* MAINTAINERS: Remove self from specific maintenance domains
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
CommitLineData
c906108c 1/* Target-machine dependent code for Hitachi H8/300, for GDB.
b6ba6518
KB
2 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22/*
c5aa993b
JM
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
c906108c
SS
25 */
26
27#include "defs.h"
28#include "frame.h"
29#include "obstack.h"
30#include "symtab.h"
31#include "dis-asm.h"
32#include "gdbcmd.h"
33#include "gdbtypes.h"
34#include "gdbcore.h"
35#include "gdb_string.h"
36#include "value.h"
4e052eda 37#include "regcache.h"
c906108c
SS
38
39extern int h8300hmode, h8300smode;
40
41#undef NUM_REGS
42#define NUM_REGS 11
43
44#define UNSIGNED_SHORT(X) ((X) & 0xffff)
45
46#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
47#define IS_PUSH_FP(x) (x == 0x6df6)
48#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
49#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
50#define IS_SUB2_SP(x) (x==0x1b87)
51#define IS_SUB4_SP(x) (x==0x1b97)
52#define IS_SUBL_SP(x) (x==0x7a37)
53#define IS_MOVK_R5(x) (x==0x7905)
54#define IS_SUB_R5SP(x) (x==0x1957)
55
56
57/* The register names change depending on whether the h8300h processor
58 type is selected. */
59
60static char *original_register_names[] = REGISTER_NAMES;
61
62static char *h8300h_register_names[] =
c5aa993b
JM
63{"er0", "er1", "er2", "er3", "er4", "er5", "er6",
64 "sp", "ccr", "pc", "cycles", "tick", "inst"};
c906108c
SS
65
66char **h8300_register_names = original_register_names;
67
68
69/* Local function declarations. */
70
71static CORE_ADDR examine_prologue ();
a14ed312 72static void set_machine_hook (char *filename);
c906108c
SS
73
74void h8300_frame_find_saved_regs ();
75
c5aa993b 76CORE_ADDR
fba45db2 77h8300_skip_prologue (CORE_ADDR start_pc)
c906108c
SS
78{
79 short int w;
80 int adjust = 0;
81
82 /* Skip past all push and stm insns. */
83 while (1)
84 {
85 w = read_memory_unsigned_integer (start_pc, 2);
86 /* First look for push insns. */
87 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
88 {
89 w = read_memory_unsigned_integer (start_pc + 2, 2);
90 adjust = 2;
91 }
92
93 if (IS_PUSH (w))
94 {
95 start_pc += 2 + adjust;
96 w = read_memory_unsigned_integer (start_pc, 2);
97 continue;
98 }
99 adjust = 0;
100 break;
101 }
102
103 /* Skip past a move to FP, either word or long sized */
104 w = read_memory_unsigned_integer (start_pc, 2);
105 if (w == 0x0100)
106 {
107 w = read_memory_unsigned_integer (start_pc + 2, 2);
108 adjust += 2;
109 }
110
111 if (IS_MOVE_FP (w))
112 {
113 start_pc += 2 + adjust;
114 w = read_memory_unsigned_integer (start_pc, 2);
115 }
116
117 /* Check for loading either a word constant into r5;
118 long versions are handled by the SUBL_SP below. */
119 if (IS_MOVK_R5 (w))
120 {
121 start_pc += 2;
122 w = read_memory_unsigned_integer (start_pc, 2);
123 }
124
125 /* Now check for subtracting r5 from sp, word sized only. */
126 if (IS_SUB_R5SP (w))
127 {
128 start_pc += 2 + adjust;
129 w = read_memory_unsigned_integer (start_pc, 2);
130 }
131
132 /* Check for subs #2 and subs #4. */
133 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
134 {
135 start_pc += 2 + adjust;
136 w = read_memory_unsigned_integer (start_pc, 2);
137 }
138
139 /* Check for a 32bit subtract. */
140 if (IS_SUBL_SP (w))
141 start_pc += 6 + adjust;
142
143 return start_pc;
144}
145
146int
fba45db2 147gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
148{
149 if (h8300smode)
150 return print_insn_h8300s (memaddr, info);
151 else if (h8300hmode)
152 return print_insn_h8300h (memaddr, info);
153 else
154 return print_insn_h8300 (memaddr, info);
155}
156
157/* Given a GDB frame, determine the address of the calling function's frame.
