* test-build.mk (HOLES): Add "xargs" for gdb.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
669caa9c 1/* Target-dependent code for the HP PA architecture, for GDB.
87273c71 2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
669caa9c 3 Free Software Foundation, Inc.
66a1aa07
SG
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
6c9638b4 22Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
66a1aa07
SG
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
66a1aa07 37#include <signal.h>
66a1aa07
SG
38
39#ifdef COFF_ENCAPSULATE
40#include "a.out.encap.h"
41#else
66a1aa07
SG
42#endif
43#ifndef N_SET_MAGIC
44#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45#endif
46
47/*#include <sys/user.h> After a.out.h */
48#include <sys/file.h>
2b576293 49#include "gdb_stat.h"
66a1aa07
SG
50#include "wait.h"
51
52#include "gdbcore.h"
53#include "gdbcmd.h"
54#include "target.h"
55#include "symfile.h"
56#include "objfiles.h"
57
3f550b59
FF
58static int extract_5_load PARAMS ((unsigned int));
59
60static unsigned extract_5R_store PARAMS ((unsigned int));
61
62static unsigned extract_5r_store PARAMS ((unsigned int));
63
64static void find_dummy_frame_regs PARAMS ((struct frame_info *,
65 struct frame_saved_regs *));
66
67static int find_proc_framesize PARAMS ((CORE_ADDR));
68
69static int find_return_regnum PARAMS ((CORE_ADDR));
70
71struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
72
73static int extract_17 PARAMS ((unsigned int));
74
75static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
76
77static int extract_21 PARAMS ((unsigned));
78
79static unsigned deposit_14 PARAMS ((int, unsigned int));
80
81static int extract_14 PARAMS ((unsigned));
82
83static void unwind_command PARAMS ((char *, int));
84
85static int low_sign_extend PARAMS ((unsigned int, unsigned int));
86
87static int sign_extend PARAMS ((unsigned int, unsigned int));
88
669caa9c
SS
89static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
90
91static int hppa_alignof PARAMS ((struct type *));
92
c598654a 93static int prologue_inst_adjust_sp PARAMS ((unsigned long));
669caa9c 94
c598654a 95static int is_branch PARAMS ((unsigned long));
669caa9c 96
c598654a 97static int inst_saves_gr PARAMS ((unsigned long));
669caa9c 98
c598654a 99static int inst_saves_fr PARAMS ((unsigned long));
669caa9c 100
70e43abe 101static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
669caa9c 102
70e43abe 103static int pc_in_linker_stub PARAMS ((CORE_ADDR));
669caa9c 104
5579919f 105static int compare_unwind_entries PARAMS ((const void *, const void *));
669caa9c 106
c5152d42 107static void read_unwind_info PARAMS ((struct objfile *));
669caa9c 108
c5152d42
JL
109static void internalize_unwinds PARAMS ((struct objfile *,
110 struct unwind_table_entry *,
111 asection *, unsigned int,
bfaef242 112 unsigned int, CORE_ADDR));
e43169eb
JL
113static void pa_print_registers PARAMS ((char *, int, int));
114static void pa_print_fp_reg PARAMS ((int));
66a1aa07
SG
115
116\f
117/* Routines to extract various sized constants out of hppa
118 instructions. */
119
120/* This assumes that no garbage lies outside of the lower bits of
121 value. */
122
3f550b59 123static int
66a1aa07
SG
124sign_extend (val, bits)
125 unsigned val, bits;
126{
3f550b59 127 return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
66a1aa07
SG
128}
129
130/* For many immediate values the sign bit is the low bit! */
131
3f550b59 132static int
66a1aa07
SG
133low_sign_extend (val, bits)
134 unsigned val, bits;
135{
136 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
137}
3f550b59 138
66a1aa07
SG
139/* extract the immediate field from a ld{bhw}s instruction */
140
3f550b59
FF
141#if 0
142
66a1aa07
SG
143unsigned
144get_field (val, from, to)
145 unsigned val, from, to;
146{
147 val = val >> 31 - to;
148 return val & ((1 << 32 - from) - 1);
149}
150
151unsigned
152set_field (val, from, to, new_val)
153 unsigned *val, from, to;
154{
155 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
156 return *val = *val & mask | (new_val << (31 - from));
157}
158
159/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
160
3f550b59 161int
66a1aa07
SG
162extract_3 (word)
163 unsigned word;
164{
165 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
166}
3f550b59
FF
167
168#endif
169
170static int
66a1aa07
SG
171extract_5_load (word)
172 unsigned word;
173{
174 return low_sign_extend (word >> 16 & MASK_5, 5);
175}
176
3f550b59
FF
177#if 0
178
66a1aa07
SG
179/* extract the immediate field from a st{bhw}s instruction */
180
181int
182extract_5_store (word)
183 unsigned word;
184{
185 return low_sign_extend (word & MASK_5, 5);
186}
187
3f550b59
FF
188#endif /* 0 */
189
68c8d698
SG
190/* extract the immediate field from a break instruction */
191
3f550b59 192static unsigned
68c8d698
SG
193extract_5r_store (word)
194 unsigned word;
195{
196 return (word & MASK_5);
197}
198
199/* extract the immediate field from a {sr}sm instruction */
200
3f550b59 201static unsigned
68c8d698
SG
202extract_5R_store (word)
203 unsigned word;
204{
205 return (word >> 16 & MASK_5);
206}
207
66a1aa07
SG
208/* extract an 11 bit immediate field */
209
3f550b59
FF
210#if 0
211
66a1aa07
SG
212int
213extract_11 (word)
214 unsigned word;
215{
216 return low_sign_extend (word & MASK_11, 11);
217}
218
3f550b59
FF
219#endif
220
66a1aa07
SG
221/* extract a 14 bit immediate field */
222
3f550b59 223static int
66a1aa07
SG
224extract_14 (word)
225 unsigned word;
226{
227 return low_sign_extend (word & MASK_14, 14);
228}
229
230/* deposit a 14 bit constant in a word */
231
3f550b59 232static unsigned
66a1aa07
SG
233deposit_14 (opnd, word)
234 int opnd;
235 unsigned word;
236{
237 unsigned sign = (opnd < 0 ? 1 : 0);
238
239 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
240}
241
242/* extract a 21 bit constant */
243
3f550b59 244static int
66a1aa07
SG
245extract_21 (word)
246 unsigned word;
247{
248 int val;
249
250 word &= MASK_21;
251 word <<= 11;
252 val = GET_FIELD (word, 20, 20);
253 val <<= 11;
254 val |= GET_FIELD (word, 9, 19);
255 val <<= 2;
256 val |= GET_FIELD (word, 5, 6);
257 val <<= 5;
258 val |= GET_FIELD (word, 0, 4);
259 val <<= 2;
260 val |= GET_FIELD (word, 7, 8);
261 return sign_extend (val, 21) << 11;
262}
263
264/* deposit a 21 bit constant in a word. Although 21 bit constants are
265 usually the top 21 bits of a 32 bit constant, we assume that only
266 the low 21 bits of opnd are relevant */
267
3f550b59 268static unsigned
66a1aa07
SG
269deposit_21 (opnd, word)
270 unsigned opnd, word;
271{
272 unsigned val = 0;
273
274 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
275 val <<= 2;
276 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
277 val <<= 2;
278 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
279 val <<= 11;
280 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
281 val <<= 1;
282 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
283 return word | val;
284}
285
286/* extract a 12 bit constant from branch instructions */
287
3f550b59
FF
288#if 0
289
66a1aa07
SG
290int
291extract_12 (word)
292 unsigned word;
293{
294 return sign_extend (GET_FIELD (word, 19, 28) |
295 GET_FIELD (word, 29, 29) << 10 |
296 (word & 0x1) << 11, 12) << 2;
297}
298
7486c68d
SG
299/* Deposit a 17 bit constant in an instruction (like bl). */
300
301unsigned int
302deposit_17 (opnd, word)
303 unsigned opnd, word;
304{
305 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
306 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
307 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
308 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
309
310 return word;
311}
312
3f550b59
FF
313#endif
314
66a1aa07
SG
315/* extract a 17 bit constant from branch instructions, returning the
316 19 bit signed value. */
317
3f550b59 318static int
66a1aa07
SG
319extract_17 (word)
320 unsigned word;
321{
322 return sign_extend (GET_FIELD (word, 19, 28) |
323 GET_FIELD (word, 29, 29) << 10 |
324 GET_FIELD (word, 11, 15) << 11 |
325 (word & 0x1) << 16, 17) << 2;
326}
327\f
c5152d42
JL
328
329/* Compare the start address for two unwind entries returning 1 if
330 the first address is larger than the second, -1 if the second is
331 larger than the first, and zero if they are equal. */
332
333static int
5579919f
FF
334compare_unwind_entries (arg1, arg2)
335 const void *arg1;
336 const void *arg2;
c5152d42 337{
5579919f
FF
338 const struct unwind_table_entry *a = arg1;
339 const struct unwind_table_entry *b = arg2;
340
c5152d42
JL
341 if (a->region_start > b->region_start)
342 return 1;
343 else if (a->region_start < b->region_start)
344 return -1;
345 else
346 return 0;
347}
348
349static void
bfaef242 350internalize_unwinds (objfile, table, section, entries, size, text_offset)
c5152d42
JL
351 struct objfile *objfile;
352 struct unwind_table_entry *table;
353 asection *section;
354 unsigned int entries, size;
bfaef242 355 CORE_ADDR text_offset;
c5152d42
JL
356{
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
359 if (size > 0)
360 {
361 unsigned long tmp;
362 unsigned i;
363 char *buf = alloca (size);
364
365 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
366
367 /* Now internalize the information being careful to handle host/target
368 endian issues. */
369 for (i = 0; i < entries; i++)
370 {
371 table[i].region_start = bfd_get_32 (objfile->obfd,
372 (bfd_byte *)buf);
bfaef242 373 table[i].region_start += text_offset;
c5152d42
JL
374 buf += 4;
375 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
bfaef242 376 table[i].region_end += text_offset;
c5152d42
JL
377 buf += 4;
378 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
379 buf += 4;
e43169eb 380 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
c5152d42
JL
381 table[i].Millicode = (tmp >> 30) & 0x1;
382 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
383 table[i].Region_description = (tmp >> 27) & 0x3;
384 table[i].reserved1 = (tmp >> 26) & 0x1;
385 table[i].Entry_SR = (tmp >> 25) & 0x1;
386 table[i].Entry_FR = (tmp >> 21) & 0xf;
387 table[i].Entry_GR = (tmp >> 16) & 0x1f;
388 table[i].Args_stored = (tmp >> 15) & 0x1;
389 table[i].Variable_Frame = (tmp >> 14) & 0x1;
390 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
391 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
392 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
393 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
394 table[i].Ada_Region = (tmp >> 9) & 0x1;
395 table[i].reserved2 = (tmp >> 5) & 0xf;
396 table[i].Save_SP = (tmp >> 4) & 0x1;
397 table[i].Save_RP = (tmp >> 3) & 0x1;
398 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
399 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
400 table[i].Cleanup_defined = tmp & 0x1;
401 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
402 buf += 4;
403 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
404 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
405 table[i].Large_frame = (tmp >> 29) & 0x1;
406 table[i].reserved4 = (tmp >> 27) & 0x3;
407 table[i].Total_frame_size = tmp & 0x7ffffff;
408 }
409 }
410}
411
412/* Read in the backtrace information stored in the `$UNWIND_START$' section of
413 the object file. This info is used mainly by find_unwind_entry() to find
414 out the stack frame size and frame pointer used by procedures. We put
415 everything on the psymbol obstack in the objfile so that it automatically
416 gets freed when the objfile is destroyed. */
417
9c842e0c 418static void
c5152d42
JL
419read_unwind_info (objfile)
420 struct objfile *objfile;
421{
422 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
423 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
424 unsigned index, unwind_entries, elf_unwind_entries;
425 unsigned stub_entries, total_entries;
bfaef242 426 CORE_ADDR text_offset;
c5152d42
JL
427 struct obj_unwind_info *ui;
428
bfaef242 429 text_offset = ANOFFSET (objfile->section_offsets, 0);
d8afcce9
SG
430 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
431 sizeof (struct obj_unwind_info));
c5152d42
JL
432
433 ui->table = NULL;
434 ui->cache = NULL;
435 ui->last = -1;
436
437 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
438 section in ELF at the moment. */
439 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
0fc27289 440 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
c5152d42
JL
441 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
442
443 /* Get sizes and unwind counts for all sections. */
444 if (unwind_sec)
445 {
446 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
447 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
448 }
449 else
450 {
451 unwind_size = 0;
452 unwind_entries = 0;
453 }
454
455 if (elf_unwind_sec)
456 {
457 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
458 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
459 }
f55179cb
JL
460 else
461 {
462 elf_unwind_size = 0;
463 elf_unwind_entries = 0;
464 }
c5152d42
JL
465
466 if (stub_unwind_sec)
467 {
468 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
469 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
470 }
471 else
472 {
473 stub_unwind_size = 0;
474 stub_entries = 0;
475 }
476
477 /* Compute total number of unwind entries and their total size. */
478 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
479 total_size = total_entries * sizeof (struct unwind_table_entry);
480
481 /* Allocate memory for the unwind table. */
482 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
483 ui->last = total_entries - 1;
484
485 /* Internalize the standard unwind entries. */
486 index = 0;
487 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
bfaef242 488 unwind_entries, unwind_size, text_offset);
c5152d42
JL
489 index += unwind_entries;
490 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
bfaef242 491 elf_unwind_entries, elf_unwind_size, text_offset);
c5152d42
JL
492 index += elf_unwind_entries;
493
494 /* Now internalize the stub unwind entries. */
495 if (stub_unwind_size > 0)
496 {
497 unsigned int i;
498 char *buf = alloca (stub_unwind_size);
499
500 /* Read in the stub unwind entries. */
501 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
502 0, stub_unwind_size);
503
504 /* Now convert them into regular unwind entries. */
505 for (i = 0; i < stub_entries; i++, index++)
506 {
507 /* Clear out the next unwind entry. */
508 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
509
510 /* Convert offset & size into region_start and region_end.
