Fix ARC TLS support.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "bfd.h"
25#include "inferior.h"
4e052eda 26#include "regcache.h"
e5d66720 27#include "completer.h"
59623e27 28#include "osabi.h"
343af405 29#include "arch-utils.h"
1777feb0 30/* For argument passing to the inferior. */
c906108c 31#include "symtab.h"
fde2cceb 32#include "dis-asm.h"
26d08f08
AC
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
c906108c 36
c906108c
SS
37#include "gdbcore.h"
38#include "gdbcmd.h"
e6bb342a 39#include "gdbtypes.h"
c906108c 40#include "objfiles.h"
3ff7cf9e 41#include "hppa-tdep.h"
c906108c 42
369aa520
RC
43static int hppa_debug = 0;
44
60383d10 45/* Some local constants. */
3ff7cf9e
JB
46static const int hppa32_num_regs = 128;
47static const int hppa64_num_regs = 96;
48
61a12cfa
JK
49/* We use the objfile->obj_private pointer for two things:
50 * 1. An unwind table;
51 *
52 * 2. A pointer to any associated shared library object.
53 *
54 * #defines are used to help refer to these objects.
55 */
56
57/* Info about the unwind table associated with an object file.
58 * This is hung off of the "objfile->obj_private" pointer, and
59 * is allocated in the objfile's psymbol obstack. This allows
60 * us to have unique unwind info for each executable and shared
61 * library that we are debugging.
62 */
63struct hppa_unwind_info
64 {
65 struct unwind_table_entry *table; /* Pointer to unwind info */
66 struct unwind_table_entry *cache; /* Pointer to last entry we found */
67 int last; /* Index of last entry */
68 };
69
70struct hppa_objfile_private
71 {
72 struct hppa_unwind_info *unwind_info; /* a pointer */
73 struct so_list *so_info; /* a pointer */
74 CORE_ADDR dp;
75
76 int dummy_call_sequence_reg;
77 CORE_ADDR dummy_call_sequence_addr;
78 };
79
7c46b9fb
RC
80/* hppa-specific object data -- unwind and solib info.
81 TODO/maybe: think about splitting this into two parts; the unwind data is
82 common to all hppa targets, but is only used in this file; we can register
83 that separately and make this static. The solib data is probably hpux-
84 specific, so we can create a separate extern objfile_data that is registered
85 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61a12cfa 86static const struct objfile_data *hppa_objfile_priv_data = NULL;
7c46b9fb 87
1777feb0 88/* Get at various relevent fields of an instruction word. */
e2ac8128
JB
89#define MASK_5 0x1f
90#define MASK_11 0x7ff
91#define MASK_14 0x3fff
92#define MASK_21 0x1fffff
93
e2ac8128
JB
94/* Sizes (in bytes) of the native unwind entries. */
95#define UNWIND_ENTRY_SIZE 16
96#define STUB_UNWIND_ENTRY_SIZE 8
97
c906108c 98/* Routines to extract various sized constants out of hppa
1777feb0 99 instructions. */
c906108c
SS
100
101/* This assumes that no garbage lies outside of the lower bits of
1777feb0 102 value. */
c906108c 103
63807e1d 104static int
abc485a1 105hppa_sign_extend (unsigned val, unsigned bits)
c906108c 106{
66c6502d 107 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
c906108c
SS
108}
109
1777feb0 110/* For many immediate values the sign bit is the low bit! */
c906108c 111
63807e1d 112static int
abc485a1 113hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 114{
66c6502d 115 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
c906108c
SS
116}
117
e2ac8128 118/* Extract the bits at positions between FROM and TO, using HP's numbering
1777feb0 119 (MSB = 0). */
e2ac8128 120
abc485a1
RC
121int
122hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
123{
124 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
125}
126
1777feb0 127/* Extract the immediate field from a ld{bhw}s instruction. */
c906108c 128
abc485a1
RC
129int
130hppa_extract_5_load (unsigned word)
c906108c 131{
abc485a1 132 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
133}
134
1777feb0 135/* Extract the immediate field from a break instruction. */
c906108c 136
abc485a1
RC
137unsigned
138hppa_extract_5r_store (unsigned word)
c906108c
SS
139{
140 return (word & MASK_5);
141}
142
1777feb0 143/* Extract the immediate field from a {sr}sm instruction. */
c906108c 144
abc485a1
RC
145unsigned
146hppa_extract_5R_store (unsigned word)
c906108c
SS
147{
148 return (word >> 16 & MASK_5);
149}
150
1777feb0 151/* Extract a 14 bit immediate field. */
c906108c 152
abc485a1
RC
153int
154hppa_extract_14 (unsigned word)
c906108c 155{
abc485a1 156 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
157}
158
1777feb0 159/* Extract a 21 bit constant. */
c906108c 160
abc485a1
RC
161int
162hppa_extract_21 (unsigned word)
c906108c
SS
163{
164 int val;
165
166 word &= MASK_21;
167 word <<= 11;
abc485a1 168 val = hppa_get_field (word, 20, 20);
c906108c 169 val <<= 11;
abc485a1 170 val |= hppa_get_field (word, 9, 19);
c906108c 171 val <<= 2;
abc485a1 172 val |= hppa_get_field (word, 5, 6);
c906108c 173 val <<= 5;
abc485a1 174 val |= hppa_get_field (word, 0, 4);
c906108c 175 val <<= 2;
abc485a1
RC
176 val |= hppa_get_field (word, 7, 8);
177 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
178}
179
c906108c 180/* extract a 17 bit constant from branch instructions, returning the
1777feb0 181 19 bit signed value. */
c906108c 182
abc485a1
RC
183int
184hppa_extract_17 (unsigned word)
c906108c 185{
abc485a1
RC
186 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
187 hppa_get_field (word, 29, 29) << 10 |
188 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
189 (word & 0x1) << 16, 17) << 2;
190}
3388d7ff
RC
191
192CORE_ADDR
193hppa_symbol_address(const char *sym)
194{
3b7344d5 195 struct bound_minimal_symbol minsym;
3388d7ff
RC
196
197 minsym = lookup_minimal_symbol (sym, NULL, NULL);
3b7344d5 198 if (minsym.minsym)
77e371c0 199 return BMSYMBOL_VALUE_ADDRESS (minsym);
3388d7ff
RC
200 else
201 return (CORE_ADDR)-1;
202}
77d18ded 203
61a12cfa 204static struct hppa_objfile_private *
77d18ded
RC
205hppa_init_objfile_priv_data (struct objfile *objfile)
206{
207 struct hppa_objfile_private *priv;
208
209 priv = (struct hppa_objfile_private *)
210 obstack_alloc (&objfile->objfile_obstack,
211 sizeof (struct hppa_objfile_private));
212 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
213 memset (priv, 0, sizeof (*priv));
214
215 return priv;
216}
c906108c
SS
217\f
218
219/* Compare the start address for two unwind entries returning 1 if
220 the first address is larger than the second, -1 if the second is
221 larger than the first, and zero if they are equal. */
222
223static int
fba45db2 224compare_unwind_entries (const void *arg1, const void *arg2)
c906108c 225{
9a3c8263
SM
226 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
227 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
c906108c
SS
228
229 if (a->region_start > b->region_start)
230 return 1;
231 else if (a->region_start < b->region_start)
232 return -1;
233 else
234 return 0;
235}
236
53a5351d 237static void
fdd72f95 238record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 239{
fdd72f95 240 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 241 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
242 {
243 bfd_vma value = section->vma - section->filepos;
244 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
245
246 if (value < *low_text_segment_address)
247 *low_text_segment_address = value;
248 }
53a5351d
JM
249}
250
c906108c 251static void
fba45db2 252internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
1777feb0 253 asection *section, unsigned int entries,
241fd515 254 size_t size, CORE_ADDR text_offset)
c906108c
SS
255{
256 /* We will read the unwind entries into temporary memory, then
257 fill in the actual unwind table. */
fdd72f95 258
c906108c
SS
259 if (size > 0)
260 {
5db8bbe5 261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
262 unsigned long tmp;
263 unsigned i;
224c3ddb 264 char *buf = (char *) alloca (size);
fdd72f95 265 CORE_ADDR low_text_segment_address;
c906108c 266
fdd72f95 267 /* For ELF targets, then unwinds are supposed to
1777feb0 268 be segment relative offsets instead of absolute addresses.
c2c6d25f
JM
269
270 Note that when loading a shared library (text_offset != 0) the
271 unwinds are already relative to the text_offset that will be
272 passed in. */
5db8bbe5 273 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
53a5351d 274 {
fdd72f95
RC
275 low_text_segment_address = -1;
276
53a5351d 277 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
278 record_text_segment_lowaddr,
279 &low_text_segment_address);
53a5351d 280
fdd72f95 281 text_offset = low_text_segment_address;
53a5351d 282 }
5db8bbe5 283 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
acf86d54 284 {
5db8bbe5 285 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
acf86d54 286 }
53a5351d 287
c906108c
SS
288 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
289
290 /* Now internalize the information being careful to handle host/target
c5aa993b 291 endian issues. */
c906108c
SS
292 for (i = 0; i < entries; i++)
293 {
294 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 295 (bfd_byte *) buf);
c906108c
SS
296 table[i].region_start += text_offset;
297 buf += 4;
c5aa993b 298 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
299 table[i].region_end += text_offset;
300 buf += 4;
c5aa993b 301 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
302 buf += 4;
303 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
304 table[i].Millicode = (tmp >> 30) & 0x1;
305 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
306 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 307 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
308 table[i].Entry_SR = (tmp >> 25) & 0x1;
309 table[i].Entry_FR = (tmp >> 21) & 0xf;
310 table[i].Entry_GR = (tmp >> 16) & 0x1f;
311 table[i].Args_stored = (tmp >> 15) & 0x1;
312 table[i].Variable_Frame = (tmp >> 14) & 0x1;
313 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
314 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
315 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
316 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 317 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
318 table[i].cxx_info = (tmp >> 8) & 0x1;
319 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
320 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 321 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
322 table[i].Save_SP = (tmp >> 4) & 0x1;
323 table[i].Save_RP = (tmp >> 3) & 0x1;
324 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 325 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 326 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 327 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
328 buf += 4;
329 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
330 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
331 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
332 table[i].alloca_frame = (tmp >> 28) & 0x1;
333 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
334 table[i].Total_frame_size = tmp & 0x7ffffff;
335
1777feb0 336 /* Stub unwinds are handled elsewhere. */
c906108c
SS
337 table[i].stub_unwind.stub_type = 0;
338 table[i].stub_unwind.padding = 0;
339 }
340 }
341}
342
343/* Read in the backtrace information stored in the `$UNWIND_START$' section of
344 the object file. This info is used mainly by find_unwind_entry() to find
345 out the stack frame size and frame pointer used by procedures. We put
346 everything on the psymbol obstack in the objfile so that it automatically
347 gets freed when the objfile is destroyed. */
348
349static void
fba45db2 350read_unwind_info (struct objfile *objfile)
c906108c 351{
d4f3574e 352 asection *unwind_sec, *stub_unwind_sec;
241fd515 353 size_t unwind_size, stub_unwind_size, total_size;
d4f3574e 354 unsigned index, unwind_entries;
c906108c
SS
355 unsigned stub_entries, total_entries;
356 CORE_ADDR text_offset;
7c46b9fb
RC
357 struct hppa_unwind_info *ui;
358 struct hppa_objfile_private *obj_private;
c906108c 359
a99dad3d 360 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7c46b9fb
RC
361 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
362 sizeof (struct hppa_unwind_info));
c906108c
SS
363
364 ui->table = NULL;
365 ui->cache = NULL;
366 ui->last = -1;
367
d4f3574e
SS
368 /* For reasons unknown the HP PA64 tools generate multiple unwinder
369 sections in a single executable. So we just iterate over every
370 section in the BFD looking for unwinder sections intead of trying
1777feb0 371 to do a lookup with bfd_get_section_by_name.
c906108c 372
d4f3574e
SS
373 First determine the total size of the unwind tables so that we
374 can allocate memory in a nice big hunk. */
375 total_entries = 0;
376 for (unwind_sec = objfile->obfd->sections;
377 unwind_sec;
378 unwind_sec = unwind_sec->next)
c906108c 379 {
d4f3574e
SS
380 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
381 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
382 {
383 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
384 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 385
d4f3574e
SS
386 total_entries += unwind_entries;
387 }
c906108c
SS
388 }
389
d4f3574e 390 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 391 use stub unwinds at the current time. */
d4f3574e
SS
392 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
393
c906108c
SS
394 if (stub_unwind_sec)
395 {
396 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
397 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 stub_unwind_size = 0;
402 stub_entries = 0;
403 }
404
405 /* Compute total number of unwind entries and their total size. */
d4f3574e 406 total_entries += stub_entries;
c906108c
SS
407 total_size = total_entries * sizeof (struct unwind_table_entry);
408
409 /* Allocate memory for the unwind table. */
410 ui->table = (struct unwind_table_entry *)
8b92e4d5 411 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 412 ui->last = total_entries - 1;
c906108c 413
d4f3574e
SS
414 /* Now read in each unwind section and internalize the standard unwind
415 entries. */
c906108c 416 index = 0;
d4f3574e
SS
417 for (unwind_sec = objfile->obfd->sections;
418 unwind_sec;
419 unwind_sec = unwind_sec->next)
420 {
421 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
422 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
423 {
424 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
425 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
426
427 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
428 unwind_entries, unwind_size, text_offset);
429 index += unwind_entries;
430 }
431 }
432
433 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
434 if (stub_unwind_size > 0)
435 {
436 unsigned int i;
224c3ddb 437 char *buf = (char *) alloca (stub_unwind_size);
c906108c
SS
438
439 /* Read in the stub unwind entries. */
440 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
441 0, stub_unwind_size);
442
443 /* Now convert them into regular unwind entries. */
444 for (i = 0; i < stub_entries; i++, index++)
445 {
446 /* Clear out the next unwind entry. */
447 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
448
1777feb0 449 /* Convert offset & size into region_start and region_end.