158 This will be used to create a new GDB frame struct, and then
159 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
160
161 For us, the frame address is its stack pointer value, so we look up
162 the function prologue to determine the caller's sp value, and return it. */
163
164CORE_ADDR
fba45db2 165h8300_frame_chain (struct frame_info *thisframe)
c906108c 166{
c5aa993b
JM
167 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
168 { /* initialize the from_pc now */
c906108c 169 thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
c5aa993b 170 thisframe->frame,
c906108c
SS
171 PC_REGNUM);
172 return thisframe->frame;
173 }
174 h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
175 return thisframe->fsr->regs[SP_REGNUM];
176}
177
178/* Put here the code to store, into a struct frame_saved_regs,
179 the addresses of the saved registers of frame described by FRAME_INFO.
180 This includes special registers such as pc and fp saved in special
181 ways in the stack frame. sp is even more special:
182 the address we return for it IS the sp for the next frame.
183
184 We cache the result of doing this in the frame_obstack, since it is
185 fairly expensive. */
186
187void
fba45db2
KB
188h8300_frame_find_saved_regs (struct frame_info *fi,
189 struct frame_saved_regs *fsr)
c906108c
SS
190{
191 register struct frame_saved_regs *cache_fsr;
192 CORE_ADDR ip;
193 struct symtab_and_line sal;
194 CORE_ADDR limit;
195
196 if (!fi->fsr)
197 {
198 cache_fsr = (struct frame_saved_regs *)
199 frame_obstack_alloc (sizeof (struct frame_saved_regs));
200 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
201
202 fi->fsr = cache_fsr;
203
c5aa993b
JM
204 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
205 { /* no more to do. */
c906108c
SS
206 if (fsr)
207 *fsr = *fi->fsr;
208 return;
209 }
210 /* Find the start and end of the function prologue. If the PC
c5aa993b
JM
211 is in the function prologue, we only consider the part that
212 has executed already. */
c906108c
SS
213
214 ip = get_pc_function_start (fi->pc);
215 sal = find_pc_line (ip, 0);
216 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
217
218 /* This will fill in fields in *fi as well as in cache_fsr. */
219 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
220 }
221
222 if (fsr)
223 *fsr = *fi->fsr;
224}
225
226/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
227 is not the address of a valid instruction, the address of the next
228 instruction beyond ADDR otherwise. *PWORD1 receives the first word
c5aa993b 229 of the instruction. */
c906108c
SS
230
231CORE_ADDR
fba45db2 232NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD *pword1)
c906108c
SS
233{
234 char buf[2];
235 if (addr < lim + 8)
236 {
237 read_memory (addr, buf, 2);
238 *pword1 = extract_signed_integer (buf, 2);
239
240 return addr + 2;
241 }
242 return 0;
243}
244
245/* Examine the prologue of a function. `ip' points to the first instruction.
246 `limit' is the limit of the prologue (e.g. the addr of the first
247 linenumber, or perhaps the program counter if we're stepping through).
248 `frame_sp' is the stack pointer value in use in this frame.
249 `fsr' is a pointer to a frame_saved_regs structure into which we put
250 info about the registers saved by this frame.
251 `fi' is a struct frame_info pointer; we fill in various fields in it
252 to reflect the offsets of the arg pointer and the locals pointer. */
253
254static CORE_ADDR
fba45db2
KB
255examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
256 CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr,
257 struct frame_info *fi)
c906108c
SS
258{
259 register CORE_ADDR next_ip;
260 int r;
261 int have_fp = 0;
262 INSN_WORD insn_word;
263 /* Number of things pushed onto stack, starts at 2/4, 'cause the
264 PC is already there */
265 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
266
267 unsigned int auto_depth = 0; /* Number of bytes of autos */
268
269 char in_frame[11]; /* One for each reg */
270
271 int adjust = 0;
272
273 memset (in_frame, 1, 11);
274 for (r = 0; r < 8; r++)
275 {
276 fsr->regs[r] = 0;
277 }
278 if (after_prolog_fp == 0)
279 {
280 after_prolog_fp = read_register (SP_REGNUM);
281 }
282
283 /* If the PC isn't valid, quit now. */
284 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
285 return 0;
286
287 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
288
289 if (insn_word == 0x0100)
290 {
291 insn_word = read_memory_unsigned_integer (ip + 2, 2);
292 adjust = 2;
293 }
294
295 /* Skip over any fp push instructions */
296 fsr->regs[6] = after_prolog_fp;
297 while (next_ip && IS_PUSH_FP (insn_word))
298 {
299 ip = next_ip + adjust;
300
301 in_frame[insn_word & 0x7] = reg_save_depth;
