Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
0fd88904 | 4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software |
adc11376 | 5 | Foundation, Inc. |
c906108c SS |
6 | |
7 | Contributed by the Center for Software Science at the | |
8 | University of Utah (pa-gdb-bugs@cs.utah.edu). | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
14 | the Free Software Foundation; either version 2 of the License, or | |
15 | (at your option) any later version. | |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b JM |
22 | You should have received a copy of the GNU General Public License |
23 | along with this program; if not, write to the Free Software | |
24 | Foundation, Inc., 59 Temple Place - Suite 330, | |
25 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
26 | |
27 | #include "defs.h" | |
c906108c SS |
28 | #include "bfd.h" |
29 | #include "inferior.h" | |
4e052eda | 30 | #include "regcache.h" |
e5d66720 | 31 | #include "completer.h" |
59623e27 | 32 | #include "osabi.h" |
a7ff40e7 | 33 | #include "gdb_assert.h" |
343af405 | 34 | #include "arch-utils.h" |
c906108c SS |
35 | /* For argument passing to the inferior */ |
36 | #include "symtab.h" | |
fde2cceb | 37 | #include "dis-asm.h" |
26d08f08 AC |
38 | #include "trad-frame.h" |
39 | #include "frame-unwind.h" | |
40 | #include "frame-base.h" | |
c906108c | 41 | |
c906108c SS |
42 | #include "gdbcore.h" |
43 | #include "gdbcmd.h" | |
c906108c | 44 | #include "objfiles.h" |
3ff7cf9e | 45 | #include "hppa-tdep.h" |
c906108c | 46 | |
369aa520 RC |
47 | static int hppa_debug = 0; |
48 | ||
60383d10 | 49 | /* Some local constants. */ |
3ff7cf9e JB |
50 | static const int hppa32_num_regs = 128; |
51 | static const int hppa64_num_regs = 96; | |
52 | ||
7c46b9fb RC |
53 | /* hppa-specific object data -- unwind and solib info. |
54 | TODO/maybe: think about splitting this into two parts; the unwind data is | |
55 | common to all hppa targets, but is only used in this file; we can register | |
56 | that separately and make this static. The solib data is probably hpux- | |
57 | specific, so we can create a separate extern objfile_data that is registered | |
58 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ | |
59 | const struct objfile_data *hppa_objfile_priv_data = NULL; | |
60 | ||
e2ac8128 JB |
61 | /* Get at various relevent fields of an instruction word. */ |
62 | #define MASK_5 0x1f | |
63 | #define MASK_11 0x7ff | |
64 | #define MASK_14 0x3fff | |
65 | #define MASK_21 0x1fffff | |
66 | ||
e2ac8128 JB |
67 | /* Sizes (in bytes) of the native unwind entries. */ |
68 | #define UNWIND_ENTRY_SIZE 16 | |
69 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
70 | ||
d709c020 JB |
71 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
72 | following functions static, once we hppa is partially multiarched. */ | |
d709c020 | 73 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); |
c906108c | 74 | |
c906108c SS |
75 | /* Routines to extract various sized constants out of hppa |
76 | instructions. */ | |
77 | ||
78 | /* This assumes that no garbage lies outside of the lower bits of | |
79 | value. */ | |
80 | ||
abc485a1 RC |
81 | int |
82 | hppa_sign_extend (unsigned val, unsigned bits) | |
c906108c | 83 | { |
c5aa993b | 84 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
85 | } |
86 | ||
87 | /* For many immediate values the sign bit is the low bit! */ | |
88 | ||
abc485a1 RC |
89 | int |
90 | hppa_low_hppa_sign_extend (unsigned val, unsigned bits) | |
c906108c | 91 | { |
c5aa993b | 92 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
93 | } |
94 | ||
e2ac8128 JB |
95 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
96 | (MSB = 0). */ | |
97 | ||
abc485a1 RC |
98 | int |
99 | hppa_get_field (unsigned word, int from, int to) | |
e2ac8128 JB |
100 | { |
101 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
102 | } | |
103 | ||
c906108c SS |
104 | /* extract the immediate field from a ld{bhw}s instruction */ |
105 | ||
abc485a1 RC |
106 | int |
107 | hppa_extract_5_load (unsigned word) | |
c906108c | 108 | { |
abc485a1 | 109 | return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
c906108c SS |
110 | } |
111 | ||
c906108c SS |
112 | /* extract the immediate field from a break instruction */ |
113 | ||
abc485a1 RC |
114 | unsigned |
115 | hppa_extract_5r_store (unsigned word) | |
c906108c SS |
116 | { |
117 | return (word & MASK_5); | |
118 | } | |
119 | ||
120 | /* extract the immediate field from a {sr}sm instruction */ | |
121 | ||
abc485a1 RC |
122 | unsigned |
123 | hppa_extract_5R_store (unsigned word) | |
c906108c SS |
124 | { |
125 | return (word >> 16 & MASK_5); | |
126 | } | |
127 | ||
c906108c SS |
128 | /* extract a 14 bit immediate field */ |
129 | ||
abc485a1 RC |
130 | int |
131 | hppa_extract_14 (unsigned word) | |
c906108c | 132 | { |
abc485a1 | 133 | return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
c906108c SS |
134 | } |
135 | ||
c906108c SS |
136 | /* extract a 21 bit constant */ |
137 | ||
abc485a1 RC |
138 | int |
139 | hppa_extract_21 (unsigned word) | |
c906108c SS |
140 | { |
141 | int val; | |
142 | ||
143 | word &= MASK_21; | |
144 | word <<= 11; | |
abc485a1 | 145 | val = hppa_get_field (word, 20, 20); |
c906108c | 146 | val <<= 11; |
abc485a1 | 147 | val |= hppa_get_field (word, 9, 19); |
c906108c | 148 | val <<= 2; |
abc485a1 | 149 | val |= hppa_get_field (word, 5, 6); |
c906108c | 150 | val <<= 5; |
abc485a1 | 151 | val |= hppa_get_field (word, 0, 4); |
c906108c | 152 | val <<= 2; |
abc485a1 RC |
153 | val |= hppa_get_field (word, 7, 8); |
154 | return hppa_sign_extend (val, 21) << 11; | |
c906108c SS |
155 | } |
156 | ||
c906108c SS |
157 | /* extract a 17 bit constant from branch instructions, returning the |
158 | 19 bit signed value. */ | |
159 | ||
abc485a1 RC |
160 | int |
161 | hppa_extract_17 (unsigned word) | |
c906108c | 162 | { |
abc485a1 RC |
163 | return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
164 | hppa_get_field (word, 29, 29) << 10 | | |
165 | hppa_get_field (word, 11, 15) << 11 | | |
c906108c SS |
166 | (word & 0x1) << 16, 17) << 2; |
167 | } | |
3388d7ff RC |
168 | |
169 | CORE_ADDR | |
170 | hppa_symbol_address(const char *sym) | |
171 | { | |
172 | struct minimal_symbol *minsym; | |
173 | ||
174 | minsym = lookup_minimal_symbol (sym, NULL, NULL); | |
175 | if (minsym) | |
176 | return SYMBOL_VALUE_ADDRESS (minsym); | |
177 | else | |
178 | return (CORE_ADDR)-1; | |
179 | } | |
77d18ded RC |
180 | |
181 | struct hppa_objfile_private * | |
182 | hppa_init_objfile_priv_data (struct objfile *objfile) | |
183 | { | |
184 | struct hppa_objfile_private *priv; | |
185 | ||
186 | priv = (struct hppa_objfile_private *) | |
187 | obstack_alloc (&objfile->objfile_obstack, | |
188 | sizeof (struct hppa_objfile_private)); | |
189 | set_objfile_data (objfile, hppa_objfile_priv_data, priv); | |
190 | memset (priv, 0, sizeof (*priv)); | |
191 | ||
192 | return priv; | |
193 | } | |
c906108c SS |
194 | \f |
195 | ||
196 | /* Compare the start address for two unwind entries returning 1 if | |
197 | the first address is larger than the second, -1 if the second is | |
198 | larger than the first, and zero if they are equal. */ | |
199 | ||
200 | static int | |
fba45db2 | 201 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
202 | { |
203 | const struct unwind_table_entry *a = arg1; | |
204 | const struct unwind_table_entry *b = arg2; | |
205 | ||
206 | if (a->region_start > b->region_start) | |
207 | return 1; | |
208 | else if (a->region_start < b->region_start) | |
209 | return -1; | |
210 | else | |
211 | return 0; | |
212 | } | |
213 | ||
53a5351d | 214 | static void |
fdd72f95 | 215 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
53a5351d | 216 | { |
fdd72f95 | 217 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d | 218 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
fdd72f95 RC |
219 | { |
220 | bfd_vma value = section->vma - section->filepos; | |
221 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; | |
222 | ||
223 | if (value < *low_text_segment_address) | |
224 | *low_text_segment_address = value; | |
225 | } | |
53a5351d JM |
226 | } |
227 | ||
c906108c | 228 | static void |
fba45db2 KB |
229 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
230 | asection *section, unsigned int entries, unsigned int size, | |
231 | CORE_ADDR text_offset) | |
c906108c SS |
232 | { |
233 | /* We will read the unwind entries into temporary memory, then | |
234 | fill in the actual unwind table. */ | |
fdd72f95 | 235 | |
c906108c SS |
236 | if (size > 0) |
237 | { | |
238 | unsigned long tmp; | |
239 | unsigned i; | |
240 | char *buf = alloca (size); | |
fdd72f95 | 241 | CORE_ADDR low_text_segment_address; |
c906108c | 242 | |
fdd72f95 | 243 | /* For ELF targets, then unwinds are supposed to |
c2c6d25f JM |
244 | be segment relative offsets instead of absolute addresses. |
245 | ||
246 | Note that when loading a shared library (text_offset != 0) the | |
247 | unwinds are already relative to the text_offset that will be | |
248 | passed in. */ | |
fdd72f95 | 249 | if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0) |
53a5351d | 250 | { |
fdd72f95 RC |
251 | low_text_segment_address = -1; |
252 | ||
53a5351d | 253 | bfd_map_over_sections (objfile->obfd, |
fdd72f95 RC |
254 | record_text_segment_lowaddr, |
255 | &low_text_segment_address); | |
53a5351d | 256 | |
fdd72f95 | 257 | text_offset = low_text_segment_address; |
53a5351d | 258 | } |
acf86d54 RC |
259 | else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base) |
260 | { | |
261 | text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile); | |
262 | } | |
53a5351d | 263 | |
c906108c SS |
264 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
265 | ||
266 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 267 | endian issues. */ |
c906108c SS |
268 | for (i = 0; i < entries; i++) |
269 | { | |
270 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 271 | (bfd_byte *) buf); |
c906108c SS |
272 | table[i].region_start += text_offset; |
273 | buf += 4; | |
c5aa993b | 274 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
275 | table[i].region_end += text_offset; |
276 | buf += 4; | |
c5aa993b | 277 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
278 | buf += 4; |
279 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
280 | table[i].Millicode = (tmp >> 30) & 0x1; | |
281 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
282 | table[i].Region_description = (tmp >> 27) & 0x3; | |
283 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
284 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
285 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
286 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
287 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
288 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
289 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
290 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
291 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
292 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
293 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
294 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
295 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
296 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
297 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
298 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
299 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
300 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
301 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
302 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 303 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
304 | buf += 4; |
305 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
306 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
307 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
308 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
309 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
310 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
311 | ||
c5aa993b | 312 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
313 | table[i].stub_unwind.stub_type = 0; |
314 | table[i].stub_unwind.padding = 0; | |
315 | } | |
316 | } | |
317 | } | |
318 | ||
319 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
320 | the object file. This info is used mainly by find_unwind_entry() to find | |
321 | out the stack frame size and frame pointer used by procedures. We put | |
322 | everything on the psymbol obstack in the objfile so that it automatically | |
323 | gets freed when the objfile is destroyed. */ | |
324 | ||
325 | static void | |
fba45db2 | 326 | read_unwind_info (struct objfile *objfile) |
c906108c | 327 | { |
d4f3574e SS |
328 | asection *unwind_sec, *stub_unwind_sec; |
329 | unsigned unwind_size, stub_unwind_size, total_size; | |
330 | unsigned index, unwind_entries; | |
c906108c SS |
331 | unsigned stub_entries, total_entries; |
332 | CORE_ADDR text_offset; | |
7c46b9fb RC |
333 | struct hppa_unwind_info *ui; |
334 | struct hppa_objfile_private *obj_private; | |
c906108c SS |
335 | |
336 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
7c46b9fb RC |
337 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
338 | sizeof (struct hppa_unwind_info)); | |
c906108c SS |
339 | |
340 | ui->table = NULL; | |
341 | ui->cache = NULL; | |
342 | ui->last = -1; | |
343 | ||
d4f3574e SS |
344 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
345 | sections in a single executable. So we just iterate over every | |
346 | section in the BFD looking for unwinder sections intead of trying | |
347 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 348 | |
d4f3574e SS |
349 | First determine the total size of the unwind tables so that we |
350 | can allocate memory in a nice big hunk. */ | |
351 | total_entries = 0; | |
352 | for (unwind_sec = objfile->obfd->sections; | |
353 | unwind_sec; | |
354 | unwind_sec = unwind_sec->next) | |
c906108c | 355 | { |
d4f3574e SS |
356 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
357 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
358 | { | |
359 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
360 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 361 | |
d4f3574e SS |