c906108c
SS
450 Stuff away the stub type into "reserved" fields. */
451 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
452 (bfd_byte *) buf);
453 ui->table[index].region_start += text_offset;
454 buf += 4;
455 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 456 (bfd_byte *) buf);
c906108c
SS
457 buf += 2;
458 ui->table[index].region_end
c5aa993b
JM
459 = ui->table[index].region_start + 4 *
460 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
461 buf += 2;
462 }
463
464 }
465
466 /* Unwind table needs to be kept sorted. */
467 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
468 compare_unwind_entries);
469
470 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
471 obj_private = (struct hppa_objfile_private *)
472 objfile_data (objfile, hppa_objfile_priv_data);
473 if (obj_private == NULL)
77d18ded
RC
474 obj_private = hppa_init_objfile_priv_data (objfile);
475
c906108c
SS
476 obj_private->unwind_info = ui;
477}
478
479/* Lookup the unwind (stack backtrace) info for the given PC. We search all
480 of the objfiles seeking the unwind table entry for this PC. Each objfile
481 contains a sorted list of struct unwind_table_entry. Since we do a binary
482 search of the unwind tables, we depend upon them to be sorted. */
483
484struct unwind_table_entry *
fba45db2 485find_unwind_entry (CORE_ADDR pc)
c906108c
SS
486{
487 int first, middle, last;
488 struct objfile *objfile;
7c46b9fb 489 struct hppa_objfile_private *priv;
c906108c 490
369aa520 491 if (hppa_debug)
5af949e3
UW
492 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
493 hex_string (pc));
369aa520 494
1777feb0 495 /* A function at address 0? Not in HP-UX! */
c906108c 496 if (pc == (CORE_ADDR) 0)
369aa520
RC
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
500 return NULL;
501 }
c906108c
SS
502
503 ALL_OBJFILES (objfile)
c5aa993b 504 {
7c46b9fb 505 struct hppa_unwind_info *ui;
c5aa993b 506 ui = NULL;
9a3c8263
SM
507 priv = ((struct hppa_objfile_private *)
508 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb
RC
509 if (priv)
510 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 511
c5aa993b
JM
512 if (!ui)
513 {
514 read_unwind_info (objfile);
9a3c8263
SM
515 priv = ((struct hppa_objfile_private *)
516 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb 517 if (priv == NULL)
8a3fe4f8 518 error (_("Internal error reading unwind information."));
7c46b9fb 519 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 520 }
c906108c 521
1777feb0 522 /* First, check the cache. */
c906108c 523
c5aa993b
JM
524 if (ui->cache
525 && pc >= ui->cache->region_start
526 && pc <= ui->cache->region_end)
369aa520
RC
527 {
528 if (hppa_debug)
5af949e3
UW
529 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
530 hex_string ((uintptr_t) ui->cache));
369aa520
RC
531 return ui->cache;
532 }
c906108c 533
1777feb0 534 /* Not in the cache, do a binary search. */
c906108c 535
c5aa993b
JM
536 first = 0;
537 last = ui->last;
c906108c 538
c5aa993b
JM
539 while (first <= last)
540 {
541 middle = (first + last) / 2;
542 if (pc >= ui->table[middle].region_start
543 && pc <= ui->table[middle].region_end)
544 {
545 ui->cache = &ui->table[middle];
369aa520 546 if (hppa_debug)
5af949e3
UW
547 fprintf_unfiltered (gdb_stdlog, "%s }\n",
548 hex_string ((uintptr_t) ui->cache));
c5aa993b
JM
549 return &ui->table[middle];
550 }
c906108c 551
c5aa993b
JM
552 if (pc < ui->table[middle].region_start)
553 last = middle - 1;
554 else
555 first = middle + 1;
556 }
557 } /* ALL_OBJFILES() */
369aa520
RC
558
559 if (hppa_debug)
560 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
561
c906108c
SS
562 return NULL;
563}
564
c9cf6e20
MG
565/* Implement the stack_frame_destroyed_p gdbarch method.
566
567 The epilogue is defined here as the area either on the `bv' instruction
1777feb0 568 itself or an instruction which destroys the function's stack frame.
1fb24930
RC
569
570 We do not assume that the epilogue is at the end of a function as we can
571 also have return sequences in the middle of a function. */
c9cf6e20 572
1fb24930 573static int
c9cf6e20 574hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1fb24930 575{
e17a4113 576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1fb24930
RC
577 unsigned long status;
578 unsigned int inst;
e362b510 579 gdb_byte buf[4];
1fb24930 580
8defab1a 581 status = target_read_memory (pc, buf, 4);
1fb24930
RC
582 if (status != 0)
583 return 0;
584
e17a4113 585 inst = extract_unsigned_integer (buf, 4, byte_order);
1fb24930
RC
586
587 /* The most common way to perform a stack adjustment ldo X(sp),sp
588 We are destroying a stack frame if the offset is negative. */
589 if ((inst & 0xffffc000) == 0x37de0000
590 && hppa_extract_14 (inst) < 0)
591 return 1;
592
593 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
594 if (((inst & 0x0fc010e0) == 0x0fc010e0
595 || (inst & 0x0fc010e0) == 0x0fc010e0)
596 && hppa_extract_14 (inst) < 0)
597 return 1;
598
599 /* bv %r0(%rp) or bv,n %r0(%rp) */
600 if (inst == 0xe840c000 || inst == 0xe840c002)
601 return 1;
602
603 return 0;
604}
605
85f4f2d8 606static const unsigned char *
67d57894 607hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
aaab4dba 608{
56132691 609 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
610 (*len) = sizeof (breakpoint);
611 return breakpoint;
612}
613
e23457df
AC
614/* Return the name of a register. */
615
4a302917 616static const char *
d93859e2 617hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
618{
619 static char *names[] = {
620 "flags", "r1", "rp", "r3",
621 "r4", "r5", "r6", "r7",
622 "r8", "r9", "r10", "r11",
623 "r12", "r13", "r14", "r15",
624 "r16", "r17", "r18", "r19",
625 "r20", "r21", "r22", "r23",
626 "r24", "r25", "r26", "dp",
627 "ret0", "ret1", "sp", "r31",
628 "sar", "pcoqh", "pcsqh", "pcoqt",
629 "pcsqt", "eiem", "iir", "isr",
630 "ior", "ipsw", "goto", "sr4",
631 "sr0", "sr1", "sr2", "sr3",
632 "sr5", "sr6", "sr7", "cr0",
633 "cr8", "cr9", "ccr", "cr12",
634 "cr13", "cr24", "cr25", "cr26",
635 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
636 "fpsr", "fpe1", "fpe2", "fpe3",
637 "fpe4", "fpe5", "fpe6", "fpe7",
638 "fr4", "fr4R", "fr5", "fr5R",
639 "fr6", "fr6R", "fr7", "fr7R",
640 "fr8", "fr8R", "fr9", "fr9R",
641 "fr10", "fr10R", "fr11", "fr11R",
642 "fr12", "fr12R", "fr13", "fr13R",
643 "fr14", "fr14R", "fr15", "fr15R",
644 "fr16", "fr16R", "fr17", "fr17R",
645 "fr18", "fr18R", "fr19", "fr19R",
646 "fr20", "fr20R", "fr21", "fr21R",
647 "fr22", "fr22R", "fr23", "fr23R",
648 "fr24", "fr24R", "fr25", "fr25R",
649 "fr26", "fr26R", "fr27", "fr27R",
650 "fr28", "fr28R", "fr29", "fr29R",
651 "fr30", "fr30R", "fr31", "fr31R"
652 };
653 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
654 return NULL;
655 else
656 return names[i];
657}
658
4a302917 659static const char *
d93859e2 660hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
661{
662 static char *names[] = {
663 "flags", "r1", "rp", "r3",
664 "r4", "r5", "r6", "r7",
665 "r8", "r9", "r10", "r11",
666 "r12", "r13", "r14", "r15",
667 "r16", "r17", "r18", "r19",
668 "r20", "r21", "r22", "r23",
669 "r24", "r25", "r26", "dp",
670 "ret0", "ret1", "sp", "r31",
671 "sar", "pcoqh", "pcsqh", "pcoqt",
672 "pcsqt", "eiem", "iir", "isr",
673 "ior", "ipsw", "goto", "sr4",
674 "sr0", "sr1", "sr2", "sr3",
675 "sr5", "sr6", "sr7", "cr0",
676 "cr8", "cr9", "ccr", "cr12",
677 "cr13", "cr24", "cr25", "cr26",
678 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
679 "fpsr", "fpe1", "fpe2", "fpe3",
680 "fr4", "fr5", "fr6", "fr7",
681 "fr8", "fr9", "fr10", "fr11",
682 "fr12", "fr13", "fr14", "fr15",
683 "fr16", "fr17", "fr18", "fr19",
684 "fr20", "fr21", "fr22", "fr23",
685 "fr24", "fr25", "fr26", "fr27",
686 "fr28", "fr29", "fr30", "fr31"
687 };
688 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
689 return NULL;
690 else
691 return names[i];
692}
693
85c83e99 694/* Map dwarf DBX register numbers to GDB register numbers. */
1ef7fcb5 695static int
d3f73121 696hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5 697{
85c83e99 698 /* The general registers and the sar are the same in both sets. */
0fde2c53 699 if (reg >= 0 && reg <= 32)
1ef7fcb5
RC
700 return reg;
701
702 /* fr4-fr31 are mapped from 72 in steps of 2. */
85c83e99 703 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
1ef7fcb5
RC
704 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
705
1ef7fcb5
RC
706 return -1;
707}
708
79508e1e
AC
709/* This function pushes a stack frame with arguments as part of the
710 inferior function calling mechanism.
711
712 This is the version of the function for the 32-bit PA machines, in
713 which later arguments appear at lower addresses. (The stack always
714 grows towards higher addresses.)
715
716 We simply allocate the appropriate amount of stack space and put
717 arguments into their proper slots. */
718
4a302917 719static CORE_ADDR
7d9b040b 720hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
721 struct regcache *regcache, CORE_ADDR bp_addr,
722 int nargs, struct value **args, CORE_ADDR sp,
723 int struct_return, CORE_ADDR struct_addr)
724{
e17a4113
UW
725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
726
79508e1e
AC
727 /* Stack base address at which any pass-by-reference parameters are
728 stored. */
729 CORE_ADDR struct_end = 0;
730 /* Stack base address at which the first parameter is stored. */
731 CORE_ADDR param_end = 0;
732
733 /* The inner most end of the stack after all the parameters have
734 been pushed. */
735 CORE_ADDR new_sp = 0;
736
737 /* Two passes. First pass computes the location of everything,
738 second pass writes the bytes out. */
739 int write_pass;
d49771ef
RC
740
741 /* Global pointer (r19) of the function we are trying to call. */
742 CORE_ADDR gp;
743
744 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
745
79508e1e
AC
746 for (write_pass = 0; write_pass < 2; write_pass++)
747 {
1797a8f6 748 CORE_ADDR struct_ptr = 0;
1777feb0 749 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
2a6228ef
RC
750 struct_ptr is adjusted for each argument below, so the first
751 argument will end up at sp-36. */
752 CORE_ADDR param_ptr = 32;
79508e1e 753 int i;
2a6228ef
RC
754 int small_struct = 0;
755
79508e1e
AC
756 for (i = 0; i < nargs; i++)
757 {
758 struct value *arg = args[i];
4991999e 759 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
760 /* The corresponding parameter that is pushed onto the
761 stack, and [possibly] passed in a register. */
948f8e3d 762 gdb_byte param_val[8];
79508e1e
AC
763 int param_len;
764 memset (param_val, 0, sizeof param_val);
765 if (TYPE_LENGTH (type) > 8)
766 {
767 /* Large parameter, pass by reference. Store the value
768 in "struct" area and then pass its address. */
769 param_len = 4;
1797a8f6 770 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 771 if (write_pass)
0fd88904 772 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 773 TYPE_LENGTH (type));
e17a4113
UW
774 store_unsigned_integer (param_val, 4, byte_order,
775 struct_end - struct_ptr);
79508e1e
AC
776 }
777 else if (TYPE_CODE (type) == TYPE_CODE_INT
778 || TYPE_CODE (type) == TYPE_CODE_ENUM)
779 {
780 /* Integer value store, right aligned. "unpack_long"
781 takes care of any sign-extension problems. */
782 param_len = align_up (TYPE_LENGTH (type), 4);
e17a4113 783 store_unsigned_integer (param_val, param_len, byte_order,
79508e1e 784 unpack_long (type,
0fd88904 785 value_contents (arg)));
79508e1e 786 }
2a6228ef
RC
787 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
788 {
789 /* Floating point value store, right aligned. */
790 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 791 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 792 }
79508e1e
AC
793 else
794 {
79508e1e 795 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
796
797 /* Small struct value are stored right-aligned. */
79508e1e 798 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 799 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
800
801 /* Structures of size 5, 6 and 7 bytes are special in that
802 the higher-ordered word is stored in the lower-ordered
803 argument, and even though it is a 8-byte quantity the
804 registers need not be 8-byte aligned. */
1b07b470 805 if (param_len > 4 && param_len < 8)
2a6228ef 806 small_struct = 1;
79508e1e 807 }
2a6228ef 808
1797a8f6 809 param_ptr += param_len;
2a6228ef
RC
810 if (param_len == 8 && !small_struct)
811 param_ptr = align_up (param_ptr, 8);
812
813 /* First 4 non-FP arguments are passed in gr26-gr23.
