Commit | Line | Data |
---|---|---|
a7aad9aa | 1 | /* Target-dependent code for the HP PA-RISC architecture. |
cda5a58a | 2 | |
28e7fd62 | 3 | Copyright (C) 1986-2013 Free Software Foundation, Inc. |
c906108c SS |
4 | |
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah (pa-gdb-bugs@cs.utah.edu). | |
7 | ||
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 13 | (at your option) any later version. |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b | 20 | You should have received a copy of the GNU General Public License |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
22 | |
23 | #include "defs.h" | |
c906108c SS |
24 | #include "bfd.h" |
25 | #include "inferior.h" | |
4e052eda | 26 | #include "regcache.h" |
e5d66720 | 27 | #include "completer.h" |
59623e27 | 28 | #include "osabi.h" |
a7ff40e7 | 29 | #include "gdb_assert.h" |
343af405 | 30 | #include "arch-utils.h" |
1777feb0 | 31 | /* For argument passing to the inferior. */ |
c906108c | 32 | #include "symtab.h" |
fde2cceb | 33 | #include "dis-asm.h" |
26d08f08 AC |
34 | #include "trad-frame.h" |
35 | #include "frame-unwind.h" | |
36 | #include "frame-base.h" | |
c906108c | 37 | |
c906108c SS |
38 | #include "gdbcore.h" |
39 | #include "gdbcmd.h" | |
e6bb342a | 40 | #include "gdbtypes.h" |
c906108c | 41 | #include "objfiles.h" |
3ff7cf9e | 42 | #include "hppa-tdep.h" |
c906108c | 43 | |
369aa520 RC |
44 | static int hppa_debug = 0; |
45 | ||
60383d10 | 46 | /* Some local constants. */ |
3ff7cf9e JB |
47 | static const int hppa32_num_regs = 128; |
48 | static const int hppa64_num_regs = 96; | |
49 | ||
7c46b9fb RC |
50 | /* hppa-specific object data -- unwind and solib info. |
51 | TODO/maybe: think about splitting this into two parts; the unwind data is | |
52 | common to all hppa targets, but is only used in this file; we can register | |
53 | that separately and make this static. The solib data is probably hpux- | |
54 | specific, so we can create a separate extern objfile_data that is registered | |
55 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ | |
56 | const struct objfile_data *hppa_objfile_priv_data = NULL; | |
57 | ||
1777feb0 | 58 | /* Get at various relevent fields of an instruction word. */ |
e2ac8128 JB |
59 | #define MASK_5 0x1f |
60 | #define MASK_11 0x7ff | |
61 | #define MASK_14 0x3fff | |
62 | #define MASK_21 0x1fffff | |
63 | ||
e2ac8128 JB |
64 | /* Sizes (in bytes) of the native unwind entries. */ |
65 | #define UNWIND_ENTRY_SIZE 16 | |
66 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
67 | ||
c906108c | 68 | /* Routines to extract various sized constants out of hppa |
1777feb0 | 69 | instructions. */ |
c906108c SS |
70 | |
71 | /* This assumes that no garbage lies outside of the lower bits of | |
1777feb0 | 72 | value. */ |
c906108c | 73 | |
63807e1d | 74 | static int |
abc485a1 | 75 | hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 76 | { |
c5aa993b | 77 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
78 | } |
79 | ||
1777feb0 | 80 | /* For many immediate values the sign bit is the low bit! */ |
c906108c | 81 | |
63807e1d | 82 | static int |
abc485a1 | 83 | hppa_low_hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 84 | { |
c5aa993b | 85 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
86 | } |
87 | ||
e2ac8128 | 88 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
1777feb0 | 89 | (MSB = 0). */ |
e2ac8128 | 90 | |
abc485a1 RC |
91 | int |
92 | hppa_get_field (unsigned word, int from, int to) | |
e2ac8128 JB |
93 | { |
94 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
95 | } | |
96 | ||
1777feb0 | 97 | /* Extract the immediate field from a ld{bhw}s instruction. */ |
c906108c | 98 | |
abc485a1 RC |
99 | int |
100 | hppa_extract_5_load (unsigned word) | |
c906108c | 101 | { |
abc485a1 | 102 | return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
c906108c SS |
103 | } |
104 | ||
1777feb0 | 105 | /* Extract the immediate field from a break instruction. */ |
c906108c | 106 | |
abc485a1 RC |
107 | unsigned |
108 | hppa_extract_5r_store (unsigned word) | |
c906108c SS |
109 | { |
110 | return (word & MASK_5); | |
111 | } | |
112 | ||
1777feb0 | 113 | /* Extract the immediate field from a {sr}sm instruction. */ |
c906108c | 114 | |
abc485a1 RC |
115 | unsigned |
116 | hppa_extract_5R_store (unsigned word) | |
c906108c SS |
117 | { |
118 | return (word >> 16 & MASK_5); | |
119 | } | |
120 | ||
1777feb0 | 121 | /* Extract a 14 bit immediate field. */ |
c906108c | 122 | |
abc485a1 RC |
123 | int |
124 | hppa_extract_14 (unsigned word) | |
c906108c | 125 | { |
abc485a1 | 126 | return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
c906108c SS |
127 | } |
128 | ||
1777feb0 | 129 | /* Extract a 21 bit constant. */ |
c906108c | 130 | |
abc485a1 RC |
131 | int |
132 | hppa_extract_21 (unsigned word) | |
c906108c SS |
133 | { |
134 | int val; | |
135 | ||
136 | word &= MASK_21; | |
137 | word <<= 11; | |
abc485a1 | 138 | val = hppa_get_field (word, 20, 20); |
c906108c | 139 | val <<= 11; |
abc485a1 | 140 | val |= hppa_get_field (word, 9, 19); |
c906108c | 141 | val <<= 2; |
abc485a1 | 142 | val |= hppa_get_field (word, 5, 6); |
c906108c | 143 | val <<= 5; |
abc485a1 | 144 | val |= hppa_get_field (word, 0, 4); |
c906108c | 145 | val <<= 2; |
abc485a1 RC |
146 | val |= hppa_get_field (word, 7, 8); |
147 | return hppa_sign_extend (val, 21) << 11; | |
c906108c SS |
148 | } |
149 | ||
c906108c | 150 | /* extract a 17 bit constant from branch instructions, returning the |
1777feb0 | 151 | 19 bit signed value. */ |
c906108c | 152 | |
abc485a1 RC |
153 | int |
154 | hppa_extract_17 (unsigned word) | |
c906108c | 155 | { |
abc485a1 RC |
156 | return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
157 | hppa_get_field (word, 29, 29) << 10 | | |
158 | hppa_get_field (word, 11, 15) << 11 | | |
c906108c SS |
159 | (word & 0x1) << 16, 17) << 2; |
160 | } | |
3388d7ff RC |
161 | |
162 | CORE_ADDR | |
163 | hppa_symbol_address(const char *sym) | |
164 | { | |
165 | struct minimal_symbol *minsym; | |
166 | ||
167 | minsym = lookup_minimal_symbol (sym, NULL, NULL); | |
168 | if (minsym) | |
169 | return SYMBOL_VALUE_ADDRESS (minsym); | |
170 | else | |
171 | return (CORE_ADDR)-1; | |
172 | } | |
77d18ded RC |
173 | |
174 | struct hppa_objfile_private * | |
175 | hppa_init_objfile_priv_data (struct objfile *objfile) | |
176 | { | |
177 | struct hppa_objfile_private *priv; | |
178 | ||
179 | priv = (struct hppa_objfile_private *) | |
180 | obstack_alloc (&objfile->objfile_obstack, | |
181 | sizeof (struct hppa_objfile_private)); | |
182 | set_objfile_data (objfile, hppa_objfile_priv_data, priv); | |
183 | memset (priv, 0, sizeof (*priv)); | |
184 | ||
185 | return priv; | |
186 | } | |
c906108c SS |
187 | \f |
188 | ||
189 | /* Compare the start address for two unwind entries returning 1 if | |
190 | the first address is larger than the second, -1 if the second is | |
191 | larger than the first, and zero if they are equal. */ | |
192 | ||
193 | static int | |
fba45db2 | 194 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
195 | { |
196 | const struct unwind_table_entry *a = arg1; | |
197 | const struct unwind_table_entry *b = arg2; | |
198 | ||
199 | if (a->region_start > b->region_start) | |
200 | return 1; | |
201 | else if (a->region_start < b->region_start) | |
202 | return -1; | |
203 | else | |
204 | return 0; | |
205 | } | |
206 | ||
53a5351d | 207 | static void |
fdd72f95 | 208 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
53a5351d | 209 | { |
fdd72f95 | 210 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d | 211 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
fdd72f95 RC |
212 | { |
213 | bfd_vma value = section->vma - section->filepos; | |
214 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; | |
215 | ||
216 | if (value < *low_text_segment_address) | |
217 | *low_text_segment_address = value; | |
218 | } | |
53a5351d JM |
219 | } |
220 | ||
c906108c | 221 | static void |
fba45db2 | 222 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
1777feb0 MS |
223 | asection *section, unsigned int entries, |
224 | unsigned int size, CORE_ADDR text_offset) | |
c906108c SS |
225 | { |
226 | /* We will read the unwind entries into temporary memory, then | |
227 | fill in the actual unwind table. */ | |
fdd72f95 | 228 | |
c906108c SS |
229 | if (size > 0) |
230 | { | |
5db8bbe5 | 231 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c SS |
232 | unsigned long tmp; |
233 | unsigned i; | |
234 | char *buf = alloca (size); | |
fdd72f95 | 235 | CORE_ADDR low_text_segment_address; |
c906108c | 236 | |
fdd72f95 | 237 | /* For ELF targets, then unwinds are supposed to |
1777feb0 | 238 | be segment relative offsets instead of absolute addresses. |
c2c6d25f JM |
239 | |
240 | Note that when loading a shared library (text_offset != 0) the | |
241 | unwinds are already relative to the text_offset that will be | |
242 | passed in. */ | |
5db8bbe5 | 243 | if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0) |
53a5351d | 244 | { |
fdd72f95 RC |
245 | low_text_segment_address = -1; |
246 | ||
53a5351d | 247 | bfd_map_over_sections (objfile->obfd, |
fdd72f95 RC |
248 | record_text_segment_lowaddr, |
249 | &low_text_segment_address); | |
53a5351d | 250 | |
fdd72f95 | 251 | text_offset = low_text_segment_address; |
53a5351d | 252 | } |
5db8bbe5 | 253 | else if (gdbarch_tdep (gdbarch)->solib_get_text_base) |
acf86d54 | 254 | { |
5db8bbe5 | 255 | text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile); |
acf86d54 | 256 | } |
53a5351d | 257 | |
c906108c SS |
258 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
259 | ||
260 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 261 | endian issues. */ |
c906108c SS |
262 | for (i = 0; i < entries; i++) |
263 | { | |
264 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 265 | (bfd_byte *) buf); |
c906108c SS |
266 | table[i].region_start += text_offset; |
267 | buf += 4; | |
c5aa993b | 268 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
269 | table[i].region_end += text_offset; |
270 | buf += 4; | |
c5aa993b | 271 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
272 | buf += 4; |
273 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
274 | table[i].Millicode = (tmp >> 30) & 0x1; | |
275 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
276 | table[i].Region_description = (tmp >> 27) & 0x3; | |
6fcecea0 | 277 | table[i].reserved = (tmp >> 26) & 0x1; |
c906108c SS |
278 | table[i].Entry_SR = (tmp >> 25) & 0x1; |
279 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
280 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
281 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
282 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
283 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
284 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
285 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
286 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
6fcecea0 | 287 | table[i].sr4export = (tmp >> 9) & 0x1; |
c906108c SS |
288 | table[i].cxx_info = (tmp >> 8) & 0x1; |
289 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
290 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
6fcecea0 | 291 | table[i].reserved1 = (tmp >> 5) & 0x1; |
c906108c SS |
292 | table[i].Save_SP = (tmp >> 4) & 0x1; |
293 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
294 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
6fcecea0 | 295 | table[i].save_r19 = (tmp >> 1) & 0x1; |
c906108c | 296 | table[i].Cleanup_defined = tmp & 0x1; |
c5aa993b | 297 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
298 | buf += 4; |
299 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
300 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
301 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
6fcecea0 RC |
302 | table[i].alloca_frame = (tmp >> 28) & 0x1; |
303 | table[i].reserved2 = (tmp >> 27) & 0x1; | |
c906108c SS |
304 | table[i].Total_frame_size = tmp & 0x7ffffff; |
305 | ||
1777feb0 | 306 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
307 | table[i].stub_unwind.stub_type = 0; |
308 | table[i].stub_unwind.padding = 0; | |
309 | } | |
310 | } | |
311 | } | |
312 | ||
313 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
314 | the object file. This info is used mainly by find_unwind_entry() to find | |
315 | out the stack frame size and frame pointer used by procedures. We put | |
316 | everything on the psymbol obstack in the objfile so that it automatically | |
317 | gets freed when the objfile is destroyed. */ | |
318 | ||
319 | static void | |
fba45db2 | 320 | read_unwind_info (struct objfile *objfile) |
c906108c | 321 | { |
d4f3574e SS |
322 | asection *unwind_sec, *stub_unwind_sec; |
323 | unsigned unwind_size, stub_unwind_size, total_size; | |
324 | unsigned index, unwind_entries; | |
c906108c SS |
325 | unsigned stub_entries, total_entries; |
326 | CORE_ADDR text_offset; | |
7c46b9fb RC |
327 | struct hppa_unwind_info *ui; |
328 | struct hppa_objfile_private *obj_private; | |
c906108c | 329 | |
a99dad3d | 330 | text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
7c46b9fb RC |
331 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
332 | sizeof (struct hppa_unwind_info)); | |
c906108c SS |
333 | |
334 | ui->table = NULL; | |
335 | ui->cache = NULL; | |
336 | ui->last = -1; | |
337 | ||
d4f3574e SS |
338 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
339 | sections in a single executable. So we just iterate over every | |
340 | section in the BFD looking for unwinder sections intead of trying | |
1777feb0 | 341 | to do a lookup with bfd_get_section_by_name. |
c906108c | 342 | |
d4f3574e SS |
343 | First determine the total size of the unwind tables so that we |
344 | can allocate memory in a nice big hunk. */ | |
345 | total_entries = 0; | |
346 | for (unwind_sec = objfile->obfd->sections; | |
347 | unwind_sec; | |
348 | unwind_sec = unwind_sec->next) | |
c906108c | 349 | { |
d4f3574e SS |
350 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
351 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
352 | { | |
353 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
354 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 355 | |
d4f3574e SS |
356 | total_entries += unwind_entries; |
357 | } | |
c906108c SS |
358 | } |
359 | ||
d4f3574e | 360 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
043f5962 | 361 | use stub unwinds at the current time. */ |
d4f3574e SS |
362 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
363 | ||
c906108c SS |
364 | if (stub_unwind_sec) |
365 | { | |
366 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
367 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
368 | } | |
369 | else | |
370 | { | |
371 | stub_unwind_size = 0; | |
372 | stub_entries = 0; | |
373 | } | |
374 | ||
375 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 376 | total_entries += stub_entries; |
c906108c SS |
377 | total_size = total_entries * sizeof (struct unwind_table_entry); |
378 | ||
379 | /* Allocate memory for the unwind table. */ | |
380 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 381 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 382 | ui->last = total_entries - 1; |
c906108c | 383 | |
d4f3574e SS |
384 | /* Now read in each unwind section and internalize the standard unwind |
385 | entries. */ | |
c906108c | 386 | index = 0; |
d4f3574e SS |
387 | for (unwind_sec = objfile->obfd->sections; |
388 | unwind_sec; | |
389 | unwind_sec = unwind_sec->next) | |
390 | { | |
391 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
392 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
393 | { | |
394 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
395 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
396 | ||
397 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
398 | unwind_entries, unwind_size, text_offset); | |
399 | index += unwind_entries; | |
400 | } | |
401 | } | |
402 | ||
403 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