362 | total_entries += unwind_entries; |
363 | } | |
c906108c SS |
364 | } |
365 | ||
d4f3574e SS |
366 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
367 | use stub unwinds at the curren time. */ | |
368 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
369 | ||
c906108c SS |
370 | if (stub_unwind_sec) |
371 | { | |
372 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
373 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
374 | } | |
375 | else | |
376 | { | |
377 | stub_unwind_size = 0; | |
378 | stub_entries = 0; | |
379 | } | |
380 | ||
381 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 382 | total_entries += stub_entries; |
c906108c SS |
383 | total_size = total_entries * sizeof (struct unwind_table_entry); |
384 | ||
385 | /* Allocate memory for the unwind table. */ | |
386 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 387 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 388 | ui->last = total_entries - 1; |
c906108c | 389 | |
d4f3574e SS |
390 | /* Now read in each unwind section and internalize the standard unwind |
391 | entries. */ | |
c906108c | 392 | index = 0; |
d4f3574e SS |
393 | for (unwind_sec = objfile->obfd->sections; |
394 | unwind_sec; | |
395 | unwind_sec = unwind_sec->next) | |
396 | { | |
397 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
398 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
399 | { | |
400 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
401 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
402 | ||
403 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
404 | unwind_entries, unwind_size, text_offset); | |
405 | index += unwind_entries; | |
406 | } | |
407 | } | |
408 | ||
409 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
410 | if (stub_unwind_size > 0) |
411 | { | |
412 | unsigned int i; | |
413 | char *buf = alloca (stub_unwind_size); | |
414 | ||
415 | /* Read in the stub unwind entries. */ | |
416 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
417 | 0, stub_unwind_size); | |
418 | ||
419 | /* Now convert them into regular unwind entries. */ | |
420 | for (i = 0; i < stub_entries; i++, index++) | |
421 | { | |
422 | /* Clear out the next unwind entry. */ | |
423 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
424 | ||
425 | /* Convert offset & size into region_start and region_end. | |
426 | Stuff away the stub type into "reserved" fields. */ | |
427 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
428 | (bfd_byte *) buf); | |
429 | ui->table[index].region_start += text_offset; | |
430 | buf += 4; | |
431 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 432 | (bfd_byte *) buf); |
c906108c SS |
433 | buf += 2; |
434 | ui->table[index].region_end | |
c5aa993b JM |
435 | = ui->table[index].region_start + 4 * |
436 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
437 | buf += 2; |
438 | } | |
439 | ||
440 | } | |
441 | ||
442 | /* Unwind table needs to be kept sorted. */ | |
443 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
444 | compare_unwind_entries); | |
445 | ||
446 | /* Keep a pointer to the unwind information. */ | |
7c46b9fb RC |
447 | obj_private = (struct hppa_objfile_private *) |
448 | objfile_data (objfile, hppa_objfile_priv_data); | |
449 | if (obj_private == NULL) | |
77d18ded RC |
450 | obj_private = hppa_init_objfile_priv_data (objfile); |
451 | ||
c906108c SS |
452 | obj_private->unwind_info = ui; |
453 | } | |
454 | ||
455 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
456 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
457 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
458 | search of the unwind tables, we depend upon them to be sorted. */ | |
459 | ||
460 | struct unwind_table_entry * | |
fba45db2 | 461 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
462 | { |
463 | int first, middle, last; | |
464 | struct objfile *objfile; | |
7c46b9fb | 465 | struct hppa_objfile_private *priv; |
c906108c | 466 | |
369aa520 RC |
467 | if (hppa_debug) |
468 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ", | |
469 | paddr_nz (pc)); | |
470 | ||
c906108c SS |
471 | /* A function at address 0? Not in HP-UX! */ |
472 | if (pc == (CORE_ADDR) 0) | |
369aa520 RC |
473 | { |
474 | if (hppa_debug) | |
475 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); | |
476 | return NULL; | |
477 | } | |
c906108c SS |
478 | |
479 | ALL_OBJFILES (objfile) | |
c5aa993b | 480 | { |
7c46b9fb | 481 | struct hppa_unwind_info *ui; |
c5aa993b | 482 | ui = NULL; |
7c46b9fb RC |
483 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
484 | if (priv) | |
485 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
c906108c | 486 | |
c5aa993b JM |
487 | if (!ui) |
488 | { | |
489 | read_unwind_info (objfile); | |
7c46b9fb RC |
490 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
491 | if (priv == NULL) | |
8a3fe4f8 | 492 | error (_("Internal error reading unwind information.")); |
7c46b9fb | 493 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
c5aa993b | 494 | } |
c906108c | 495 | |
c5aa993b | 496 | /* First, check the cache */ |
c906108c | 497 | |
c5aa993b JM |
498 | if (ui->cache |
499 | && pc >= ui->cache->region_start | |
500 | && pc <= ui->cache->region_end) | |
369aa520 RC |
501 | { |
502 | if (hppa_debug) | |
503 | fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n", | |
504 | paddr_nz ((CORE_ADDR) ui->cache)); | |
505 | return ui->cache; | |
506 | } | |
c906108c | 507 | |
c5aa993b | 508 | /* Not in the cache, do a binary search */ |
c906108c | 509 | |
c5aa993b JM |
510 | first = 0; |
511 | last = ui->last; | |
c906108c | 512 | |
c5aa993b JM |
513 | while (first <= last) |
514 | { | |
515 | middle = (first + last) / 2; | |
516 | if (pc >= ui->table[middle].region_start | |
517 | && pc <= ui->table[middle].region_end) | |
518 | { | |
519 | ui->cache = &ui->table[middle]; | |
369aa520 RC |
520 | if (hppa_debug) |
521 | fprintf_unfiltered (gdb_stdlog, "0x%s }\n", | |
522 | paddr_nz ((CORE_ADDR) ui->cache)); | |
c5aa993b JM |
523 | return &ui->table[middle]; |
524 | } | |
c906108c | 525 | |
c5aa993b JM |
526 | if (pc < ui->table[middle].region_start) |
527 | last = middle - 1; | |
528 | else | |
529 | first = middle + 1; | |
530 | } | |
531 | } /* ALL_OBJFILES() */ | |
369aa520 RC |
532 | |
533 | if (hppa_debug) | |
534 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); | |
535 | ||
c906108c SS |
536 | return NULL; |
537 | } | |
538 | ||
1fb24930 RC |
539 | /* The epilogue is defined here as the area either on the `bv' instruction |
540 | itself or an instruction which destroys the function's stack frame. | |
541 | ||
542 | We do not assume that the epilogue is at the end of a function as we can | |
543 | also have return sequences in the middle of a function. */ | |
544 | static int | |
545 | hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
546 | { | |
547 | unsigned long status; | |
548 | unsigned int inst; | |
549 | char buf[4]; | |
550 | int off; | |
551 | ||
552 | status = deprecated_read_memory_nobpt (pc, buf, 4); | |
553 | if (status != 0) | |
554 | return 0; | |
555 | ||
556 | inst = extract_unsigned_integer (buf, 4); | |
557 | ||
558 | /* The most common way to perform a stack adjustment ldo X(sp),sp | |
559 | We are destroying a stack frame if the offset is negative. */ | |
560 | if ((inst & 0xffffc000) == 0x37de0000 | |
561 | && hppa_extract_14 (inst) < 0) | |
562 | return 1; | |
563 | ||
564 | /* ldw,mb D(sp),X or ldd,mb D(sp),X */ | |
565 | if (((inst & 0x0fc010e0) == 0x0fc010e0 | |
566 | || (inst & 0x0fc010e0) == 0x0fc010e0) | |
567 | && hppa_extract_14 (inst) < 0) | |
568 | return 1; | |
569 | ||
570 | /* bv %r0(%rp) or bv,n %r0(%rp) */ | |
571 | if (inst == 0xe840c000 || inst == 0xe840c002) | |
572 | return 1; | |
573 | ||
574 | return 0; | |
575 | } | |
576 | ||
85f4f2d8 | 577 | static const unsigned char * |
aaab4dba AC |
578 | hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len) |
579 | { | |
56132691 | 580 | static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; |
aaab4dba AC |
581 | (*len) = sizeof (breakpoint); |
582 | return breakpoint; | |
583 | } | |
584 | ||
e23457df AC |
585 | /* Return the name of a register. */ |
586 | ||
4a302917 | 587 | static const char * |
3ff7cf9e | 588 | hppa32_register_name (int i) |
e23457df AC |
589 | { |
590 | static char *names[] = { | |
591 | "flags", "r1", "rp", "r3", | |
592 | "r4", "r5", "r6", "r7", | |
593 | "r8", "r9", "r10", "r11", | |
594 | "r12", "r13", "r14", "r15", | |
595 | "r16", "r17", "r18", "r19", | |
596 | "r20", "r21", "r22", "r23", | |
597 | "r24", "r25", "r26", "dp", | |
598 | "ret0", "ret1", "sp", "r31", | |
599 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
600 | "pcsqt", "eiem", "iir", "isr", | |
601 | "ior", "ipsw", "goto", "sr4", | |
602 | "sr0", "sr1", "sr2", "sr3", | |
603 | "sr5", "sr6", "sr7", "cr0", | |
604 | "cr8", "cr9", "ccr", "cr12", | |
605 | "cr13", "cr24", "cr25", "cr26", | |
606 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
607 | "fpsr", "fpe1", "fpe2", "fpe3", | |
608 | "fpe4", "fpe5", "fpe6", "fpe7", | |
609 | "fr4", "fr4R", "fr5", "fr5R", | |
610 | "fr6", "fr6R", "fr7", "fr7R", | |
611 | "fr8", "fr8R", "fr9", "fr9R", | |
612 | "fr10", "fr10R", "fr11", "fr11R", | |
613 | "fr12", "fr12R", "fr13", "fr13R", | |
614 | "fr14", "fr14R", "fr15", "fr15R", | |
615 | "fr16", "fr16R", "fr17", "fr17R", | |
616 | "fr18", "fr18R", "fr19", "fr19R", | |
617 | "fr20", "fr20R", "fr21", "fr21R", | |
618 | "fr22", "fr22R", "fr23", "fr23R", | |
619 | "fr24", "fr24R", "fr25", "fr25R", | |
620 | "fr26", "fr26R", "fr27", "fr27R", | |
621 | "fr28", "fr28R", "fr29", "fr29R", | |
622 | "fr30", "fr30R", "fr31", "fr31R" | |
623 | }; | |
624 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
625 | return NULL; | |
626 | else | |
627 | return names[i]; | |
628 | } | |
629 | ||
4a302917 | 630 | static const char * |
e23457df AC |
631 | hppa64_register_name (int i) |
632 | { | |
633 | static char *names[] = { | |
634 | "flags", "r1", "rp", "r3", | |
635 | "r4", "r5", "r6", "r7", | |
636 | "r8", "r9", "r10", "r11", | |
637 | "r12", "r13", "r14", "r15", | |
638 | "r16", "r17", "r18", "r19", | |
639 | "r20", "r21", "r22", "r23", | |
640 | "r24", "r25", "r26", "dp", | |
641 | "ret0", "ret1", "sp", "r31", | |
642 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
643 | "pcsqt", "eiem", "iir", "isr", | |
644 | "ior", "ipsw", "goto", "sr4", | |
645 | "sr0", "sr1", "sr2", "sr3", | |
646 | "sr5", "sr6", "sr7", "cr0", | |
647 | "cr8", "cr9", "ccr", "cr12", | |
648 | "cr13", "cr24", "cr25", "cr26", | |
649 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
650 | "fpsr", "fpe1", "fpe2", "fpe3", | |
651 | "fr4", "fr5", "fr6", "fr7", | |
652 | "fr8", "fr9", "fr10", "fr11", | |
653 | "fr12", "fr13", "fr14", "fr15", | |
654 | "fr16", "fr17", "fr18", "fr19", | |
655 | "fr20", "fr21", "fr22", "fr23", | |
656 | "fr24", "fr25", "fr26", "fr27", | |
657 | "fr28", "fr29", "fr30", "fr31" | |
658 | }; | |
659 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
660 | return NULL; | |
661 | else | |
662 | return names[i]; | |
663 | } | |
664 | ||
79508e1e AC |
665 | /* This function pushes a stack frame with arguments as part of the |
666 | inferior function calling mechanism. | |
667 | ||
668 | This is the version of the function for the 32-bit PA machines, in | |
669 | which later arguments appear at lower addresses. (The stack always | |
670 | grows towards higher addresses.) | |
671 | ||
672 | We simply allocate the appropriate amount of stack space and put | |
673 | arguments into their proper slots. */ | |
674 | ||
4a302917 | 675 | static CORE_ADDR |
7d9b040b | 676 | hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
79508e1e AC |
677 | struct regcache *regcache, CORE_ADDR bp_addr, |
678 | int nargs, struct value **args, CORE_ADDR sp, | |
679 | int struct_return, CORE_ADDR struct_addr) | |
680 | { | |
79508e1e AC |
681 | /* Stack base address at which any pass-by-reference parameters are |
682 | stored. */ | |
683 | CORE_ADDR struct_end = 0; | |
684 | /* Stack base address at which the first parameter is stored. */ | |
685 | CORE_ADDR param_end = 0; | |
686 | ||
687 | /* The inner most end of the stack after all the parameters have | |
688 | been pushed. */ | |
689 | CORE_ADDR new_sp = 0; | |
690 | ||
691 | /* Two passes. First pass computes the location of everything, | |
692 | second pass writes the bytes out. */ | |
693 | int write_pass; | |
d49771ef RC |
694 | |
695 | /* Global pointer (r19) of the function we are trying to call. */ | |
696 | CORE_ADDR gp; | |
697 | ||
698 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
699 | ||
79508e1e AC |
700 | for (write_pass = 0; write_pass < 2; write_pass++) |
701 | { | |
1797a8f6 | 702 | CORE_ADDR struct_ptr = 0; |
2a6228ef RC |
703 | /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
704 | struct_ptr is adjusted for each argument below, so the first | |
705 | argument will end up at sp-36. */ | |
706 | CORE_ADDR param_ptr = 32; | |
79508e1e | 707 | int i; |
2a6228ef RC |
708 | int small_struct = 0; |
709 | ||
79508e1e AC |
710 | for (i = 0; i < nargs; i++) |
711 | { | |
712 | struct value *arg = args[i]; | |
4991999e | 713 | struct type *type = check_typedef (value_type (arg)); |
79508e1e AC |
714 | /* The corresponding parameter that is pushed onto the |
715 | stack, and [possibly] passed in a register. */ | |
716 | char param_val[8]; | |
717 | int param_len; | |
718 | memset (param_val, 0, sizeof param_val); | |
719 | if (TYPE_LENGTH (type) > 8) | |
720 | { | |
721 | /* Large parameter, pass by reference. Store the value | |
722 | in "struct" area and then pass its address. */ | |
723 | param_len = 4; | |
1797a8f6 | 724 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 725 | if (write_pass) |
0fd88904 | 726 | write_memory (struct_end - struct_ptr, value_contents (arg), |
79508e1e | 727 | TYPE_LENGTH (type)); |
1797a8f6 | 728 | store_unsigned_integer (param_val, 4, struct_end - struct_ptr); |
79508e1e AC |
729 | } |
730 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
731 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
732 | { | |
733 | /* Integer value store, right aligned. "unpack_long" | |
734 | takes care of any sign-extension problems. */ | |
735 | param_len = align_up (TYPE_LENGTH (type), 4); | |
736 | store_unsigned_integer (param_val, param_len, | |