814 First 4 32-bit FP arguments are passed in fr4L-fr7L.
815 First 2 64-bit FP arguments are passed in fr5 and fr7.
816
817 The rest go on the stack, starting at sp-36, towards lower
818 addresses. 8-byte arguments must be aligned to a 8-byte
819 stack boundary. */
79508e1e
AC
820 if (write_pass)
821 {
1797a8f6 822 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
823
824 /* There are some cases when we don't know the type
825 expected by the callee (e.g. for variadic functions), so
826 pass the parameters in both general and fp regs. */
827 if (param_ptr <= 48)
79508e1e 828 {
2a6228ef
RC
829 int grreg = 26 - (param_ptr - 36) / 4;
830 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
831 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
832
833 regcache_cooked_write (regcache, grreg, param_val);
834 regcache_cooked_write (regcache, fpLreg, param_val);
835
79508e1e 836 if (param_len > 4)
2a6228ef
RC
837 {
838 regcache_cooked_write (regcache, grreg + 1,
839 param_val + 4);
840
841 regcache_cooked_write (regcache, fpreg, param_val);
842 regcache_cooked_write (regcache, fpreg + 1,
843 param_val + 4);
844 }
79508e1e
AC
845 }
846 }
847 }
848
849 /* Update the various stack pointers. */
850 if (!write_pass)
851 {
2a6228ef 852 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
853 /* PARAM_PTR already accounts for all the arguments passed
854 by the user. However, the ABI mandates minimum stack
855 space allocations for outgoing arguments. The ABI also
856 mandates minimum stack alignments which we must
857 preserve. */
2a6228ef 858 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
859 }
860 }
861
862 /* If a structure has to be returned, set up register 28 to hold its
1777feb0 863 address. */
79508e1e 864 if (struct_return)
9c9acae0 865 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 866
e38c262f 867 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
868
869 if (gp != 0)
9c9acae0 870 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 871
79508e1e 872 /* Set the return address. */
77d18ded
RC
873 if (!gdbarch_push_dummy_code_p (gdbarch))
874 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 875
c4557624 876 /* Update the Stack Pointer. */
34f75cc1 877 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 878
2a6228ef 879 return param_end;
79508e1e
AC
880}
881
38ca4e0c
MK
882/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
883 Runtime Architecture for PA-RISC 2.0", which is distributed as part
884 as of the HP-UX Software Transition Kit (STK). This implementation
885 is based on version 3.3, dated October 6, 1997. */
2f690297 886
38ca4e0c 887/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 888
38ca4e0c
MK
889static int
890hppa64_integral_or_pointer_p (const struct type *type)
891{
892 switch (TYPE_CODE (type))
893 {
894 case TYPE_CODE_INT:
895 case TYPE_CODE_BOOL:
896 case TYPE_CODE_CHAR:
897 case TYPE_CODE_ENUM:
898 case TYPE_CODE_RANGE:
899 {
900 int len = TYPE_LENGTH (type);
901 return (len == 1 || len == 2 || len == 4 || len == 8);
902 }
903 case TYPE_CODE_PTR:
904 case TYPE_CODE_REF:
905 return (TYPE_LENGTH (type) == 8);
906 default:
907 break;
908 }
909
910 return 0;
911}
912
913/* Check whether TYPE is a "Floating Scalar Type". */
914
915static int
916hppa64_floating_p (const struct type *type)
917{
918 switch (TYPE_CODE (type))
919 {
920 case TYPE_CODE_FLT:
921 {
922 int len = TYPE_LENGTH (type);
923 return (len == 4 || len == 8 || len == 16);
924 }
925 default:
926 break;
927 }
928
929 return 0;
930}
2f690297 931
1218e655
RC
932/* If CODE points to a function entry address, try to look up the corresponding
933 function descriptor and return its address instead. If CODE is not a
934 function entry address, then just return it unchanged. */
935static CORE_ADDR
e17a4113 936hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
1218e655 937{
e17a4113 938 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218e655
RC
939 struct obj_section *sec, *opd;
940
941 sec = find_pc_section (code);
942
943 if (!sec)
944 return code;
945
946 /* If CODE is in a data section, assume it's already a fptr. */
947 if (!(sec->the_bfd_section->flags & SEC_CODE))
948 return code;
949
950 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
951 {
952 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
aded6f54 953 break;
1218e655
RC
954 }
955
956 if (opd < sec->objfile->sections_end)
957 {
958 CORE_ADDR addr;
959
aded6f54
PA
960 for (addr = obj_section_addr (opd);
961 addr < obj_section_endaddr (opd);
962 addr += 2 * 8)
963 {
1218e655 964 ULONGEST opdaddr;
948f8e3d 965 gdb_byte tmp[8];
1218e655
RC
966
967 if (target_read_memory (addr, tmp, sizeof (tmp)))
968 break;
e17a4113 969 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
1218e655 970
aded6f54 971 if (opdaddr == code)
1218e655
RC
972 return addr - 16;
973 }
974 }
975
976 return code;
977}
978
4a302917 979static CORE_ADDR
7d9b040b 980hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
981 struct regcache *regcache, CORE_ADDR bp_addr,
982 int nargs, struct value **args, CORE_ADDR sp,
983 int struct_return, CORE_ADDR struct_addr)
984{
38ca4e0c 985 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 986 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
38ca4e0c
MK
987 int i, offset = 0;
988 CORE_ADDR gp;
2f690297 989
38ca4e0c
MK
990 /* "The outgoing parameter area [...] must be aligned at a 16-byte
991 boundary." */
992 sp = align_up (sp, 16);
2f690297 993
38ca4e0c
MK
994 for (i = 0; i < nargs; i++)
995 {
996 struct value *arg = args[i];
997 struct type *type = value_type (arg);
998 int len = TYPE_LENGTH (type);
0fd88904 999 const bfd_byte *valbuf;
1218e655 1000 bfd_byte fptrbuf[8];
38ca4e0c 1001 int regnum;
2f690297 1002
38ca4e0c
MK
1003 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
1004 offset = align_up (offset, 8);
77d18ded 1005
38ca4e0c 1006 if (hppa64_integral_or_pointer_p (type))
2f690297 1007 {
38ca4e0c
MK
1008 /* "Integral scalar parameters smaller than 64 bits are
1009 padded on the left (i.e., the value is in the
1010 least-significant bits of the 64-bit storage unit, and
1011 the high-order bits are undefined)." Therefore we can
1012 safely sign-extend them. */
1013 if (len < 8)
449e1137 1014 {
df4df182 1015 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
38ca4e0c
MK
1016 len = 8;
1017 }
1018 }
1019 else if (hppa64_floating_p (type))
1020 {
1021 if (len > 8)
1022 {
1023 /* "Quad-precision (128-bit) floating-point scalar
1024 parameters are aligned on a 16-byte boundary." */
1025 offset = align_up (offset, 16);
1026
1027 /* "Double-extended- and quad-precision floating-point
1028 parameters within the first 64 bytes of the parameter
1029 list are always passed in general registers." */
449e1137
AC
1030 }
1031 else
1032 {
38ca4e0c 1033 if (len == 4)
449e1137 1034 {
38ca4e0c
MK
1035 /* "Single-precision (32-bit) floating-point scalar
1036 parameters are padded on the left with 32 bits of
1037 garbage (i.e., the floating-point value is in the
1038 least-significant 32 bits of a 64-bit storage
1039 unit)." */
1040 offset += 4;
449e1137 1041 }
38ca4e0c
MK
1042
1043 /* "Single- and double-precision floating-point
1044 parameters in this area are passed according to the
1045 available formal parameter information in a function
1046 prototype. [...] If no prototype is in scope,
1047 floating-point parameters must be passed both in the
1048 corresponding general registers and in the
1049 corresponding floating-point registers." */
1050 regnum = HPPA64_FP4_REGNUM + offset / 8;
1051
1052 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1053 {
38ca4e0c
MK
1054 /* "Single-precision floating-point parameters, when
1055 passed in floating-point registers, are passed in
1056 the right halves of the floating point registers;
1057 the left halves are unused." */
1058 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1059 len, value_contents (arg));
449e1137
AC
1060 }
1061 }
2f690297 1062 }
38ca4e0c 1063 else
2f690297 1064 {
38ca4e0c
MK
1065 if (len > 8)
1066 {
1067 /* "Aggregates larger than 8 bytes are aligned on a
1068 16-byte boundary, possibly leaving an unused argument
1777feb0 1069 slot, which is filled with garbage. If necessary,
38ca4e0c
MK
1070 they are padded on the right (with garbage), to a
1071 multiple of 8 bytes." */
1072 offset = align_up (offset, 16);
1073 }
1074 }
1075
1218e655
RC
1076 /* If we are passing a function pointer, make sure we pass a function
1077 descriptor instead of the function entry address. */
1078 if (TYPE_CODE (type) == TYPE_CODE_PTR
1079 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1080 {
1081 ULONGEST codeptr, fptr;
1082
1083 codeptr = unpack_long (type, value_contents (arg));
e17a4113
UW
1084 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1085 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1086 fptr);
1218e655
RC
1087 valbuf = fptrbuf;
1088 }
1089 else
1090 {
1091 valbuf = value_contents (arg);
1092 }
1093
38ca4e0c 1094 /* Always store the argument in memory. */
1218e655 1095 write_memory (sp + offset, valbuf, len);
38ca4e0c 1096
38ca4e0c
MK
1097 regnum = HPPA_ARG0_REGNUM - offset / 8;
1098 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1099 {
1100 regcache_cooked_write_part (regcache, regnum,
1101 offset % 8, min (len, 8), valbuf);
1102 offset += min (len, 8);
1103 valbuf += min (len, 8);
1104 len -= min (len, 8);
1105 regnum--;
2f690297 1106 }
38ca4e0c
MK
1107
1108 offset += len;
2f690297
AC
1109 }
1110
38ca4e0c
MK
1111 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1112 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1113
1114 /* Allocate the outgoing parameter area. Make sure the outgoing
1115 parameter area is multiple of 16 bytes in length. */
1116 sp += max (align_up (offset, 16), 64);
1117
1118 /* Allocate 32-bytes of scratch space. The documentation doesn't
1119 mention this, but it seems to be needed. */
1120 sp += 32;
1121
1122 /* Allocate the frame marker area. */
1123 sp += 16;
1124
1125 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1126 its address. */
2f690297 1127 if (struct_return)
38ca4e0c 1128 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1129
38ca4e0c 1130 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1131 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1132 if (gp != 0)
38ca4e0c 1133 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1134
38ca4e0c 1135 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1136 if (!gdbarch_push_dummy_code_p (gdbarch))
1137 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1138
38ca4e0c
MK
1139 /* Set up GR30 to hold the stack pointer (sp). */
1140 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1141
38ca4e0c 1142 return sp;
2f690297 1143}
38ca4e0c 1144\f
2f690297 1145
08a27113
MK
1146/* Handle 32/64-bit struct return conventions. */
1147
1148static enum return_value_convention
6a3a010b 1149hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1150 struct type *type, struct regcache *regcache,
e127f0db 1151 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1152{
1153 if (TYPE_LENGTH (type) <= 2 * 4)
1154 {
1155 /* The value always lives in the right hand end of the register
1156 (or register pair)? */
1157 int b;
1158 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1159 int part = TYPE_LENGTH (type) % 4;
1160 /* The left hand register contains only part of the value,
1161 transfer that first so that the rest can be xfered as entire
1162 4-byte registers. */
1163 if (part > 0)
1164 {
1165 if (readbuf != NULL)
1166 regcache_cooked_read_part (regcache, reg, 4 - part,
1167 part, readbuf);
1168 if (writebuf != NULL)
1169 regcache_cooked_write_part (regcache, reg, 4 - part,
1170 part, writebuf);
1171 reg++;
1172 }
1173 /* Now transfer the remaining register values. */
1174 for (b = part; b < TYPE_LENGTH (type); b += 4)
1175 {
1176 if (readbuf != NULL)
e127f0db 1177 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1178 if (writebuf != NULL)
e127f0db 1179 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1180 reg++;
1181 }
1182 return RETURN_VALUE_REGISTER_CONVENTION;
1183 }
1184 else
1185 return RETURN_VALUE_STRUCT_CONVENTION;
1186}
1187
1188static enum return_value_convention
6a3a010b 1189hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1190 struct type *type, struct regcache *regcache,
e127f0db 1191 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1192{
1193 int len = TYPE_LENGTH (type);
1194 int regnum, offset;
1195
bad43aa5 1196 if (len > 16)
08a27113
MK
1197 {
1198 /* All return values larget than 128 bits must be aggregate
1199 return values. */
9738b034
MK
1200 gdb_assert (!hppa64_integral_or_pointer_p (type));
1201 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1202
1203 /* "Aggregate return values larger than 128 bits are returned in
1204 a buffer allocated by the caller. The address of the buffer
1205 must be passed in GR 28." */
1206 return RETURN_VALUE_STRUCT_CONVENTION;
1207 }
1208
1209 if (hppa64_integral_or_pointer_p (type))
1210 {
1211 /* "Integral return values are returned in GR 28. Values
1212 smaller than 64 bits are padded on the left (with garbage)." */
1213 regnum = HPPA_RET0_REGNUM;
1214 offset = 8 - len;
1215 }
1216 else if (hppa64_floating_p (type))
1217 {
1218 if (len > 8)
1219 {
1220 /* "Double-extended- and quad-precision floating-point
1221 values are returned in GRs 28 and 29. The sign,
1222 exponent, and most-significant bits of the mantissa are
1223 returned in GR 28; the least-significant bits of the
1224 mantissa are passed in GR 29. For double-extended
1225 precision values, GR 29 is padded on the right with 48
1226 bits of garbage." */
1227 regnum = HPPA_RET0_REGNUM;
1228 offset = 0;
1229 }
1230 else
1231 {
1232 /* "Single-precision and double-precision floating-point
1233 return values are returned in FR 4R (single precision) or
1234 FR 4 (double-precision)." */
1235 regnum = HPPA64_FP4_REGNUM;
1236 offset = 8 - len;
1237 }
1238 }
1239 else
1240 {
1241 /* "Aggregate return values up to 64 bits in size are returned
1242 in GR 28. Aggregates smaller than 64 bits are left aligned
1243 in the register; the pad bits on the right are undefined."
