2011-02-24 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / hppa-hpux-tdep.c
CommitLineData
b1acf338 1/* Target-dependent code for HP-UX on PA-RISC.
ef6e7e13 2
7b6bb8da 3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
9b254dd1 4 Free Software Foundation, Inc.
273f8429 5
b1acf338 6 This file is part of GDB.
273f8429 7
b1acf338
MK
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
b1acf338 11 (at your option) any later version.
273f8429 12
b1acf338
MK
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
273f8429 17
b1acf338 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
273f8429
JB
20
21#include "defs.h"
22#include "arch-utils.h"
60e1ff27 23#include "gdbcore.h"
273f8429 24#include "osabi.h"
222e5d1d 25#include "frame.h"
43613416
RC
26#include "frame-unwind.h"
27#include "trad-frame.h"
4c02c60c
AC
28#include "symtab.h"
29#include "objfiles.h"
30#include "inferior.h"
31#include "infcall.h"
90f943f1 32#include "observer.h"
acf86d54
RC
33#include "hppa-tdep.h"
34#include "solib-som.h"
35#include "solib-pa64.h"
08d53055 36#include "regset.h"
e7b17823 37#include "regcache.h"
60250e8b 38#include "exceptions.h"
08d53055
MK
39
40#include "gdb_string.h"
4c02c60c 41
77d18ded
RC
42#define IS_32BIT_TARGET(_gdbarch) \
43 ((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
44
27b08a0c
RC
45/* Bit in the `ss_flag' member of `struct save_state' that indicates
46 that the 64-bit register values are live. From
47 <machine/save_state.h>. */
48#define HPPA_HPUX_SS_WIDEREGS 0x40
49
50/* Offsets of various parts of `struct save_state'. From
51 <machine/save_state.h>. */
52#define HPPA_HPUX_SS_FLAGS_OFFSET 0
53#define HPPA_HPUX_SS_NARROW_OFFSET 4
54#define HPPA_HPUX_SS_FPBLOCK_OFFSET 256
55#define HPPA_HPUX_SS_WIDE_OFFSET 640
56
57/* The size of `struct save_state. */
58#define HPPA_HPUX_SAVE_STATE_SIZE 1152
59
60/* The size of `struct pa89_save_state', which corresponds to PA-RISC
61 1.1, the lowest common denominator that we support. */
62#define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512
63
64
273f8429
JB
65/* Forward declarations. */
66extern void _initialize_hppa_hpux_tdep (void);
67extern initialize_file_ftype _initialize_hppa_hpux_tdep;
68
77d18ded
RC
69static int
70in_opd_section (CORE_ADDR pc)
71{
72 struct obj_section *s;
73 int retval = 0;
74
75 s = find_pc_section (pc);
76
77 retval = (s != NULL
78 && s->the_bfd_section->name != NULL
79 && strcmp (s->the_bfd_section->name, ".opd") == 0);
80 return (retval);
81}
82
abc485a1
RC
83/* Return one if PC is in the call path of a trampoline, else return zero.
84
85 Note we return one for *any* call trampoline (long-call, arg-reloc), not
86 just shared library trampolines (import, export). */
87
88static int
e17a4113
UW
89hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
90 CORE_ADDR pc, char *name)
abc485a1 91{
e17a4113 92 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
abc485a1
RC
93 struct minimal_symbol *minsym;
94 struct unwind_table_entry *u;
abc485a1
RC
95
96 /* First see if PC is in one of the two C-library trampolines. */
3388d7ff
RC
97 if (pc == hppa_symbol_address("$$dyncall")
98 || pc == hppa_symbol_address("_sr4export"))
abc485a1
RC
99 return 1;
100
101 minsym = lookup_minimal_symbol_by_pc (pc);
3567439c 102 if (minsym && strcmp (SYMBOL_LINKAGE_NAME (minsym), ".stub") == 0)
abc485a1
RC
103 return 1;
104
105 /* Get the unwind descriptor corresponding to PC, return zero
106 if no unwind was found. */
107 u = find_unwind_entry (pc);
108 if (!u)
109 return 0;
110
111 /* If this isn't a linker stub, then return now. */
112 if (u->stub_unwind.stub_type == 0)
113 return 0;
114
115 /* By definition a long-branch stub is a call stub. */
116 if (u->stub_unwind.stub_type == LONG_BRANCH)
117 return 1;
118
119 /* The call and return path execute the same instructions within
120 an IMPORT stub! So an IMPORT stub is both a call and return
121 trampoline. */
122 if (u->stub_unwind.stub_type == IMPORT)
123 return 1;
124
125 /* Parameter relocation stubs always have a call path and may have a
126 return path. */
127 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
128 || u->stub_unwind.stub_type == EXPORT)
129 {
130 CORE_ADDR addr;
131
132 /* Search forward from the current PC until we hit a branch
133 or the end of the stub. */
134 for (addr = pc; addr <= u->region_end; addr += 4)
135 {
136 unsigned long insn;
137
e17a4113 138 insn = read_memory_integer (addr, 4, byte_order);
abc485a1
RC
139
140 /* Does it look like a bl? If so then it's the call path, if
141 we find a bv or be first, then we're on the return path. */
142 if ((insn & 0xfc00e000) == 0xe8000000)
143 return 1;
144 else if ((insn & 0xfc00e001) == 0xe800c000
145 || (insn & 0xfc000000) == 0xe0000000)
146 return 0;
147 }
148
149 /* Should never happen. */
8a3fe4f8 150 warning (_("Unable to find branch in parameter relocation stub."));
abc485a1
RC
151 return 0;
152 }
153
154 /* Unknown stub type. For now, just return zero. */
155 return 0;
156}
157
158static int
e17a4113
UW
159hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
160 CORE_ADDR pc, char *name)
abc485a1 161{
e17a4113
UW
162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
163
abc485a1
RC
164 /* PA64 has a completely different stub/trampoline scheme. Is it
165 better? Maybe. It's certainly harder to determine with any
166 certainty that we are in a stub because we can not refer to the
1777feb0 167 unwinders to help.
abc485a1
RC
168
169 The heuristic is simple. Try to lookup the current PC value in th
170 minimal symbol table. If that fails, then assume we are not in a
171 stub and return.
172
173 Then see if the PC value falls within the section bounds for the
174 section containing the minimal symbol we found in the first
175 step. If it does, then assume we are not in a stub and return.
