New python events: inferior call, register/memory changed.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
ecd75fc8 3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "bfd.h"
25#include "inferior.h"
4e052eda 26#include "regcache.h"
e5d66720 27#include "completer.h"
59623e27 28#include "osabi.h"
343af405 29#include "arch-utils.h"
1777feb0 30/* For argument passing to the inferior. */
c906108c 31#include "symtab.h"
fde2cceb 32#include "dis-asm.h"
26d08f08
AC
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
c906108c 36
c906108c
SS
37#include "gdbcore.h"
38#include "gdbcmd.h"
e6bb342a 39#include "gdbtypes.h"
c906108c 40#include "objfiles.h"
3ff7cf9e 41#include "hppa-tdep.h"
c906108c 42
369aa520
RC
43static int hppa_debug = 0;
44
60383d10 45/* Some local constants. */
3ff7cf9e
JB
46static const int hppa32_num_regs = 128;
47static const int hppa64_num_regs = 96;
48
7c46b9fb
RC
49/* hppa-specific object data -- unwind and solib info.
50 TODO/maybe: think about splitting this into two parts; the unwind data is
51 common to all hppa targets, but is only used in this file; we can register
52 that separately and make this static. The solib data is probably hpux-
53 specific, so we can create a separate extern objfile_data that is registered
54 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
55const struct objfile_data *hppa_objfile_priv_data = NULL;
56
1777feb0 57/* Get at various relevent fields of an instruction word. */
e2ac8128
JB
58#define MASK_5 0x1f
59#define MASK_11 0x7ff
60#define MASK_14 0x3fff
61#define MASK_21 0x1fffff
62
e2ac8128
JB
63/* Sizes (in bytes) of the native unwind entries. */
64#define UNWIND_ENTRY_SIZE 16
65#define STUB_UNWIND_ENTRY_SIZE 8
66
c906108c 67/* Routines to extract various sized constants out of hppa
1777feb0 68 instructions. */
c906108c
SS
69
70/* This assumes that no garbage lies outside of the lower bits of
1777feb0 71 value. */
c906108c 72
63807e1d 73static int
abc485a1 74hppa_sign_extend (unsigned val, unsigned bits)
c906108c 75{
c5aa993b 76 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
77}
78
1777feb0 79/* For many immediate values the sign bit is the low bit! */
c906108c 80
63807e1d 81static int
abc485a1 82hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 83{
c5aa993b 84 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
85}
86
e2ac8128 87/* Extract the bits at positions between FROM and TO, using HP's numbering
1777feb0 88 (MSB = 0). */
e2ac8128 89
abc485a1
RC
90int
91hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
92{
93 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
94}
95
1777feb0 96/* Extract the immediate field from a ld{bhw}s instruction. */
c906108c 97
abc485a1
RC
98int
99hppa_extract_5_load (unsigned word)
c906108c 100{
abc485a1 101 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
102}
103
1777feb0 104/* Extract the immediate field from a break instruction. */
c906108c 105
abc485a1
RC
106unsigned
107hppa_extract_5r_store (unsigned word)
c906108c
SS
108{
109 return (word & MASK_5);
110}
111
1777feb0 112/* Extract the immediate field from a {sr}sm instruction. */
c906108c 113
abc485a1
RC
114unsigned
115hppa_extract_5R_store (unsigned word)
c906108c
SS
116{
117 return (word >> 16 & MASK_5);
118}
119
1777feb0 120/* Extract a 14 bit immediate field. */
c906108c 121
abc485a1
RC
122int
123hppa_extract_14 (unsigned word)
c906108c 124{
abc485a1 125 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
126}
127
1777feb0 128/* Extract a 21 bit constant. */
c906108c 129
abc485a1
RC
130int
131hppa_extract_21 (unsigned word)
c906108c
SS
132{
133 int val;
134
135 word &= MASK_21;
136 word <<= 11;
abc485a1 137 val = hppa_get_field (word, 20, 20);
c906108c 138 val <<= 11;
abc485a1 139 val |= hppa_get_field (word, 9, 19);
c906108c 140 val <<= 2;
abc485a1 141 val |= hppa_get_field (word, 5, 6);
c906108c 142 val <<= 5;
abc485a1 143 val |= hppa_get_field (word, 0, 4);
c906108c 144 val <<= 2;
abc485a1
RC
145 val |= hppa_get_field (word, 7, 8);
146 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
147}
148
c906108c 149/* extract a 17 bit constant from branch instructions, returning the
1777feb0 150 19 bit signed value. */
c906108c 151
abc485a1
RC
152int
153hppa_extract_17 (unsigned word)
c906108c 154{
abc485a1
RC
155 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
156 hppa_get_field (word, 29, 29) << 10 |
157 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
158 (word & 0x1) << 16, 17) << 2;
159}
3388d7ff
RC
160
161CORE_ADDR
162hppa_symbol_address(const char *sym)
163{
3b7344d5 164 struct bound_minimal_symbol minsym;
3388d7ff
RC
165
166 minsym = lookup_minimal_symbol (sym, NULL, NULL);
3b7344d5 167 if (minsym.minsym)
77e371c0 168 return BMSYMBOL_VALUE_ADDRESS (minsym);
3388d7ff
RC
169 else
170 return (CORE_ADDR)-1;
171}
77d18ded
RC
172
173struct hppa_objfile_private *
174hppa_init_objfile_priv_data (struct objfile *objfile)
175{
176 struct hppa_objfile_private *priv;
177
178 priv = (struct hppa_objfile_private *)
179 obstack_alloc (&objfile->objfile_obstack,
180 sizeof (struct hppa_objfile_private));
181 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
182 memset (priv, 0, sizeof (*priv));
183
184 return priv;
185}
c906108c
SS
186\f
187
188/* Compare the start address for two unwind entries returning 1 if
189 the first address is larger than the second, -1 if the second is
190 larger than the first, and zero if they are equal. */
191
192static int
fba45db2 193compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
194{
195 const struct unwind_table_entry *a = arg1;
196 const struct unwind_table_entry *b = arg2;
197
198 if (a->region_start > b->region_start)
199 return 1;
200 else if (a->region_start < b->region_start)
201 return -1;
202 else
203 return 0;
204}
205
53a5351d 206static void
fdd72f95 207record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 208{
fdd72f95 209 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 210 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
211 {
212 bfd_vma value = section->vma - section->filepos;
213 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
214
215 if (value < *low_text_segment_address)
216 *low_text_segment_address = value;
217 }
53a5351d
JM
218}
219
c906108c 220static void
fba45db2 221internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
1777feb0 222 asection *section, unsigned int entries,
241fd515 223 size_t size, CORE_ADDR text_offset)
c906108c
SS
224{
225 /* We will read the unwind entries into temporary memory, then
226 fill in the actual unwind table. */
fdd72f95 227
c906108c
SS
228 if (size > 0)
229 {
5db8bbe5 230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
231 unsigned long tmp;
232 unsigned i;
233 char *buf = alloca (size);
fdd72f95 234 CORE_ADDR low_text_segment_address;
c906108c 235
fdd72f95 236 /* For ELF targets, then unwinds are supposed to
1777feb0 237 be segment relative offsets instead of absolute addresses.
c2c6d25f
JM
238
239 Note that when loading a shared library (text_offset != 0) the
240 unwinds are already relative to the text_offset that will be
241 passed in. */
5db8bbe5 242 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
53a5351d 243 {
fdd72f95
RC
244 low_text_segment_address = -1;
245
53a5351d 246 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
247 record_text_segment_lowaddr,
248 &low_text_segment_address);
53a5351d 249
fdd72f95 250 text_offset = low_text_segment_address;
53a5351d 251 }
5db8bbe5 252 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
acf86d54 253 {
5db8bbe5 254 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
acf86d54 255 }
53a5351d 256
c906108c
SS
257 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
258
259 /* Now internalize the information being careful to handle host/target
c5aa993b 260 endian issues. */
c906108c
SS
261 for (i = 0; i < entries; i++)
262 {
263 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 264 (bfd_byte *) buf);
c906108c
SS
265 table[i].region_start += text_offset;
266 buf += 4;
c5aa993b 267 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
268 table[i].region_end += text_offset;
269 buf += 4;
c5aa993b 270 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
271 buf += 4;
272 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
273 table[i].Millicode = (tmp >> 30) & 0x1;
274 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
275 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 276 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
277 table[i].Entry_SR = (tmp >> 25) & 0x1;
278 table[i].Entry_FR = (tmp >> 21) & 0xf;
279 table[i].Entry_GR = (tmp >> 16) & 0x1f;
280 table[i].Args_stored = (tmp >> 15) & 0x1;
281 table[i].Variable_Frame = (tmp >> 14) & 0x1;
282 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
283 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
284 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
285 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 286 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
287 table[i].cxx_info = (tmp >> 8) & 0x1;
288 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
289 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 290 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
291 table[i].Save_SP = (tmp >> 4) & 0x1;
292 table[i].Save_RP = (tmp >> 3) & 0x1;
293 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 294 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 295 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 296 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
297 buf += 4;
298 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
299 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
300 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
301 table[i].alloca_frame = (tmp >> 28) & 0x1;
302 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
303 table[i].Total_frame_size = tmp & 0x7ffffff;
304
1777feb0 305 /* Stub unwinds are handled elsewhere. */
c906108c
SS
306 table[i].stub_unwind.stub_type = 0;
307 table[i].stub_unwind.padding = 0;
308 }
309 }
310}
311
312/* Read in the backtrace information stored in the `$UNWIND_START$' section of
313 the object file. This info is used mainly by find_unwind_entry() to find
314 out the stack frame size and frame pointer used by procedures. We put
315 everything on the psymbol obstack in the objfile so that it automatically
316 gets freed when the objfile is destroyed. */
317
318static void
fba45db2 319read_unwind_info (struct objfile *objfile)
c906108c 320{
d4f3574e 321 asection *unwind_sec, *stub_unwind_sec;
241fd515 322 size_t unwind_size, stub_unwind_size, total_size;
d4f3574e 323 unsigned index, unwind_entries;
c906108c
SS
324 unsigned stub_entries, total_entries;
325 CORE_ADDR text_offset;
7c46b9fb
RC
326 struct hppa_unwind_info *ui;
327 struct hppa_objfile_private *obj_private;
c906108c 328
a99dad3d 329 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7c46b9fb
RC
330 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
331 sizeof (struct hppa_unwind_info));
c906108c
SS
332
333 ui->table = NULL;
334 ui->cache = NULL;
335 ui->last = -1;
336
d4f3574e
SS
337 /* For reasons unknown the HP PA64 tools generate multiple unwinder
338 sections in a single executable. So we just iterate over every
339 section in the BFD looking for unwinder sections intead of trying
1777feb0 340 to do a lookup with bfd_get_section_by_name.
c906108c 341
d4f3574e
SS
342 First determine the total size of the unwind tables so that we
343 can allocate memory in a nice big hunk. */
344 total_entries = 0;
345 for (unwind_sec = objfile->obfd->sections;
346 unwind_sec;
347 unwind_sec = unwind_sec->next)
c906108c 348 {
d4f3574e
SS
349 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
350 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
351 {
352 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
353 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 354
d4f3574e
SS
355 total_entries += unwind_entries;
356 }
c906108c
SS
357 }
358
d4f3574e 359 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 360 use stub unwinds at the current time. */
d4f3574e
SS
361 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
362
c906108c
SS
363 if (stub_unwind_sec)
364 {
365 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
366 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
367 }
368 else
369 {
370 stub_unwind_size = 0;
371 stub_entries = 0;
372 }
373
374 /* Compute total number of unwind entries and their total size. */
d4f3574e 375 total_entries += stub_entries;
c906108c
SS
376 total_size = total_entries * sizeof (struct unwind_table_entry);
377
378 /* Allocate memory for the unwind table. */
379 ui->table = (struct unwind_table_entry *)
8b92e4d5 380 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 381 ui->last = total_entries - 1;
c906108c 382
d4f3574e
SS
383 /* Now read in each unwind section and internalize the standard unwind
384 entries. */
c906108c 385 index = 0;
d4f3574e
SS
386 for (unwind_sec = objfile->obfd->sections;
387 unwind_sec;
388 unwind_sec = unwind_sec->next)
389 {
390 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
391 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
392 {
393 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
394 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
395
396 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
397 unwind_entries, unwind_size, text_offset);
398 index += unwind_entries;
399 }
400 }
401
402 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
403 if (stub_unwind_size > 0)
404 {
405 unsigned int i;
406 char *buf = alloca (stub_unwind_size);
407
408 /* Read in the stub unwind entries. */
409 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
410 0, stub_unwind_size);
411
412 /* Now convert them into regular unwind entries. */
413 for (i = 0; i < stub_entries; i++, index++)
414 {
415 /* Clear out the next unwind entry. */
416 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
417
1777feb0 418 /* Convert offset & size into region_start and region_end.