302 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
303 reg_save_depth += 2 + adjust;
304 }
305
306 /* Is this a move into the fp */
307 if (next_ip && IS_MOV_SP_FP (insn_word))
308 {
309 ip = next_ip;
310 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
311 have_fp = 1;
312 }
313
314 /* Skip over any stack adjustment, happens either with a number of
315 sub#2,sp or a mov #x,r5 sub r5,sp */
316
317 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
318 {
319 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
320 {
321 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
322 ip = next_ip;
323 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
324 }
325 }
326 else
327 {
328 if (next_ip && IS_MOVK_R5 (insn_word))
329 {
330 ip = next_ip;
331 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
332 auto_depth += insn_word;
333
334 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
335 auto_depth += insn_word;
336 }
337 if (next_ip && IS_SUBL_SP (insn_word))
338 {
339 ip = next_ip;
340 auto_depth += read_memory_unsigned_integer (ip, 4);
341 ip += 4;
342
343 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
344 }
345 }
346
347 /* Now examine the push insns to determine where everything lives
348 on the stack. */
349 while (1)
350 {
351 adjust = 0;
352 if (!next_ip)
353 break;
354
355 if (insn_word == 0x0100)
356 {
357 ip = next_ip;
358 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
359 adjust = 2;
360 }
361
362 if (IS_PUSH (insn_word))
363 {
364 ip = next_ip;
365 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
366 fsr->regs[r] = after_prolog_fp + auto_depth;
367 auto_depth += 2 + adjust;
368 continue;
369 }
370
371 /* Now check for push multiple insns. */
372 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
373 {
374 int count = ((insn_word >> 4) & 0xf) + 1;
375 int start, i;
376
377 ip = next_ip;
378 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
379 start = insn_word & 0x7;
380
381 for (i = start; i <= start + count; i++)
382 {
383 fsr->regs[i] = after_prolog_fp + auto_depth;
384 auto_depth += 4;
385 }
386 }
387 break;
388 }
389
390 /* The args are always reffed based from the stack pointer */
391 fi->args_pointer = after_prolog_fp;
392 /* Locals are always reffed based from the fp */
393 fi->locals_pointer = after_prolog_fp;
394 /* The PC is at a known place */
395 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
396
397 /* Rememeber any others too */
398 in_frame[PC_REGNUM] = 0;
c5aa993b 399
c906108c
SS
400 if (have_fp)
401 /* We keep the old FP in the SP spot */
402 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
403 else
404 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
405
406 return (ip);
407}
408
409void
fba45db2 410h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
411{
412 fi->fsr = 0; /* Not yet allocated */
413 fi->args_pointer = 0; /* Unknown */
414 fi->locals_pointer = 0; /* Unknown */
415 fi->from_pc = 0;
c5aa993b
JM
416 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
417 { /* anything special to do? */
c906108c
SS
418 return;
419 }
420}
421
422/* Return the saved PC from this frame.
423
424 If the frame has a memory copy of SRP_REGNUM, use that. If not,
425 just use the register SRP_REGNUM itself. */
426
427CORE_ADDR
fba45db2 428h8300_frame_saved_pc (struct frame_info *frame)
c906108c 429{
c5aa993b 430 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c
SS
431 return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
432 else
433 return frame->from_pc;
434}
435
436CORE_ADDR
fba45db2 437frame_locals_address (struct frame_info *fi)
c906108c 438{
c5aa993b 439 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
c906108c
SS
440 return (CORE_ADDR) 0; /* Not sure what else to do... */
441 if (!fi->locals_pointer)
442 {
443 struct frame_saved_regs ignore;
444
445 get_frame_saved_regs (fi, &ignore);
446
447 }
448 return fi->locals_pointer;
449}
450
451/* Return the address of the argument block for the frame
452 described by FI. Returns 0 if the address is unknown. */
453
454CORE_ADDR
fba45db2 455frame_args_address (struct frame_info *fi)
c906108c 456{
c5aa993b 457 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
c906108c
SS
458 return (CORE_ADDR) 0; /* Not sure what else to do... */
459 if (!fi->args_pointer)
460 {
461 struct frame_saved_regs ignore;
462
463 get_frame_saved_regs (fi, &ignore);
464
465 }
466
467 return fi->args_pointer;
468}
469
470/* Function: push_arguments
471 Setup the function arguments for calling a function in the inferior.
472
473 On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
474 which are dedicated for passing function arguments. Up to the first
475 three arguments (depending on size) may go into these registers.