176
177 Finally peek at the instructions to see if they look like a stub. */
178 struct minimal_symbol *minsym;
179 asection *sec;
180 CORE_ADDR addr;
181 int insn, i;
182
183 minsym = lookup_minimal_symbol_by_pc (pc);
184 if (! minsym)
185 return 0;
186
714835d5 187 sec = SYMBOL_OBJ_SECTION (minsym)->the_bfd_section;
abc485a1
RC
188
189 if (bfd_get_section_vma (sec->owner, sec) <= pc
190 && pc < (bfd_get_section_vma (sec->owner, sec)
191 + bfd_section_size (sec->owner, sec)))
192 return 0;
193
194 /* We might be in a stub. Peek at the instructions. Stubs are 3
1777feb0 195 instructions long. */
e17a4113 196 insn = read_memory_integer (pc, 4, byte_order);
abc485a1
RC
197
198 /* Find out where we think we are within the stub. */
199 if ((insn & 0xffffc00e) == 0x53610000)
200 addr = pc;
201 else if ((insn & 0xffffffff) == 0xe820d000)
202 addr = pc - 4;
203 else if ((insn & 0xffffc00e) == 0x537b0000)
204 addr = pc - 8;
205 else
206 return 0;
207
208 /* Now verify each insn in the range looks like a stub instruction. */
e17a4113 209 insn = read_memory_integer (addr, 4, byte_order);
abc485a1
RC
210 if ((insn & 0xffffc00e) != 0x53610000)
211 return 0;
212
213 /* Now verify each insn in the range looks like a stub instruction. */
e17a4113 214 insn = read_memory_integer (addr + 4, 4, byte_order);
abc485a1
RC
215 if ((insn & 0xffffffff) != 0xe820d000)
216 return 0;
217
218 /* Now verify each insn in the range looks like a stub instruction. */
e17a4113 219 insn = read_memory_integer (addr + 8, 4, byte_order);
abc485a1
RC
220 if ((insn & 0xffffc00e) != 0x537b0000)
221 return 0;
222
223 /* Looks like a stub. */
224 return 1;
225}
226
227/* Return one if PC is in the return path of a trampoline, else return zero.
228
229 Note we return one for *any* call trampoline (long-call, arg-reloc), not
230 just shared library trampolines (import, export). */
231
232static int
e17a4113
UW
233hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch,
234 CORE_ADDR pc, char *name)
abc485a1 235{
e17a4113 236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
abc485a1
RC
237 struct unwind_table_entry *u;
238
239 /* Get the unwind descriptor corresponding to PC, return zero
240 if no unwind was found. */
241 u = find_unwind_entry (pc);
242 if (!u)
243 return 0;
244
245 /* If this isn't a linker stub or it's just a long branch stub, then
246 return zero. */
247 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
248 return 0;
249
250 /* The call and return path execute the same instructions within
251 an IMPORT stub! So an IMPORT stub is both a call and return
252 trampoline. */
253 if (u->stub_unwind.stub_type == IMPORT)
254 return 1;
255
256 /* Parameter relocation stubs always have a call path and may have a
257 return path. */
258 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
259 || u->stub_unwind.stub_type == EXPORT)
260 {
261 CORE_ADDR addr;
262
263 /* Search forward from the current PC until we hit a branch
264 or the end of the stub. */
265 for (addr = pc; addr <= u->region_end; addr += 4)
266 {
267 unsigned long insn;
268
e17a4113 269 insn = read_memory_integer (addr, 4, byte_order);
abc485a1
RC
270
271 /* Does it look like a bl? If so then it's the call path, if
272 we find a bv or be first, then we're on the return path. */
273 if ((insn & 0xfc00e000) == 0xe8000000)
274 return 0;
275 else if ((insn & 0xfc00e001) == 0xe800c000
276 || (insn & 0xfc000000) == 0xe0000000)
277 return 1;
278 }
279
280 /* Should never happen. */
8a3fe4f8 281 warning (_("Unable to find branch in parameter relocation stub."));
abc485a1
RC
282 return 0;
283 }
284
285 /* Unknown stub type. For now, just return zero. */
286 return 0;
287
288}
289
290/* Figure out if PC is in a trampoline, and if so find out where
291 the trampoline will jump to. If not in a trampoline, return zero.
292
293 Simple code examination probably is not a good idea since the code
294 sequences in trampolines can also appear in user code.
295
296 We use unwinds and information from the minimal symbol table to
297 determine when we're in a trampoline. This won't work for ELF
298 (yet) since it doesn't create stub unwind entries. Whether or
299 not ELF will create stub unwinds or normal unwinds for linker
300 stubs is still being debated.
301
302 This should handle simple calls through dyncall or sr4export,
303 long calls, argument relocation stubs, and dyncall/sr4export
304 calling an argument relocation stub. It even handles some stubs
305 used in dynamic executables. */
306
307static CORE_ADDR
52f729a7 308hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
abc485a1 309{
464963c9 310 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
311 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
312 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
abc485a1
RC
313 long orig_pc = pc;
314 long prev_inst, curr_inst, loc;
abc485a1
RC
315 struct minimal_symbol *msym;
316 struct unwind_table_entry *u;
317
abc485a1
RC
318 /* Addresses passed to dyncall may *NOT* be the actual address
319 of the function. So we may have to do something special. */
3388d7ff 320 if (pc == hppa_symbol_address("$$dyncall"))
abc485a1 321 {
52f729a7 322 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
abc485a1
RC
323
324 /* If bit 30 (counting from the left) is on, then pc is the address of
325 the PLT entry for this function, not the address of the function
326 itself. Bit 31 has meaning too, but only for MPE. */
327 if (pc & 0x2)
1777feb0
MS
328 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size,
329 byte_order);
abc485a1 330 }
3388d7ff 331 if (pc == hppa_symbol_address("$$dyncall_external"))
abc485a1 332 {
52f729a7 333 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
e17a4113 334 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
abc485a1 335 }
3388d7ff 336 else if (pc == hppa_symbol_address("_sr4export"))
52f729a7 337 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
abc485a1
RC
338
339 /* Get the unwind descriptor corresponding to PC, return zero
340 if no unwind was found. */
341 u = find_unwind_entry (pc);
342 if (!u)
343 return 0;
344
345 /* If this isn't a linker stub, then return now. */
346 /* elz: attention here! (FIXME) because of a compiler/linker
347 error, some stubs which should have a non zero stub_unwind.stub_type
1777feb0
MS
348 have unfortunately a value of zero. So this function would return here
349 as if we were not in a trampoline. To fix this, we go look at the partial
abc485a1
RC
350 symbol information, which reports this guy as a stub.
351 (FIXME): Unfortunately, we are not that lucky: it turns out that the
1777feb0 352 partial symbol information is also wrong sometimes. This is because
abc485a1
RC
353 when it is entered (somread.c::som_symtab_read()) it can happen that
354 if the type of the symbol (from the som) is Entry, and the symbol is
1777feb0
MS
355 in a shared library, then it can also be a trampoline. This would be OK,
356 except that I believe the way they decide if we are ina shared library
357 does not work. SOOOO..., even if we have a regular function w/o
358 trampolines its minimal symbol can be assigned type mst_solib_trampoline.
abc485a1
RC
359 Also, if we find that the symbol is a real stub, then we fix the unwind
360 descriptor, and define the stub type to be EXPORT.