511 Stuff away the stub type into "reserved" fields. */
512 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
513 (bfd_byte *) buf);
73a25072 514 ui->table[index].region_start += text_offset;
c5152d42
JL
515 buf += 4;
516 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
517 (bfd_byte *) buf);
518 buf += 2;
519 ui->table[index].region_end
520 = ui->table[index].region_start + 4 *
521 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
522 buf += 2;
523 }
524
525 }
526
527 /* Unwind table needs to be kept sorted. */
528 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
529 compare_unwind_entries);
530
531 /* Keep a pointer to the unwind information. */
532 objfile->obj_private = (PTR) ui;
533}
534
66a1aa07
SG
535/* Lookup the unwind (stack backtrace) info for the given PC. We search all
536 of the objfiles seeking the unwind table entry for this PC. Each objfile
537 contains a sorted list of struct unwind_table_entry. Since we do a binary
538 search of the unwind tables, we depend upon them to be sorted. */
539
87273c71 540struct unwind_table_entry *
66a1aa07
SG
541find_unwind_entry(pc)
542 CORE_ADDR pc;
543{
544 int first, middle, last;
545 struct objfile *objfile;
546
547 ALL_OBJFILES (objfile)
548 {
549 struct obj_unwind_info *ui;
550
551 ui = OBJ_UNWIND_INFO (objfile);
552
553 if (!ui)
c5152d42
JL
554 {
555 read_unwind_info (objfile);
556 ui = OBJ_UNWIND_INFO (objfile);
557 }
66a1aa07
SG
558
559 /* First, check the cache */
560
561 if (ui->cache
562 && pc >= ui->cache->region_start
563 && pc <= ui->cache->region_end)
564 return ui->cache;
565
566 /* Not in the cache, do a binary search */
567
568 first = 0;
569 last = ui->last;
570
571 while (first <= last)
572 {
573 middle = (first + last) / 2;
574 if (pc >= ui->table[middle].region_start
575 && pc <= ui->table[middle].region_end)
576 {
577 ui->cache = &ui->table[middle];
578 return &ui->table[middle];
579 }
580
581 if (pc < ui->table[middle].region_start)
582 last = middle - 1;
583 else
584 first = middle + 1;
585 }
586 } /* ALL_OBJFILES() */
587 return NULL;
588}
589
98c0e047
JL
590/* Return the adjustment necessary to make for addresses on the stack
591 as presented by hpread.c.
592
593 This is necessary because of the stack direction on the PA and the
594 bizarre way in which someone (?) decided they wanted to handle
595 frame pointerless code in GDB. */
596int
597hpread_adjust_stack_address (func_addr)
598 CORE_ADDR func_addr;
599{
600 struct unwind_table_entry *u;
601
602 u = find_unwind_entry (func_addr);
603 if (!u)
604 return 0;
605 else
606 return u->Total_frame_size << 3;
607}
98c0e047 608
70e43abe
JL
609/* Called to determine if PC is in an interrupt handler of some
610 kind. */
611
612static int
613pc_in_interrupt_handler (pc)
614 CORE_ADDR pc;
615{
616 struct unwind_table_entry *u;
617 struct minimal_symbol *msym_us;
618
619 u = find_unwind_entry (pc);
620 if (!u)
621 return 0;
622
623 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
624 its frame isn't a pure interrupt frame. Deal with this. */
625 msym_us = lookup_minimal_symbol_by_pc (pc);
626
627 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
628}
629
5ac7f56e
JK
630/* Called when no unwind descriptor was found for PC. Returns 1 if it
631 appears that PC is in a linker stub. */
5ac7f56e
JK
632
633static int
634pc_in_linker_stub (pc)
635 CORE_ADDR pc;
636{
5ac7f56e
JK
637 int found_magic_instruction = 0;
638 int i;
08ecd8f3
JK
639 char buf[4];
640
641 /* If unable to read memory, assume pc is not in a linker stub. */
642 if (target_read_memory (pc, buf, 4) != 0)
643 return 0;
5ac7f56e 644
d08c6f4c
JK
645 /* We are looking for something like
646
647 ; $$dyncall jams RP into this special spot in the frame (RP')
648 ; before calling the "call stub"
649 ldw -18(sp),rp
650
651 ldsid (rp),r1 ; Get space associated with RP into r1
652 mtsp r1,sp ; Move it into space register 0
653 be,n 0(sr0),rp) ; back to your regularly scheduled program
654 */
655
5ac7f56e
JK
656 /* Maximum known linker stub size is 4 instructions. Search forward
657 from the given PC, then backward. */
658 for (i = 0; i < 4; i++)
659 {
6e35b037 660 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
661
662 if (find_unwind_entry (pc + i * 4) != 0)
663 break;
664
665 /* Check for ldsid (rp),r1 which is the magic instruction for a
666 return from a cross-space function call. */
667 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
668 {
669 found_magic_instruction = 1;
670 break;
671 }
672 /* Add code to handle long call/branch and argument relocation stubs
673 here. */
674 }
675
676 if (found_magic_instruction != 0)
677 return 1;
678
679 /* Now look backward. */
680 for (i = 0; i < 4; i++)
681 {
6e35b037 682 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
683
684 if (find_unwind_entry (pc - i * 4) != 0)
685 break;
686
687 /* Check for ldsid (rp),r1 which is the magic instruction for a
688 return from a cross-space function call. */
689 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
690 {
691 found_magic_instruction = 1;
692 break;
693 }
694 /* Add code to handle long call/branch and argument relocation stubs
695 here. */
696 }
697 return found_magic_instruction;
698}
699
66a1aa07
SG
700static int
701find_return_regnum(pc)
702 CORE_ADDR pc;
703{
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 return RP_REGNUM;
710
711 if (u->Millicode)
712 return 31;
713
714 return RP_REGNUM;
715}
716
5ac7f56e 717/* Return size of frame, or -1 if we should use a frame pointer. */
3f550b59 718static int
70e43abe 719find_proc_framesize (pc)
66a1aa07
SG
720 CORE_ADDR pc;
721{
722 struct unwind_table_entry *u;
70e43abe 723 struct minimal_symbol *msym_us;
66a1aa07 724
66a1aa07
SG
725 u = find_unwind_entry (pc);
726
727 if (!u)
5ac7f56e
JK
728 {
729 if (pc_in_linker_stub (pc))
730 /* Linker stubs have a zero size frame. */
731 return 0;
732 else
733 return -1;
734 }
66a1aa07 735
70e43abe
JL
736 msym_us = lookup_minimal_symbol_by_pc (pc);
737
738 /* If Save_SP is set, and we're not in an interrupt or signal caller,
739 then we have a frame pointer. Use it. */
740 if (u->Save_SP && !pc_in_interrupt_handler (pc)
741 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
eabbe766
JK
742 return -1;
743
66a1aa07
SG
744 return u->Total_frame_size << 3;
745}
746
5ac7f56e
JK
747/* Return offset from sp at which rp is saved, or 0 if not saved. */
748static int rp_saved PARAMS ((CORE_ADDR));
749
750static int
751rp_saved (pc)
752 CORE_ADDR pc;
66a1aa07
SG
753{
754 struct unwind_table_entry *u;
755
756 u = find_unwind_entry (pc);
757
758 if (!u)
5ac7f56e
JK
759 {
760 if (pc_in_linker_stub (pc))
761 /* This is the so-called RP'. */
762 return -24;
763 else
764 return 0;
765 }
66a1aa07
SG
766
767 if (u->Save_RP)
5ac7f56e 768 return -20;
c7f3b703
JL
769 else if (u->stub_type != 0)
770 {
771 switch (u->stub_type)
772 {
773 case EXPORT:
c2e00af6 774 case IMPORT:
c7f3b703
JL
775 return -24;
776 case PARAMETER_RELOCATION:
777 return -8;
778 default:
779 return 0;
780 }
781 }
66a1aa07
SG
782 else
783 return 0;
784}
785\f
8fa74880
SG
786int
787frameless_function_invocation (frame)
669caa9c 788 struct frame_info *frame;
8fa74880 789{
b8ec9a79 790 struct unwind_table_entry *u;
8fa74880 791
b8ec9a79 792 u = find_unwind_entry (frame->pc);
8fa74880 793
b8ec9a79 794 if (u == 0)
7f43b9b7 795 return 0;
b8ec9a79 796
c7f3b703 797 return (u->Total_frame_size == 0 && u->stub_type == 0);
8fa74880
SG
798}
799
66a1aa07
SG
800CORE_ADDR
801saved_pc_after_call (frame)
669caa9c 802 struct frame_info *frame;
66a1aa07
SG
803{
804 int ret_regnum;
edd86fb0
JL
805 CORE_ADDR pc;
806 struct unwind_table_entry *u;
66a1aa07
SG
807
808 ret_regnum = find_return_regnum (get_frame_pc (frame));
edd86fb0
JL
809 pc = read_register (ret_regnum) & ~0x3;
810
811 /* If PC is in a linker stub, then we need to dig the address
812 the stub will return to out of the stack. */
813 u = find_unwind_entry (pc);
814 if (u && u->stub_type != 0)
5d394f70 815 return FRAME_SAVED_PC (frame);
edd86fb0
JL
816 else
817 return pc;
66a1aa07
SG
818}
819\f
820CORE_ADDR
5d394f70 821hppa_frame_saved_pc (frame)
669caa9c 822 struct frame_info *frame;
66a1aa07
SG
823{
824 CORE_ADDR pc = get_frame_pc (frame);
7f43b9b7 825 struct unwind_table_entry *u;
66a1aa07 826
70e43abe
JL
827 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
828 at the base of the frame in an interrupt handler. Registers within
829 are saved in the exact same order as GDB numbers registers. How
830 convienent. */
831 if (pc_in_interrupt_handler (pc))
832 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
833
7486c68d 834#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
70e43abe
JL
835 /* Deal with signal handler caller frames too. */
836 if (frame->signal_handler_caller)
837 {
838 CORE_ADDR rp;
839 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
54b2555b 840 return rp & ~0x3;
70e43abe 841 }
7486c68d 842#endif
70e43abe 843
8fa74880 844 if (frameless_function_invocation (frame))
66a1aa07
SG
845 {
846 int ret_regnum;
847
848 ret_regnum = find_return_regnum (pc);
849
70e43abe
JL
850 /* If the next frame is an interrupt frame or a signal
851 handler caller, then we need to look in the saved
852 register area to get the return pointer (the values
853 in the registers may not correspond to anything useful). */
854 if (frame->next
855 && (frame->next->signal_handler_caller
856 || pc_in_interrupt_handler (frame->next->pc)))
857 {
70e43abe
JL
858 struct frame_saved_regs saved_regs;
859
54b2555b 860 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 861 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
862 {
863 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
864
865 /* Syscalls are really two frames. The syscall stub itself
866 with a return pointer in %rp and the kernel call with
867 a return pointer in %r31. We return the %rp variant
868 if %r31 is the same as frame->pc. */
869 if (pc == frame->pc)
870 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
871 }
70e43abe 872 else
7f43b9b7 873 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
874 }
875 else
7f43b9b7 876 pc = read_register (ret_regnum) & ~0x3;
66a1aa07 877 }
66a1aa07 878 else
5ac7f56e 879 {
edd86fb0 880 int rp_offset;
5ac7f56e 881
edd86fb0
JL
882restart:
883 rp_offset = rp_saved (pc);
70e43abe
JL
884 /* Similar to code in frameless function case. If the next
885 frame is a signal or interrupt handler, then dig the right
886 information out of the saved register info. */
887 if (rp_offset == 0
888 && frame->next
889 && (frame->next->signal_handler_caller
890 || pc_in_interrupt_handler (frame->next->pc)))
891 {
70e43abe
JL
892 struct frame_saved_regs saved_regs;
893
669caa9c 894 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 895 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
896 {
897 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
898
899 /* Syscalls are really two frames. The syscall stub itself
900 with a return pointer in %rp and the kernel call with
901 a return pointer in %r31. We return the %rp variant
902 if %r31 is the same as frame->pc. */
903 if (pc == frame->pc)
904 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
905 }
70e43abe 906 else
7f43b9b7 907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
908 }
909 else if (rp_offset == 0)
7f43b9b7 910 pc = read_register (RP_REGNUM) & ~0x3;
5ac7f56e 911 else
7f43b9b7 912 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 913 }
7f43b9b7
JL
914
915 /* If PC is inside a linker stub, then dig out the address the stub
f4eec25c
JL
916 will return to.