c906108c
SS
419 Stuff away the stub type into "reserved" fields. */
420 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
421 (bfd_byte *) buf);
422 ui->table[index].region_start += text_offset;
423 buf += 4;
424 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 425 (bfd_byte *) buf);
c906108c
SS
426 buf += 2;
427 ui->table[index].region_end
c5aa993b
JM
428 = ui->table[index].region_start + 4 *
429 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
430 buf += 2;
431 }
432
433 }
434
435 /* Unwind table needs to be kept sorted. */
436 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
437 compare_unwind_entries);
438
439 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
440 obj_private = (struct hppa_objfile_private *)
441 objfile_data (objfile, hppa_objfile_priv_data);
442 if (obj_private == NULL)
77d18ded
RC
443 obj_private = hppa_init_objfile_priv_data (objfile);
444
c906108c
SS
445 obj_private->unwind_info = ui;
446}
447
448/* Lookup the unwind (stack backtrace) info for the given PC. We search all
449 of the objfiles seeking the unwind table entry for this PC. Each objfile
450 contains a sorted list of struct unwind_table_entry. Since we do a binary
451 search of the unwind tables, we depend upon them to be sorted. */
452
453struct unwind_table_entry *
fba45db2 454find_unwind_entry (CORE_ADDR pc)
c906108c
SS
455{
456 int first, middle, last;
457 struct objfile *objfile;
7c46b9fb 458 struct hppa_objfile_private *priv;
c906108c 459
369aa520 460 if (hppa_debug)
5af949e3
UW
461 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
462 hex_string (pc));
369aa520 463
1777feb0 464 /* A function at address 0? Not in HP-UX! */
c906108c 465 if (pc == (CORE_ADDR) 0)
369aa520
RC
466 {
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
469 return NULL;
470 }
c906108c
SS
471
472 ALL_OBJFILES (objfile)
c5aa993b 473 {
7c46b9fb 474 struct hppa_unwind_info *ui;
c5aa993b 475 ui = NULL;
7c46b9fb
RC
476 priv = objfile_data (objfile, hppa_objfile_priv_data);
477 if (priv)
478 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 479
c5aa993b
JM
480 if (!ui)
481 {
482 read_unwind_info (objfile);
7c46b9fb
RC
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv == NULL)
8a3fe4f8 485 error (_("Internal error reading unwind information."));
7c46b9fb 486 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 487 }
c906108c 488
1777feb0 489 /* First, check the cache. */
c906108c 490
c5aa993b
JM
491 if (ui->cache
492 && pc >= ui->cache->region_start
493 && pc <= ui->cache->region_end)
369aa520
RC
494 {
495 if (hppa_debug)
5af949e3
UW
496 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
497 hex_string ((uintptr_t) ui->cache));
369aa520
RC
498 return ui->cache;
499 }
c906108c 500
1777feb0 501 /* Not in the cache, do a binary search. */
c906108c 502
c5aa993b
JM
503 first = 0;
504 last = ui->last;
c906108c 505
c5aa993b
JM
506 while (first <= last)
507 {
508 middle = (first + last) / 2;
509 if (pc >= ui->table[middle].region_start
510 && pc <= ui->table[middle].region_end)
511 {
512 ui->cache = &ui->table[middle];
369aa520 513 if (hppa_debug)
5af949e3
UW
514 fprintf_unfiltered (gdb_stdlog, "%s }\n",
515 hex_string ((uintptr_t) ui->cache));
c5aa993b
JM
516 return &ui->table[middle];
517 }
c906108c 518
c5aa993b
JM
519 if (pc < ui->table[middle].region_start)
520 last = middle - 1;
521 else
522 first = middle + 1;
523 }
524 } /* ALL_OBJFILES() */
369aa520
RC
525
526 if (hppa_debug)
527 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
528
c906108c
SS
529 return NULL;
530}
531
1fb24930 532/* The epilogue is defined here as the area either on the `bv' instruction
1777feb0 533 itself or an instruction which destroys the function's stack frame.
1fb24930
RC
534
535 We do not assume that the epilogue is at the end of a function as we can
536 also have return sequences in the middle of a function. */
537static int
538hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
539{
e17a4113 540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1fb24930
RC
541 unsigned long status;
542 unsigned int inst;
e362b510 543 gdb_byte buf[4];
1fb24930 544
8defab1a 545 status = target_read_memory (pc, buf, 4);
1fb24930
RC
546 if (status != 0)
547 return 0;
548
e17a4113 549 inst = extract_unsigned_integer (buf, 4, byte_order);
1fb24930
RC
550
551 /* The most common way to perform a stack adjustment ldo X(sp),sp
552 We are destroying a stack frame if the offset is negative. */
553 if ((inst & 0xffffc000) == 0x37de0000
554 && hppa_extract_14 (inst) < 0)
555 return 1;
556
557 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
558 if (((inst & 0x0fc010e0) == 0x0fc010e0
559 || (inst & 0x0fc010e0) == 0x0fc010e0)
560 && hppa_extract_14 (inst) < 0)
561 return 1;
562
563 /* bv %r0(%rp) or bv,n %r0(%rp) */
564 if (inst == 0xe840c000 || inst == 0xe840c002)
565 return 1;
566
567 return 0;
568}
569
85f4f2d8 570static const unsigned char *
67d57894 571hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
aaab4dba 572{
56132691 573 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
574 (*len) = sizeof (breakpoint);
575 return breakpoint;
576}
577
e23457df
AC
578/* Return the name of a register. */
579
4a302917 580static const char *
d93859e2 581hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
582{
583 static char *names[] = {
584 "flags", "r1", "rp", "r3",
585 "r4", "r5", "r6", "r7",
586 "r8", "r9", "r10", "r11",
587 "r12", "r13", "r14", "r15",
588 "r16", "r17", "r18", "r19",
589 "r20", "r21", "r22", "r23",
590 "r24", "r25", "r26", "dp",
591 "ret0", "ret1", "sp", "r31",
592 "sar", "pcoqh", "pcsqh", "pcoqt",
593 "pcsqt", "eiem", "iir", "isr",
594 "ior", "ipsw", "goto", "sr4",
595 "sr0", "sr1", "sr2", "sr3",
596 "sr5", "sr6", "sr7", "cr0",
597 "cr8", "cr9", "ccr", "cr12",
598 "cr13", "cr24", "cr25", "cr26",
599 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
600 "fpsr", "fpe1", "fpe2", "fpe3",
601 "fpe4", "fpe5", "fpe6", "fpe7",
602 "fr4", "fr4R", "fr5", "fr5R",
603 "fr6", "fr6R", "fr7", "fr7R",
604 "fr8", "fr8R", "fr9", "fr9R",
605 "fr10", "fr10R", "fr11", "fr11R",
606 "fr12", "fr12R", "fr13", "fr13R",
607 "fr14", "fr14R", "fr15", "fr15R",
608 "fr16", "fr16R", "fr17", "fr17R",
609 "fr18", "fr18R", "fr19", "fr19R",
610 "fr20", "fr20R", "fr21", "fr21R",
611 "fr22", "fr22R", "fr23", "fr23R",
612 "fr24", "fr24R", "fr25", "fr25R",
613 "fr26", "fr26R", "fr27", "fr27R",
614 "fr28", "fr28R", "fr29", "fr29R",
615 "fr30", "fr30R", "fr31", "fr31R"
616 };
617 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
618 return NULL;
619 else
620 return names[i];
621}
622
4a302917 623static const char *
d93859e2 624hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
625{
626 static char *names[] = {
627 "flags", "r1", "rp", "r3",
628 "r4", "r5", "r6", "r7",
629 "r8", "r9", "r10", "r11",
630 "r12", "r13", "r14", "r15",
631 "r16", "r17", "r18", "r19",
632 "r20", "r21", "r22", "r23",
633 "r24", "r25", "r26", "dp",
634 "ret0", "ret1", "sp", "r31",
635 "sar", "pcoqh", "pcsqh", "pcoqt",
636 "pcsqt", "eiem", "iir", "isr",
637 "ior", "ipsw", "goto", "sr4",
638 "sr0", "sr1", "sr2", "sr3",
639 "sr5", "sr6", "sr7", "cr0",
640 "cr8", "cr9", "ccr", "cr12",
641 "cr13", "cr24", "cr25", "cr26",
642 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
643 "fpsr", "fpe1", "fpe2", "fpe3",
644 "fr4", "fr5", "fr6", "fr7",
645 "fr8", "fr9", "fr10", "fr11",
646 "fr12", "fr13", "fr14", "fr15",
647 "fr16", "fr17", "fr18", "fr19",
648 "fr20", "fr21", "fr22", "fr23",
649 "fr24", "fr25", "fr26", "fr27",
650 "fr28", "fr29", "fr30", "fr31"
651 };
652 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
653 return NULL;
654 else
655 return names[i];
656}
657
85c83e99 658/* Map dwarf DBX register numbers to GDB register numbers. */
1ef7fcb5 659static int
d3f73121 660hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5 661{
85c83e99 662 /* The general registers and the sar are the same in both sets. */
1ef7fcb5
RC
663 if (reg <= 32)
664 return reg;
665
666 /* fr4-fr31 are mapped from 72 in steps of 2. */
85c83e99 667 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
1ef7fcb5
RC
668 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
669
85c83e99 670 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
1ef7fcb5
RC
671 return -1;
672}
673
79508e1e
AC
674/* This function pushes a stack frame with arguments as part of the
675 inferior function calling mechanism.
676
677 This is the version of the function for the 32-bit PA machines, in
678 which later arguments appear at lower addresses. (The stack always
679 grows towards higher addresses.)
680
681 We simply allocate the appropriate amount of stack space and put
682 arguments into their proper slots. */
683
4a302917 684static CORE_ADDR
7d9b040b 685hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
686 struct regcache *regcache, CORE_ADDR bp_addr,
687 int nargs, struct value **args, CORE_ADDR sp,
688 int struct_return, CORE_ADDR struct_addr)
689{
e17a4113
UW
690 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
691
79508e1e
AC
692 /* Stack base address at which any pass-by-reference parameters are
693 stored. */
694 CORE_ADDR struct_end = 0;
695 /* Stack base address at which the first parameter is stored. */
696 CORE_ADDR param_end = 0;
697
698 /* The inner most end of the stack after all the parameters have
699 been pushed. */
700 CORE_ADDR new_sp = 0;
701
702 /* Two passes. First pass computes the location of everything,
703 second pass writes the bytes out. */
704 int write_pass;
d49771ef
RC
705
706 /* Global pointer (r19) of the function we are trying to call. */
707 CORE_ADDR gp;
708
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
710
79508e1e
AC
711 for (write_pass = 0; write_pass < 2; write_pass++)
712 {
1797a8f6 713 CORE_ADDR struct_ptr = 0;
1777feb0 714 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
2a6228ef
RC
715 struct_ptr is adjusted for each argument below, so the first
716 argument will end up at sp-36. */
717 CORE_ADDR param_ptr = 32;
79508e1e 718 int i;
2a6228ef
RC
719 int small_struct = 0;
720
79508e1e
AC
721 for (i = 0; i < nargs; i++)
722 {
723 struct value *arg = args[i];
4991999e 724 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
725 /* The corresponding parameter that is pushed onto the
726 stack, and [possibly] passed in a register. */
948f8e3d 727 gdb_byte param_val[8];
79508e1e
AC
728 int param_len;
729 memset (param_val, 0, sizeof param_val);
730 if (TYPE_LENGTH (type) > 8)
731 {
732 /* Large parameter, pass by reference. Store the value
733 in "struct" area and then pass its address. */
734 param_len = 4;
1797a8f6 735 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 736 if (write_pass)
0fd88904 737 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 738 TYPE_LENGTH (type));
e17a4113
UW
739 store_unsigned_integer (param_val, 4, byte_order,
740 struct_end - struct_ptr);
79508e1e
AC
741 }
742 else if (TYPE_CODE (type) == TYPE_CODE_INT
743 || TYPE_CODE (type) == TYPE_CODE_ENUM)
744 {
745 /* Integer value store, right aligned. "unpack_long"
746 takes care of any sign-extension problems. */
747 param_len = align_up (TYPE_LENGTH (type), 4);
e17a4113 748 store_unsigned_integer (param_val, param_len, byte_order,
79508e1e 749 unpack_long (type,
0fd88904 750 value_contents (arg)));
79508e1e 751 }
2a6228ef
RC
752 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
753 {
754 /* Floating point value store, right aligned. */
755 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 756 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 757 }
79508e1e
AC
758 else
759 {
79508e1e 760 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
761
762 /* Small struct value are stored right-aligned. */
79508e1e 763 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 764 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
765
766 /* Structures of size 5, 6 and 7 bytes are special in that
767 the higher-ordered word is stored in the lower-ordered
768 argument, and even though it is a 8-byte quantity the
769 registers need not be 8-byte aligned. */
1b07b470 770 if (param_len > 4 && param_len < 8)
2a6228ef 771 small_struct = 1;
79508e1e 772 }
2a6228ef 773
1797a8f6 774 param_ptr += param_len;
2a6228ef
RC
775 if (param_len == 8 && !small_struct)
776 param_ptr = align_up (param_ptr, 8);
777
778 /* First 4 non-FP arguments are passed in gr26-gr23.
