YS |
212 | return 4; |
213 | } | |
862ba188 | 214 | else if (IS_MOVW_EXT (w)) |
f0bdd87d | 215 | { |
862ba188 | 216 | if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2, 2))) |
f0bdd87d YS |
217 | { |
218 | LONGEST disp = read_memory_integer (pc + 4, 4); | |
219 | ||
220 | /* ... and d:24 is negative. */ | |
221 | if (disp < 0 && disp > 0xffffff) | |
222 | return 8; | |
223 | } | |
224 | } | |
862ba188 | 225 | else if (IS_MOVL_PRE (w)) |
f0bdd87d YS |
226 | { |
227 | int w2 = read_memory_integer (pc + 2, 2); | |
228 | ||
862ba188 | 229 | if (IS_MOVL_Rn16_SP (w2) |
f0bdd87d YS |
230 | && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */ |
231 | { | |
f0bdd87d | 232 | /* ... and d:16 is negative. */ |
862ba188 | 233 | if (read_memory_integer (pc + 4, 2) < 0) |
f0bdd87d YS |
234 | return 6; |
235 | } | |
862ba188 | 236 | else if (IS_MOVL_EXT (w2)) |
f0bdd87d YS |
237 | { |
238 | int w3 = read_memory_integer (pc + 4, 2); | |
239 | ||
862ba188 | 240 | if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2))) |
f0bdd87d YS |
241 | { |
242 | LONGEST disp = read_memory_integer (pc + 6, 4); | |
243 | ||
244 | /* ... and d:24 is negative. */ | |
245 | if (disp < 0 && disp > 0xffffff) | |
246 | return 10; | |
247 | } | |
248 | } | |
249 | } | |
250 | ||
251 | return 0; | |
252 | } | |
253 | ||
f0bdd87d YS |
254 | /* Do a full analysis of the prologue at PC and update CACHE |
255 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
256 | address where the analysis stopped. | |
257 | ||
258 | We handle all cases that can be generated by gcc. | |
259 | ||
260 | For allocating a stack frame: | |
261 | ||
262 | mov.w r6,@-sp | |
263 | mov.w sp,r6 | |
264 | mov.w #-n,rN | |
265 | add.w rN,sp | |
266 | ||
267 | mov.w r6,@-sp | |
268 | mov.w sp,r6 | |
269 | subs #2,sp | |
270 | (repeat) | |
271 | ||
272 | mov.l er6,@-sp | |
273 | mov.l sp,er6 | |
274 | add.l #-n,sp | |
275 | ||
276 | mov.w r6,@-sp | |
277 | mov.w sp,r6 | |
278 | subs #4,sp | |
279 | (repeat) | |
280 | ||
281 | For saving registers: | |
282 | ||
283 | mov.w rN,@-sp | |
284 | mov.l erN,@-sp | |
285 | stm.l reglist,@-sp | |
286 | ||
f0bdd87d YS |
287 | */ |
288 | ||
289 | static CORE_ADDR | |
290 | h8300_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, | |
291 | struct h8300_frame_cache *cache) | |
292 | { | |
293 | unsigned int op; | |
862ba188 CV |
294 | int regno, i, spill_size; |
295 | ||
296 | cache->sp_offset = 0; | |
f0bdd87d | 297 | |
f0bdd87d YS |
298 | if (pc >= current_pc) |
299 | return current_pc; | |
300 | ||
862ba188 CV |
301 | op = read_memory_unsigned_integer (pc, 4); |
302 | ||
303 | if (IS_PUSHFP_MOVESPFP (op)) | |
304 | { | |
305 | cache->saved_regs[E_FP_REGNUM] = 0; | |
306 | cache->uses_fp = 1; | |
307 | pc += 4; | |
308 | } | |
309 | else if (IS_PUSH_FP (op)) | |
310 | { | |
311 | cache->saved_regs[E_FP_REGNUM] = 0; | |
312 | pc += 4; | |
313 | if (pc >= current_pc) | |
314 | return current_pc; | |
315 | op = read_memory_unsigned_integer (pc, 2); | |
316 | if (IS_MOV_SP_FP (op)) | |
317 | { | |
318 | cache->uses_fp = 1; | |
319 | pc += 2; | |
320 | } | |
321 | } | |
322 | ||
323 | while (pc < current_pc) | |
324 | { | |
325 | op = read_memory_unsigned_integer (pc, 2); | |
326 | if (IS_SUB2_SP (op)) | |
327 | { | |
328 | cache->sp_offset += 2; | |
329 | pc += 2; | |
330 | } | |
331 | else if (IS_SUB4_SP (op)) | |
332 | { | |
333 | cache->sp_offset += 4; | |
334 | pc += 2; | |
335 | } | |
336 | else if (IS_ADD_IMM_SP (op)) | |
337 | { | |
338 | cache->sp_offset += -read_memory_integer (pc + 2, 2); | |
339 | pc += 4; | |
340 | } | |
341 | else if (IS_SUB_IMM_SP (op)) | |
342 | { | |
343 | cache->sp_offset += read_memory_integer (pc + 2, 2); | |
344 | pc += 4; | |
345 | } | |
346 | else if (IS_SUBL4_SP (op)) | |
347 | { | |
348 | cache->sp_offset += 4; | |
349 | pc += 2; | |
350 | } | |
351 | else if (IS_MOV_IMM_Rn (op)) | |
352 | { | |
353 | int offset = read_memory_integer (pc + 2, 2); | |
354 | regno = op & 0x000f; | |
355 | op = read_memory_unsigned_integer (pc + 4, 2); | |
356 | if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno) | |
357 | { | |
358 | cache->sp_offset -= offset; | |
359 | pc += 6; | |
360 | } | |
361 | else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno) | |
362 | { | |
363 | cache->sp_offset += offset; | |
364 | pc += 6; | |
365 | } | |
366 | else | |
367 | break; | |
368 | } | |
369 | else if (IS_PUSH (op)) | |
370 | { | |
371 | regno = op & 0x000f; | |
372 | cache->sp_offset += 2; | |
373 | cache->saved_regs[regno] = cache->sp_offset; | |
374 | pc += 2; | |
375 | } | |
376 | else if (op == 0x0100) | |
377 | { | |
378 | op = read_memory_unsigned_integer (pc + 2, 2); | |
379 | if (IS_PUSH (op)) | |
380 | { | |
381 | regno = op & 0x000f; | |
382 | cache->sp_offset += 4; | |
383 | cache->saved_regs[regno] = cache->sp_offset; | |
384 | pc += 4; | |
385 | } | |
386 | else | |
387 | break; | |
388 | } | |
389 | else if ((op & 0xffcf) == 0x0100) | |
390 | { | |
391 | int op1; | |
392 | op1 = read_memory_unsigned_integer (pc + 2, 2); | |
393 | if (IS_PUSH (op1)) | |
394 | { | |
395 | /* Since the prefix is 0x01x0, this is not a simple pushm but a | |
396 | stm.l reglist,@-sp */ | |
397 | i = ((op & 0x0030) >> 4) + 1; | |
398 | regno = op1 & 0x000f; | |
399 | for (; i > 0; regno++, --i) | |
400 | { | |
401 | cache->sp_offset += 4; | |
402 | cache->saved_regs[regno] = cache->sp_offset; | |
403 | } | |
404 | pc += 4; | |
405 | } | |
406 | else | |
407 | break; | |
408 | } | |
409 | else | |
410 | break; | |
411 | } | |
412 | ||