917
918 Don't do this for long branch stubs. Why? For some unknown reason
919 _start is marked as a long branch stub in hpux10. */
7f43b9b7 920 u = find_unwind_entry (pc);
f4eec25c
JL
921 if (u && u->stub_type != 0
922 && u->stub_type != LONG_BRANCH)
c38e0b58
JL
923 {
924 unsigned int insn;
925
926 /* If this is a dynamic executable, and we're in a signal handler,
927 then the call chain will eventually point us into the stub for
928 _sigreturn. Unlike most cases, we'll be pointed to the branch
929 to the real sigreturn rather than the code after the real branch!.
930
931 Else, try to dig the address the stub will return to in the normal
932 fashion. */
933 insn = read_memory_integer (pc, 4);
934 if ((insn & 0xfc00e000) == 0xe8000000)
935 return (pc + extract_17 (insn) + 8) & ~0x3;
936 else
937 goto restart;
938 }
7f43b9b7
JL
939
940 return pc;
66a1aa07
SG
941}
942\f
943/* We need to correct the PC and the FP for the outermost frame when we are
944 in a system call. */
945
946void
947init_extra_frame_info (fromleaf, frame)
948 int fromleaf;
949 struct frame_info *frame;
950{
951 int flags;
952 int framesize;
953
192c3eeb 954 if (frame->next && !fromleaf)
66a1aa07
SG
955 return;
956
192c3eeb
JL
957 /* If the next frame represents a frameless function invocation
958 then we have to do some adjustments that are normally done by
959 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
960 if (fromleaf)
961 {
962 /* Find the framesize of *this* frame without peeking at the PC
963 in the current frame structure (it isn't set yet). */
964 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
965
966 /* Now adjust our base frame accordingly. If we have a frame pointer
967 use it, else subtract the size of this frame from the current
968 frame. (we always want frame->frame to point at the lowest address
969 in the frame). */
970 if (framesize == -1)
971 frame->frame = read_register (FP_REGNUM);
972 else
973 frame->frame -= framesize;
974 return;
975 }
976
66a1aa07
SG
977 flags = read_register (FLAGS_REGNUM);
978 if (flags & 2) /* In system call? */
979 frame->pc = read_register (31) & ~0x3;
980
192c3eeb
JL
981 /* The outermost frame is always derived from PC-framesize
982
983 One might think frameless innermost frames should have
984 a frame->frame that is the same as the parent's frame->frame.
985 That is wrong; frame->frame in that case should be the *high*
986 address of the parent's frame. It's complicated as hell to
987 explain, but the parent *always* creates some stack space for
988 the child. So the child actually does have a frame of some
989 sorts, and its base is the high address in its parent's frame. */
66a1aa07
SG
990 framesize = find_proc_framesize(frame->pc);
991 if (framesize == -1)
992 frame->frame = read_register (FP_REGNUM);
993 else
994 frame->frame = read_register (SP_REGNUM) - framesize;
66a1aa07
SG
995}
996\f
8966221d
JK
997/* Given a GDB frame, determine the address of the calling function's frame.
998 This will be used to create a new GDB frame struct, and then
999 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1000
1001 This may involve searching through prologues for several functions
1002 at boundaries where GCC calls HP C code, or where code which has
1003 a frame pointer calls code without a frame pointer. */
8966221d 1004
669caa9c 1005CORE_ADDR
66a1aa07
SG
1006frame_chain (frame)
1007 struct frame_info *frame;
1008{
8966221d
JK
1009 int my_framesize, caller_framesize;
1010 struct unwind_table_entry *u;
70e43abe 1011 CORE_ADDR frame_base;
b7202faa 1012 struct frame_info *tmp_frame;
70e43abe
JL
1013
1014 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1015 are easy; at *sp we have a full save state strucutre which we can
1016 pull the old stack pointer from. Also see frame_saved_pc for
1017 code to dig a saved PC out of the save state structure. */
1018 if (pc_in_interrupt_handler (frame->pc))
1019 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
7486c68d 1020#ifdef FRAME_BASE_BEFORE_SIGTRAMP
70e43abe
JL
1021 else if (frame->signal_handler_caller)
1022 {
1023 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1024 }
7486c68d 1025#endif
70e43abe
JL
1026 else
1027 frame_base = frame->frame;
66a1aa07 1028
8966221d
JK
1029 /* Get frame sizes for the current frame and the frame of the
1030 caller. */
1031 my_framesize = find_proc_framesize (frame->pc);
1032 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 1033
8966221d
JK
1034 /* If caller does not have a frame pointer, then its frame
1035 can be found at current_frame - caller_framesize. */
1036 if (caller_framesize != -1)
70e43abe 1037 return frame_base - caller_framesize;
8966221d
JK
1038
1039 /* Both caller and callee have frame pointers and are GCC compiled
1040 (SAVE_SP bit in unwind descriptor is on for both functions.
1041 The previous frame pointer is found at the top of the current frame. */
1042 if (caller_framesize == -1 && my_framesize == -1)
70e43abe 1043 return read_memory_integer (frame_base, 4);
8966221d
JK
1044
1045 /* Caller has a frame pointer, but callee does not. This is a little
1046 more difficult as GCC and HP C lay out locals and callee register save
1047 areas very differently.
1048
1049 The previous frame pointer could be in a register, or in one of
1050 several areas on the stack.
1051
1052 Walk from the current frame to the innermost frame examining
2f8c3639 1053 unwind descriptors to determine if %r3 ever gets saved into the
8966221d 1054 stack. If so return whatever value got saved into the stack.
2f8c3639 1055 If it was never saved in the stack, then the value in %r3 is still
8966221d
JK
1056 valid, so use it.
1057
2f8c3639 1058 We use information from unwind descriptors to determine if %r3
8966221d
JK
1059 is saved into the stack (Entry_GR field has this information). */
1060
b7202faa
JL
1061 tmp_frame = frame;
1062 while (tmp_frame)
8966221d 1063 {
b7202faa 1064 u = find_unwind_entry (tmp_frame->pc);
8966221d
JK
1065
1066 if (!u)
1067 {
01a03545
JK
1068 /* We could find this information by examining prologues. I don't
1069 think anyone has actually written any tools (not even "strip")
1070 which leave them out of an executable, so maybe this is a moot
1071 point. */
b7202faa 1072 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
8966221d
JK
1073 return 0;
1074 }
1075
1076 /* Entry_GR specifies the number of callee-saved general registers
2f8c3639 1077 saved in the stack. It starts at %r3, so %r3 would be 1. */
70e43abe 1078 if (u->Entry_GR >= 1 || u->Save_SP
b7202faa
JL
1079 || tmp_frame->signal_handler_caller
1080 || pc_in_interrupt_handler (tmp_frame->pc))
8966221d
JK
1081 break;
1082 else
b7202faa 1083 tmp_frame = tmp_frame->next;
8966221d
JK
1084 }
1085
b7202faa 1086 if (tmp_frame)
8966221d
JK
1087 {
1088 /* We may have walked down the chain into a function with a frame
1089 pointer. */
70e43abe 1090 if (u->Save_SP
b7202faa
JL
1091 && !tmp_frame->signal_handler_caller
1092 && !pc_in_interrupt_handler (tmp_frame->pc))
1093 return read_memory_integer (tmp_frame->frame, 4);
2f8c3639 1094 /* %r3 was saved somewhere in the stack. Dig it out. */
8966221d 1095 else
c598654a 1096 {
c598654a
JL
1097 struct frame_saved_regs saved_regs;
1098
b7202faa
JL
1099 /* Sick.
1100
1101 For optimization purposes many kernels don't have the
1102 callee saved registers into the save_state structure upon
1103 entry into the kernel for a syscall; the optimization
1104 is usually turned off if the process is being traced so
1105 that the debugger can get full register state for the
1106 process.
1107
1108 This scheme works well except for two cases:
1109
1110 * Attaching to a process when the process is in the
1111 kernel performing a system call (debugger can't get
1112 full register state for the inferior process since
1113 the process wasn't being traced when it entered the
1114 system call).
1115
1116 * Register state is not complete if the system call
1117 causes the process to core dump.