476 The rest go on the stack.
477
478 Arguments that are smaller than WORDSIZE bytes will still take up a
479 whole register or a whole WORDSIZE word on the stack, and will be
480 right-justified in the register or the stack word. This includes
481 chars and small aggregate types. Note that WORDSIZE depends on the
482 cpu type.
483
484 Arguments that are larger than WORDSIZE bytes will be split between
485 two or more registers as available, but will NOT be split between a
486 register and the stack.
487
488 An exceptional case exists for struct arguments (and possibly other
489 aggregates such as arrays) -- if the size is larger than WORDSIZE
490 bytes but not a multiple of WORDSIZE bytes. In this case the
491 argument is never split between the registers and the stack, but
492 instead is copied in its entirety onto the stack, AND also copied
493 into as many registers as there is room for. In other words, space
494 in registers permitting, two copies of the same argument are passed
495 in. As far as I can tell, only the one on the stack is used,
496 although that may be a function of the level of compiler
497 optimization. I suspect this is a compiler bug. Arguments of
498 these odd sizes are left-justified within the word (as opposed to
499 arguments smaller than WORDSIZE bytes, which are right-justified).
c5aa993b 500
c906108c
SS
501 If the function is to return an aggregate type such as a struct,
502 the caller must allocate space into which the callee will copy the
503 return value. In this case, a pointer to the return value location
504 is passed into the callee in register R0, which displaces one of
505 the other arguments passed in via registers R0 to R2. */
506
507CORE_ADDR
fba45db2
KB
508h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
509 unsigned char struct_return, CORE_ADDR struct_addr)
c906108c
SS
510{
511 int stack_align, stack_alloc, stack_offset;
512 int wordsize;
513 int argreg;
514 int argnum;
515 struct type *type;
516 CORE_ADDR regval;
517 char *val;
518 char valbuf[4];
519 int len;
520
521 if (h8300hmode || h8300smode)
522 {
523 stack_align = 3;
c5aa993b 524 wordsize = 4;
c906108c
SS
525 }
526 else
527 {
528 stack_align = 1;
c5aa993b 529 wordsize = 2;
c906108c
SS
530 }
531
532 /* first force sp to a n-byte alignment */
533 sp = sp & ~stack_align;
534
535 /* Now make sure there's space on the stack */
c5aa993b 536 for (argnum = 0, stack_alloc = 0;
c906108c 537 argnum < nargs; argnum++)
c5aa993b 538 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
c906108c 539 & ~stack_align);
c5aa993b 540 sp -= stack_alloc; /* make room on stack for args */
c906108c
SS
541 /* we may over-allocate a little here, but that won't hurt anything */
542
c5aa993b
JM
543 argreg = ARG0_REGNUM;
544 if (struct_return) /* "struct return" pointer takes up one argreg */
c906108c
SS
545 {
546 write_register (argreg++, struct_addr);
547 }
548
549 /* Now load as many as possible of the first arguments into
550 registers, and push the rest onto the stack. There are 3N bytes
551 in three registers available. Loop thru args from first to last. */
552
553 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
554 {
555 type = VALUE_TYPE (args[argnum]);
556 len = TYPE_LENGTH (type);
c5aa993b 557 memset (valbuf, 0, sizeof (valbuf));
c906108c
SS
558 if (len < wordsize)
559 {
560 /* the purpose of this is to right-justify the value within the word */
c5aa993b
JM
561 memcpy (valbuf + (wordsize - len),
562 (char *) VALUE_CONTENTS (args[argnum]), len);
c906108c
SS
563 val = valbuf;
564 }
565 else
566 val = (char *) VALUE_CONTENTS (args[argnum]);
567
c5aa993b
JM
568 if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) ||
569 (len > wordsize && (len & stack_align) != 0))
570 { /* passed on the stack */
571 write_memory (sp + stack_offset, val,
c906108c
SS
572 len < wordsize ? wordsize : len);
573 stack_offset += (len + stack_align) & ~stack_align;
574 }
575 /* NOTE WELL!!!!! This is not an "else if" clause!!!