404 | if (stub_unwind_size > 0) |
405 | { | |
406 | unsigned int i; | |
407 | char *buf = alloca (stub_unwind_size); | |
408 | ||
409 | /* Read in the stub unwind entries. */ | |
410 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
411 | 0, stub_unwind_size); | |
412 | ||
413 | /* Now convert them into regular unwind entries. */ | |
414 | for (i = 0; i < stub_entries; i++, index++) | |
415 | { | |
416 | /* Clear out the next unwind entry. */ | |
417 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
418 | ||
1777feb0 | 419 | /* Convert offset & size into region_start and region_end. |
c906108c SS |
420 | Stuff away the stub type into "reserved" fields. */ |
421 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
422 | (bfd_byte *) buf); | |
423 | ui->table[index].region_start += text_offset; | |
424 | buf += 4; | |
425 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 426 | (bfd_byte *) buf); |
c906108c SS |
427 | buf += 2; |
428 | ui->table[index].region_end | |
c5aa993b JM |
429 | = ui->table[index].region_start + 4 * |
430 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
431 | buf += 2; |
432 | } | |
433 | ||
434 | } | |
435 | ||
436 | /* Unwind table needs to be kept sorted. */ | |
437 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
438 | compare_unwind_entries); | |
439 | ||
440 | /* Keep a pointer to the unwind information. */ | |
7c46b9fb RC |
441 | obj_private = (struct hppa_objfile_private *) |
442 | objfile_data (objfile, hppa_objfile_priv_data); | |
443 | if (obj_private == NULL) | |
77d18ded RC |
444 | obj_private = hppa_init_objfile_priv_data (objfile); |
445 | ||
c906108c SS |
446 | obj_private->unwind_info = ui; |
447 | } | |
448 | ||
449 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
450 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
451 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
452 | search of the unwind tables, we depend upon them to be sorted. */ | |
453 | ||
454 | struct unwind_table_entry * | |
fba45db2 | 455 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
456 | { |
457 | int first, middle, last; | |
458 | struct objfile *objfile; | |
7c46b9fb | 459 | struct hppa_objfile_private *priv; |
c906108c | 460 | |
369aa520 | 461 | if (hppa_debug) |
5af949e3 UW |
462 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ", |
463 | hex_string (pc)); | |
369aa520 | 464 | |
1777feb0 | 465 | /* A function at address 0? Not in HP-UX! */ |
c906108c | 466 | if (pc == (CORE_ADDR) 0) |
369aa520 RC |
467 | { |
468 | if (hppa_debug) | |
469 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); | |
470 | return NULL; | |
471 | } | |
c906108c SS |
472 | |
473 | ALL_OBJFILES (objfile) | |
c5aa993b | 474 | { |
7c46b9fb | 475 | struct hppa_unwind_info *ui; |
c5aa993b | 476 | ui = NULL; |
7c46b9fb RC |
477 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
478 | if (priv) | |
479 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
c906108c | 480 | |
c5aa993b JM |
481 | if (!ui) |
482 | { | |
483 | read_unwind_info (objfile); | |
7c46b9fb RC |
484 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
485 | if (priv == NULL) | |
8a3fe4f8 | 486 | error (_("Internal error reading unwind information.")); |
7c46b9fb | 487 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
c5aa993b | 488 | } |
c906108c | 489 | |
1777feb0 | 490 | /* First, check the cache. */ |
c906108c | 491 | |
c5aa993b JM |
492 | if (ui->cache |
493 | && pc >= ui->cache->region_start | |
494 | && pc <= ui->cache->region_end) | |
369aa520 RC |
495 | { |
496 | if (hppa_debug) | |
5af949e3 UW |
497 | fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n", |
498 | hex_string ((uintptr_t) ui->cache)); | |
369aa520 RC |
499 | return ui->cache; |
500 | } | |
c906108c | 501 | |
1777feb0 | 502 | /* Not in the cache, do a binary search. */ |
c906108c | 503 | |
c5aa993b JM |
504 | first = 0; |
505 | last = ui->last; | |
c906108c | 506 | |
c5aa993b JM |
507 | while (first <= last) |
508 | { | |
509 | middle = (first + last) / 2; | |
510 | if (pc >= ui->table[middle].region_start | |
511 | && pc <= ui->table[middle].region_end) | |
512 | { | |
513 | ui->cache = &ui->table[middle]; | |
369aa520 | 514 | if (hppa_debug) |
5af949e3 UW |
515 | fprintf_unfiltered (gdb_stdlog, "%s }\n", |
516 | hex_string ((uintptr_t) ui->cache)); | |
c5aa993b JM |
517 | return &ui->table[middle]; |
518 | } | |
c906108c | 519 | |
c5aa993b JM |
520 | if (pc < ui->table[middle].region_start) |
521 | last = middle - 1; | |
522 | else | |
523 | first = middle + 1; | |
524 | } | |
525 | } /* ALL_OBJFILES() */ | |
369aa520 RC |
526 | |
527 | if (hppa_debug) | |
528 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); | |
529 | ||
c906108c SS |
530 | return NULL; |
531 | } | |
532 | ||
1fb24930 | 533 | /* The epilogue is defined here as the area either on the `bv' instruction |
1777feb0 | 534 | itself or an instruction which destroys the function's stack frame. |
1fb24930 RC |
535 | |
536 | We do not assume that the epilogue is at the end of a function as we can | |
537 | also have return sequences in the middle of a function. */ | |
538 | static int | |
539 | hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
540 | { | |
e17a4113 | 541 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1fb24930 RC |
542 | unsigned long status; |
543 | unsigned int inst; | |
e362b510 | 544 | gdb_byte buf[4]; |
1fb24930 | 545 | |
8defab1a | 546 | status = target_read_memory (pc, buf, 4); |
1fb24930 RC |
547 | if (status != 0) |
548 | return 0; | |
549 | ||
e17a4113 | 550 | inst = extract_unsigned_integer (buf, 4, byte_order); |
1fb24930 RC |
551 | |
552 | /* The most common way to perform a stack adjustment ldo X(sp),sp | |
553 | We are destroying a stack frame if the offset is negative. */ | |
554 | if ((inst & 0xffffc000) == 0x37de0000 | |
555 | && hppa_extract_14 (inst) < 0) | |
556 | return 1; | |
557 | ||
558 | /* ldw,mb D(sp),X or ldd,mb D(sp),X */ | |
559 | if (((inst & 0x0fc010e0) == 0x0fc010e0 | |
560 | || (inst & 0x0fc010e0) == 0x0fc010e0) | |
561 | && hppa_extract_14 (inst) < 0) | |
562 | return 1; | |
563 | ||
564 | /* bv %r0(%rp) or bv,n %r0(%rp) */ | |
565 | if (inst == 0xe840c000 || inst == 0xe840c002) | |
566 | return 1; | |
567 | ||
568 | return 0; | |
569 | } | |
570 | ||
85f4f2d8 | 571 | static const unsigned char * |
67d57894 | 572 | hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len) |
aaab4dba | 573 | { |
56132691 | 574 | static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; |
aaab4dba AC |
575 | (*len) = sizeof (breakpoint); |
576 | return breakpoint; | |
577 | } | |
578 | ||
e23457df AC |
579 | /* Return the name of a register. */ |
580 | ||
4a302917 | 581 | static const char * |
d93859e2 | 582 | hppa32_register_name (struct gdbarch *gdbarch, int i) |
e23457df AC |
583 | { |
584 | static char *names[] = { | |
585 | "flags", "r1", "rp", "r3", | |
586 | "r4", "r5", "r6", "r7", | |
587 | "r8", "r9", "r10", "r11", | |
588 | "r12", "r13", "r14", "r15", | |
589 | "r16", "r17", "r18", "r19", | |
590 | "r20", "r21", "r22", "r23", | |
591 | "r24", "r25", "r26", "dp", | |
592 | "ret0", "ret1", "sp", "r31", | |
593 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
594 | "pcsqt", "eiem", "iir", "isr", | |
595 | "ior", "ipsw", "goto", "sr4", | |
596 | "sr0", "sr1", "sr2", "sr3", | |
597 | "sr5", "sr6", "sr7", "cr0", | |
598 | "cr8", "cr9", "ccr", "cr12", | |
599 | "cr13", "cr24", "cr25", "cr26", | |
600 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
601 | "fpsr", "fpe1", "fpe2", "fpe3", | |
602 | "fpe4", "fpe5", "fpe6", "fpe7", | |
603 | "fr4", "fr4R", "fr5", "fr5R", | |
604 | "fr6", "fr6R", "fr7", "fr7R", | |
605 | "fr8", "fr8R", "fr9", "fr9R", | |
606 | "fr10", "fr10R", "fr11", "fr11R", | |
607 | "fr12", "fr12R", "fr13", "fr13R", | |
608 | "fr14", "fr14R", "fr15", "fr15R", | |
609 | "fr16", "fr16R", "fr17", "fr17R", | |
610 | "fr18", "fr18R", "fr19", "fr19R", | |
611 | "fr20", "fr20R", "fr21", "fr21R", | |
612 | "fr22", "fr22R", "fr23", "fr23R", | |
613 | "fr24", "fr24R", "fr25", "fr25R", | |
614 | "fr26", "fr26R", "fr27", "fr27R", | |
615 | "fr28", "fr28R", "fr29", "fr29R", | |
616 | "fr30", "fr30R", "fr31", "fr31R" | |
617 | }; | |
618 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
619 | return NULL; | |
620 | else | |
621 | return names[i]; | |
622 | } | |
623 | ||
4a302917 | 624 | static const char * |
d93859e2 | 625 | hppa64_register_name (struct gdbarch *gdbarch, int i) |
e23457df AC |
626 | { |
627 | static char *names[] = { | |
628 | "flags", "r1", "rp", "r3", | |
629 | "r4", "r5", "r6", "r7", | |
630 | "r8", "r9", "r10", "r11", | |
631 | "r12", "r13", "r14", "r15", | |
632 | "r16", "r17", "r18", "r19", | |
633 | "r20", "r21", "r22", "r23", | |
634 | "r24", "r25", "r26", "dp", | |
635 | "ret0", "ret1", "sp", "r31", | |
636 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
637 | "pcsqt", "eiem", "iir", "isr", | |
638 | "ior", "ipsw", "goto", "sr4", | |
639 | "sr0", "sr1", "sr2", "sr3", | |
640 | "sr5", "sr6", "sr7", "cr0", | |
641 | "cr8", "cr9", "ccr", "cr12", | |
642 | "cr13", "cr24", "cr25", "cr26", | |
643 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
644 | "fpsr", "fpe1", "fpe2", "fpe3", | |
645 | "fr4", "fr5", "fr6", "fr7", | |
646 | "fr8", "fr9", "fr10", "fr11", | |
647 | "fr12", "fr13", "fr14", "fr15", | |
648 | "fr16", "fr17", "fr18", "fr19", | |
649 | "fr20", "fr21", "fr22", "fr23", | |
650 | "fr24", "fr25", "fr26", "fr27", | |
651 | "fr28", "fr29", "fr30", "fr31" | |
652 | }; | |
653 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
654 | return NULL; | |
655 | else | |
656 | return names[i]; | |
657 | } | |
658 | ||
85c83e99 | 659 | /* Map dwarf DBX register numbers to GDB register numbers. */ |
1ef7fcb5 | 660 | static int |
d3f73121 | 661 | hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
1ef7fcb5 | 662 | { |
85c83e99 | 663 | /* The general registers and the sar are the same in both sets. */ |
1ef7fcb5 RC |
664 | if (reg <= 32) |
665 | return reg; | |
666 | ||
667 | /* fr4-fr31 are mapped from 72 in steps of 2. */ | |
85c83e99 | 668 | if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) |
1ef7fcb5 RC |
669 | return HPPA64_FP4_REGNUM + (reg - 72) / 2; |
670 | ||
85c83e99 | 671 | warning (_("Unmapped DWARF DBX Register #%d encountered."), reg); |
1ef7fcb5 RC |
672 | return -1; |
673 | } | |
674 | ||
79508e1e AC |
675 | /* This function pushes a stack frame with arguments as part of the |
676 | inferior function calling mechanism. | |
677 | ||
678 | This is the version of the function for the 32-bit PA machines, in | |
679 | which later arguments appear at lower addresses. (The stack always | |
680 | grows towards higher addresses.) | |
681 | ||
682 | We simply allocate the appropriate amount of stack space and put | |
683 | arguments into their proper slots. */ | |
684 | ||
4a302917 | 685 | static CORE_ADDR |
7d9b040b | 686 | hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
79508e1e AC |
687 | struct regcache *regcache, CORE_ADDR bp_addr, |
688 | int nargs, struct value **args, CORE_ADDR sp, | |
689 | int struct_return, CORE_ADDR struct_addr) | |
690 | { | |
e17a4113 UW |
691 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
692 | ||
79508e1e AC |
693 | /* Stack base address at which any pass-by-reference parameters are |
694 | stored. */ | |
695 | CORE_ADDR struct_end = 0; | |
696 | /* Stack base address at which the first parameter is stored. */ | |
697 | CORE_ADDR param_end = 0; | |
698 | ||
699 | /* The inner most end of the stack after all the parameters have | |
700 | been pushed. */ | |
701 | CORE_ADDR new_sp = 0; | |
702 | ||
703 | /* Two passes. First pass computes the location of everything, | |
704 | second pass writes the bytes out. */ | |
705 | int write_pass; | |
d49771ef RC |
706 | |
707 | /* Global pointer (r19) of the function we are trying to call. */ | |
708 | CORE_ADDR gp; | |
709 | ||
710 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
711 | ||
79508e1e AC |
712 | for (write_pass = 0; write_pass < 2; write_pass++) |
713 | { | |
1797a8f6 | 714 | CORE_ADDR struct_ptr = 0; |
1777feb0 | 715 | /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
2a6228ef RC |
716 | struct_ptr is adjusted for each argument below, so the first |
717 | argument will end up at sp-36. */ | |
718 | CORE_ADDR param_ptr = 32; | |
79508e1e | 719 | int i; |
2a6228ef RC |
720 | int small_struct = 0; |
721 | ||
79508e1e AC |
722 | for (i = 0; i < nargs; i++) |
723 | { | |
724 | struct value *arg = args[i]; | |
4991999e | 725 | struct type *type = check_typedef (value_type (arg)); |
79508e1e AC |
726 | /* The corresponding parameter that is pushed onto the |
727 | stack, and [possibly] passed in a register. */ | |
948f8e3d | 728 | gdb_byte param_val[8]; |
79508e1e AC |
729 | int param_len; |
730 | memset (param_val, 0, sizeof param_val); | |
731 | if (TYPE_LENGTH (type) > 8) | |
732 | { | |
733 | /* Large parameter, pass by reference. Store the value | |
734 | in "struct" area and then pass its address. */ | |
735 | param_len = 4; | |
1797a8f6 | 736 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 737 | if (write_pass) |
0fd88904 | 738 | write_memory (struct_end - struct_ptr, value_contents (arg), |
79508e1e | 739 | TYPE_LENGTH (type)); |
e17a4113 UW |
740 | store_unsigned_integer (param_val, 4, byte_order, |
741 | struct_end - struct_ptr); | |
79508e1e AC |
742 | } |
743 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
744 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
745 | { | |
746 | /* Integer value store, right aligned. "unpack_long" | |
747 | takes care of any sign-extension problems. */ | |
748 | param_len = align_up (TYPE_LENGTH (type), 4); | |
e17a4113 | 749 | store_unsigned_integer (param_val, param_len, byte_order, |
79508e1e | 750 | unpack_long (type, |
0fd88904 | 751 | value_contents (arg))); |
79508e1e | 752 | } |
2a6228ef RC |
753 | else if (TYPE_CODE (type) == TYPE_CODE_FLT) |
754 | { | |
755 | /* Floating point value store, right aligned. */ | |
756 | param_len = align_up (TYPE_LENGTH (type), 4); | |
0fd88904 | 757 | memcpy (param_val, value_contents (arg), param_len); |
2a6228ef | 758 | } |
79508e1e AC |
759 | else |
760 | { | |
79508e1e | 761 | param_len = align_up (TYPE_LENGTH (type), 4); |
2a6228ef RC |
762 | |
763 | /* Small struct value are stored right-aligned. */ | |
79508e1e | 764 | memcpy (param_val + param_len - TYPE_LENGTH (type), |
0fd88904 | 765 | value_contents (arg), TYPE_LENGTH (type)); |
2a6228ef RC |
766 | |
767 | /* Structures of size 5, 6 and 7 bytes are special in that | |
768 | the higher-ordered word is stored in the lower-ordered | |
769 | argument, and even though it is a 8-byte quantity the | |
770 | registers need not be 8-byte aligned. */ | |
1b07b470 | 771 | if (param_len > 4 && param_len < 8) |
2a6228ef | 772 | small_struct = 1; |
79508e1e | 773 | } |
2a6228ef | 774 | |
1797a8f6 | 775 | param_ptr += param_len; |
2a6228ef RC |
776 | if (param_len == 8 && !small_struct) |
777 | param_ptr = align_up (param_ptr, 8); | |
778 | ||
779 | /* First 4 non-FP arguments are passed in gr26-gr23. | |
780 | First 4 32-bit FP arguments are passed in fr4L-fr7L. | |
781 | First 2 64-bit FP arguments are passed in fr5 and fr7. | |
782 | ||
783 | The rest go on the stack, starting at sp-36, towards lower | |
784 | addresses. 8-byte arguments must be aligned to a 8-byte | |
785 | stack boundary. */ | |
79508e1e AC |
786 | if (write_pass) |
787 | { | |
1797a8f6 | 788 | write_memory (param_end - param_ptr, param_val, param_len); |
2a6228ef RC |
789 | |
790 | /* There are some cases when we don't know the type | |
791 | expected by the callee (e.g. for variadic functions), so | |
792 | pass the parameters in both general and fp regs. */ | |
793 | if (param_ptr <= 48) | |
79508e1e | 794 | { |
2a6228ef RC |
795 | int grreg = 26 - (param_ptr - 36) / 4; |
796 | int fpLreg = 72 + (param_ptr - 36) / 4 * 2; | |
797 | int fpreg = 74 + (param_ptr - 32) / 8 * 4; | |
798 | ||
799 | regcache_cooked_write (regcache, grreg, param_val); | |