737 | unpack_long (type, | |
0fd88904 | 738 | value_contents (arg))); |
79508e1e | 739 | } |
2a6228ef RC |
740 | else if (TYPE_CODE (type) == TYPE_CODE_FLT) |
741 | { | |
742 | /* Floating point value store, right aligned. */ | |
743 | param_len = align_up (TYPE_LENGTH (type), 4); | |
0fd88904 | 744 | memcpy (param_val, value_contents (arg), param_len); |
2a6228ef | 745 | } |
79508e1e AC |
746 | else |
747 | { | |
79508e1e | 748 | param_len = align_up (TYPE_LENGTH (type), 4); |
2a6228ef RC |
749 | |
750 | /* Small struct value are stored right-aligned. */ | |
79508e1e | 751 | memcpy (param_val + param_len - TYPE_LENGTH (type), |
0fd88904 | 752 | value_contents (arg), TYPE_LENGTH (type)); |
2a6228ef RC |
753 | |
754 | /* Structures of size 5, 6 and 7 bytes are special in that | |
755 | the higher-ordered word is stored in the lower-ordered | |
756 | argument, and even though it is a 8-byte quantity the | |
757 | registers need not be 8-byte aligned. */ | |
1b07b470 | 758 | if (param_len > 4 && param_len < 8) |
2a6228ef | 759 | small_struct = 1; |
79508e1e | 760 | } |
2a6228ef | 761 | |
1797a8f6 | 762 | param_ptr += param_len; |
2a6228ef RC |
763 | if (param_len == 8 && !small_struct) |
764 | param_ptr = align_up (param_ptr, 8); | |
765 | ||
766 | /* First 4 non-FP arguments are passed in gr26-gr23. | |
767 | First 4 32-bit FP arguments are passed in fr4L-fr7L. | |
768 | First 2 64-bit FP arguments are passed in fr5 and fr7. | |
769 | ||
770 | The rest go on the stack, starting at sp-36, towards lower | |
771 | addresses. 8-byte arguments must be aligned to a 8-byte | |
772 | stack boundary. */ | |
79508e1e AC |
773 | if (write_pass) |
774 | { | |
1797a8f6 | 775 | write_memory (param_end - param_ptr, param_val, param_len); |
2a6228ef RC |
776 | |
777 | /* There are some cases when we don't know the type | |
778 | expected by the callee (e.g. for variadic functions), so | |
779 | pass the parameters in both general and fp regs. */ | |
780 | if (param_ptr <= 48) | |
79508e1e | 781 | { |
2a6228ef RC |
782 | int grreg = 26 - (param_ptr - 36) / 4; |
783 | int fpLreg = 72 + (param_ptr - 36) / 4 * 2; | |
784 | int fpreg = 74 + (param_ptr - 32) / 8 * 4; | |
785 | ||
786 | regcache_cooked_write (regcache, grreg, param_val); | |
787 | regcache_cooked_write (regcache, fpLreg, param_val); | |
788 | ||
79508e1e | 789 | if (param_len > 4) |
2a6228ef RC |
790 | { |
791 | regcache_cooked_write (regcache, grreg + 1, | |
792 | param_val + 4); | |
793 | ||
794 | regcache_cooked_write (regcache, fpreg, param_val); | |
795 | regcache_cooked_write (regcache, fpreg + 1, | |
796 | param_val + 4); | |
797 | } | |
79508e1e AC |
798 | } |
799 | } | |
800 | } | |
801 | ||
802 | /* Update the various stack pointers. */ | |
803 | if (!write_pass) | |
804 | { | |
2a6228ef | 805 | struct_end = sp + align_up (struct_ptr, 64); |
79508e1e AC |
806 | /* PARAM_PTR already accounts for all the arguments passed |
807 | by the user. However, the ABI mandates minimum stack | |
808 | space allocations for outgoing arguments. The ABI also | |
809 | mandates minimum stack alignments which we must | |
810 | preserve. */ | |
2a6228ef | 811 | param_end = struct_end + align_up (param_ptr, 64); |
79508e1e AC |
812 | } |
813 | } | |
814 | ||
815 | /* If a structure has to be returned, set up register 28 to hold its | |
816 | address */ | |
817 | if (struct_return) | |
818 | write_register (28, struct_addr); | |
819 | ||
d49771ef RC |
820 | gp = tdep->find_global_pointer (function); |
821 | ||
822 | if (gp != 0) | |
823 | write_register (19, gp); | |
824 | ||
79508e1e | 825 | /* Set the return address. */ |
77d18ded RC |
826 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
827 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
79508e1e | 828 | |
c4557624 | 829 | /* Update the Stack Pointer. */ |
34f75cc1 | 830 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
c4557624 | 831 | |
2a6228ef | 832 | return param_end; |
79508e1e AC |
833 | } |
834 | ||
38ca4e0c MK |
835 | /* The 64-bit PA-RISC calling conventions are documented in "64-Bit |
836 | Runtime Architecture for PA-RISC 2.0", which is distributed as part | |
837 | as of the HP-UX Software Transition Kit (STK). This implementation | |
838 | is based on version 3.3, dated October 6, 1997. */ | |
2f690297 | 839 | |
38ca4e0c | 840 | /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ |
2f690297 | 841 | |
38ca4e0c MK |
842 | static int |
843 | hppa64_integral_or_pointer_p (const struct type *type) | |
844 | { | |
845 | switch (TYPE_CODE (type)) | |
846 | { | |
847 | case TYPE_CODE_INT: | |
848 | case TYPE_CODE_BOOL: | |
849 | case TYPE_CODE_CHAR: | |
850 | case TYPE_CODE_ENUM: | |
851 | case TYPE_CODE_RANGE: | |
852 | { | |
853 | int len = TYPE_LENGTH (type); | |
854 | return (len == 1 || len == 2 || len == 4 || len == 8); | |
855 | } | |
856 | case TYPE_CODE_PTR: | |
857 | case TYPE_CODE_REF: | |
858 | return (TYPE_LENGTH (type) == 8); | |
859 | default: | |
860 | break; | |
861 | } | |
862 | ||
863 | return 0; | |
864 | } | |
865 | ||
866 | /* Check whether TYPE is a "Floating Scalar Type". */ | |
867 | ||
868 | static int | |
869 | hppa64_floating_p (const struct type *type) | |
870 | { | |
871 | switch (TYPE_CODE (type)) | |
872 | { | |
873 | case TYPE_CODE_FLT: | |
874 | { | |
875 | int len = TYPE_LENGTH (type); | |
876 | return (len == 4 || len == 8 || len == 16); | |
877 | } | |
878 | default: | |
879 | break; | |
880 | } | |
881 | ||
882 | return 0; | |
883 | } | |
2f690297 | 884 | |
4a302917 | 885 | static CORE_ADDR |
7d9b040b | 886 | hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
2f690297 AC |
887 | struct regcache *regcache, CORE_ADDR bp_addr, |
888 | int nargs, struct value **args, CORE_ADDR sp, | |
889 | int struct_return, CORE_ADDR struct_addr) | |
890 | { | |
38ca4e0c MK |
891 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
892 | int i, offset = 0; | |
893 | CORE_ADDR gp; | |
2f690297 | 894 | |
38ca4e0c MK |
895 | /* "The outgoing parameter area [...] must be aligned at a 16-byte |
896 | boundary." */ | |
897 | sp = align_up (sp, 16); | |
2f690297 | 898 | |
38ca4e0c MK |
899 | for (i = 0; i < nargs; i++) |
900 | { | |
901 | struct value *arg = args[i]; | |
902 | struct type *type = value_type (arg); | |
903 | int len = TYPE_LENGTH (type); | |
0fd88904 | 904 | const bfd_byte *valbuf; |
38ca4e0c | 905 | int regnum; |
2f690297 | 906 | |
38ca4e0c MK |
907 | /* "Each parameter begins on a 64-bit (8-byte) boundary." */ |
908 | offset = align_up (offset, 8); | |
77d18ded | 909 | |
38ca4e0c | 910 | if (hppa64_integral_or_pointer_p (type)) |
2f690297 | 911 | { |
38ca4e0c MK |
912 | /* "Integral scalar parameters smaller than 64 bits are |
913 | padded on the left (i.e., the value is in the | |
914 | least-significant bits of the 64-bit storage unit, and | |
915 | the high-order bits are undefined)." Therefore we can | |
916 | safely sign-extend them. */ | |
917 | if (len < 8) | |
449e1137 | 918 | { |
38ca4e0c MK |
919 | arg = value_cast (builtin_type_int64, arg); |
920 | len = 8; | |
921 | } | |
922 | } | |
923 | else if (hppa64_floating_p (type)) | |
924 | { | |
925 | if (len > 8) | |
926 | { | |
927 | /* "Quad-precision (128-bit) floating-point scalar | |
928 | parameters are aligned on a 16-byte boundary." */ | |
929 | offset = align_up (offset, 16); | |
930 | ||
931 | /* "Double-extended- and quad-precision floating-point | |
932 | parameters within the first 64 bytes of the parameter | |
933 | list are always passed in general registers." */ | |
449e1137 AC |
934 | } |
935 | else | |
936 | { | |
38ca4e0c | 937 | if (len == 4) |
449e1137 | 938 | { |
38ca4e0c MK |
939 | /* "Single-precision (32-bit) floating-point scalar |
940 | parameters are padded on the left with 32 bits of | |
941 | garbage (i.e., the floating-point value is in the | |
942 | least-significant 32 bits of a 64-bit storage | |
943 | unit)." */ | |
944 | offset += 4; | |
449e1137 | 945 | } |
38ca4e0c MK |
946 | |
947 | /* "Single- and double-precision floating-point | |
948 | parameters in this area are passed according to the | |
949 | available formal parameter information in a function | |
950 | prototype. [...] If no prototype is in scope, | |
951 | floating-point parameters must be passed both in the | |
952 | corresponding general registers and in the | |
953 | corresponding floating-point registers." */ | |
954 | regnum = HPPA64_FP4_REGNUM + offset / 8; | |
955 | ||
956 | if (regnum < HPPA64_FP4_REGNUM + 8) | |
449e1137 | 957 | { |
38ca4e0c MK |
958 | /* "Single-precision floating-point parameters, when |
959 | passed in floating-point registers, are passed in | |
960 | the right halves of the floating point registers; | |
961 | the left halves are unused." */ | |
962 | regcache_cooked_write_part (regcache, regnum, offset % 8, | |
0fd88904 | 963 | len, value_contents (arg)); |
449e1137 AC |
964 | } |
965 | } | |
2f690297 | 966 | } |
38ca4e0c | 967 | else |
2f690297 | 968 | { |
38ca4e0c MK |
969 | if (len > 8) |
970 | { | |
971 | /* "Aggregates larger than 8 bytes are aligned on a | |
972 | 16-byte boundary, possibly leaving an unused argument | |
973 | slot, which is filled with garbage. If necessary, | |
974 | they are padded on the right (with garbage), to a | |
975 | multiple of 8 bytes." */ | |
976 | offset = align_up (offset, 16); | |
977 | } | |
978 | } | |
979 | ||
980 | /* Always store the argument in memory. */ | |
0fd88904 | 981 | write_memory (sp + offset, value_contents (arg), len); |
38ca4e0c | 982 | |
0fd88904 | 983 | valbuf = value_contents (arg); |
38ca4e0c MK |
984 | regnum = HPPA_ARG0_REGNUM - offset / 8; |
985 | while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) | |
986 | { | |
987 | regcache_cooked_write_part (regcache, regnum, | |
988 | offset % 8, min (len, 8), valbuf); | |
989 | offset += min (len, 8); | |
990 | valbuf += min (len, 8); | |
991 | len -= min (len, 8); | |
992 | regnum--; | |
2f690297 | 993 | } |
38ca4e0c MK |
994 | |
995 | offset += len; | |
2f690297 AC |
996 | } |
997 | ||
38ca4e0c MK |
998 | /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ |
999 | regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); | |
1000 | ||
1001 | /* Allocate the outgoing parameter area. Make sure the outgoing | |
1002 | parameter area is multiple of 16 bytes in length. */ | |
1003 | sp += max (align_up (offset, 16), 64); | |
1004 | ||
1005 | /* Allocate 32-bytes of scratch space. The documentation doesn't | |
1006 | mention this, but it seems to be needed. */ | |
1007 | sp += 32; | |
1008 | ||
1009 | /* Allocate the frame marker area. */ | |
1010 | sp += 16; | |
1011 | ||
1012 | /* If a structure has to be returned, set up GR 28 (%ret0) to hold | |
1013 | its address. */ | |
2f690297 | 1014 | if (struct_return) |
38ca4e0c | 1015 | regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); |
2f690297 | 1016 | |
38ca4e0c | 1017 | /* Set up GR27 (%dp) to hold the global pointer (gp). */ |
77d18ded | 1018 | gp = tdep->find_global_pointer (function); |
77d18ded | 1019 | if (gp != 0) |
38ca4e0c | 1020 | regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); |
77d18ded | 1021 | |
38ca4e0c | 1022 | /* Set up GR2 (%rp) to hold the return pointer (rp). */ |
77d18ded RC |
1023 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
1024 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
2f690297 | 1025 | |
38ca4e0c MK |
1026 | /* Set up GR30 to hold the stack pointer (sp). */ |
1027 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); | |
c4557624 | 1028 | |
38ca4e0c | 1029 | return sp; |
2f690297 | 1030 | } |
38ca4e0c | 1031 | \f |
2f690297 | 1032 | |
08a27113 MK |
1033 | /* Handle 32/64-bit struct return conventions. */ |
1034 | ||
1035 | static enum return_value_convention | |
1036 | hppa32_return_value (struct gdbarch *gdbarch, | |
1037 | struct type *type, struct regcache *regcache, | |
1038 | void *readbuf, const void *writebuf) | |
1039 | { | |
1040 | if (TYPE_LENGTH (type) <= 2 * 4) | |
1041 | { | |
1042 | /* The value always lives in the right hand end of the register | |
1043 | (or register pair)? */ | |
1044 | int b; | |
1045 | int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; | |
1046 | int part = TYPE_LENGTH (type) % 4; | |
1047 | /* The left hand register contains only part of the value, | |
1048 | transfer that first so that the rest can be xfered as entire | |
1049 | 4-byte registers. */ | |
1050 | if (part > 0) | |
1051 | { | |
1052 | if (readbuf != NULL) | |
1053 | regcache_cooked_read_part (regcache, reg, 4 - part, | |
1054 | part, readbuf); | |
1055 | if (writebuf != NULL) | |
1056 | regcache_cooked_write_part (regcache, reg, 4 - part, | |
1057 | part, writebuf); | |
1058 | reg++; | |
1059 | } | |
1060 | /* Now transfer the remaining register values. */ | |
1061 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
1062 | { | |
1063 | if (readbuf != NULL) | |
1064 | regcache_cooked_read (regcache, reg, (char *) readbuf + b); | |
1065 | if (writebuf != NULL) | |
1066 | regcache_cooked_write (regcache, reg, (const char *) writebuf + b); | |
1067 | reg++; | |
1068 | } | |
1069 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1070 | } | |
1071 | else | |
1072 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1073 | } | |
1074 | ||
1075 | static enum return_value_convention | |
1076 | hppa64_return_value (struct gdbarch *gdbarch, | |
1077 | struct type *type, struct regcache *regcache, | |
1078 | void *readbuf, const void *writebuf) | |
1079 | { | |
1080 | int len = TYPE_LENGTH (type); | |
1081 | int regnum, offset; | |
1082 | ||
1083 | if (len > 16) | |
1084 | { | |
1085 | /* All return values larget than 128 bits must be aggregate | |
1086 | return values. */ | |
9738b034 MK |
1087 | gdb_assert (!hppa64_integral_or_pointer_p (type)); |
1088 | gdb_assert (!hppa64_floating_p (type)); | |
08a27113 MK |
1089 | |
1090 | /* "Aggregate return values larger than 128 bits are returned in | |
1091 | a buffer allocated by the caller. The address of the buffer | |
1092 | must be passed in GR 28." */ | |
1093 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1094 | } | |
1095 | ||
1096 | if (hppa64_integral_or_pointer_p (type)) | |
1097 | { | |
1098 | /* "Integral return values are returned in GR 28. Values | |
1099 | smaller than 64 bits are padded on the left (with garbage)." */ | |