1118
1119
1120 The following heinous code is an attempt to deal with
1121 the lack of register state in a core dump. It will
1122 fail miserably if the function which performs the
1123 system call has a variable sized stack frame. */
1124
1125 get_frame_saved_regs (tmp_frame, &saved_regs);
1126
1127 /* Abominable hack. */
1128 if (current_target.to_has_execution == 0
5812b9a1
JL
1129 && ((saved_regs.regs[FLAGS_REGNUM]
1130 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1131 & 0x2))
1132 || (saved_regs.regs[FLAGS_REGNUM] == 0
1133 && read_register (FLAGS_REGNUM) & 0x2)))
b7202faa
JL
1134 {
1135 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1136 if (!u)
1137 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1138 else
1139 return frame_base - (u->Total_frame_size << 3);
1140 }
1141
c598654a
JL
1142 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1143 }
8966221d
JK
1144 }
1145 else
1146 {
5812b9a1
JL
1147 struct frame_saved_regs saved_regs;
1148
1149 /* Get the innermost frame. */
1150 tmp_frame = frame;
1151 while (tmp_frame->next != NULL)
1152 tmp_frame = tmp_frame->next;
1153
1154 get_frame_saved_regs (tmp_frame, &saved_regs);
1155 /* Abominable hack. See above. */
1156 if (current_target.to_has_execution == 0
1157 && ((saved_regs.regs[FLAGS_REGNUM]
1158 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1159 & 0x2))
1160 || (saved_regs.regs[FLAGS_REGNUM] == 0
1161 && read_register (FLAGS_REGNUM) & 0x2)))
1162 {
1163 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1164 if (!u)
1165 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1166 else
1167 return frame_base - (u->Total_frame_size << 3);
1168 }
1169
2f8c3639 1170 /* The value in %r3 was never saved into the stack (thus %r3 still
8966221d 1171 holds the value of the previous frame pointer). */
2f8c3639 1172 return read_register (FP_REGNUM);
8966221d
JK
1173 }
1174}
66a1aa07 1175
66a1aa07
SG
1176\f
1177/* To see if a frame chain is valid, see if the caller looks like it
1178 was compiled with gcc. */
1179
1180int
1181frame_chain_valid (chain, thisframe)
669caa9c
SS
1182 CORE_ADDR chain;
1183 struct frame_info *thisframe;
66a1aa07 1184{
247145e6
JK
1185 struct minimal_symbol *msym_us;
1186 struct minimal_symbol *msym_start;
70e43abe 1187 struct unwind_table_entry *u, *next_u = NULL;
669caa9c 1188 struct frame_info *next;
66a1aa07
SG
1189
1190 if (!chain)
1191 return 0;
1192
b8ec9a79 1193 u = find_unwind_entry (thisframe->pc);
4b01383b 1194
70e43abe
JL
1195 if (u == NULL)
1196 return 1;
1197
247145e6
JK
1198 /* We can't just check that the same of msym_us is "_start", because
1199 someone idiotically decided that they were going to make a Ltext_end
1200 symbol with the same address. This Ltext_end symbol is totally
1201 indistinguishable (as nearly as I can tell) from the symbol for a function
1202 which is (legitimately, since it is in the user's namespace)
1203 named Ltext_end, so we can't just ignore it. */
1204 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
2d336b1b 1205 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
247145e6
JK
1206 if (msym_us
1207 && msym_start
1208 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 1209 return 0;
5ac7f56e 1210
c85ff3a3
JL
1211 /* Grrrr. Some new idiot decided that they don't want _start for the
1212 PRO configurations; $START$ calls main directly.... Deal with it. */
1213 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1214 if (msym_us
1215 && msym_start
1216 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1217 return 0;
1218
70e43abe
JL
1219 next = get_next_frame (thisframe);
1220 if (next)
1221 next_u = find_unwind_entry (next->pc);
5ac7f56e 1222
70e43abe
JL
1223 /* If this frame does not save SP, has no stack, isn't a stub,
1224 and doesn't "call" an interrupt routine or signal handler caller,
1225 then its not valid. */
1226 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1227 || (thisframe->next && thisframe->next->signal_handler_caller)
1228 || (next_u && next_u->HP_UX_interrupt_marker))
b8ec9a79 1229 return 1;
5ac7f56e 1230
b8ec9a79
JK
1231 if (pc_in_linker_stub (thisframe->pc))
1232 return 1;
4b01383b 1233
b8ec9a79 1234 return 0;
66a1aa07
SG
1235}
1236
66a1aa07
SG
1237/*
1238 * These functions deal with saving and restoring register state
1239 * around a function call in the inferior. They keep the stack
1240 * double-word aligned; eventually, on an hp700, the stack will have
1241 * to be aligned to a 64-byte boundary.
1242 */
1243
e43169eb
JL
1244void
1245push_dummy_frame (inf_status)
1246 struct inferior_status *inf_status;
66a1aa07 1247{
e43169eb 1248 CORE_ADDR sp, pc, pcspace;
66a1aa07
SG
1249 register int regnum;
1250 int int_buffer;
1251 double freg_buffer;
1252
e43169eb
JL
1253 /* Oh, what a hack. If we're trying to perform an inferior call
1254 while the inferior is asleep, we have to make sure to clear
1255 the "in system call" bit in the flag register (the call will
1256 start after the syscall returns, so we're no longer in the system
1257 call!) This state is kept in "inf_status", change it there.
1258
1259 We also need a number of horrid hacks to deal with lossage in the
1260 PC queue registers (apparently they're not valid when the in syscall
1261 bit is set). */
1262 pc = target_read_pc (inferior_pid);
1263 int_buffer = read_register (FLAGS_REGNUM);
1264 if (int_buffer & 0x2)
1265 {
244f7460 1266 unsigned int sid;
e43169eb
JL
1267 int_buffer &= ~0x2;
1268 memcpy (inf_status->registers, &int_buffer, 4);
1269 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1270 pc += 4;
1271 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1272 pc -= 4;
244f7460
JL
1273 sid = (pc >> 30) & 0x3;
1274 if (sid == 0)
1275 pcspace = read_register (SR4_REGNUM);
1276 else
1277 pcspace = read_register (SR4_REGNUM + 4 + sid);
e43169eb
JL
1278 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1279 &pcspace, 4);
1280 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1281 &pcspace, 4);
1282 }
1283 else
1284 pcspace = read_register (PCSQ_HEAD_REGNUM);
1285
66a1aa07
SG
1286 /* Space for "arguments"; the RP goes in here. */
1287 sp = read_register (SP_REGNUM) + 48;
1288 int_buffer = read_register (RP_REGNUM) | 0x3;
1289 write_memory (sp - 20, (char *)&int_buffer, 4);
1290
1291 int_buffer = read_register (FP_REGNUM);
1292 write_memory (sp, (char *)&int_buffer, 4);
1293
1294 write_register (FP_REGNUM, sp);
1295
1296 sp += 8;
1297
1298 for (regnum = 1; regnum < 32; regnum++)
1299 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1300 sp = push_word (sp, read_register (regnum));
1301
1302 sp += 4;
1303
1304 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1305 {
1306 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1307 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1308 }
1309 sp = push_word (sp, read_register (IPSW_REGNUM));
1310 sp = push_word (sp, read_register (SAR_REGNUM));
e43169eb
JL
1311 sp = push_word (sp, pc);
1312 sp = push_word (sp, pcspace);
1313 sp = push_word (sp, pc + 4);
1314 sp = push_word (sp, pcspace);
66a1aa07
SG
1315 write_register (SP_REGNUM, sp);
1316}
1317
3f550b59 1318static void
66a1aa07
SG
1319find_dummy_frame_regs (frame, frame_saved_regs)
1320 struct frame_info *frame;
1321 struct frame_saved_regs *frame_saved_regs;
1322{
1323 CORE_ADDR fp = frame->frame;
1324 int i;
1325
3f550b59 1326 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
66a1aa07
SG
1327 frame_saved_regs->regs[FP_REGNUM] = fp;
1328 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 1329
b227992a
SG
1330 for (fp += 12, i = 3; i < 32; i++)
1331 {
1332 if (i != FP_REGNUM)
1333 {
1334 frame_saved_regs->regs[i] = fp;
1335 fp += 4;
1336 }
1337 }
66a1aa07
SG
1338
1339 fp += 4;
1340 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1341 frame_saved_regs->regs[i] = fp;
1342
1343 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
1344 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1345 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1346 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1347 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1348 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
1349}
1350
e43169eb 1351void
66a1aa07
SG
1352hppa_pop_frame ()
1353{
669caa9c 1354 register struct frame_info *frame = get_current_frame ();
54576db3 1355 register CORE_ADDR fp, npc, target_pc;
66a1aa07
SG
1356 register int regnum;
1357 struct frame_saved_regs fsr;
66a1aa07
SG
1358 double freg_buffer;
1359
669caa9c
SS
1360 fp = FRAME_FP (frame);
1361 get_frame_saved_regs (frame, &fsr);
66a1aa07 1362
0a64709e 1363#ifndef NO_PC_SPACE_QUEUE_RESTORE
66a1aa07
SG
1364 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1365 restore_pc_queue (&fsr);
0a64709e 1366#endif
66a1aa07
SG
1367
1368 for (regnum = 31; regnum > 0; regnum--)
1369 if (fsr.regs[regnum])
1370 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1371
1372 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1373 if (fsr.regs[regnum])
1374 {
1375 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1376 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1377 }
1378
1379 if (fsr.regs[IPSW_REGNUM])
1380 write_register (IPSW_REGNUM,
1381 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1382
1383 if (fsr.regs[SAR_REGNUM])
1384 write_register (SAR_REGNUM,
1385 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1386
ed1a07ad 1387 /* If the PC was explicitly saved, then just restore it. */
66a1aa07 1388 if (fsr.regs[PCOQ_TAIL_REGNUM])
54576db3
JL
1389 {
1390 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1391 write_register (PCOQ_TAIL_REGNUM, npc);
1392 }
ed1a07ad
JK
1393 /* Else use the value in %rp to set the new PC. */
1394 else
54576db3
JL
1395 {
1396 npc = read_register (RP_REGNUM);
5d394f70 1397 write_pc (npc);
54576db3 1398 }
ed1a07ad 1399
66a1aa07
SG
1400 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1401
1402 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1403 write_register (SP_REGNUM, fp - 48);
1404 else
1405 write_register (SP_REGNUM, fp);
1406
54576db3
JL
1407 /* The PC we just restored may be inside a return trampoline. If so
1408 we want to restart the inferior and run it through the trampoline.
1409
1410 Do this by setting a momentary breakpoint at the location the
244f7460
JL
1411 trampoline returns to.
1412
1413 Don't skip through the trampoline if we're popping a dummy frame. */
54576db3 1414 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
244f7460 1415 if (target_pc && !fsr.regs[IPSW_REGNUM])
54576db3
JL
1416 {
1417 struct symtab_and_line sal;
1418 struct breakpoint *breakpoint;
1419 struct cleanup *old_chain;
1420
1421 /* Set up our breakpoint. Set it to be silent as the MI code
1422 for "return_command" will print the frame we returned to. */
1423 sal = find_pc_line (target_pc, 0);
1424 sal.pc = target_pc;
1425 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1426 breakpoint->silent = 1;
1427
1428 /* So we can clean things up. */
1429 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1430
1431 /* Start up the inferior. */
251b8ab9 1432 clear_proceed_status ();
54576db3
JL
1433 proceed_to_finish = 1;
1434 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1435
1436 /* Perform our cleanups. */
1437 do_cleanups (old_chain);
1438 }
66a1aa07 1439 flush_cached_frames ();
66a1aa07
SG
1440}
1441
1442/*
1443 * After returning to a dummy on the stack, restore the instruction
1444 * queue space registers. */
1445
1446static int
1447restore_pc_queue (fsr)
1448 struct frame_saved_regs *fsr;
1449{
1450 CORE_ADDR pc = read_pc ();
1451 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
67ac9759 1452 struct target_waitstatus w;
66a1aa07
SG
1453 int insn_count;
1454
1455 /* Advance past break instruction in the call dummy. */
1456 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1457 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1458
1459 /*
1460 * HPUX doesn't let us set the space registers or the space
1461 * registers of the PC queue through ptrace. Boo, hiss.
1462 * Conveniently, the call dummy has this sequence of instructions
1463 * after the break:
1464 * mtsp r21, sr0
1465 * ble,n 0(sr0, r22)
1466 *
1467 * So, load up the registers and single step until we are in the
1468 * right place.
1469 */
1470
1471 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1472 write_register (22, new_pc);
1473
1474 for (insn_count = 0; insn_count < 3; insn_count++)
1475 {
8c5e0021
JK
1476 /* FIXME: What if the inferior gets a signal right now? Want to
1477 merge this into wait_for_inferior (as a special kind of
1478 watchpoint? By setting a breakpoint at the end? Is there
1479 any other choice? Is there *any* way to do this stuff with
1480 ptrace() or some equivalent?). */
66a1aa07 1481 resume (1, 0);
67ac9759 1482 target_wait (inferior_pid, &w);
66a1aa07 1483
67ac9759 1484 if (w.kind == TARGET_WAITKIND_SIGNALLED)
66a1aa07 1485 {
67ac9759 1486 stop_signal = w.value.sig;
66a1aa07 1487 terminal_ours_for_output ();
67ac9759
JK
1488 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1489 target_signal_to_name (stop_signal),
1490 target_signal_to_string (stop_signal));
199b2450 1491 gdb_flush (gdb_stdout);
66a1aa07
SG
1492 return 0;
1493 }
1494 }
8c5e0021 1495 target_terminal_ours ();
cad1498f 1496 target_fetch_registers (-1);
66a1aa07
SG
1497 return 1;
1498}
1499
1500CORE_ADDR
1501hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1502 int nargs;
4fd5eed4 1503 value_ptr *args;
66a1aa07
SG
1504 CORE_ADDR sp;
1505 int struct_return;
1506 CORE_ADDR struct_addr;
1507{
1508 /* array of arguments' offsets */
1edc5cd2 1509 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
1510 int cum = 0;
1511 int i, alignment;
1512
1513 for (i = 0; i < nargs; i++)
1514 {
66a1aa07
SG
1515 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1516
1517 /* value must go at proper alignment. Assume alignment is a
1518 power of two.*/
1519 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1520 if (cum % alignment)
1521 cum = (cum + alignment) & -alignment;
1522 offset[i] = -cum;
1523 }
558f4183 1524 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
1525
1526 for (i = 0; i < nargs; i++)
1527 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1528 TYPE_LENGTH (VALUE_TYPE (args[i])));
1529
1530 if (struct_return)
1531 write_register (28, struct_addr);
1532 return sp + 32;
1533}
1534
1535/*
1536 * Insert the specified number of args and function address
1537 * into a call sequence of the above form stored at DUMMYNAME.