c5aa993b
JM
576 That's because some *&^%$ things get passed on the stack
577 AND in the registers! */
578 if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
c906108c 579 while (len > 0)
c5aa993b 580 { /* there's room in registers */
c906108c
SS
581 regval = extract_address (val, wordsize);
582 write_register (argreg, regval);
583 len -= wordsize;
584 val += wordsize;
585 argreg++;
586 }
587 }
588 return sp;
589}
590
591/* Function: push_return_address
592 Setup the return address for a dummy frame, as called by
593 call_function_by_hand. Only necessary when you are using an
594 empty CALL_DUMMY, ie. the target will not actually be executing
595 a JSR/BSR instruction. */
596
597CORE_ADDR
fba45db2 598h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c
SS
599{
600 unsigned char buf[4];
601 int wordsize;
602
603 if (h8300hmode || h8300smode)
604 wordsize = 4;
605 else
606 wordsize = 2;
607
608 sp -= wordsize;
609 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
610 write_memory (sp, buf, wordsize);
611 return sp;
612}
613
614/* Function: pop_frame
615 Restore the machine to the state it had before the current frame
616 was created. Usually used either by the "RETURN" command, or by
617 call_function_by_hand after the dummy_frame is finished. */
618
c5aa993b 619void
fba45db2 620h8300_pop_frame (void)
c906108c
SS
621{
622 unsigned regnum;
623 struct frame_saved_regs fsr;
624 struct frame_info *frame = get_current_frame ();
625
c5aa993b 626 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c 627 {
c5aa993b 628 generic_pop_dummy_frame ();
c906108c
SS
629 }
630 else
631 {
632 get_frame_saved_regs (frame, &fsr);
633
634 for (regnum = 0; regnum < 8; regnum++)
635 {
636 /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
637 actual value we want, not the address of the value we want. */
638 if (fsr.regs[regnum] && regnum != SP_REGNUM)
c5aa993b
JM
639 write_register (regnum,
640 read_memory_integer (fsr.regs[regnum], BINWORD));
c906108c
SS
641 else if (fsr.regs[regnum] && regnum == SP_REGNUM)
642 write_register (regnum, frame->frame + 2 * BINWORD);
643 }
644
645 /* Don't forget the update the PC too! */
646 write_pc (frame->from_pc);
647 }
648 flush_cached_frames ();
649}
650
651/* Function: extract_return_value
652 Figure out where in REGBUF the called function has left its return value.
653 Copy that into VALBUF. Be sure to account for CPU type. */
654
655void
fba45db2 656h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c
SS
657{
658 int wordsize, len;
659
660 if (h8300smode || h8300hmode)
661 wordsize = 4;
662 else
663 wordsize = 2;
664
c5aa993b
JM
665 len = TYPE_LENGTH (type);
666
667 switch (len)
668 {
669 case 1: /* (char) */
670 case 2: /* (short), (int) */
671 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
672 break;
673 case 4: /* (long), (float) */
674 if (h8300smode || h8300hmode)
675 {
676 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
677 }
678 else
679 {
680 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
681 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
682 }
683 break;
684 case 8: /* (double) (doesn't seem to happen, which is good,
685 because this almost certainly isn't right. */
686 error ("I don't know how a double is returned.");
687 break;
688 }
c906108c
SS
689}
690
691/* Function: store_return_value
692 Place the appropriate value in the appropriate registers.
693 Primarily used by the RETURN command. */
694
c5aa993b 695void
fba45db2 696h8300_store_return_value (struct type *type, char *valbuf)
c906108c
SS
697{
698 int wordsize, len, regval;
c5aa993b 699
c906108c
SS
700 if (h8300hmode || h8300smode)
701 wordsize = 4;
702 else
703 wordsize = 2;
704
c5aa993b
JM
705 len = TYPE_LENGTH (type);
706 switch (len)
707 {
708 case 1: /* char */
709 case 2: /* short, int */
710 regval = extract_address (valbuf, len);
711 write_register (0, regval);
712 break;
713 case 4: /* long, float */
714 regval = extract_address (valbuf, len);
715 if (h8300smode || h8300hmode)
716 {
717 write_register (0, regval);
718 }
719 else
720 {
721 write_register (0, regval >> 16);
722 write_register (1, regval & 0xffff);
723 }
724 break;