1100 | regnum = HPPA_RET0_REGNUM; | |
1101 | offset = 8 - len; | |
1102 | } | |
1103 | else if (hppa64_floating_p (type)) | |
1104 | { | |
1105 | if (len > 8) | |
1106 | { | |
1107 | /* "Double-extended- and quad-precision floating-point | |
1108 | values are returned in GRs 28 and 29. The sign, | |
1109 | exponent, and most-significant bits of the mantissa are | |
1110 | returned in GR 28; the least-significant bits of the | |
1111 | mantissa are passed in GR 29. For double-extended | |
1112 | precision values, GR 29 is padded on the right with 48 | |
1113 | bits of garbage." */ | |
1114 | regnum = HPPA_RET0_REGNUM; | |
1115 | offset = 0; | |
1116 | } | |
1117 | else | |
1118 | { | |
1119 | /* "Single-precision and double-precision floating-point | |
1120 | return values are returned in FR 4R (single precision) or | |
1121 | FR 4 (double-precision)." */ | |
1122 | regnum = HPPA64_FP4_REGNUM; | |
1123 | offset = 8 - len; | |
1124 | } | |
1125 | } | |
1126 | else | |
1127 | { | |
1128 | /* "Aggregate return values up to 64 bits in size are returned | |
1129 | in GR 28. Aggregates smaller than 64 bits are left aligned | |
1130 | in the register; the pad bits on the right are undefined." | |
1131 | ||
1132 | "Aggregate return values between 65 and 128 bits are returned | |
1133 | in GRs 28 and 29. The first 64 bits are placed in GR 28, and | |
1134 | the remaining bits are placed, left aligned, in GR 29. The | |
1135 | pad bits on the right of GR 29 (if any) are undefined." */ | |
1136 | regnum = HPPA_RET0_REGNUM; | |
1137 | offset = 0; | |
1138 | } | |
1139 | ||
1140 | if (readbuf) | |
1141 | { | |
1142 | char *buf = readbuf; | |
1143 | while (len > 0) | |
1144 | { | |
1145 | regcache_cooked_read_part (regcache, regnum, offset, | |
1146 | min (len, 8), buf); | |
1147 | buf += min (len, 8); | |
1148 | len -= min (len, 8); | |
1149 | regnum++; | |
1150 | } | |
1151 | } | |
1152 | ||
1153 | if (writebuf) | |
1154 | { | |
1155 | const char *buf = writebuf; | |
1156 | while (len > 0) | |
1157 | { | |
1158 | regcache_cooked_write_part (regcache, regnum, offset, | |
1159 | min (len, 8), buf); | |
1160 | buf += min (len, 8); | |
1161 | len -= min (len, 8); | |
1162 | regnum++; | |
1163 | } | |
1164 | } | |
1165 | ||
1166 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1167 | } | |
1168 | \f | |
1169 | ||
d49771ef RC |
1170 | static CORE_ADDR |
1171 | hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, | |
1172 | CORE_ADDR addr, | |
1173 | struct target_ops *targ) | |
1174 | { | |
1175 | if (addr & 2) | |
1176 | { | |
1177 | CORE_ADDR plabel; | |
1178 | ||
1179 | plabel = addr & ~3; | |
1180 | target_read_memory(plabel, (char *)&addr, 4); | |
1181 | } | |
1182 | ||
1183 | return addr; | |
1184 | } | |
1185 | ||
1797a8f6 AC |
1186 | static CORE_ADDR |
1187 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1188 | { | |
1189 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
1190 | and not _bit_)! */ | |
1191 | return align_up (addr, 64); | |
1192 | } | |
1193 | ||
2f690297 AC |
1194 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
1195 | ||
1196 | static CORE_ADDR | |
1797a8f6 | 1197 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
1198 | { |
1199 | /* Just always 16-byte align. */ | |
1200 | return align_up (addr, 16); | |
1201 | } | |
1202 | ||
cc72850f MK |
1203 | CORE_ADDR |
1204 | hppa_read_pc (ptid_t ptid) | |
c906108c | 1205 | { |
cc72850f | 1206 | ULONGEST ipsw; |
fe46cd3a | 1207 | CORE_ADDR pc; |
c906108c | 1208 | |
cc72850f MK |
1209 | ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid); |
1210 | pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid); | |
fe46cd3a RC |
1211 | |
1212 | /* If the current instruction is nullified, then we are effectively | |
1213 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
1214 | there. This is needed when single stepping; if the nullified |
1215 | instruction is on a different line, we don't want GDB to think | |
1216 | we've stepped onto that line. */ | |
fe46cd3a RC |
1217 | if (ipsw & 0x00200000) |
1218 | pc -= 4; | |
1219 | ||
cc72850f | 1220 | return pc & ~0x3; |
c906108c SS |
1221 | } |
1222 | ||
cc72850f MK |
1223 | void |
1224 | hppa_write_pc (CORE_ADDR pc, ptid_t ptid) | |
c906108c | 1225 | { |
cc72850f MK |
1226 | write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid); |
1227 | write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid); | |
c906108c SS |
1228 | } |
1229 | ||
1230 | /* return the alignment of a type in bytes. Structures have the maximum | |
1231 | alignment required by their fields. */ | |
1232 | ||
1233 | static int | |
fba45db2 | 1234 | hppa_alignof (struct type *type) |
c906108c SS |
1235 | { |
1236 | int max_align, align, i; | |
1237 | CHECK_TYPEDEF (type); | |
1238 | switch (TYPE_CODE (type)) | |
1239 | { | |
1240 | case TYPE_CODE_PTR: | |
1241 | case TYPE_CODE_INT: | |
1242 | case TYPE_CODE_FLT: | |
1243 | return TYPE_LENGTH (type); | |
1244 | case TYPE_CODE_ARRAY: | |
1245 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
1246 | case TYPE_CODE_STRUCT: | |
1247 | case TYPE_CODE_UNION: | |
1248 | max_align = 1; | |
1249 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
1250 | { | |
1251 | /* Bit fields have no real alignment. */ | |
1252 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 1253 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
1254 | { |
1255 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
1256 | max_align = max (max_align, align); | |
1257 | } | |
1258 | } | |
1259 | return max_align; | |
1260 | default: | |
1261 | return 4; | |
1262 | } | |
1263 | } | |
1264 | ||
c906108c SS |
1265 | /* For the given instruction (INST), return any adjustment it makes |
1266 | to the stack pointer or zero for no adjustment. | |
1267 | ||
1268 | This only handles instructions commonly found in prologues. */ | |
1269 | ||
1270 | static int | |
fba45db2 | 1271 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
1272 | { |
1273 | /* This must persist across calls. */ | |
1274 | static int save_high21; | |
1275 | ||
1276 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1277 | if ((inst & 0xffffc000) == 0x37de0000) | |
abc485a1 | 1278 | return hppa_extract_14 (inst); |
c906108c SS |
1279 | |
1280 | /* stwm X,D(sp) */ | |
1281 | if ((inst & 0xffe00000) == 0x6fc00000) | |
abc485a1 | 1282 | return hppa_extract_14 (inst); |
c906108c | 1283 | |
104c1213 JM |
1284 | /* std,ma X,D(sp) */ |
1285 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 1286 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 1287 | |
e22b26cb | 1288 | /* addil high21,%r30; ldo low11,(%r1),%r30) |
c906108c | 1289 | save high bits in save_high21 for later use. */ |
e22b26cb | 1290 | if ((inst & 0xffe00000) == 0x2bc00000) |
c906108c | 1291 | { |
abc485a1 | 1292 | save_high21 = hppa_extract_21 (inst); |
c906108c SS |
1293 | return 0; |
1294 | } | |
1295 | ||
1296 | if ((inst & 0xffff0000) == 0x343e0000) | |
abc485a1 | 1297 | return save_high21 + hppa_extract_14 (inst); |
c906108c SS |
1298 | |
1299 | /* fstws as used by the HP compilers. */ | |
1300 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
abc485a1 | 1301 | return hppa_extract_5_load (inst); |
c906108c SS |
1302 | |
1303 | /* No adjustment. */ | |
1304 | return 0; | |
1305 | } | |
1306 | ||
1307 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1308 | ||
1309 | static int | |
fba45db2 | 1310 | is_branch (unsigned long inst) |
c906108c SS |
1311 | { |
1312 | switch (inst >> 26) | |
1313 | { | |
1314 | case 0x20: | |
1315 | case 0x21: | |
1316 | case 0x22: | |
1317 | case 0x23: | |
7be570e7 | 1318 | case 0x27: |
c906108c SS |
1319 | case 0x28: |
1320 | case 0x29: | |
1321 | case 0x2a: | |
1322 | case 0x2b: | |
7be570e7 | 1323 | case 0x2f: |
c906108c SS |
1324 | case 0x30: |
1325 | case 0x31: | |
1326 | case 0x32: | |
1327 | case 0x33: | |
1328 | case 0x38: | |
1329 | case 0x39: | |
1330 | case 0x3a: | |
7be570e7 | 1331 | case 0x3b: |
c906108c SS |
1332 | return 1; |
1333 | ||
1334 | default: | |
1335 | return 0; | |
1336 | } | |
1337 | } | |
1338 | ||
1339 | /* Return the register number for a GR which is saved by INST or | |
1340 | zero it INST does not save a GR. */ | |
1341 | ||
1342 | static int | |
fba45db2 | 1343 | inst_saves_gr (unsigned long inst) |
c906108c SS |
1344 | { |
1345 | /* Does it look like a stw? */ | |
7be570e7 JM |
1346 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
1347 | || (inst >> 26) == 0x1f | |
1348 | || ((inst >> 26) == 0x1f | |
1349 | && ((inst >> 6) == 0xa))) | |
abc485a1 | 1350 | return hppa_extract_5R_store (inst); |
7be570e7 JM |
1351 | |
1352 | /* Does it look like a std? */ | |
1353 | if ((inst >> 26) == 0x1c | |
1354 | || ((inst >> 26) == 0x03 | |
1355 | && ((inst >> 6) & 0xf) == 0xb)) | |
abc485a1 | 1356 | return hppa_extract_5R_store (inst); |
c906108c SS |
1357 | |
1358 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
1359 | if ((inst >> 26) == 0x1b) | |
abc485a1 | 1360 | return hppa_extract_5R_store (inst); |
c906108c SS |
1361 | |
1362 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
1363 | too. */ | |
7be570e7 JM |
1364 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
1365 | || ((inst >> 26) == 0x3 | |
1366 | && (((inst >> 6) & 0xf) == 0x8 | |
1367 | || (inst >> 6) & 0xf) == 0x9)) | |
abc485a1 | 1368 | return hppa_extract_5R_store (inst); |
c5aa993b | 1369 | |
c906108c SS |
1370 | return 0; |
1371 | } | |
1372 | ||
1373 | /* Return the register number for a FR which is saved by INST or | |
1374 | zero it INST does not save a FR. | |
1375 | ||
1376 | Note we only care about full 64bit register stores (that's the only | |
1377 | kind of stores the prologue will use). | |
1378 | ||
1379 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
1380 | ||
1381 | static int | |
fba45db2 | 1382 | inst_saves_fr (unsigned long inst) |
c906108c | 1383 | { |
7be570e7 | 1384 | /* is this an FSTD ? */ |
c906108c | 1385 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
abc485a1 | 1386 | return hppa_extract_5r_store (inst); |
7be570e7 | 1387 | if ((inst & 0xfc000002) == 0x70000002) |
abc485a1 | 1388 | return hppa_extract_5R_store (inst); |
7be570e7 | 1389 | /* is this an FSTW ? */ |
c906108c | 1390 | if ((inst & 0xfc00df80) == 0x24001200) |
abc485a1 | 1391 | return hppa_extract_5r_store (inst); |
7be570e7 | 1392 | if ((inst & 0xfc000002) == 0x7c000000) |
abc485a1 | 1393 | return hppa_extract_5R_store (inst); |
c906108c SS |
1394 | return 0; |
1395 | } | |
1396 | ||
1397 | /* Advance PC across any function entry prologue instructions | |
1398 | to reach some "real" code. | |
1399 | ||
1400 | Use information in the unwind table to determine what exactly should | |
1401 | be in the prologue. */ | |
1402 | ||
1403 | ||
a71f8c30 RC |
1404 | static CORE_ADDR |
1405 | skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch) | |
c906108c SS |
1406 | { |
1407 | char buf[4]; | |
1408 | CORE_ADDR orig_pc = pc; | |
1409 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1410 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
1411 | struct unwind_table_entry *u; | |
a71f8c30 | 1412 | int final_iteration; |
c906108c SS |
1413 | |
1414 | restart_gr = 0; | |
1415 | restart_fr = 0; | |
1416 | ||
1417 | restart: | |
1418 | u = find_unwind_entry (pc); | |
1419 | if (!u) | |
1420 | return pc; | |
1421 | ||
c5aa993b | 1422 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
1423 | if ((pc & ~0x3) != u->region_start) |
1424 | return pc; | |
1425 | ||
1426 | /* This is how much of a frame adjustment we need to account for. */ | |
1427 | stack_remaining = u->Total_frame_size << 3; | |
1428 | ||
1429 | /* Magic register saves we want to know about. */ | |
1430 | save_rp = u->Save_RP; | |
1431 | save_sp = u->Save_SP; | |
1432 | ||
1433 | /* An indication that args may be stored into the stack. Unfortunately | |
1434 | the HPUX compilers tend to set this in cases where no args were | |
1435 | stored too!. */ | |
1436 | args_stored = 1; | |
1437 | ||
1438 | /* Turn the Entry_GR field into a bitmask. */ | |
1439 | save_gr = 0; | |
1440 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1441 | { | |
1442 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1443 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
c906108c SS |
1444 | continue; |
1445 | ||
1446 | save_gr |= (1 << i); | |
1447 | } | |
1448 | save_gr &= ~restart_gr; | |
1449 | ||
1450 | /* Turn the Entry_FR field into a bitmask too. */ | |
1451 | save_fr = 0; | |
1452 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1453 | save_fr |= (1 << i); | |
1454 | save_fr &= ~restart_fr; | |
1455 | ||
a71f8c30 RC |
1456 | final_iteration = 0; |
1457 | ||
c906108c SS |
1458 | /* Loop until we find everything of interest or hit a branch. |
1459 | ||
1460 | For unoptimized GCC code and for any HP CC code this will never ever | |
1461 | examine any user instructions. | |
1462 | ||
1463 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1464 | its prologue and make prologue instructions available for delay slot | |
1465 | filling. The end result is user code gets mixed in with the prologue | |
1466 | and a prologue instruction may be in the delay slot of the first branch | |
1467 | or call. | |
1468 | ||
1469 | Some unexpected things are expected with debugging optimized code, so | |
1470 | we allow this routine to walk past user instructions in optimized | |
1471 | GCC code. */ | |
1472 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
1473 | || args_stored) | |
1474 | { | |
1475 | unsigned int reg_num; | |
1476 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1477 | unsigned long old_save_rp, old_save_sp, next_inst; | |
1478 | ||
1479 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 1480 | (only for HPC). */ |
c906108c SS |
1481 | old_save_gr = save_gr; |
1482 | old_save_fr = save_fr; | |
1483 | old_save_rp = save_rp; | |
1484 | old_save_sp = save_sp; | |
1485 | old_stack_remaining = stack_remaining; | |
1486 | ||
1f602b35 | 1487 | status = deprecated_read_memory_nobpt (pc, buf, 4); |
c906108c | 1488 | inst = extract_unsigned_integer (buf, 4); |
c5aa993b | 1489 | |
c906108c SS |
1490 | /* Yow! */ |
1491 | if (status != 0) | |
1492 | return pc; | |
1493 | ||
1494 | /* Note the interesting effects of this instruction. */ | |
1495 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1496 | ||