1538 *
1539 * On the hppa we need to call the stack dummy through $$dyncall.
1540 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1541 * real_pc, which is the location where gdb should start up the
1542 * inferior to do the function call.
1543 */
1544
1545CORE_ADDR
1546hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
f4f0d174 1547 char *dummy;
66a1aa07
SG
1548 CORE_ADDR pc;
1549 CORE_ADDR fun;
1550 int nargs;
4fd5eed4 1551 value_ptr *args;
66a1aa07
SG
1552 struct type *type;
1553 int gcc_p;
1554{
7486c68d 1555 CORE_ADDR dyncall_addr;
66a1aa07 1556 struct minimal_symbol *msymbol;
46f569b4 1557 struct minimal_symbol *trampoline;
6cfec929 1558 int flags = read_register (FLAGS_REGNUM);
19cd0c1f 1559 struct unwind_table_entry *u;
66a1aa07 1560
46f569b4 1561 trampoline = NULL;
2d336b1b 1562 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
66a1aa07
SG
1563 if (msymbol == NULL)
1564 error ("Can't find an address for $$dyncall trampoline");
1565
1566 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1567
4f915914
JL
1568 /* FUN could be a procedure label, in which case we have to get
1569 its real address and the value of its GOT/DP. */
1570 if (fun & 0x2)
1571 {
1572 /* Get the GOT/DP value for the target function. It's
1573 at *(fun+4). Note the call dummy is *NOT* allowed to
1574 trash %r19 before calling the target function. */
1575 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1576
1577 /* Now get the real address for the function we are calling, it's
1578 at *fun. */
1579 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1580 }
b1bbe38b
JL
1581 else
1582 {
1583
3200aa59 1584#ifndef GDB_TARGET_IS_PA_ELF
b1bbe38b 1585 /* FUN could be either an export stub, or the real address of a
3200aa59
JL
1586 function in a shared library. We must call an import stub
1587 rather than the export stub or real function for lazy binding
1588 to work correctly. */
1589 if (som_solib_get_got_by_pc (fun))
1590 {
1591 struct objfile *objfile;
1592 struct minimal_symbol *funsymbol, *stub_symbol;
1593 CORE_ADDR newfun = 0;
b1bbe38b 1594
3200aa59
JL
1595 funsymbol = lookup_minimal_symbol_by_pc (fun);
1596 if (!funsymbol)
1597 error ("Unable to find minimal symbol for target fucntion.\n");
b1bbe38b 1598
3200aa59
JL
1599 /* Search all the object files for an import symbol with the
1600 right name. */
1601 ALL_OBJFILES (objfile)
1602 {
1603 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2d336b1b 1604 NULL, objfile);
3200aa59
JL
1605 /* Found a symbol with the right name. */
1606 if (stub_symbol)
1607 {
1608 struct unwind_table_entry *u;
1609 /* It must be a shared library trampoline. */
e5718bee 1610 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
3200aa59
JL
1611 continue;
1612
1613 /* It must also be an import stub. */
1614 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1615 if (!u || u->stub_type != IMPORT)
1616 continue;
1617
1618 /* OK. Looks like the correct import stub. */
1619 newfun = SYMBOL_VALUE (stub_symbol);
1620 fun = newfun;
1621 }
1622 }
1623 if (newfun == 0)
1624 write_register (19, som_solib_get_got_by_pc (fun));
1625 }
bd2b724a 1626#endif
b1bbe38b 1627 }
4f915914 1628
19cd0c1f
JL
1629 /* If we are calling an import stub (eg calling into a dynamic library)
1630 then have sr4export call the magic __d_plt_call routine which is linked
1631 in from end.o. (You can't use _sr4export to call the import stub as
1632 the value in sp-24 will get fried and you end up returning to the
1633 wrong location. You can't call the import stub directly as the code
1634 to bind the PLT entry to a function can't return to a stack address.) */
1635 u = find_unwind_entry (fun);
1636 if (u && u->stub_type == IMPORT)
1637 {
1638 CORE_ADDR new_fun;
3200aa59 1639
46f569b4
JL
1640 /* Prefer __gcc_plt_call over the HP supplied routine because
1641 __gcc_plt_call works for any number of arguments. */
1642 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1643 if (trampoline == NULL)
1644 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1645
1646 if (trampoline == NULL)
3200aa59 1647 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
19cd0c1f
JL
1648
1649 /* This is where sr4export will jump to. */
46f569b4 1650 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
19cd0c1f 1651
46f569b4 1652 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
3200aa59
JL
1653 {
1654 /* We have to store the address of the stub in __shlib_funcptr. */
2d336b1b 1655 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
3200aa59
JL
1656 (struct objfile *)NULL);
1657 if (msymbol == NULL)
1658 error ("Can't find an address for __shlib_funcptr");
19cd0c1f 1659
3200aa59 1660 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
46f569b4
JL
1661
1662 /* We want sr4export to call __d_plt_call, so we claim it is
1663 the final target. Clear trampoline. */
1664 fun = new_fun;
1665 trampoline = NULL;
3200aa59 1666 }
19cd0c1f
JL
1667 }
1668
46f569b4
JL
1669 /* Store upper 21 bits of function address into ldil. fun will either be
1670 the final target (most cases) or __d_plt_call when calling into a shared
1671 library and __gcc_plt_call is not available. */
f4f0d174 1672 store_unsigned_integer
7486c68d
SG
1673 (&dummy[FUNC_LDIL_OFFSET],
1674 INSTRUCTION_SIZE,
f4f0d174 1675 deposit_21 (fun >> 11,
7486c68d
SG
1676 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1677 INSTRUCTION_SIZE)));
1678
46f569b4 1679 /* Store lower 11 bits of function address into ldo */
f4f0d174 1680 store_unsigned_integer
7486c68d
SG
1681 (&dummy[FUNC_LDO_OFFSET],
1682 INSTRUCTION_SIZE,
f4f0d174 1683 deposit_14 (fun & MASK_11,
7486c68d
SG
1684 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1685 INSTRUCTION_SIZE)));
1686#ifdef SR4EXPORT_LDIL_OFFSET
1687
1688 {
46f569b4 1689 CORE_ADDR trampoline_addr;
7486c68d 1690
46f569b4 1691 /* We may still need sr4export's address too. */
7486c68d 1692
46f569b4
JL
1693 if (trampoline == NULL)
1694 {
1695 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1696 if (msymbol == NULL)
1697 error ("Can't find an address for _sr4export trampoline");
7486c68d 1698
46f569b4
JL
1699 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1700 }
1701 else
1702 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
7486c68d 1703
7486c68d 1704
46f569b4 1705 /* Store upper 21 bits of trampoline's address into ldil */
7486c68d
SG
1706 store_unsigned_integer
1707 (&dummy[SR4EXPORT_LDIL_OFFSET],
1708 INSTRUCTION_SIZE,
46f569b4 1709 deposit_21 (trampoline_addr >> 11,
7486c68d
SG
1710 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1711 INSTRUCTION_SIZE)));
7486c68d 1712
46f569b4 1713 /* Store lower 11 bits of trampoline's address into ldo */
7486c68d
SG
1714 store_unsigned_integer
1715 (&dummy[SR4EXPORT_LDO_OFFSET],
1716 INSTRUCTION_SIZE,
46f569b4 1717 deposit_14 (trampoline_addr & MASK_11,
7486c68d
SG
1718 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1719 INSTRUCTION_SIZE)));
1720 }
1721#endif
66a1aa07
SG
1722
1723 write_register (22, pc);
1724
6cfec929
JK
1725 /* If we are in a syscall, then we should call the stack dummy
1726 directly. $$dyncall is not needed as the kernel sets up the
1727 space id registers properly based on the value in %r31. In
1728 fact calling $$dyncall will not work because the value in %r22
244f7460
JL
1729 will be clobbered on the syscall exit path.
1730
1731 Similarly if the current PC is in a shared library. Note however,
1732 this scheme won't work if the shared library isn't mapped into
1733 the same space as the stack. */
6cfec929
JK
1734 if (flags & 2)
1735 return pc;
244f7460
JL
1736#ifndef GDB_TARGET_IS_PA_ELF
1737 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1738 return pc;
1739#endif
6cfec929
JK
1740 else
1741 return dyncall_addr;
1742
66a1aa07
SG
1743}
1744
d3862cae
JK
1745/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1746 bits. */
669caa9c 1747
d3862cae 1748CORE_ADDR
e9a3cde8
JL
1749target_read_pc (pid)
1750 int pid;
d3862cae 1751{
5d394f70 1752 int flags = read_register_pid (FLAGS_REGNUM, pid);
d3862cae 1753
5d394f70
SG
1754 /* The following test does not belong here. It is OS-specific, and belongs
1755 in native code. */
1756 /* Test SS_INSYSCALL */
1757 if (flags & 2)
1758 return read_register_pid (31, pid) & ~0x3;
1759
1760 return read_register_pid (PC_REGNUM, pid) & ~0x3;
d3862cae
JK
1761}
1762
6cfec929
JK
1763/* Write out the PC. If currently in a syscall, then also write the new
1764 PC value into %r31. */
669caa9c 1765
6cfec929 1766void
e9a3cde8 1767target_write_pc (v, pid)
6cfec929 1768 CORE_ADDR v;
e9a3cde8 1769 int pid;
6cfec929 1770{
5d394f70 1771 int flags = read_register_pid (FLAGS_REGNUM, pid);
6cfec929 1772
5d394f70
SG
1773 /* The following test does not belong here. It is OS-specific, and belongs
1774 in native code. */
6cfec929
JK
1775 /* If in a syscall, then set %r31. Also make sure to get the
1776 privilege bits set correctly. */
5d394f70 1777 /* Test SS_INSYSCALL */
6cfec929 1778 if (flags & 2)
5d394f70 1779 write_register_pid (31, v | 0x3, pid);
6cfec929 1780
5d394f70
SG
1781 write_register_pid (PC_REGNUM, v, pid);
1782 write_register_pid (NPC_REGNUM, v + 4, pid);
6cfec929
JK
1783}
1784
66a1aa07
SG
1785/* return the alignment of a type in bytes. Structures have the maximum
1786 alignment required by their fields. */
1787
1788static int
940d5967
PB
1789hppa_alignof (type)
1790 struct type *type;
66a1aa07
SG
1791{
1792 int max_align, align, i;
f9384420 1793 CHECK_TYPEDEF (type);
940d5967 1794 switch (TYPE_CODE (type))
66a1aa07
SG
1795 {
1796 case TYPE_CODE_PTR:
1797 case TYPE_CODE_INT:
1798 case TYPE_CODE_FLT:
940d5967 1799 return TYPE_LENGTH (type);
66a1aa07 1800 case TYPE_CODE_ARRAY:
940d5967 1801 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
66a1aa07
SG
1802 case TYPE_CODE_STRUCT:
1803 case TYPE_CODE_UNION:
0d43c8e7 1804 max_align = 1;
940d5967 1805 for (i = 0; i < TYPE_NFIELDS (type); i++)
66a1aa07
SG
1806 {
1807 /* Bit fields have no real alignment. */
940d5967 1808 if (!TYPE_FIELD_BITPOS (type, i))
66a1aa07 1809 {
940d5967 1810 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
66a1aa07
SG
1811 max_align = max (max_align, align);
1812 }
1813 }
1814 return max_align;
1815 default:
1816 return 4;
1817 }
1818}
1819
1820/* Print the register regnum, or all registers if regnum is -1 */
1821
e43169eb 1822void
66a1aa07
SG
1823pa_do_registers_info (regnum, fpregs)
1824 int regnum;
1825 int fpregs;
1826{
1827 char raw_regs [REGISTER_BYTES];
1828 int i;
1829
1830 for (i = 0; i < NUM_REGS; i++)
1831 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1832 if (regnum == -1)
1833 pa_print_registers (raw_regs, regnum, fpregs);
1834 else if (regnum < FP0_REGNUM)
199b2450 1835 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1836 REGISTER_BYTE (regnum)));
1837 else
1838 pa_print_fp_reg (regnum);
1839}
1840
e43169eb 1841static void
66a1aa07
SG
1842pa_print_registers (raw_regs, regnum, fpregs)
1843 char *raw_regs;
1844 int regnum;
1845 int fpregs;
1846{
15edf525
RS
1847 int i,j;
1848 long val;
66a1aa07
SG
1849
1850 for (i = 0; i < 18; i++)
15edf525
RS
1851 {
1852 for (j = 0; j < 4; j++)
1853 {
bc28e68d
JK
1854 val =
1855 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
15edf525
RS
1856 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1857 }
1858 printf_unfiltered ("\n");
1859 }
1860
66a1aa07
SG
1861 if (fpregs)
1862 for (i = 72; i < NUM_REGS; i++)
1863 pa_print_fp_reg (i);
1864}
1865
e43169eb 1866static void
66a1aa07
SG
1867pa_print_fp_reg (i)
1868 int i;
1869{
1870 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1871 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
66a1aa07 1872
eb1167c6 1873 /* Get 32bits of data. */
66a1aa07 1874 read_relative_register_raw_bytes (i, raw_buffer);
ad09cb2b 1875
eb1167c6
JL
1876 /* Put it in the buffer. No conversions are ever necessary. */
1877 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
66a1aa07 1878
199b2450 1879 fputs_filtered (reg_names[i], gdb_stdout);
eb1167c6
JL
1880 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1881 fputs_filtered ("(single precision) ", gdb_stdout);
66a1aa07 1882
199b2450 1883 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1884 1, 0, Val_pretty_default);
1885 printf_filtered ("\n");
eb1167c6
JL
1886
1887 /* If "i" is even, then this register can also be a double-precision
1888 FP register. Dump it out as such. */
1889 if ((i % 2) == 0)
1890 {
1891 /* Get the data in raw format for the 2nd half. */
1892 read_relative_register_raw_bytes (i + 1, raw_buffer);
1893
1894 /* Copy it into the appropriate part of the virtual buffer. */
1895 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1896 REGISTER_RAW_SIZE (i));
1897
1898 /* Dump it as a double. */
1899 fputs_filtered (reg_names[i], gdb_stdout);
1900 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1901 fputs_filtered ("(double precision) ", gdb_stdout);
1902
1903 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1904 1, 0, Val_pretty_default);
1905 printf_filtered ("\n");
1906 }
66a1aa07
SG
1907}
1908
a76c2240
JL
1909/* Return one if PC is in the call path of a trampoline, else return zero.