1777feb0 361 Hopefully this is correct most of the times. */
abc485a1
RC
362 if (u->stub_unwind.stub_type == 0)
363 {
364
365/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
1777feb0 366 we can delete all the code which appears between the lines. */
abc485a1
RC
367/*--------------------------------------------------------------------------*/
368 msym = lookup_minimal_symbol_by_pc (pc);
369
370 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
371 return orig_pc == pc ? 0 : pc & ~0x3;
372
373 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
374 {
375 struct objfile *objfile;
376 struct minimal_symbol *msymbol;
377 int function_found = 0;
378
1777feb0
MS
379 /* Go look if there is another minimal symbol with the same name as
380 this one, but with type mst_text. This would happen if the msym
abc485a1 381 is an actual trampoline, in which case there would be another
1777feb0 382 symbol with the same name corresponding to the real function. */
abc485a1
RC
383
384 ALL_MSYMBOLS (objfile, msymbol)
385 {
386 if (MSYMBOL_TYPE (msymbol) == mst_text
3567439c
DJ
387 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
388 SYMBOL_LINKAGE_NAME (msym)) == 0)
abc485a1
RC
389 {
390 function_found = 1;
391 break;
392 }
393 }
394
395 if (function_found)
1777feb0
MS
396 /* The type of msym is correct (mst_solib_trampoline), but
397 the unwind info is wrong, so set it to the correct value. */
abc485a1
RC
398 u->stub_unwind.stub_type = EXPORT;
399 else
1777feb0 400 /* The stub type info in the unwind is correct (this is not a
abc485a1 401 trampoline), but the msym type information is wrong, it
1777feb0
MS
402 should be mst_text. So we need to fix the msym, and also
403 get out of this function. */
abc485a1
RC
404 {
405 MSYMBOL_TYPE (msym) = mst_text;
406 return orig_pc == pc ? 0 : pc & ~0x3;
407 }
408 }
409
410/*--------------------------------------------------------------------------*/
411 }
412
413 /* It's a stub. Search for a branch and figure out where it goes.
414 Note we have to handle multi insn branch sequences like ldil;ble.
415 Most (all?) other branches can be determined by examining the contents
416 of certain registers and the stack. */
417
418 loc = pc;
419 curr_inst = 0;
420 prev_inst = 0;
421 while (1)
422 {
423 /* Make sure we haven't walked outside the range of this stub. */
424 if (u != find_unwind_entry (loc))
425 {
8a3fe4f8 426 warning (_("Unable to find branch in linker stub"));
abc485a1
RC
427 return orig_pc == pc ? 0 : pc & ~0x3;
428 }
429
430 prev_inst = curr_inst;
e17a4113 431 curr_inst = read_memory_integer (loc, 4, byte_order);
abc485a1
RC
432
433 /* Does it look like a branch external using %r1? Then it's the
434 branch from the stub to the actual function. */
435 if ((curr_inst & 0xffe0e000) == 0xe0202000)
436 {
437 /* Yup. See if the previous instruction loaded
438 a value into %r1. If so compute and return the jump address. */
439 if ((prev_inst & 0xffe00000) == 0x20200000)
1777feb0
MS
440 return (hppa_extract_21 (prev_inst)
441 + hppa_extract_17 (curr_inst)) & ~0x3;
abc485a1
RC
442 else
443 {
1777feb0
MS
444 warning (_("Unable to find ldil X,%%r1 "
445 "before ble Y(%%sr4,%%r1)."));
abc485a1
RC
446 return orig_pc == pc ? 0 : pc & ~0x3;
447 }
448 }
449
450 /* Does it look like a be 0(sr0,%r21)? OR
451 Does it look like a be, n 0(sr0,%r21)? OR
452 Does it look like a bve (r21)? (this is on PA2.0)
453 Does it look like a bve, n(r21)? (this is also on PA2.0)
454 That's the branch from an
455 import stub to an export stub.
456
457 It is impossible to determine the target of the branch via
458 simple examination of instructions and/or data (consider
459 that the address in the plabel may be the address of the
460 bind-on-reference routine in the dynamic loader).
461
462 So we have try an alternative approach.
463
464 Get the name of the symbol at our current location; it should
465 be a stub symbol with the same name as the symbol in the
466 shared library.
467
468 Then lookup a minimal symbol with the same name; we should
469 get the minimal symbol for the target routine in the shared
470 library as those take precedence of import/export stubs. */
471 if ((curr_inst == 0xe2a00000) ||
472 (curr_inst == 0xe2a00002) ||
473 (curr_inst == 0xeaa0d000) ||
474 (curr_inst == 0xeaa0d002))
475 {
476 struct minimal_symbol *stubsym, *libsym;
477
478 stubsym = lookup_minimal_symbol_by_pc (loc);
479 if (stubsym == NULL)
480 {
8a3fe4f8 481 warning (_("Unable to find symbol for 0x%lx"), loc);
abc485a1
RC
482 return orig_pc == pc ? 0 : pc & ~0x3;
483 }
484
1777feb0
MS
485 libsym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (stubsym),
486 NULL, NULL);
abc485a1
RC
487 if (libsym == NULL)
488 {
8a3fe4f8 489 warning (_("Unable to find library symbol for %s."),
3567439c 490 SYMBOL_PRINT_NAME (stubsym));
abc485a1
RC
491 return orig_pc == pc ? 0 : pc & ~0x3;
492 }
493
494 return SYMBOL_VALUE (libsym);
495 }
496
497 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
498 branch from the stub to the actual function. */
499 /*elz */
500 else if ((curr_inst & 0xffe0e000) == 0xe8400000
501 || (curr_inst & 0xffe0e000) == 0xe8000000
502 || (curr_inst & 0xffe0e000) == 0xe800A000)
503 return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;
504
505 /* Does it look like bv (rp)? Note this depends on the
506 current stack pointer being the same as the stack
507 pointer in the stub itself! This is a branch on from the
508 stub back to the original caller. */
509 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
510 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
511 {
512 /* Yup. See if the previous instruction loaded
513 rp from sp - 8. */
514 if (prev_inst == 0x4bc23ff1)
52f729a7
UW
515 {
516 CORE_ADDR sp;
517 sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM);
e17a4113 518 return read_memory_integer (sp - 8, 4, byte_order) & ~0x3;
52f729a7 519 }
abc485a1
RC
520 else
521 {
8a3fe4f8 522 warning (_("Unable to find restore of %%rp before bv (%%rp)."));
abc485a1
RC
523 return orig_pc == pc ? 0 : pc & ~0x3;
524 }
525 }
526
527 /* elz: added this case to capture the new instruction
528 at the end of the return part of an export stub used by
529 the PA2.0: BVE, n (rp) */
530 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
531 {
532 return (read_memory_integer
52f729a7 533 (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
e17a4113 534 word_size, byte_order)) & ~0x3;
abc485a1
RC
535 }
536
537 /* What about be,n 0(sr0,%rp)? It's just another way we return to
538 the original caller from the stub. Used in dynamic executables. */
539 else if (curr_inst == 0xe0400002)
540 {
541 /* The value we jump to is sitting in sp - 24. But that's
542 loaded several instructions before the be instruction.
543 I guess we could check for the previous instruction being
544 mtsp %r1,%sr0 if we want to do sanity checking. */
545 return (read_memory_integer
52f729a7 546 (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
e17a4113 547 word_size, byte_order)) & ~0x3;
abc485a1
RC
548 }
549
550 /* Haven't found the branch yet, but we're still in the stub.
551 Keep looking. */
552 loc += 4;
553 }
554}
555
6d350bb5
UW
556static void
557hppa_skip_permanent_breakpoint (struct regcache *regcache)
5aac166f
RC
558{
559 /* To step over a breakpoint instruction on the PA takes some
560 fiddling with the instruction address queue.
561
562 When we stop at a breakpoint, the IA queue front (the instruction
563 we're executing now) points at the breakpoint instruction, and
564 the IA queue back (the next instruction to execute) points to
565 whatever instruction we would execute after the breakpoint, if it
566 were an ordinary instruction. This is the case even if the
567 breakpoint is in the delay slot of a branch instruction.