413 | /* Check for spilling an argument register to the stack frame. | |
414 | This could also be an initializing store from non-prologue code, | |
415 | but I don't think there's any harm in skipping that. */ | |
416 | while ((spill_size = h8300_is_argument_spill (pc)) > 0 | |
417 | && pc + spill_size <= current_pc) | |
418 | pc += spill_size; | |
f0bdd87d YS |
419 | |
420 | return pc; | |
421 | } | |
422 | ||
423 | static struct h8300_frame_cache * | |
424 | h8300_frame_cache (struct frame_info *next_frame, void **this_cache) | |
425 | { | |
426 | struct h8300_frame_cache *cache; | |
427 | char buf[4]; | |
428 | int i; | |
862ba188 | 429 | CORE_ADDR current_pc; |
f0bdd87d YS |
430 | |
431 | if (*this_cache) | |
432 | return *this_cache; | |
433 | ||
862ba188 CV |
434 | cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache); |
435 | h8300_init_frame_cache (cache); | |
f0bdd87d YS |
436 | *this_cache = cache; |
437 | ||
438 | /* In principle, for normal frames, %fp holds the frame pointer, | |
439 | which holds the base address for the current stack frame. | |
440 | However, for functions that don't need it, the frame pointer is | |
441 | optional. For these "frameless" functions the frame pointer is | |
862ba188 | 442 | actually the frame pointer of the calling frame. */ |
f0bdd87d | 443 | |
862ba188 | 444 | cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM); |
f0bdd87d YS |
445 | if (cache->base == 0) |
446 | return cache; | |
447 | ||
862ba188 | 448 | cache->saved_regs[E_PC_REGNUM] = -BINWORD; |
f0bdd87d YS |
449 | |
450 | cache->pc = frame_func_unwind (next_frame); | |
862ba188 | 451 | current_pc = frame_pc_unwind (next_frame); |
f0bdd87d | 452 | if (cache->pc != 0) |
862ba188 | 453 | h8300_analyze_prologue (cache->pc, current_pc, cache); |
f0bdd87d | 454 | |
862ba188 | 455 | if (!cache->uses_fp) |
f0bdd87d YS |
456 | { |
457 | /* We didn't find a valid frame, which means that CACHE->base | |
458 | currently holds the frame pointer for our calling frame. If | |
459 | we're at the start of a function, or somewhere half-way its | |
460 | prologue, the function's frame probably hasn't been fully | |
461 | setup yet. Try to reconstruct the base address for the stack | |
462 | frame by looking at the stack pointer. For truly "frameless" | |
463 | functions this might work too. */ | |
464 | ||
862ba188 CV |
465 | cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM) |
466 | + cache->sp_offset; | |
467 | cache->saved_sp = cache->base + BINWORD; | |
468 | cache->saved_regs[E_PC_REGNUM] = 0; | |
469 | } | |
470 | else | |
471 | { | |
472 | cache->saved_sp = cache->base + 2 * BINWORD; | |
473 | cache->saved_regs[E_PC_REGNUM] = -BINWORD; | |
f0bdd87d | 474 | } |
f0bdd87d YS |
475 | |
476 | /* Adjust all the saved registers such that they contain addresses | |
477 | instead of offsets. */ | |
478 | for (i = 0; i < NUM_REGS; i++) | |
479 | if (cache->saved_regs[i] != -1) | |
862ba188 | 480 | cache->saved_regs[i] = cache->base - cache->saved_regs[i]; |
f0bdd87d YS |
481 | |
482 | return cache; | |
483 | } | |
484 | ||
485 | static void | |
486 | h8300_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
487 | struct frame_id *this_id) | |
488 | { | |
489 | struct h8300_frame_cache *cache = | |
490 | h8300_frame_cache (next_frame, this_cache); | |
491 | ||
492 | /* This marks the outermost frame. */ | |
493 | if (cache->base == 0) | |
494 | return; | |
495 | ||
862ba188 | 496 | *this_id = frame_id_build (cache->saved_sp, cache->pc); |
f0bdd87d YS |
497 | } |
498 | ||
499 | static void | |
500 | h8300_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
501 | int regnum, int *optimizedp, | |
502 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
503 | int *realnump, void *valuep) | |
504 | { | |
505 | struct h8300_frame_cache *cache = | |
506 | h8300_frame_cache (next_frame, this_cache); | |
507 | ||
508 | gdb_assert (regnum >= 0); | |
509 | ||
510 | if (regnum == E_SP_REGNUM && cache->saved_sp) | |
511 | { | |
512 | *optimizedp = 0; | |
513 | *lvalp = not_lval; | |
514 | *addrp = 0; | |
515 | *realnump = -1; | |
516 | if (valuep) | |
862ba188 | 517 | store_unsigned_integer (valuep, BINWORD, cache->saved_sp); |
f0bdd87d YS |
518 | return; |
519 | } | |
520 | ||
521 | if (regnum < NUM_REGS && cache->saved_regs[regnum] != -1) | |
522 | { | |
523 | *optimizedp = 0; | |
524 | *lvalp = lval_memory; | |
525 | *addrp = cache->saved_regs[regnum]; | |
526 | *realnump = -1; | |
527 | if (valuep) | |
862ba188 | 528 | read_memory (*addrp, valuep, register_size (current_gdbarch, regnum)); |
f0bdd87d YS |
529 | return; |
530 | } | |
531 | ||
532 | frame_register_unwind (next_frame, regnum, | |
533 | optimizedp, lvalp, addrp, realnump, valuep); | |
534 | } | |
535 | ||
536 | static const struct frame_unwind h8300_frame_unwind = { | |
537 | NORMAL_FRAME, | |
538 | h8300_frame_this_id, | |
539 | h8300_frame_prev_register | |
540 | }; | |
541 | ||
542 | static const struct frame_unwind * | |
543 | h8300_frame_sniffer (struct frame_info *next_frame) | |
544 | { | |
545 | return &h8300_frame_unwind; | |
546 | } | |
547 | ||
862ba188 CV |
548 | static CORE_ADDR |
549 | h8300_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
550 | { | |
551 | struct h8300_frame_cache *cache = h8300_frame_cache (next_frame, this_cache); | |
552 | return cache->base; | |
553 | } | |
554 | ||
555 | static const struct frame_base h8300_frame_base = { | |
556 | &h8300_frame_unwind, | |
557 | h8300_frame_base_address, | |
558 | h8300_frame_base_address, | |
559 | h8300_frame_base_address | |
560 | }; | |