1910
1911 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1912 just shared library trampolines (import, export). */
481faa25 1913
e43169eb 1914int
481faa25
JL
1915in_solib_call_trampoline (pc, name)
1916 CORE_ADDR pc;
1917 char *name;
1918{
1919 struct minimal_symbol *minsym;
1920 struct unwind_table_entry *u;
a76c2240
JL
1921 static CORE_ADDR dyncall = 0;
1922 static CORE_ADDR sr4export = 0;
1923
1924/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1925 new exec file */
1926
1927 /* First see if PC is in one of the two C-library trampolines. */
1928 if (!dyncall)
1929 {
2d336b1b 1930 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
a76c2240
JL
1931 if (minsym)
1932 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1933 else
1934 dyncall = -1;
1935 }
1936
1937 if (!sr4export)
1938 {
2d336b1b 1939 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
a76c2240
JL
1940 if (minsym)
1941 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1942 else
1943 sr4export = -1;
1944 }
1945
1946 if (pc == dyncall || pc == sr4export)
1947 return 1;
481faa25
JL
1948
1949 /* Get the unwind descriptor corresponding to PC, return zero
1950 if no unwind was found. */
1951 u = find_unwind_entry (pc);
1952 if (!u)
1953 return 0;
1954
1955 /* If this isn't a linker stub, then return now. */
a76c2240 1956 if (u->stub_type == 0)
481faa25
JL
1957 return 0;
1958
a76c2240
JL
1959 /* By definition a long-branch stub is a call stub. */
1960 if (u->stub_type == LONG_BRANCH)
1961 return 1;
1962
481faa25
JL
1963 /* The call and return path execute the same instructions within
1964 an IMPORT stub! So an IMPORT stub is both a call and return
1965 trampoline. */
1966 if (u->stub_type == IMPORT)
1967 return 1;
1968
a76c2240 1969 /* Parameter relocation stubs always have a call path and may have a
481faa25 1970 return path. */
54576db3
JL
1971 if (u->stub_type == PARAMETER_RELOCATION
1972 || u->stub_type == EXPORT)
a76c2240
JL
1973 {
1974 CORE_ADDR addr;
1975
1976 /* Search forward from the current PC until we hit a branch
1977 or the end of the stub. */
1978 for (addr = pc; addr <= u->region_end; addr += 4)
1979 {
1980 unsigned long insn;
1981
1982 insn = read_memory_integer (addr, 4);
1983
1984 /* Does it look like a bl? If so then it's the call path, if
54576db3 1985 we find a bv or be first, then we're on the return path. */
a76c2240
JL
1986 if ((insn & 0xfc00e000) == 0xe8000000)
1987 return 1;
54576db3
JL
1988 else if ((insn & 0xfc00e001) == 0xe800c000
1989 || (insn & 0xfc000000) == 0xe0000000)
a76c2240
JL
1990 return 0;
1991 }
1992
1993 /* Should never happen. */
1994 warning ("Unable to find branch in parameter relocation stub.\n");
1995 return 0;
1996 }
1997
1998 /* Unknown stub type. For now, just return zero. */
1999 return 0;
481faa25
JL
2000}
2001
a76c2240
JL
2002/* Return one if PC is in the return path of a trampoline, else return zero.
2003
2004 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2005 just shared library trampolines (import, export). */
481faa25 2006
e43169eb 2007int
481faa25
JL
2008in_solib_return_trampoline (pc, name)
2009 CORE_ADDR pc;
2010 char *name;
2011{
481faa25
JL
2012 struct unwind_table_entry *u;
2013
2014 /* Get the unwind descriptor corresponding to PC, return zero
2015 if no unwind was found. */
2016 u = find_unwind_entry (pc);
2017 if (!u)
2018 return 0;
2019
a76c2240
JL
2020 /* If this isn't a linker stub or it's just a long branch stub, then
2021 return zero. */
2022 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
481faa25
JL
2023 return 0;
2024
2025 /* The call and return path execute the same instructions within
2026 an IMPORT stub! So an IMPORT stub is both a call and return
2027 trampoline. */
2028 if (u->stub_type == IMPORT)
2029 return 1;
2030
a76c2240 2031 /* Parameter relocation stubs always have a call path and may have a
481faa25 2032 return path. */
54576db3
JL
2033 if (u->stub_type == PARAMETER_RELOCATION
2034 || u->stub_type == EXPORT)
a76c2240
JL
2035 {
2036 CORE_ADDR addr;
2037
2038 /* Search forward from the current PC until we hit a branch
2039 or the end of the stub. */
2040 for (addr = pc; addr <= u->region_end; addr += 4)
2041 {
2042 unsigned long insn;
2043
2044 insn = read_memory_integer (addr, 4);
2045
2046 /* Does it look like a bl? If so then it's the call path, if
54576db3 2047 we find a bv or be first, then we're on the return path. */
a76c2240
JL
2048 if ((insn & 0xfc00e000) == 0xe8000000)
2049 return 0;
54576db3
JL
2050 else if ((insn & 0xfc00e001) == 0xe800c000
2051 || (insn & 0xfc000000) == 0xe0000000)
a76c2240
JL
2052 return 1;
2053 }
2054
2055 /* Should never happen. */
2056 warning ("Unable to find branch in parameter relocation stub.\n");
2057 return 0;
2058 }
2059
2060 /* Unknown stub type. For now, just return zero. */
2061 return 0;
2062
481faa25
JL
2063}
2064
de482138
JL
2065/* Figure out if PC is in a trampoline, and if so find out where
2066 the trampoline will jump to. If not in a trampoline, return zero.
66a1aa07 2067
de482138
JL
2068 Simple code examination probably is not a good idea since the code
2069 sequences in trampolines can also appear in user code.
2070
2071 We use unwinds and information from the minimal symbol table to
2072 determine when we're in a trampoline. This won't work for ELF
2073 (yet) since it doesn't create stub unwind entries. Whether or
2074 not ELF will create stub unwinds or normal unwinds for linker
2075 stubs is still being debated.
2076
2077 This should handle simple calls through dyncall or sr4export,
2078 long calls, argument relocation stubs, and dyncall/sr4export
2079 calling an argument relocation stub. It even handles some stubs
2080 used in dynamic executables. */
66a1aa07
SG
2081
2082CORE_ADDR
2083skip_trampoline_code (pc, name)
2084 CORE_ADDR pc;
2085 char *name;
2086{
de482138
JL
2087 long orig_pc = pc;
2088 long prev_inst, curr_inst, loc;
66a1aa07 2089 static CORE_ADDR dyncall = 0;
de482138 2090 static CORE_ADDR sr4export = 0;
66a1aa07 2091 struct minimal_symbol *msym;
de482138 2092 struct unwind_table_entry *u;
66a1aa07 2093
de482138
JL
2094/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2095 new exec file */
66a1aa07
SG
2096
2097 if (!dyncall)
2098 {
2d336b1b 2099 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
66a1aa07
SG
2100 if (msym)
2101 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2102 else
2103 dyncall = -1;
2104 }
2105
de482138
JL
2106 if (!sr4export)
2107 {
2d336b1b 2108 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
de482138
JL
2109 if (msym)
2110 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2111 else
2112 sr4export = -1;
2113 }
2114
2115 /* Addresses passed to dyncall may *NOT* be the actual address
669caa9c 2116 of the function. So we may have to do something special. */
66a1aa07 2117 if (pc == dyncall)
de482138
JL
2118 {
2119 pc = (CORE_ADDR) read_register (22);
66a1aa07 2120
de482138
JL
2121 /* If bit 30 (counting from the left) is on, then pc is the address of
2122 the PLT entry for this function, not the address of the function
2123 itself. Bit 31 has meaning too, but only for MPE. */
2124 if (pc & 0x2)
2125 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2126 }
2127 else if (pc == sr4export)
2128 pc = (CORE_ADDR) (read_register (22));
66a1aa07 2129
de482138
JL
2130 /* Get the unwind descriptor corresponding to PC, return zero
2131 if no unwind was found. */
2132 u = find_unwind_entry (pc);
2133 if (!u)
2134 return 0;
2135
2136 /* If this isn't a linker stub, then return now. */
2137 if (u->stub_type == 0)
2138 return orig_pc == pc ? 0 : pc & ~0x3;
2139
2140 /* It's a stub. Search for a branch and figure out where it goes.
2141 Note we have to handle multi insn branch sequences like ldil;ble.
2142 Most (all?) other branches can be determined by examining the contents
2143 of certain registers and the stack. */
2144 loc = pc;
2145 curr_inst = 0;
2146 prev_inst = 0;
2147 while (1)
2148 {
2149 /* Make sure we haven't walked outside the range of this stub. */
2150 if (u != find_unwind_entry (loc))
2151 {
2152 warning ("Unable to find branch in linker stub");
2153 return orig_pc == pc ? 0 : pc & ~0x3;
2154 }
2155
2156 prev_inst = curr_inst;
2157 curr_inst = read_memory_integer (loc, 4);
66a1aa07 2158
de482138
JL
2159 /* Does it look like a branch external using %r1? Then it's the
2160 branch from the stub to the actual function. */
2161 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2162 {
2163 /* Yup. See if the previous instruction loaded
2164 a value into %r1. If so compute and return the jump address. */
4cbc4bf1 2165 if ((prev_inst & 0xffe00000) == 0x20200000)
de482138
JL
2166 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2167 else
2168 {
2169 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2170 return orig_pc == pc ? 0 : pc & ~0x3;
2171 }
2172 }
2173
f32fc5f9
JL
2174 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2175 import stub to an export stub.
2176
2177 It is impossible to determine the target of the branch via
2178 simple examination of instructions and/or data (consider
2179 that the address in the plabel may be the address of the
2180 bind-on-reference routine in the dynamic loader).
2181
2182 So we have try an alternative approach.
2183
2184 Get the name of the symbol at our current location; it should
2185 be a stub symbol with the same name as the symbol in the
2186 shared library.