568
569 Clearly, to step past the breakpoint, we need to set the queue
570 front to the back. But what do we put in the back? What
571 instruction comes after that one? Because of the branch delay
572 slot, the next insn is always at the back + 4. */
5aac166f 573
6d350bb5
UW
574 ULONGEST pcoq_tail, pcsq_tail;
575 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail);
576 regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail);
577
578 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail);
579 regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail);
580
1777feb0
MS
581 regcache_cooked_write_unsigned (regcache,
582 HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4);
5aac166f
RC
583 /* We can leave the tail's space the same, since there's no jump. */
584}
abc485a1 585
4c02c60c 586
43613416
RC
587/* Signal frames. */
588struct hppa_hpux_sigtramp_unwind_cache
589{
590 CORE_ADDR base;
591 struct trad_frame_saved_reg *saved_regs;
592};
593
594static int hppa_hpux_tramp_reg[] = {
595 HPPA_SAR_REGNUM,
596 HPPA_PCOQ_HEAD_REGNUM,
597 HPPA_PCSQ_HEAD_REGNUM,
598 HPPA_PCOQ_TAIL_REGNUM,
599 HPPA_PCSQ_TAIL_REGNUM,
600 HPPA_EIEM_REGNUM,
601 HPPA_IIR_REGNUM,
602 HPPA_ISR_REGNUM,
603 HPPA_IOR_REGNUM,
604 HPPA_IPSW_REGNUM,
605 -1,
606 HPPA_SR4_REGNUM,
607 HPPA_SR4_REGNUM + 1,
608 HPPA_SR4_REGNUM + 2,
609 HPPA_SR4_REGNUM + 3,
610 HPPA_SR4_REGNUM + 4,
611 HPPA_SR4_REGNUM + 5,
612 HPPA_SR4_REGNUM + 6,
613 HPPA_SR4_REGNUM + 7,
614 HPPA_RCR_REGNUM,
615 HPPA_PID0_REGNUM,
616 HPPA_PID1_REGNUM,
617 HPPA_CCR_REGNUM,
618 HPPA_PID2_REGNUM,
619 HPPA_PID3_REGNUM,
620 HPPA_TR0_REGNUM,
621 HPPA_TR0_REGNUM + 1,
622 HPPA_TR0_REGNUM + 2,
623 HPPA_CR27_REGNUM
624};
625
626static struct hppa_hpux_sigtramp_unwind_cache *
227e86ad 627hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
43613416
RC
628 void **this_cache)
629
630{
227e86ad 631 struct gdbarch *gdbarch = get_frame_arch (this_frame);
43613416 632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
43613416
RC
634 struct hppa_hpux_sigtramp_unwind_cache *info;
635 unsigned int flag;
27b08a0c
RC
636 CORE_ADDR sp, scptr, off;
637 int i, incr, szoff;
43613416
RC
638
639 if (*this_cache)
640 return *this_cache;
641
642 info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
643 *this_cache = info;
227e86ad 644 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
43613416 645
227e86ad 646 sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
43613416 647
27b08a0c
RC
648 if (IS_32BIT_TARGET (gdbarch))
649 scptr = sp - 1352;
650 else
651 scptr = sp - 1520;
652
43613416
RC
653 off = scptr;
654
1777feb0
MS
655 /* See /usr/include/machine/save_state.h for the structure of the
656 save_state_t structure. */
43613416 657
e17a4113
UW
658 flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET,
659 4, byte_order);
27b08a0c
RC
660
661 if (!(flag & HPPA_HPUX_SS_WIDEREGS))
43613416 662 {
1777feb0 663 /* Narrow registers. */
27b08a0c 664 off = scptr + HPPA_HPUX_SS_NARROW_OFFSET;
43613416
RC
665 incr = 4;
666 szoff = 0;
667 }
668 else
669 {
1777feb0 670 /* Wide registers. */
27b08a0c 671 off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8;
43613416
RC
672 incr = 8;
673 szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
674 }
675
676 for (i = 1; i < 32; i++)
677 {
678 info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
679 off += incr;
680 }
681
01926a69 682 for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
43613416
RC
683 {
684 if (hppa_hpux_tramp_reg[i] > 0)
685 info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;
27b08a0c 686
43613416
RC
687 off += incr;
688 }
689
690 /* TODO: fp regs */
691
227e86ad 692 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
43613416
RC
693
694 return info;
695}
696
697static void
227e86ad 698hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame,
43613416
RC
699 void **this_prologue_cache,
700 struct frame_id *this_id)
701{
702 struct hppa_hpux_sigtramp_unwind_cache *info
227e86ad
JB
703 = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
704
705 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
43613416
RC
706}
707
227e86ad
JB
708static struct value *
709hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame,
a7aad9aa 710 void **this_prologue_cache,
227e86ad 711 int regnum)
43613416
RC
712{
713 struct hppa_hpux_sigtramp_unwind_cache *info
227e86ad 714 = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
43613416 715
1777feb0
MS
716 return hppa_frame_prev_register_helper (this_frame,
717 info->saved_regs, regnum);
227e86ad 718}
43613416 719
227e86ad
JB
720static int
721hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self,
722 struct frame_info *this_frame,
723 void **this_cache)
43613416 724{
e17a4113
UW
725 struct gdbarch *gdbarch = get_frame_arch (this_frame);
726 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
765697c9 727 struct unwind_table_entry *u;
227e86ad 728 CORE_ADDR pc = get_frame_pc (this_frame);
43613416 729
765697c9 730 u = find_unwind_entry (pc);
43613416 731
a717134b
MK
732 /* If this is an export stub, try to get the unwind descriptor for
733 the actual function itself. */
734 if (u && u->stub_unwind.stub_type == EXPORT)
735 {
736 gdb_byte buf[HPPA_INSN_SIZE];
737 unsigned long insn;
738
227e86ad 739 if (!safe_frame_unwind_memory (this_frame, u->region_start,
a717134b 740 buf, sizeof buf))
227e86ad 741 return 0;
a717134b 742
e17a4113 743 insn = extract_unsigned_integer (buf, sizeof buf, byte_order);
a717134b
MK
744 if ((insn & 0xffe0e000) == 0xe8400000)
745 u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8);
746 }
747
765697c9 748 if (u && u->HP_UX_interrupt_marker)
227e86ad 749 return 1;
43613416 750
227e86ad 751 return 0;
43613416
RC
752}
753
227e86ad
JB
754static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
755 SIGTRAMP_FRAME,
756 hppa_hpux_sigtramp_frame_this_id,
757 hppa_hpux_sigtramp_frame_prev_register,
758 NULL,
759 hppa_hpux_sigtramp_unwind_sniffer
760};
761
c268433a 762static CORE_ADDR
e38c262f
MD
763hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch,
764 struct value *function)
c268433a 765{
e17a4113 766 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c268433a
RC
767 CORE_ADDR faddr;
768
769 faddr = value_as_address (function);
770
771 /* Is this a plabel? If so, dereference it to get the gp value. */
772 if (faddr & 2)
773 {
774 int status;
775 char buf[4];
776
777 faddr &= ~3;
778