561 | ||
562 | static CORE_ADDR | |
563 | h8300_skip_prologue (CORE_ADDR pc) | |
564 | { | |
565 | CORE_ADDR func_addr = 0 , func_end = 0; | |
566 | ||
567 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
568 | { | |
569 | struct symtab_and_line sal; | |
570 | struct h8300_frame_cache cache; | |
571 | ||
572 | /* Found a function. */ | |
573 | sal = find_pc_line (func_addr, 0); | |
574 | if (sal.end && sal.end < func_end) | |
575 | /* Found a line number, use it as end of prologue. */ | |
576 | return sal.end; | |
577 | ||
578 | /* No useable line symbol. Use prologue parsing method. */ | |
579 | h8300_init_frame_cache (&cache); | |
580 | return h8300_analyze_prologue (func_addr, func_end, &cache); | |
581 | } | |
582 | ||
583 | /* No function symbol -- just return the PC. */ | |
584 | return (CORE_ADDR) pc; | |
585 | } | |
586 | ||
f0bdd87d YS |
587 | /* Function: push_dummy_call |
588 | Setup the function arguments for calling a function in the inferior. | |
589 | In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits | |
590 | on the H8/300H. | |
591 | ||
592 | There are actually two ABI's here: -mquickcall (the default) and | |
593 | -mno-quickcall. With -mno-quickcall, all arguments are passed on | |
594 | the stack after the return address, word-aligned. With | |
595 | -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since | |
596 | GCC doesn't indicate in the object file which ABI was used to | |
597 | compile it, GDB only supports the default --- -mquickcall. | |
598 | ||
599 | Here are the rules for -mquickcall, in detail: | |
600 | ||
601 | Each argument, whether scalar or aggregate, is padded to occupy a | |
602 | whole number of words. Arguments smaller than a word are padded at | |
603 | the most significant end; those larger than a word are padded at | |
604 | the least significant end. | |
605 | ||
606 | The initial arguments are passed in r0 -- r2. Earlier arguments go in | |
607 | lower-numbered registers. Multi-word arguments are passed in | |
608 | consecutive registers, with the most significant end in the | |
609 | lower-numbered register. | |
610 | ||
611 | If an argument doesn't fit entirely in the remaining registers, it | |
612 | is passed entirely on the stack. Stack arguments begin just after | |
613 | the return address. Once an argument has overflowed onto the stack | |
614 | this way, all subsequent arguments are passed on the stack. | |
615 | ||
616 | The above rule has odd consequences. For example, on the h8/300s, | |
617 | if a function takes two longs and an int as arguments: | |
618 | - the first long will be passed in r0/r1, | |
619 | - the second long will be passed entirely on the stack, since it | |
620 | doesn't fit in r2, | |
621 | - and the int will be passed on the stack, even though it could fit | |
622 | in r2. | |
623 | ||
624 | A weird exception: if an argument is larger than a word, but not a | |
625 | whole number of words in length (before padding), it is passed on | |
626 | the stack following the rules for stack arguments above, even if | |
627 | there are sufficient registers available to hold it. Stranger | |
628 | still, the argument registers are still `used up' --- even though | |
629 | there's nothing in them. | |
630 | ||
631 | So, for example, on the h8/300s, if a function expects a three-byte | |
632 | structure and an int, the structure will go on the stack, and the | |
633 | int will go in r2, not r0. | |
634 | ||
635 | If the function returns an aggregate type (struct, union, or class) | |
636 | by value, the caller must allocate space to hold the return value, | |
637 | and pass the callee a pointer to this space as an invisible first | |
638 | argument, in R0. | |
639 | ||
640 | For varargs functions, the last fixed argument and all the variable | |
641 | arguments are always passed on the stack. This means that calls to | |
642 | varargs functions don't work properly unless there is a prototype | |
643 | in scope. | |
644 | ||
645 | Basically, this ABI is not good, for the following reasons: | |
646 | - You can't call vararg functions properly unless a prototype is in scope. | |
647 | - Structure passing is inconsistent, to no purpose I can see. | |
648 | - It often wastes argument registers, of which there are only three | |
649 | to begin with. */ | |
650 | ||
651 | static CORE_ADDR | |
652 | h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
653 | struct regcache *regcache, CORE_ADDR bp_addr, | |
654 | int nargs, struct value **args, CORE_ADDR sp, | |
655 | int struct_return, CORE_ADDR struct_addr) | |
656 | { | |
657 | int stack_alloc = 0, stack_offset = 0; | |
658 | int wordsize = BINWORD; | |
659 | int reg = E_ARG0_REGNUM; | |
660 | int argument; | |
661 | ||
662 | /* First, make sure the stack is properly aligned. */ | |
663 | sp = align_down (sp, wordsize); | |
664 | ||
665 | /* Now make sure there's space on the stack for the arguments. We | |
666 | may over-allocate a little here, but that won't hurt anything. */ | |
667 | for (argument = 0; argument < nargs; argument++) | |
668 | stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])), | |
669 | wordsize); | |
670 | sp -= stack_alloc; | |
671 | ||
672 | /* Now load as many arguments as possible into registers, and push | |
673 | the rest onto the stack. | |
674 | If we're returning a structure by value, then we must pass a | |
675 | pointer to the buffer for the return value as an invisible first | |
676 | argument. */ | |
677 | if (struct_return) | |
678 | regcache_cooked_write_unsigned (regcache, reg++, struct_addr); | |