800 | regcache_cooked_write (regcache, fpLreg, param_val); | |
801 | ||
79508e1e | 802 | if (param_len > 4) |
2a6228ef RC |
803 | { |
804 | regcache_cooked_write (regcache, grreg + 1, | |
805 | param_val + 4); | |
806 | ||
807 | regcache_cooked_write (regcache, fpreg, param_val); | |
808 | regcache_cooked_write (regcache, fpreg + 1, | |
809 | param_val + 4); | |
810 | } | |
79508e1e AC |
811 | } |
812 | } | |
813 | } | |
814 | ||
815 | /* Update the various stack pointers. */ | |
816 | if (!write_pass) | |
817 | { | |
2a6228ef | 818 | struct_end = sp + align_up (struct_ptr, 64); |
79508e1e AC |
819 | /* PARAM_PTR already accounts for all the arguments passed |
820 | by the user. However, the ABI mandates minimum stack | |
821 | space allocations for outgoing arguments. The ABI also | |
822 | mandates minimum stack alignments which we must | |
823 | preserve. */ | |
2a6228ef | 824 | param_end = struct_end + align_up (param_ptr, 64); |
79508e1e AC |
825 | } |
826 | } | |
827 | ||
828 | /* If a structure has to be returned, set up register 28 to hold its | |
1777feb0 | 829 | address. */ |
79508e1e | 830 | if (struct_return) |
9c9acae0 | 831 | regcache_cooked_write_unsigned (regcache, 28, struct_addr); |
79508e1e | 832 | |
e38c262f | 833 | gp = tdep->find_global_pointer (gdbarch, function); |
d49771ef RC |
834 | |
835 | if (gp != 0) | |
9c9acae0 | 836 | regcache_cooked_write_unsigned (regcache, 19, gp); |
d49771ef | 837 | |
79508e1e | 838 | /* Set the return address. */ |
77d18ded RC |
839 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
840 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
79508e1e | 841 | |
c4557624 | 842 | /* Update the Stack Pointer. */ |
34f75cc1 | 843 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
c4557624 | 844 | |
2a6228ef | 845 | return param_end; |
79508e1e AC |
846 | } |
847 | ||
38ca4e0c MK |
848 | /* The 64-bit PA-RISC calling conventions are documented in "64-Bit |
849 | Runtime Architecture for PA-RISC 2.0", which is distributed as part | |
850 | as of the HP-UX Software Transition Kit (STK). This implementation | |
851 | is based on version 3.3, dated October 6, 1997. */ | |
2f690297 | 852 | |
38ca4e0c | 853 | /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ |
2f690297 | 854 | |
38ca4e0c MK |
855 | static int |
856 | hppa64_integral_or_pointer_p (const struct type *type) | |
857 | { | |
858 | switch (TYPE_CODE (type)) | |
859 | { | |
860 | case TYPE_CODE_INT: | |
861 | case TYPE_CODE_BOOL: | |
862 | case TYPE_CODE_CHAR: | |
863 | case TYPE_CODE_ENUM: | |
864 | case TYPE_CODE_RANGE: | |
865 | { | |
866 | int len = TYPE_LENGTH (type); | |
867 | return (len == 1 || len == 2 || len == 4 || len == 8); | |
868 | } | |
869 | case TYPE_CODE_PTR: | |
870 | case TYPE_CODE_REF: | |
871 | return (TYPE_LENGTH (type) == 8); | |
872 | default: | |
873 | break; | |
874 | } | |
875 | ||
876 | return 0; | |
877 | } | |
878 | ||
879 | /* Check whether TYPE is a "Floating Scalar Type". */ | |
880 | ||
881 | static int | |
882 | hppa64_floating_p (const struct type *type) | |
883 | { | |
884 | switch (TYPE_CODE (type)) | |
885 | { | |
886 | case TYPE_CODE_FLT: | |
887 | { | |
888 | int len = TYPE_LENGTH (type); | |
889 | return (len == 4 || len == 8 || len == 16); | |
890 | } | |
891 | default: | |
892 | break; | |
893 | } | |
894 | ||
895 | return 0; | |
896 | } | |
2f690297 | 897 | |
1218e655 RC |
898 | /* If CODE points to a function entry address, try to look up the corresponding |
899 | function descriptor and return its address instead. If CODE is not a | |
900 | function entry address, then just return it unchanged. */ | |
901 | static CORE_ADDR | |
e17a4113 | 902 | hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code) |
1218e655 | 903 | { |
e17a4113 | 904 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1218e655 RC |
905 | struct obj_section *sec, *opd; |
906 | ||
907 | sec = find_pc_section (code); | |
908 | ||
909 | if (!sec) | |
910 | return code; | |
911 | ||
912 | /* If CODE is in a data section, assume it's already a fptr. */ | |
913 | if (!(sec->the_bfd_section->flags & SEC_CODE)) | |
914 | return code; | |
915 | ||
916 | ALL_OBJFILE_OSECTIONS (sec->objfile, opd) | |
917 | { | |
918 | if (strcmp (opd->the_bfd_section->name, ".opd") == 0) | |
aded6f54 | 919 | break; |
1218e655 RC |
920 | } |
921 | ||
922 | if (opd < sec->objfile->sections_end) | |
923 | { | |
924 | CORE_ADDR addr; | |
925 | ||
aded6f54 PA |
926 | for (addr = obj_section_addr (opd); |
927 | addr < obj_section_endaddr (opd); | |
928 | addr += 2 * 8) | |
929 | { | |
1218e655 | 930 | ULONGEST opdaddr; |
948f8e3d | 931 | gdb_byte tmp[8]; |
1218e655 RC |
932 | |
933 | if (target_read_memory (addr, tmp, sizeof (tmp))) | |
934 | break; | |
e17a4113 | 935 | opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order); |
1218e655 | 936 | |
aded6f54 | 937 | if (opdaddr == code) |
1218e655 RC |
938 | return addr - 16; |
939 | } | |
940 | } | |
941 | ||
942 | return code; | |
943 | } | |
944 | ||
4a302917 | 945 | static CORE_ADDR |
7d9b040b | 946 | hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
2f690297 AC |
947 | struct regcache *regcache, CORE_ADDR bp_addr, |
948 | int nargs, struct value **args, CORE_ADDR sp, | |
949 | int struct_return, CORE_ADDR struct_addr) | |
950 | { | |
38ca4e0c | 951 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 952 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
38ca4e0c MK |
953 | int i, offset = 0; |
954 | CORE_ADDR gp; | |
2f690297 | 955 | |
38ca4e0c MK |
956 | /* "The outgoing parameter area [...] must be aligned at a 16-byte |
957 | boundary." */ | |
958 | sp = align_up (sp, 16); | |
2f690297 | 959 | |
38ca4e0c MK |
960 | for (i = 0; i < nargs; i++) |
961 | { | |
962 | struct value *arg = args[i]; | |
963 | struct type *type = value_type (arg); | |
964 | int len = TYPE_LENGTH (type); | |
0fd88904 | 965 | const bfd_byte *valbuf; |
1218e655 | 966 | bfd_byte fptrbuf[8]; |
38ca4e0c | 967 | int regnum; |
2f690297 | 968 | |
38ca4e0c MK |
969 | /* "Each parameter begins on a 64-bit (8-byte) boundary." */ |
970 | offset = align_up (offset, 8); | |
77d18ded | 971 | |
38ca4e0c | 972 | if (hppa64_integral_or_pointer_p (type)) |
2f690297 | 973 | { |
38ca4e0c MK |
974 | /* "Integral scalar parameters smaller than 64 bits are |
975 | padded on the left (i.e., the value is in the | |
976 | least-significant bits of the 64-bit storage unit, and | |
977 | the high-order bits are undefined)." Therefore we can | |
978 | safely sign-extend them. */ | |
979 | if (len < 8) | |
449e1137 | 980 | { |
df4df182 | 981 | arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg); |
38ca4e0c MK |
982 | len = 8; |
983 | } | |
984 | } | |
985 | else if (hppa64_floating_p (type)) | |
986 | { | |
987 | if (len > 8) | |
988 | { | |
989 | /* "Quad-precision (128-bit) floating-point scalar | |
990 | parameters are aligned on a 16-byte boundary." */ | |
991 | offset = align_up (offset, 16); | |
992 | ||
993 | /* "Double-extended- and quad-precision floating-point | |
994 | parameters within the first 64 bytes of the parameter | |
995 | list are always passed in general registers." */ | |
449e1137 AC |
996 | } |
997 | else | |
998 | { | |
38ca4e0c | 999 | if (len == 4) |
449e1137 | 1000 | { |
38ca4e0c MK |
1001 | /* "Single-precision (32-bit) floating-point scalar |
1002 | parameters are padded on the left with 32 bits of | |
1003 | garbage (i.e., the floating-point value is in the | |
1004 | least-significant 32 bits of a 64-bit storage | |
1005 | unit)." */ | |
1006 | offset += 4; | |
449e1137 | 1007 | } |
38ca4e0c MK |
1008 | |
1009 | /* "Single- and double-precision floating-point | |
1010 | parameters in this area are passed according to the | |
1011 | available formal parameter information in a function | |
1012 | prototype. [...] If no prototype is in scope, | |
1013 | floating-point parameters must be passed both in the | |
1014 | corresponding general registers and in the | |
1015 | corresponding floating-point registers." */ | |
1016 | regnum = HPPA64_FP4_REGNUM + offset / 8; | |
1017 | ||
1018 | if (regnum < HPPA64_FP4_REGNUM + 8) | |
449e1137 | 1019 | { |
38ca4e0c MK |
1020 | /* "Single-precision floating-point parameters, when |
1021 | passed in floating-point registers, are passed in | |
1022 | the right halves of the floating point registers; | |
1023 | the left halves are unused." */ | |
1024 | regcache_cooked_write_part (regcache, regnum, offset % 8, | |
0fd88904 | 1025 | len, value_contents (arg)); |
449e1137 AC |
1026 | } |
1027 | } | |
2f690297 | 1028 | } |
38ca4e0c | 1029 | else |
2f690297 | 1030 | { |
38ca4e0c MK |
1031 | if (len > 8) |
1032 | { | |
1033 | /* "Aggregates larger than 8 bytes are aligned on a | |
1034 | 16-byte boundary, possibly leaving an unused argument | |
1777feb0 | 1035 | slot, which is filled with garbage. If necessary, |
38ca4e0c MK |
1036 | they are padded on the right (with garbage), to a |
1037 | multiple of 8 bytes." */ | |
1038 | offset = align_up (offset, 16); | |
1039 | } | |
1040 | } | |
1041 | ||
1218e655 RC |
1042 | /* If we are passing a function pointer, make sure we pass a function |
1043 | descriptor instead of the function entry address. */ | |
1044 | if (TYPE_CODE (type) == TYPE_CODE_PTR | |
1045 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
1046 | { | |
1047 | ULONGEST codeptr, fptr; | |
1048 | ||
1049 | codeptr = unpack_long (type, value_contents (arg)); | |
e17a4113 UW |
1050 | fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr); |
1051 | store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order, | |
1052 | fptr); | |
1218e655 RC |
1053 | valbuf = fptrbuf; |
1054 | } | |
1055 | else | |
1056 | { | |
1057 | valbuf = value_contents (arg); | |
1058 | } | |
1059 | ||
38ca4e0c | 1060 | /* Always store the argument in memory. */ |
1218e655 | 1061 | write_memory (sp + offset, valbuf, len); |
38ca4e0c | 1062 | |
38ca4e0c MK |
1063 | regnum = HPPA_ARG0_REGNUM - offset / 8; |
1064 | while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) | |
1065 | { | |
1066 | regcache_cooked_write_part (regcache, regnum, | |
1067 | offset % 8, min (len, 8), valbuf); | |
1068 | offset += min (len, 8); | |
1069 | valbuf += min (len, 8); | |
1070 | len -= min (len, 8); | |
1071 | regnum--; | |
2f690297 | 1072 | } |
38ca4e0c MK |
1073 | |
1074 | offset += len; | |
2f690297 AC |
1075 | } |
1076 | ||
38ca4e0c MK |
1077 | /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ |
1078 | regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); | |
1079 | ||
1080 | /* Allocate the outgoing parameter area. Make sure the outgoing | |
1081 | parameter area is multiple of 16 bytes in length. */ | |
1082 | sp += max (align_up (offset, 16), 64); | |
1083 | ||
1084 | /* Allocate 32-bytes of scratch space. The documentation doesn't | |
1085 | mention this, but it seems to be needed. */ | |
1086 | sp += 32; | |
1087 | ||
1088 | /* Allocate the frame marker area. */ | |
1089 | sp += 16; | |
1090 | ||
1091 | /* If a structure has to be returned, set up GR 28 (%ret0) to hold | |
1092 | its address. */ | |
2f690297 | 1093 | if (struct_return) |
38ca4e0c | 1094 | regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); |
2f690297 | 1095 | |
38ca4e0c | 1096 | /* Set up GR27 (%dp) to hold the global pointer (gp). */ |
e38c262f | 1097 | gp = tdep->find_global_pointer (gdbarch, function); |
77d18ded | 1098 | if (gp != 0) |
38ca4e0c | 1099 | regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); |
77d18ded | 1100 | |
38ca4e0c | 1101 | /* Set up GR2 (%rp) to hold the return pointer (rp). */ |
77d18ded RC |
1102 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
1103 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
2f690297 | 1104 | |
38ca4e0c MK |
1105 | /* Set up GR30 to hold the stack pointer (sp). */ |
1106 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); | |
c4557624 | 1107 | |
38ca4e0c | 1108 | return sp; |
2f690297 | 1109 | } |
38ca4e0c | 1110 | \f |
2f690297 | 1111 | |
08a27113 MK |
1112 | /* Handle 32/64-bit struct return conventions. */ |
1113 | ||
1114 | static enum return_value_convention | |
6a3a010b | 1115 | hppa32_return_value (struct gdbarch *gdbarch, struct value *function, |
08a27113 | 1116 | struct type *type, struct regcache *regcache, |
e127f0db | 1117 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1118 | { |
1119 | if (TYPE_LENGTH (type) <= 2 * 4) | |
1120 | { | |
1121 | /* The value always lives in the right hand end of the register | |
1122 | (or register pair)? */ | |
1123 | int b; | |
1124 | int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; | |
1125 | int part = TYPE_LENGTH (type) % 4; | |
1126 | /* The left hand register contains only part of the value, | |
1127 | transfer that first so that the rest can be xfered as entire | |
1128 | 4-byte registers. */ | |
1129 | if (part > 0) | |
1130 | { | |
1131 | if (readbuf != NULL) | |
1132 | regcache_cooked_read_part (regcache, reg, 4 - part, | |
1133 | part, readbuf); | |
1134 | if (writebuf != NULL) | |
1135 | regcache_cooked_write_part (regcache, reg, 4 - part, | |
1136 | part, writebuf); | |
1137 | reg++; | |
1138 | } | |
1139 | /* Now transfer the remaining register values. */ | |
1140 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
1141 | { | |
1142 | if (readbuf != NULL) | |
e127f0db | 1143 | regcache_cooked_read (regcache, reg, readbuf + b); |
08a27113 | 1144 | if (writebuf != NULL) |
e127f0db | 1145 | regcache_cooked_write (regcache, reg, writebuf + b); |
08a27113 MK |
1146 | reg++; |
1147 | } | |
1148 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1149 | } | |
1150 | else | |
1151 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1152 | } | |
1153 | ||
1154 | static enum return_value_convention | |
6a3a010b | 1155 | hppa64_return_value (struct gdbarch *gdbarch, struct value *function, |
08a27113 | 1156 | struct type *type, struct regcache *regcache, |
e127f0db | 1157 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1158 | { |
1159 | int len = TYPE_LENGTH (type); | |
1160 | int regnum, offset; | |
1161 | ||
bad43aa5 | 1162 | if (len > 16) |
08a27113 MK |
1163 | { |
1164 | /* All return values larget than 128 bits must be aggregate | |
1165 | return values. */ | |
9738b034 MK |
1166 | gdb_assert (!hppa64_integral_or_pointer_p (type)); |
1167 | gdb_assert (!hppa64_floating_p (type)); | |
08a27113 MK |
1168 | |
1169 | /* "Aggregate return values larger than 128 bits are returned in | |
1170 | a buffer allocated by the caller. The address of the buffer | |
1171 | must be passed in GR 28." */ | |
1172 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1173 | } | |
1174 | ||
1175 | if (hppa64_integral_or_pointer_p (type)) | |
1176 | { | |
1177 | /* "Integral return values are returned in GR 28. Values | |
1178 | smaller than 64 bits are padded on the left (with garbage)." */ | |
1179 | regnum = HPPA_RET0_REGNUM; | |
1180 | offset = 8 - len; | |
1181 | } | |
1182 | else if (hppa64_floating_p (type)) | |
1183 | { | |
1184 | if (len > 8) | |
1185 | { | |
1186 | /* "Double-extended- and quad-precision floating-point | |
1187 | values are returned in GRs 28 and 29. The sign, | |
1188 | exponent, and most-significant bits of the mantissa are | |
1189 | returned in GR 28; the least-significant bits of the | |
1190 | mantissa are passed in GR 29. For double-extended | |
1191 | precision values, GR 29 is padded on the right with 48 | |
1192 | bits of garbage." */ | |
1193 | regnum = HPPA_RET0_REGNUM; | |
1194 | offset = 0; | |
1195 | } | |
1196 | else | |
1197 | { | |
1198 | /* "Single-precision and double-precision floating-point | |
1199 | return values are returned in FR 4R (single precision) or | |
1200 | FR 4 (double-precision)." */ | |
1201 | regnum = HPPA64_FP4_REGNUM; | |
1202 | offset = 8 - len; | |
1203 | } | |
1204 | } | |
1205 | else | |
1206 | { | |
1207 | /* "Aggregate return values up to 64 bits in size are returned | |
1208 | in GR 28. Aggregates smaller than 64 bits are left aligned | |
1209 | in the register; the pad bits on the right are undefined." | |