779 status = target_read_memory (faddr + 4, buf, sizeof (buf));
780 if (status == 0)
e17a4113 781 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
c268433a
RC
782 }
783
e38c262f 784 return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
c268433a
RC
785}
786
787static CORE_ADDR
e38c262f
MD
788hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch,
789 struct value *function)
c268433a 790{
e17a4113 791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
77d18ded
RC
792 CORE_ADDR faddr;
793 char buf[32];
794
795 faddr = value_as_address (function);
796
797 if (in_opd_section (faddr))
798 {
799 target_read_memory (faddr, buf, sizeof (buf));
e17a4113 800 return extract_unsigned_integer (&buf[24], 8, byte_order);
77d18ded
RC
801 }
802 else
c268433a 803 {
e38c262f 804 return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
77d18ded
RC
805 }
806}
807
808static unsigned int ldsid_pattern[] = {
809 0x000010a0, /* ldsid (rX),rY */
810 0x00001820, /* mtsp rY,sr0 */
811 0xe0000000 /* be,n (sr0,rX) */
812};
813
814static CORE_ADDR
e17a4113
UW
815hppa_hpux_search_pattern (struct gdbarch *gdbarch,
816 CORE_ADDR start, CORE_ADDR end,
77d18ded
RC
817 unsigned int *patterns, int count)
818{
e17a4113 819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d275c051
MK
820 int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE;
821 unsigned int *insns;
822 gdb_byte *buf;
77d18ded 823 int offset, i;
77d18ded 824
d275c051
MK
825 buf = alloca (num_insns * HPPA_INSN_SIZE);
826 insns = alloca (num_insns * sizeof (unsigned int));
c268433a 827
d275c051
MK
828 read_memory (start, buf, num_insns * HPPA_INSN_SIZE);
829 for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE)
e17a4113 830 insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
c268433a 831
d275c051 832 for (offset = 0; offset <= num_insns - count; offset++)
77d18ded
RC
833 {
834 for (i = 0; i < count; i++)
c268433a 835 {
d275c051 836 if ((insns[offset + i] & patterns[i]) != patterns[i])
77d18ded
RC
837 break;
838 }
839 if (i == count)
840 break;
841 }
d275c051
MK
842
843 if (offset <= num_insns - count)
844 return start + offset * HPPA_INSN_SIZE;
77d18ded
RC
845 else
846 return 0;
847}
c268433a 848
77d18ded
RC
849static CORE_ADDR
850hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
851 int *argreg)
852{
e17a4113 853 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
77d18ded
RC
854 struct objfile *obj;
855 struct obj_section *sec;
856 struct hppa_objfile_private *priv;
857 struct frame_info *frame;
858 struct unwind_table_entry *u;
859 CORE_ADDR addr, rp;
860 char buf[4];
861 unsigned int insn;
862
863 sec = find_pc_section (pc);
864 obj = sec->objfile;
865 priv = objfile_data (obj, hppa_objfile_priv_data);
866
867 if (!priv)
868 priv = hppa_init_objfile_priv_data (obj);
869 if (!priv)
8a3fe4f8 870 error (_("Internal error creating objfile private data."));
77d18ded
RC
871
872 /* Use the cached value if we have one. */
873 if (priv->dummy_call_sequence_addr != 0)
874 {
875 *argreg = priv->dummy_call_sequence_reg;
876 return priv->dummy_call_sequence_addr;
877 }
c268433a 878
77d18ded
RC
879 /* First try a heuristic; if we are in a shared library call, our return
880 pointer is likely to point at an export stub. */
881 frame = get_current_frame ();
882 rp = frame_unwind_register_unsigned (frame, 2);
883 u = find_unwind_entry (rp);
884 if (u && u->stub_unwind.stub_type == EXPORT)
885 {
e17a4113
UW
886 addr = hppa_hpux_search_pattern (gdbarch,
887 u->region_start, u->region_end,
77d18ded
RC
888 ldsid_pattern,
889 ARRAY_SIZE (ldsid_pattern));
890 if (addr)
891 goto found_pattern;
892 }
c268433a 893
77d18ded
RC
894 /* Next thing to try is to look for an export stub. */
895 if (priv->unwind_info)
896 {
897 int i;
c268433a 898
77d18ded
RC
899 for (i = 0; i < priv->unwind_info->last; i++)
900 {
901 struct unwind_table_entry *u;
902 u = &priv->unwind_info->table[i];
903 if (u->stub_unwind.stub_type == EXPORT)
904 {
e17a4113
UW
905 addr = hppa_hpux_search_pattern (gdbarch,
906 u->region_start, u->region_end,
77d18ded
RC
907 ldsid_pattern,
908 ARRAY_SIZE (ldsid_pattern));
909 if (addr)
910 {
911 goto found_pattern;
912 }
c268433a
RC
913 }
914 }
77d18ded 915 }
c268433a 916
77d18ded
RC
917 /* Finally, if this is the main executable, try to locate a sequence
918 from noshlibs */
919 addr = hppa_symbol_address ("noshlibs");
920 sec = find_pc_section (addr);
921
922 if (sec && sec->objfile == obj)
923 {
924 CORE_ADDR start, end;
925
926 find_pc_partial_function (addr, NULL, &start, &end);
927 if (start != 0 && end != 0)
c268433a 928 {
e17a4113 929 addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern,
77d18ded
RC
930 ARRAY_SIZE (ldsid_pattern));
931 if (addr)
932 goto found_pattern;
c268433a 933 }
77d18ded
RC
934 }
935
936 /* Can't find a suitable sequence. */
937 return 0;
938
939found_pattern:
940 target_read_memory (addr, buf, sizeof (buf));
e17a4113 941 insn = extract_unsigned_integer (buf, sizeof (buf), byte_order);
77d18ded
RC
942 priv->dummy_call_sequence_addr = addr;
943 priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
944
945 *argreg = priv->dummy_call_sequence_reg;
946 return priv->dummy_call_sequence_addr;
947}
948
949static CORE_ADDR
950hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
951 int *argreg)
952{
e17a4113 953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
77d18ded
RC
954 struct objfile *obj;
955 struct obj_section *sec;
956 struct hppa_objfile_private *priv;
957 CORE_ADDR addr;
958 struct minimal_symbol *msym;
959 int i;
960
961 sec = find_pc_section (pc);
962 obj = sec->objfile;
963 priv = objfile_data (obj, hppa_objfile_priv_data);
964
965 if (!priv)
966 priv = hppa_init_objfile_priv_data (obj);
967 if (!priv)
8a3fe4f8 968 error (_("Internal error creating objfile private data."));
77d18ded
RC
969
970 /* Use the cached value if we have one. */
971 if (priv->dummy_call_sequence_addr != 0)
972 {
973 *argreg = priv->dummy_call_sequence_reg;
974 return priv->dummy_call_sequence_addr;
975 }
976
977 /* FIXME: Without stub unwind information, locating a suitable sequence is
978 fairly difficult. For now, we implement a very naive and inefficient
979 scheme; try to read in blocks of code, and look for a "bve,n (rp)"
980 instruction. These are likely to occur at the end of functions, so
981 we only look at the last two instructions of each function. */
982 for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