1244
1245 "Aggregate return values between 65 and 128 bits are returned
1246 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1247 the remaining bits are placed, left aligned, in GR 29. The
1248 pad bits on the right of GR 29 (if any) are undefined." */
1249 regnum = HPPA_RET0_REGNUM;
1250 offset = 0;
1251 }
1252
1253 if (readbuf)
1254 {
08a27113
MK
1255 while (len > 0)
1256 {
1257 regcache_cooked_read_part (regcache, regnum, offset,
e127f0db
MK
1258 min (len, 8), readbuf);
1259 readbuf += min (len, 8);
08a27113
MK
1260 len -= min (len, 8);
1261 regnum++;
1262 }
1263 }
1264
1265 if (writebuf)
1266 {
08a27113
MK
1267 while (len > 0)
1268 {
1269 regcache_cooked_write_part (regcache, regnum, offset,
e127f0db
MK
1270 min (len, 8), writebuf);
1271 writebuf += min (len, 8);
08a27113
MK
1272 len -= min (len, 8);
1273 regnum++;
1274 }
1275 }
1276
1277 return RETURN_VALUE_REGISTER_CONVENTION;
1278}
1279\f
1280
d49771ef 1281static CORE_ADDR
a7aad9aa 1282hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1283 struct target_ops *targ)
1284{
1285 if (addr & 2)
1286 {
0dfff4cb 1287 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
a7aad9aa 1288 CORE_ADDR plabel = addr & ~3;
0dfff4cb 1289 return read_memory_typed_address (plabel, func_ptr_type);
d49771ef
RC
1290 }
1291
1292 return addr;
1293}
1294
1797a8f6
AC
1295static CORE_ADDR
1296hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1297{
1298 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1299 and not _bit_)! */
1300 return align_up (addr, 64);
1301}
1302
2f690297
AC
1303/* Force all frames to 16-byte alignment. Better safe than sorry. */
1304
1305static CORE_ADDR
1797a8f6 1306hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1307{
1308 /* Just always 16-byte align. */
1309 return align_up (addr, 16);
1310}
1311
cc72850f 1312CORE_ADDR
61a1198a 1313hppa_read_pc (struct regcache *regcache)
c906108c 1314{
cc72850f 1315 ULONGEST ipsw;
61a1198a 1316 ULONGEST pc;
c906108c 1317
61a1198a
UW
1318 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1319 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1320
1321 /* If the current instruction is nullified, then we are effectively
1322 still executing the previous instruction. Pretend we are still
cc72850f
MK
1323 there. This is needed when single stepping; if the nullified
1324 instruction is on a different line, we don't want GDB to think
1325 we've stepped onto that line. */
fe46cd3a
RC
1326 if (ipsw & 0x00200000)
1327 pc -= 4;
1328
cc72850f 1329 return pc & ~0x3;
c906108c
SS
1330}
1331
cc72850f 1332void
61a1198a 1333hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1334{
61a1198a
UW
1335 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1336 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1337}
1338
c906108c 1339/* For the given instruction (INST), return any adjustment it makes
1777feb0 1340 to the stack pointer or zero for no adjustment.
c906108c
SS
1341
1342 This only handles instructions commonly found in prologues. */
1343
1344static int
fba45db2 1345prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1346{
1347 /* This must persist across calls. */
1348 static int save_high21;
1349
1350 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1351 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1352 return hppa_extract_14 (inst);
c906108c
SS
1353
1354 /* stwm X,D(sp) */
1355 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1356 return hppa_extract_14 (inst);
c906108c 1357
104c1213
JM
1358 /* std,ma X,D(sp) */
1359 if ((inst & 0xffe00008) == 0x73c00008)
66c6502d 1360 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1361
e22b26cb 1362 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1363 save high bits in save_high21 for later use. */
e22b26cb 1364 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1365 {
abc485a1 1366 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1367 return 0;
1368 }
1369
1370 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1371 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1372
1373 /* fstws as used by the HP compilers. */
1374 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1375 return hppa_extract_5_load (inst);
c906108c
SS
1376
1377 /* No adjustment. */
1378 return 0;
1379}
1380
1381/* Return nonzero if INST is a branch of some kind, else return zero. */
1382
1383static int
fba45db2 1384is_branch (unsigned long inst)
c906108c
SS
1385{
1386 switch (inst >> 26)
1387 {
1388 case 0x20:
1389 case 0x21:
1390 case 0x22:
1391 case 0x23:
7be570e7 1392 case 0x27:
c906108c
SS
1393 case 0x28:
1394 case 0x29:
1395 case 0x2a:
1396 case 0x2b:
7be570e7 1397 case 0x2f:
c906108c
SS
1398 case 0x30:
1399 case 0x31:
1400 case 0x32:
1401 case 0x33:
1402 case 0x38:
1403 case 0x39:
1404 case 0x3a:
7be570e7 1405 case 0x3b:
c906108c
SS
1406 return 1;
1407
1408 default:
1409 return 0;
1410 }
1411}
1412
1413/* Return the register number for a GR which is saved by INST or
b35018fd 1414 zero if INST does not save a GR.
c906108c 1415
b35018fd 1416 Referenced from:
7be570e7 1417
b35018fd
CG
1418 parisc 1.1:
1419 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
c906108c 1420
b35018fd
CG
1421 parisc 2.0:
1422 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
c906108c 1423
b35018fd
CG
1424 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1425 on page 106 in parisc 2.0, all instructions for storing values from
1426 the general registers are:
c5aa993b 1427
b35018fd
CG
1428 Store: stb, sth, stw, std (according to Chapter 7, they
1429 are only in both "inst >> 26" and "inst >> 6".
1430 Store Absolute: stwa, stda (according to Chapter 7, they are only
1431 in "inst >> 6".
1432 Store Bytes: stby, stdby (according to Chapter 7, they are
1433 only in "inst >> 6").
1434
1435 For (inst >> 26), according to Chapter 7:
1436
1437 The effective memory reference address is formed by the addition
1438 of an immediate displacement to a base value.
1439
1440 - stb: 0x18, store a byte from a general register.
1441
1442 - sth: 0x19, store a halfword from a general register.
1443
1444 - stw: 0x1a, store a word from a general register.
1445
1446 - stwm: 0x1b, store a word from a general register and perform base
1447 register modification (2.0 will still treate it as stw).
1448
1449 - std: 0x1c, store a doubleword from a general register (2.0 only).
1450
1451 - stw: 0x1f, store a word from a general register (2.0 only).
1452
1453 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1454
1455 The effective memory reference address is formed by the addition
1456 of an index value to a base value specified in the instruction.
1457
1458 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1459
1460 - sth: 0x09, store a halfword from a general register (1.1 calls
1461 sths).
1462
1463 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1464
1465 - std: 0x0b: store a doubleword from a general register (2.0 only)
1466
1467 Implement fast byte moves (stores) to unaligned word or doubleword
1468 destination.
1469
1470 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1471
1472 - stdby: 0x0d for unaligned doubleword (2.0 only).
1473
1474 Store a word or doubleword using an absolute memory address formed
1475 using short or long displacement or indexed
1476
1477 - stwa: 0x0e, store a word from a general register to an absolute
1478 address (1.0 calls stwas).
1479
1480 - stda: 0x0f, store a doubleword from a general register to an
1481 absolute address (2.0 only). */
1482
1483static int
1484inst_saves_gr (unsigned long inst)
1485{
1486 switch ((inst >> 26) & 0x0f)
1487 {
1488 case 0x03:
1489 switch ((inst >> 6) & 0x0f)
1490 {
1491 case 0x08:
1492 case 0x09:
1493 case 0x0a:
1494 case 0x0b:
1495 case 0x0c:
1496 case 0x0d:
1497 case 0x0e:
1498 case 0x0f:
1499 return hppa_extract_5R_store (inst);
1500 default:
1501 return 0;
1502 }
1503 case 0x18:
1504 case 0x19:
1505 case 0x1a:
1506 case 0x1b:
1507 case 0x1c:
1508 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1509 case 0x1f:
1510 return hppa_extract_5R_store (inst);
1511 default:
1512 return 0;
1513 }
c906108c
SS
1514}
1515
1516/* Return the register number for a FR which is saved by INST or
1517 zero it INST does not save a FR.
1518
1519 Note we only care about full 64bit register stores (that's the only
1520 kind of stores the prologue will use).
1521
1522 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1523
1524static int
fba45db2 1525inst_saves_fr (unsigned long inst)
c906108c 1526{
1777feb0 1527 /* Is this an FSTD? */
c906108c 1528 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1529 return hppa_extract_5r_store (inst);
7be570e7 1530 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1531 return hppa_extract_5R_store (inst);
1777feb0 1532 /* Is this an FSTW? */
c906108c 1533 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1534 return hppa_extract_5r_store (inst);
7be570e7 1535 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1536 return hppa_extract_5R_store (inst);
c906108c
SS
1537 return 0;
1538}
1539
1540/* Advance PC across any function entry prologue instructions
1777feb0 1541 to reach some "real" code.
c906108c
SS
1542
1543 Use information in the unwind table to determine what exactly should
1544 be in the prologue. */
1545
1546
a71f8c30 1547static CORE_ADDR
be8626e0
MD
1548skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1549 int stop_before_branch)
c906108c 1550{
e17a4113 1551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 1552 gdb_byte buf[4];
c906108c
SS
1553 CORE_ADDR orig_pc = pc;
1554 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1555 unsigned long args_stored, status, i, restart_gr, restart_fr;
1556 struct unwind_table_entry *u;
a71f8c30 1557 int final_iteration;
c906108c
SS
1558
1559 restart_gr = 0;
1560 restart_fr = 0;
1561
1562restart:
1563 u = find_unwind_entry (pc);
1564 if (!u)
1565 return pc;
1566
1777feb0 1567 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1568 if ((pc & ~0x3) != u->region_start)
1569 return pc;
1570
1571 /* This is how much of a frame adjustment we need to account for. */
1572 stack_remaining = u->Total_frame_size << 3;
1573
1574 /* Magic register saves we want to know about. */
1575 save_rp = u->Save_RP;
1576 save_sp = u->Save_SP;
1577
1578 /* An indication that args may be stored into the stack. Unfortunately
1579 the HPUX compilers tend to set this in cases where no args were
1580 stored too!. */
1581 args_stored = 1;
1582
1583 /* Turn the Entry_GR field into a bitmask. */
1584 save_gr = 0;
1585 for (i = 3; i < u->Entry_GR + 3; i++)
1586 {
1587 /* Frame pointer gets saved into a special location. */
eded0a31 1588 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1589 continue;
1590
1591 save_gr |= (1 << i);
1592 }
1593 save_gr &= ~restart_gr;
1594
1595 /* Turn the Entry_FR field into a bitmask too. */
1596 save_fr = 0;
1597 for (i = 12; i < u->Entry_FR + 12; i++)
1598 save_fr |= (1 << i);
1599 save_fr &= ~restart_fr;
1600
a71f8c30
RC
1601 final_iteration = 0;
1602
c906108c
SS
1603 /* Loop until we find everything of interest or hit a branch.
1604
1605 For unoptimized GCC code and for any HP CC code this will never ever
1606 examine any user instructions.
1607
1608 For optimzied GCC code we're faced with problems. GCC will schedule
1609 its prologue and make prologue instructions available for delay slot
1610 filling. The end result is user code gets mixed in with the prologue
1611 and a prologue instruction may be in the delay slot of the first branch
1612 or call.