2187
2188 Then lookup a minimal symbol with the same name; we should
2189 get the minimal symbol for the target routine in the shared
2190 library as those take precedence of import/export stubs. */
2191 if (curr_inst == 0xe2a00000)
2192 {
2193 struct minimal_symbol *stubsym, *libsym;
2194
2195 stubsym = lookup_minimal_symbol_by_pc (loc);
2196 if (stubsym == NULL)
2197 {
2198 warning ("Unable to find symbol for 0x%x", loc);
2199 return orig_pc == pc ? 0 : pc & ~0x3;
2200 }
2201
2d336b1b 2202 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
f32fc5f9
JL
2203 if (libsym == NULL)
2204 {
2205 warning ("Unable to find library symbol for %s\n",
2206 SYMBOL_NAME (stubsym));
2207 return orig_pc == pc ? 0 : pc & ~0x3;
2208 }
2209
2210 return SYMBOL_VALUE (libsym);
2211 }
2212
88b91d4a
JL
2213 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2214 branch from the stub to the actual function. */
2215 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2216 || (curr_inst & 0xffe0e000) == 0xe8000000)
de482138
JL
2217 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2218
2219 /* Does it look like bv (rp)? Note this depends on the
2220 current stack pointer being the same as the stack
2221 pointer in the stub itself! This is a branch on from the
2222 stub back to the original caller. */
2223 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2224 {
2225 /* Yup. See if the previous instruction loaded
2226 rp from sp - 8. */
2227 if (prev_inst == 0x4bc23ff1)
2228 return (read_memory_integer
2229 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2230 else
2231 {
2232 warning ("Unable to find restore of %%rp before bv (%%rp).");
2233 return orig_pc == pc ? 0 : pc & ~0x3;
2234 }
2235 }
2236
2237 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2238 the original caller from the stub. Used in dynamic executables. */
2239 else if (curr_inst == 0xe0400002)
2240 {
2241 /* The value we jump to is sitting in sp - 24. But that's
2242 loaded several instructions before the be instruction.
2243 I guess we could check for the previous instruction being
2244 mtsp %r1,%sr0 if we want to do sanity checking. */
2245 return (read_memory_integer
2246 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2247 }
2248
2249 /* Haven't found the branch yet, but we're still in the stub.
2250 Keep looking. */
2251 loc += 4;
2252 }
66a1aa07
SG
2253}
2254
c598654a
JL
2255/* For the given instruction (INST), return any adjustment it makes
2256 to the stack pointer or zero for no adjustment.
2257
2258 This only handles instructions commonly found in prologues. */
2259
2260static int
2261prologue_inst_adjust_sp (inst)
2262 unsigned long inst;
2263{
2264 /* This must persist across calls. */
2265 static int save_high21;
2266
2267 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2268 if ((inst & 0xffffc000) == 0x37de0000)
2269 return extract_14 (inst);
2270
2271 /* stwm X,D(sp) */
2272 if ((inst & 0xffe00000) == 0x6fc00000)
2273 return extract_14 (inst);
2274
2275 /* addil high21,%r1; ldo low11,(%r1),%r30)
2276 save high bits in save_high21 for later use. */
2277 if ((inst & 0xffe00000) == 0x28200000)
2278 {
2279 save_high21 = extract_21 (inst);
2280 return 0;
2281 }
2282
2283 if ((inst & 0xffff0000) == 0x343e0000)
2284 return save_high21 + extract_14 (inst);
2285
2286 /* fstws as used by the HP compilers. */
2287 if ((inst & 0xffffffe0) == 0x2fd01220)
2288 return extract_5_load (inst);
2289
2290 /* No adjustment. */
2291 return 0;
2292}
2293
2294/* Return nonzero if INST is a branch of some kind, else return zero. */
2295
2296static int
2297is_branch (inst)
2298 unsigned long inst;
2299{
2300 switch (inst >> 26)
2301 {
2302 case 0x20:
2303 case 0x21:
2304 case 0x22:
2305 case 0x23:
2306 case 0x28:
2307 case 0x29:
2308 case 0x2a:
2309 case 0x2b:
2310 case 0x30:
2311 case 0x31:
2312 case 0x32:
2313 case 0x33:
2314 case 0x38:
2315 case 0x39:
2316 case 0x3a:
2317 return 1;
2318
2319 default:
2320 return 0;
2321 }
2322}
2323
2324/* Return the register number for a GR which is saved by INST or
edd86fb0 2325 zero it INST does not save a GR. */
c598654a
JL
2326
2327static int
2328inst_saves_gr (inst)
2329 unsigned long inst;
2330{
2331 /* Does it look like a stw? */
2332 if ((inst >> 26) == 0x1a)
2333 return extract_5R_store (inst);
2334
edd86fb0 2335 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
c598654a
JL
2336 if ((inst >> 26) == 0x1b)
2337 return extract_5R_store (inst);
2338
edd86fb0
JL
2339 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2340 too. */
2341 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2342 return extract_5R_store (inst);
2343
c598654a
JL
2344 return 0;
2345}
2346
2347/* Return the register number for a FR which is saved by INST or
2348 zero it INST does not save a FR.
2349
2350 Note we only care about full 64bit register stores (that's the only
edd86fb0
JL
2351 kind of stores the prologue will use).
2352
2353 FIXME: What about argument stores with the HP compiler in ANSI mode? */
c598654a
JL
2354
2355static int
2356inst_saves_fr (inst)
2357 unsigned long inst;
2358{
edd86fb0 2359 if ((inst & 0xfc00dfc0) == 0x2c001200)
c598654a
JL
2360 return extract_5r_store (inst);
2361 return 0;
2362}
2363
66a1aa07 2364/* Advance PC across any function entry prologue instructions
c598654a 2365 to reach some "real" code.
66a1aa07 2366
c598654a
JL
2367 Use information in the unwind table to determine what exactly should
2368 be in the prologue. */
66a1aa07
SG
2369
2370CORE_ADDR
de482138 2371skip_prologue (pc)
66a1aa07
SG
2372 CORE_ADDR pc;
2373{
34df79fc 2374 char buf[4];
7e72b115 2375 CORE_ADDR orig_pc = pc;
c598654a 2376 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
7e72b115 2377 unsigned long args_stored, status, i, restart_gr, restart_fr;
c598654a 2378 struct unwind_table_entry *u;
66a1aa07 2379
7e72b115
JL
2380 restart_gr = 0;
2381 restart_fr = 0;
2382
2383restart:
c598654a
JL
2384 u = find_unwind_entry (pc);
2385 if (!u)
fdafbfad 2386 return pc;
c598654a 2387
de482138
JL
2388 /* If we are not at the beginning of a function, then return now. */
2389 if ((pc & ~0x3) != u->region_start)
2390 return pc;
2391
c598654a
JL
2392 /* This is how much of a frame adjustment we need to account for. */
2393 stack_remaining = u->Total_frame_size << 3;
66a1aa07 2394
c598654a
JL
2395 /* Magic register saves we want to know about. */
2396 save_rp = u->Save_RP;
2397 save_sp = u->Save_SP;
2398
edd86fb0
JL
2399 /* An indication that args may be stored into the stack. Unfortunately
2400 the HPUX compilers tend to set this in cases where no args were
2401 stored too!. */
c85ff3a3 2402 args_stored = 1;
edd86fb0 2403
c598654a
JL
2404 /* Turn the Entry_GR field into a bitmask. */
2405 save_gr = 0;
2406 for (i = 3; i < u->Entry_GR + 3; i++)
66a1aa07 2407 {
c598654a
JL
2408 /* Frame pointer gets saved into a special location. */
2409 if (u->Save_SP && i == FP_REGNUM)
2410 continue;
2411
2412 save_gr |= (1 << i);
2413 }
7e72b115 2414 save_gr &= ~restart_gr;
c598654a
JL
2415
2416 /* Turn the Entry_FR field into a bitmask too. */
2417 save_fr = 0;
2418 for (i = 12; i < u->Entry_FR + 12; i++)
2419 save_fr |= (1 << i);
7e72b115 2420 save_fr &= ~restart_fr;
c598654a
JL
2421
2422 /* Loop until we find everything of interest or hit a branch.
2423
2424 For unoptimized GCC code and for any HP CC code this will never ever
2425 examine any user instructions.
2426
2427 For optimzied GCC code we're faced with problems. GCC will schedule
2428 its prologue and make prologue instructions available for delay slot
2429 filling. The end result is user code gets mixed in with the prologue
2430 and a prologue instruction may be in the delay slot of the first branch
2431 or call.
2432
2433 Some unexpected things are expected with debugging optimized code, so
2434 we allow this routine to walk past user instructions in optimized
2435 GCC code. */
edd86fb0
JL
2436 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2437 || args_stored)
c598654a 2438 {
edd86fb0
JL
2439 unsigned int reg_num;
2440 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
e43169eb 2441 unsigned long old_save_rp, old_save_sp, next_inst;
edd86fb0
JL
2442
2443 /* Save copies of all the triggers so we can compare them later
2444 (only for HPC). */
2445 old_save_gr = save_gr;
2446 old_save_fr = save_fr;
2447 old_save_rp = save_rp;
2448 old_save_sp = save_sp;
2449 old_stack_remaining = stack_remaining;
2450
c598654a
JL
2451 status = target_read_memory (pc, buf, 4);
2452 inst = extract_unsigned_integer (buf, 4);
edd86fb0 2453
c598654a
JL
2454 /* Yow! */
2455 if (status != 0)
2456 return pc;
2457
2458 /* Note the interesting effects of this instruction. */
2459 stack_remaining -= prologue_inst_adjust_sp (inst);
2460
2461 /* There is only one instruction used for saving RP into the stack. */
2462 if (inst == 0x6bc23fd9)
2463 save_rp = 0;
2464
2465 /* This is the only way we save SP into the stack. At this time
2466 the HP compilers never bother to save SP into the stack. */
2467 if ((inst & 0xffffc000) == 0x6fc10000)
2468 save_sp = 0;
2469
2470 /* Account for general and floating-point register saves. */
edd86fb0
JL
2471 reg_num = inst_saves_gr (inst);
2472 save_gr &= ~(1 << reg_num);
2473
2474 /* Ugh. Also account for argument stores into the stack.
2475 Unfortunately args_stored only tells us that some arguments
2476 where stored into the stack. Not how many or what kind!
2477
2478 This is a kludge as on the HP compiler sets this bit and it
2479 never does prologue scheduling. So once we see one, skip past
2480 all of them. We have similar code for the fp arg stores below.
2481
2482 FIXME. Can still die if we have a mix of GR and FR argument
2483 stores! */
2484 if (reg_num >= 23 && reg_num <= 26)
2485 {
2486 while (reg_num >= 23 && reg_num <= 26)
2487 {
2488 pc += 4;
2489 status = target_read_memory (pc, buf, 4);
2490 inst = extract_unsigned_integer (buf, 4);
2491 if (status != 0)
2492 return pc;
2493 reg_num = inst_saves_gr (inst);
2494 }
2495 args_stored = 0;
2496 continue;
2497 }
2498
2499 reg_num = inst_saves_fr (inst);
2500 save_fr &= ~(1 << reg_num);
2501
2502 status = target_read_memory (pc + 4, buf, 4);
2503 next_inst = extract_unsigned_integer (buf, 4);
2504
2505 /* Yow! */
2506 if (status != 0)
2507 return pc;
2508
2509 /* We've got to be read to handle the ldo before the fp register
2510 save. */
2511 if ((inst & 0xfc000000) == 0x34000000
2512 && inst_saves_fr (next_inst) >= 4
2513 && inst_saves_fr (next_inst) <= 7)
2514 {
2515 /* So we drop into the code below in a reasonable state. */
2516 reg_num = inst_saves_fr (next_inst);
2517 pc -= 4;
2518 }
2519
2520 /* Ugh. Also account for argument stores into the stack.