983 {
984 CORE_ADDR begin, end;
985 char *name;
d275c051 986 gdb_byte buf[2 * HPPA_INSN_SIZE];
77d18ded
RC
987 int offset;
988
989 find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
990 &begin, &end);
991
81092a3e 992 if (name == NULL || begin == 0 || end == 0)
77d18ded
RC
993 continue;
994
d275c051 995 if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0)
c268433a 996 {
d275c051 997 for (offset = 0; offset < sizeof (buf); offset++)
77d18ded
RC
998 {
999 unsigned int insn;
1000
e17a4113
UW
1001 insn = extract_unsigned_integer (buf + offset,
1002 HPPA_INSN_SIZE, byte_order);
77d18ded
RC
1003 if (insn == 0xe840d002) /* bve,n (rp) */
1004 {
d275c051 1005 addr = (end - sizeof (buf)) + offset;
77d18ded
RC
1006 goto found_pattern;
1007 }
1008 }
1009 }
1010 }
1011
1012 /* Can't find a suitable sequence. */
1013 return 0;
1014
1015found_pattern:
1016 priv->dummy_call_sequence_addr = addr;
1017 /* Right now we only look for a "bve,l (rp)" sequence, so the register is
1018 always HPPA_RP_REGNUM. */
1019 priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
1020
1021 *argreg = priv->dummy_call_sequence_reg;
1022 return priv->dummy_call_sequence_addr;
1023}
1024
1025static CORE_ADDR
1026hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
1027{
1028 struct objfile *objfile;
1029 struct minimal_symbol *funsym, *stubsym;
1030 CORE_ADDR stubaddr;
1031
1032 funsym = lookup_minimal_symbol_by_pc (funcaddr);
1033 stubaddr = 0;
1034
1035 ALL_OBJFILES (objfile)
1036 {
1037 stubsym = lookup_minimal_symbol_solib_trampoline
1038 (SYMBOL_LINKAGE_NAME (funsym), objfile);
1039
1040 if (stubsym)
1041 {
1042 struct unwind_table_entry *u;
1043
1044 u = find_unwind_entry (SYMBOL_VALUE (stubsym));
1045 if (u == NULL
1046 || (u->stub_unwind.stub_type != IMPORT
1047 && u->stub_unwind.stub_type != IMPORT_SHLIB))
1048 continue;
1049
1050 stubaddr = SYMBOL_VALUE (stubsym);
1051
1052 /* If we found an IMPORT stub, then we can stop searching;
1053 if we found an IMPORT_SHLIB, we want to continue the search
1054 in the hopes that we will find an IMPORT stub. */
1055 if (u->stub_unwind.stub_type == IMPORT)
1056 break;
1057 }
1058 }
1059
1060 return stubaddr;
1061}
1062
1063static int
e38c262f 1064hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
77d18ded
RC
1065{
1066 int sr;
1067 /* The space register to use is encoded in the top 2 bits of the address. */
e38c262f 1068 sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2);
77d18ded
RC
1069 return sr + 4;
1070}
1071
1072static CORE_ADDR
1073hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
1074{
1075 /* In order for us to restore the space register to its starting state,
766062f6 1076 we need the dummy trampoline to return to an instruction address in
77d18ded
RC
1077 the same space as where we started the call. We used to place the
1078 breakpoint near the current pc, however, this breaks nested dummy calls
1079 as the nested call will hit the breakpoint address and terminate
1080 prematurely. Instead, we try to look for an address in the same space to
1081 put the breakpoint.
1082
1083 This is similar in spirit to putting the breakpoint at the "entry point"
1084 of an executable. */
1085
1086 struct obj_section *sec;
1087 struct unwind_table_entry *u;
1088 struct minimal_symbol *msym;
1089 CORE_ADDR func;
1090 int i;
1091
1092 sec = find_pc_section (addr);
1093 if (sec)
1094 {
1095 /* First try the lowest address in the section; we can use it as long
1777feb0 1096 as it is "regular" code (i.e. not a stub). */
aded6f54 1097 u = find_unwind_entry (obj_section_addr (sec));
77d18ded 1098 if (!u || u->stub_unwind.stub_type == 0)
aded6f54 1099 return obj_section_addr (sec);
77d18ded
RC
1100
1101 /* Otherwise, we need to find a symbol for a regular function. We
1102 do this by walking the list of msymbols in the objfile. The symbol
1103 we find should not be the same as the function that was passed in. */
1104
1105 /* FIXME: this is broken, because we can find a function that will be
1106 called by the dummy call target function, which will still not
1107 work. */
1108
1109 find_pc_partial_function (addr, NULL, &func, NULL);
1110 for (i = 0, msym = sec->objfile->msymbols;
1111 i < sec->objfile->minimal_symbol_count;
1112 i++, msym++)
1113 {
1114 u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
1115 if (func != SYMBOL_VALUE_ADDRESS (msym)
1116 && (!u || u->stub_unwind.stub_type == 0))
1117 return SYMBOL_VALUE_ADDRESS (msym);
c268433a 1118 }
77d18ded 1119 }
c268433a 1120
8a3fe4f8
AC
1121 warning (_("Cannot find suitable address to place dummy breakpoint; nested "
1122 "calls may fail."));
77d18ded
RC
1123 return addr - 4;
1124}
1125
1126static CORE_ADDR
1127hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 1128 CORE_ADDR funcaddr,
77d18ded
RC
1129 struct value **args, int nargs,
1130 struct type *value_type,
e4fd649a
UW
1131 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1132 struct regcache *regcache)
77d18ded
RC
1133{
1134 CORE_ADDR pc, stubaddr;
9846e541 1135 int argreg = 0;
77d18ded 1136
fb14de7b 1137 pc = regcache_read_pc (regcache);
77d18ded
RC
1138
1139 /* Note: we don't want to pass a function descriptor here; push_dummy_call
1140 fills in the PIC register for us. */
1141 funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
1142
1143 /* The simple case is where we call a function in the same space that we are
1144 currently in; in that case we don't really need to do anything. */
e38c262f
MD
1145 if (hppa_hpux_sr_for_addr (gdbarch, pc)
1146 == hppa_hpux_sr_for_addr (gdbarch, funcaddr))
77d18ded
RC
1147 {
1148 /* Intraspace call. */
1149 *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
1150 *real_pc = funcaddr;
e4fd649a 1151 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr);
77d18ded
RC
1152
1153 return sp;
1154 }
1155
1156 /* In order to make an interspace call, we need to go through a stub.
1157 gcc supplies an appropriate stub called "__gcc_plt_call", however, if
1158 an application is compiled with HP compilers then this stub is not
1159 available. We used to fallback to "__d_plt_call", however that stub
1160 is not entirely useful for us because it doesn't do an interspace
1161 return back to the caller. Also, on hppa64-hpux, there is no
1162 __gcc_plt_call available. In order to keep the code uniform, we
1163 instead don't use either of these stubs, but instead write our own
1164 onto the stack.