1613
1614 Some unexpected things are expected with debugging optimized code, so
1615 we allow this routine to walk past user instructions in optimized
1616 GCC code. */
1617 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1618 || args_stored)
1619 {
1620 unsigned int reg_num;
1621 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1622 unsigned long old_save_rp, old_save_sp, next_inst;
1623
1624 /* Save copies of all the triggers so we can compare them later
c5aa993b 1625 (only for HPC). */
c906108c
SS
1626 old_save_gr = save_gr;
1627 old_save_fr = save_fr;
1628 old_save_rp = save_rp;
1629 old_save_sp = save_sp;
1630 old_stack_remaining = stack_remaining;
1631
8defab1a 1632 status = target_read_memory (pc, buf, 4);
e17a4113 1633 inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1634
c906108c
SS
1635 /* Yow! */
1636 if (status != 0)
1637 return pc;
1638
1639 /* Note the interesting effects of this instruction. */
1640 stack_remaining -= prologue_inst_adjust_sp (inst);
1641
7be570e7
JM
1642 /* There are limited ways to store the return pointer into the
1643 stack. */
c4c79048 1644 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1645 save_rp = 0;
1646
104c1213 1647 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1648 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1649 if ((inst & 0xffffc000) == 0x6fc10000
1650 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1651 save_sp = 0;
1652
6426a772
JM
1653 /* Are we loading some register with an offset from the argument
1654 pointer? */
1655 if ((inst & 0xffe00000) == 0x37a00000
1656 || (inst & 0xffffffe0) == 0x081d0240)
1657 {
1658 pc += 4;
1659 continue;
1660 }
1661
c906108c
SS
1662 /* Account for general and floating-point register saves. */
1663 reg_num = inst_saves_gr (inst);
1664 save_gr &= ~(1 << reg_num);
1665
1666 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1667 Unfortunately args_stored only tells us that some arguments
1668 where stored into the stack. Not how many or what kind!
c906108c 1669
c5aa993b
JM
1670 This is a kludge as on the HP compiler sets this bit and it
1671 never does prologue scheduling. So once we see one, skip past
1672 all of them. We have similar code for the fp arg stores below.
c906108c 1673
c5aa993b
JM
1674 FIXME. Can still die if we have a mix of GR and FR argument
1675 stores! */
be8626e0 1676 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1677 && reg_num <= 26)
c906108c 1678 {
be8626e0 1679 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1680 && reg_num <= 26)
c906108c
SS
1681 {
1682 pc += 4;
8defab1a 1683 status = target_read_memory (pc, buf, 4);
e17a4113 1684 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1685 if (status != 0)
1686 return pc;
1687 reg_num = inst_saves_gr (inst);
1688 }
1689 args_stored = 0;
1690 continue;
1691 }
1692
1693 reg_num = inst_saves_fr (inst);
1694 save_fr &= ~(1 << reg_num);
1695
8defab1a 1696 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1697 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1698
c906108c
SS
1699 /* Yow! */
1700 if (status != 0)
1701 return pc;
1702
1703 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1704 save. */
c906108c
SS
1705 if ((inst & 0xfc000000) == 0x34000000
1706 && inst_saves_fr (next_inst) >= 4
819844ad 1707 && inst_saves_fr (next_inst)
be8626e0 1708 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1709 {
1710 /* So we drop into the code below in a reasonable state. */
1711 reg_num = inst_saves_fr (next_inst);
1712 pc -= 4;
1713 }
1714
1715 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1716 This is a kludge as on the HP compiler sets this bit and it
1717 never does prologue scheduling. So once we see one, skip past
1718 all of them. */
819844ad 1719 if (reg_num >= 4
be8626e0 1720 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1721 {
819844ad
UW
1722 while (reg_num >= 4
1723 && reg_num
be8626e0 1724 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1725 {
1726 pc += 8;
8defab1a 1727 status = target_read_memory (pc, buf, 4);
e17a4113 1728 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1729 if (status != 0)
1730 return pc;
1731 if ((inst & 0xfc000000) != 0x34000000)
1732 break;
8defab1a 1733 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1734 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1735 if (status != 0)
1736 return pc;
1737 reg_num = inst_saves_fr (next_inst);
1738 }
1739 args_stored = 0;
1740 continue;
1741 }
1742
1743 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1744 instruction is in the delay slot of the first call/branch. */
a71f8c30 1745 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1746 break;
1747
1748 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1749 arguments were stored into the stack (boo hiss). This could
1750 cause this code to then skip a bunch of user insns (up to the
1751 first branch).
1752
1753 To combat this we try to identify when args_stored was bogusly
1754 set and clear it. We only do this when args_stored is nonzero,
1755 all other resources are accounted for, and nothing changed on
1756 this pass. */
c906108c 1757 if (args_stored
c5aa993b 1758 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1759 && old_save_gr == save_gr && old_save_fr == save_fr
1760 && old_save_rp == save_rp && old_save_sp == save_sp
1761 && old_stack_remaining == stack_remaining)
1762 break;
c5aa993b 1763
c906108c
SS
1764 /* Bump the PC. */
1765 pc += 4;
a71f8c30
RC
1766
1767 /* !stop_before_branch, so also look at the insn in the delay slot
1768 of the branch. */
1769 if (final_iteration)
1770 break;
1771 if (is_branch (inst))
1772 final_iteration = 1;
c906108c
SS
1773 }
1774
1775 /* We've got a tenative location for the end of the prologue. However
1776 because of limitations in the unwind descriptor mechanism we may
1777 have went too far into user code looking for the save of a register
1778 that does not exist. So, if there registers we expected to be saved
1779 but never were, mask them out and restart.
1780
1781 This should only happen in optimized code, and should be very rare. */
c5aa993b 1782 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1783 {
1784 pc = orig_pc;
1785 restart_gr = save_gr;
1786 restart_fr = save_fr;
1787 goto restart;
1788 }
1789
1790 return pc;
1791}
1792
1793
7be570e7
JM
1794/* Return the address of the PC after the last prologue instruction if
1795 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1796
1797static CORE_ADDR
fba45db2 1798after_prologue (CORE_ADDR pc)
c906108c
SS
1799{
1800 struct symtab_and_line sal;
1801 CORE_ADDR func_addr, func_end;
c906108c 1802
7be570e7
JM
1803 /* If we can not find the symbol in the partial symbol table, then
1804 there is no hope we can determine the function's start address
1805 with this code. */
c906108c 1806 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1807 return 0;
c906108c 1808
7be570e7 1809 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1810 sal = find_pc_line (func_addr, 0);
1811
7be570e7
JM
1812 /* There are only two cases to consider. First, the end of the source line
1813 is within the function bounds. In that case we return the end of the
1814 source line. Second is the end of the source line extends beyond the
1815 bounds of the current function. We need to use the slow code to
1777feb0 1816 examine instructions in that case.
c906108c 1817
7be570e7
JM
1818 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1819 the wrong thing to do. In fact, it should be entirely possible for this
1820 function to always return zero since the slow instruction scanning code
1821 is supposed to *always* work. If it does not, then it is a bug. */
1822 if (sal.end < func_end)
1823 return sal.end;
c5aa993b 1824 else
7be570e7 1825 return 0;
c906108c
SS
1826}
1827
1828/* To skip prologues, I use this predicate. Returns either PC itself
1829 if the code at PC does not look like a function prologue; otherwise
1777feb0 1830 returns an address that (if we're lucky) follows the prologue.
a71f8c30
RC
1831
1832 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1777feb0 1833 It doesn't necessarily skips all the insns in the prologue. In fact
a71f8c30
RC
1834 we might not want to skip all the insns because a prologue insn may
1835 appear in the delay slot of the first branch, and we don't want to
1836 skip over the branch in that case. */
c906108c 1837
8d153463 1838static CORE_ADDR
6093d2eb 1839hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1840{
c5aa993b 1841 CORE_ADDR post_prologue_pc;
c906108c 1842
c5aa993b
JM
1843 /* See if we can determine the end of the prologue via the symbol table.
1844 If so, then return either PC, or the PC after the prologue, whichever
1845 is greater. */
c906108c 1846
c5aa993b 1847 post_prologue_pc = after_prologue (pc);
c906108c 1848
7be570e7
JM
1849 /* If after_prologue returned a useful address, then use it. Else
1850 fall back on the instruction skipping code.
1851
1852 Some folks have claimed this causes problems because the breakpoint
1853 may be the first instruction of the prologue. If that happens, then
1854 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1855 if (post_prologue_pc != 0)
1856 return max (pc, post_prologue_pc);
c5aa993b 1857 else
be8626e0 1858 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1859}
1860
29d375ac 1861/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1862
29d375ac 1863static struct unwind_table_entry *
227e86ad 1864hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1865{
227e86ad 1866 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1867
1868 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
ad1193e7 1869 result of get_frame_address_in_block implies a problem.
93d42b30 1870 The bits should have been removed earlier, before the return
c7ce8faa 1871 value of gdbarch_unwind_pc. That might be happening already;
93d42b30
DJ
1872 if it isn't, it should be fixed. Then this call can be
1873 removed. */
227e86ad 1874 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1875 return find_unwind_entry (pc);
1876}
1877
26d08f08
AC
1878struct hppa_frame_cache
1879{
1880 CORE_ADDR base;
1881 struct trad_frame_saved_reg *saved_regs;
1882};
1883
1884static struct hppa_frame_cache *
227e86ad 1885hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1886{
227e86ad 1887 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1888 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1889 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
26d08f08
AC
1890 struct hppa_frame_cache *cache;
1891 long saved_gr_mask;
1892 long saved_fr_mask;
26d08f08
AC
1893 long frame_size;
1894 struct unwind_table_entry *u;
9f7194c3 1895 CORE_ADDR prologue_end;
50b2f48a 1896 int fp_in_r1 = 0;
26d08f08
AC
1897 int i;
1898
369aa520
RC
1899 if (hppa_debug)
1900 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1901 frame_relative_level(this_frame));
369aa520 1902
26d08f08 1903 if ((*this_cache) != NULL)
369aa520
RC
1904 {
1905 if (hppa_debug)
5af949e3
UW
1906 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1907 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 1908 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1909 }
26d08f08
AC
1910 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1911 (*this_cache) = cache;
227e86ad 1912 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1913
1914 /* Yow! */
227e86ad 1915 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1916 if (!u)
369aa520
RC
1917 {
1918 if (hppa_debug)
1919 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
9a3c8263 1920 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1921 }
26d08f08
AC
1922
1923 /* Turn the Entry_GR field into a bitmask. */
1924 saved_gr_mask = 0;
1925 for (i = 3; i < u->Entry_GR + 3; i++)
1926 {
1927 /* Frame pointer gets saved into a special location. */
eded0a31 1928 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1929 continue;
1930
1931 saved_gr_mask |= (1 << i);
1932 }
1933
1934 /* Turn the Entry_FR field into a bitmask too. */
1935 saved_fr_mask = 0;
1936 for (i = 12; i < u->Entry_FR + 12; i++)
1937 saved_fr_mask |= (1 << i);
1938
1939 /* Loop until we find everything of interest or hit a branch.
1940
1941 For unoptimized GCC code and for any HP CC code this will never ever
1942 examine any user instructions.
1943
1944 For optimized GCC code we're faced with problems. GCC will schedule
1945 its prologue and make prologue instructions available for delay slot
1946 filling. The end result is user code gets mixed in with the prologue
1947 and a prologue instruction may be in the delay slot of the first branch
1948 or call.
1949
1950 Some unexpected things are expected with debugging optimized code, so
1951 we allow this routine to walk past user instructions in optimized
1952 GCC code. */
1953 {
1954 int final_iteration = 0;
46acf081 1955 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1956 int looking_for_sp = u->Save_SP;
1957 int looking_for_rp = u->Save_RP;
1958 int fp_loc = -1;
9f7194c3 1959
a71f8c30 1960 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1961 skip_prologue_using_sal, in case we stepped into a function without
1962 symbol information. hppa_skip_prologue also bounds the returned
1963 pc by the passed in pc, so it will not return a pc in the next
1777feb0 1964 function.
a71f8c30
RC
1965
1966 We used to call hppa_skip_prologue to find the end of the prologue,
1967 but if some non-prologue instructions get scheduled into the prologue,
1968 and the program is compiled with debug information, the "easy" way
1969 in hppa_skip_prologue will return a prologue end that is too early
1970 for us to notice any potential frame adjustments. */
d5c27f81 1971
ef02daa9
DJ
1972 /* We used to use get_frame_func to locate the beginning of the
1973 function to pass to skip_prologue. However, when objects are
1974 compiled without debug symbols, get_frame_func can return the wrong
1777feb0 1975 function (or 0). We can do better than that by using unwind records.
46acf081 1976 This only works if the Region_description of the unwind record
1777feb0 1977 indicates that it includes the entry point of the function.