2521 This is a kludge as on the HP compiler sets this bit and it
2522 never does prologue scheduling. So once we see one, skip past
2523 all of them. */
2524 if (reg_num >= 4 && reg_num <= 7)
2525 {
2526 while (reg_num >= 4 && reg_num <= 7)
2527 {
2528 pc += 8;
2529 status = target_read_memory (pc, buf, 4);
2530 inst = extract_unsigned_integer (buf, 4);
2531 if (status != 0)
2532 return pc;
2533 if ((inst & 0xfc000000) != 0x34000000)
2534 break;
2535 status = target_read_memory (pc + 4, buf, 4);
2536 next_inst = extract_unsigned_integer (buf, 4);
2537 if (status != 0)
2538 return pc;
2539 reg_num = inst_saves_fr (next_inst);
2540 }
2541 args_stored = 0;
2542 continue;
2543 }
c598654a
JL
2544
2545 /* Quit if we hit any kind of branch. This can happen if a prologue
2546 instruction is in the delay slot of the first call/branch. */
2547 if (is_branch (inst))
2548 break;
2549
edd86fb0
JL
2550 /* What a crock. The HP compilers set args_stored even if no
2551 arguments were stored into the stack (boo hiss). This could
2552 cause this code to then skip a bunch of user insns (up to the
2553 first branch).
2554
2555 To combat this we try to identify when args_stored was bogusly
2556 set and clear it. We only do this when args_stored is nonzero,
2557 all other resources are accounted for, and nothing changed on
2558 this pass. */
2559 if (args_stored
2560 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2561 && old_save_gr == save_gr && old_save_fr == save_fr
2562 && old_save_rp == save_rp && old_save_sp == save_sp
2563 && old_stack_remaining == stack_remaining)
2564 break;
2565
c598654a
JL
2566 /* Bump the PC. */
2567 pc += 4;
66a1aa07 2568 }
66a1aa07 2569
7e72b115
JL
2570 /* We've got a tenative location for the end of the prologue. However
2571 because of limitations in the unwind descriptor mechanism we may
2572 have went too far into user code looking for the save of a register
2573 that does not exist. So, if there registers we expected to be saved
2574 but never were, mask them out and restart.
2575
2576 This should only happen in optimized code, and should be very rare. */
3f550b59 2577 if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
7e72b115
JL
2578 {
2579 pc = orig_pc;
2580 restart_gr = save_gr;
2581 restart_fr = save_fr;
2582 goto restart;
2583 }
2584
66a1aa07
SG
2585 return pc;
2586}
2587
c598654a
JL
2588/* Put here the code to store, into a struct frame_saved_regs,
2589 the addresses of the saved registers of frame described by FRAME_INFO.
2590 This includes special registers such as pc and fp saved in special
2591 ways in the stack frame. sp is even more special:
2592 the address we return for it IS the sp for the next frame. */
2593
2594void
2595hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
cb5f7128 2596 struct frame_info *frame_info;
c598654a
JL
2597 struct frame_saved_regs *frame_saved_regs;
2598{
2599 CORE_ADDR pc;
2600 struct unwind_table_entry *u;
2601 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2602 int status, i, reg;
2603 char buf[4];
2604 int fp_loc = -1;
2605
2606 /* Zero out everything. */
2607 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2608
2609 /* Call dummy frames always look the same, so there's no need to
2610 examine the dummy code to determine locations of saved registers;
2611 instead, let find_dummy_frame_regs fill in the correct offsets
2612 for the saved registers. */
cb5f7128
JL
2613 if ((frame_info->pc >= frame_info->frame
2614 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2615 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2616 + 6 * 4)))
2617 find_dummy_frame_regs (frame_info, frame_saved_regs);
c598654a 2618
70e43abe
JL
2619 /* Interrupt handlers are special too. They lay out the register
2620 state in the exact same order as the register numbers in GDB. */
cb5f7128 2621 if (pc_in_interrupt_handler (frame_info->pc))
70e43abe
JL
2622 {
2623 for (i = 0; i < NUM_REGS; i++)
2624 {
2625 /* SP is a little special. */
2626 if (i == SP_REGNUM)
2627 frame_saved_regs->regs[SP_REGNUM]
cb5f7128 2628 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
70e43abe 2629 else
cb5f7128 2630 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
70e43abe
JL
2631 }
2632 return;
2633 }
2634
7486c68d 2635#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
70e43abe 2636 /* Handle signal handler callers. */
cb5f7128 2637 if (frame_info->signal_handler_caller)
70e43abe 2638 {
cb5f7128 2639 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
70e43abe
JL
2640 return;
2641 }
7486c68d 2642#endif
70e43abe 2643
c598654a 2644 /* Get the starting address of the function referred to by the PC
669caa9c 2645 saved in frame. */
cb5f7128 2646 pc = get_pc_function_start (frame_info->pc);
c598654a
JL
2647
2648 /* Yow! */
2649 u = find_unwind_entry (pc);
2650 if (!u)
2651 return;
2652
2653 /* This is how much of a frame adjustment we need to account for. */
2654 stack_remaining = u->Total_frame_size << 3;
2655
2656 /* Magic register saves we want to know about. */
2657 save_rp = u->Save_RP;
2658 save_sp = u->Save_SP;
2659
2660 /* Turn the Entry_GR field into a bitmask. */
2661 save_gr = 0;
2662 for (i = 3; i < u->Entry_GR + 3; i++)
2663 {
2664 /* Frame pointer gets saved into a special location. */
2665 if (u->Save_SP && i == FP_REGNUM)
2666 continue;
2667
2668 save_gr |= (1 << i);
2669 }
2670
2671 /* Turn the Entry_FR field into a bitmask too. */
2672 save_fr = 0;
2673 for (i = 12; i < u->Entry_FR + 12; i++)
2674 save_fr |= (1 << i);
2675
70e43abe
JL
2676 /* The frame always represents the value of %sp at entry to the
2677 current function (and is thus equivalent to the "saved" stack
2678 pointer. */
cb5f7128 2679 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
70e43abe 2680
c598654a
JL
2681 /* Loop until we find everything of interest or hit a branch.
2682
2683 For unoptimized GCC code and for any HP CC code this will never ever
2684 examine any user instructions.
2685
2686 For optimzied GCC code we're faced with problems. GCC will schedule
2687 its prologue and make prologue instructions available for delay slot
2688 filling. The end result is user code gets mixed in with the prologue
2689 and a prologue instruction may be in the delay slot of the first branch
2690 or call.
2691
2692 Some unexpected things are expected with debugging optimized code, so
2693 we allow this routine to walk past user instructions in optimized
2694 GCC code. */
2695 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2696 {
2697 status = target_read_memory (pc, buf, 4);
2698 inst = extract_unsigned_integer (buf, 4);
2699
2700 /* Yow! */
2701 if (status != 0)
2702 return;
2703
2704 /* Note the interesting effects of this instruction. */
2705 stack_remaining -= prologue_inst_adjust_sp (inst);
2706
2707 /* There is only one instruction used for saving RP into the stack. */
2708 if (inst == 0x6bc23fd9)
2709 {
2710 save_rp = 0;
cb5f7128 2711 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
c598654a
JL
2712 }
2713
70e43abe
JL
2714 /* Just note that we found the save of SP into the stack. The
2715 value for frame_saved_regs was computed above. */
c598654a 2716 if ((inst & 0xffffc000) == 0x6fc10000)
70e43abe 2717 save_sp = 0;
c598654a
JL
2718
2719 /* Account for general and floating-point register saves. */
2720 reg = inst_saves_gr (inst);
2721 if (reg >= 3 && reg <= 18
2722 && (!u->Save_SP || reg != FP_REGNUM))
2723 {
2724 save_gr &= ~(1 << reg);
2725
2726 /* stwm with a positive displacement is a *post modify*. */
2727 if ((inst >> 26) == 0x1b
2728 && extract_14 (inst) >= 0)
cb5f7128 2729 frame_saved_regs->regs[reg] = frame_info->frame;
c598654a
JL
2730 else
2731 {
2732 /* Handle code with and without frame pointers. */
2733 if (u->Save_SP)
2734 frame_saved_regs->regs[reg]
cb5f7128 2735 = frame_info->frame + extract_14 (inst);
c598654a
JL
2736 else
2737 frame_saved_regs->regs[reg]
cb5f7128 2738 = frame_info->frame + (u->Total_frame_size << 3)
c598654a
JL
2739 + extract_14 (inst);
2740 }
2741 }
2742
2743
2744 /* GCC handles callee saved FP regs a little differently.
2745
2746 It emits an instruction to put the value of the start of
2747 the FP store area into %r1. It then uses fstds,ma with
2748 a basereg of %r1 for the stores.
2749
2750 HP CC emits them at the current stack pointer modifying
2751 the stack pointer as it stores each register. */
2752
2753 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2754 if ((inst & 0xffffc000) == 0x34610000
2755 || (inst & 0xffffc000) == 0x37c10000)
2756 fp_loc = extract_14 (inst);
2757
2758 reg = inst_saves_fr (inst);
2759 if (reg >= 12 && reg <= 21)
2760 {
2761 /* Note +4 braindamage below is necessary because the FP status
2762 registers are internally 8 registers rather than the expected
2763 4 registers. */
2764 save_fr &= ~(1 << reg);
2765 if (fp_loc == -1)
2766 {
2767 /* 1st HP CC FP register store. After this instruction
2768 we've set enough state that the GCC and HPCC code are
2769 both handled in the same manner. */
cb5f7128 2770 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
c598654a
JL
2771 fp_loc = 8;
2772 }
2773 else
2774 {
2775 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
cb5f7128 2776 = frame_info->frame + fp_loc;
c598654a
JL
2777 fp_loc += 8;
2778 }
2779 }
2780
2781 /* Quit if we hit any kind of branch. This can happen if a prologue
2782 instruction is in the delay slot of the first call/branch. */
2783 if (is_branch (inst))
2784 break;
2785
2786 /* Bump the PC. */
2787 pc += 4;
2788 }
2789}
2790
63757ecd
JK
2791#ifdef MAINTENANCE_CMDS
2792
66a1aa07
SG
2793static void
2794unwind_command (exp, from_tty)
2795 char *exp;
2796 int from_tty;
2797{
2798 CORE_ADDR address;
d8afcce9 2799 struct unwind_table_entry *u;
66a1aa07
SG
2800
2801 /* If we have an expression, evaluate it and use it as the address. */
2802
2803 if (exp != 0 && *exp != 0)
2804 address = parse_and_eval_address (exp);
2805 else
2806 return;
2807
d8afcce9 2808 u = find_unwind_entry (address);
66a1aa07 2809
d8afcce9 2810 if (!u)
66a1aa07 2811 {
d8afcce9 2812 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
66a1aa07
SG
2813 return;
2814 }
2815
d8afcce9
SG
2816 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2817
2818 printf_unfiltered ("\tregion_start = ");
2819 print_address (u->region_start, gdb_stdout);
2820
2821 printf_unfiltered ("\n\tregion_end = ");
2822 print_address (u->region_end, gdb_stdout);
2823
2824#ifdef __STDC__
2825#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2826#else
2827#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2828#endif
2829
2830 printf_unfiltered ("\n\tflags =");
2831 pif (Cannot_unwind);
2832 pif (Millicode);
2833 pif (Millicode_save_sr0);
2834 pif (Entry_SR);
2835 pif (Args_stored);
2836 pif (Variable_Frame);
2837 pif (Separate_Package_Body);
2838 pif (Frame_Extension_Millicode);
2839 pif (Stack_Overflow_Check);
2840 pif (Two_Instruction_SP_Increment);
2841 pif (Ada_Region);
2842 pif (Save_SP);
2843 pif (Save_RP);
2844 pif (Save_MRP_in_frame);
2845 pif (extn_ptr_defined);
2846 pif (Cleanup_defined);
2847 pif (MPE_XL_interrupt_marker);
2848 pif (HP_UX_interrupt_marker);
2849 pif (Large_frame);
2850
2851 putchar_unfiltered ('\n');
2852
2853#ifdef __STDC__
2854#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2855#else
2856#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2857#endif
2858
2859 pin (Region_description);
2860 pin (Entry_FR);
2861 pin (Entry_GR);
2862 pin (Total_frame_size);
66a1aa07 2863}
976bb0be 2864#endif /* MAINTENANCE_CMDS */
63757ecd
JK
2865
2866void
2867_initialize_hppa_tdep ()
2868{
18b46e7c
SS
2869 tm_print_insn = print_insn_hppa;
2870
976bb0be 2871#ifdef MAINTENANCE_CMDS
63757ecd
JK
2872 add_cmd ("unwind", class_maintenance, unwind_command,
2873 "Print unwind table entry at given address.",
2874 &maintenanceprintlist);
63757ecd 2875#endif /* MAINTENANCE_CMDS */
976bb0be 2876}
This page took 0.335428 seconds and 4 git commands to generate.