Use scoped_value_mark in dwarf2_evaluate_loc_desc_full
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "bfd.h"
25#include "inferior.h"
4e052eda 26#include "regcache.h"
e5d66720 27#include "completer.h"
59623e27 28#include "osabi.h"
343af405 29#include "arch-utils.h"
1777feb0 30/* For argument passing to the inferior. */
c906108c 31#include "symtab.h"
fde2cceb 32#include "dis-asm.h"
26d08f08
AC
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
c906108c 36
c906108c
SS
37#include "gdbcore.h"
38#include "gdbcmd.h"
e6bb342a 39#include "gdbtypes.h"
c906108c 40#include "objfiles.h"
3ff7cf9e 41#include "hppa-tdep.h"
325fac50 42#include <algorithm>
c906108c 43
369aa520
RC
44static int hppa_debug = 0;
45
60383d10 46/* Some local constants. */
3ff7cf9e
JB
47static const int hppa32_num_regs = 128;
48static const int hppa64_num_regs = 96;
49
61a12cfa
JK
50/* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58/* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
7c46b9fb
RC
81/* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61a12cfa 87static const struct objfile_data *hppa_objfile_priv_data = NULL;
7c46b9fb 88
1777feb0 89/* Get at various relevent fields of an instruction word. */
e2ac8128
JB
90#define MASK_5 0x1f
91#define MASK_11 0x7ff
92#define MASK_14 0x3fff
93#define MASK_21 0x1fffff
94
e2ac8128
JB
95/* Sizes (in bytes) of the native unwind entries. */
96#define UNWIND_ENTRY_SIZE 16
97#define STUB_UNWIND_ENTRY_SIZE 8
98
c906108c 99/* Routines to extract various sized constants out of hppa
1777feb0 100 instructions. */
c906108c
SS
101
102/* This assumes that no garbage lies outside of the lower bits of
1777feb0 103 value. */
c906108c 104
63807e1d 105static int
abc485a1 106hppa_sign_extend (unsigned val, unsigned bits)
c906108c 107{
66c6502d 108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
c906108c
SS
109}
110
1777feb0 111/* For many immediate values the sign bit is the low bit! */
c906108c 112
63807e1d 113static int
abc485a1 114hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 115{
66c6502d 116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
c906108c
SS
117}
118
e2ac8128 119/* Extract the bits at positions between FROM and TO, using HP's numbering
1777feb0 120 (MSB = 0). */
e2ac8128 121
abc485a1
RC
122int
123hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
124{
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126}
127
1777feb0 128/* Extract the immediate field from a ld{bhw}s instruction. */
c906108c 129
abc485a1
RC
130int
131hppa_extract_5_load (unsigned word)
c906108c 132{
abc485a1 133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
134}
135
1777feb0 136/* Extract the immediate field from a break instruction. */
c906108c 137
abc485a1
RC
138unsigned
139hppa_extract_5r_store (unsigned word)
c906108c
SS
140{
141 return (word & MASK_5);
142}
143
1777feb0 144/* Extract the immediate field from a {sr}sm instruction. */
c906108c 145
abc485a1
RC
146unsigned
147hppa_extract_5R_store (unsigned word)
c906108c
SS
148{
149 return (word >> 16 & MASK_5);
150}
151
1777feb0 152/* Extract a 14 bit immediate field. */
c906108c 153
abc485a1
RC
154int
155hppa_extract_14 (unsigned word)
c906108c 156{
abc485a1 157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
158}
159
1777feb0 160/* Extract a 21 bit constant. */
c906108c 161
abc485a1
RC
162int
163hppa_extract_21 (unsigned word)
c906108c
SS
164{
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
abc485a1 169 val = hppa_get_field (word, 20, 20);
c906108c 170 val <<= 11;
abc485a1 171 val |= hppa_get_field (word, 9, 19);
c906108c 172 val <<= 2;
abc485a1 173 val |= hppa_get_field (word, 5, 6);
c906108c 174 val <<= 5;
abc485a1 175 val |= hppa_get_field (word, 0, 4);
c906108c 176 val <<= 2;
abc485a1
RC
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
179}
180
c906108c 181/* extract a 17 bit constant from branch instructions, returning the
1777feb0 182 19 bit signed value. */
c906108c 183
abc485a1
RC
184int
185hppa_extract_17 (unsigned word)
c906108c 186{
abc485a1
RC
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
190 (word & 0x1) << 16, 17) << 2;
191}
3388d7ff
RC
192
193CORE_ADDR
194hppa_symbol_address(const char *sym)
195{
3b7344d5 196 struct bound_minimal_symbol minsym;
3388d7ff
RC
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
3b7344d5 199 if (minsym.minsym)
77e371c0 200 return BMSYMBOL_VALUE_ADDRESS (minsym);
3388d7ff
RC
201 else
202 return (CORE_ADDR)-1;
203}
77d18ded 204
61a12cfa 205static struct hppa_objfile_private *
77d18ded
RC
206hppa_init_objfile_priv_data (struct objfile *objfile)
207{
208 struct hppa_objfile_private *priv;
209
210 priv = (struct hppa_objfile_private *)
211 obstack_alloc (&objfile->objfile_obstack,