46acf081
RC
1978 HP compilers sometimes generate unwind records for regions that
1979 do not include the entry or exit point of a function. GNU tools
1980 do not do this. */
1981
1982 if ((u->Region_description & 0x2) == 0)
1983 start_pc = u->region_start;
1984 else
227e86ad 1985 start_pc = get_frame_func (this_frame);
d5c27f81 1986
be8626e0 1987 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1988 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1989
1990 if (prologue_end != 0 && end_pc > prologue_end)
1991 end_pc = prologue_end;
1992
26d08f08 1993 frame_size = 0;
9f7194c3 1994
46acf081 1995 for (pc = start_pc;
26d08f08
AC
1996 ((saved_gr_mask || saved_fr_mask
1997 || looking_for_sp || looking_for_rp
1998 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1999 && pc < end_pc);
26d08f08
AC
2000 pc += 4)
2001 {
2002 int reg;
e362b510 2003 gdb_byte buf4[4];
4a302917
RC
2004 long inst;
2005
227e86ad 2006 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 2007 {
5af949e3
UW
2008 error (_("Cannot read instruction at %s."),
2009 paddress (gdbarch, pc));
9a3c8263 2010 return (struct hppa_frame_cache *) (*this_cache);
4a302917
RC
2011 }
2012
e17a4113 2013 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
9f7194c3 2014
26d08f08
AC
2015 /* Note the interesting effects of this instruction. */
2016 frame_size += prologue_inst_adjust_sp (inst);
2017
2018 /* There are limited ways to store the return pointer into the
2019 stack. */
2020 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2021 {
2022 looking_for_rp = 0;
34f75cc1 2023 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 2024 }
dfaf8edb
MK
2025 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2026 {
2027 looking_for_rp = 0;
2028 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2029 }
c4c79048
RC
2030 else if (inst == 0x0fc212c1
2031 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
2032 {
2033 looking_for_rp = 0;
34f75cc1 2034 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
2035 }
2036
2037 /* Check to see if we saved SP into the stack. This also
2038 happens to indicate the location of the saved frame
2039 pointer. */
2040 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2041 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2042 {
2043 looking_for_sp = 0;
eded0a31 2044 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 2045 }
50b2f48a
RC
2046 else if (inst == 0x08030241) /* copy %r3, %r1 */
2047 {
2048 fp_in_r1 = 1;
2049 }
26d08f08
AC
2050
2051 /* Account for general and floating-point register saves. */
2052 reg = inst_saves_gr (inst);
2053 if (reg >= 3 && reg <= 18
eded0a31 2054 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
2055 {
2056 saved_gr_mask &= ~(1 << reg);
abc485a1 2057 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
2058 /* stwm with a positive displacement is a _post_
2059 _modify_. */
2060 cache->saved_regs[reg].addr = 0;
2061 else if ((inst & 0xfc00000c) == 0x70000008)
2062 /* A std has explicit post_modify forms. */
2063 cache->saved_regs[reg].addr = 0;
2064 else
2065 {
2066 CORE_ADDR offset;
2067
2068 if ((inst >> 26) == 0x1c)
66c6502d 2069 offset = (inst & 0x1 ? -(1 << 13) : 0)
1777feb0 2070 | (((inst >> 4) & 0x3ff) << 3);
26d08f08 2071 else if ((inst >> 26) == 0x03)
abc485a1 2072 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 2073 else
abc485a1 2074 offset = hppa_extract_14 (inst);
26d08f08
AC
2075
2076 /* Handle code with and without frame pointers. */
2077 if (u->Save_SP)
2078 cache->saved_regs[reg].addr = offset;
2079 else
1777feb0
MS
2080 cache->saved_regs[reg].addr
2081 = (u->Total_frame_size << 3) + offset;
26d08f08
AC
2082 }
2083 }
2084
2085 /* GCC handles callee saved FP regs a little differently.
2086
2087 It emits an instruction to put the value of the start of
2088 the FP store area into %r1. It then uses fstds,ma with a
2089 basereg of %r1 for the stores.
2090
2091 HP CC emits them at the current stack pointer modifying the
2092 stack pointer as it stores each register. */
2093
2094 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2095 if ((inst & 0xffffc000) == 0x34610000
2096 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2097 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2098
2099 reg = inst_saves_fr (inst);
2100 if (reg >= 12 && reg <= 21)
2101 {
2102 /* Note +4 braindamage below is necessary because the FP
2103 status registers are internally 8 registers rather than
2104 the expected 4 registers. */
2105 saved_fr_mask &= ~(1 << reg);
2106 if (fp_loc == -1)
2107 {
2108 /* 1st HP CC FP register store. After this
2109 instruction we've set enough state that the GCC and
2110 HPCC code are both handled in the same manner. */
34f75cc1 2111 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2112 fp_loc = 8;
2113 }
2114 else
2115 {
eded0a31 2116 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2117 fp_loc += 8;
2118 }
2119 }
2120
1777feb0 2121 /* Quit if we hit any kind of branch the previous iteration. */
26d08f08
AC
2122 if (final_iteration)
2123 break;
2124 /* We want to look precisely one instruction beyond the branch
2125 if we have not found everything yet. */
2126 if (is_branch (inst))
2127 final_iteration = 1;
2128 }
2129 }
2130
2131 {
2132 /* The frame base always represents the value of %sp at entry to
2133 the current function (and is thus equivalent to the "saved"
2134 stack pointer. */
227e86ad
JB
2135 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2136 HPPA_SP_REGNUM);
ed70ba00 2137 CORE_ADDR fp;
9f7194c3
RC
2138
2139 if (hppa_debug)
5af949e3
UW
2140 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2141 "prologue_end=%s) ",
2142 paddress (gdbarch, this_sp),
2143 paddress (gdbarch, get_frame_pc (this_frame)),
2144 paddress (gdbarch, prologue_end));
9f7194c3 2145
ed70ba00
RC
2146 /* Check to see if a frame pointer is available, and use it for
2147 frame unwinding if it is.
2148
2149 There are some situations where we need to rely on the frame
2150 pointer to do stack unwinding. For example, if a function calls
2151 alloca (), the stack pointer can get adjusted inside the body of
2152 the function. In this case, the ABI requires that the compiler
2153 maintain a frame pointer for the function.
2154
2155 The unwind record has a flag (alloca_frame) that indicates that
2156 a function has a variable frame; unfortunately, gcc/binutils
2157 does not set this flag. Instead, whenever a frame pointer is used
2158 and saved on the stack, the Save_SP flag is set. We use this to
2159 decide whether to use the frame pointer for unwinding.
2160
ed70ba00
RC
2161 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2162 instead of Save_SP. */
2163
227e86ad 2164 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2165
6fcecea0 2166 if (u->alloca_frame)
46acf081 2167 fp -= u->Total_frame_size << 3;
ed70ba00 2168
227e86ad 2169 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2170 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2171 {
2172 cache->base = fp;
2173
2174 if (hppa_debug)
5af949e3
UW
2175 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2176 paddress (gdbarch, cache->base));
ed70ba00 2177 }
1658da49
RC
2178 else if (u->Save_SP
2179 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2180 {
9f7194c3
RC
2181 /* Both we're expecting the SP to be saved and the SP has been
2182 saved. The entry SP value is saved at this frame's SP
2183 address. */
e17a4113 2184 cache->base = read_memory_integer (this_sp, word_size, byte_order);
9f7194c3
RC
2185
2186 if (hppa_debug)
5af949e3
UW
2187 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2188 paddress (gdbarch, cache->base));
9f7194c3 2189 }
26d08f08 2190 else
9f7194c3 2191 {
1658da49
RC
2192 /* The prologue has been slowly allocating stack space. Adjust
2193 the SP back. */
2194 cache->base = this_sp - frame_size;
9f7194c3 2195 if (hppa_debug)
5af949e3
UW
2196 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2197 paddress (gdbarch, cache->base));
9f7194c3
RC
2198
2199 }
eded0a31 2200 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2201 }
2202
412275d5
AC
2203 /* The PC is found in the "return register", "Millicode" uses "r31"
2204 as the return register while normal code uses "rp". */
26d08f08 2205 if (u->Millicode)
9f7194c3 2206 {
5859efe5 2207 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2208 {
2209 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2210 if (hppa_debug)
2211 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2212 }
9f7194c3
RC
2213 else
2214 {
227e86ad 2215 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2216 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2217 if (hppa_debug)
2218 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2219 }
2220 }
26d08f08 2221 else
9f7194c3 2222 {
34f75cc1 2223 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2224 {
2225 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2226 cache->saved_regs[HPPA_RP_REGNUM];
2227 if (hppa_debug)
2228 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2229 }
9f7194c3
RC
2230 else
2231 {
227e86ad
JB
2232 ULONGEST rp = get_frame_register_unsigned (this_frame,
2233 HPPA_RP_REGNUM);
34f75cc1 2234 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2235 if (hppa_debug)
2236 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2237 }
2238 }
26d08f08 2239
50b2f48a
RC
2240 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2241 frame. However, there is a one-insn window where we haven't saved it
2242 yet, but we've already clobbered it. Detect this case and fix it up.
2243
2244 The prologue sequence for frame-pointer functions is:
2245 0: stw %rp, -20(%sp)
2246 4: copy %r3, %r1
2247 8: copy %sp, %r3
2248 c: stw,ma %r1, XX(%sp)
2249
2250 So if we are at offset c, the r3 value that we want is not yet saved
2251 on the stack, but it's been overwritten. The prologue analyzer will
2252 set fp_in_r1 when it sees the copy insn so we know to get the value
2253 from r1 instead. */
2254 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2255 && fp_in_r1)
2256 {
227e86ad 2257 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2258 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2259 }
1658da49 2260
26d08f08
AC
2261 {
2262 /* Convert all the offsets into addresses. */
2263 int reg;
65c5db89 2264 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2265 {
2266 if (trad_frame_addr_p (cache->saved_regs, reg))
2267 cache->saved_regs[reg].addr += cache->base;
2268 }
2269 }
2270
f77a2124 2271 {
f77a2124
RC
2272 struct gdbarch_tdep *tdep;
2273
f77a2124
RC
2274 tdep = gdbarch_tdep (gdbarch);
2275
2276 if (tdep->unwind_adjust_stub)
227e86ad 2277 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2278 }
2279
369aa520 2280 if (hppa_debug)
5af949e3
UW
2281 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2282 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 2283 return (struct hppa_frame_cache *) (*this_cache);
26d08f08
AC
2284}
2285
2286static void
227e86ad
JB
2287hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2288 struct frame_id *this_id)
26d08f08 2289{
d5c27f81 2290 struct hppa_frame_cache *info;
227e86ad 2291 CORE_ADDR pc = get_frame_pc (this_frame);
d5c27f81
RC
2292 struct unwind_table_entry *u;
2293
227e86ad
JB
2294 info = hppa_frame_cache (this_frame, this_cache);
2295 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2296
2297 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2298}
2299
227e86ad
JB
2300static struct value *
2301hppa_frame_prev_register (struct frame_info *this_frame,
2302 void **this_cache, int regnum)
26d08f08 2303{
227e86ad
JB
2304 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2305
1777feb0
MS
2306 return hppa_frame_prev_register_helper (this_frame,
2307 info->saved_regs, regnum);
227e86ad
JB
2308}
2309
2310static int
2311hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2312 struct frame_info *this_frame, void **this_cache)
2313{
2314 if (hppa_find_unwind_entry_in_block (this_frame))
2315 return 1;
2316
2317 return 0;
0da28f8a
RC
2318}
2319
2320static const struct frame_unwind hppa_frame_unwind =
2321{
2322 NORMAL_FRAME,
8fbca658 2323 default_frame_unwind_stop_reason,
0da28f8a 2324 hppa_frame_this_id,
227e86ad
JB
2325 hppa_frame_prev_register,
2326 NULL,
2327 hppa_frame_unwind_sniffer
0da28f8a
RC
2328};
2329
0da28f8a
RC
2330/* This is a generic fallback frame unwinder that kicks in if we fail all
2331 the other ones. Normally we would expect the stub and regular unwinder
2332 to work, but in some cases we might hit a function that just doesn't
2333 have any unwind information available. In this case we try to do
2334 unwinding solely based on code reading. This is obviously going to be
2335 slow, so only use this as a last resort. Currently this will only
2336 identify the stack and pc for the frame. */
2337
2338static struct hppa_frame_cache *
227e86ad 2339hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a 2340{
e17a4113
UW
2341 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0da28f8a 2343 struct hppa_frame_cache *cache;
4ba6a975
MK
2344 unsigned int frame_size = 0;
2345 int found_rp = 0;
2346 CORE_ADDR start_pc;
0da28f8a 2347
d5c27f81 2348 if (hppa_debug)
4ba6a975
MK
2349 fprintf_unfiltered (gdb_stdlog,