679 | ||
680 | for (argument = 0; argument < nargs; argument++) | |
681 | { | |
682 | struct type *type = value_type (args[argument]); | |
683 | int len = TYPE_LENGTH (type); | |
684 | char *contents = (char *) value_contents (args[argument]); | |
685 | ||
686 | /* Pad the argument appropriately. */ | |
687 | int padded_len = align_up (len, wordsize); | |
688 | char *padded = alloca (padded_len); | |
689 | ||
690 | memset (padded, 0, padded_len); | |
691 | memcpy (len < wordsize ? padded + padded_len - len : padded, | |
692 | contents, len); | |
693 | ||
694 | /* Could the argument fit in the remaining registers? */ | |
695 | if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize) | |
696 | { | |
697 | /* Are we going to pass it on the stack anyway, for no good | |
698 | reason? */ | |
699 | if (len > wordsize && len % wordsize) | |
700 | { | |
701 | /* I feel so unclean. */ | |
702 | write_memory (sp + stack_offset, padded, padded_len); | |
703 | stack_offset += padded_len; | |
704 | ||
705 | /* That's right --- even though we passed the argument | |
706 | on the stack, we consume the registers anyway! Love | |
707 | me, love my dog. */ | |
708 | reg += padded_len / wordsize; | |
709 | } | |
710 | else | |
711 | { | |
712 | /* Heavens to Betsy --- it's really going in registers! | |
713 | It would be nice if we could use write_register_bytes | |
714 | here, but on the h8/300s, there are gaps between | |
715 | the registers in the register file. */ | |
716 | int offset; | |
717 | ||
718 | for (offset = 0; offset < padded_len; offset += wordsize) | |
719 | { | |
720 | ULONGEST word = extract_unsigned_integer (padded + offset, | |
721 | wordsize); | |
722 | regcache_cooked_write_unsigned (regcache, reg++, word); | |
723 | } | |
724 | } | |
725 | } | |
726 | else | |
727 | { | |
728 | /* It doesn't fit in registers! Onto the stack it goes. */ | |
729 | write_memory (sp + stack_offset, padded, padded_len); | |
730 | stack_offset += padded_len; | |
731 | ||
732 | /* Once one argument has spilled onto the stack, all | |
733 | subsequent arguments go on the stack. */ | |
734 | reg = E_ARGLAST_REGNUM + 1; | |
735 | } | |
736 | } | |
737 | ||
738 | /* Store return address. */ | |
739 | sp -= wordsize; | |
740 | write_memory_unsigned_integer (sp, wordsize, bp_addr); | |
741 | ||
742 | /* Update stack pointer. */ | |
743 | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | |
744 | ||
862ba188 CV |
745 | /* Return the new stack pointer minus the return address slot since |
746 | that's what DWARF2/GCC uses as the frame's CFA. */ | |
747 | return sp + wordsize; | |
f0bdd87d YS |
748 | } |
749 | ||
750 | /* Function: extract_return_value | |
751 | Figure out where in REGBUF the called function has left its return value. | |
752 | Copy that into VALBUF. Be sure to account for CPU type. */ | |
753 | ||
754 | static void | |
755 | h8300_extract_return_value (struct type *type, struct regcache *regcache, | |
756 | void *valbuf) | |
757 | { | |
758 | int len = TYPE_LENGTH (type); | |
759 | ULONGEST c, addr; | |
760 | ||
761 | switch (len) | |
762 | { | |
763 | case 1: | |
764 | case 2: | |
765 | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); | |
766 | store_unsigned_integer (valbuf, len, c); | |
767 | break; | |
768 | case 4: /* Needs two registers on plain H8/300 */ | |
769 | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); | |
770 | store_unsigned_integer (valbuf, 2, c); | |
771 | regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c); | |
772 | store_unsigned_integer ((void *) ((char *) valbuf + 2), 2, c); | |
773 | break; | |
774 | case 8: /* long long is now 8 bytes. */ | |
775 | if (TYPE_CODE (type) == TYPE_CODE_INT) | |
776 | { | |
777 | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr); | |
778 | c = read_memory_unsigned_integer ((CORE_ADDR) addr, len); | |
779 | store_unsigned_integer (valbuf, len, c); | |
780 | } | |
781 | else | |
782 | { | |
783 | error ("I don't know how this 8 byte value is returned."); | |
784 | } | |
785 | break; | |
786 | } | |
787 | } | |
788 | ||
789 | static void | |
790 | h8300h_extract_return_value (struct type *type, struct regcache *regcache, | |
791 | void *valbuf) | |
792 | { | |
793 | int len = TYPE_LENGTH (type); | |
794 | ULONGEST c, addr; | |
795 | ||
796 | switch (len) | |
797 | { | |
798 | case 1: | |
799 | case 2: | |
800 | case 4: | |
801 | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); | |
802 | store_unsigned_integer (valbuf, len, c); | |
803 | break; | |
804 | case 8: /* long long is now 8 bytes. */ | |
805 | if (TYPE_CODE (type) == TYPE_CODE_INT) | |
806 | { | |
862ba188 CV |
807 | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); |
808 | store_unsigned_integer (valbuf, 4, c); | |
809 | regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c); | |
810 | store_unsigned_integer ((void *) ((char *) valbuf + 4), 4, c); | |
f0bdd87d YS |
811 | } |
812 | else | |
813 | { | |
814 | error ("I don't know how this 8 byte value is returned."); | |
815 | } | |
816 | break; | |
817 | } | |
818 | } | |
819 | ||
862ba188 CV |
820 | int |
821 | h8300_use_struct_convention (struct type *value_type) | |
822 | { | |
823 | /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the | |
824 | stack. */ | |
825 | ||
826 | if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT | |
827 | || TYPE_CODE (value_type) == TYPE_CODE_UNION) | |
828 | return 1; | |
829 | return !(TYPE_LENGTH (value_type) == 1 | |
830 | || TYPE_LENGTH (value_type) == 2 | |
831 | || TYPE_LENGTH (value_type) == 4); | |