1210 | ||
1211 | "Aggregate return values between 65 and 128 bits are returned | |
1212 | in GRs 28 and 29. The first 64 bits are placed in GR 28, and | |
1213 | the remaining bits are placed, left aligned, in GR 29. The | |
1214 | pad bits on the right of GR 29 (if any) are undefined." */ | |
1215 | regnum = HPPA_RET0_REGNUM; | |
1216 | offset = 0; | |
1217 | } | |
1218 | ||
1219 | if (readbuf) | |
1220 | { | |
08a27113 MK |
1221 | while (len > 0) |
1222 | { | |
1223 | regcache_cooked_read_part (regcache, regnum, offset, | |
e127f0db MK |
1224 | min (len, 8), readbuf); |
1225 | readbuf += min (len, 8); | |
08a27113 MK |
1226 | len -= min (len, 8); |
1227 | regnum++; | |
1228 | } | |
1229 | } | |
1230 | ||
1231 | if (writebuf) | |
1232 | { | |
08a27113 MK |
1233 | while (len > 0) |
1234 | { | |
1235 | regcache_cooked_write_part (regcache, regnum, offset, | |
e127f0db MK |
1236 | min (len, 8), writebuf); |
1237 | writebuf += min (len, 8); | |
08a27113 MK |
1238 | len -= min (len, 8); |
1239 | regnum++; | |
1240 | } | |
1241 | } | |
1242 | ||
1243 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1244 | } | |
1245 | \f | |
1246 | ||
d49771ef | 1247 | static CORE_ADDR |
a7aad9aa | 1248 | hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
d49771ef RC |
1249 | struct target_ops *targ) |
1250 | { | |
1251 | if (addr & 2) | |
1252 | { | |
0dfff4cb | 1253 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
a7aad9aa | 1254 | CORE_ADDR plabel = addr & ~3; |
0dfff4cb | 1255 | return read_memory_typed_address (plabel, func_ptr_type); |
d49771ef RC |
1256 | } |
1257 | ||
1258 | return addr; | |
1259 | } | |
1260 | ||
1797a8f6 AC |
1261 | static CORE_ADDR |
1262 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1263 | { | |
1264 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
1265 | and not _bit_)! */ | |
1266 | return align_up (addr, 64); | |
1267 | } | |
1268 | ||
2f690297 AC |
1269 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
1270 | ||
1271 | static CORE_ADDR | |
1797a8f6 | 1272 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
1273 | { |
1274 | /* Just always 16-byte align. */ | |
1275 | return align_up (addr, 16); | |
1276 | } | |
1277 | ||
cc72850f | 1278 | CORE_ADDR |
61a1198a | 1279 | hppa_read_pc (struct regcache *regcache) |
c906108c | 1280 | { |
cc72850f | 1281 | ULONGEST ipsw; |
61a1198a | 1282 | ULONGEST pc; |
c906108c | 1283 | |
61a1198a UW |
1284 | regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw); |
1285 | regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc); | |
fe46cd3a RC |
1286 | |
1287 | /* If the current instruction is nullified, then we are effectively | |
1288 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
1289 | there. This is needed when single stepping; if the nullified |
1290 | instruction is on a different line, we don't want GDB to think | |
1291 | we've stepped onto that line. */ | |
fe46cd3a RC |
1292 | if (ipsw & 0x00200000) |
1293 | pc -= 4; | |
1294 | ||
cc72850f | 1295 | return pc & ~0x3; |
c906108c SS |
1296 | } |
1297 | ||
cc72850f | 1298 | void |
61a1198a | 1299 | hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) |
c906108c | 1300 | { |
61a1198a UW |
1301 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); |
1302 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); | |
c906108c SS |
1303 | } |
1304 | ||
c906108c | 1305 | /* For the given instruction (INST), return any adjustment it makes |
1777feb0 | 1306 | to the stack pointer or zero for no adjustment. |
c906108c SS |
1307 | |
1308 | This only handles instructions commonly found in prologues. */ | |
1309 | ||
1310 | static int | |
fba45db2 | 1311 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
1312 | { |
1313 | /* This must persist across calls. */ | |
1314 | static int save_high21; | |
1315 | ||
1316 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1317 | if ((inst & 0xffffc000) == 0x37de0000) | |
abc485a1 | 1318 | return hppa_extract_14 (inst); |
c906108c SS |
1319 | |
1320 | /* stwm X,D(sp) */ | |
1321 | if ((inst & 0xffe00000) == 0x6fc00000) | |
abc485a1 | 1322 | return hppa_extract_14 (inst); |
c906108c | 1323 | |
104c1213 JM |
1324 | /* std,ma X,D(sp) */ |
1325 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 1326 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 1327 | |
e22b26cb | 1328 | /* addil high21,%r30; ldo low11,(%r1),%r30) |
c906108c | 1329 | save high bits in save_high21 for later use. */ |
e22b26cb | 1330 | if ((inst & 0xffe00000) == 0x2bc00000) |
c906108c | 1331 | { |
abc485a1 | 1332 | save_high21 = hppa_extract_21 (inst); |
c906108c SS |
1333 | return 0; |
1334 | } | |
1335 | ||
1336 | if ((inst & 0xffff0000) == 0x343e0000) | |
abc485a1 | 1337 | return save_high21 + hppa_extract_14 (inst); |
c906108c SS |
1338 | |
1339 | /* fstws as used by the HP compilers. */ | |
1340 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
abc485a1 | 1341 | return hppa_extract_5_load (inst); |
c906108c SS |
1342 | |
1343 | /* No adjustment. */ | |
1344 | return 0; | |
1345 | } | |
1346 | ||
1347 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1348 | ||
1349 | static int | |
fba45db2 | 1350 | is_branch (unsigned long inst) |
c906108c SS |
1351 | { |
1352 | switch (inst >> 26) | |
1353 | { | |
1354 | case 0x20: | |
1355 | case 0x21: | |
1356 | case 0x22: | |
1357 | case 0x23: | |
7be570e7 | 1358 | case 0x27: |
c906108c SS |
1359 | case 0x28: |
1360 | case 0x29: | |
1361 | case 0x2a: | |
1362 | case 0x2b: | |
7be570e7 | 1363 | case 0x2f: |
c906108c SS |
1364 | case 0x30: |
1365 | case 0x31: | |
1366 | case 0x32: | |
1367 | case 0x33: | |
1368 | case 0x38: | |
1369 | case 0x39: | |
1370 | case 0x3a: | |
7be570e7 | 1371 | case 0x3b: |
c906108c SS |
1372 | return 1; |
1373 | ||
1374 | default: | |
1375 | return 0; | |
1376 | } | |
1377 | } | |
1378 | ||
1379 | /* Return the register number for a GR which is saved by INST or | |
1380 | zero it INST does not save a GR. */ | |
1381 | ||
1382 | static int | |
fba45db2 | 1383 | inst_saves_gr (unsigned long inst) |
c906108c SS |
1384 | { |
1385 | /* Does it look like a stw? */ | |
7be570e7 JM |
1386 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
1387 | || (inst >> 26) == 0x1f | |
1388 | || ((inst >> 26) == 0x1f | |
1389 | && ((inst >> 6) == 0xa))) | |
abc485a1 | 1390 | return hppa_extract_5R_store (inst); |
7be570e7 JM |
1391 | |
1392 | /* Does it look like a std? */ | |
1393 | if ((inst >> 26) == 0x1c | |
1394 | || ((inst >> 26) == 0x03 | |
1395 | && ((inst >> 6) & 0xf) == 0xb)) | |
abc485a1 | 1396 | return hppa_extract_5R_store (inst); |
c906108c | 1397 | |
1777feb0 | 1398 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ |
c906108c | 1399 | if ((inst >> 26) == 0x1b) |
abc485a1 | 1400 | return hppa_extract_5R_store (inst); |
c906108c SS |
1401 | |
1402 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
1403 | too. */ | |
7be570e7 JM |
1404 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
1405 | || ((inst >> 26) == 0x3 | |
1406 | && (((inst >> 6) & 0xf) == 0x8 | |
1407 | || (inst >> 6) & 0xf) == 0x9)) | |
abc485a1 | 1408 | return hppa_extract_5R_store (inst); |
c5aa993b | 1409 | |
c906108c SS |
1410 | return 0; |
1411 | } | |
1412 | ||
1413 | /* Return the register number for a FR which is saved by INST or | |
1414 | zero it INST does not save a FR. | |
1415 | ||
1416 | Note we only care about full 64bit register stores (that's the only | |
1417 | kind of stores the prologue will use). | |
1418 | ||
1419 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
1420 | ||
1421 | static int | |
fba45db2 | 1422 | inst_saves_fr (unsigned long inst) |
c906108c | 1423 | { |
1777feb0 | 1424 | /* Is this an FSTD? */ |
c906108c | 1425 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
abc485a1 | 1426 | return hppa_extract_5r_store (inst); |
7be570e7 | 1427 | if ((inst & 0xfc000002) == 0x70000002) |
abc485a1 | 1428 | return hppa_extract_5R_store (inst); |
1777feb0 | 1429 | /* Is this an FSTW? */ |
c906108c | 1430 | if ((inst & 0xfc00df80) == 0x24001200) |
abc485a1 | 1431 | return hppa_extract_5r_store (inst); |
7be570e7 | 1432 | if ((inst & 0xfc000002) == 0x7c000000) |
abc485a1 | 1433 | return hppa_extract_5R_store (inst); |
c906108c SS |
1434 | return 0; |
1435 | } | |
1436 | ||
1437 | /* Advance PC across any function entry prologue instructions | |
1777feb0 | 1438 | to reach some "real" code. |
c906108c SS |
1439 | |
1440 | Use information in the unwind table to determine what exactly should | |
1441 | be in the prologue. */ | |
1442 | ||
1443 | ||
a71f8c30 | 1444 | static CORE_ADDR |
be8626e0 MD |
1445 | skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, |
1446 | int stop_before_branch) | |
c906108c | 1447 | { |
e17a4113 | 1448 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e362b510 | 1449 | gdb_byte buf[4]; |
c906108c SS |
1450 | CORE_ADDR orig_pc = pc; |
1451 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1452 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
1453 | struct unwind_table_entry *u; | |
a71f8c30 | 1454 | int final_iteration; |
c906108c SS |
1455 | |
1456 | restart_gr = 0; | |
1457 | restart_fr = 0; | |
1458 | ||
1459 | restart: | |
1460 | u = find_unwind_entry (pc); | |
1461 | if (!u) | |
1462 | return pc; | |
1463 | ||
1777feb0 | 1464 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
1465 | if ((pc & ~0x3) != u->region_start) |
1466 | return pc; | |
1467 | ||
1468 | /* This is how much of a frame adjustment we need to account for. */ | |
1469 | stack_remaining = u->Total_frame_size << 3; | |
1470 | ||
1471 | /* Magic register saves we want to know about. */ | |
1472 | save_rp = u->Save_RP; | |
1473 | save_sp = u->Save_SP; | |
1474 | ||
1475 | /* An indication that args may be stored into the stack. Unfortunately | |
1476 | the HPUX compilers tend to set this in cases where no args were | |
1477 | stored too!. */ | |
1478 | args_stored = 1; | |
1479 | ||
1480 | /* Turn the Entry_GR field into a bitmask. */ | |
1481 | save_gr = 0; | |
1482 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1483 | { | |
1484 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1485 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
c906108c SS |
1486 | continue; |
1487 | ||
1488 | save_gr |= (1 << i); | |
1489 | } | |
1490 | save_gr &= ~restart_gr; | |
1491 | ||
1492 | /* Turn the Entry_FR field into a bitmask too. */ | |
1493 | save_fr = 0; | |
1494 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1495 | save_fr |= (1 << i); | |
1496 | save_fr &= ~restart_fr; | |
1497 | ||
a71f8c30 RC |
1498 | final_iteration = 0; |
1499 | ||
c906108c SS |
1500 | /* Loop until we find everything of interest or hit a branch. |
1501 | ||
1502 | For unoptimized GCC code and for any HP CC code this will never ever | |
1503 | examine any user instructions. | |
1504 | ||
1505 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1506 | its prologue and make prologue instructions available for delay slot | |
1507 | filling. The end result is user code gets mixed in with the prologue | |
1508 | and a prologue instruction may be in the delay slot of the first branch | |
1509 | or call. | |
1510 | ||
1511 | Some unexpected things are expected with debugging optimized code, so | |
1512 | we allow this routine to walk past user instructions in optimized | |
1513 | GCC code. */ | |
1514 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
1515 | || args_stored) | |
1516 | { | |
1517 | unsigned int reg_num; | |
1518 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1519 | unsigned long old_save_rp, old_save_sp, next_inst; | |
1520 | ||
1521 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 1522 | (only for HPC). */ |
c906108c SS |
1523 | old_save_gr = save_gr; |
1524 | old_save_fr = save_fr; | |
1525 | old_save_rp = save_rp; | |
1526 | old_save_sp = save_sp; | |
1527 | old_stack_remaining = stack_remaining; | |
1528 | ||
8defab1a | 1529 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1530 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c5aa993b | 1531 | |
c906108c SS |
1532 | /* Yow! */ |
1533 | if (status != 0) | |
1534 | return pc; | |
1535 | ||
1536 | /* Note the interesting effects of this instruction. */ | |
1537 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1538 | ||
7be570e7 JM |
1539 | /* There are limited ways to store the return pointer into the |
1540 | stack. */ | |
c4c79048 | 1541 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) |
c906108c SS |
1542 | save_rp = 0; |
1543 | ||
104c1213 | 1544 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 1545 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
1546 | if ((inst & 0xffffc000) == 0x6fc10000 |
1547 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
1548 | save_sp = 0; |
1549 | ||
6426a772 JM |
1550 | /* Are we loading some register with an offset from the argument |
1551 | pointer? */ | |
1552 | if ((inst & 0xffe00000) == 0x37a00000 | |
1553 | || (inst & 0xffffffe0) == 0x081d0240) | |
1554 | { | |
1555 | pc += 4; | |
1556 | continue; | |
1557 | } | |
1558 | ||
c906108c SS |
1559 | /* Account for general and floating-point register saves. */ |
1560 | reg_num = inst_saves_gr (inst); | |
1561 | save_gr &= ~(1 << reg_num); | |
1562 | ||
1563 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1564 | Unfortunately args_stored only tells us that some arguments |
1565 | where stored into the stack. Not how many or what kind! | |
c906108c | 1566 | |
c5aa993b JM |
1567 | This is a kludge as on the HP compiler sets this bit and it |
1568 | never does prologue scheduling. So once we see one, skip past | |
1569 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 1570 | |
c5aa993b JM |
1571 | FIXME. Can still die if we have a mix of GR and FR argument |
1572 | stores! */ | |
be8626e0 | 1573 | if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1574 | && reg_num <= 26) |
c906108c | 1575 | { |
be8626e0 | 1576 | while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1577 | && reg_num <= 26) |
c906108c SS |
1578 | { |
1579 | pc += 4; | |
8defab1a | 1580 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1581 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1582 | if (status != 0) |
1583 | return pc; | |
1584 | reg_num = inst_saves_gr (inst); | |
1585 | } | |
1586 | args_stored = 0; | |
1587 | continue; | |
1588 | } | |
1589 | ||
1590 | reg_num = inst_saves_fr (inst); | |
1591 | save_fr &= ~(1 << reg_num); | |
1592 | ||
8defab1a | 1593 | status = target_read_memory (pc + 4, buf, 4); |
e17a4113 | 1594 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
c5aa993b | 1595 | |
c906108c SS |
1596 | /* Yow! */ |
1597 | if (status != 0) | |
1598 | return pc; | |
1599 | ||
1600 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 1601 | save. */ |
c906108c SS |
1602 | if ((inst & 0xfc000000) == 0x34000000 |
1603 | && inst_saves_fr (next_inst) >= 4 | |
819844ad | 1604 | && inst_saves_fr (next_inst) |
be8626e0 | 1605 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1606 | { |
1607 | /* So we drop into the code below in a reasonable state. */ | |
1608 | reg_num = inst_saves_fr (next_inst); | |
1609 | pc -= 4; | |
1610 | } | |
1611 | ||
1612 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1613 | This is a kludge as on the HP compiler sets this bit and it |
1614 | never does prologue scheduling. So once we see one, skip past | |
1615 | all of them. */ | |
819844ad | 1616 | if (reg_num >= 4 |
be8626e0 | 1617 | && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c | 1618 | { |
819844ad UW |
1619 | while (reg_num >= 4 |
1620 | && reg_num | |
be8626e0 | 1621 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1622 | { |
1623 | pc += 8; | |
8defab1a | 1624 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1625 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1626 | if (status != 0) |
1627 | return pc; | |
1628 | if ((inst & 0xfc000000) != 0x34000000) | |
1629 | break; | |
8defab1a | 1630 | status = target_read_memory (pc + 4, buf, 4); |
e17a4113 | 1631 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1632 | if (status != 0) |