7be570e7 JM |
1497 | /* There are limited ways to store the return pointer into the |
1498 | stack. */ | |
1499 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
1500 | save_rp = 0; |
1501 | ||
104c1213 | 1502 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 1503 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
1504 | if ((inst & 0xffffc000) == 0x6fc10000 |
1505 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
1506 | save_sp = 0; |
1507 | ||
6426a772 JM |
1508 | /* Are we loading some register with an offset from the argument |
1509 | pointer? */ | |
1510 | if ((inst & 0xffe00000) == 0x37a00000 | |
1511 | || (inst & 0xffffffe0) == 0x081d0240) | |
1512 | { | |
1513 | pc += 4; | |
1514 | continue; | |
1515 | } | |
1516 | ||
c906108c SS |
1517 | /* Account for general and floating-point register saves. */ |
1518 | reg_num = inst_saves_gr (inst); | |
1519 | save_gr &= ~(1 << reg_num); | |
1520 | ||
1521 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1522 | Unfortunately args_stored only tells us that some arguments |
1523 | where stored into the stack. Not how many or what kind! | |
c906108c | 1524 | |
c5aa993b JM |
1525 | This is a kludge as on the HP compiler sets this bit and it |
1526 | never does prologue scheduling. So once we see one, skip past | |
1527 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 1528 | |
c5aa993b JM |
1529 | FIXME. Can still die if we have a mix of GR and FR argument |
1530 | stores! */ | |
6426a772 | 1531 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 1532 | { |
6426a772 | 1533 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
1534 | { |
1535 | pc += 4; | |
1f602b35 | 1536 | status = deprecated_read_memory_nobpt (pc, buf, 4); |
c906108c SS |
1537 | inst = extract_unsigned_integer (buf, 4); |
1538 | if (status != 0) | |
1539 | return pc; | |
1540 | reg_num = inst_saves_gr (inst); | |
1541 | } | |
1542 | args_stored = 0; | |
1543 | continue; | |
1544 | } | |
1545 | ||
1546 | reg_num = inst_saves_fr (inst); | |
1547 | save_fr &= ~(1 << reg_num); | |
1548 | ||
1f602b35 | 1549 | status = deprecated_read_memory_nobpt (pc + 4, buf, 4); |
c906108c | 1550 | next_inst = extract_unsigned_integer (buf, 4); |
c5aa993b | 1551 | |
c906108c SS |
1552 | /* Yow! */ |
1553 | if (status != 0) | |
1554 | return pc; | |
1555 | ||
1556 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 1557 | save. */ |
c906108c SS |
1558 | if ((inst & 0xfc000000) == 0x34000000 |
1559 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 1560 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
1561 | { |
1562 | /* So we drop into the code below in a reasonable state. */ | |
1563 | reg_num = inst_saves_fr (next_inst); | |
1564 | pc -= 4; | |
1565 | } | |
1566 | ||
1567 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1568 | This is a kludge as on the HP compiler sets this bit and it |
1569 | never does prologue scheduling. So once we see one, skip past | |
1570 | all of them. */ | |
6426a772 | 1571 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 1572 | { |
6426a772 | 1573 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
1574 | { |
1575 | pc += 8; | |
1f602b35 | 1576 | status = deprecated_read_memory_nobpt (pc, buf, 4); |
c906108c SS |
1577 | inst = extract_unsigned_integer (buf, 4); |
1578 | if (status != 0) | |
1579 | return pc; | |
1580 | if ((inst & 0xfc000000) != 0x34000000) | |
1581 | break; | |
1f602b35 | 1582 | status = deprecated_read_memory_nobpt (pc + 4, buf, 4); |
c906108c SS |
1583 | next_inst = extract_unsigned_integer (buf, 4); |
1584 | if (status != 0) | |
1585 | return pc; | |
1586 | reg_num = inst_saves_fr (next_inst); | |
1587 | } | |
1588 | args_stored = 0; | |
1589 | continue; | |
1590 | } | |
1591 | ||
1592 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 1593 | instruction is in the delay slot of the first call/branch. */ |
a71f8c30 | 1594 | if (is_branch (inst) && stop_before_branch) |
c906108c SS |
1595 | break; |
1596 | ||
1597 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
1598 | arguments were stored into the stack (boo hiss). This could |
1599 | cause this code to then skip a bunch of user insns (up to the | |
1600 | first branch). | |
1601 | ||
1602 | To combat this we try to identify when args_stored was bogusly | |
1603 | set and clear it. We only do this when args_stored is nonzero, | |
1604 | all other resources are accounted for, and nothing changed on | |
1605 | this pass. */ | |
c906108c | 1606 | if (args_stored |
c5aa993b | 1607 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
1608 | && old_save_gr == save_gr && old_save_fr == save_fr |
1609 | && old_save_rp == save_rp && old_save_sp == save_sp | |
1610 | && old_stack_remaining == stack_remaining) | |
1611 | break; | |
c5aa993b | 1612 | |
c906108c SS |
1613 | /* Bump the PC. */ |
1614 | pc += 4; | |
a71f8c30 RC |
1615 | |
1616 | /* !stop_before_branch, so also look at the insn in the delay slot | |
1617 | of the branch. */ | |
1618 | if (final_iteration) | |
1619 | break; | |
1620 | if (is_branch (inst)) | |
1621 | final_iteration = 1; | |
c906108c SS |
1622 | } |
1623 | ||
1624 | /* We've got a tenative location for the end of the prologue. However | |
1625 | because of limitations in the unwind descriptor mechanism we may | |
1626 | have went too far into user code looking for the save of a register | |
1627 | that does not exist. So, if there registers we expected to be saved | |
1628 | but never were, mask them out and restart. | |
1629 | ||
1630 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 1631 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
1632 | { |
1633 | pc = orig_pc; | |
1634 | restart_gr = save_gr; | |
1635 | restart_fr = save_fr; | |
1636 | goto restart; | |
1637 | } | |
1638 | ||
1639 | return pc; | |
1640 | } | |
1641 | ||
1642 | ||
7be570e7 JM |
1643 | /* Return the address of the PC after the last prologue instruction if |
1644 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
1645 | |
1646 | static CORE_ADDR | |
fba45db2 | 1647 | after_prologue (CORE_ADDR pc) |
c906108c SS |
1648 | { |
1649 | struct symtab_and_line sal; | |
1650 | CORE_ADDR func_addr, func_end; | |
1651 | struct symbol *f; | |
1652 | ||
7be570e7 JM |
1653 | /* If we can not find the symbol in the partial symbol table, then |
1654 | there is no hope we can determine the function's start address | |
1655 | with this code. */ | |
c906108c | 1656 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 1657 | return 0; |
c906108c | 1658 | |
7be570e7 | 1659 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
1660 | sal = find_pc_line (func_addr, 0); |
1661 | ||
7be570e7 JM |
1662 | /* There are only two cases to consider. First, the end of the source line |
1663 | is within the function bounds. In that case we return the end of the | |
1664 | source line. Second is the end of the source line extends beyond the | |
1665 | bounds of the current function. We need to use the slow code to | |
1666 | examine instructions in that case. | |
c906108c | 1667 | |
7be570e7 JM |
1668 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
1669 | the wrong thing to do. In fact, it should be entirely possible for this | |
1670 | function to always return zero since the slow instruction scanning code | |
1671 | is supposed to *always* work. If it does not, then it is a bug. */ | |
1672 | if (sal.end < func_end) | |
1673 | return sal.end; | |
c5aa993b | 1674 | else |
7be570e7 | 1675 | return 0; |
c906108c SS |
1676 | } |
1677 | ||
1678 | /* To skip prologues, I use this predicate. Returns either PC itself | |
1679 | if the code at PC does not look like a function prologue; otherwise | |
a71f8c30 RC |
1680 | returns an address that (if we're lucky) follows the prologue. |
1681 | ||
1682 | hppa_skip_prologue is called by gdb to place a breakpoint in a function. | |
1683 | It doesn't necessarily skips all the insns in the prologue. In fact | |
1684 | we might not want to skip all the insns because a prologue insn may | |
1685 | appear in the delay slot of the first branch, and we don't want to | |
1686 | skip over the branch in that case. */ | |
c906108c | 1687 | |
8d153463 | 1688 | static CORE_ADDR |
fba45db2 | 1689 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 1690 | { |
c5aa993b JM |
1691 | unsigned long inst; |
1692 | int offset; | |
1693 | CORE_ADDR post_prologue_pc; | |
1694 | char buf[4]; | |
c906108c | 1695 | |
c5aa993b JM |
1696 | /* See if we can determine the end of the prologue via the symbol table. |
1697 | If so, then return either PC, or the PC after the prologue, whichever | |
1698 | is greater. */ | |
c906108c | 1699 | |
c5aa993b | 1700 | post_prologue_pc = after_prologue (pc); |
c906108c | 1701 | |
7be570e7 JM |
1702 | /* If after_prologue returned a useful address, then use it. Else |
1703 | fall back on the instruction skipping code. | |
1704 | ||
1705 | Some folks have claimed this causes problems because the breakpoint | |
1706 | may be the first instruction of the prologue. If that happens, then | |
1707 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
1708 | if (post_prologue_pc != 0) |
1709 | return max (pc, post_prologue_pc); | |
c5aa993b | 1710 | else |
a71f8c30 | 1711 | return (skip_prologue_hard_way (pc, 1)); |
c906108c SS |
1712 | } |
1713 | ||
26d08f08 AC |
1714 | struct hppa_frame_cache |
1715 | { | |
1716 | CORE_ADDR base; | |
1717 | struct trad_frame_saved_reg *saved_regs; | |
1718 | }; | |
1719 | ||
1720 | static struct hppa_frame_cache * | |
1721 | hppa_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1722 | { | |
1723 | struct hppa_frame_cache *cache; | |
1724 | long saved_gr_mask; | |
1725 | long saved_fr_mask; | |
1726 | CORE_ADDR this_sp; | |
1727 | long frame_size; | |
1728 | struct unwind_table_entry *u; | |
9f7194c3 | 1729 | CORE_ADDR prologue_end; |
50b2f48a | 1730 | int fp_in_r1 = 0; |
26d08f08 AC |
1731 | int i; |
1732 | ||
369aa520 RC |
1733 | if (hppa_debug) |
1734 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", | |
1735 | frame_relative_level(next_frame)); | |
1736 | ||
26d08f08 | 1737 | if ((*this_cache) != NULL) |
369aa520 RC |
1738 | { |
1739 | if (hppa_debug) | |
1740 | fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }", | |
1741 | paddr_nz (((struct hppa_frame_cache *)*this_cache)->base)); | |
1742 | return (*this_cache); | |
1743 | } | |
26d08f08 AC |
1744 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
1745 | (*this_cache) = cache; | |
1746 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1747 | ||
1748 | /* Yow! */ | |
d5c27f81 | 1749 | u = find_unwind_entry (frame_pc_unwind (next_frame)); |
26d08f08 | 1750 | if (!u) |
369aa520 RC |
1751 | { |
1752 | if (hppa_debug) | |
1753 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); | |
1754 | return (*this_cache); | |
1755 | } | |
26d08f08 AC |
1756 | |
1757 | /* Turn the Entry_GR field into a bitmask. */ | |
1758 | saved_gr_mask = 0; | |
1759 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1760 | { | |
1761 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1762 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
26d08f08 AC |
1763 | continue; |
1764 | ||
1765 | saved_gr_mask |= (1 << i); | |
1766 | } | |
1767 | ||
1768 | /* Turn the Entry_FR field into a bitmask too. */ | |
1769 | saved_fr_mask = 0; | |
1770 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1771 | saved_fr_mask |= (1 << i); | |
1772 | ||
1773 | /* Loop until we find everything of interest or hit a branch. | |
1774 | ||
1775 | For unoptimized GCC code and for any HP CC code this will never ever | |
1776 | examine any user instructions. | |
1777 | ||
1778 | For optimized GCC code we're faced with problems. GCC will schedule | |
1779 | its prologue and make prologue instructions available for delay slot | |
1780 | filling. The end result is user code gets mixed in with the prologue | |
1781 | and a prologue instruction may be in the delay slot of the first branch | |
1782 | or call. | |
1783 | ||
1784 | Some unexpected things are expected with debugging optimized code, so | |
1785 | we allow this routine to walk past user instructions in optimized | |
1786 | GCC code. */ | |
1787 | { | |
1788 | int final_iteration = 0; | |
9f7194c3 | 1789 | CORE_ADDR pc, end_pc; |
26d08f08 AC |
1790 | int looking_for_sp = u->Save_SP; |
1791 | int looking_for_rp = u->Save_RP; | |
1792 | int fp_loc = -1; | |
9f7194c3 | 1793 | |
a71f8c30 | 1794 | /* We have to use skip_prologue_hard_way instead of just |
9f7194c3 RC |
1795 | skip_prologue_using_sal, in case we stepped into a function without |
1796 | symbol information. hppa_skip_prologue also bounds the returned | |
1797 | pc by the passed in pc, so it will not return a pc in the next | |
a71f8c30 RC |
1798 | function. |
1799 | ||
1800 | We used to call hppa_skip_prologue to find the end of the prologue, | |
1801 | but if some non-prologue instructions get scheduled into the prologue, | |
1802 | and the program is compiled with debug information, the "easy" way | |
1803 | in hppa_skip_prologue will return a prologue end that is too early | |
1804 | for us to notice any potential frame adjustments. */ | |
d5c27f81 RC |
1805 | |
1806 | /* We used to use frame_func_unwind () to locate the beginning of the | |
1807 | function to pass to skip_prologue (). However, when objects are | |
1808 | compiled without debug symbols, frame_func_unwind can return the wrong | |
1809 | function (or 0). We can do better than that by using unwind records. */ | |
1810 | ||
a71f8c30 | 1811 | prologue_end = skip_prologue_hard_way (u->region_start, 0); |
9f7194c3 RC |
1812 | end_pc = frame_pc_unwind (next_frame); |
1813 | ||
1814 | if (prologue_end != 0 && end_pc > prologue_end) | |
1815 | end_pc = prologue_end; | |
1816 | ||
26d08f08 | 1817 | frame_size = 0; |
9f7194c3 | 1818 | |
d5c27f81 | 1819 | for (pc = u->region_start; |
26d08f08 AC |
1820 | ((saved_gr_mask || saved_fr_mask |
1821 | || looking_for_sp || looking_for_rp | |
1822 | || frame_size < (u->Total_frame_size << 3)) | |
9f7194c3 | 1823 | && pc < end_pc); |
26d08f08 AC |
1824 | pc += 4) |
1825 | { | |
1826 | int reg; | |
1827 | char buf4[4]; | |
4a302917 RC |
1828 | long inst; |
1829 | ||
1830 | if (!safe_frame_unwind_memory (next_frame, pc, buf4, | |
1831 | sizeof buf4)) | |
1832 | { | |
8a3fe4f8 | 1833 | error (_("Cannot read instruction at 0x%s."), paddr_nz (pc)); |