832 | } | |
833 | ||
834 | int | |
835 | h8300h_use_struct_convention (struct type *value_type) | |
836 | { | |
837 | /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are | |
838 | returned in R0/R1, everything else on the stack. */ | |
839 | if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT | |
840 | || TYPE_CODE (value_type) == TYPE_CODE_UNION) | |
841 | return 1; | |
842 | return !(TYPE_LENGTH (value_type) == 1 | |
843 | || TYPE_LENGTH (value_type) == 2 | |
844 | || TYPE_LENGTH (value_type) == 4 | |
845 | || (TYPE_LENGTH (value_type) == 8 | |
846 | && TYPE_CODE (value_type) == TYPE_CODE_INT)); | |
847 | } | |
f0bdd87d YS |
848 | |
849 | /* Function: store_return_value | |
850 | Place the appropriate value in the appropriate registers. | |
851 | Primarily used by the RETURN command. */ | |
852 | ||
853 | static void | |
854 | h8300_store_return_value (struct type *type, struct regcache *regcache, | |
855 | const void *valbuf) | |
856 | { | |
857 | int len = TYPE_LENGTH (type); | |
858 | ULONGEST val; | |
859 | ||
860 | switch (len) | |
861 | { | |
862 | case 1: | |
863 | case 2: /* short... */ | |
864 | val = extract_unsigned_integer (valbuf, len); | |
865 | regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val); | |
866 | break; | |
867 | case 4: /* long, float */ | |
868 | val = extract_unsigned_integer (valbuf, len); | |
869 | regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, | |
870 | (val >> 16) & 0xffff); | |
871 | regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff); | |
872 | break; | |
873 | case 8: /* long long, double and long double are all defined | |
874 | as 4 byte types so far so this shouldn't happen. */ | |
875 | error ("I don't know how to return an 8 byte value."); | |
876 | break; | |
877 | } | |
878 | } | |
879 | ||
880 | static void | |
881 | h8300h_store_return_value (struct type *type, struct regcache *regcache, | |
882 | const void *valbuf) | |
883 | { | |
884 | int len = TYPE_LENGTH (type); | |
885 | ULONGEST val; | |
886 | ||
887 | switch (len) | |
888 | { | |
889 | case 1: | |
890 | case 2: | |
891 | case 4: /* long, float */ | |
892 | val = extract_unsigned_integer (valbuf, len); | |
893 | regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val); | |
894 | break; | |
862ba188 CV |
895 | case 8: |
896 | val = extract_unsigned_integer (valbuf, len); | |
897 | regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, | |
898 | (val >> 32) & 0xffffffff); | |
899 | regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, | |
900 | val & 0xffffffff); | |
f0bdd87d YS |
901 | break; |
902 | } | |
903 | } | |
904 | ||
862ba188 CV |
905 | static enum return_value_convention |
906 | h8300_return_value (struct gdbarch *gdbarch, struct type *type, | |
907 | struct regcache *regcache, | |
908 | void *readbuf, const void *writebuf) | |
909 | { | |
910 | if (h8300_use_struct_convention (type)) | |
911 | return RETURN_VALUE_STRUCT_CONVENTION; | |
912 | if (writebuf) | |
913 | h8300_store_return_value (type, regcache, writebuf); | |
914 | else if (readbuf) | |
915 | h8300_extract_return_value (type, regcache, readbuf); | |
916 | return RETURN_VALUE_REGISTER_CONVENTION; | |
917 | } | |
918 | ||
919 | static enum return_value_convention | |
920 | h8300h_return_value (struct gdbarch *gdbarch, struct type *type, | |
921 | struct regcache *regcache, | |
922 | void *readbuf, const void *writebuf) | |
923 | { | |
924 | if (h8300h_use_struct_convention (type)) | |
925 | { | |
926 | if (readbuf) | |
927 | { | |
928 | ULONGEST addr; | |
929 | ||
930 | regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr); | |
931 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
932 | } | |
933 | ||
934 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
935 | } | |
936 | if (writebuf) | |
937 | h8300h_store_return_value (type, regcache, writebuf); | |
938 | else if (readbuf) | |
939 | h8300h_extract_return_value (type, regcache, readbuf); | |
940 | return RETURN_VALUE_REGISTER_CONVENTION; | |
941 | } | |
942 | ||
f0bdd87d YS |
943 | static struct cmd_list_element *setmachinelist; |
944 | ||
945 | static const char * | |
946 | h8300_register_name (int regno) | |
947 | { | |
948 | /* The register names change depending on which h8300 processor | |
949 | type is selected. */ | |
950 | static char *register_names[] = { | |
951 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", | |
952 | "sp", "", "pc", "cycles", "tick", "inst", | |
953 | "ccr", /* pseudo register */ | |
954 | }; | |
955 | if (regno < 0 | |
956 | || regno >= (sizeof (register_names) / sizeof (*register_names))) | |
957 | internal_error (__FILE__, __LINE__, | |
958 | "h8300_register_name: illegal register number %d", regno); | |
959 | else | |
960 | return register_names[regno]; | |
961 | } | |
962 | ||
963 | static const char * | |
964 | h8300s_register_name (int regno) | |
965 | { | |
966 | static char *register_names[] = { | |
967 | "er0", "er1", "er2", "er3", "er4", "er5", "er6", | |
968 | "sp", "", "pc", "cycles", "", "tick", "inst", | |
969 | "mach", "macl", | |
970 | "ccr", "exr" /* pseudo registers */ | |
971 | }; | |
972 | if (regno < 0 | |
973 | || regno >= (sizeof (register_names) / sizeof (*register_names))) | |
974 | internal_error (__FILE__, __LINE__, | |
975 | "h8300s_register_name: illegal register number %d", | |
976 | regno); | |
977 | else | |
978 | return register_names[regno]; | |
979 | } | |
980 | ||
981 | static const char * | |
982 | h8300sx_register_name (int regno) | |
983 | { | |
984 | static char *register_names[] = { | |