2350 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2351 frame_relative_level (this_frame));
d5c27f81 2352
0da28f8a
RC
2353 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2354 (*this_cache) = cache;
227e86ad 2355 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2356
227e86ad 2357 start_pc = get_frame_func (this_frame);
4ba6a975 2358 if (start_pc)
0da28f8a 2359 {
227e86ad 2360 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2361 CORE_ADDR pc;
0da28f8a 2362
4ba6a975
MK
2363 for (pc = start_pc; pc < cur_pc; pc += 4)
2364 {
2365 unsigned int insn;
0da28f8a 2366
e17a4113 2367 insn = read_memory_unsigned_integer (pc, 4, byte_order);
4ba6a975 2368 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2369
4ba6a975
MK
2370 /* There are limited ways to store the return pointer into the
2371 stack. */
2372 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2373 {
2374 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2375 found_rp = 1;
2376 }
c4c79048
RC
2377 else if (insn == 0x0fc212c1
2378 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2379 {
2380 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2381 found_rp = 1;
2382 }
2383 }
412275d5 2384 }
0da28f8a 2385
d5c27f81 2386 if (hppa_debug)
4ba6a975
MK
2387 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2388 frame_size, found_rp);
d5c27f81 2389
227e86ad 2390 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2391 cache->base -= frame_size;
6d1be3f1 2392 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2393
2394 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2395 {
2396 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2397 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2398 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2399 }
412275d5
AC
2400 else
2401 {
4ba6a975 2402 ULONGEST rp;
227e86ad 2403 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2404 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2405 }
0da28f8a
RC
2406
2407 return cache;
26d08f08
AC
2408}
2409
0da28f8a 2410static void
227e86ad 2411hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2412 struct frame_id *this_id)
2413{
2414 struct hppa_frame_cache *info =
227e86ad
JB
2415 hppa_fallback_frame_cache (this_frame, this_cache);
2416
2417 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2418}
2419
227e86ad
JB
2420static struct value *
2421hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2422 void **this_cache, int regnum)
0da28f8a 2423{
1777feb0
MS
2424 struct hppa_frame_cache *info
2425 = hppa_fallback_frame_cache (this_frame, this_cache);
227e86ad 2426
1777feb0
MS
2427 return hppa_frame_prev_register_helper (this_frame,
2428 info->saved_regs, regnum);
0da28f8a
RC
2429}
2430
2431static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2432{
2433 NORMAL_FRAME,
8fbca658 2434 default_frame_unwind_stop_reason,
0da28f8a 2435 hppa_fallback_frame_this_id,
227e86ad
JB
2436 hppa_fallback_frame_prev_register,
2437 NULL,
2438 default_frame_sniffer
26d08f08
AC
2439};
2440
7f07c5b6
RC
2441/* Stub frames, used for all kinds of call stubs. */
2442struct hppa_stub_unwind_cache
2443{
2444 CORE_ADDR base;
2445 struct trad_frame_saved_reg *saved_regs;
2446};
2447
2448static struct hppa_stub_unwind_cache *
227e86ad 2449hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2450 void **this_cache)
2451{
227e86ad 2452 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7f07c5b6 2453 struct hppa_stub_unwind_cache *info;
22b0923d 2454 struct unwind_table_entry *u;
7f07c5b6
RC
2455
2456 if (*this_cache)
9a3c8263 2457 return (struct hppa_stub_unwind_cache *) *this_cache;
7f07c5b6
RC
2458
2459 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2460 *this_cache = info;
227e86ad 2461 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2462
227e86ad 2463 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2464
090ccbb7 2465 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2466 {
2467 /* HPUX uses export stubs in function calls; the export stub clobbers
2468 the return value of the caller, and, later restores it from the
2469 stack. */
227e86ad 2470 u = find_unwind_entry (get_frame_pc (this_frame));
22b0923d
RC
2471
2472 if (u && u->stub_unwind.stub_type == EXPORT)
2473 {
2474 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2475
2476 return info;
2477 }
2478 }
2479
2480 /* By default we assume that stubs do not change the rp. */
2481 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2482
7f07c5b6
RC
2483 return info;
2484}
2485
2486static void
227e86ad 2487hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2488 void **this_prologue_cache,
2489 struct frame_id *this_id)
2490{
2491 struct hppa_stub_unwind_cache *info
227e86ad 2492 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2493
2494 if (info)
227e86ad 2495 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
7f07c5b6
RC
2496}
2497
227e86ad
JB
2498static struct value *
2499hppa_stub_frame_prev_register (struct frame_info *this_frame,
2500 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2501{
2502 struct hppa_stub_unwind_cache *info
227e86ad 2503 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2504
227e86ad 2505 if (info == NULL)
8a3fe4f8 2506 error (_("Requesting registers from null frame."));
7f07c5b6 2507
1777feb0
MS
2508 return hppa_frame_prev_register_helper (this_frame,
2509 info->saved_regs, regnum);
227e86ad 2510}
7f07c5b6 2511
227e86ad
JB
2512static int
2513hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2514 struct frame_info *this_frame,
2515 void **this_cache)
7f07c5b6 2516{
227e86ad
JB
2517 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2518 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2520
6d1be3f1 2521 if (pc == 0
84674fe1 2522 || (tdep->in_solib_call_trampoline != NULL
3e5d3a5a 2523 && tdep->in_solib_call_trampoline (gdbarch, pc))
464963c9 2524 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2525 return 1;
2526 return 0;
7f07c5b6
RC
2527}
2528
227e86ad
JB
2529static const struct frame_unwind hppa_stub_frame_unwind = {
2530 NORMAL_FRAME,
8fbca658 2531 default_frame_unwind_stop_reason,
227e86ad
JB
2532 hppa_stub_frame_this_id,
2533 hppa_stub_frame_prev_register,
2534 NULL,
2535 hppa_stub_unwind_sniffer
2536};
2537
26d08f08 2538static struct frame_id
227e86ad 2539hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2540{
227e86ad
JB
2541 return frame_id_build (get_frame_register_unsigned (this_frame,
2542 HPPA_SP_REGNUM),
2543 get_frame_pc (this_frame));
26d08f08
AC
2544}
2545
cc72850f 2546CORE_ADDR
26d08f08
AC
2547hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2548{
fe46cd3a
RC
2549 ULONGEST ipsw;
2550 CORE_ADDR pc;
2551
cc72850f
MK
2552 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2553 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2554
2555 /* If the current instruction is nullified, then we are effectively
2556 still executing the previous instruction. Pretend we are still
cc72850f
MK
2557 there. This is needed when single stepping; if the nullified
2558 instruction is on a different line, we don't want GDB to think
2559 we've stepped onto that line. */
fe46cd3a
RC
2560 if (ipsw & 0x00200000)
2561 pc -= 4;
2562
cc72850f 2563 return pc & ~0x3;
26d08f08
AC
2564}
2565
ff644745
JB
2566/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2567 Return NULL if no such symbol was found. */
2568
3b7344d5 2569struct bound_minimal_symbol
ff644745
JB
2570hppa_lookup_stub_minimal_symbol (const char *name,
2571 enum unwind_stub_types stub_type)
2572{
2573 struct objfile *objfile;
2574 struct minimal_symbol *msym;
3b7344d5 2575 struct bound_minimal_symbol result = { NULL, NULL };
ff644745
JB
2576
2577 ALL_MSYMBOLS (objfile, msym)
2578 {
efd66ac6 2579 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
ff644745
JB
2580 {
2581 struct unwind_table_entry *u;
2582
efd66ac6 2583 u = find_unwind_entry (MSYMBOL_VALUE (msym));
ff644745 2584 if (u != NULL && u->stub_unwind.stub_type == stub_type)
3b7344d5
TT
2585 {
2586 result.objfile = objfile;
2587 result.minsym = msym;
2588 return result;
2589 }
ff644745
JB
2590 }
2591 }
2592
3b7344d5 2593 return result;
ff644745
JB
2594}
2595
c906108c 2596static void
fba45db2 2597unwind_command (char *exp, int from_tty)
c906108c
SS
2598{
2599 CORE_ADDR address;
2600 struct unwind_table_entry *u;
2601
2602 /* If we have an expression, evaluate it and use it as the address. */
2603
2604 if (exp != 0 && *exp != 0)
2605 address = parse_and_eval_address (exp);
2606 else
2607 return;
2608
2609 u = find_unwind_entry (address);
2610
2611 if (!u)
2612 {
2613 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2614 return;
2615 }
2616
3329c4b5 2617 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
c906108c 2618
5af949e3 2619 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
d5c27f81 2620 gdb_flush (gdb_stdout);
c906108c 2621
5af949e3 2622 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
d5c27f81 2623 gdb_flush (gdb_stdout);
c906108c 2624
c906108c 2625#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2626
2627 printf_unfiltered ("\n\tflags =");
2628 pif (Cannot_unwind);
2629 pif (Millicode);
2630 pif (Millicode_save_sr0);
2631 pif (Entry_SR);
2632 pif (Args_stored);
2633 pif (Variable_Frame);
2634 pif (Separate_Package_Body);
2635 pif (Frame_Extension_Millicode);
2636 pif (Stack_Overflow_Check);
2637 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2638 pif (sr4export);
2639 pif (cxx_info);
2640 pif (cxx_try_catch);
2641 pif (sched_entry_seq);
c906108c
SS
2642 pif (Save_SP);
2643 pif (Save_RP);
2644 pif (Save_MRP_in_frame);
6fcecea0 2645 pif (save_r19);
c906108c
SS
2646 pif (Cleanup_defined);
2647 pif (MPE_XL_interrupt_marker);
2648 pif (HP_UX_interrupt_marker);
2649 pif (Large_frame);
6fcecea0 2650 pif (alloca_frame);
c906108c
SS
2651
2652 putchar_unfiltered ('\n');
2653
c906108c 2654#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2655
2656 pin (Region_description);
2657 pin (Entry_FR);
2658 pin (Entry_GR);
2659 pin (Total_frame_size);
57dac9e1
RC
2660
2661 if (u->stub_unwind.stub_type)
2662 {
2663 printf_unfiltered ("\tstub type = ");
2664 switch (u->stub_unwind.stub_type)
2665 {
2666 case LONG_BRANCH:
2667 printf_unfiltered ("long branch\n");
2668 break;
2669 case PARAMETER_RELOCATION:
2670 printf_unfiltered ("parameter relocation\n");
2671 break;
2672 case EXPORT:
2673 printf_unfiltered ("export\n");
2674 break;
2675 case IMPORT:
2676 printf_unfiltered ("import\n");
2677 break;
2678 case IMPORT_SHLIB:
2679 printf_unfiltered ("import shlib\n");
2680 break;
2681 default:
2682 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2683 }
2684 }
c906108c 2685}
c906108c 2686
38ca4e0c
MK
2687/* Return the GDB type object for the "standard" data type of data in
2688 register REGNUM. */
d709c020 2689
eded0a31 2690static struct type *
38ca4e0c 2691hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2692{
38ca4e0c 2693 if (regnum < HPPA_FP4_REGNUM)
df4df182 2694 return builtin_type (gdbarch)->builtin_uint32;
d709c020 2695 else
27067745 2696 return builtin_type (gdbarch)->builtin_float;
d709c020
JB
2697}
2698
eded0a31 2699static struct type *
38ca4e0c 2700hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2701{
38ca4e0c 2702 if (regnum < HPPA64_FP4_REGNUM)
df4df182 2703 return builtin_type (gdbarch)->builtin_uint64;
3ff7cf9e 2704 else
27067745 2705 return builtin_type (gdbarch)->builtin_double;
3ff7cf9e
JB
2706}
2707
38ca4e0c
MK
2708/* Return non-zero if REGNUM is not a register available to the user
2709 through ptrace/ttrace. */
d709c020 2710
8d153463 2711static int
64a3914f 2712hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2713{
2714 return (regnum == 0
34f75cc1
RC
2715 || regnum == HPPA_PCSQ_HEAD_REGNUM
2716 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2717 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2718}
d709c020 2719
d037d088 2720static int
64a3914f 2721hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2722{
2723 /* cr26 and cr27 are readable (but not writable) from userspace. */
2724 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2725 return 0;
2726 else
64a3914f 2727 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2728}
2729
38ca4e0c 2730static int
64a3914f 2731hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2732{
2733 return (regnum == 0
2734 || regnum == HPPA_PCSQ_HEAD_REGNUM
2735 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2736 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2737}
2738
d037d088 2739static int
64a3914f 2740hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2741{
2742 /* cr26 and cr27 are readable (but not writable) from userspace. */
2743 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2744 return 0;
2745 else
64a3914f 2746 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2747}
2748
8d153463 2749static CORE_ADDR
85ddcc70 2750hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
d709c020
JB
2751{
2752 /* The low two bits of the PC on the PA contain the privilege level.
2753 Some genius implementing a (non-GCC) compiler apparently decided
2754 this means that "addresses" in a text section therefore include a
2755 privilege level, and thus symbol tables should contain these bits.