4a302917 RC |
1834 | return (*this_cache); |
1835 | } | |
1836 | ||
1837 | inst = extract_unsigned_integer (buf4, sizeof buf4); | |
9f7194c3 | 1838 | |
26d08f08 AC |
1839 | /* Note the interesting effects of this instruction. */ |
1840 | frame_size += prologue_inst_adjust_sp (inst); | |
1841 | ||
1842 | /* There are limited ways to store the return pointer into the | |
1843 | stack. */ | |
1844 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
1845 | { | |
1846 | looking_for_rp = 0; | |
34f75cc1 | 1847 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
26d08f08 | 1848 | } |
dfaf8edb MK |
1849 | else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
1850 | { | |
1851 | looking_for_rp = 0; | |
1852 | cache->saved_regs[HPPA_RP_REGNUM].addr = -24; | |
1853 | } | |
26d08f08 AC |
1854 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
1855 | { | |
1856 | looking_for_rp = 0; | |
34f75cc1 | 1857 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
26d08f08 AC |
1858 | } |
1859 | ||
1860 | /* Check to see if we saved SP into the stack. This also | |
1861 | happens to indicate the location of the saved frame | |
1862 | pointer. */ | |
1863 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
1864 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
1865 | { | |
1866 | looking_for_sp = 0; | |
eded0a31 | 1867 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
26d08f08 | 1868 | } |
50b2f48a RC |
1869 | else if (inst == 0x08030241) /* copy %r3, %r1 */ |
1870 | { | |
1871 | fp_in_r1 = 1; | |
1872 | } | |
26d08f08 AC |
1873 | |
1874 | /* Account for general and floating-point register saves. */ | |
1875 | reg = inst_saves_gr (inst); | |
1876 | if (reg >= 3 && reg <= 18 | |
eded0a31 | 1877 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
26d08f08 AC |
1878 | { |
1879 | saved_gr_mask &= ~(1 << reg); | |
abc485a1 | 1880 | if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
26d08f08 AC |
1881 | /* stwm with a positive displacement is a _post_ |
1882 | _modify_. */ | |
1883 | cache->saved_regs[reg].addr = 0; | |
1884 | else if ((inst & 0xfc00000c) == 0x70000008) | |
1885 | /* A std has explicit post_modify forms. */ | |
1886 | cache->saved_regs[reg].addr = 0; | |
1887 | else | |
1888 | { | |
1889 | CORE_ADDR offset; | |
1890 | ||
1891 | if ((inst >> 26) == 0x1c) | |
1892 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
1893 | else if ((inst >> 26) == 0x03) | |
abc485a1 | 1894 | offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
26d08f08 | 1895 | else |
abc485a1 | 1896 | offset = hppa_extract_14 (inst); |
26d08f08 AC |
1897 | |
1898 | /* Handle code with and without frame pointers. */ | |
1899 | if (u->Save_SP) | |
1900 | cache->saved_regs[reg].addr = offset; | |
1901 | else | |
1902 | cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset; | |
1903 | } | |
1904 | } | |
1905 | ||
1906 | /* GCC handles callee saved FP regs a little differently. | |
1907 | ||
1908 | It emits an instruction to put the value of the start of | |
1909 | the FP store area into %r1. It then uses fstds,ma with a | |
1910 | basereg of %r1 for the stores. | |
1911 | ||
1912 | HP CC emits them at the current stack pointer modifying the | |
1913 | stack pointer as it stores each register. */ | |
1914 | ||
1915 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
1916 | if ((inst & 0xffffc000) == 0x34610000 | |
1917 | || (inst & 0xffffc000) == 0x37c10000) | |
abc485a1 | 1918 | fp_loc = hppa_extract_14 (inst); |
26d08f08 AC |
1919 | |
1920 | reg = inst_saves_fr (inst); | |
1921 | if (reg >= 12 && reg <= 21) | |
1922 | { | |
1923 | /* Note +4 braindamage below is necessary because the FP | |
1924 | status registers are internally 8 registers rather than | |
1925 | the expected 4 registers. */ | |
1926 | saved_fr_mask &= ~(1 << reg); | |
1927 | if (fp_loc == -1) | |
1928 | { | |
1929 | /* 1st HP CC FP register store. After this | |
1930 | instruction we've set enough state that the GCC and | |
1931 | HPCC code are both handled in the same manner. */ | |
34f75cc1 | 1932 | cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; |
26d08f08 AC |
1933 | fp_loc = 8; |
1934 | } | |
1935 | else | |
1936 | { | |
eded0a31 | 1937 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
26d08f08 AC |
1938 | fp_loc += 8; |
1939 | } | |
1940 | } | |
1941 | ||
1942 | /* Quit if we hit any kind of branch the previous iteration. */ | |
1943 | if (final_iteration) | |
1944 | break; | |
1945 | /* We want to look precisely one instruction beyond the branch | |
1946 | if we have not found everything yet. */ | |
1947 | if (is_branch (inst)) | |
1948 | final_iteration = 1; | |
1949 | } | |
1950 | } | |
1951 | ||
1952 | { | |
1953 | /* The frame base always represents the value of %sp at entry to | |
1954 | the current function (and is thus equivalent to the "saved" | |
1955 | stack pointer. */ | |
eded0a31 | 1956 | CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM); |
ed70ba00 | 1957 | CORE_ADDR fp; |
9f7194c3 RC |
1958 | |
1959 | if (hppa_debug) | |
1960 | fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, " | |
1961 | "prologue_end=0x%s) ", | |
1962 | paddr_nz (this_sp), | |
1963 | paddr_nz (frame_pc_unwind (next_frame)), | |
1964 | paddr_nz (prologue_end)); | |
1965 | ||
ed70ba00 RC |
1966 | /* Check to see if a frame pointer is available, and use it for |
1967 | frame unwinding if it is. | |
1968 | ||
1969 | There are some situations where we need to rely on the frame | |
1970 | pointer to do stack unwinding. For example, if a function calls | |
1971 | alloca (), the stack pointer can get adjusted inside the body of | |
1972 | the function. In this case, the ABI requires that the compiler | |
1973 | maintain a frame pointer for the function. | |
1974 | ||
1975 | The unwind record has a flag (alloca_frame) that indicates that | |
1976 | a function has a variable frame; unfortunately, gcc/binutils | |
1977 | does not set this flag. Instead, whenever a frame pointer is used | |
1978 | and saved on the stack, the Save_SP flag is set. We use this to | |
1979 | decide whether to use the frame pointer for unwinding. | |
1980 | ||
ed70ba00 RC |
1981 | TODO: For the HP compiler, maybe we should use the alloca_frame flag |
1982 | instead of Save_SP. */ | |
1983 | ||
1984 | fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM); | |
1985 | ||
1986 | if (frame_pc_unwind (next_frame) >= prologue_end | |
1987 | && u->Save_SP && fp != 0) | |
1988 | { | |
1989 | cache->base = fp; | |
1990 | ||
1991 | if (hppa_debug) | |
1992 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }", | |
1993 | paddr_nz (cache->base)); | |
1994 | } | |
1658da49 RC |
1995 | else if (u->Save_SP |
1996 | && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) | |
9f7194c3 | 1997 | { |
9f7194c3 RC |
1998 | /* Both we're expecting the SP to be saved and the SP has been |
1999 | saved. The entry SP value is saved at this frame's SP | |
2000 | address. */ | |
2001 | cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8); | |
2002 | ||
2003 | if (hppa_debug) | |
2004 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }", | |
2005 | paddr_nz (cache->base)); | |
9f7194c3 | 2006 | } |
26d08f08 | 2007 | else |
9f7194c3 | 2008 | { |
1658da49 RC |
2009 | /* The prologue has been slowly allocating stack space. Adjust |
2010 | the SP back. */ | |
2011 | cache->base = this_sp - frame_size; | |
9f7194c3 | 2012 | if (hppa_debug) |
1658da49 | 2013 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ", |
9f7194c3 RC |
2014 | paddr_nz (cache->base)); |
2015 | ||
2016 | } | |
eded0a31 | 2017 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
26d08f08 AC |
2018 | } |
2019 | ||
412275d5 AC |
2020 | /* The PC is found in the "return register", "Millicode" uses "r31" |
2021 | as the return register while normal code uses "rp". */ | |
26d08f08 | 2022 | if (u->Millicode) |
9f7194c3 | 2023 | { |
5859efe5 | 2024 | if (trad_frame_addr_p (cache->saved_regs, 31)) |
34f75cc1 | 2025 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; |
9f7194c3 RC |
2026 | else |
2027 | { | |
2028 | ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31); | |
34f75cc1 | 2029 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); |
9f7194c3 RC |
2030 | } |
2031 | } | |
26d08f08 | 2032 | else |
9f7194c3 | 2033 | { |
34f75cc1 RC |
2034 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
2035 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM]; | |
9f7194c3 RC |
2036 | else |
2037 | { | |
34f75cc1 RC |
2038 | ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM); |
2039 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); | |
9f7194c3 RC |
2040 | } |
2041 | } | |
26d08f08 | 2042 | |
50b2f48a RC |
2043 | /* If Save_SP is set, then we expect the frame pointer to be saved in the |
2044 | frame. However, there is a one-insn window where we haven't saved it | |
2045 | yet, but we've already clobbered it. Detect this case and fix it up. | |
2046 | ||
2047 | The prologue sequence for frame-pointer functions is: | |
2048 | 0: stw %rp, -20(%sp) | |
2049 | 4: copy %r3, %r1 | |
2050 | 8: copy %sp, %r3 | |
2051 | c: stw,ma %r1, XX(%sp) | |
2052 | ||
2053 | So if we are at offset c, the r3 value that we want is not yet saved | |
2054 | on the stack, but it's been overwritten. The prologue analyzer will | |
2055 | set fp_in_r1 when it sees the copy insn so we know to get the value | |
2056 | from r1 instead. */ | |
2057 | if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM) | |
2058 | && fp_in_r1) | |
2059 | { | |
2060 | ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1); | |
2061 | trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1); | |
2062 | } | |
1658da49 | 2063 | |
26d08f08 AC |
2064 | { |
2065 | /* Convert all the offsets into addresses. */ | |
2066 | int reg; | |
2067 | for (reg = 0; reg < NUM_REGS; reg++) | |
2068 | { | |
2069 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2070 | cache->saved_regs[reg].addr += cache->base; | |
2071 | } | |
2072 | } | |
2073 | ||
f77a2124 RC |
2074 | { |
2075 | struct gdbarch *gdbarch; | |
2076 | struct gdbarch_tdep *tdep; | |
2077 | ||
2078 | gdbarch = get_frame_arch (next_frame); | |
2079 | tdep = gdbarch_tdep (gdbarch); | |
2080 | ||
2081 | if (tdep->unwind_adjust_stub) | |
2082 | { | |
2083 | tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs); | |
2084 | } | |
2085 | } | |
2086 | ||
369aa520 RC |
2087 | if (hppa_debug) |
2088 | fprintf_unfiltered (gdb_stdlog, "base=0x%s }", | |
2089 | paddr_nz (((struct hppa_frame_cache *)*this_cache)->base)); | |
26d08f08 AC |
2090 | return (*this_cache); |
2091 | } | |
2092 | ||
2093 | static void | |
2094 | hppa_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2095 | struct frame_id *this_id) | |
2096 | { | |
d5c27f81 RC |
2097 | struct hppa_frame_cache *info; |
2098 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
2099 | struct unwind_table_entry *u; | |
2100 | ||
2101 | info = hppa_frame_cache (next_frame, this_cache); | |
2102 | u = find_unwind_entry (pc); | |
2103 | ||
2104 | (*this_id) = frame_id_build (info->base, u->region_start); | |
26d08f08 AC |
2105 | } |
2106 | ||
2107 | static void | |
2108 | hppa_frame_prev_register (struct frame_info *next_frame, | |
0da28f8a RC |
2109 | void **this_cache, |
2110 | int regnum, int *optimizedp, | |
2111 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2112 | int *realnump, void *valuep) | |
26d08f08 AC |
2113 | { |
2114 | struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache); | |
0da28f8a RC |
2115 | hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum, |
2116 | optimizedp, lvalp, addrp, realnump, valuep); | |
2117 | } | |
2118 | ||
2119 | static const struct frame_unwind hppa_frame_unwind = | |
2120 | { | |
2121 | NORMAL_FRAME, | |
2122 | hppa_frame_this_id, | |
2123 | hppa_frame_prev_register | |
2124 | }; | |
2125 | ||
2126 | static const struct frame_unwind * | |
2127 | hppa_frame_unwind_sniffer (struct frame_info *next_frame) | |
2128 | { | |
2129 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
2130 | ||
2131 | if (find_unwind_entry (pc)) | |
2132 | return &hppa_frame_unwind; | |
2133 | ||
2134 | return NULL; | |
2135 | } | |
2136 | ||
2137 | /* This is a generic fallback frame unwinder that kicks in if we fail all | |
2138 | the other ones. Normally we would expect the stub and regular unwinder | |
2139 | to work, but in some cases we might hit a function that just doesn't | |
2140 | have any unwind information available. In this case we try to do | |
2141 | unwinding solely based on code reading. This is obviously going to be | |
2142 | slow, so only use this as a last resort. Currently this will only | |
2143 | identify the stack and pc for the frame. */ | |
2144 | ||
2145 | static struct hppa_frame_cache * | |
2146 | hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache) | |
2147 | { | |
2148 | struct hppa_frame_cache *cache; | |
6d1be3f1 | 2149 | unsigned int frame_size; |
d5c27f81 | 2150 | int found_rp; |
0da28f8a RC |
2151 | CORE_ADDR pc, start_pc, end_pc, cur_pc; |
2152 | ||
d5c27f81 RC |
2153 | if (hppa_debug) |
2154 | fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ", | |
2155 | frame_relative_level(next_frame)); | |
2156 | ||
0da28f8a RC |
2157 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
2158 | (*this_cache) = cache; | |
2159 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2160 | ||
2161 | pc = frame_func_unwind (next_frame); | |
2162 | cur_pc = frame_pc_unwind (next_frame); | |
6d1be3f1 | 2163 | frame_size = 0; |
d5c27f81 | 2164 | found_rp = 0; |
0da28f8a RC |
2165 | |
2166 | find_pc_partial_function (pc, NULL, &start_pc, &end_pc); | |
2167 | ||
2168 | if (start_pc == 0 || end_pc == 0) | |
412275d5 | 2169 | { |
8a3fe4f8 AC |
2170 | error (_("Cannot find bounds of current function (@0x%s), unwinding will " |
2171 | "fail."), paddr_nz (pc)); | |
0da28f8a RC |
2172 | return cache; |
2173 | } | |
2174 | ||
2175 | if (end_pc > cur_pc) | |
2176 | end_pc = cur_pc; | |
2177 | ||
2178 | for (pc = start_pc; pc < end_pc; pc += 4) | |
2179 | { | |
2180 | unsigned int insn; | |
2181 | ||
2182 | insn = read_memory_unsigned_integer (pc, 4); | |
2183 | ||
6d1be3f1 RC |
2184 | frame_size += prologue_inst_adjust_sp (insn); |
2185 | ||
0da28f8a RC |
2186 | /* There are limited ways to store the return pointer into the |
2187 | stack. */ | |