1633 | return pc; | |
1634 | reg_num = inst_saves_fr (next_inst); | |
1635 | } | |
1636 | args_stored = 0; | |
1637 | continue; | |
1638 | } | |
1639 | ||
1640 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 1641 | instruction is in the delay slot of the first call/branch. */ |
a71f8c30 | 1642 | if (is_branch (inst) && stop_before_branch) |
c906108c SS |
1643 | break; |
1644 | ||
1645 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
1646 | arguments were stored into the stack (boo hiss). This could |
1647 | cause this code to then skip a bunch of user insns (up to the | |
1648 | first branch). | |
1649 | ||
1650 | To combat this we try to identify when args_stored was bogusly | |
1651 | set and clear it. We only do this when args_stored is nonzero, | |
1652 | all other resources are accounted for, and nothing changed on | |
1653 | this pass. */ | |
c906108c | 1654 | if (args_stored |
c5aa993b | 1655 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
1656 | && old_save_gr == save_gr && old_save_fr == save_fr |
1657 | && old_save_rp == save_rp && old_save_sp == save_sp | |
1658 | && old_stack_remaining == stack_remaining) | |
1659 | break; | |
c5aa993b | 1660 | |
c906108c SS |
1661 | /* Bump the PC. */ |
1662 | pc += 4; | |
a71f8c30 RC |
1663 | |
1664 | /* !stop_before_branch, so also look at the insn in the delay slot | |
1665 | of the branch. */ | |
1666 | if (final_iteration) | |
1667 | break; | |
1668 | if (is_branch (inst)) | |
1669 | final_iteration = 1; | |
c906108c SS |
1670 | } |
1671 | ||
1672 | /* We've got a tenative location for the end of the prologue. However | |
1673 | because of limitations in the unwind descriptor mechanism we may | |
1674 | have went too far into user code looking for the save of a register | |
1675 | that does not exist. So, if there registers we expected to be saved | |
1676 | but never were, mask them out and restart. | |
1677 | ||
1678 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 1679 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
1680 | { |
1681 | pc = orig_pc; | |
1682 | restart_gr = save_gr; | |
1683 | restart_fr = save_fr; | |
1684 | goto restart; | |
1685 | } | |
1686 | ||
1687 | return pc; | |
1688 | } | |
1689 | ||
1690 | ||
7be570e7 JM |
1691 | /* Return the address of the PC after the last prologue instruction if |
1692 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
1693 | |
1694 | static CORE_ADDR | |
fba45db2 | 1695 | after_prologue (CORE_ADDR pc) |
c906108c SS |
1696 | { |
1697 | struct symtab_and_line sal; | |
1698 | CORE_ADDR func_addr, func_end; | |
c906108c | 1699 | |
7be570e7 JM |
1700 | /* If we can not find the symbol in the partial symbol table, then |
1701 | there is no hope we can determine the function's start address | |
1702 | with this code. */ | |
c906108c | 1703 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 1704 | return 0; |
c906108c | 1705 | |
7be570e7 | 1706 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
1707 | sal = find_pc_line (func_addr, 0); |
1708 | ||
7be570e7 JM |
1709 | /* There are only two cases to consider. First, the end of the source line |
1710 | is within the function bounds. In that case we return the end of the | |
1711 | source line. Second is the end of the source line extends beyond the | |
1712 | bounds of the current function. We need to use the slow code to | |
1777feb0 | 1713 | examine instructions in that case. |
c906108c | 1714 | |
7be570e7 JM |
1715 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
1716 | the wrong thing to do. In fact, it should be entirely possible for this | |
1717 | function to always return zero since the slow instruction scanning code | |
1718 | is supposed to *always* work. If it does not, then it is a bug. */ | |
1719 | if (sal.end < func_end) | |
1720 | return sal.end; | |
c5aa993b | 1721 | else |
7be570e7 | 1722 | return 0; |
c906108c SS |
1723 | } |
1724 | ||
1725 | /* To skip prologues, I use this predicate. Returns either PC itself | |
1726 | if the code at PC does not look like a function prologue; otherwise | |
1777feb0 | 1727 | returns an address that (if we're lucky) follows the prologue. |
a71f8c30 RC |
1728 | |
1729 | hppa_skip_prologue is called by gdb to place a breakpoint in a function. | |
1777feb0 | 1730 | It doesn't necessarily skips all the insns in the prologue. In fact |
a71f8c30 RC |
1731 | we might not want to skip all the insns because a prologue insn may |
1732 | appear in the delay slot of the first branch, and we don't want to | |
1733 | skip over the branch in that case. */ | |
c906108c | 1734 | |
8d153463 | 1735 | static CORE_ADDR |
6093d2eb | 1736 | hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1737 | { |
c5aa993b | 1738 | CORE_ADDR post_prologue_pc; |
c906108c | 1739 | |
c5aa993b JM |
1740 | /* See if we can determine the end of the prologue via the symbol table. |
1741 | If so, then return either PC, or the PC after the prologue, whichever | |
1742 | is greater. */ | |
c906108c | 1743 | |
c5aa993b | 1744 | post_prologue_pc = after_prologue (pc); |
c906108c | 1745 | |
7be570e7 JM |
1746 | /* If after_prologue returned a useful address, then use it. Else |
1747 | fall back on the instruction skipping code. | |
1748 | ||
1749 | Some folks have claimed this causes problems because the breakpoint | |
1750 | may be the first instruction of the prologue. If that happens, then | |
1751 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
1752 | if (post_prologue_pc != 0) |
1753 | return max (pc, post_prologue_pc); | |
c5aa993b | 1754 | else |
be8626e0 | 1755 | return (skip_prologue_hard_way (gdbarch, pc, 1)); |
c906108c SS |
1756 | } |
1757 | ||
29d375ac | 1758 | /* Return an unwind entry that falls within the frame's code block. */ |
227e86ad | 1759 | |
29d375ac | 1760 | static struct unwind_table_entry * |
227e86ad | 1761 | hppa_find_unwind_entry_in_block (struct frame_info *this_frame) |
29d375ac | 1762 | { |
227e86ad | 1763 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
93d42b30 DJ |
1764 | |
1765 | /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the | |
ad1193e7 | 1766 | result of get_frame_address_in_block implies a problem. |
93d42b30 | 1767 | The bits should have been removed earlier, before the return |
c7ce8faa | 1768 | value of gdbarch_unwind_pc. That might be happening already; |
93d42b30 DJ |
1769 | if it isn't, it should be fixed. Then this call can be |
1770 | removed. */ | |
227e86ad | 1771 | pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); |
29d375ac RC |
1772 | return find_unwind_entry (pc); |
1773 | } | |
1774 | ||
26d08f08 AC |
1775 | struct hppa_frame_cache |
1776 | { | |
1777 | CORE_ADDR base; | |
1778 | struct trad_frame_saved_reg *saved_regs; | |
1779 | }; | |
1780 | ||
1781 | static struct hppa_frame_cache * | |
227e86ad | 1782 | hppa_frame_cache (struct frame_info *this_frame, void **this_cache) |
26d08f08 | 1783 | { |
227e86ad | 1784 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e17a4113 UW |
1785 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1786 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
26d08f08 AC |
1787 | struct hppa_frame_cache *cache; |
1788 | long saved_gr_mask; | |
1789 | long saved_fr_mask; | |
26d08f08 AC |
1790 | long frame_size; |
1791 | struct unwind_table_entry *u; | |
9f7194c3 | 1792 | CORE_ADDR prologue_end; |
50b2f48a | 1793 | int fp_in_r1 = 0; |
26d08f08 AC |
1794 | int i; |
1795 | ||
369aa520 RC |
1796 | if (hppa_debug) |
1797 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", | |
227e86ad | 1798 | frame_relative_level(this_frame)); |
369aa520 | 1799 | |
26d08f08 | 1800 | if ((*this_cache) != NULL) |
369aa520 RC |
1801 | { |
1802 | if (hppa_debug) | |
5af949e3 UW |
1803 | fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }", |
1804 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); | |
369aa520 RC |
1805 | return (*this_cache); |
1806 | } | |
26d08f08 AC |
1807 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
1808 | (*this_cache) = cache; | |
227e86ad | 1809 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
26d08f08 AC |
1810 | |
1811 | /* Yow! */ | |
227e86ad | 1812 | u = hppa_find_unwind_entry_in_block (this_frame); |
26d08f08 | 1813 | if (!u) |
369aa520 RC |
1814 | { |
1815 | if (hppa_debug) | |
1816 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); | |
1817 | return (*this_cache); | |
1818 | } | |
26d08f08 AC |
1819 | |
1820 | /* Turn the Entry_GR field into a bitmask. */ | |
1821 | saved_gr_mask = 0; | |
1822 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1823 | { | |
1824 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1825 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
26d08f08 AC |
1826 | continue; |
1827 | ||
1828 | saved_gr_mask |= (1 << i); | |
1829 | } | |
1830 | ||
1831 | /* Turn the Entry_FR field into a bitmask too. */ | |
1832 | saved_fr_mask = 0; | |
1833 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1834 | saved_fr_mask |= (1 << i); | |
1835 | ||
1836 | /* Loop until we find everything of interest or hit a branch. | |
1837 | ||
1838 | For unoptimized GCC code and for any HP CC code this will never ever | |
1839 | examine any user instructions. | |
1840 | ||
1841 | For optimized GCC code we're faced with problems. GCC will schedule | |
1842 | its prologue and make prologue instructions available for delay slot | |
1843 | filling. The end result is user code gets mixed in with the prologue | |
1844 | and a prologue instruction may be in the delay slot of the first branch | |
1845 | or call. | |
1846 | ||
1847 | Some unexpected things are expected with debugging optimized code, so | |
1848 | we allow this routine to walk past user instructions in optimized | |
1849 | GCC code. */ | |
1850 | { | |
1851 | int final_iteration = 0; | |
46acf081 | 1852 | CORE_ADDR pc, start_pc, end_pc; |
26d08f08 AC |
1853 | int looking_for_sp = u->Save_SP; |
1854 | int looking_for_rp = u->Save_RP; | |
1855 | int fp_loc = -1; | |
9f7194c3 | 1856 | |
a71f8c30 | 1857 | /* We have to use skip_prologue_hard_way instead of just |
9f7194c3 RC |
1858 | skip_prologue_using_sal, in case we stepped into a function without |
1859 | symbol information. hppa_skip_prologue also bounds the returned | |
1860 | pc by the passed in pc, so it will not return a pc in the next | |
1777feb0 | 1861 | function. |
a71f8c30 RC |
1862 | |
1863 | We used to call hppa_skip_prologue to find the end of the prologue, | |
1864 | but if some non-prologue instructions get scheduled into the prologue, | |
1865 | and the program is compiled with debug information, the "easy" way | |
1866 | in hppa_skip_prologue will return a prologue end that is too early | |
1867 | for us to notice any potential frame adjustments. */ | |
d5c27f81 | 1868 | |
ef02daa9 DJ |
1869 | /* We used to use get_frame_func to locate the beginning of the |
1870 | function to pass to skip_prologue. However, when objects are | |
1871 | compiled without debug symbols, get_frame_func can return the wrong | |
1777feb0 | 1872 | function (or 0). We can do better than that by using unwind records. |
46acf081 | 1873 | This only works if the Region_description of the unwind record |
1777feb0 | 1874 | indicates that it includes the entry point of the function. |
46acf081 RC |
1875 | HP compilers sometimes generate unwind records for regions that |
1876 | do not include the entry or exit point of a function. GNU tools | |
1877 | do not do this. */ | |
1878 | ||
1879 | if ((u->Region_description & 0x2) == 0) | |
1880 | start_pc = u->region_start; | |
1881 | else | |
227e86ad | 1882 | start_pc = get_frame_func (this_frame); |
d5c27f81 | 1883 | |
be8626e0 | 1884 | prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); |
227e86ad | 1885 | end_pc = get_frame_pc (this_frame); |
9f7194c3 RC |
1886 | |
1887 | if (prologue_end != 0 && end_pc > prologue_end) | |
1888 | end_pc = prologue_end; | |
1889 | ||
26d08f08 | 1890 | frame_size = 0; |
9f7194c3 | 1891 | |
46acf081 | 1892 | for (pc = start_pc; |
26d08f08 AC |
1893 | ((saved_gr_mask || saved_fr_mask |
1894 | || looking_for_sp || looking_for_rp | |
1895 | || frame_size < (u->Total_frame_size << 3)) | |
9f7194c3 | 1896 | && pc < end_pc); |
26d08f08 AC |
1897 | pc += 4) |
1898 | { | |
1899 | int reg; | |
e362b510 | 1900 | gdb_byte buf4[4]; |
4a302917 RC |
1901 | long inst; |
1902 | ||
227e86ad | 1903 | if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4)) |
4a302917 | 1904 | { |
5af949e3 UW |
1905 | error (_("Cannot read instruction at %s."), |
1906 | paddress (gdbarch, pc)); | |
4a302917 RC |
1907 | return (*this_cache); |
1908 | } | |
1909 | ||
e17a4113 | 1910 | inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order); |
9f7194c3 | 1911 | |
26d08f08 AC |
1912 | /* Note the interesting effects of this instruction. */ |
1913 | frame_size += prologue_inst_adjust_sp (inst); | |
1914 | ||
1915 | /* There are limited ways to store the return pointer into the | |
1916 | stack. */ | |
1917 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
1918 | { | |
1919 | looking_for_rp = 0; | |
34f75cc1 | 1920 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
26d08f08 | 1921 | } |
dfaf8edb MK |
1922 | else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
1923 | { | |
1924 | looking_for_rp = 0; | |
1925 | cache->saved_regs[HPPA_RP_REGNUM].addr = -24; | |
1926 | } | |
c4c79048 RC |
1927 | else if (inst == 0x0fc212c1 |
1928 | || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
26d08f08 AC |
1929 | { |
1930 | looking_for_rp = 0; | |
34f75cc1 | 1931 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
26d08f08 AC |
1932 | } |
1933 | ||
1934 | /* Check to see if we saved SP into the stack. This also | |
1935 | happens to indicate the location of the saved frame | |
1936 | pointer. */ | |
1937 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
1938 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
1939 | { | |
1940 | looking_for_sp = 0; | |
eded0a31 | 1941 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
26d08f08 | 1942 | } |
50b2f48a RC |
1943 | else if (inst == 0x08030241) /* copy %r3, %r1 */ |
1944 | { | |
1945 | fp_in_r1 = 1; | |
1946 | } | |
26d08f08 AC |
1947 | |
1948 | /* Account for general and floating-point register saves. */ | |
1949 | reg = inst_saves_gr (inst); | |
1950 | if (reg >= 3 && reg <= 18 | |
eded0a31 | 1951 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
26d08f08 AC |
1952 | { |
1953 | saved_gr_mask &= ~(1 << reg); | |
abc485a1 | 1954 | if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
26d08f08 AC |
1955 | /* stwm with a positive displacement is a _post_ |
1956 | _modify_. */ | |
1957 | cache->saved_regs[reg].addr = 0; | |
1958 | else if ((inst & 0xfc00000c) == 0x70000008) | |
1959 | /* A std has explicit post_modify forms. */ | |
1960 | cache->saved_regs[reg].addr = 0; | |
1961 | else | |
1962 | { | |
1963 | CORE_ADDR offset; | |
1964 | ||
1965 | if ((inst >> 26) == 0x1c) | |
1777feb0 MS |
1966 | offset = (inst & 0x1 ? -1 << 13 : 0) |
1967 | | (((inst >> 4) & 0x3ff) << 3); | |
26d08f08 | 1968 | else if ((inst >> 26) == 0x03) |
abc485a1 | 1969 | offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
26d08f08 | 1970 | else |
abc485a1 | 1971 | offset = hppa_extract_14 (inst); |
26d08f08 AC |
1972 | |
1973 | /* Handle code with and without frame pointers. */ | |
1974 | if (u->Save_SP) | |
1975 | cache->saved_regs[reg].addr = offset; | |
1976 | else | |
1777feb0 MS |
1977 | cache->saved_regs[reg].addr |
1978 | = (u->Total_frame_size << 3) + offset; | |
26d08f08 AC |
1979 | } |
1980 | } | |
1981 | ||
1982 | /* GCC handles callee saved FP regs a little differently. | |
1983 | ||
1984 | It emits an instruction to put the value of the start of | |
1985 | the FP store area into %r1. It then uses fstds,ma with a | |
1986 | basereg of %r1 for the stores. | |
1987 | ||
1988 | HP CC emits them at the current stack pointer modifying the | |
1989 | stack pointer as it stores each register. */ | |
1990 | ||
1991 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