779 First 4 32-bit FP arguments are passed in fr4L-fr7L.
780 First 2 64-bit FP arguments are passed in fr5 and fr7.
781
782 The rest go on the stack, starting at sp-36, towards lower
783 addresses. 8-byte arguments must be aligned to a 8-byte
784 stack boundary. */
79508e1e
AC
785 if (write_pass)
786 {
1797a8f6 787 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
788
789 /* There are some cases when we don't know the type
790 expected by the callee (e.g. for variadic functions), so
791 pass the parameters in both general and fp regs. */
792 if (param_ptr <= 48)
79508e1e 793 {
2a6228ef
RC
794 int grreg = 26 - (param_ptr - 36) / 4;
795 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
796 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
797
798 regcache_cooked_write (regcache, grreg, param_val);
799 regcache_cooked_write (regcache, fpLreg, param_val);
800
79508e1e 801 if (param_len > 4)
2a6228ef
RC
802 {
803 regcache_cooked_write (regcache, grreg + 1,
804 param_val + 4);
805
806 regcache_cooked_write (regcache, fpreg, param_val);
807 regcache_cooked_write (regcache, fpreg + 1,
808 param_val + 4);
809 }
79508e1e
AC
810 }
811 }
812 }
813
814 /* Update the various stack pointers. */
815 if (!write_pass)
816 {
2a6228ef 817 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
818 /* PARAM_PTR already accounts for all the arguments passed
819 by the user. However, the ABI mandates minimum stack
820 space allocations for outgoing arguments. The ABI also
821 mandates minimum stack alignments which we must
822 preserve. */
2a6228ef 823 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
824 }
825 }
826
827 /* If a structure has to be returned, set up register 28 to hold its
1777feb0 828 address. */
79508e1e 829 if (struct_return)
9c9acae0 830 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 831
e38c262f 832 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
833
834 if (gp != 0)
9c9acae0 835 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 836
79508e1e 837 /* Set the return address. */
77d18ded
RC
838 if (!gdbarch_push_dummy_code_p (gdbarch))
839 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 840
c4557624 841 /* Update the Stack Pointer. */
34f75cc1 842 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 843
2a6228ef 844 return param_end;
79508e1e
AC
845}
846
38ca4e0c
MK
847/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
848 Runtime Architecture for PA-RISC 2.0", which is distributed as part
849 as of the HP-UX Software Transition Kit (STK). This implementation
850 is based on version 3.3, dated October 6, 1997. */
2f690297 851
38ca4e0c 852/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 853
38ca4e0c
MK
854static int
855hppa64_integral_or_pointer_p (const struct type *type)
856{
857 switch (TYPE_CODE (type))
858 {
859 case TYPE_CODE_INT:
860 case TYPE_CODE_BOOL:
861 case TYPE_CODE_CHAR:
862 case TYPE_CODE_ENUM:
863 case TYPE_CODE_RANGE:
864 {
865 int len = TYPE_LENGTH (type);
866 return (len == 1 || len == 2 || len == 4 || len == 8);
867 }
868 case TYPE_CODE_PTR:
869 case TYPE_CODE_REF:
870 return (TYPE_LENGTH (type) == 8);
871 default:
872 break;
873 }
874
875 return 0;
876}
877
878/* Check whether TYPE is a "Floating Scalar Type". */
879
880static int
881hppa64_floating_p (const struct type *type)
882{
883 switch (TYPE_CODE (type))
884 {
885 case TYPE_CODE_FLT:
886 {
887 int len = TYPE_LENGTH (type);
888 return (len == 4 || len == 8 || len == 16);
889 }
890 default:
891 break;
892 }
893
894 return 0;
895}
2f690297 896
1218e655
RC
897/* If CODE points to a function entry address, try to look up the corresponding
898 function descriptor and return its address instead. If CODE is not a
899 function entry address, then just return it unchanged. */
900static CORE_ADDR
e17a4113 901hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
1218e655 902{
e17a4113 903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218e655
RC
904 struct obj_section *sec, *opd;
905
906 sec = find_pc_section (code);
907
908 if (!sec)
909 return code;
910
911 /* If CODE is in a data section, assume it's already a fptr. */
912 if (!(sec->the_bfd_section->flags & SEC_CODE))
913 return code;
914
915 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
916 {
917 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
aded6f54 918 break;
1218e655
RC
919 }
920
921 if (opd < sec->objfile->sections_end)
922 {
923 CORE_ADDR addr;
924
aded6f54
PA
925 for (addr = obj_section_addr (opd);
926 addr < obj_section_endaddr (opd);
927 addr += 2 * 8)
928 {
1218e655 929 ULONGEST opdaddr;
948f8e3d 930 gdb_byte tmp[8];
1218e655
RC
931
932 if (target_read_memory (addr, tmp, sizeof (tmp)))
933 break;
e17a4113 934 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
1218e655 935
aded6f54 936 if (opdaddr == code)
1218e655
RC
937 return addr - 16;
938 }
939 }
940
941 return code;
942}
943
4a302917 944static CORE_ADDR
7d9b040b 945hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
946 struct regcache *regcache, CORE_ADDR bp_addr,
947 int nargs, struct value **args, CORE_ADDR sp,
948 int struct_return, CORE_ADDR struct_addr)
949{
38ca4e0c 950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
38ca4e0c
MK
952 int i, offset = 0;
953 CORE_ADDR gp;
2f690297 954
38ca4e0c
MK
955 /* "The outgoing parameter area [...] must be aligned at a 16-byte
956 boundary." */
957 sp = align_up (sp, 16);
2f690297 958
38ca4e0c
MK
959 for (i = 0; i < nargs; i++)
960 {
961 struct value *arg = args[i];
962 struct type *type = value_type (arg);
963 int len = TYPE_LENGTH (type);
0fd88904 964 const bfd_byte *valbuf;
1218e655 965 bfd_byte fptrbuf[8];
38ca4e0c 966 int regnum;
2f690297 967
38ca4e0c
MK
968 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
969 offset = align_up (offset, 8);
77d18ded 970
38ca4e0c 971 if (hppa64_integral_or_pointer_p (type))
2f690297 972 {
38ca4e0c
MK
973 /* "Integral scalar parameters smaller than 64 bits are
974 padded on the left (i.e., the value is in the
975 least-significant bits of the 64-bit storage unit, and
976 the high-order bits are undefined)." Therefore we can
977 safely sign-extend them. */
978 if (len < 8)
449e1137 979 {
df4df182 980 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
38ca4e0c
MK
981 len = 8;
982 }
983 }
984 else if (hppa64_floating_p (type))
985 {
986 if (len > 8)
987 {
988 /* "Quad-precision (128-bit) floating-point scalar
989 parameters are aligned on a 16-byte boundary." */
990 offset = align_up (offset, 16);
991
992 /* "Double-extended- and quad-precision floating-point
993 parameters within the first 64 bytes of the parameter
994 list are always passed in general registers." */
449e1137
AC
995 }
996 else
997 {
38ca4e0c 998 if (len == 4)
449e1137 999 {
38ca4e0c
MK
1000 /* "Single-precision (32-bit) floating-point scalar
1001 parameters are padded on the left with 32 bits of
1002 garbage (i.e., the floating-point value is in the
1003 least-significant 32 bits of a 64-bit storage
1004 unit)." */
1005 offset += 4;
449e1137 1006 }
38ca4e0c
MK
1007
1008 /* "Single- and double-precision floating-point
1009 parameters in this area are passed according to the
1010 available formal parameter information in a function
1011 prototype. [...] If no prototype is in scope,
1012 floating-point parameters must be passed both in the
1013 corresponding general registers and in the
1014 corresponding floating-point registers." */
1015 regnum = HPPA64_FP4_REGNUM + offset / 8;
1016
1017 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1018 {
38ca4e0c
MK
1019 /* "Single-precision floating-point parameters, when
1020 passed in floating-point registers, are passed in
1021 the right halves of the floating point registers;
1022 the left halves are unused." */
1023 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1024 len, value_contents (arg));
449e1137
AC
1025 }
1026 }
2f690297 1027 }
38ca4e0c 1028 else
2f690297 1029 {
38ca4e0c
MK
1030 if (len > 8)
1031 {
1032 /* "Aggregates larger than 8 bytes are aligned on a
1033 16-byte boundary, possibly leaving an unused argument
1777feb0 1034 slot, which is filled with garbage. If necessary,
38ca4e0c
MK
1035 they are padded on the right (with garbage), to a
1036 multiple of 8 bytes." */
1037 offset = align_up (offset, 16);
1038 }
1039 }
1040
1218e655
RC
1041 /* If we are passing a function pointer, make sure we pass a function
1042 descriptor instead of the function entry address. */
1043 if (TYPE_CODE (type) == TYPE_CODE_PTR
1044 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1045 {
1046 ULONGEST codeptr, fptr;
1047
1048 codeptr = unpack_long (type, value_contents (arg));
e17a4113
UW
1049 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1050 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1051 fptr);
1218e655
RC
1052 valbuf = fptrbuf;
1053 }
1054 else
1055 {
1056 valbuf = value_contents (arg);
1057 }
1058
38ca4e0c 1059 /* Always store the argument in memory. */
1218e655 1060 write_memory (sp + offset, valbuf, len);
38ca4e0c 1061
38ca4e0c
MK
1062 regnum = HPPA_ARG0_REGNUM - offset / 8;
1063 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1064 {
1065 regcache_cooked_write_part (regcache, regnum,
1066 offset % 8, min (len, 8), valbuf);
1067 offset += min (len, 8);
1068 valbuf += min (len, 8);
1069 len -= min (len, 8);
1070 regnum--;
2f690297 1071 }
38ca4e0c
MK
1072
1073 offset += len;
2f690297
AC
1074 }
1075
38ca4e0c
MK
1076 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1077 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1078
1079 /* Allocate the outgoing parameter area. Make sure the outgoing
1080 parameter area is multiple of 16 bytes in length. */
1081 sp += max (align_up (offset, 16), 64);
1082
1083 /* Allocate 32-bytes of scratch space. The documentation doesn't
1084 mention this, but it seems to be needed. */
1085 sp += 32;
1086
1087 /* Allocate the frame marker area. */
1088 sp += 16;
1089
1090 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1091 its address. */
2f690297 1092 if (struct_return)
38ca4e0c 1093 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1094
38ca4e0c 1095 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1096 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1097 if (gp != 0)
38ca4e0c 1098 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1099
38ca4e0c 1100 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1101 if (!gdbarch_push_dummy_code_p (gdbarch))
1102 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1103
38ca4e0c
MK
1104 /* Set up GR30 to hold the stack pointer (sp). */
1105 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1106
38ca4e0c 1107 return sp;
2f690297 1108}
38ca4e0c 1109\f
2f690297 1110
08a27113
MK
1111/* Handle 32/64-bit struct return conventions. */
1112
1113static enum return_value_convention
6a3a010b 1114hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1115 struct type *type, struct regcache *regcache,
e127f0db 1116 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1117{
1118 if (TYPE_LENGTH (type) <= 2 * 4)
1119 {
1120 /* The value always lives in the right hand end of the register
1121 (or register pair)? */
1122 int b;
1123 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1124 int part = TYPE_LENGTH (type) % 4;
1125 /* The left hand register contains only part of the value,
1126 transfer that first so that the rest can be xfered as entire
1127 4-byte registers. */
1128 if (part > 0)
1129 {
1130 if (readbuf != NULL)
1131 regcache_cooked_read_part (regcache, reg, 4 - part,
1132 part, readbuf);
1133 if (writebuf != NULL)
1134 regcache_cooked_write_part (regcache, reg, 4 - part,
1135 part, writebuf);
1136 reg++;
1137 }
1138 /* Now transfer the remaining register values. */
1139 for (b = part; b < TYPE_LENGTH (type); b += 4)
1140 {
1141 if (readbuf != NULL)
e127f0db 1142 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1143 if (writebuf != NULL)
e127f0db 1144 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1145 reg++;
1146 }
1147 return RETURN_VALUE_REGISTER_CONVENTION;
1148 }
1149 else
1150 return RETURN_VALUE_STRUCT_CONVENTION;
1151}
1152
1153static enum return_value_convention
6a3a010b 1154hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1155 struct type *type, struct regcache *regcache,
e127f0db 1156 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1157{
1158 int len = TYPE_LENGTH (type);
1159 int regnum, offset;
1160
bad43aa5 1161 if (len > 16)
08a27113
MK
1162 {
1163 /* All return values larget than 128 bits must be aggregate
1164 return values. */
9738b034
MK
1165 gdb_assert (!hppa64_integral_or_pointer_p (type));
1166 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1167
1168 /* "Aggregate return values larger than 128 bits are returned in
1169 a buffer allocated by the caller. The address of the buffer
1170 must be passed in GR 28." */
1171 return RETURN_VALUE_STRUCT_CONVENTION;
1172 }
1173
1174 if (hppa64_integral_or_pointer_p (type))
1175 {
1176 /* "Integral return values are returned in GR 28. Values
1177 smaller than 64 bits are padded on the left (with garbage)." */
1178 regnum = HPPA_RET0_REGNUM;
1179 offset = 8 - len;
1180 }
1181 else if (hppa64_floating_p (type))
1182 {
1183 if (len > 8)
1184 {
1185 /* "Double-extended- and quad-precision floating-point
1186 values are returned in GRs 28 and 29. The sign,
1187 exponent, and most-significant bits of the mantissa are
1188 returned in GR 28; the least-significant bits of the
1189 mantissa are passed in GR 29. For double-extended
1190 precision values, GR 29 is padded on the right with 48
1191 bits of garbage." */
1192 regnum = HPPA_RET0_REGNUM;
1193 offset = 0;
1194 }
1195 else
1196 {
1197 /* "Single-precision and double-precision floating-point
1198 return values are returned in FR 4R (single precision) or
1199 FR 4 (double-precision)." */
1200 regnum = HPPA64_FP4_REGNUM;
1201 offset = 8 - len;
1202 }
1203 }
1204 else
1205 {
1206 /* "Aggregate return values up to 64 bits in size are returned
1207 in GR 28. Aggregates smaller than 64 bits are left aligned
1208 in the register; the pad bits on the right are undefined."