2188 | if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
d5c27f81 RC |
2189 | { |
2190 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; | |
2191 | found_rp = 1; | |
2192 | } | |
0da28f8a | 2193 | else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
d5c27f81 RC |
2194 | { |
2195 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; | |
2196 | found_rp = 1; | |
2197 | } | |
412275d5 | 2198 | } |
0da28f8a | 2199 | |
d5c27f81 RC |
2200 | if (hppa_debug) |
2201 | fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n", | |
2202 | frame_size, found_rp); | |
2203 | ||
6d1be3f1 RC |
2204 | cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size; |
2205 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); | |
0da28f8a RC |
2206 | |
2207 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) | |
2208 | { | |
2209 | cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; | |
2210 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM]; | |
2211 | } | |
412275d5 AC |
2212 | else |
2213 | { | |
0da28f8a RC |
2214 | ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM); |
2215 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); | |
412275d5 | 2216 | } |
0da28f8a RC |
2217 | |
2218 | return cache; | |
26d08f08 AC |
2219 | } |
2220 | ||
0da28f8a RC |
2221 | static void |
2222 | hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2223 | struct frame_id *this_id) | |
2224 | { | |
2225 | struct hppa_frame_cache *info = | |
2226 | hppa_fallback_frame_cache (next_frame, this_cache); | |
2227 | (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
2228 | } | |
2229 | ||
2230 | static void | |
2231 | hppa_fallback_frame_prev_register (struct frame_info *next_frame, | |
2232 | void **this_cache, | |
2233 | int regnum, int *optimizedp, | |
2234 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2235 | int *realnump, void *valuep) | |
2236 | { | |
2237 | struct hppa_frame_cache *info = | |
2238 | hppa_fallback_frame_cache (next_frame, this_cache); | |
2239 | hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum, | |
2240 | optimizedp, lvalp, addrp, realnump, valuep); | |
2241 | } | |
2242 | ||
2243 | static const struct frame_unwind hppa_fallback_frame_unwind = | |
26d08f08 AC |
2244 | { |
2245 | NORMAL_FRAME, | |
0da28f8a RC |
2246 | hppa_fallback_frame_this_id, |
2247 | hppa_fallback_frame_prev_register | |
26d08f08 AC |
2248 | }; |
2249 | ||
2250 | static const struct frame_unwind * | |
0da28f8a | 2251 | hppa_fallback_unwind_sniffer (struct frame_info *next_frame) |
26d08f08 | 2252 | { |
0da28f8a | 2253 | return &hppa_fallback_frame_unwind; |
26d08f08 AC |
2254 | } |
2255 | ||
7f07c5b6 RC |
2256 | /* Stub frames, used for all kinds of call stubs. */ |
2257 | struct hppa_stub_unwind_cache | |
2258 | { | |
2259 | CORE_ADDR base; | |
2260 | struct trad_frame_saved_reg *saved_regs; | |
2261 | }; | |
2262 | ||
2263 | static struct hppa_stub_unwind_cache * | |
2264 | hppa_stub_frame_unwind_cache (struct frame_info *next_frame, | |
2265 | void **this_cache) | |
2266 | { | |
2267 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
2268 | struct hppa_stub_unwind_cache *info; | |
22b0923d | 2269 | struct unwind_table_entry *u; |
7f07c5b6 RC |
2270 | |
2271 | if (*this_cache) | |
2272 | return *this_cache; | |
2273 | ||
2274 | info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); | |
2275 | *this_cache = info; | |
2276 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2277 | ||
7f07c5b6 RC |
2278 | info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM); |
2279 | ||
090ccbb7 | 2280 | if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM) |
22b0923d RC |
2281 | { |
2282 | /* HPUX uses export stubs in function calls; the export stub clobbers | |
2283 | the return value of the caller, and, later restores it from the | |
2284 | stack. */ | |
2285 | u = find_unwind_entry (frame_pc_unwind (next_frame)); | |
2286 | ||
2287 | if (u && u->stub_unwind.stub_type == EXPORT) | |
2288 | { | |
2289 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24; | |
2290 | ||
2291 | return info; | |
2292 | } | |
2293 | } | |
2294 | ||
2295 | /* By default we assume that stubs do not change the rp. */ | |
2296 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; | |
2297 | ||
7f07c5b6 RC |
2298 | return info; |
2299 | } | |
2300 | ||
2301 | static void | |
2302 | hppa_stub_frame_this_id (struct frame_info *next_frame, | |
2303 | void **this_prologue_cache, | |
2304 | struct frame_id *this_id) | |
2305 | { | |
2306 | struct hppa_stub_unwind_cache *info | |
2307 | = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache); | |
f1b38a57 RC |
2308 | |
2309 | if (info) | |
2310 | *this_id = frame_id_build (info->base, frame_func_unwind (next_frame)); | |
2311 | else | |
2312 | *this_id = null_frame_id; | |
7f07c5b6 RC |
2313 | } |
2314 | ||
2315 | static void | |
2316 | hppa_stub_frame_prev_register (struct frame_info *next_frame, | |
2317 | void **this_prologue_cache, | |
2318 | int regnum, int *optimizedp, | |
2319 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
0da28f8a | 2320 | int *realnump, void *valuep) |
7f07c5b6 RC |
2321 | { |
2322 | struct hppa_stub_unwind_cache *info | |
2323 | = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache); | |
f1b38a57 RC |
2324 | |
2325 | if (info) | |
2326 | hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum, | |
2327 | optimizedp, lvalp, addrp, realnump, | |
2328 | valuep); | |
2329 | else | |
8a3fe4f8 | 2330 | error (_("Requesting registers from null frame.")); |
7f07c5b6 RC |
2331 | } |
2332 | ||
2333 | static const struct frame_unwind hppa_stub_frame_unwind = { | |
2334 | NORMAL_FRAME, | |
2335 | hppa_stub_frame_this_id, | |
2336 | hppa_stub_frame_prev_register | |
2337 | }; | |
2338 | ||
2339 | static const struct frame_unwind * | |
2340 | hppa_stub_unwind_sniffer (struct frame_info *next_frame) | |
2341 | { | |
2342 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
84674fe1 AC |
2343 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
2344 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
7f07c5b6 | 2345 | |
6d1be3f1 | 2346 | if (pc == 0 |
84674fe1 AC |
2347 | || (tdep->in_solib_call_trampoline != NULL |
2348 | && tdep->in_solib_call_trampoline (pc, NULL)) | |
7f07c5b6 RC |
2349 | || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL)) |
2350 | return &hppa_stub_frame_unwind; | |
2351 | return NULL; | |
2352 | } | |
2353 | ||
26d08f08 AC |
2354 | static struct frame_id |
2355 | hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2356 | { | |
2357 | return frame_id_build (frame_unwind_register_unsigned (next_frame, | |
eded0a31 | 2358 | HPPA_SP_REGNUM), |
26d08f08 AC |
2359 | frame_pc_unwind (next_frame)); |
2360 | } | |
2361 | ||
cc72850f | 2362 | CORE_ADDR |
26d08f08 AC |
2363 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
2364 | { | |
fe46cd3a RC |
2365 | ULONGEST ipsw; |
2366 | CORE_ADDR pc; | |
2367 | ||
cc72850f MK |
2368 | ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); |
2369 | pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); | |
fe46cd3a RC |
2370 | |
2371 | /* If the current instruction is nullified, then we are effectively | |
2372 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
2373 | there. This is needed when single stepping; if the nullified |
2374 | instruction is on a different line, we don't want GDB to think | |
2375 | we've stepped onto that line. */ | |
fe46cd3a RC |
2376 | if (ipsw & 0x00200000) |
2377 | pc -= 4; | |
2378 | ||
cc72850f | 2379 | return pc & ~0x3; |
26d08f08 AC |
2380 | } |
2381 | ||
ff644745 JB |
2382 | /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. |
2383 | Return NULL if no such symbol was found. */ | |
2384 | ||
2385 | struct minimal_symbol * | |
2386 | hppa_lookup_stub_minimal_symbol (const char *name, | |
2387 | enum unwind_stub_types stub_type) | |
2388 | { | |
2389 | struct objfile *objfile; | |
2390 | struct minimal_symbol *msym; | |
2391 | ||
2392 | ALL_MSYMBOLS (objfile, msym) | |
2393 | { | |
2394 | if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0) | |
2395 | { | |
2396 | struct unwind_table_entry *u; | |
2397 | ||
2398 | u = find_unwind_entry (SYMBOL_VALUE (msym)); | |
2399 | if (u != NULL && u->stub_unwind.stub_type == stub_type) | |
2400 | return msym; | |
2401 | } | |
2402 | } | |
2403 | ||
2404 | return NULL; | |
2405 | } | |
2406 | ||
9a043c1d AC |
2407 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
2408 | host VOID data type (remember %p isn't portable). */ | |
2409 | ||
2410 | static CORE_ADDR | |
2411 | hppa_pointer_to_address_hack (void *ptr) | |
2412 | { | |
2413 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
2414 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
2415 | } | |
2416 | ||
c906108c | 2417 | static void |
fba45db2 | 2418 | unwind_command (char *exp, int from_tty) |
c906108c SS |
2419 | { |
2420 | CORE_ADDR address; | |
2421 | struct unwind_table_entry *u; | |
2422 | ||
2423 | /* If we have an expression, evaluate it and use it as the address. */ | |
2424 | ||
2425 | if (exp != 0 && *exp != 0) | |
2426 | address = parse_and_eval_address (exp); | |
2427 | else | |
2428 | return; | |
2429 | ||
2430 | u = find_unwind_entry (address); | |
2431 | ||
2432 | if (!u) | |
2433 | { | |
2434 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
2435 | return; | |
2436 | } | |
2437 | ||
ce414844 | 2438 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 2439 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
2440 | |
2441 | printf_unfiltered ("\tregion_start = "); | |
2442 | print_address (u->region_start, gdb_stdout); | |
d5c27f81 | 2443 | gdb_flush (gdb_stdout); |
c906108c SS |
2444 | |
2445 | printf_unfiltered ("\n\tregion_end = "); | |
2446 | print_address (u->region_end, gdb_stdout); | |
d5c27f81 | 2447 | gdb_flush (gdb_stdout); |
c906108c | 2448 | |
c906108c | 2449 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
2450 | |
2451 | printf_unfiltered ("\n\tflags ="); | |
2452 | pif (Cannot_unwind); | |
2453 | pif (Millicode); | |
2454 | pif (Millicode_save_sr0); | |
2455 | pif (Entry_SR); | |
2456 | pif (Args_stored); | |
2457 | pif (Variable_Frame); | |
2458 | pif (Separate_Package_Body); | |
2459 | pif (Frame_Extension_Millicode); | |
2460 | pif (Stack_Overflow_Check); | |
2461 | pif (Two_Instruction_SP_Increment); | |
2462 | pif (Ada_Region); | |
2463 | pif (Save_SP); | |
2464 | pif (Save_RP); | |
2465 | pif (Save_MRP_in_frame); | |
2466 | pif (extn_ptr_defined); | |
2467 | pif (Cleanup_defined); | |
2468 | pif (MPE_XL_interrupt_marker); | |
2469 | pif (HP_UX_interrupt_marker); | |
2470 | pif (Large_frame); | |
2471 | ||
2472 | putchar_unfiltered ('\n'); | |
2473 | ||
c906108c | 2474 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
2475 | |
2476 | pin (Region_description); | |
2477 | pin (Entry_FR); | |
2478 | pin (Entry_GR); | |
2479 | pin (Total_frame_size); | |
57dac9e1 RC |
2480 | |
2481 | if (u->stub_unwind.stub_type) | |
2482 | { | |
2483 | printf_unfiltered ("\tstub type = "); | |
2484 | switch (u->stub_unwind.stub_type) | |
2485 | { | |
2486 | case LONG_BRANCH: | |
2487 | printf_unfiltered ("long branch\n"); | |
2488 | break; | |
2489 | case PARAMETER_RELOCATION: | |
2490 | printf_unfiltered ("parameter relocation\n"); | |
2491 | break; | |
2492 | case EXPORT: | |
2493 | printf_unfiltered ("export\n"); | |
2494 | break; | |
2495 | case IMPORT: | |
2496 | printf_unfiltered ("import\n"); | |
2497 | break; | |
2498 | case IMPORT_SHLIB: | |
2499 | printf_unfiltered ("import shlib\n"); | |
2500 | break; | |
2501 | default: | |
2502 | printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); | |
2503 | } | |
2504 | } | |
c906108c | 2505 | } |
c906108c | 2506 | |
d709c020 JB |
2507 | int |
2508 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
2509 | { | |
2510 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
2511 | ||
2512 | An example of this occurs when an a.out is linked against a foo.sl. | |
2513 | The foo.sl defines a global bar(), and the a.out declares a signature | |
2514 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
2515 | its address in another call. | |
2516 | ||
2517 | If you have this scenario and attempt to "break bar" before running, | |
2518 | gdb will find a minimal symbol for bar() in the a.out. But that | |
2519 | symbol's address will be negative. What this appears to denote is | |
2520 | an index backwards from the base of the procedure linkage table (PLT) | |
2521 | into the data linkage table (DLT), the end of which is contiguous | |
2522 | with the start of the PLT. This is clearly not a valid address for | |
2523 | us to set a breakpoint on. | |
2524 | ||
2525 | Note that one must be careful in how one checks for a negative address. | |
2526 | 0xc0000000 is a legitimate address of something in a shared text | |
2527 | segment, for example. Since I don't know what the possible range | |
2528 | is of these "really, truly negative" addresses that come from the | |
2529 | minimal symbols, I'm resorting to the gross hack of checking the | |
2530 | top byte of the address for all 1's. Sigh. */ | |
2531 | ||
2532 | return (!target_has_stack && (pc & 0xFF000000)); | |
2533 | } | |
2534 | ||
38ca4e0c MK |
2535 | /* Return the GDB type object for the "standard" data type of data in |
2536 | register REGNUM. */ | |
d709c020 | 2537 | |
eded0a31 | 2538 | static struct type * |
38ca4e0c | 2539 | hppa32_register_type (struct gdbarch *gdbarch, int regnum) |
d709c020 | 2540 | { |
38ca4e0c | 2541 | if (regnum < HPPA_FP4_REGNUM) |
eded0a31 | 2542 | return builtin_type_uint32; |
d709c020 | 2543 | else |
eded0a31 | 2544 | return builtin_type_ieee_single_big; |
d709c020 JB |
2545 | } |
2546 | ||
eded0a31 | 2547 | static struct type * |
38ca4e0c | 2548 | hppa64_register_type (struct gdbarch *gdbarch, int regnum) |
3ff7cf9e | 2549 | { |
38ca4e0c | 2550 | if (regnum < HPPA64_FP4_REGNUM) |
eded0a31 | 2551 | return builtin_type_uint64; |
3ff7cf9e | 2552 | else |
eded0a31 | 2553 | return builtin_type_ieee_double_big; |
3ff7cf9e JB |
2554 | } |
2555 | ||
38ca4e0c MK |
2556 | /* Return non-zero if REGNUM is not a register available to the user |
2557 | through ptrace/ttrace. */ | |
d709c020 | 2558 | |
8d153463 | 2559 | static int |
38ca4e0c | 2560 | hppa32_cannot_store_register (int regnum) |
d709c020 JB |
2561 | { |
2562 | return (regnum == 0 | |