1992 | if ((inst & 0xffffc000) == 0x34610000 | |
1993 | || (inst & 0xffffc000) == 0x37c10000) | |
abc485a1 | 1994 | fp_loc = hppa_extract_14 (inst); |
26d08f08 AC |
1995 | |
1996 | reg = inst_saves_fr (inst); | |
1997 | if (reg >= 12 && reg <= 21) | |
1998 | { | |
1999 | /* Note +4 braindamage below is necessary because the FP | |
2000 | status registers are internally 8 registers rather than | |
2001 | the expected 4 registers. */ | |
2002 | saved_fr_mask &= ~(1 << reg); | |
2003 | if (fp_loc == -1) | |
2004 | { | |
2005 | /* 1st HP CC FP register store. After this | |
2006 | instruction we've set enough state that the GCC and | |
2007 | HPCC code are both handled in the same manner. */ | |
34f75cc1 | 2008 | cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; |
26d08f08 AC |
2009 | fp_loc = 8; |
2010 | } | |
2011 | else | |
2012 | { | |
eded0a31 | 2013 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
26d08f08 AC |
2014 | fp_loc += 8; |
2015 | } | |
2016 | } | |
2017 | ||
1777feb0 | 2018 | /* Quit if we hit any kind of branch the previous iteration. */ |
26d08f08 AC |
2019 | if (final_iteration) |
2020 | break; | |
2021 | /* We want to look precisely one instruction beyond the branch | |
2022 | if we have not found everything yet. */ | |
2023 | if (is_branch (inst)) | |
2024 | final_iteration = 1; | |
2025 | } | |
2026 | } | |
2027 | ||
2028 | { | |
2029 | /* The frame base always represents the value of %sp at entry to | |
2030 | the current function (and is thus equivalent to the "saved" | |
2031 | stack pointer. */ | |
227e86ad JB |
2032 | CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, |
2033 | HPPA_SP_REGNUM); | |
ed70ba00 | 2034 | CORE_ADDR fp; |
9f7194c3 RC |
2035 | |
2036 | if (hppa_debug) | |
5af949e3 UW |
2037 | fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, " |
2038 | "prologue_end=%s) ", | |
2039 | paddress (gdbarch, this_sp), | |
2040 | paddress (gdbarch, get_frame_pc (this_frame)), | |
2041 | paddress (gdbarch, prologue_end)); | |
9f7194c3 | 2042 | |
ed70ba00 RC |
2043 | /* Check to see if a frame pointer is available, and use it for |
2044 | frame unwinding if it is. | |
2045 | ||
2046 | There are some situations where we need to rely on the frame | |
2047 | pointer to do stack unwinding. For example, if a function calls | |
2048 | alloca (), the stack pointer can get adjusted inside the body of | |
2049 | the function. In this case, the ABI requires that the compiler | |
2050 | maintain a frame pointer for the function. | |
2051 | ||
2052 | The unwind record has a flag (alloca_frame) that indicates that | |
2053 | a function has a variable frame; unfortunately, gcc/binutils | |
2054 | does not set this flag. Instead, whenever a frame pointer is used | |
2055 | and saved on the stack, the Save_SP flag is set. We use this to | |
2056 | decide whether to use the frame pointer for unwinding. | |
2057 | ||
ed70ba00 RC |
2058 | TODO: For the HP compiler, maybe we should use the alloca_frame flag |
2059 | instead of Save_SP. */ | |
2060 | ||
227e86ad | 2061 | fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); |
46acf081 | 2062 | |
6fcecea0 | 2063 | if (u->alloca_frame) |
46acf081 | 2064 | fp -= u->Total_frame_size << 3; |
ed70ba00 | 2065 | |
227e86ad | 2066 | if (get_frame_pc (this_frame) >= prologue_end |
6fcecea0 | 2067 | && (u->Save_SP || u->alloca_frame) && fp != 0) |
ed70ba00 RC |
2068 | { |
2069 | cache->base = fp; | |
2070 | ||
2071 | if (hppa_debug) | |
5af949e3 UW |
2072 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]", |
2073 | paddress (gdbarch, cache->base)); | |
ed70ba00 | 2074 | } |
1658da49 RC |
2075 | else if (u->Save_SP |
2076 | && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) | |
9f7194c3 | 2077 | { |
9f7194c3 RC |
2078 | /* Both we're expecting the SP to be saved and the SP has been |
2079 | saved. The entry SP value is saved at this frame's SP | |
2080 | address. */ | |
e17a4113 | 2081 | cache->base = read_memory_integer (this_sp, word_size, byte_order); |
9f7194c3 RC |
2082 | |
2083 | if (hppa_debug) | |
5af949e3 UW |
2084 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]", |
2085 | paddress (gdbarch, cache->base)); | |
9f7194c3 | 2086 | } |
26d08f08 | 2087 | else |
9f7194c3 | 2088 | { |
1658da49 RC |
2089 | /* The prologue has been slowly allocating stack space. Adjust |
2090 | the SP back. */ | |
2091 | cache->base = this_sp - frame_size; | |
9f7194c3 | 2092 | if (hppa_debug) |
5af949e3 UW |
2093 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]", |
2094 | paddress (gdbarch, cache->base)); | |
9f7194c3 RC |
2095 | |
2096 | } | |
eded0a31 | 2097 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
26d08f08 AC |
2098 | } |
2099 | ||
412275d5 AC |
2100 | /* The PC is found in the "return register", "Millicode" uses "r31" |
2101 | as the return register while normal code uses "rp". */ | |
26d08f08 | 2102 | if (u->Millicode) |
9f7194c3 | 2103 | { |
5859efe5 | 2104 | if (trad_frame_addr_p (cache->saved_regs, 31)) |
9ed5ba24 RC |
2105 | { |
2106 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; | |
2107 | if (hppa_debug) | |
2108 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } "); | |
2109 | } | |
9f7194c3 RC |
2110 | else |
2111 | { | |
227e86ad | 2112 | ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); |
34f75cc1 | 2113 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); |
9ed5ba24 RC |
2114 | if (hppa_debug) |
2115 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } "); | |
9f7194c3 RC |
2116 | } |
2117 | } | |
26d08f08 | 2118 | else |
9f7194c3 | 2119 | { |
34f75cc1 | 2120 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
9ed5ba24 RC |
2121 | { |
2122 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = | |
2123 | cache->saved_regs[HPPA_RP_REGNUM]; | |
2124 | if (hppa_debug) | |
2125 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } "); | |
2126 | } | |
9f7194c3 RC |
2127 | else |
2128 | { | |
227e86ad JB |
2129 | ULONGEST rp = get_frame_register_unsigned (this_frame, |
2130 | HPPA_RP_REGNUM); | |
34f75cc1 | 2131 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
9ed5ba24 RC |
2132 | if (hppa_debug) |
2133 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } "); | |
9f7194c3 RC |
2134 | } |
2135 | } | |
26d08f08 | 2136 | |
50b2f48a RC |
2137 | /* If Save_SP is set, then we expect the frame pointer to be saved in the |
2138 | frame. However, there is a one-insn window where we haven't saved it | |
2139 | yet, but we've already clobbered it. Detect this case and fix it up. | |
2140 | ||
2141 | The prologue sequence for frame-pointer functions is: | |
2142 | 0: stw %rp, -20(%sp) | |
2143 | 4: copy %r3, %r1 | |
2144 | 8: copy %sp, %r3 | |
2145 | c: stw,ma %r1, XX(%sp) | |
2146 | ||
2147 | So if we are at offset c, the r3 value that we want is not yet saved | |
2148 | on the stack, but it's been overwritten. The prologue analyzer will | |
2149 | set fp_in_r1 when it sees the copy insn so we know to get the value | |
2150 | from r1 instead. */ | |
2151 | if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM) | |
2152 | && fp_in_r1) | |
2153 | { | |
227e86ad | 2154 | ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); |
50b2f48a RC |
2155 | trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1); |
2156 | } | |
1658da49 | 2157 | |
26d08f08 AC |
2158 | { |
2159 | /* Convert all the offsets into addresses. */ | |
2160 | int reg; | |
65c5db89 | 2161 | for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) |
26d08f08 AC |
2162 | { |
2163 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2164 | cache->saved_regs[reg].addr += cache->base; | |
2165 | } | |
2166 | } | |
2167 | ||
f77a2124 | 2168 | { |
f77a2124 RC |
2169 | struct gdbarch_tdep *tdep; |
2170 | ||
f77a2124 RC |
2171 | tdep = gdbarch_tdep (gdbarch); |
2172 | ||
2173 | if (tdep->unwind_adjust_stub) | |
227e86ad | 2174 | tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); |
f77a2124 RC |
2175 | } |
2176 | ||
369aa520 | 2177 | if (hppa_debug) |
5af949e3 UW |
2178 | fprintf_unfiltered (gdb_stdlog, "base=%s }", |
2179 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); | |
26d08f08 AC |
2180 | return (*this_cache); |
2181 | } | |
2182 | ||
2183 | static void | |
227e86ad JB |
2184 | hppa_frame_this_id (struct frame_info *this_frame, void **this_cache, |
2185 | struct frame_id *this_id) | |
26d08f08 | 2186 | { |
d5c27f81 | 2187 | struct hppa_frame_cache *info; |
227e86ad | 2188 | CORE_ADDR pc = get_frame_pc (this_frame); |
d5c27f81 RC |
2189 | struct unwind_table_entry *u; |
2190 | ||
227e86ad JB |
2191 | info = hppa_frame_cache (this_frame, this_cache); |
2192 | u = hppa_find_unwind_entry_in_block (this_frame); | |
d5c27f81 RC |
2193 | |
2194 | (*this_id) = frame_id_build (info->base, u->region_start); | |
26d08f08 AC |
2195 | } |
2196 | ||
227e86ad JB |
2197 | static struct value * |
2198 | hppa_frame_prev_register (struct frame_info *this_frame, | |
2199 | void **this_cache, int regnum) | |
26d08f08 | 2200 | { |
227e86ad JB |
2201 | struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); |
2202 | ||
1777feb0 MS |
2203 | return hppa_frame_prev_register_helper (this_frame, |
2204 | info->saved_regs, regnum); | |
227e86ad JB |
2205 | } |
2206 | ||
2207 | static int | |
2208 | hppa_frame_unwind_sniffer (const struct frame_unwind *self, | |
2209 | struct frame_info *this_frame, void **this_cache) | |
2210 | { | |
2211 | if (hppa_find_unwind_entry_in_block (this_frame)) | |
2212 | return 1; | |
2213 | ||
2214 | return 0; | |
0da28f8a RC |
2215 | } |
2216 | ||
2217 | static const struct frame_unwind hppa_frame_unwind = | |
2218 | { | |
2219 | NORMAL_FRAME, | |
8fbca658 | 2220 | default_frame_unwind_stop_reason, |
0da28f8a | 2221 | hppa_frame_this_id, |
227e86ad JB |
2222 | hppa_frame_prev_register, |
2223 | NULL, | |
2224 | hppa_frame_unwind_sniffer | |
0da28f8a RC |
2225 | }; |
2226 | ||
0da28f8a RC |
2227 | /* This is a generic fallback frame unwinder that kicks in if we fail all |
2228 | the other ones. Normally we would expect the stub and regular unwinder | |
2229 | to work, but in some cases we might hit a function that just doesn't | |
2230 | have any unwind information available. In this case we try to do | |
2231 | unwinding solely based on code reading. This is obviously going to be | |
2232 | slow, so only use this as a last resort. Currently this will only | |
2233 | identify the stack and pc for the frame. */ | |
2234 | ||
2235 | static struct hppa_frame_cache * | |
227e86ad | 2236 | hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache) |
0da28f8a | 2237 | { |
e17a4113 UW |
2238 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
2239 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
0da28f8a | 2240 | struct hppa_frame_cache *cache; |
4ba6a975 MK |
2241 | unsigned int frame_size = 0; |
2242 | int found_rp = 0; | |
2243 | CORE_ADDR start_pc; | |
0da28f8a | 2244 | |
d5c27f81 | 2245 | if (hppa_debug) |
4ba6a975 MK |
2246 | fprintf_unfiltered (gdb_stdlog, |
2247 | "{ hppa_fallback_frame_cache (frame=%d) -> ", | |
227e86ad | 2248 | frame_relative_level (this_frame)); |
d5c27f81 | 2249 | |
0da28f8a RC |
2250 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
2251 | (*this_cache) = cache; | |
227e86ad | 2252 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
0da28f8a | 2253 | |
227e86ad | 2254 | start_pc = get_frame_func (this_frame); |
4ba6a975 | 2255 | if (start_pc) |
0da28f8a | 2256 | { |
227e86ad | 2257 | CORE_ADDR cur_pc = get_frame_pc (this_frame); |
4ba6a975 | 2258 | CORE_ADDR pc; |
0da28f8a | 2259 | |
4ba6a975 MK |
2260 | for (pc = start_pc; pc < cur_pc; pc += 4) |
2261 | { | |
2262 | unsigned int insn; | |
0da28f8a | 2263 | |
e17a4113 | 2264 | insn = read_memory_unsigned_integer (pc, 4, byte_order); |
4ba6a975 | 2265 | frame_size += prologue_inst_adjust_sp (insn); |
6d1be3f1 | 2266 | |
4ba6a975 MK |
2267 | /* There are limited ways to store the return pointer into the |
2268 | stack. */ | |
2269 | if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
2270 | { | |
2271 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; | |
2272 | found_rp = 1; | |
2273 | } | |
c4c79048 RC |
2274 | else if (insn == 0x0fc212c1 |
2275 | || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
4ba6a975 MK |
2276 | { |
2277 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; | |
2278 | found_rp = 1; | |
2279 | } | |
2280 | } | |
412275d5 | 2281 | } |
0da28f8a | 2282 | |
d5c27f81 | 2283 | if (hppa_debug) |
4ba6a975 MK |
2284 | fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", |
2285 | frame_size, found_rp); | |
d5c27f81 | 2286 | |
227e86ad | 2287 | cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
4ba6a975 | 2288 | cache->base -= frame_size; |
6d1be3f1 | 2289 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
0da28f8a RC |
2290 | |
2291 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) | |
2292 | { | |
2293 | cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; | |
4ba6a975 MK |
2294 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
2295 | cache->saved_regs[HPPA_RP_REGNUM]; | |
0da28f8a | 2296 | } |
412275d5 AC |
2297 | else |
2298 | { | |
4ba6a975 | 2299 | ULONGEST rp; |
227e86ad | 2300 | rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); |
0da28f8a | 2301 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
412275d5 | 2302 | } |
0da28f8a RC |
2303 | |
2304 | return cache; | |
26d08f08 AC |
2305 | } |
2306 | ||
0da28f8a | 2307 | static void |
227e86ad | 2308 | hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache, |
0da28f8a RC |
2309 | struct frame_id *this_id) |
2310 | { | |
2311 | struct hppa_frame_cache *info = | |
227e86ad JB |
2312 | hppa_fallback_frame_cache (this_frame, this_cache); |
2313 | ||
2314 | (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); | |
0da28f8a RC |
2315 | } |
2316 | ||
227e86ad JB |
2317 | static struct value * |
2318 | hppa_fallback_frame_prev_register (struct frame_info *this_frame, | |
2319 | void **this_cache, int regnum) | |
0da28f8a | 2320 | { |
1777feb0 MS |
2321 | struct hppa_frame_cache *info |
2322 | = hppa_fallback_frame_cache (this_frame, this_cache); | |
227e86ad | 2323 | |
1777feb0 MS |
2324 | return hppa_frame_prev_register_helper (this_frame, |
2325 | info->saved_regs, regnum); | |
0da28f8a RC |
2326 | } |
2327 | ||
2328 | static const struct frame_unwind hppa_fallback_frame_unwind = | |
26d08f08 AC |
2329 | { |
2330 | NORMAL_FRAME, | |
8fbca658 | 2331 | default_frame_unwind_stop_reason, |
0da28f8a | 2332 | hppa_fallback_frame_this_id, |
227e86ad JB |
2333 | hppa_fallback_frame_prev_register, |
2334 | NULL, | |
2335 | default_frame_sniffer | |
26d08f08 AC |
2336 | }; |
2337 | ||
7f07c5b6 RC |
2338 | /* Stub frames, used for all kinds of call stubs. */ |
2339 | struct hppa_stub_unwind_cache | |
2340 | { | |
2341 | CORE_ADDR base; | |
2342 | struct trad_frame_saved_reg *saved_regs; | |
2343 | }; | |
2344 | ||
2345 | static struct hppa_stub_unwind_cache * | |
227e86ad | 2346 | hppa_stub_frame_unwind_cache (struct frame_info *this_frame, |
7f07c5b6 RC |
2347 | void **this_cache) |
2348 | { | |
227e86ad | 2349 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
7f07c5b6 | 2350 | struct hppa_stub_unwind_cache *info; |
22b0923d | 2351 | struct unwind_table_entry *u; |
7f07c5b6 RC |
2352 | |
2353 | if (*this_cache) | |
2354 | return *this_cache; | |
2355 | ||
2356 | info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); | |
2357 | *this_cache = info; | |
227e86ad | 2358 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
7f07c5b6 | 2359 | |
227e86ad | 2360 | info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
7f07c5b6 | 2361 | |
090ccbb7 | 2362 | if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM) |
22b0923d RC |
2363 | { |
2364 | /* HPUX uses export stubs in function calls; the export stub clobbers | |
2365 | the return value of the caller, and, later restores it from the | |
2366 | stack. */ | |
227e86ad | 2367 | u = find_unwind_entry (get_frame_pc (this_frame)); |
22b0923d RC |
2368 | |
2369 | if (u && u->stub_unwind.stub_type == EXPORT) | |
2370 | { | |