985 | "er0", "er1", "er2", "er3", "er4", "er5", "er6", | |
986 | "sp", "", "pc", "cycles", "", "tick", "inst", | |
987 | "mach", "macl", "sbr", "vbr", | |
988 | "ccr", "exr" /* pseudo registers */ | |
989 | }; | |
990 | if (regno < 0 | |
991 | || regno >= (sizeof (register_names) / sizeof (*register_names))) | |
992 | internal_error (__FILE__, __LINE__, | |
993 | "h8300sx_register_name: illegal register number %d", | |
994 | regno); | |
995 | else | |
996 | return register_names[regno]; | |
997 | } | |
998 | ||
999 | static void | |
1000 | h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file, | |
1001 | struct frame_info *frame, int regno) | |
1002 | { | |
1003 | LONGEST rval; | |
1004 | const char *name = gdbarch_register_name (gdbarch, regno); | |
1005 | ||
1006 | if (!name || !*name) | |
1007 | return; | |
1008 | ||
1009 | rval = get_frame_register_signed (frame, regno); | |
1010 | ||
1011 | fprintf_filtered (file, "%-14s ", name); | |
1012 | if ((regno == E_PSEUDO_CCR_REGNUM) || \ | |
1013 | (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch))) | |
1014 | { | |
1015 | fprintf_filtered (file, "0x%02x ", (unsigned char) rval); | |
1016 | print_longest (file, 'u', 1, rval); | |
1017 | } | |
1018 | else | |
1019 | { | |
1020 | fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval, BINWORD)); | |
1021 | print_longest (file, 'd', 1, rval); | |
1022 | } | |
1023 | if (regno == E_PSEUDO_CCR_REGNUM) | |
1024 | { | |
1025 | /* CCR register */ | |
1026 | int C, Z, N, V; | |
1027 | unsigned char l = rval & 0xff; | |
1028 | fprintf_filtered (file, "\t"); | |
1029 | fprintf_filtered (file, "I-%d ", (l & 0x80) != 0); | |
1030 | fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0); | |
1031 | fprintf_filtered (file, "H-%d ", (l & 0x20) != 0); | |
1032 | fprintf_filtered (file, "U-%d ", (l & 0x10) != 0); | |
1033 | N = (l & 0x8) != 0; | |
1034 | Z = (l & 0x4) != 0; | |
1035 | V = (l & 0x2) != 0; | |
1036 | C = (l & 0x1) != 0; | |
1037 | fprintf_filtered (file, "N-%d ", N); | |
1038 | fprintf_filtered (file, "Z-%d ", Z); | |
1039 | fprintf_filtered (file, "V-%d ", V); | |
1040 | fprintf_filtered (file, "C-%d ", C); | |
1041 | if ((C | Z) == 0) | |
1042 | fprintf_filtered (file, "u> "); | |
1043 | if ((C | Z) == 1) | |
1044 | fprintf_filtered (file, "u<= "); | |
1045 | if ((C == 0)) | |
1046 | fprintf_filtered (file, "u>= "); | |
1047 | if (C == 1) | |
1048 | fprintf_filtered (file, "u< "); | |
1049 | if (Z == 0) | |
1050 | fprintf_filtered (file, "!= "); | |
1051 | if (Z == 1) | |
1052 | fprintf_filtered (file, "== "); | |
1053 | if ((N ^ V) == 0) | |
1054 | fprintf_filtered (file, ">= "); | |
1055 | if ((N ^ V) == 1) | |
1056 | fprintf_filtered (file, "< "); | |
1057 | if ((Z | (N ^ V)) == 0) | |
1058 | fprintf_filtered (file, "> "); | |
1059 | if ((Z | (N ^ V)) == 1) | |
1060 | fprintf_filtered (file, "<= "); | |
1061 | } | |
1062 | else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch)) | |
1063 | { | |
1064 | /* EXR register */ | |
1065 | unsigned char l = rval & 0xff; | |
1066 | fprintf_filtered (file, "\t"); | |
1067 | fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0); | |
1068 | fprintf_filtered (file, "I2-%d ", (l & 4) != 0); | |
1069 | fprintf_filtered (file, "I1-%d ", (l & 2) != 0); | |
1070 | fprintf_filtered (file, "I0-%d", (l & 1) != 0); | |
1071 | } | |
1072 | fprintf_filtered (file, "\n"); | |
1073 | } | |
1074 | ||
1075 | static void | |
1076 | h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, | |
1077 | struct frame_info *frame, int regno, int cpregs) | |
1078 | { | |
1079 | if (regno < 0) | |
1080 | { | |
1081 | for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno) | |
1082 | h8300_print_register (gdbarch, file, frame, regno); | |
1083 | h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM); | |
1084 | h8300_print_register (gdbarch, file, frame, E_PC_REGNUM); | |
1085 | if (is_h8300smode (current_gdbarch)) | |
1086 | { | |
1087 | h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM); | |
1088 | if (is_h8300sxmode (current_gdbarch)) | |
1089 | { | |
1090 | h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM); | |
1091 | h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM); | |
1092 | } | |
1093 | h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM); | |
1094 | h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM); | |
1095 | h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM); | |
1096 | h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM); | |
1097 | h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM); | |
1098 | } | |
1099 | else | |
1100 | { | |
1101 | h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM); | |
1102 | h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM); | |
1103 | h8300_print_register (gdbarch, file, frame, E_INST_REGNUM); | |
1104 | } | |
1105 | } | |
1106 | else | |
1107 | { | |
1108 | if (regno == E_CCR_REGNUM) | |
1109 | h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM); | |
1110 | else if (regno == E_PSEUDO_EXR_REGNUM | |
1111 | && is_h8300smode (current_gdbarch)) | |
1112 | h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM); | |
1113 | else | |
1114 | h8300_print_register (gdbarch, file, frame, regno); | |
1115 | } | |
1116 | } | |
1117 | ||
1118 | static struct type * | |
1119 | h8300_register_type (struct gdbarch *gdbarch, int regno) | |
1120 | { | |
1121 | if (regno < 0 || regno >= NUM_REGS + NUM_PSEUDO_REGS) | |
1122 | internal_error (__FILE__, __LINE__, | |
1123 | "h8300_register_type: illegal register number %d", regno); | |