1209
1210 "Aggregate return values between 65 and 128 bits are returned
1211 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1212 the remaining bits are placed, left aligned, in GR 29. The
1213 pad bits on the right of GR 29 (if any) are undefined." */
1214 regnum = HPPA_RET0_REGNUM;
1215 offset = 0;
1216 }
1217
1218 if (readbuf)
1219 {
08a27113
MK
1220 while (len > 0)
1221 {
1222 regcache_cooked_read_part (regcache, regnum, offset,
e127f0db
MK
1223 min (len, 8), readbuf);
1224 readbuf += min (len, 8);
08a27113
MK
1225 len -= min (len, 8);
1226 regnum++;
1227 }
1228 }
1229
1230 if (writebuf)
1231 {
08a27113
MK
1232 while (len > 0)
1233 {
1234 regcache_cooked_write_part (regcache, regnum, offset,
e127f0db
MK
1235 min (len, 8), writebuf);
1236 writebuf += min (len, 8);
08a27113
MK
1237 len -= min (len, 8);
1238 regnum++;
1239 }
1240 }
1241
1242 return RETURN_VALUE_REGISTER_CONVENTION;
1243}
1244\f
1245
d49771ef 1246static CORE_ADDR
a7aad9aa 1247hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1248 struct target_ops *targ)
1249{
1250 if (addr & 2)
1251 {
0dfff4cb 1252 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
a7aad9aa 1253 CORE_ADDR plabel = addr & ~3;
0dfff4cb 1254 return read_memory_typed_address (plabel, func_ptr_type);
d49771ef
RC
1255 }
1256
1257 return addr;
1258}
1259
1797a8f6
AC
1260static CORE_ADDR
1261hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1262{
1263 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1264 and not _bit_)! */
1265 return align_up (addr, 64);
1266}
1267
2f690297
AC
1268/* Force all frames to 16-byte alignment. Better safe than sorry. */
1269
1270static CORE_ADDR
1797a8f6 1271hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1272{
1273 /* Just always 16-byte align. */
1274 return align_up (addr, 16);
1275}
1276
cc72850f 1277CORE_ADDR
61a1198a 1278hppa_read_pc (struct regcache *regcache)
c906108c 1279{
cc72850f 1280 ULONGEST ipsw;
61a1198a 1281 ULONGEST pc;
c906108c 1282
61a1198a
UW
1283 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1284 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1285
1286 /* If the current instruction is nullified, then we are effectively
1287 still executing the previous instruction. Pretend we are still
cc72850f
MK
1288 there. This is needed when single stepping; if the nullified
1289 instruction is on a different line, we don't want GDB to think
1290 we've stepped onto that line. */
fe46cd3a
RC
1291 if (ipsw & 0x00200000)
1292 pc -= 4;
1293
cc72850f 1294 return pc & ~0x3;
c906108c
SS
1295}
1296
cc72850f 1297void
61a1198a 1298hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1299{
61a1198a
UW
1300 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1301 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1302}
1303
c906108c 1304/* For the given instruction (INST), return any adjustment it makes
1777feb0 1305 to the stack pointer or zero for no adjustment.
c906108c
SS
1306
1307 This only handles instructions commonly found in prologues. */
1308
1309static int
fba45db2 1310prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1311{
1312 /* This must persist across calls. */
1313 static int save_high21;
1314
1315 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1316 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1317 return hppa_extract_14 (inst);
c906108c
SS
1318
1319 /* stwm X,D(sp) */
1320 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1321 return hppa_extract_14 (inst);
c906108c 1322
104c1213
JM
1323 /* std,ma X,D(sp) */
1324 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1325 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1326
e22b26cb 1327 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1328 save high bits in save_high21 for later use. */
e22b26cb 1329 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1330 {
abc485a1 1331 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1332 return 0;
1333 }
1334
1335 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1336 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1337
1338 /* fstws as used by the HP compilers. */
1339 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1340 return hppa_extract_5_load (inst);
c906108c
SS
1341
1342 /* No adjustment. */
1343 return 0;
1344}
1345
1346/* Return nonzero if INST is a branch of some kind, else return zero. */
1347
1348static int
fba45db2 1349is_branch (unsigned long inst)
c906108c
SS
1350{
1351 switch (inst >> 26)
1352 {
1353 case 0x20:
1354 case 0x21:
1355 case 0x22:
1356 case 0x23:
7be570e7 1357 case 0x27:
c906108c
SS
1358 case 0x28:
1359 case 0x29:
1360 case 0x2a:
1361 case 0x2b:
7be570e7 1362 case 0x2f:
c906108c
SS
1363 case 0x30:
1364 case 0x31:
1365 case 0x32:
1366 case 0x33:
1367 case 0x38:
1368 case 0x39:
1369 case 0x3a:
7be570e7 1370 case 0x3b:
c906108c
SS
1371 return 1;
1372
1373 default:
1374 return 0;
1375 }
1376}
1377
1378/* Return the register number for a GR which is saved by INST or
1379 zero it INST does not save a GR. */
1380
1381static int
fba45db2 1382inst_saves_gr (unsigned long inst)
c906108c
SS
1383{
1384 /* Does it look like a stw? */
7be570e7
JM
1385 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1386 || (inst >> 26) == 0x1f
1387 || ((inst >> 26) == 0x1f
1388 && ((inst >> 6) == 0xa)))
abc485a1 1389 return hppa_extract_5R_store (inst);
7be570e7
JM
1390
1391 /* Does it look like a std? */
1392 if ((inst >> 26) == 0x1c
1393 || ((inst >> 26) == 0x03
1394 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1395 return hppa_extract_5R_store (inst);
c906108c 1396
1777feb0 1397 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
c906108c 1398 if ((inst >> 26) == 0x1b)
abc485a1 1399 return hppa_extract_5R_store (inst);
c906108c
SS
1400
1401 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1402 too. */
7be570e7
JM
1403 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1404 || ((inst >> 26) == 0x3
1405 && (((inst >> 6) & 0xf) == 0x8
1406 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1407 return hppa_extract_5R_store (inst);
c5aa993b 1408
c906108c
SS
1409 return 0;
1410}
1411
1412/* Return the register number for a FR which is saved by INST or
1413 zero it INST does not save a FR.
1414
1415 Note we only care about full 64bit register stores (that's the only
1416 kind of stores the prologue will use).
1417
1418 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1419
1420static int
fba45db2 1421inst_saves_fr (unsigned long inst)
c906108c 1422{
1777feb0 1423 /* Is this an FSTD? */
c906108c 1424 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1425 return hppa_extract_5r_store (inst);
7be570e7 1426 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1427 return hppa_extract_5R_store (inst);
1777feb0 1428 /* Is this an FSTW? */
c906108c 1429 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1430 return hppa_extract_5r_store (inst);
7be570e7 1431 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1432 return hppa_extract_5R_store (inst);
c906108c
SS
1433 return 0;
1434}
1435
1436/* Advance PC across any function entry prologue instructions
1777feb0 1437 to reach some "real" code.
c906108c
SS
1438
1439 Use information in the unwind table to determine what exactly should
1440 be in the prologue. */
1441
1442
a71f8c30 1443static CORE_ADDR
be8626e0
MD
1444skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1445 int stop_before_branch)
c906108c 1446{
e17a4113 1447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 1448 gdb_byte buf[4];
c906108c
SS
1449 CORE_ADDR orig_pc = pc;
1450 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1451 unsigned long args_stored, status, i, restart_gr, restart_fr;
1452 struct unwind_table_entry *u;
a71f8c30 1453 int final_iteration;
c906108c
SS
1454
1455 restart_gr = 0;
1456 restart_fr = 0;
1457
1458restart:
1459 u = find_unwind_entry (pc);
1460 if (!u)
1461 return pc;
1462
1777feb0 1463 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1464 if ((pc & ~0x3) != u->region_start)
1465 return pc;
1466
1467 /* This is how much of a frame adjustment we need to account for. */
1468 stack_remaining = u->Total_frame_size << 3;
1469
1470 /* Magic register saves we want to know about. */
1471 save_rp = u->Save_RP;
1472 save_sp = u->Save_SP;
1473
1474 /* An indication that args may be stored into the stack. Unfortunately
1475 the HPUX compilers tend to set this in cases where no args were
1476 stored too!. */
1477 args_stored = 1;
1478
1479 /* Turn the Entry_GR field into a bitmask. */
1480 save_gr = 0;
1481 for (i = 3; i < u->Entry_GR + 3; i++)
1482 {
1483 /* Frame pointer gets saved into a special location. */
eded0a31 1484 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1485 continue;
1486
1487 save_gr |= (1 << i);
1488 }
1489 save_gr &= ~restart_gr;
1490
1491 /* Turn the Entry_FR field into a bitmask too. */
1492 save_fr = 0;
1493 for (i = 12; i < u->Entry_FR + 12; i++)
1494 save_fr |= (1 << i);
1495 save_fr &= ~restart_fr;
1496
a71f8c30
RC
1497 final_iteration = 0;
1498
c906108c
SS
1499 /* Loop until we find everything of interest or hit a branch.
1500
1501 For unoptimized GCC code and for any HP CC code this will never ever
1502 examine any user instructions.
1503
1504 For optimzied GCC code we're faced with problems. GCC will schedule
1505 its prologue and make prologue instructions available for delay slot
1506 filling. The end result is user code gets mixed in with the prologue
1507 and a prologue instruction may be in the delay slot of the first branch
1508 or call.
1509
1510 Some unexpected things are expected with debugging optimized code, so
1511 we allow this routine to walk past user instructions in optimized
1512 GCC code. */
1513 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1514 || args_stored)
1515 {
1516 unsigned int reg_num;
1517 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1518 unsigned long old_save_rp, old_save_sp, next_inst;
1519
1520 /* Save copies of all the triggers so we can compare them later
c5aa993b 1521 (only for HPC). */
c906108c
SS
1522 old_save_gr = save_gr;
1523 old_save_fr = save_fr;
1524 old_save_rp = save_rp;
1525 old_save_sp = save_sp;
1526 old_stack_remaining = stack_remaining;
1527
8defab1a 1528 status = target_read_memory (pc, buf, 4);
e17a4113 1529 inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1530
c906108c
SS
1531 /* Yow! */
1532 if (status != 0)
1533 return pc;
1534
1535 /* Note the interesting effects of this instruction. */
1536 stack_remaining -= prologue_inst_adjust_sp (inst);
1537
7be570e7
JM
1538 /* There are limited ways to store the return pointer into the
1539 stack. */
c4c79048 1540 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1541 save_rp = 0;
1542
104c1213 1543 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1544 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1545 if ((inst & 0xffffc000) == 0x6fc10000
1546 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1547 save_sp = 0;
1548
6426a772
JM
1549 /* Are we loading some register with an offset from the argument
1550 pointer? */
1551 if ((inst & 0xffe00000) == 0x37a00000
1552 || (inst & 0xffffffe0) == 0x081d0240)
1553 {
1554 pc += 4;
1555 continue;
1556 }
1557
c906108c
SS
1558 /* Account for general and floating-point register saves. */
1559 reg_num = inst_saves_gr (inst);
1560 save_gr &= ~(1 << reg_num);
1561
1562 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1563 Unfortunately args_stored only tells us that some arguments
1564 where stored into the stack. Not how many or what kind!
c906108c 1565
c5aa993b
JM
1566 This is a kludge as on the HP compiler sets this bit and it
1567 never does prologue scheduling. So once we see one, skip past
1568 all of them. We have similar code for the fp arg stores below.