2371 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24; | |
2372 | ||
2373 | return info; | |
2374 | } | |
2375 | } | |
2376 | ||
2377 | /* By default we assume that stubs do not change the rp. */ | |
2378 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; | |
2379 | ||
7f07c5b6 RC |
2380 | return info; |
2381 | } | |
2382 | ||
2383 | static void | |
227e86ad | 2384 | hppa_stub_frame_this_id (struct frame_info *this_frame, |
7f07c5b6 RC |
2385 | void **this_prologue_cache, |
2386 | struct frame_id *this_id) | |
2387 | { | |
2388 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2389 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 RC |
2390 | |
2391 | if (info) | |
227e86ad | 2392 | *this_id = frame_id_build (info->base, get_frame_func (this_frame)); |
7f07c5b6 RC |
2393 | } |
2394 | ||
227e86ad JB |
2395 | static struct value * |
2396 | hppa_stub_frame_prev_register (struct frame_info *this_frame, | |
2397 | void **this_prologue_cache, int regnum) | |
7f07c5b6 RC |
2398 | { |
2399 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2400 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 | 2401 | |
227e86ad | 2402 | if (info == NULL) |
8a3fe4f8 | 2403 | error (_("Requesting registers from null frame.")); |
7f07c5b6 | 2404 | |
1777feb0 MS |
2405 | return hppa_frame_prev_register_helper (this_frame, |
2406 | info->saved_regs, regnum); | |
227e86ad | 2407 | } |
7f07c5b6 | 2408 | |
227e86ad JB |
2409 | static int |
2410 | hppa_stub_unwind_sniffer (const struct frame_unwind *self, | |
2411 | struct frame_info *this_frame, | |
2412 | void **this_cache) | |
7f07c5b6 | 2413 | { |
227e86ad JB |
2414 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
2415 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
84674fe1 | 2416 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7f07c5b6 | 2417 | |
6d1be3f1 | 2418 | if (pc == 0 |
84674fe1 | 2419 | || (tdep->in_solib_call_trampoline != NULL |
3e5d3a5a | 2420 | && tdep->in_solib_call_trampoline (gdbarch, pc)) |
464963c9 | 2421 | || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) |
227e86ad JB |
2422 | return 1; |
2423 | return 0; | |
7f07c5b6 RC |
2424 | } |
2425 | ||
227e86ad JB |
2426 | static const struct frame_unwind hppa_stub_frame_unwind = { |
2427 | NORMAL_FRAME, | |
8fbca658 | 2428 | default_frame_unwind_stop_reason, |
227e86ad JB |
2429 | hppa_stub_frame_this_id, |
2430 | hppa_stub_frame_prev_register, | |
2431 | NULL, | |
2432 | hppa_stub_unwind_sniffer | |
2433 | }; | |
2434 | ||
26d08f08 | 2435 | static struct frame_id |
227e86ad | 2436 | hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
26d08f08 | 2437 | { |
227e86ad JB |
2438 | return frame_id_build (get_frame_register_unsigned (this_frame, |
2439 | HPPA_SP_REGNUM), | |
2440 | get_frame_pc (this_frame)); | |
26d08f08 AC |
2441 | } |
2442 | ||
cc72850f | 2443 | CORE_ADDR |
26d08f08 AC |
2444 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
2445 | { | |
fe46cd3a RC |
2446 | ULONGEST ipsw; |
2447 | CORE_ADDR pc; | |
2448 | ||
cc72850f MK |
2449 | ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); |
2450 | pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); | |
fe46cd3a RC |
2451 | |
2452 | /* If the current instruction is nullified, then we are effectively | |
2453 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
2454 | there. This is needed when single stepping; if the nullified |
2455 | instruction is on a different line, we don't want GDB to think | |
2456 | we've stepped onto that line. */ | |
fe46cd3a RC |
2457 | if (ipsw & 0x00200000) |
2458 | pc -= 4; | |
2459 | ||
cc72850f | 2460 | return pc & ~0x3; |
26d08f08 AC |
2461 | } |
2462 | ||
ff644745 JB |
2463 | /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. |
2464 | Return NULL if no such symbol was found. */ | |
2465 | ||
2466 | struct minimal_symbol * | |
2467 | hppa_lookup_stub_minimal_symbol (const char *name, | |
2468 | enum unwind_stub_types stub_type) | |
2469 | { | |
2470 | struct objfile *objfile; | |
2471 | struct minimal_symbol *msym; | |
2472 | ||
2473 | ALL_MSYMBOLS (objfile, msym) | |
2474 | { | |
2475 | if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0) | |
2476 | { | |
2477 | struct unwind_table_entry *u; | |
2478 | ||
2479 | u = find_unwind_entry (SYMBOL_VALUE (msym)); | |
2480 | if (u != NULL && u->stub_unwind.stub_type == stub_type) | |
2481 | return msym; | |
2482 | } | |
2483 | } | |
2484 | ||
2485 | return NULL; | |
2486 | } | |
2487 | ||
c906108c | 2488 | static void |
fba45db2 | 2489 | unwind_command (char *exp, int from_tty) |
c906108c SS |
2490 | { |
2491 | CORE_ADDR address; | |
2492 | struct unwind_table_entry *u; | |
2493 | ||
2494 | /* If we have an expression, evaluate it and use it as the address. */ | |
2495 | ||
2496 | if (exp != 0 && *exp != 0) | |
2497 | address = parse_and_eval_address (exp); | |
2498 | else | |
2499 | return; | |
2500 | ||
2501 | u = find_unwind_entry (address); | |
2502 | ||
2503 | if (!u) | |
2504 | { | |
2505 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
2506 | return; | |
2507 | } | |
2508 | ||
3329c4b5 | 2509 | printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u)); |
c906108c | 2510 | |
5af949e3 | 2511 | printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start)); |
d5c27f81 | 2512 | gdb_flush (gdb_stdout); |
c906108c | 2513 | |
5af949e3 | 2514 | printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end)); |
d5c27f81 | 2515 | gdb_flush (gdb_stdout); |
c906108c | 2516 | |
c906108c | 2517 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
2518 | |
2519 | printf_unfiltered ("\n\tflags ="); | |
2520 | pif (Cannot_unwind); | |
2521 | pif (Millicode); | |
2522 | pif (Millicode_save_sr0); | |
2523 | pif (Entry_SR); | |
2524 | pif (Args_stored); | |
2525 | pif (Variable_Frame); | |
2526 | pif (Separate_Package_Body); | |
2527 | pif (Frame_Extension_Millicode); | |
2528 | pif (Stack_Overflow_Check); | |
2529 | pif (Two_Instruction_SP_Increment); | |
6fcecea0 RC |
2530 | pif (sr4export); |
2531 | pif (cxx_info); | |
2532 | pif (cxx_try_catch); | |
2533 | pif (sched_entry_seq); | |
c906108c SS |
2534 | pif (Save_SP); |
2535 | pif (Save_RP); | |
2536 | pif (Save_MRP_in_frame); | |
6fcecea0 | 2537 | pif (save_r19); |
c906108c SS |
2538 | pif (Cleanup_defined); |
2539 | pif (MPE_XL_interrupt_marker); | |
2540 | pif (HP_UX_interrupt_marker); | |
2541 | pif (Large_frame); | |
6fcecea0 | 2542 | pif (alloca_frame); |
c906108c SS |
2543 | |
2544 | putchar_unfiltered ('\n'); | |
2545 | ||
c906108c | 2546 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
2547 | |
2548 | pin (Region_description); | |
2549 | pin (Entry_FR); | |
2550 | pin (Entry_GR); | |
2551 | pin (Total_frame_size); | |
57dac9e1 RC |
2552 | |
2553 | if (u->stub_unwind.stub_type) | |
2554 | { | |
2555 | printf_unfiltered ("\tstub type = "); | |
2556 | switch (u->stub_unwind.stub_type) | |
2557 | { | |
2558 | case LONG_BRANCH: | |
2559 | printf_unfiltered ("long branch\n"); | |
2560 | break; | |
2561 | case PARAMETER_RELOCATION: | |
2562 | printf_unfiltered ("parameter relocation\n"); | |
2563 | break; | |
2564 | case EXPORT: | |
2565 | printf_unfiltered ("export\n"); | |
2566 | break; | |
2567 | case IMPORT: | |
2568 | printf_unfiltered ("import\n"); | |
2569 | break; | |
2570 | case IMPORT_SHLIB: | |
2571 | printf_unfiltered ("import shlib\n"); | |
2572 | break; | |
2573 | default: | |
2574 | printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); | |
2575 | } | |
2576 | } | |
c906108c | 2577 | } |
c906108c | 2578 | |
38ca4e0c MK |
2579 | /* Return the GDB type object for the "standard" data type of data in |
2580 | register REGNUM. */ | |
d709c020 | 2581 | |
eded0a31 | 2582 | static struct type * |
38ca4e0c | 2583 | hppa32_register_type (struct gdbarch *gdbarch, int regnum) |
d709c020 | 2584 | { |
38ca4e0c | 2585 | if (regnum < HPPA_FP4_REGNUM) |
df4df182 | 2586 | return builtin_type (gdbarch)->builtin_uint32; |
d709c020 | 2587 | else |
27067745 | 2588 | return builtin_type (gdbarch)->builtin_float; |
d709c020 JB |
2589 | } |
2590 | ||
eded0a31 | 2591 | static struct type * |
38ca4e0c | 2592 | hppa64_register_type (struct gdbarch *gdbarch, int regnum) |
3ff7cf9e | 2593 | { |
38ca4e0c | 2594 | if (regnum < HPPA64_FP4_REGNUM) |
df4df182 | 2595 | return builtin_type (gdbarch)->builtin_uint64; |
3ff7cf9e | 2596 | else |
27067745 | 2597 | return builtin_type (gdbarch)->builtin_double; |
3ff7cf9e JB |
2598 | } |
2599 | ||
38ca4e0c MK |
2600 | /* Return non-zero if REGNUM is not a register available to the user |
2601 | through ptrace/ttrace. */ | |
d709c020 | 2602 | |
8d153463 | 2603 | static int |
64a3914f | 2604 | hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
d709c020 JB |
2605 | { |
2606 | return (regnum == 0 | |
34f75cc1 RC |
2607 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
2608 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2609 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); | |
38ca4e0c | 2610 | } |
d709c020 | 2611 | |
d037d088 | 2612 | static int |
64a3914f | 2613 | hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2614 | { |
2615 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2616 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2617 | return 0; | |
2618 | else | |
64a3914f | 2619 | return hppa32_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2620 | } |
2621 | ||
38ca4e0c | 2622 | static int |
64a3914f | 2623 | hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
38ca4e0c MK |
2624 | { |
2625 | return (regnum == 0 | |
2626 | || regnum == HPPA_PCSQ_HEAD_REGNUM | |
2627 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2628 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); | |
d709c020 JB |
2629 | } |
2630 | ||
d037d088 | 2631 | static int |
64a3914f | 2632 | hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2633 | { |
2634 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2635 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2636 | return 0; | |
2637 | else | |
64a3914f | 2638 | return hppa64_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2639 | } |
2640 | ||
8d153463 | 2641 | static CORE_ADDR |
85ddcc70 | 2642 | hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) |
d709c020 JB |
2643 | { |
2644 | /* The low two bits of the PC on the PA contain the privilege level. | |
2645 | Some genius implementing a (non-GCC) compiler apparently decided | |
2646 | this means that "addresses" in a text section therefore include a | |
2647 | privilege level, and thus symbol tables should contain these bits. | |
2648 | This seems like a bonehead thing to do--anyway, it seems to work | |
2649 | for our purposes to just ignore those bits. */ | |
2650 | ||
2651 | return (addr &= ~0x3); | |
2652 | } | |
2653 | ||
e127f0db MK |
2654 | /* Get the ARGIth function argument for the current function. */ |
2655 | ||
4a302917 | 2656 | static CORE_ADDR |
143985b7 AF |
2657 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, |
2658 | struct type *type) | |
2659 | { | |
e127f0db | 2660 | return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); |
143985b7 AF |
2661 | } |
2662 | ||
05d1431c | 2663 | static enum register_status |
0f8d9d59 | 2664 | hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, |
e127f0db | 2665 | int regnum, gdb_byte *buf) |
0f8d9d59 | 2666 | { |
05d1431c PA |
2667 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2668 | ULONGEST tmp; | |
2669 | enum register_status status; | |
0f8d9d59 | 2670 | |
05d1431c PA |
2671 | status = regcache_raw_read_unsigned (regcache, regnum, &tmp); |
2672 | if (status == REG_VALID) | |
2673 | { | |
2674 | if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) | |
2675 | tmp &= ~0x3; | |
2676 | store_unsigned_integer (buf, sizeof tmp, byte_order, tmp); | |
2677 | } | |
2678 | return status; | |
0f8d9d59 RC |
2679 | } |
2680 | ||
d49771ef | 2681 | static CORE_ADDR |
e38c262f | 2682 | hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) |
d49771ef RC |
2683 | { |
2684 | return 0; | |
2685 | } | |
2686 | ||
227e86ad JB |
2687 | struct value * |
2688 | hppa_frame_prev_register_helper (struct frame_info *this_frame, | |
0da28f8a | 2689 | struct trad_frame_saved_reg saved_regs[], |
227e86ad | 2690 | int regnum) |
0da28f8a | 2691 | { |
227e86ad | 2692 | struct gdbarch *arch = get_frame_arch (this_frame); |
e17a4113 | 2693 | enum bfd_endian byte_order = gdbarch_byte_order (arch); |
8f4e467c | 2694 | |
8693c419 MK |
2695 | if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
2696 | { | |
227e86ad JB |
2697 | int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); |
2698 | CORE_ADDR pc; | |
2699 | struct value *pcoq_val = | |
2700 | trad_frame_get_prev_register (this_frame, saved_regs, | |
2701 | HPPA_PCOQ_HEAD_REGNUM); | |
8693c419 | 2702 | |
e17a4113 UW |
2703 | pc = extract_unsigned_integer (value_contents_all (pcoq_val), |
2704 | size, byte_order); | |
227e86ad | 2705 | return frame_unwind_got_constant (this_frame, regnum, pc + 4); |
8693c419 | 2706 | } |
0da28f8a | 2707 | |
cc72850f MK |
2708 | /* Make sure the "flags" register is zero in all unwound frames. |
2709 | The "flags" registers is a HP-UX specific wart, and only the code | |
2710 | in hppa-hpux-tdep.c depends on it. However, it is easier to deal | |
2711 | with it here. This shouldn't affect other systems since those | |
2712 | should provide zero for the "flags" register anyway. */ | |
2713 | if (regnum == HPPA_FLAGS_REGNUM) | |
227e86ad | 2714 | return frame_unwind_got_constant (this_frame, regnum, 0); |
cc72850f | 2715 | |
227e86ad | 2716 | return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
0da28f8a | 2717 | } |
8693c419 | 2718 | \f |
0da28f8a | 2719 | |
34f55018 MK |
2720 | /* An instruction to match. */ |
2721 | struct insn_pattern | |
2722 | { | |
2723 | unsigned int data; /* See if it matches this.... */ | |
2724 | unsigned int mask; /* ... with this mask. */ | |
2725 | }; | |
2726 | ||
2727 | /* See bfd/elf32-hppa.c */ | |
2728 | static struct insn_pattern hppa_long_branch_stub[] = { | |
2729 | /* ldil LR'xxx,%r1 */ | |
2730 | { 0x20200000, 0xffe00000 }, | |
2731 | /* be,n RR'xxx(%sr4,%r1) */ | |
2732 | { 0xe0202002, 0xffe02002 }, | |
2733 | { 0, 0 } | |
2734 | }; | |
2735 | ||
2736 | static struct insn_pattern hppa_long_branch_pic_stub[] = { | |
2737 | /* b,l .+8, %r1 */ | |
2738 | { 0xe8200000, 0xffe00000 }, | |
2739 | /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ | |
2740 | { 0x28200000, 0xffe00000 }, | |
2741 | /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ | |
2742 | { 0xe0202002, 0xffe02002 }, | |
2743 | { 0, 0 } | |
2744 | }; | |
2745 | ||
2746 | static struct insn_pattern hppa_import_stub[] = { | |
2747 | /* addil LR'xxx, %dp */ | |
2748 | { 0x2b600000, 0xffe00000 }, | |
2749 | /* ldw RR'xxx(%r1), %r21 */ | |
2750 | { 0x48350000, 0xffffb000 }, | |
2751 | /* bv %r0(%r21) */ | |
2752 | { 0xeaa0c000, 0xffffffff }, | |
2753 | /* ldw RR'xxx+4(%r1), %r19 */ | |
2754 | { 0x48330000, 0xffffb000 }, | |
2755 | { 0, 0 } | |
2756 | }; | |
2757 | ||
2758 | static struct insn_pattern hppa_import_pic_stub[] = { | |
2759 | /* addil LR'xxx,%r19 */ | |
2760 | { 0x2a600000, 0xffe00000 }, | |
2761 | /* ldw RR'xxx(%r1),%r21 */ | |
2762 | { 0x48350000, 0xffffb000 }, | |
2763 | /* bv %r0(%r21) */ | |
2764 | { 0xeaa0c000, 0xffffffff }, | |
2765 | /* ldw RR'xxx+4(%r1),%r19 */ | |
2766 | { 0x48330000, 0xffffb000 }, | |
2767 | { 0, 0 }, | |
2768 | }; | |
2769 | ||
2770 | static struct insn_pattern hppa_plt_stub[] = { | |
2771 | /* b,l 1b, %r20 - 1b is 3 insns before here */ | |
2772 | { 0xea9f1fdd, 0xffffffff }, | |
2773 | /* depi 0,31,2,%r20 */ | |
2774 | { 0xd6801c1e, 0xffffffff }, | |
2775 | { 0, 0 } | |
2776 | }; | |
2777 | ||
2778 | static struct insn_pattern hppa_sigtramp[] = { | |
2779 | /* ldi 0, %r25 or ldi 1, %r25 */ | |
2780 | { 0x34190000, 0xfffffffd }, | |
2781 | /* ldi __NR_rt_sigreturn, %r20 */ | |
2782 | { 0x3414015a, 0xffffffff }, | |
2783 | /* be,l 0x100(%sr2, %r0), %sr0, %r31 */ | |
2784 | { 0xe4008200, 0xffffffff }, | |
2785 | /* nop */ | |