1165
1166 A problem arises since the stack is located in a different space than
1167 code, so in order to branch to a stack stub, we will need to do an
1168 interspace branch. Previous versions of gdb did this by modifying code
1169 at the current pc and doing single-stepping to set the pcsq. Since this
1170 is highly undesirable, we use a different scheme:
1171
1172 All we really need to do the branch to the stub is a short instruction
1173 sequence like this:
1174
1175 PA1.1:
1176 ldsid (rX),r1
1177 mtsp r1,sr0
1178 be,n (sr0,rX)
1179
1180 PA2.0:
1181 bve,n (sr0,rX)
1182
1183 Instead of writing these sequences ourselves, we can find it in
1184 the instruction stream that belongs to the current space. While this
1185 seems difficult at first, we are actually guaranteed to find the sequences
1186 in several places:
1187
1188 For 32-bit code:
1189 - in export stubs for shared libraries
1190 - in the "noshlibs" routine in the main module
1191
1192 For 64-bit code:
1193 - at the end of each "regular" function
1194
1195 We cache the address of these sequences in the objfile's private data
1196 since these operations can potentially be quite expensive.
1197
1198 So, what we do is:
1199 - write a stack trampoline
1200 - look for a suitable instruction sequence in the current space
1201 - point the sequence at the trampoline
1202 - set the return address of the trampoline to the current space
1203 (see hppa_hpux_find_dummy_call_bpaddr)
1777feb0 1204 - set the continuing address of the "dummy code" as the sequence. */
77d18ded
RC
1205
1206 if (IS_32BIT_TARGET (gdbarch))
1207 {
1208 static unsigned int hppa32_tramp[] = {
1209 0x0fdf1291, /* stw r31,-8(,sp) */
1210 0x02c010a1, /* ldsid (,r22),r1 */
1211 0x00011820, /* mtsp r1,sr0 */
1212 0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
1213 0x081f0242, /* copy r31,rp */
1214 0x0fd11082, /* ldw -8(,sp),rp */
1215 0x004010a1, /* ldsid (,rp),r1 */
1216 0x00011820, /* mtsp r1,sr0 */
1217 0xe0400000, /* be 0(sr0,rp) */
1218 0x08000240 /* nop */
1219 };
1220
1221 /* for hppa32, we must call the function through a stub so that on
1222 return it can return to the space of our trampoline. */
1223 stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
1224 if (stubaddr == 0)
8a3fe4f8
AC
1225 error (_("Cannot call external function not referenced by application "
1226 "(no import stub).\n"));
e4fd649a 1227 regcache_cooked_write_unsigned (regcache, 22, stubaddr);
77d18ded
RC
1228
1229 write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));
1230
1231 *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
e4fd649a 1232 regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
c268433a 1233
77d18ded
RC
1234 *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
1235 if (*real_pc == 0)
8a3fe4f8 1236 error (_("Cannot make interspace call from here."));
77d18ded 1237
e4fd649a 1238 regcache_cooked_write_unsigned (regcache, argreg, sp);
77d18ded
RC
1239
1240 sp += sizeof (hppa32_tramp);
c268433a
RC
1241 }
1242 else
1243 {
77d18ded
RC
1244 static unsigned int hppa64_tramp[] = {
1245 0xeac0f000, /* bve,l (r22),%r2 */
1246 0x0fdf12d1, /* std r31,-8(,sp) */
1247 0x0fd110c2, /* ldd -8(,sp),rp */
1248 0xe840d002, /* bve,n (rp) */
1249 0x08000240 /* nop */
1250 };
1251
1252 /* for hppa64, we don't need to call through a stub; all functions
1253 return via a bve. */
e4fd649a 1254 regcache_cooked_write_unsigned (regcache, 22, funcaddr);
77d18ded
RC
1255 write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));
1256
1257 *bp_addr = pc - 4;
e4fd649a 1258 regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
c268433a 1259
77d18ded
RC
1260 *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
1261 if (*real_pc == 0)
8a3fe4f8 1262 error (_("Cannot make interspace call from here."));
c268433a 1263
e4fd649a 1264 regcache_cooked_write_unsigned (regcache, argreg, sp);
c268433a 1265
77d18ded 1266 sp += sizeof (hppa64_tramp);
c268433a
RC
1267 }
1268
77d18ded 1269 sp = gdbarch_frame_align (gdbarch, sp);
c268433a
RC
1270
1271 return sp;
1272}
77d18ded 1273
cc72850f
MK
1274\f
1275
08d53055
MK
1276static void
1277hppa_hpux_supply_ss_narrow (struct regcache *regcache,
1278 int regnum, const char *save_state)
1279{
1280 const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
1281 int i, offset = 0;
1282
1283 for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
1284 {
1285 if (regnum == i || regnum == -1)
1286 regcache_raw_supply (regcache, i, ss_narrow + offset);
1287
1288 offset += 4;
1289 }
1290}
1291
1292static void
1293hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
1294 int regnum, const char *save_state)
1295{
1296 const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
1297 int i, offset = 0;
1298
1299 /* FIXME: We view the floating-point state as 64 single-precision
1300 registers for 32-bit code, and 32 double-precision register for
1301 64-bit code. This distinction is artificial and should be
1302 eliminated. If that ever happens, we should remove the if-clause
1303 below. */
1304
1305 if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
1306 {
1307 for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
1308 {
1309 if (regnum == i || regnum == -1)
1310 regcache_raw_supply (regcache, i, ss_fpblock + offset);
1311
1312 offset += 4;
1313 }
1314 }
1315 else
1316 {
1317 for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
1318 {
1319 if (regnum == i || regnum == -1)
1320 regcache_raw_supply (regcache, i, ss_fpblock + offset);
1321
1322 offset += 8;
1323 }
1324 }
1325}
1326
1327static void
1328hppa_hpux_supply_ss_wide (struct regcache *regcache,
1329 int regnum, const char *save_state)
1330{
1331 const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
1332 int i, offset = 8;
1333
1334 if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
1335 offset += 4;
1336
1337 for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
1338 {
1339 if (regnum == i || regnum == -1)
1340 regcache_raw_supply (regcache, i, ss_wide + offset);
1341
1342 offset += 8;
1343 }
1344}
1345
1346static void
1347hppa_hpux_supply_save_state (const struct regset *regset,
1348 struct regcache *regcache,
1349 int regnum, const void *regs, size_t len)
1350{
e17a4113
UW
1351 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
08d53055
MK
1353 const char *proc_info = regs;
1354 const char *save_state = proc_info + 8;
1355 ULONGEST flags;
1356
e17a4113
UW
1357 flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET,
1358 4, byte_order);
08d53055
MK
1359 if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
1360 {
e17a4113 1361 size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM);
08d53055
MK
1362 char buf[8];
1363
e17a4113 1364 store_unsigned_integer (buf, size, byte_order, flags);
08d53055
MK
1365 regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
1366 }
1367
1368 /* If the SS_WIDEREGS flag is set, we really do need the full
1369 `struct save_state'. */
1370 if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
8a3fe4f8 1371 error (_("Register set contents too small"));
08d53055
MK
1372
1373 if (flags & HPPA_HPUX_SS_WIDEREGS)
1374 hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
1375 else
1376 hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);
1377
1378 hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
1379}
1380
1381/* HP-UX register set. */
1382
1383static struct regset hppa_hpux_regset =
1384{
1385 NULL,
1386 hppa_hpux_supply_save_state
1387};
1388
1389static const struct regset *
1390hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch,
1391 const char *sect_name, size_t sect_size)
1392{
1393 if (strcmp (sect_name, ".reg") == 0
1394 && sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8)
1395 return &hppa_hpux_regset;
1396
1397 return NULL;
1398}
1399\f
1400
cc72850f
MK
1401/* Bit in the `ss_flag' member of `struct save_state' that indicates
1402 the state was saved from a system call. From
1403 <machine/save_state.h>. */
1404#define HPPA_HPUX_SS_INSYSCALL 0x02
1405
1406static CORE_ADDR
61a1198a 1407hppa_hpux_read_pc (struct regcache *regcache)
cc72850f
MK
1408{
1409 ULONGEST flags;
1410
1411 /* If we're currently in a system call return the contents of %r31. */
61a1198a 1412 regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
cc72850f 1413 if (flags & HPPA_HPUX_SS_INSYSCALL)
61a1198a
UW
1414 {
1415 ULONGEST pc;
1416 regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc);
1417 return pc & ~0x3;
1418 }
cc72850f 1419
61a1198a 1420 return hppa_read_pc (regcache);
cc72850f
MK
1421}
1422
1423static void
61a1198a 1424hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc)
cc72850f
MK
1425{
1426 ULONGEST flags;
1427
1428 /* If we're currently in a system call also write PC into %r31. */
61a1198a 1429 regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
cc72850f 1430 if (flags & HPPA_HPUX_SS_INSYSCALL)
61a1198a 1431 regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3);
cc72850f 1432
e74994b5 1433 hppa_write_pc (regcache, pc);
cc72850f
MK
1434}
1435
1436static CORE_ADDR
1437hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1438{
1439 ULONGEST flags;
1440
1441 /* If we're currently in a system call return the contents of %r31. */
1442 flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
1443 if (flags & HPPA_HPUX_SS_INSYSCALL)
1444 return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;
1445
1446 return hppa_unwind_pc (gdbarch, next_frame);
1447}
1448\f
c268433a 1449
f77a2124
RC
1450/* Given the current value of the pc, check to see if it is inside a stub, and
1451 if so, change the value of the pc to point to the caller of the stub.