c906108c 1569
c5aa993b
JM
1570 FIXME. Can still die if we have a mix of GR and FR argument
1571 stores! */
be8626e0 1572 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1573 && reg_num <= 26)
c906108c 1574 {
be8626e0 1575 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1576 && reg_num <= 26)
c906108c
SS
1577 {
1578 pc += 4;
8defab1a 1579 status = target_read_memory (pc, buf, 4);
e17a4113 1580 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1581 if (status != 0)
1582 return pc;
1583 reg_num = inst_saves_gr (inst);
1584 }
1585 args_stored = 0;
1586 continue;
1587 }
1588
1589 reg_num = inst_saves_fr (inst);
1590 save_fr &= ~(1 << reg_num);
1591
8defab1a 1592 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1593 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1594
c906108c
SS
1595 /* Yow! */
1596 if (status != 0)
1597 return pc;
1598
1599 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1600 save. */
c906108c
SS
1601 if ((inst & 0xfc000000) == 0x34000000
1602 && inst_saves_fr (next_inst) >= 4
819844ad 1603 && inst_saves_fr (next_inst)
be8626e0 1604 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1605 {
1606 /* So we drop into the code below in a reasonable state. */
1607 reg_num = inst_saves_fr (next_inst);
1608 pc -= 4;
1609 }
1610
1611 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1612 This is a kludge as on the HP compiler sets this bit and it
1613 never does prologue scheduling. So once we see one, skip past
1614 all of them. */
819844ad 1615 if (reg_num >= 4
be8626e0 1616 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1617 {
819844ad
UW
1618 while (reg_num >= 4
1619 && reg_num
be8626e0 1620 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1621 {
1622 pc += 8;
8defab1a 1623 status = target_read_memory (pc, buf, 4);
e17a4113 1624 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1625 if (status != 0)
1626 return pc;
1627 if ((inst & 0xfc000000) != 0x34000000)
1628 break;
8defab1a 1629 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1630 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1631 if (status != 0)
1632 return pc;
1633 reg_num = inst_saves_fr (next_inst);
1634 }
1635 args_stored = 0;
1636 continue;
1637 }
1638
1639 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1640 instruction is in the delay slot of the first call/branch. */
a71f8c30 1641 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1642 break;
1643
1644 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1645 arguments were stored into the stack (boo hiss). This could
1646 cause this code to then skip a bunch of user insns (up to the
1647 first branch).
1648
1649 To combat this we try to identify when args_stored was bogusly
1650 set and clear it. We only do this when args_stored is nonzero,
1651 all other resources are accounted for, and nothing changed on
1652 this pass. */
c906108c 1653 if (args_stored
c5aa993b 1654 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1655 && old_save_gr == save_gr && old_save_fr == save_fr
1656 && old_save_rp == save_rp && old_save_sp == save_sp
1657 && old_stack_remaining == stack_remaining)
1658 break;
c5aa993b 1659
c906108c
SS
1660 /* Bump the PC. */
1661 pc += 4;
a71f8c30
RC
1662
1663 /* !stop_before_branch, so also look at the insn in the delay slot
1664 of the branch. */
1665 if (final_iteration)
1666 break;
1667 if (is_branch (inst))
1668 final_iteration = 1;
c906108c
SS
1669 }
1670
1671 /* We've got a tenative location for the end of the prologue. However
1672 because of limitations in the unwind descriptor mechanism we may
1673 have went too far into user code looking for the save of a register
1674 that does not exist. So, if there registers we expected to be saved
1675 but never were, mask them out and restart.
1676
1677 This should only happen in optimized code, and should be very rare. */
c5aa993b 1678 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1679 {
1680 pc = orig_pc;
1681 restart_gr = save_gr;
1682 restart_fr = save_fr;
1683 goto restart;
1684 }
1685
1686 return pc;
1687}
1688
1689
7be570e7
JM
1690/* Return the address of the PC after the last prologue instruction if
1691 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1692
1693static CORE_ADDR
fba45db2 1694after_prologue (CORE_ADDR pc)
c906108c
SS
1695{
1696 struct symtab_and_line sal;
1697 CORE_ADDR func_addr, func_end;
c906108c 1698
7be570e7
JM
1699 /* If we can not find the symbol in the partial symbol table, then
1700 there is no hope we can determine the function's start address
1701 with this code. */
c906108c 1702 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1703 return 0;
c906108c 1704
7be570e7 1705 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1706 sal = find_pc_line (func_addr, 0);
1707
7be570e7
JM
1708 /* There are only two cases to consider. First, the end of the source line
1709 is within the function bounds. In that case we return the end of the
1710 source line. Second is the end of the source line extends beyond the
1711 bounds of the current function. We need to use the slow code to
1777feb0 1712 examine instructions in that case.
c906108c 1713
7be570e7
JM
1714 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1715 the wrong thing to do. In fact, it should be entirely possible for this
1716 function to always return zero since the slow instruction scanning code
1717 is supposed to *always* work. If it does not, then it is a bug. */
1718 if (sal.end < func_end)
1719 return sal.end;
c5aa993b 1720 else
7be570e7 1721 return 0;
c906108c
SS
1722}
1723
1724/* To skip prologues, I use this predicate. Returns either PC itself
1725 if the code at PC does not look like a function prologue; otherwise
1777feb0 1726 returns an address that (if we're lucky) follows the prologue.
a71f8c30
RC
1727
1728 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1777feb0 1729 It doesn't necessarily skips all the insns in the prologue. In fact
a71f8c30
RC
1730 we might not want to skip all the insns because a prologue insn may
1731 appear in the delay slot of the first branch, and we don't want to
1732 skip over the branch in that case. */
c906108c 1733
8d153463 1734static CORE_ADDR
6093d2eb 1735hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1736{
c5aa993b 1737 CORE_ADDR post_prologue_pc;
c906108c 1738
c5aa993b
JM
1739 /* See if we can determine the end of the prologue via the symbol table.
1740 If so, then return either PC, or the PC after the prologue, whichever
1741 is greater. */
c906108c 1742
c5aa993b 1743 post_prologue_pc = after_prologue (pc);
c906108c 1744
7be570e7
JM
1745 /* If after_prologue returned a useful address, then use it. Else
1746 fall back on the instruction skipping code.
1747
1748 Some folks have claimed this causes problems because the breakpoint
1749 may be the first instruction of the prologue. If that happens, then
1750 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1751 if (post_prologue_pc != 0)
1752 return max (pc, post_prologue_pc);
c5aa993b 1753 else
be8626e0 1754 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1755}
1756
29d375ac 1757/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1758
29d375ac 1759static struct unwind_table_entry *
227e86ad 1760hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1761{
227e86ad 1762 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1763
1764 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
ad1193e7 1765 result of get_frame_address_in_block implies a problem.
93d42b30 1766 The bits should have been removed earlier, before the return
c7ce8faa 1767 value of gdbarch_unwind_pc. That might be happening already;
93d42b30
DJ
1768 if it isn't, it should be fixed. Then this call can be
1769 removed. */
227e86ad 1770 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1771 return find_unwind_entry (pc);
1772}
1773
26d08f08
AC
1774struct hppa_frame_cache
1775{
1776 CORE_ADDR base;
1777 struct trad_frame_saved_reg *saved_regs;
1778};
1779
1780static struct hppa_frame_cache *
227e86ad 1781hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1782{
227e86ad 1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1785 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
26d08f08
AC
1786 struct hppa_frame_cache *cache;
1787 long saved_gr_mask;
1788 long saved_fr_mask;
26d08f08
AC
1789 long frame_size;
1790 struct unwind_table_entry *u;
9f7194c3 1791 CORE_ADDR prologue_end;
50b2f48a 1792 int fp_in_r1 = 0;
26d08f08
AC
1793 int i;
1794
369aa520
RC
1795 if (hppa_debug)
1796 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1797 frame_relative_level(this_frame));
369aa520 1798
26d08f08 1799 if ((*this_cache) != NULL)
369aa520
RC
1800 {
1801 if (hppa_debug)
5af949e3
UW
1802 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1803 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
369aa520
RC
1804 return (*this_cache);
1805 }
26d08f08
AC
1806 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1807 (*this_cache) = cache;
227e86ad 1808 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1809
1810 /* Yow! */
227e86ad 1811 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1812 if (!u)
369aa520
RC
1813 {
1814 if (hppa_debug)
1815 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1816 return (*this_cache);
1817 }
26d08f08
AC
1818
1819 /* Turn the Entry_GR field into a bitmask. */
1820 saved_gr_mask = 0;
1821 for (i = 3; i < u->Entry_GR + 3; i++)
1822 {
1823 /* Frame pointer gets saved into a special location. */
eded0a31 1824 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1825 continue;
1826
1827 saved_gr_mask |= (1 << i);
1828 }
1829
1830 /* Turn the Entry_FR field into a bitmask too. */
1831 saved_fr_mask = 0;
1832 for (i = 12; i < u->Entry_FR + 12; i++)
1833 saved_fr_mask |= (1 << i);
1834
1835 /* Loop until we find everything of interest or hit a branch.
1836
1837 For unoptimized GCC code and for any HP CC code this will never ever
1838 examine any user instructions.
1839
1840 For optimized GCC code we're faced with problems. GCC will schedule
1841 its prologue and make prologue instructions available for delay slot
1842 filling. The end result is user code gets mixed in with the prologue
1843 and a prologue instruction may be in the delay slot of the first branch
1844 or call.
1845
1846 Some unexpected things are expected with debugging optimized code, so
1847 we allow this routine to walk past user instructions in optimized
1848 GCC code. */
1849 {
1850 int final_iteration = 0;
46acf081 1851 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1852 int looking_for_sp = u->Save_SP;
1853 int looking_for_rp = u->Save_RP;
1854 int fp_loc = -1;
9f7194c3 1855
a71f8c30 1856 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1857 skip_prologue_using_sal, in case we stepped into a function without
1858 symbol information. hppa_skip_prologue also bounds the returned
1859 pc by the passed in pc, so it will not return a pc in the next
1777feb0 1860 function.
a71f8c30
RC
1861
1862 We used to call hppa_skip_prologue to find the end of the prologue,
1863 but if some non-prologue instructions get scheduled into the prologue,
1864 and the program is compiled with debug information, the "easy" way
1865 in hppa_skip_prologue will return a prologue end that is too early
1866 for us to notice any potential frame adjustments. */
d5c27f81 1867
ef02daa9
DJ
1868 /* We used to use get_frame_func to locate the beginning of the
1869 function to pass to skip_prologue. However, when objects are
1870 compiled without debug symbols, get_frame_func can return the wrong
1777feb0 1871 function (or 0). We can do better than that by using unwind records.
46acf081 1872 This only works if the Region_description of the unwind record
1777feb0 1873 indicates that it includes the entry point of the function.
46acf081
RC
1874 HP compilers sometimes generate unwind records for regions that
1875 do not include the entry or exit point of a function. GNU tools
1876 do not do this. */
1877
1878 if ((u->Region_description & 0x2) == 0)
1879 start_pc = u->region_start;
1880 else
227e86ad 1881 start_pc = get_frame_func (this_frame);
d5c27f81 1882
be8626e0 1883 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1884 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1885
1886 if (prologue_end != 0 && end_pc > prologue_end)
1887 end_pc = prologue_end;
1888
26d08f08 1889 frame_size = 0;
9f7194c3 1890
46acf081 1891 for (pc = start_pc;
26d08f08
AC
1892 ((saved_gr_mask || saved_fr_mask
1893 || looking_for_sp || looking_for_rp
1894 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1895 && pc < end_pc);
26d08f08
AC
1896 pc += 4)
1897 {
1898 int reg;
e362b510 1899 gdb_byte buf4[4];
4a302917
RC
1900 long inst;
1901
227e86ad 1902 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 1903 {
5af949e3
UW
1904 error (_("Cannot read instruction at %s."),
1905 paddress (gdbarch, pc));
4a302917
RC
1906 return (*this_cache);
1907 }
1908
e17a4113 1909 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
9f7194c3 1910
26d08f08
AC
1911 /* Note the interesting effects of this instruction. */
1912 frame_size += prologue_inst_adjust_sp (inst);
1913
1914 /* There are limited ways to store the return pointer into the
1915 stack. */
1916 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1917 {
1918 looking_for_rp = 0;
34f75cc1 1919 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1920 }
dfaf8edb
MK
1921 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1922 {
1923 looking_for_rp = 0;
1924 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1925 }
c4c79048
RC
1926 else if (inst == 0x0fc212c1
1927 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
1928 {
1929 looking_for_rp = 0;
34f75cc1 1930 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1931 }
1932
1933 /* Check to see if we saved SP into the stack. This also
1934 happens to indicate the location of the saved frame
1935 pointer. */
1936 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1937 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1938 {
1939 looking_for_sp = 0;
eded0a31 1940 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1941 }
50b2f48a
RC
1942 else if (inst == 0x08030241) /* copy %r3, %r1 */
1943 {
1944 fp_in_r1 = 1;
1945 }
26d08f08
AC
1946
1947 /* Account for general and floating-point register saves. */
1948 reg = inst_saves_gr (inst);
1949 if (reg >= 3 && reg <= 18
eded0a31 1950 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1951 {
1952 saved_gr_mask &= ~(1 << reg);
abc485a1 1953 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1954 /* stwm with a positive displacement is a _post_
1955 _modify_. */
1956 cache->saved_regs[reg].addr = 0;
1957 else if ((inst & 0xfc00000c) == 0x70000008)
1958 /* A std has explicit post_modify forms. */
1959 cache->saved_regs[reg].addr = 0;
1960 else
1961 {
1962 CORE_ADDR offset;
1963
1964 if ((inst >> 26) == 0x1c)
1777feb0
MS
1965 offset = (inst & 0x1 ? -1 << 13 : 0)
1966 | (((inst >> 4) & 0x3ff) << 3);
26d08f08 1967 else if ((inst >> 26) == 0x03)
abc485a1 1968 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1969 else
abc485a1 1970 offset = hppa_extract_14 (inst);
26d08f08
AC
1971
1972 /* Handle code with and without frame pointers. */
1973 if (u->Save_SP)
1974 cache->saved_regs[reg].addr = offset;
1975 else
1777feb0
MS
1976 cache->saved_regs[reg].addr
1977 = (u->Total_frame_size << 3) + offset;
26d08f08
AC
1978 }
1979 }
1980
1981 /* GCC handles callee saved FP regs a little differently.