2786 | { 0x08000240, 0xffffffff }, | |
2787 | { 0, 0 } | |
2788 | }; | |
2789 | ||
2790 | /* Maximum number of instructions on the patterns above. */ | |
2791 | #define HPPA_MAX_INSN_PATTERN_LEN 4 | |
2792 | ||
2793 | /* Return non-zero if the instructions at PC match the series | |
2794 | described in PATTERN, or zero otherwise. PATTERN is an array of | |
2795 | 'struct insn_pattern' objects, terminated by an entry whose mask is | |
2796 | zero. | |
2797 | ||
2798 | When the match is successful, fill INSN[i] with what PATTERN[i] | |
2799 | matched. */ | |
2800 | ||
2801 | static int | |
e17a4113 UW |
2802 | hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc, |
2803 | struct insn_pattern *pattern, unsigned int *insn) | |
34f55018 | 2804 | { |
e17a4113 | 2805 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
34f55018 MK |
2806 | CORE_ADDR npc = pc; |
2807 | int i; | |
2808 | ||
2809 | for (i = 0; pattern[i].mask; i++) | |
2810 | { | |
2811 | gdb_byte buf[HPPA_INSN_SIZE]; | |
2812 | ||
8defab1a | 2813 | target_read_memory (npc, buf, HPPA_INSN_SIZE); |
e17a4113 | 2814 | insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); |
34f55018 MK |
2815 | if ((insn[i] & pattern[i].mask) == pattern[i].data) |
2816 | npc += 4; | |
2817 | else | |
2818 | return 0; | |
2819 | } | |
2820 | ||
2821 | return 1; | |
2822 | } | |
2823 | ||
2824 | /* This relaxed version of the insstruction matcher allows us to match | |
2825 | from somewhere inside the pattern, by looking backwards in the | |
2826 | instruction scheme. */ | |
2827 | ||
2828 | static int | |
e17a4113 UW |
2829 | hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc, |
2830 | struct insn_pattern *pattern, unsigned int *insn) | |
34f55018 MK |
2831 | { |
2832 | int offset, len = 0; | |
2833 | ||
2834 | while (pattern[len].mask) | |
2835 | len++; | |
2836 | ||
2837 | for (offset = 0; offset < len; offset++) | |
e17a4113 UW |
2838 | if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE, |
2839 | pattern, insn)) | |
34f55018 MK |
2840 | return 1; |
2841 | ||
2842 | return 0; | |
2843 | } | |
2844 | ||
2845 | static int | |
2846 | hppa_in_dyncall (CORE_ADDR pc) | |
2847 | { | |
2848 | struct unwind_table_entry *u; | |
2849 | ||
2850 | u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); | |
2851 | if (!u) | |
2852 | return 0; | |
2853 | ||
2854 | return (pc >= u->region_start && pc <= u->region_end); | |
2855 | } | |
2856 | ||
2857 | int | |
3e5d3a5a | 2858 | hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) |
34f55018 MK |
2859 | { |
2860 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; | |
2861 | struct unwind_table_entry *u; | |
2862 | ||
3e5d3a5a | 2863 | if (in_plt_section (pc) || hppa_in_dyncall (pc)) |
34f55018 MK |
2864 | return 1; |
2865 | ||
2866 | /* The GNU toolchain produces linker stubs without unwind | |
2867 | information. Since the pattern matching for linker stubs can be | |
2868 | quite slow, so bail out if we do have an unwind entry. */ | |
2869 | ||
2870 | u = find_unwind_entry (pc); | |
806e23c0 | 2871 | if (u != NULL) |
34f55018 MK |
2872 | return 0; |
2873 | ||
e17a4113 UW |
2874 | return |
2875 | (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn) | |
2876 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn) | |
2877 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn) | |
2878 | || hppa_match_insns_relaxed (gdbarch, pc, | |
2879 | hppa_long_branch_pic_stub, insn)); | |
34f55018 MK |
2880 | } |
2881 | ||
2882 | /* This code skips several kind of "trampolines" used on PA-RISC | |
2883 | systems: $$dyncall, import stubs and PLT stubs. */ | |
2884 | ||
2885 | CORE_ADDR | |
52f729a7 | 2886 | hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
34f55018 | 2887 | { |
0dfff4cb UW |
2888 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2889 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; | |
2890 | ||
34f55018 MK |
2891 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
2892 | int dp_rel; | |
2893 | ||
2894 | /* $$dyncall handles both PLABELs and direct addresses. */ | |
2895 | if (hppa_in_dyncall (pc)) | |
2896 | { | |
52f729a7 | 2897 | pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); |
34f55018 MK |
2898 | |
2899 | /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ | |
2900 | if (pc & 0x2) | |
0dfff4cb | 2901 | pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); |
34f55018 MK |
2902 | |
2903 | return pc; | |
2904 | } | |
2905 | ||
e17a4113 UW |
2906 | dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn); |
2907 | if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn)) | |
34f55018 MK |
2908 | { |
2909 | /* Extract the target address from the addil/ldw sequence. */ | |
2910 | pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); | |
2911 | ||
2912 | if (dp_rel) | |
52f729a7 | 2913 | pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); |
34f55018 | 2914 | else |
52f729a7 | 2915 | pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); |
34f55018 MK |
2916 | |
2917 | /* fallthrough */ | |
2918 | } | |
2919 | ||
3e5d3a5a | 2920 | if (in_plt_section (pc)) |
34f55018 | 2921 | { |
0dfff4cb | 2922 | pc = read_memory_typed_address (pc, func_ptr_type); |
34f55018 MK |
2923 | |
2924 | /* If the PLT slot has not yet been resolved, the target will be | |
2925 | the PLT stub. */ | |
3e5d3a5a | 2926 | if (in_plt_section (pc)) |
34f55018 MK |
2927 | { |
2928 | /* Sanity check: are we pointing to the PLT stub? */ | |
e17a4113 | 2929 | if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn)) |
34f55018 | 2930 | { |
5af949e3 UW |
2931 | warning (_("Cannot resolve PLT stub at %s."), |
2932 | paddress (gdbarch, pc)); | |
34f55018 MK |
2933 | return 0; |
2934 | } | |
2935 | ||
2936 | /* This should point to the fixup routine. */ | |
0dfff4cb | 2937 | pc = read_memory_typed_address (pc + 8, func_ptr_type); |
34f55018 MK |
2938 | } |
2939 | } | |
2940 | ||
2941 | return pc; | |
2942 | } | |
2943 | \f | |
2944 | ||
8e8b2dba MC |
2945 | /* Here is a table of C type sizes on hppa with various compiles |
2946 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
2947 | and these compilers: | |
2948 | ||
2949 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
2950 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
2951 | /opt/aCC/bin/aCC B3910B A.03.45 | |
2952 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
2953 | ||
2954 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
2955 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2956 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2957 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2958 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2959 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2960 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2961 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2962 | ||
2963 | Each line is: | |
2964 | ||
2965 | compiler and options | |
2966 | char, short, int, long, long long | |
2967 | float, double, long double | |
2968 | char *, void (*)() | |
2969 | ||
2970 | So all these compilers use either ILP32 or LP64 model. | |
2971 | TODO: gcc has more options so it needs more investigation. | |
2972 | ||
a2379359 MC |
2973 | For floating point types, see: |
2974 | ||
2975 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
2976 | HP-UX floating-point guide, hpux 11.00 | |
2977 | ||
8e8b2dba MC |
2978 | -- chastain 2003-12-18 */ |
2979 | ||
e6e68f1f JB |
2980 | static struct gdbarch * |
2981 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2982 | { | |
3ff7cf9e | 2983 | struct gdbarch_tdep *tdep; |
e6e68f1f | 2984 | struct gdbarch *gdbarch; |
59623e27 JB |
2985 | |
2986 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 2987 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 2988 | { |
4be87837 DJ |
2989 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
2990 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
2991 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 2992 | } |
e6e68f1f JB |
2993 | |
2994 | /* find a candidate among the list of pre-declared architectures. */ | |
2995 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2996 | if (arches != NULL) | |
2997 | return (arches->gdbarch); | |
2998 | ||
2999 | /* If none found, then allocate and initialize one. */ | |
fdd72f95 | 3000 | tdep = XZALLOC (struct gdbarch_tdep); |
3ff7cf9e JB |
3001 | gdbarch = gdbarch_alloc (&info, tdep); |
3002 | ||
3003 | /* Determine from the bfd_arch_info structure if we are dealing with | |
3004 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
3005 | then default to a 32bit machine. */ | |
3006 | if (info.bfd_arch_info != NULL) | |
3007 | tdep->bytes_per_address = | |
3008 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
3009 | else | |
3010 | tdep->bytes_per_address = 4; | |
3011 | ||
d49771ef RC |
3012 | tdep->find_global_pointer = hppa_find_global_pointer; |
3013 | ||
3ff7cf9e JB |
3014 | /* Some parts of the gdbarch vector depend on whether we are running |
3015 | on a 32 bits or 64 bits target. */ | |
3016 | switch (tdep->bytes_per_address) | |
3017 | { | |
3018 | case 4: | |
3019 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
3020 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
eded0a31 | 3021 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
38ca4e0c MK |
3022 | set_gdbarch_cannot_store_register (gdbarch, |
3023 | hppa32_cannot_store_register); | |
3024 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3025 | hppa32_cannot_fetch_register); |
3ff7cf9e JB |
3026 | break; |
3027 | case 8: | |
3028 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
3029 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
eded0a31 | 3030 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
1ef7fcb5 | 3031 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); |
38ca4e0c MK |
3032 | set_gdbarch_cannot_store_register (gdbarch, |
3033 | hppa64_cannot_store_register); | |
3034 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3035 | hppa64_cannot_fetch_register); |
3ff7cf9e JB |
3036 | break; |
3037 | default: | |
e2e0b3e5 | 3038 | internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), |
3ff7cf9e JB |
3039 | tdep->bytes_per_address); |
3040 | } | |
3041 | ||
3ff7cf9e | 3042 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
3ff7cf9e | 3043 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 3044 | |
8e8b2dba MC |
3045 | /* The following gdbarch vector elements are the same in both ILP32 |
3046 | and LP64, but might show differences some day. */ | |
3047 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3048 | set_gdbarch_long_double_bit (gdbarch, 128); | |
8da61cc4 | 3049 | set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
8e8b2dba | 3050 | |
3ff7cf9e JB |
3051 | /* The following gdbarch vector elements do not depend on the address |
3052 | size, or in any other gdbarch element previously set. */ | |
60383d10 | 3053 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
1fb24930 RC |
3054 | set_gdbarch_in_function_epilogue_p (gdbarch, |
3055 | hppa_in_function_epilogue_p); | |
a2a84a72 | 3056 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
eded0a31 AC |
3057 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
3058 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); | |
85ddcc70 | 3059 | set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove); |
60383d10 | 3060 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
cc72850f MK |
3061 | set_gdbarch_read_pc (gdbarch, hppa_read_pc); |
3062 | set_gdbarch_write_pc (gdbarch, hppa_write_pc); | |
60383d10 | 3063 | |
143985b7 AF |
3064 | /* Helper for function argument information. */ |
3065 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
3066 | ||
36482093 AC |
3067 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
3068 | ||
3a3bc038 AC |
3069 | /* When a hardware watchpoint triggers, we'll move the inferior past |
3070 | it by removing all eventpoints; stepping past the instruction | |
3071 | that caused the trigger; reinserting eventpoints; and checking | |
3072 | whether any watched location changed. */ | |
3073 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
3074 | ||
5979bc46 | 3075 | /* Inferior function call methods. */ |
fca7aa43 | 3076 | switch (tdep->bytes_per_address) |
5979bc46 | 3077 | { |
fca7aa43 AC |
3078 | case 4: |
3079 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
3080 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
d49771ef RC |
3081 | set_gdbarch_convert_from_func_ptr_addr |
3082 | (gdbarch, hppa32_convert_from_func_ptr_addr); | |
fca7aa43 AC |
3083 | break; |
3084 | case 8: | |
782eae8b AC |
3085 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
3086 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); | |
fca7aa43 | 3087 | break; |
782eae8b | 3088 | default: |
e2e0b3e5 | 3089 | internal_error (__FILE__, __LINE__, _("bad switch")); |
fad850b2 AC |
3090 | } |
3091 | ||
3092 | /* Struct return methods. */ | |
fca7aa43 | 3093 | switch (tdep->bytes_per_address) |
fad850b2 | 3094 | { |
fca7aa43 AC |
3095 | case 4: |
3096 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
3097 | break; | |
3098 | case 8: | |
782eae8b | 3099 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
f5f907e2 | 3100 | break; |
fca7aa43 | 3101 | default: |
e2e0b3e5 | 3102 | internal_error (__FILE__, __LINE__, _("bad switch")); |
e963316f | 3103 | } |
7f07c5b6 | 3104 | |
85f4f2d8 | 3105 | set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc); |
7f07c5b6 | 3106 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
85f4f2d8 | 3107 | |
5979bc46 | 3108 | /* Frame unwind methods. */ |
227e86ad | 3109 | set_gdbarch_dummy_id (gdbarch, hppa_dummy_id); |
782eae8b | 3110 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); |
7f07c5b6 | 3111 | |
50306a9d RC |
3112 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3113 | gdbarch_init_osabi (info, gdbarch); | |
3114 | ||
7f07c5b6 | 3115 | /* Hook in the default unwinders. */ |
227e86ad JB |
3116 | frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); |
3117 | frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); | |
3118 | frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); | |
5979bc46 | 3119 | |
e6e68f1f JB |
3120 | return gdbarch; |
3121 | } | |
3122 | ||
3123 | static void | |
464963c9 | 3124 | hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
e6e68f1f | 3125 | { |
464963c9 | 3126 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
fdd72f95 RC |
3127 | |
3128 | fprintf_unfiltered (file, "bytes_per_address = %d\n", | |
3129 | tdep->bytes_per_address); | |
3130 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); | |
e6e68f1f JB |
3131 | } |
3132 | ||
72753510 PA |
3133 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
3134 | extern initialize_file_ftype _initialize_hppa_tdep; | |
3135 | ||
4facf7e8 JB |
3136 | void |
3137 | _initialize_hppa_tdep (void) | |
3138 | { | |
3139 | struct cmd_list_element *c; | |
4facf7e8 | 3140 | |
e6e68f1f | 3141 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 | 3142 | |
7c46b9fb RC |
3143 | hppa_objfile_priv_data = register_objfile_data (); |
3144 | ||
4facf7e8 | 3145 | add_cmd ("unwind", class_maintenance, unwind_command, |
1a966eab | 3146 | _("Print unwind table entry at given address."), |
4facf7e8 JB |
3147 | &maintenanceprintlist); |
3148 | ||
1777feb0 | 3149 | /* Debug this files internals. */ |
7915a72c AC |
3150 | add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ |
3151 | Set whether hppa target specific debugging information should be displayed."), | |
3152 | _("\ | |
3153 | Show whether hppa target specific debugging information is displayed."), _("\ | |
4a302917 RC |
3154 | This flag controls whether hppa target specific debugging information is\n\ |
3155 | displayed. This information is particularly useful for debugging frame\n\ | |
7915a72c | 3156 | unwinding problems."), |
2c5b56ce | 3157 | NULL, |
7915a72c | 3158 | NULL, /* FIXME: i18n: hppa debug flag is %s. */ |
2c5b56ce | 3159 | &setdebuglist, &showdebuglist); |
4facf7e8 | 3160 | } |