227e86ad 1452 THIS_FRAME is the current frame in the current list of frames.
1777feb0
MS
1453 BASE contains to stack frame base of the current frame.
1454 SAVE_REGS is the register file stored in the frame cache. */
f77a2124 1455static void
227e86ad 1456hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base,
f77a2124
RC
1457 struct trad_frame_saved_reg *saved_regs)
1458{
227e86ad 1459 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1460 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1461 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
227e86ad
JB
1462 struct value *pcoq_head_val;
1463 ULONGEST pcoq_head;
f77a2124
RC
1464 CORE_ADDR stubpc;
1465 struct unwind_table_entry *u;
1466
227e86ad
JB
1467 pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs,
1468 HPPA_PCOQ_HEAD_REGNUM);
1469 pcoq_head =
1470 extract_unsigned_integer (value_contents_all (pcoq_head_val),
e17a4113
UW
1471 register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM),
1472 byte_order);
f77a2124 1473
227e86ad 1474 u = find_unwind_entry (pcoq_head);
f77a2124
RC
1475 if (u && u->stub_unwind.stub_type == EXPORT)
1476 {
e17a4113 1477 stubpc = read_memory_integer (base - 24, word_size, byte_order);
f77a2124
RC
1478 trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
1479 }
1480 else if (hppa_symbol_address ("__gcc_plt_call")
227e86ad 1481 == get_pc_function_start (pcoq_head))
f77a2124 1482 {
e17a4113 1483 stubpc = read_memory_integer (base - 8, word_size, byte_order);
f77a2124
RC
1484 trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
1485 }
1486}
1487
7d773d96
JB
1488static void
1489hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1490{
abc485a1
RC
1491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1492
77d18ded 1493 if (IS_32BIT_TARGET (gdbarch))
84674fe1 1494 tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
abc485a1 1495 else
84674fe1 1496 tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
abc485a1 1497
f77a2124
RC
1498 tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;
1499
3cd36e7c
MK
1500 set_gdbarch_in_solib_return_trampoline
1501 (gdbarch, hppa_hpux_in_solib_return_trampoline);
abc485a1 1502 set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);
43613416 1503
c268433a
RC
1504 set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
1505 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1506
cc72850f
MK
1507 set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
1508 set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
1509 set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
6d350bb5
UW
1510 set_gdbarch_skip_permanent_breakpoint
1511 (gdbarch, hppa_skip_permanent_breakpoint);
cc72850f 1512
08d53055
MK
1513 set_gdbarch_regset_from_core_section
1514 (gdbarch, hppa_hpux_regset_from_core_section);
1515
227e86ad 1516 frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind);
7d773d96 1517}
60e1ff27 1518
273f8429
JB
1519static void
1520hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1521{
fdd72f95
RC
1522 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1523
1524 tdep->is_elf = 0;
c268433a 1525
77d18ded
RC
1526 tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
1527
7d773d96 1528 hppa_hpux_init_abi (info, gdbarch);
d542061a 1529 som_solib_select (gdbarch);
273f8429
JB
1530}
1531
1532static void
1533hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1534{
fdd72f95
RC
1535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1536
1537 tdep->is_elf = 1;
77d18ded
RC
1538 tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
1539
7d773d96 1540 hppa_hpux_init_abi (info, gdbarch);
d542061a 1541 pa64_solib_select (gdbarch);
273f8429
JB
1542}
1543
08d53055
MK
1544static enum gdb_osabi
1545hppa_hpux_core_osabi_sniffer (bfd *abfd)
1546{
1547 if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
1548 return GDB_OSABI_HPUX_SOM;
6b79fde8
RC
1549 else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0)
1550 {
1551 asection *section;
1552
1553 section = bfd_get_section_by_name (abfd, ".kernel");
1554 if (section)
1555 {
1556 bfd_size_type size;
1557 char *contents;
1558
1559 size = bfd_section_size (abfd, section);
1560 contents = alloca (size);
1561 if (bfd_get_section_contents (abfd, section, contents,
1562 (file_ptr) 0, size)
1563 && strcmp (contents, "HP-UX") == 0)
1564 return GDB_OSABI_HPUX_ELF;
1565 }
1566 }
08d53055
MK
1567
1568 return GDB_OSABI_UNKNOWN;
1569}
1570
273f8429
JB
1571void
1572_initialize_hppa_hpux_tdep (void)
1573{
08d53055
MK
1574 /* BFD doesn't set a flavour for HP-UX style core files. It doesn't
1575 set the architecture either. */
1576 gdbarch_register_osabi_sniffer (bfd_arch_unknown,
1577 bfd_target_unknown_flavour,
1578 hppa_hpux_core_osabi_sniffer);
6b79fde8
RC
1579 gdbarch_register_osabi_sniffer (bfd_arch_hppa,
1580 bfd_target_elf_flavour,
1581 hppa_hpux_core_osabi_sniffer);
08d53055 1582
05816f70 1583 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
273f8429 1584 hppa_hpux_som_init_abi);
51db5742 1585 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
273f8429
JB
1586 hppa_hpux_elf_init_abi);
1587}
This page took 0.662095 seconds and 4 git commands to generate.