1124 | else | |
1125 | { | |
1126 | switch (regno) | |
1127 | { | |
1128 | case E_PC_REGNUM: | |
1129 | return builtin_type_void_func_ptr; | |
1130 | case E_SP_REGNUM: | |
1131 | case E_FP_REGNUM: | |
1132 | return builtin_type_void_data_ptr; | |
1133 | default: | |
1134 | if (regno == E_PSEUDO_CCR_REGNUM) | |
1135 | return builtin_type_uint8; | |
1136 | else if (regno == E_PSEUDO_EXR_REGNUM) | |
1137 | return builtin_type_uint8; | |
1138 | else if (is_h8300hmode (current_gdbarch)) | |
1139 | return builtin_type_int32; | |
1140 | else | |
1141 | return builtin_type_int16; | |
1142 | } | |
1143 | } | |
1144 | } | |
1145 | ||
1146 | static void | |
1147 | h8300_pseudo_register_read (struct gdbarch *gdbarch, | |
1148 | struct regcache *regcache, int regno, void *buf) | |
1149 | { | |
1150 | if (regno == E_PSEUDO_CCR_REGNUM) | |
1151 | regcache_raw_read (regcache, E_CCR_REGNUM, buf); | |
1152 | else if (regno == E_PSEUDO_EXR_REGNUM) | |
1153 | regcache_raw_read (regcache, E_EXR_REGNUM, buf); | |
1154 | else | |
1155 | regcache_raw_read (regcache, regno, buf); | |
1156 | } | |
1157 | ||
1158 | static void | |
1159 | h8300_pseudo_register_write (struct gdbarch *gdbarch, | |
1160 | struct regcache *regcache, int regno, | |
1161 | const void *buf) | |
1162 | { | |
1163 | if (regno == E_PSEUDO_CCR_REGNUM) | |
1164 | regcache_raw_write (regcache, E_CCR_REGNUM, buf); | |
1165 | else if (regno == E_PSEUDO_EXR_REGNUM) | |
1166 | regcache_raw_write (regcache, E_EXR_REGNUM, buf); | |
1167 | else | |
1168 | regcache_raw_write (regcache, regno, buf); | |
1169 | } | |
1170 | ||
1171 | static int | |
1172 | h8300_dbg_reg_to_regnum (int regno) | |
1173 | { | |
1174 | if (regno == E_CCR_REGNUM) | |
1175 | return E_PSEUDO_CCR_REGNUM; | |
1176 | return regno; | |
1177 | } | |
1178 | ||
1179 | static int | |
1180 | h8300s_dbg_reg_to_regnum (int regno) | |
1181 | { | |
1182 | if (regno == E_CCR_REGNUM) | |
1183 | return E_PSEUDO_CCR_REGNUM; | |
1184 | if (regno == E_EXR_REGNUM) | |
1185 | return E_PSEUDO_EXR_REGNUM; | |
1186 | return regno; | |
1187 | } | |
1188 | ||
f0bdd87d YS |
1189 | const static unsigned char * |
1190 | h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
1191 | { | |
1192 | /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */ | |
1193 | static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */ | |
1194 | ||
1195 | *lenptr = sizeof (breakpoint); | |
1196 | return breakpoint; | |
1197 | } | |
1198 | ||
f0bdd87d YS |
1199 | static void |
1200 | h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, | |
1201 | struct frame_info *frame, const char *args) | |
1202 | { | |
1203 | fprintf_filtered (file, "\ | |
1204 | No floating-point info available for this processor.\n"); | |
1205 | } | |
1206 | ||
1207 | static struct gdbarch * | |
1208 | h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1209 | { | |
1210 | struct gdbarch_tdep *tdep = NULL; | |
1211 | struct gdbarch *gdbarch; | |
1212 | ||
1213 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1214 | if (arches != NULL) | |
1215 | return arches->gdbarch; | |
1216 | ||
1217 | #if 0 | |
1218 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
1219 | #endif | |
1220 | ||
1221 | if (info.bfd_arch_info->arch != bfd_arch_h8300) | |
1222 | return NULL; | |
1223 | ||
1224 | gdbarch = gdbarch_alloc (&info, 0); | |
1225 | ||
1226 | switch (info.bfd_arch_info->mach) | |
1227 | { | |
1228 | case bfd_mach_h8300: | |
1229 | set_gdbarch_num_regs (gdbarch, 13); | |
1230 | set_gdbarch_num_pseudo_regs (gdbarch, 1); | |
1231 | set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | |
1232 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | |
1233 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | |
1234 | set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | |
1235 | set_gdbarch_register_name (gdbarch, h8300_register_name); | |
1236 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1237 | set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
862ba188 | 1238 | set_gdbarch_return_value (gdbarch, h8300_return_value); |
f0bdd87d YS |
1239 | set_gdbarch_print_insn (gdbarch, print_insn_h8300); |
1240 | break; | |
1241 | case bfd_mach_h8300h: | |
1242 | case bfd_mach_h8300hn: | |
1243 | set_gdbarch_num_regs (gdbarch, 13); | |
1244 | set_gdbarch_num_pseudo_regs (gdbarch, 1); | |
1245 | set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | |
1246 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | |
1247 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | |
1248 | set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | |
1249 | set_gdbarch_register_name (gdbarch, h8300_register_name); | |
1250 | if (info.bfd_arch_info->mach != bfd_mach_h8300hn) | |
1251 | { | |
1252 | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1253 | set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1254 | } | |
1255 | else | |
1256 | { | |
1257 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1258 | set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1259 | } | |
862ba188 | 1260 | set_gdbarch_return_value (gdbarch, h8300h_return_value); |
f0bdd87d YS |
1261 | set_gdbarch_print_insn (gdbarch, print_insn_h8300h); |
1262 | break; | |
1263 | case bfd_mach_h8300s: | |
1264 | case bfd_mach_h8300sn: | |
1265 | set_gdbarch_num_regs (gdbarch, 16); | |
1266 | set_gdbarch_num_pseudo_regs (gdbarch, 2); | |
1267 | set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | |
1268 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | |
1269 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | |
1270 | set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | |
1271 | set_gdbarch_register_name (gdbarch, h8300s_register_name); | |
1272 | if (info.bfd_arch_info->mach != bfd_mach_h8300sn) | |
1273 | { | |
1274 | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1275 | set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1276 | } | |
1277 | else | |
1278 | { | |
1279 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1280 | set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1281 | } | |
862ba188 | 1282 | set_gdbarch_return_value (gdbarch, h8300h_return_value); |
f0bdd87d YS |
1283 | set_gdbarch_print_insn (gdbarch, print_insn_h8300s); |
1284 | break; | |
1285 | case bfd_mach_h8300sx: | |
1286 | case bfd_mach_h8300sxn: | |
1287 | set_gdbarch_num_regs (gdbarch, 18); | |
1288 | set_gdbarch_num_pseudo_regs (gdbarch, 2); | |
1289 | set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | |
1290 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | |
1291 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | |
1292 | set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | |
1293 | set_gdbarch_register_name (gdbarch, h8300sx_register_name); | |
1294 | if (info.bfd_arch_info->mach != bfd_mach_h8300sxn) | |
1295 | { | |
1296 | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1297 | set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1298 | } | |
1299 | else | |
1300 | { | |
1301 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1302 | set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1303 | } | |
862ba188 | 1304 | set_gdbarch_return_value (gdbarch, h8300h_return_value); |
f0bdd87d YS |
1305 | set_gdbarch_print_insn (gdbarch, print_insn_h8300s); |
1306 | break; | |
1307 | } | |
1308 | ||
1309 | set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read); | |
1310 | set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write); | |
1311 | ||
1312 | /* | |
1313 | * Basic register fields and methods. | |
1314 | */ | |
1315 | ||
1316 | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | |
f0bdd87d YS |
1317 | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); |
1318 | set_gdbarch_register_type (gdbarch, h8300_register_type); | |
1319 | set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info); | |
1320 | set_gdbarch_print_float_info (gdbarch, h8300_print_float_info); | |
1321 | ||
1322 | /* | |
1323 | * Frame Info | |
1324 | */ | |
1325 | set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue); | |
1326 | ||
1327 | /* Frame unwinder. */ | |
f0bdd87d | 1328 | set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc); |
862ba188 CV |
1329 | set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp); |
1330 | set_gdbarch_unwind_dummy_id (gdbarch, h8300_unwind_dummy_id); | |
1331 | frame_base_set_default (gdbarch, &h8300_frame_base); | |
f0bdd87d YS |
1332 | |
1333 | /* | |
1334 | * Miscelany | |
1335 | */ | |
1336 | /* Stack grows up. */ | |
1337 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1338 | ||
f0bdd87d | 1339 | set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc); |
f0bdd87d YS |
1340 | set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call); |
1341 | ||
862ba188 | 1342 | set_gdbarch_char_signed (gdbarch, 0); |
f0bdd87d YS |
1343 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
1344 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1345 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1346 | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1347 | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1348 | ||
1349 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
1350 | ||
862ba188 CV |
1351 | /* Hook in the DWARF CFI frame unwinder. */ |
1352 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); | |
f0bdd87d YS |
1353 | frame_unwind_append_sniffer (gdbarch, h8300_frame_sniffer); |
1354 | ||
1355 | return gdbarch; | |
1356 | ||
1357 | } | |
1358 | ||
1359 | extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */ | |
1360 | ||
1361 | void | |
1362 | _initialize_h8300_tdep (void) | |
1363 | { | |
1364 | register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init); | |
1365 | } | |
1366 | ||
1367 | static int | |
1368 | is_h8300hmode (struct gdbarch *gdbarch) | |
1369 | { | |
1370 | return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx | |
1371 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn | |
1372 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s | |
1373 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn | |
1374 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h | |
1375 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn; | |
1376 | } | |
1377 | ||
1378 | static int | |
1379 | is_h8300smode (struct gdbarch *gdbarch) | |
1380 | { | |
1381 | return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx | |
1382 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn | |
1383 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s | |
1384 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn; | |
1385 | } | |
1386 | ||
1387 | static int | |
1388 | is_h8300sxmode (struct gdbarch *gdbarch) | |
1389 | { | |
1390 | return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx | |
1391 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn; | |
1392 | } | |
1393 | ||
1394 | static int | |
1395 | is_h8300_normal_mode (struct gdbarch *gdbarch) | |
1396 | { | |
1397 | return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn | |
1398 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn | |
1399 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn; | |
1400 | } |