1982
1983 It emits an instruction to put the value of the start of
1984 the FP store area into %r1. It then uses fstds,ma with a
1985 basereg of %r1 for the stores.
1986
1987 HP CC emits them at the current stack pointer modifying the
1988 stack pointer as it stores each register. */
1989
1990 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1991 if ((inst & 0xffffc000) == 0x34610000
1992 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 1993 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
1994
1995 reg = inst_saves_fr (inst);
1996 if (reg >= 12 && reg <= 21)
1997 {
1998 /* Note +4 braindamage below is necessary because the FP
1999 status registers are internally 8 registers rather than
2000 the expected 4 registers. */
2001 saved_fr_mask &= ~(1 << reg);
2002 if (fp_loc == -1)
2003 {
2004 /* 1st HP CC FP register store. After this
2005 instruction we've set enough state that the GCC and
2006 HPCC code are both handled in the same manner. */
34f75cc1 2007 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2008 fp_loc = 8;
2009 }
2010 else
2011 {
eded0a31 2012 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2013 fp_loc += 8;
2014 }
2015 }
2016
1777feb0 2017 /* Quit if we hit any kind of branch the previous iteration. */
26d08f08
AC
2018 if (final_iteration)
2019 break;
2020 /* We want to look precisely one instruction beyond the branch
2021 if we have not found everything yet. */
2022 if (is_branch (inst))
2023 final_iteration = 1;
2024 }
2025 }
2026
2027 {
2028 /* The frame base always represents the value of %sp at entry to
2029 the current function (and is thus equivalent to the "saved"
2030 stack pointer. */
227e86ad
JB
2031 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2032 HPPA_SP_REGNUM);
ed70ba00 2033 CORE_ADDR fp;
9f7194c3
RC
2034
2035 if (hppa_debug)
5af949e3
UW
2036 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2037 "prologue_end=%s) ",
2038 paddress (gdbarch, this_sp),
2039 paddress (gdbarch, get_frame_pc (this_frame)),
2040 paddress (gdbarch, prologue_end));
9f7194c3 2041
ed70ba00
RC
2042 /* Check to see if a frame pointer is available, and use it for
2043 frame unwinding if it is.
2044
2045 There are some situations where we need to rely on the frame
2046 pointer to do stack unwinding. For example, if a function calls
2047 alloca (), the stack pointer can get adjusted inside the body of
2048 the function. In this case, the ABI requires that the compiler
2049 maintain a frame pointer for the function.
2050
2051 The unwind record has a flag (alloca_frame) that indicates that
2052 a function has a variable frame; unfortunately, gcc/binutils
2053 does not set this flag. Instead, whenever a frame pointer is used
2054 and saved on the stack, the Save_SP flag is set. We use this to
2055 decide whether to use the frame pointer for unwinding.
2056
ed70ba00
RC
2057 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2058 instead of Save_SP. */
2059
227e86ad 2060 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2061
6fcecea0 2062 if (u->alloca_frame)
46acf081 2063 fp -= u->Total_frame_size << 3;
ed70ba00 2064
227e86ad 2065 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2066 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2067 {
2068 cache->base = fp;
2069
2070 if (hppa_debug)
5af949e3
UW
2071 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2072 paddress (gdbarch, cache->base));
ed70ba00 2073 }
1658da49
RC
2074 else if (u->Save_SP
2075 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2076 {
9f7194c3
RC
2077 /* Both we're expecting the SP to be saved and the SP has been
2078 saved. The entry SP value is saved at this frame's SP
2079 address. */
e17a4113 2080 cache->base = read_memory_integer (this_sp, word_size, byte_order);
9f7194c3
RC
2081
2082 if (hppa_debug)
5af949e3
UW
2083 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2084 paddress (gdbarch, cache->base));
9f7194c3 2085 }
26d08f08 2086 else
9f7194c3 2087 {
1658da49
RC
2088 /* The prologue has been slowly allocating stack space. Adjust
2089 the SP back. */
2090 cache->base = this_sp - frame_size;
9f7194c3 2091 if (hppa_debug)
5af949e3
UW
2092 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2093 paddress (gdbarch, cache->base));
9f7194c3
RC
2094
2095 }
eded0a31 2096 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2097 }
2098
412275d5
AC
2099 /* The PC is found in the "return register", "Millicode" uses "r31"
2100 as the return register while normal code uses "rp". */
26d08f08 2101 if (u->Millicode)
9f7194c3 2102 {
5859efe5 2103 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2104 {
2105 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2106 if (hppa_debug)
2107 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2108 }
9f7194c3
RC
2109 else
2110 {
227e86ad 2111 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2112 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2113 if (hppa_debug)
2114 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2115 }
2116 }
26d08f08 2117 else
9f7194c3 2118 {
34f75cc1 2119 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2120 {
2121 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2122 cache->saved_regs[HPPA_RP_REGNUM];
2123 if (hppa_debug)
2124 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2125 }
9f7194c3
RC
2126 else
2127 {
227e86ad
JB
2128 ULONGEST rp = get_frame_register_unsigned (this_frame,
2129 HPPA_RP_REGNUM);
34f75cc1 2130 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2131 if (hppa_debug)
2132 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2133 }
2134 }
26d08f08 2135
50b2f48a
RC
2136 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2137 frame. However, there is a one-insn window where we haven't saved it
2138 yet, but we've already clobbered it. Detect this case and fix it up.
2139
2140 The prologue sequence for frame-pointer functions is:
2141 0: stw %rp, -20(%sp)
2142 4: copy %r3, %r1
2143 8: copy %sp, %r3
2144 c: stw,ma %r1, XX(%sp)
2145
2146 So if we are at offset c, the r3 value that we want is not yet saved
2147 on the stack, but it's been overwritten. The prologue analyzer will
2148 set fp_in_r1 when it sees the copy insn so we know to get the value
2149 from r1 instead. */
2150 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2151 && fp_in_r1)
2152 {
227e86ad 2153 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2154 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2155 }
1658da49 2156
26d08f08
AC
2157 {
2158 /* Convert all the offsets into addresses. */
2159 int reg;
65c5db89 2160 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2161 {
2162 if (trad_frame_addr_p (cache->saved_regs, reg))
2163 cache->saved_regs[reg].addr += cache->base;
2164 }
2165 }
2166
f77a2124 2167 {
f77a2124
RC
2168 struct gdbarch_tdep *tdep;
2169
f77a2124
RC
2170 tdep = gdbarch_tdep (gdbarch);
2171
2172 if (tdep->unwind_adjust_stub)
227e86ad 2173 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2174 }
2175
369aa520 2176 if (hppa_debug)
5af949e3
UW
2177 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2178 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
2179 return (*this_cache);
2180}
2181
2182static void
227e86ad
JB
2183hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2184 struct frame_id *this_id)
26d08f08 2185{
d5c27f81 2186 struct hppa_frame_cache *info;
227e86ad 2187 CORE_ADDR pc = get_frame_pc (this_frame);
d5c27f81
RC
2188 struct unwind_table_entry *u;
2189
227e86ad
JB
2190 info = hppa_frame_cache (this_frame, this_cache);
2191 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2192
2193 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2194}
2195
227e86ad
JB
2196static struct value *
2197hppa_frame_prev_register (struct frame_info *this_frame,
2198 void **this_cache, int regnum)
26d08f08 2199{
227e86ad
JB
2200 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2201
1777feb0
MS
2202 return hppa_frame_prev_register_helper (this_frame,
2203 info->saved_regs, regnum);
227e86ad
JB
2204}
2205
2206static int
2207hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2208 struct frame_info *this_frame, void **this_cache)
2209{
2210 if (hppa_find_unwind_entry_in_block (this_frame))
2211 return 1;
2212
2213 return 0;
0da28f8a
RC
2214}
2215
2216static const struct frame_unwind hppa_frame_unwind =
2217{
2218 NORMAL_FRAME,
8fbca658 2219 default_frame_unwind_stop_reason,
0da28f8a 2220 hppa_frame_this_id,
227e86ad
JB
2221 hppa_frame_prev_register,
2222 NULL,
2223 hppa_frame_unwind_sniffer
0da28f8a
RC
2224};
2225
0da28f8a
RC
2226/* This is a generic fallback frame unwinder that kicks in if we fail all
2227 the other ones. Normally we would expect the stub and regular unwinder
2228 to work, but in some cases we might hit a function that just doesn't
2229 have any unwind information available. In this case we try to do
2230 unwinding solely based on code reading. This is obviously going to be
2231 slow, so only use this as a last resort. Currently this will only
2232 identify the stack and pc for the frame. */
2233
2234static struct hppa_frame_cache *
227e86ad 2235hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a 2236{
e17a4113
UW
2237 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2238 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0da28f8a 2239 struct hppa_frame_cache *cache;
4ba6a975
MK
2240 unsigned int frame_size = 0;
2241 int found_rp = 0;
2242 CORE_ADDR start_pc;
0da28f8a 2243
d5c27f81 2244 if (hppa_debug)
4ba6a975
MK
2245 fprintf_unfiltered (gdb_stdlog,
2246 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2247 frame_relative_level (this_frame));
d5c27f81 2248
0da28f8a
RC
2249 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2250 (*this_cache) = cache;
227e86ad 2251 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2252
227e86ad 2253 start_pc = get_frame_func (this_frame);
4ba6a975 2254 if (start_pc)
0da28f8a 2255 {
227e86ad 2256 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2257 CORE_ADDR pc;
0da28f8a 2258
4ba6a975
MK
2259 for (pc = start_pc; pc < cur_pc; pc += 4)
2260 {
2261 unsigned int insn;
0da28f8a 2262
e17a4113 2263 insn = read_memory_unsigned_integer (pc, 4, byte_order);
4ba6a975 2264 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2265
4ba6a975
MK
2266 /* There are limited ways to store the return pointer into the
2267 stack. */
2268 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2269 {
2270 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2271 found_rp = 1;
2272 }
c4c79048
RC
2273 else if (insn == 0x0fc212c1
2274 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2275 {
2276 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2277 found_rp = 1;
2278 }
2279 }
412275d5 2280 }
0da28f8a 2281
d5c27f81 2282 if (hppa_debug)
4ba6a975
MK
2283 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2284 frame_size, found_rp);
d5c27f81 2285
227e86ad 2286 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2287 cache->base -= frame_size;
6d1be3f1 2288 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2289
2290 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2291 {
2292 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2293 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2294 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2295 }
412275d5
AC
2296 else
2297 {
4ba6a975 2298 ULONGEST rp;
227e86ad 2299 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2300 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2301 }
0da28f8a
RC
2302
2303 return cache;
26d08f08
AC
2304}
2305
0da28f8a 2306static void
227e86ad 2307hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2308 struct frame_id *this_id)
2309{
2310 struct hppa_frame_cache *info =
227e86ad
JB
2311 hppa_fallback_frame_cache (this_frame, this_cache);
2312
2313 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2314}
2315
227e86ad
JB
2316static struct value *
2317hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2318 void **this_cache, int regnum)
0da28f8a 2319{
1777feb0
MS
2320 struct hppa_frame_cache *info
2321 = hppa_fallback_frame_cache (this_frame, this_cache);
227e86ad 2322
1777feb0
MS
2323 return hppa_frame_prev_register_helper (this_frame,
2324 info->saved_regs, regnum);
0da28f8a
RC
2325}
2326
2327static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2328{
2329 NORMAL_FRAME,
8fbca658 2330 default_frame_unwind_stop_reason,