725 case 8: /* presumeably double, but doesn't seem to happen */
726 error ("I don't know how to return a double.");
727 break;
728 }
c906108c
SS
729}
730
c906108c
SS
731struct cmd_list_element *setmemorylist;
732
733static void
fba45db2 734set_register_names (void)
c906108c
SS
735{
736 if (h8300hmode != 0)
737 h8300_register_names = h8300h_register_names;
738 else
739 h8300_register_names = original_register_names;
740}
741
742static void
55d80160 743h8300_command (char *args, int from_tty)
c906108c
SS
744{
745 extern int h8300hmode;
746 h8300hmode = 0;
747 h8300smode = 0;
748 set_register_names ();
749}
750
751static void
55d80160 752h8300h_command (char *args, int from_tty)
c906108c
SS
753{
754 extern int h8300hmode;
755 h8300hmode = 1;
756 h8300smode = 0;
757 set_register_names ();
758}
759
760static void
55d80160 761h8300s_command (char *args, int from_tty)
c906108c
SS
762{
763 extern int h8300smode;
764 extern int h8300hmode;
765 h8300smode = 1;
766 h8300hmode = 1;
767 set_register_names ();
768}
769
770
c5aa993b 771static void
fba45db2 772set_machine (char *args, int from_tty)
c906108c
SS
773{
774 printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
775 printf_unfiltered ("or h8300s");
776 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
777}
778
779/* set_machine_hook is called as the exec file is being opened, but
780 before the symbol file is opened. This allows us to set the
781 h8300hmode flag based on the machine type specified in the exec
782 file. This in turn will cause subsequently defined pointer types
783 to be 16 or 32 bits as appropriate for the machine. */
784
785static void
fba45db2 786set_machine_hook (char *filename)
c906108c
SS
787{
788 if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
789 {
790 h8300smode = 1;
791 h8300hmode = 1;
792 }
c5aa993b 793 else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
c906108c
SS
794 {
795 h8300smode = 0;
796 h8300hmode = 1;
797 }
798 else
799 {
800 h8300smode = 0;
801 h8300hmode = 0;
802 }
803 set_register_names ();
804}
805
806void
fba45db2 807_initialize_h8300m (void)
c906108c
SS
808{
809 add_prefix_cmd ("machine", no_class, set_machine,
c5aa993b 810 "set the machine type",
c906108c
SS
811 &setmemorylist, "set machine ", 0,
812 &setlist);
813
814 add_cmd ("h8300", class_support, h8300_command,
815 "Set machine to be H8/300.", &setmemorylist);
816
817 add_cmd ("h8300h", class_support, h8300h_command,
818 "Set machine to be H8/300H.", &setmemorylist);
819
820 add_cmd ("h8300s", class_support, h8300s_command,
821 "Set machine to be H8/300S.", &setmemorylist);
822
823 /* Add a hook to set the machine type when we're loading a file. */
824
c5aa993b 825 specify_exec_file_hook (set_machine_hook);
c906108c
SS
826}
827
828
829
830void
fba45db2 831print_register_hook (int regno)
c906108c
SS
832{
833 if (regno == 8)
834 {
835 /* CCR register */
836 int C, Z, N, V;
837 unsigned char b[4];
838 unsigned char l;
839 read_relative_register_raw_bytes (regno, b);
c5aa993b 840 l = b[REGISTER_VIRTUAL_SIZE (8) - 1];
c906108c
SS
841 printf_unfiltered ("\t");
842 printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
843 printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
844 N = (l & 0x8) != 0;
845 Z = (l & 0x4) != 0;
846 V = (l & 0x2) != 0;
847 C = (l & 0x1) != 0;
848 printf_unfiltered ("N-%d ", N);
849 printf_unfiltered ("Z-%d ", Z);
850 printf_unfiltered ("V-%d ", V);
851 printf_unfiltered ("C-%d ", C);
852 if ((C | Z) == 0)
853 printf_unfiltered ("u> ");
854 if ((C | Z) == 1)
855 printf_unfiltered ("u<= ");
856 if ((C == 0))
857 printf_unfiltered ("u>= ");
858 if (C == 1)
859 printf_unfiltered ("u< ");
860 if (Z == 0)
861 printf_unfiltered ("!= ");
862 if (Z == 1)
863 printf_unfiltered ("== ");
864 if ((N ^ V) == 0)
865 printf_unfiltered (">= ");
866 if ((N ^ V) == 1)
867 printf_unfiltered ("< ");
868 if ((Z | (N ^ V)) == 0)
869 printf_unfiltered ("> ");
870 if ((Z | (N ^ V)) == 1)
871 printf_unfiltered ("<= ");
872 }
873}
874
875void
fba45db2 876_initialize_h8300_tdep (void)
c906108c
SS
877{
878 tm_print_insn = gdb_print_insn_h8300;
879}
This page took 0.115744 seconds and 4 git commands to generate.