34f75cc1 RC |
2563 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
2564 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2565 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); | |
38ca4e0c | 2566 | } |
d709c020 | 2567 | |
38ca4e0c MK |
2568 | static int |
2569 | hppa64_cannot_store_register (int regnum) | |
2570 | { | |
2571 | return (regnum == 0 | |
2572 | || regnum == HPPA_PCSQ_HEAD_REGNUM | |
2573 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2574 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); | |
d709c020 JB |
2575 | } |
2576 | ||
8d153463 | 2577 | static CORE_ADDR |
d709c020 JB |
2578 | hppa_smash_text_address (CORE_ADDR addr) |
2579 | { | |
2580 | /* The low two bits of the PC on the PA contain the privilege level. | |
2581 | Some genius implementing a (non-GCC) compiler apparently decided | |
2582 | this means that "addresses" in a text section therefore include a | |
2583 | privilege level, and thus symbol tables should contain these bits. | |
2584 | This seems like a bonehead thing to do--anyway, it seems to work | |
2585 | for our purposes to just ignore those bits. */ | |
2586 | ||
2587 | return (addr &= ~0x3); | |
2588 | } | |
2589 | ||
143985b7 | 2590 | /* Get the ith function argument for the current function. */ |
4a302917 | 2591 | static CORE_ADDR |
143985b7 AF |
2592 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, |
2593 | struct type *type) | |
2594 | { | |
2595 | CORE_ADDR addr; | |
34f75cc1 | 2596 | get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr); |
143985b7 AF |
2597 | return addr; |
2598 | } | |
2599 | ||
0f8d9d59 RC |
2600 | static void |
2601 | hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2602 | int regnum, void *buf) | |
2603 | { | |
2604 | ULONGEST tmp; | |
2605 | ||
2606 | regcache_raw_read_unsigned (regcache, regnum, &tmp); | |
34f75cc1 | 2607 | if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) |
0f8d9d59 RC |
2608 | tmp &= ~0x3; |
2609 | store_unsigned_integer (buf, sizeof(tmp), tmp); | |
2610 | } | |
2611 | ||
d49771ef RC |
2612 | static CORE_ADDR |
2613 | hppa_find_global_pointer (struct value *function) | |
2614 | { | |
2615 | return 0; | |
2616 | } | |
2617 | ||
0da28f8a RC |
2618 | void |
2619 | hppa_frame_prev_register_helper (struct frame_info *next_frame, | |
2620 | struct trad_frame_saved_reg saved_regs[], | |
2621 | int regnum, int *optimizedp, | |
2622 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2623 | int *realnump, void *valuep) | |
2624 | { | |
8f4e467c MK |
2625 | struct gdbarch *arch = get_frame_arch (next_frame); |
2626 | ||
8693c419 MK |
2627 | if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
2628 | { | |
2629 | if (valuep) | |
2630 | { | |
8f4e467c | 2631 | int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); |
8693c419 | 2632 | CORE_ADDR pc; |
0da28f8a | 2633 | |
1f67027d AC |
2634 | trad_frame_get_prev_register (next_frame, saved_regs, |
2635 | HPPA_PCOQ_HEAD_REGNUM, optimizedp, | |
2636 | lvalp, addrp, realnump, valuep); | |
8693c419 | 2637 | |
8f4e467c MK |
2638 | pc = extract_unsigned_integer (valuep, size); |
2639 | store_unsigned_integer (valuep, size, pc + 4); | |
8693c419 MK |
2640 | } |
2641 | ||
2642 | /* It's a computed value. */ | |
2643 | *optimizedp = 0; | |
2644 | *lvalp = not_lval; | |
2645 | *addrp = 0; | |
2646 | *realnump = -1; | |
2647 | return; | |
2648 | } | |
0da28f8a | 2649 | |
cc72850f MK |
2650 | /* Make sure the "flags" register is zero in all unwound frames. |
2651 | The "flags" registers is a HP-UX specific wart, and only the code | |
2652 | in hppa-hpux-tdep.c depends on it. However, it is easier to deal | |
2653 | with it here. This shouldn't affect other systems since those | |
2654 | should provide zero for the "flags" register anyway. */ | |
2655 | if (regnum == HPPA_FLAGS_REGNUM) | |
2656 | { | |
2657 | if (valuep) | |
8f4e467c | 2658 | store_unsigned_integer (valuep, register_size (arch, regnum), 0); |
cc72850f MK |
2659 | |
2660 | /* It's a computed value. */ | |
2661 | *optimizedp = 0; | |
2662 | *lvalp = not_lval; | |
2663 | *addrp = 0; | |
2664 | *realnump = -1; | |
2665 | return; | |
2666 | } | |
2667 | ||
1f67027d AC |
2668 | trad_frame_get_prev_register (next_frame, saved_regs, regnum, |
2669 | optimizedp, lvalp, addrp, realnump, valuep); | |
0da28f8a | 2670 | } |
8693c419 | 2671 | \f |
0da28f8a | 2672 | |
8e8b2dba MC |
2673 | /* Here is a table of C type sizes on hppa with various compiles |
2674 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
2675 | and these compilers: | |
2676 | ||
2677 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
2678 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
2679 | /opt/aCC/bin/aCC B3910B A.03.45 | |
2680 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
2681 | ||
2682 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
2683 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2684 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2685 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2686 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2687 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2688 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2689 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2690 | ||
2691 | Each line is: | |
2692 | ||
2693 | compiler and options | |
2694 | char, short, int, long, long long | |
2695 | float, double, long double | |
2696 | char *, void (*)() | |
2697 | ||
2698 | So all these compilers use either ILP32 or LP64 model. | |
2699 | TODO: gcc has more options so it needs more investigation. | |
2700 | ||
a2379359 MC |
2701 | For floating point types, see: |
2702 | ||
2703 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
2704 | HP-UX floating-point guide, hpux 11.00 | |
2705 | ||
8e8b2dba MC |
2706 | -- chastain 2003-12-18 */ |
2707 | ||
e6e68f1f JB |
2708 | static struct gdbarch * |
2709 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2710 | { | |
3ff7cf9e | 2711 | struct gdbarch_tdep *tdep; |
e6e68f1f | 2712 | struct gdbarch *gdbarch; |
59623e27 JB |
2713 | |
2714 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 2715 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 2716 | { |
4be87837 DJ |
2717 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
2718 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
2719 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 2720 | } |
e6e68f1f JB |
2721 | |
2722 | /* find a candidate among the list of pre-declared architectures. */ | |
2723 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2724 | if (arches != NULL) | |
2725 | return (arches->gdbarch); | |
2726 | ||
2727 | /* If none found, then allocate and initialize one. */ | |
fdd72f95 | 2728 | tdep = XZALLOC (struct gdbarch_tdep); |
3ff7cf9e JB |
2729 | gdbarch = gdbarch_alloc (&info, tdep); |
2730 | ||
2731 | /* Determine from the bfd_arch_info structure if we are dealing with | |
2732 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
2733 | then default to a 32bit machine. */ | |
2734 | if (info.bfd_arch_info != NULL) | |
2735 | tdep->bytes_per_address = | |
2736 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
2737 | else | |
2738 | tdep->bytes_per_address = 4; | |
2739 | ||
d49771ef RC |
2740 | tdep->find_global_pointer = hppa_find_global_pointer; |
2741 | ||
3ff7cf9e JB |
2742 | /* Some parts of the gdbarch vector depend on whether we are running |
2743 | on a 32 bits or 64 bits target. */ | |
2744 | switch (tdep->bytes_per_address) | |
2745 | { | |
2746 | case 4: | |
2747 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
2748 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
eded0a31 | 2749 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
38ca4e0c MK |
2750 | set_gdbarch_cannot_store_register (gdbarch, |
2751 | hppa32_cannot_store_register); | |
2752 | set_gdbarch_cannot_fetch_register (gdbarch, | |
2753 | hppa32_cannot_store_register); | |
3ff7cf9e JB |
2754 | break; |
2755 | case 8: | |
2756 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
2757 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
eded0a31 | 2758 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
38ca4e0c MK |
2759 | set_gdbarch_cannot_store_register (gdbarch, |
2760 | hppa64_cannot_store_register); | |
2761 | set_gdbarch_cannot_fetch_register (gdbarch, | |
2762 | hppa64_cannot_store_register); | |
3ff7cf9e JB |
2763 | break; |
2764 | default: | |
e2e0b3e5 | 2765 | internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), |
3ff7cf9e JB |
2766 | tdep->bytes_per_address); |
2767 | } | |
2768 | ||
3ff7cf9e | 2769 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
3ff7cf9e | 2770 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 2771 | |
8e8b2dba MC |
2772 | /* The following gdbarch vector elements are the same in both ILP32 |
2773 | and LP64, but might show differences some day. */ | |
2774 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2775 | set_gdbarch_long_double_bit (gdbarch, 128); | |
a2379359 | 2776 | set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big); |
8e8b2dba | 2777 | |
3ff7cf9e JB |
2778 | /* The following gdbarch vector elements do not depend on the address |
2779 | size, or in any other gdbarch element previously set. */ | |
60383d10 | 2780 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
1fb24930 RC |
2781 | set_gdbarch_in_function_epilogue_p (gdbarch, |
2782 | hppa_in_function_epilogue_p); | |
a2a84a72 | 2783 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
eded0a31 AC |
2784 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
2785 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); | |
b6fbdd1d | 2786 | set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address); |
60383d10 JB |
2787 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
2788 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
cc72850f MK |
2789 | set_gdbarch_read_pc (gdbarch, hppa_read_pc); |
2790 | set_gdbarch_write_pc (gdbarch, hppa_write_pc); | |
60383d10 | 2791 | |
143985b7 AF |
2792 | /* Helper for function argument information. */ |
2793 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
2794 | ||
36482093 AC |
2795 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
2796 | ||
3a3bc038 AC |
2797 | /* When a hardware watchpoint triggers, we'll move the inferior past |
2798 | it by removing all eventpoints; stepping past the instruction | |
2799 | that caused the trigger; reinserting eventpoints; and checking | |
2800 | whether any watched location changed. */ | |
2801 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
2802 | ||
5979bc46 | 2803 | /* Inferior function call methods. */ |
fca7aa43 | 2804 | switch (tdep->bytes_per_address) |
5979bc46 | 2805 | { |
fca7aa43 AC |
2806 | case 4: |
2807 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
2808 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
d49771ef RC |
2809 | set_gdbarch_convert_from_func_ptr_addr |
2810 | (gdbarch, hppa32_convert_from_func_ptr_addr); | |
fca7aa43 AC |
2811 | break; |
2812 | case 8: | |
782eae8b AC |
2813 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
2814 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); | |
fca7aa43 | 2815 | break; |
782eae8b | 2816 | default: |
e2e0b3e5 | 2817 | internal_error (__FILE__, __LINE__, _("bad switch")); |
fad850b2 AC |
2818 | } |
2819 | ||
2820 | /* Struct return methods. */ | |
fca7aa43 | 2821 | switch (tdep->bytes_per_address) |
fad850b2 | 2822 | { |
fca7aa43 AC |
2823 | case 4: |
2824 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
2825 | break; | |
2826 | case 8: | |
782eae8b | 2827 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
f5f907e2 | 2828 | break; |
fca7aa43 | 2829 | default: |
e2e0b3e5 | 2830 | internal_error (__FILE__, __LINE__, _("bad switch")); |
e963316f | 2831 | } |
7f07c5b6 | 2832 | |
85f4f2d8 | 2833 | set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc); |
7f07c5b6 | 2834 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
85f4f2d8 | 2835 | |
5979bc46 | 2836 | /* Frame unwind methods. */ |
782eae8b AC |
2837 | set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id); |
2838 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); | |
7f07c5b6 | 2839 | |
50306a9d RC |
2840 | /* Hook in ABI-specific overrides, if they have been registered. */ |
2841 | gdbarch_init_osabi (info, gdbarch); | |
2842 | ||
7f07c5b6 RC |
2843 | /* Hook in the default unwinders. */ |
2844 | frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer); | |
782eae8b | 2845 | frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer); |
0da28f8a | 2846 | frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer); |
5979bc46 | 2847 | |
e6e68f1f JB |
2848 | return gdbarch; |
2849 | } | |
2850 | ||
2851 | static void | |
2852 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
2853 | { | |
fdd72f95 RC |
2854 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2855 | ||
2856 | fprintf_unfiltered (file, "bytes_per_address = %d\n", | |
2857 | tdep->bytes_per_address); | |
2858 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); | |
e6e68f1f JB |
2859 | } |
2860 | ||
4facf7e8 JB |
2861 | void |
2862 | _initialize_hppa_tdep (void) | |
2863 | { | |
2864 | struct cmd_list_element *c; | |
4facf7e8 | 2865 | |
e6e68f1f | 2866 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 | 2867 | |
7c46b9fb RC |
2868 | hppa_objfile_priv_data = register_objfile_data (); |
2869 | ||
4facf7e8 | 2870 | add_cmd ("unwind", class_maintenance, unwind_command, |
1a966eab | 2871 | _("Print unwind table entry at given address."), |
4facf7e8 JB |
2872 | &maintenanceprintlist); |
2873 | ||
369aa520 | 2874 | /* Debug this files internals. */ |
7915a72c AC |
2875 | add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ |
2876 | Set whether hppa target specific debugging information should be displayed."), | |
2877 | _("\ | |
2878 | Show whether hppa target specific debugging information is displayed."), _("\ | |
4a302917 RC |
2879 | This flag controls whether hppa target specific debugging information is\n\ |
2880 | displayed. This information is particularly useful for debugging frame\n\ | |
7915a72c | 2881 | unwinding problems."), |
2c5b56ce | 2882 | NULL, |
7915a72c | 2883 | NULL, /* FIXME: i18n: hppa debug flag is %s. */ |
2c5b56ce | 2884 | &setdebuglist, &showdebuglist); |
4facf7e8 | 2885 | } |