0da28f8a 2331 hppa_fallback_frame_this_id,
227e86ad
JB
2332 hppa_fallback_frame_prev_register,
2333 NULL,
2334 default_frame_sniffer
26d08f08
AC
2335};
2336
7f07c5b6
RC
2337/* Stub frames, used for all kinds of call stubs. */
2338struct hppa_stub_unwind_cache
2339{
2340 CORE_ADDR base;
2341 struct trad_frame_saved_reg *saved_regs;
2342};
2343
2344static struct hppa_stub_unwind_cache *
227e86ad 2345hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2346 void **this_cache)
2347{
227e86ad 2348 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7f07c5b6 2349 struct hppa_stub_unwind_cache *info;
22b0923d 2350 struct unwind_table_entry *u;
7f07c5b6
RC
2351
2352 if (*this_cache)
2353 return *this_cache;
2354
2355 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2356 *this_cache = info;
227e86ad 2357 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2358
227e86ad 2359 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2360
090ccbb7 2361 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2362 {
2363 /* HPUX uses export stubs in function calls; the export stub clobbers
2364 the return value of the caller, and, later restores it from the
2365 stack. */
227e86ad 2366 u = find_unwind_entry (get_frame_pc (this_frame));
22b0923d
RC
2367
2368 if (u && u->stub_unwind.stub_type == EXPORT)
2369 {
2370 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2371
2372 return info;
2373 }
2374 }
2375
2376 /* By default we assume that stubs do not change the rp. */
2377 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2378
7f07c5b6
RC
2379 return info;
2380}
2381
2382static void
227e86ad 2383hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2384 void **this_prologue_cache,
2385 struct frame_id *this_id)
2386{
2387 struct hppa_stub_unwind_cache *info
227e86ad 2388 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2389
2390 if (info)
227e86ad 2391 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
7f07c5b6
RC
2392}
2393
227e86ad
JB
2394static struct value *
2395hppa_stub_frame_prev_register (struct frame_info *this_frame,
2396 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2397{
2398 struct hppa_stub_unwind_cache *info
227e86ad 2399 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2400
227e86ad 2401 if (info == NULL)
8a3fe4f8 2402 error (_("Requesting registers from null frame."));
7f07c5b6 2403
1777feb0
MS
2404 return hppa_frame_prev_register_helper (this_frame,
2405 info->saved_regs, regnum);
227e86ad 2406}
7f07c5b6 2407
227e86ad
JB
2408static int
2409hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2410 struct frame_info *this_frame,
2411 void **this_cache)
7f07c5b6 2412{
227e86ad
JB
2413 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2414 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2416
6d1be3f1 2417 if (pc == 0
84674fe1 2418 || (tdep->in_solib_call_trampoline != NULL
3e5d3a5a 2419 && tdep->in_solib_call_trampoline (gdbarch, pc))
464963c9 2420 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2421 return 1;
2422 return 0;
7f07c5b6
RC
2423}
2424
227e86ad
JB
2425static const struct frame_unwind hppa_stub_frame_unwind = {
2426 NORMAL_FRAME,
8fbca658 2427 default_frame_unwind_stop_reason,
227e86ad
JB
2428 hppa_stub_frame_this_id,
2429 hppa_stub_frame_prev_register,
2430 NULL,
2431 hppa_stub_unwind_sniffer
2432};
2433
26d08f08 2434static struct frame_id
227e86ad 2435hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2436{
227e86ad
JB
2437 return frame_id_build (get_frame_register_unsigned (this_frame,
2438 HPPA_SP_REGNUM),
2439 get_frame_pc (this_frame));
26d08f08
AC
2440}
2441
cc72850f 2442CORE_ADDR
26d08f08
AC
2443hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2444{
fe46cd3a
RC
2445 ULONGEST ipsw;
2446 CORE_ADDR pc;
2447
cc72850f
MK
2448 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2449 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2450
2451 /* If the current instruction is nullified, then we are effectively
2452 still executing the previous instruction. Pretend we are still
cc72850f
MK
2453 there. This is needed when single stepping; if the nullified
2454 instruction is on a different line, we don't want GDB to think
2455 we've stepped onto that line. */
fe46cd3a
RC
2456 if (ipsw & 0x00200000)
2457 pc -= 4;
2458
cc72850f 2459 return pc & ~0x3;
26d08f08
AC
2460}
2461
ff644745
JB
2462/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2463 Return NULL if no such symbol was found. */
2464
3b7344d5 2465struct bound_minimal_symbol
ff644745
JB
2466hppa_lookup_stub_minimal_symbol (const char *name,
2467 enum unwind_stub_types stub_type)
2468{
2469 struct objfile *objfile;
2470 struct minimal_symbol *msym;
3b7344d5 2471 struct bound_minimal_symbol result = { NULL, NULL };
ff644745
JB
2472
2473 ALL_MSYMBOLS (objfile, msym)
2474 {
efd66ac6 2475 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
ff644745
JB
2476 {
2477 struct unwind_table_entry *u;
2478
efd66ac6 2479 u = find_unwind_entry (MSYMBOL_VALUE (msym));
ff644745 2480 if (u != NULL && u->stub_unwind.stub_type == stub_type)
3b7344d5
TT
2481 {
2482 result.objfile = objfile;
2483 result.minsym = msym;
2484 return result;
2485 }
ff644745
JB
2486 }
2487 }
2488
3b7344d5 2489 return result;
ff644745
JB
2490}
2491
c906108c 2492static void
fba45db2 2493unwind_command (char *exp, int from_tty)
c906108c
SS
2494{
2495 CORE_ADDR address;
2496 struct unwind_table_entry *u;
2497
2498 /* If we have an expression, evaluate it and use it as the address. */
2499
2500 if (exp != 0 && *exp != 0)
2501 address = parse_and_eval_address (exp);
2502 else
2503 return;
2504
2505 u = find_unwind_entry (address);
2506
2507 if (!u)
2508 {
2509 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2510 return;
2511 }
2512
3329c4b5 2513 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
c906108c 2514
5af949e3 2515 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
d5c27f81 2516 gdb_flush (gdb_stdout);
c906108c 2517
5af949e3 2518 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
d5c27f81 2519 gdb_flush (gdb_stdout);
c906108c 2520
c906108c 2521#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2522
2523 printf_unfiltered ("\n\tflags =");
2524 pif (Cannot_unwind);
2525 pif (Millicode);
2526 pif (Millicode_save_sr0);
2527 pif (Entry_SR);
2528 pif (Args_stored);
2529 pif (Variable_Frame);
2530 pif (Separate_Package_Body);
2531 pif (Frame_Extension_Millicode);
2532 pif (Stack_Overflow_Check);
2533 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2534 pif (sr4export);
2535 pif (cxx_info);
2536 pif (cxx_try_catch);
2537 pif (sched_entry_seq);
c906108c
SS
2538 pif (Save_SP);
2539 pif (Save_RP);
2540 pif (Save_MRP_in_frame);
6fcecea0 2541 pif (save_r19);
c906108c
SS
2542 pif (Cleanup_defined);
2543 pif (MPE_XL_interrupt_marker);
2544 pif (HP_UX_interrupt_marker);
2545 pif (Large_frame);
6fcecea0 2546 pif (alloca_frame);
c906108c
SS
2547
2548 putchar_unfiltered ('\n');
2549
c906108c 2550#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2551
2552 pin (Region_description);
2553 pin (Entry_FR);
2554 pin (Entry_GR);
2555 pin (Total_frame_size);
57dac9e1
RC
2556
2557 if (u->stub_unwind.stub_type)
2558 {
2559 printf_unfiltered ("\tstub type = ");
2560 switch (u->stub_unwind.stub_type)
2561 {
2562 case LONG_BRANCH:
2563 printf_unfiltered ("long branch\n");
2564 break;
2565 case PARAMETER_RELOCATION:
2566 printf_unfiltered ("parameter relocation\n");
2567 break;
2568 case EXPORT:
2569 printf_unfiltered ("export\n");
2570 break;
2571 case IMPORT:
2572 printf_unfiltered ("import\n");
2573 break;
2574 case IMPORT_SHLIB:
2575 printf_unfiltered ("import shlib\n");
2576 break;
2577 default:
2578 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2579 }
2580 }
c906108c 2581}
c906108c 2582
38ca4e0c
MK
2583/* Return the GDB type object for the "standard" data type of data in
2584 register REGNUM. */
d709c020 2585
eded0a31 2586static struct type *
38ca4e0c 2587hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2588{
38ca4e0c 2589 if (regnum < HPPA_FP4_REGNUM)
df4df182 2590 return builtin_type (gdbarch)->builtin_uint32;
d709c020 2591 else
27067745 2592 return builtin_type (gdbarch)->builtin_float;
d709c020
JB
2593}
2594
eded0a31 2595static struct type *
38ca4e0c 2596hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2597{
38ca4e0c 2598 if (regnum < HPPA64_FP4_REGNUM)
df4df182 2599 return builtin_type (gdbarch)->builtin_uint64;
3ff7cf9e 2600 else
27067745 2601 return builtin_type (gdbarch)->builtin_double;
3ff7cf9e
JB
2602}
2603
38ca4e0c
MK
2604/* Return non-zero if REGNUM is not a register available to the user
2605 through ptrace/ttrace. */
d709c020 2606
8d153463 2607static int
64a3914f 2608hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2609{
2610 return (regnum == 0
34f75cc1
RC
2611 || regnum == HPPA_PCSQ_HEAD_REGNUM
2612 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2613 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2614}
d709c020 2615
d037d088 2616static int
64a3914f 2617hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2618{
2619 /* cr26 and cr27 are readable (but not writable) from userspace. */
2620 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2621 return 0;
2622 else
64a3914f 2623 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2624}
2625
38ca4e0c 2626static int
64a3914f 2627hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2628{
2629 return (regnum == 0
2630 || regnum == HPPA_PCSQ_HEAD_REGNUM
2631 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2632 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2633}
2634
d037d088 2635static int
64a3914f 2636hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2637{
2638 /* cr26 and cr27 are readable (but not writable) from userspace. */
2639 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2640 return 0;
2641 else
64a3914f 2642 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2643}
2644
8d153463 2645static CORE_ADDR
85ddcc70 2646hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
d709c020
JB
2647{
2648 /* The low two bits of the PC on the PA contain the privilege level.
2649 Some genius implementing a (non-GCC) compiler apparently decided
2650 this means that "addresses" in a text section therefore include a
2651 privilege level, and thus symbol tables should contain these bits.
2652 This seems like a bonehead thing to do--anyway, it seems to work
2653 for our purposes to just ignore those bits. */
2654
2655 return (addr &= ~0x3);
2656}
2657
e127f0db
MK
2658/* Get the ARGIth function argument for the current function. */
2659
4a302917 2660static CORE_ADDR
143985b7
AF
2661hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2662 struct type *type)
2663{
e127f0db 2664 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2665}
2666
05d1431c 2667static enum register_status
0f8d9d59 2668hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2669 int regnum, gdb_byte *buf)
0f8d9d59 2670{
05d1431c
PA
2671 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2672 ULONGEST tmp;
2673 enum register_status status;
0f8d9d59 2674
05d1431c
PA
2675 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2676 if (status == REG_VALID)
2677 {
2678 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2679 tmp &= ~0x3;
2680 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2681 }
2682 return status;
0f8d9d59
RC
2683}
2684
d49771ef 2685static CORE_ADDR
e38c262f 2686hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2687{
2688 return 0;
2689}
2690
227e86ad
JB
2691struct value *
2692hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2693 struct trad_frame_saved_reg saved_regs[],
227e86ad 2694 int regnum)
0da28f8a 2695{
227e86ad 2696 struct gdbarch *arch = get_frame_arch (this_frame);
e17a4113 2697 enum bfd_endian byte_order = gdbarch_byte_order (arch);
8f4e467c 2698
8693c419
MK
2699 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2700 {
227e86ad
JB
2701 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2702 CORE_ADDR pc;
2703 struct value *pcoq_val =
2704 trad_frame_get_prev_register (this_frame, saved_regs,
2705 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2706
e17a4113
UW
2707 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2708 size, byte_order);
227e86ad 2709 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2710 }
0da28f8a 2711
cc72850f
MK
2712 /* Make sure the "flags" register is zero in all unwound frames.