2756 This seems like a bonehead thing to do--anyway, it seems to work
2757 for our purposes to just ignore those bits. */
2758
2759 return (addr &= ~0x3);
2760}
2761
e127f0db
MK
2762/* Get the ARGIth function argument for the current function. */
2763
4a302917 2764static CORE_ADDR
143985b7
AF
2765hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2766 struct type *type)
2767{
e127f0db 2768 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2769}
2770
05d1431c 2771static enum register_status
0f8d9d59 2772hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2773 int regnum, gdb_byte *buf)
0f8d9d59 2774{
05d1431c
PA
2775 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2776 ULONGEST tmp;
2777 enum register_status status;
0f8d9d59 2778
05d1431c
PA
2779 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2780 if (status == REG_VALID)
2781 {
2782 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2783 tmp &= ~0x3;
2784 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2785 }
2786 return status;
0f8d9d59
RC
2787}
2788
d49771ef 2789static CORE_ADDR
e38c262f 2790hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2791{
2792 return 0;
2793}
2794
227e86ad
JB
2795struct value *
2796hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2797 struct trad_frame_saved_reg saved_regs[],
227e86ad 2798 int regnum)
0da28f8a 2799{
227e86ad 2800 struct gdbarch *arch = get_frame_arch (this_frame);
e17a4113 2801 enum bfd_endian byte_order = gdbarch_byte_order (arch);
8f4e467c 2802
8693c419
MK
2803 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2804 {
227e86ad
JB
2805 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2806 CORE_ADDR pc;
2807 struct value *pcoq_val =
2808 trad_frame_get_prev_register (this_frame, saved_regs,
2809 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2810
e17a4113
UW
2811 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2812 size, byte_order);
227e86ad 2813 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2814 }
0da28f8a 2815
227e86ad 2816 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2817}
8693c419 2818\f
0da28f8a 2819
34f55018
MK
2820/* An instruction to match. */
2821struct insn_pattern
2822{
2823 unsigned int data; /* See if it matches this.... */
2824 unsigned int mask; /* ... with this mask. */
2825};
2826
2827/* See bfd/elf32-hppa.c */
2828static struct insn_pattern hppa_long_branch_stub[] = {
2829 /* ldil LR'xxx,%r1 */
2830 { 0x20200000, 0xffe00000 },
2831 /* be,n RR'xxx(%sr4,%r1) */
2832 { 0xe0202002, 0xffe02002 },
2833 { 0, 0 }
2834};
2835
2836static struct insn_pattern hppa_long_branch_pic_stub[] = {
2837 /* b,l .+8, %r1 */
2838 { 0xe8200000, 0xffe00000 },
2839 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2840 { 0x28200000, 0xffe00000 },
2841 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2842 { 0xe0202002, 0xffe02002 },
2843 { 0, 0 }
2844};
2845
2846static struct insn_pattern hppa_import_stub[] = {
2847 /* addil LR'xxx, %dp */
2848 { 0x2b600000, 0xffe00000 },
2849 /* ldw RR'xxx(%r1), %r21 */
2850 { 0x48350000, 0xffffb000 },
2851 /* bv %r0(%r21) */
2852 { 0xeaa0c000, 0xffffffff },
2853 /* ldw RR'xxx+4(%r1), %r19 */
2854 { 0x48330000, 0xffffb000 },
2855 { 0, 0 }
2856};
2857
2858static struct insn_pattern hppa_import_pic_stub[] = {
2859 /* addil LR'xxx,%r19 */
2860 { 0x2a600000, 0xffe00000 },
2861 /* ldw RR'xxx(%r1),%r21 */
2862 { 0x48350000, 0xffffb000 },
2863 /* bv %r0(%r21) */
2864 { 0xeaa0c000, 0xffffffff },
2865 /* ldw RR'xxx+4(%r1),%r19 */
2866 { 0x48330000, 0xffffb000 },
2867 { 0, 0 },
2868};
2869
2870static struct insn_pattern hppa_plt_stub[] = {
2871 /* b,l 1b, %r20 - 1b is 3 insns before here */
2872 { 0xea9f1fdd, 0xffffffff },
2873 /* depi 0,31,2,%r20 */
2874 { 0xd6801c1e, 0xffffffff },
2875 { 0, 0 }
34f55018
MK
2876};
2877
2878/* Maximum number of instructions on the patterns above. */
2879#define HPPA_MAX_INSN_PATTERN_LEN 4
2880
2881/* Return non-zero if the instructions at PC match the series
2882 described in PATTERN, or zero otherwise. PATTERN is an array of
2883 'struct insn_pattern' objects, terminated by an entry whose mask is
2884 zero.
2885
2886 When the match is successful, fill INSN[i] with what PATTERN[i]
2887 matched. */
2888
2889static int
e17a4113
UW
2890hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2891 struct insn_pattern *pattern, unsigned int *insn)
34f55018 2892{
e17a4113 2893 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
34f55018
MK
2894 CORE_ADDR npc = pc;
2895 int i;
2896
2897 for (i = 0; pattern[i].mask; i++)
2898 {
2899 gdb_byte buf[HPPA_INSN_SIZE];
2900
8defab1a 2901 target_read_memory (npc, buf, HPPA_INSN_SIZE);
e17a4113 2902 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
34f55018
MK
2903 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2904 npc += 4;
2905 else
2906 return 0;
2907 }
2908
2909 return 1;
2910}
2911
2912/* This relaxed version of the insstruction matcher allows us to match
2913 from somewhere inside the pattern, by looking backwards in the
2914 instruction scheme. */
2915
2916static int
e17a4113
UW
2917hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2918 struct insn_pattern *pattern, unsigned int *insn)
34f55018
MK
2919{
2920 int offset, len = 0;
2921
2922 while (pattern[len].mask)
2923 len++;
2924
2925 for (offset = 0; offset < len; offset++)
e17a4113
UW
2926 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2927 pattern, insn))
34f55018
MK
2928 return 1;
2929
2930 return 0;
2931}
2932
2933static int
2934hppa_in_dyncall (CORE_ADDR pc)
2935{
2936 struct unwind_table_entry *u;
2937
2938 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2939 if (!u)
2940 return 0;
2941
2942 return (pc >= u->region_start && pc <= u->region_end);
2943}
2944
2945int
3e5d3a5a 2946hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
34f55018
MK
2947{
2948 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2949 struct unwind_table_entry *u;
2950
3e5d3a5a 2951 if (in_plt_section (pc) || hppa_in_dyncall (pc))
34f55018
MK
2952 return 1;
2953
2954 /* The GNU toolchain produces linker stubs without unwind
2955 information. Since the pattern matching for linker stubs can be
2956 quite slow, so bail out if we do have an unwind entry. */
2957
2958 u = find_unwind_entry (pc);
806e23c0 2959 if (u != NULL)
34f55018
MK
2960 return 0;
2961
e17a4113
UW
2962 return
2963 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2964 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2965 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2966 || hppa_match_insns_relaxed (gdbarch, pc,
2967 hppa_long_branch_pic_stub, insn));
34f55018
MK
2968}
2969
2970/* This code skips several kind of "trampolines" used on PA-RISC
2971 systems: $$dyncall, import stubs and PLT stubs. */
2972
2973CORE_ADDR
52f729a7 2974hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018 2975{
0dfff4cb
UW
2976 struct gdbarch *gdbarch = get_frame_arch (frame);
2977 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2978
34f55018
MK
2979 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2980 int dp_rel;
2981
2982 /* $$dyncall handles both PLABELs and direct addresses. */
2983 if (hppa_in_dyncall (pc))
2984 {
52f729a7 2985 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2986
2987 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2988 if (pc & 0x2)
0dfff4cb 2989 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
34f55018
MK
2990
2991 return pc;
2992 }
2993
e17a4113
UW
2994 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2995 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
34f55018
MK
2996 {
2997 /* Extract the target address from the addil/ldw sequence. */
2998 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2999
3000 if (dp_rel)
52f729a7 3001 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 3002 else
52f729a7 3003 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
3004
3005 /* fallthrough */
3006 }
3007
3e5d3a5a 3008 if (in_plt_section (pc))
34f55018 3009 {
0dfff4cb 3010 pc = read_memory_typed_address (pc, func_ptr_type);
34f55018
MK
3011
3012 /* If the PLT slot has not yet been resolved, the target will be
3013 the PLT stub. */
3e5d3a5a 3014 if (in_plt_section (pc))
34f55018
MK
3015 {
3016 /* Sanity check: are we pointing to the PLT stub? */
e17a4113 3017 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
34f55018 3018 {
5af949e3
UW
3019 warning (_("Cannot resolve PLT stub at %s."),
3020 paddress (gdbarch, pc));
34f55018
MK
3021 return 0;
3022 }
3023
3024 /* This should point to the fixup routine. */
0dfff4cb 3025 pc = read_memory_typed_address (pc + 8, func_ptr_type);
34f55018
MK
3026 }
3027 }
3028
3029 return pc;
3030}
3031\f
3032
8e8b2dba
MC
3033/* Here is a table of C type sizes on hppa with various compiles
3034 and options. I measured this on PA 9000/800 with HP-UX 11.11
3035 and these compilers:
3036
3037 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3038 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3039 /opt/aCC/bin/aCC B3910B A.03.45
3040 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3041
3042 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3043 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3044 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3045 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3046 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3047 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3048 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3049 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3050
3051 Each line is:
3052
3053 compiler and options
3054 char, short, int, long, long long
3055 float, double, long double
3056 char *, void (*)()
3057
3058 So all these compilers use either ILP32 or LP64 model.
3059 TODO: gcc has more options so it needs more investigation.
3060
a2379359
MC
3061 For floating point types, see:
3062
3063 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3064 HP-UX floating-point guide, hpux 11.00
3065
8e8b2dba
MC
3066 -- chastain 2003-12-18 */
3067
e6e68f1f
JB
3068static struct gdbarch *
3069hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3070{
3ff7cf9e 3071 struct gdbarch_tdep *tdep;
e6e68f1f 3072 struct gdbarch *gdbarch;
59623e27
JB
3073
3074 /* Try to determine the ABI of the object we are loading. */
4be87837 3075 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 3076 {
4be87837
DJ
3077 /* If it's a SOM file, assume it's HP/UX SOM. */
3078 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3079 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 3080 }
e6e68f1f
JB
3081
3082 /* find a candidate among the list of pre-declared architectures. */
3083 arches = gdbarch_list_lookup_by_info (arches, &info);
3084 if (arches != NULL)
3085 return (arches->gdbarch);
3086
3087 /* If none found, then allocate and initialize one. */
41bf6aca 3088 tdep = XCNEW (struct gdbarch_tdep);
3ff7cf9e
JB
3089 gdbarch = gdbarch_alloc (&info, tdep);
3090
3091 /* Determine from the bfd_arch_info structure if we are dealing with
3092 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3093 then default to a 32bit machine. */
3094 if (info.bfd_arch_info != NULL)
3095 tdep->bytes_per_address =
3096 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3097 else
3098 tdep->bytes_per_address = 4;
3099
d49771ef
RC
3100 tdep->find_global_pointer = hppa_find_global_pointer;
3101
3ff7cf9e
JB
3102 /* Some parts of the gdbarch vector depend on whether we are running
3103 on a 32 bits or 64 bits target. */
3104 switch (tdep->bytes_per_address)
3105 {
3106 case 4:
3107 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3108 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3109 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3110 set_gdbarch_cannot_store_register (gdbarch,
3111 hppa32_cannot_store_register);
3112 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3113 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3114 break;
3115 case 8:
3116 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3117 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3118 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3119 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3120 set_gdbarch_cannot_store_register (gdbarch,
3121 hppa64_cannot_store_register);
3122 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3123 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3124 break;
3125 default:
e2e0b3e5 3126 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3127 tdep->bytes_per_address);
3128 }
3129
3ff7cf9e 3130 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3131 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3132
8e8b2dba
MC
3133 /* The following gdbarch vector elements are the same in both ILP32
3134 and LP64, but might show differences some day. */
3135 set_gdbarch_long_long_bit (gdbarch, 64);
3136 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3137 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3138
3ff7cf9e
JB
3139 /* The following gdbarch vector elements do not depend on the address
3140 size, or in any other gdbarch element previously set. */
60383d10 3141 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
c9cf6e20
MG
3142 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3143 hppa_stack_frame_destroyed_p);
a2a84a72 3144 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3145 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3146 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
85ddcc70 3147 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
60383d10 3148 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3149 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3150 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3151
143985b7
AF
3152 /* Helper for function argument information. */
3153 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3154
36482093
AC
3155 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3156
3a3bc038
AC
3157 /* When a hardware watchpoint triggers, we'll move the inferior past
3158 it by removing all eventpoints; stepping past the instruction
3159 that caused the trigger; reinserting eventpoints; and checking
3160 whether any watched location changed. */
3161 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3162
5979bc46 3163 /* Inferior function call methods. */
fca7aa43 3164 switch (tdep->bytes_per_address)
5979bc46 3165 {
fca7aa43
AC
3166 case 4:
3167 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3168 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3169 set_gdbarch_convert_from_func_ptr_addr
3170 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3171 break;
3172 case 8:
782eae8b
AC
3173 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3174 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3175 break;
782eae8b 3176 default:
e2e0b3e5 3177 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3178 }
3179
3180 /* Struct return methods. */
fca7aa43 3181 switch (tdep->bytes_per_address)
fad850b2 3182 {
fca7aa43
AC
3183 case 4:
3184 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3185 break;
3186 case 8:
782eae8b 3187 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3188 break;
fca7aa43 3189 default:
e2e0b3e5 3190 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3191 }
7f07c5b6 3192
85f4f2d8 3193 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 3194 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3195
5979bc46 3196 /* Frame unwind methods. */
227e86ad 3197 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3198 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3199
50306a9d
RC
3200 /* Hook in ABI-specific overrides, if they have been registered. */
3201 gdbarch_init_osabi (info, gdbarch);
3202
7f07c5b6 3203 /* Hook in the default unwinders. */
227e86ad
JB
3204 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3205 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3206 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3207
e6e68f1f
JB
3208 return gdbarch;
3209}
3210
3211static void
464963c9 3212hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3213{
464963c9 3214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3215
3216 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3217 tdep->bytes_per_address);
3218 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3219}
3220
72753510
PA
3221/* Provide a prototype to silence -Wmissing-prototypes. */
3222extern initialize_file_ftype _initialize_hppa_tdep;
3223
4facf7e8
JB
3224void
3225_initialize_hppa_tdep (void)
3226{
3227 struct cmd_list_element *c;
4facf7e8 3228
e6e68f1f 3229 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3230
7c46b9fb
RC
3231 hppa_objfile_priv_data = register_objfile_data ();
3232
4facf7e8 3233 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3234 _("Print unwind table entry at given address."),
4facf7e8
JB
3235 &maintenanceprintlist);
3236
1777feb0 3237 /* Debug this files internals. */
7915a72c
AC
3238 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3239Set whether hppa target specific debugging information should be displayed."),
3240 _("\
3241Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3242This flag controls whether hppa target specific debugging information is\n\
3243displayed. This information is particularly useful for debugging frame\n\
7915a72c 3244unwinding problems."),
2c5b56ce 3245 NULL,
7915a72c 3246 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3247 &setdebuglist, &showdebuglist);
4facf7e8 3248}
This page took 2.387011 seconds and 4 git commands to generate.