2713 The "flags" registers is a HP-UX specific wart, and only the code
2714 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2715 with it here. This shouldn't affect other systems since those
2716 should provide zero for the "flags" register anyway. */
2717 if (regnum == HPPA_FLAGS_REGNUM)
227e86ad 2718 return frame_unwind_got_constant (this_frame, regnum, 0);
cc72850f 2719
227e86ad 2720 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2721}
8693c419 2722\f
0da28f8a 2723
34f55018
MK
2724/* An instruction to match. */
2725struct insn_pattern
2726{
2727 unsigned int data; /* See if it matches this.... */
2728 unsigned int mask; /* ... with this mask. */
2729};
2730
2731/* See bfd/elf32-hppa.c */
2732static struct insn_pattern hppa_long_branch_stub[] = {
2733 /* ldil LR'xxx,%r1 */
2734 { 0x20200000, 0xffe00000 },
2735 /* be,n RR'xxx(%sr4,%r1) */
2736 { 0xe0202002, 0xffe02002 },
2737 { 0, 0 }
2738};
2739
2740static struct insn_pattern hppa_long_branch_pic_stub[] = {
2741 /* b,l .+8, %r1 */
2742 { 0xe8200000, 0xffe00000 },
2743 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2744 { 0x28200000, 0xffe00000 },
2745 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2746 { 0xe0202002, 0xffe02002 },
2747 { 0, 0 }
2748};
2749
2750static struct insn_pattern hppa_import_stub[] = {
2751 /* addil LR'xxx, %dp */
2752 { 0x2b600000, 0xffe00000 },
2753 /* ldw RR'xxx(%r1), %r21 */
2754 { 0x48350000, 0xffffb000 },
2755 /* bv %r0(%r21) */
2756 { 0xeaa0c000, 0xffffffff },
2757 /* ldw RR'xxx+4(%r1), %r19 */
2758 { 0x48330000, 0xffffb000 },
2759 { 0, 0 }
2760};
2761
2762static struct insn_pattern hppa_import_pic_stub[] = {
2763 /* addil LR'xxx,%r19 */
2764 { 0x2a600000, 0xffe00000 },
2765 /* ldw RR'xxx(%r1),%r21 */
2766 { 0x48350000, 0xffffb000 },
2767 /* bv %r0(%r21) */
2768 { 0xeaa0c000, 0xffffffff },
2769 /* ldw RR'xxx+4(%r1),%r19 */
2770 { 0x48330000, 0xffffb000 },
2771 { 0, 0 },
2772};
2773
2774static struct insn_pattern hppa_plt_stub[] = {
2775 /* b,l 1b, %r20 - 1b is 3 insns before here */
2776 { 0xea9f1fdd, 0xffffffff },
2777 /* depi 0,31,2,%r20 */
2778 { 0xd6801c1e, 0xffffffff },
2779 { 0, 0 }
34f55018
MK
2780};
2781
2782/* Maximum number of instructions on the patterns above. */
2783#define HPPA_MAX_INSN_PATTERN_LEN 4
2784
2785/* Return non-zero if the instructions at PC match the series
2786 described in PATTERN, or zero otherwise. PATTERN is an array of
2787 'struct insn_pattern' objects, terminated by an entry whose mask is
2788 zero.
2789
2790 When the match is successful, fill INSN[i] with what PATTERN[i]
2791 matched. */
2792
2793static int
e17a4113
UW
2794hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2795 struct insn_pattern *pattern, unsigned int *insn)
34f55018 2796{
e17a4113 2797 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
34f55018
MK
2798 CORE_ADDR npc = pc;
2799 int i;
2800
2801 for (i = 0; pattern[i].mask; i++)
2802 {
2803 gdb_byte buf[HPPA_INSN_SIZE];
2804
8defab1a 2805 target_read_memory (npc, buf, HPPA_INSN_SIZE);
e17a4113 2806 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
34f55018
MK
2807 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2808 npc += 4;
2809 else
2810 return 0;
2811 }
2812
2813 return 1;
2814}
2815
2816/* This relaxed version of the insstruction matcher allows us to match
2817 from somewhere inside the pattern, by looking backwards in the
2818 instruction scheme. */
2819
2820static int
e17a4113
UW
2821hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2822 struct insn_pattern *pattern, unsigned int *insn)
34f55018
MK
2823{
2824 int offset, len = 0;
2825
2826 while (pattern[len].mask)
2827 len++;
2828
2829 for (offset = 0; offset < len; offset++)
e17a4113
UW
2830 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2831 pattern, insn))
34f55018
MK
2832 return 1;
2833
2834 return 0;
2835}
2836
2837static int
2838hppa_in_dyncall (CORE_ADDR pc)
2839{
2840 struct unwind_table_entry *u;
2841
2842 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2843 if (!u)
2844 return 0;
2845
2846 return (pc >= u->region_start && pc <= u->region_end);
2847}
2848
2849int
3e5d3a5a 2850hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
34f55018
MK
2851{
2852 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2853 struct unwind_table_entry *u;
2854
3e5d3a5a 2855 if (in_plt_section (pc) || hppa_in_dyncall (pc))
34f55018
MK
2856 return 1;
2857
2858 /* The GNU toolchain produces linker stubs without unwind
2859 information. Since the pattern matching for linker stubs can be
2860 quite slow, so bail out if we do have an unwind entry. */
2861
2862 u = find_unwind_entry (pc);
806e23c0 2863 if (u != NULL)
34f55018
MK
2864 return 0;
2865
e17a4113
UW
2866 return
2867 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2868 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2869 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2870 || hppa_match_insns_relaxed (gdbarch, pc,
2871 hppa_long_branch_pic_stub, insn));
34f55018
MK
2872}
2873
2874/* This code skips several kind of "trampolines" used on PA-RISC
2875 systems: $$dyncall, import stubs and PLT stubs. */
2876
2877CORE_ADDR
52f729a7 2878hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018 2879{
0dfff4cb
UW
2880 struct gdbarch *gdbarch = get_frame_arch (frame);
2881 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2882
34f55018
MK
2883 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2884 int dp_rel;
2885
2886 /* $$dyncall handles both PLABELs and direct addresses. */
2887 if (hppa_in_dyncall (pc))
2888 {
52f729a7 2889 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2890
2891 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2892 if (pc & 0x2)
0dfff4cb 2893 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
34f55018
MK
2894
2895 return pc;
2896 }
2897
e17a4113
UW
2898 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2899 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
34f55018
MK
2900 {
2901 /* Extract the target address from the addil/ldw sequence. */
2902 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2903
2904 if (dp_rel)
52f729a7 2905 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 2906 else
52f729a7 2907 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
2908
2909 /* fallthrough */
2910 }
2911
3e5d3a5a 2912 if (in_plt_section (pc))
34f55018 2913 {
0dfff4cb 2914 pc = read_memory_typed_address (pc, func_ptr_type);
34f55018
MK
2915
2916 /* If the PLT slot has not yet been resolved, the target will be
2917 the PLT stub. */
3e5d3a5a 2918 if (in_plt_section (pc))
34f55018
MK
2919 {
2920 /* Sanity check: are we pointing to the PLT stub? */
e17a4113 2921 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
34f55018 2922 {
5af949e3
UW
2923 warning (_("Cannot resolve PLT stub at %s."),
2924 paddress (gdbarch, pc));
34f55018
MK
2925 return 0;
2926 }
2927
2928 /* This should point to the fixup routine. */
0dfff4cb 2929 pc = read_memory_typed_address (pc + 8, func_ptr_type);
34f55018
MK
2930 }
2931 }
2932
2933 return pc;
2934}
2935\f
2936
8e8b2dba
MC
2937/* Here is a table of C type sizes on hppa with various compiles
2938 and options. I measured this on PA 9000/800 with HP-UX 11.11
2939 and these compilers:
2940
2941 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2942 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2943 /opt/aCC/bin/aCC B3910B A.03.45
2944 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2945
2946 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2947 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2948 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2949 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2950 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2951 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2952 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2953 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2954
2955 Each line is:
2956
2957 compiler and options
2958 char, short, int, long, long long
2959 float, double, long double
2960 char *, void (*)()
2961
2962 So all these compilers use either ILP32 or LP64 model.
2963 TODO: gcc has more options so it needs more investigation.
2964
a2379359
MC
2965 For floating point types, see:
2966
2967 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2968 HP-UX floating-point guide, hpux 11.00
2969
8e8b2dba
MC
2970 -- chastain 2003-12-18 */
2971
e6e68f1f
JB
2972static struct gdbarch *
2973hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2974{
3ff7cf9e 2975 struct gdbarch_tdep *tdep;
e6e68f1f 2976 struct gdbarch *gdbarch;
59623e27
JB
2977
2978 /* Try to determine the ABI of the object we are loading. */
4be87837 2979 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2980 {
4be87837
DJ
2981 /* If it's a SOM file, assume it's HP/UX SOM. */
2982 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2983 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2984 }
e6e68f1f
JB
2985
2986 /* find a candidate among the list of pre-declared architectures. */
2987 arches = gdbarch_list_lookup_by_info (arches, &info);
2988 if (arches != NULL)
2989 return (arches->gdbarch);
2990
2991 /* If none found, then allocate and initialize one. */
41bf6aca 2992 tdep = XCNEW (struct gdbarch_tdep);
3ff7cf9e
JB
2993 gdbarch = gdbarch_alloc (&info, tdep);
2994
2995 /* Determine from the bfd_arch_info structure if we are dealing with
2996 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2997 then default to a 32bit machine. */
2998 if (info.bfd_arch_info != NULL)
2999 tdep->bytes_per_address =
3000 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3001 else
3002 tdep->bytes_per_address = 4;
3003
d49771ef
RC
3004 tdep->find_global_pointer = hppa_find_global_pointer;
3005
3ff7cf9e
JB
3006 /* Some parts of the gdbarch vector depend on whether we are running
3007 on a 32 bits or 64 bits target. */
3008 switch (tdep->bytes_per_address)
3009 {
3010 case 4:
3011 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3012 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3013 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3014 set_gdbarch_cannot_store_register (gdbarch,
3015 hppa32_cannot_store_register);
3016 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3017 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3018 break;
3019 case 8:
3020 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3021 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3022 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3023 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3024 set_gdbarch_cannot_store_register (gdbarch,
3025 hppa64_cannot_store_register);
3026 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3027 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3028 break;
3029 default:
e2e0b3e5 3030 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3031 tdep->bytes_per_address);
3032 }
3033
3ff7cf9e 3034 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3035 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3036
8e8b2dba
MC
3037 /* The following gdbarch vector elements are the same in both ILP32
3038 and LP64, but might show differences some day. */
3039 set_gdbarch_long_long_bit (gdbarch, 64);
3040 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3041 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3042
3ff7cf9e
JB
3043 /* The following gdbarch vector elements do not depend on the address
3044 size, or in any other gdbarch element previously set. */
60383d10 3045 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
1fb24930
RC
3046 set_gdbarch_in_function_epilogue_p (gdbarch,
3047 hppa_in_function_epilogue_p);
a2a84a72 3048 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3049 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3050 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
85ddcc70 3051 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
60383d10 3052 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3053 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3054 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3055
143985b7
AF
3056 /* Helper for function argument information. */
3057 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3058
36482093
AC
3059 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3060
3a3bc038
AC
3061 /* When a hardware watchpoint triggers, we'll move the inferior past
3062 it by removing all eventpoints; stepping past the instruction
3063 that caused the trigger; reinserting eventpoints; and checking
3064 whether any watched location changed. */
3065 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3066
5979bc46 3067 /* Inferior function call methods. */
fca7aa43 3068 switch (tdep->bytes_per_address)
5979bc46 3069 {
fca7aa43
AC
3070 case 4:
3071 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3072 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3073 set_gdbarch_convert_from_func_ptr_addr
3074 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3075 break;
3076 case 8:
782eae8b
AC
3077 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3078 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3079 break;
782eae8b 3080 default:
e2e0b3e5 3081 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3082 }
3083
3084 /* Struct return methods. */
fca7aa43 3085 switch (tdep->bytes_per_address)
fad850b2 3086 {
fca7aa43
AC
3087 case 4:
3088 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3089 break;
3090 case 8:
782eae8b 3091 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3092 break;
fca7aa43 3093 default:
e2e0b3e5 3094 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3095 }
7f07c5b6 3096
85f4f2d8 3097 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 3098 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3099
5979bc46 3100 /* Frame unwind methods. */
227e86ad 3101 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3102 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3103
50306a9d
RC
3104 /* Hook in ABI-specific overrides, if they have been registered. */
3105 gdbarch_init_osabi (info, gdbarch);
3106
7f07c5b6 3107 /* Hook in the default unwinders. */
227e86ad
JB
3108 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3109 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3110 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3111
e6e68f1f
JB
3112 return gdbarch;
3113}
3114
3115static void
464963c9 3116hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3117{
464963c9 3118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3119
3120 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3121 tdep->bytes_per_address);
3122 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3123}
3124
72753510
PA
3125/* Provide a prototype to silence -Wmissing-prototypes. */
3126extern initialize_file_ftype _initialize_hppa_tdep;
3127
4facf7e8
JB
3128void
3129_initialize_hppa_tdep (void)
3130{
3131 struct cmd_list_element *c;
4facf7e8 3132
e6e68f1f 3133 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3134
7c46b9fb
RC
3135 hppa_objfile_priv_data = register_objfile_data ();
3136
4facf7e8 3137 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3138 _("Print unwind table entry at given address."),
4facf7e8
JB
3139 &maintenanceprintlist);
3140
1777feb0 3141 /* Debug this files internals. */
7915a72c
AC
3142 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3143Set whether hppa target specific debugging information should be displayed."),
3144 _("\
3145Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3146This flag controls whether hppa target specific debugging information is\n\
3147displayed. This information is particularly useful for debugging frame\n\
7915a72c 3148unwinding problems."),
2c5b56ce 3149 NULL,
7915a72c 3150 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3151 &setdebuglist, &showdebuglist);
4facf7e8 3152}
This page took 1.409309 seconds and 4 git commands to generate.