212 sizeof (struct hppa_objfile_private));
213 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
214 memset (priv, 0, sizeof (*priv));
215
216 return priv;
217}
c906108c
SS
218\f
219
220/* Compare the start address for two unwind entries returning 1 if
221 the first address is larger than the second, -1 if the second is
222 larger than the first, and zero if they are equal. */
223
224static int
fba45db2 225compare_unwind_entries (const void *arg1, const void *arg2)
c906108c 226{
9a3c8263
SM
227 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
228 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
c906108c
SS
229
230 if (a->region_start > b->region_start)
231 return 1;
232 else if (a->region_start < b->region_start)
233 return -1;
234 else
235 return 0;
236}
237
53a5351d 238static void
fdd72f95 239record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 240{
fdd72f95 241 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 242 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
243 {
244 bfd_vma value = section->vma - section->filepos;
245 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
246
247 if (value < *low_text_segment_address)
248 *low_text_segment_address = value;
249 }
53a5351d
JM
250}
251
c906108c 252static void
fba45db2 253internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
1777feb0 254 asection *section, unsigned int entries,
241fd515 255 size_t size, CORE_ADDR text_offset)
c906108c
SS
256{
257 /* We will read the unwind entries into temporary memory, then
258 fill in the actual unwind table. */
fdd72f95 259
c906108c
SS
260 if (size > 0)
261 {
5db8bbe5 262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
263 unsigned long tmp;
264 unsigned i;
224c3ddb 265 char *buf = (char *) alloca (size);
fdd72f95 266 CORE_ADDR low_text_segment_address;
c906108c 267
fdd72f95 268 /* For ELF targets, then unwinds are supposed to
1777feb0 269 be segment relative offsets instead of absolute addresses.
c2c6d25f
JM
270
271 Note that when loading a shared library (text_offset != 0) the
272 unwinds are already relative to the text_offset that will be
273 passed in. */
5db8bbe5 274 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
53a5351d 275 {
fdd72f95
RC
276 low_text_segment_address = -1;
277
53a5351d 278 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
279 record_text_segment_lowaddr,
280 &low_text_segment_address);
53a5351d 281
fdd72f95 282 text_offset = low_text_segment_address;
53a5351d 283 }
5db8bbe5 284 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
acf86d54 285 {
5db8bbe5 286 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
acf86d54 287 }
53a5351d 288
c906108c
SS
289 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
290
291 /* Now internalize the information being careful to handle host/target
c5aa993b 292 endian issues. */
c906108c
SS
293 for (i = 0; i < entries; i++)
294 {
295 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 296 (bfd_byte *) buf);
c906108c
SS
297 table[i].region_start += text_offset;
298 buf += 4;
c5aa993b 299 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
300 table[i].region_end += text_offset;
301 buf += 4;
c5aa993b 302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
303 buf += 4;
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 308 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 318 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
319 table[i].cxx_info = (tmp >> 8) & 0x1;
320 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
321 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 322 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
323 table[i].Save_SP = (tmp >> 4) & 0x1;
324 table[i].Save_RP = (tmp >> 3) & 0x1;
325 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 326 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 327 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
329 buf += 4;
330 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
331 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
332 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
333 table[i].alloca_frame = (tmp >> 28) & 0x1;
334 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
335 table[i].Total_frame_size = tmp & 0x7ffffff;
336
1777feb0 337 /* Stub unwinds are handled elsewhere. */
c906108c
SS
338 table[i].stub_unwind.stub_type = 0;
339 table[i].stub_unwind.padding = 0;
340 }
341 }
342}
343
344/* Read in the backtrace information stored in the `$UNWIND_START$' section of
345 the object file. This info is used mainly by find_unwind_entry() to find
346 out the stack frame size and frame pointer used by procedures. We put
347 everything on the psymbol obstack in the objfile so that it automatically
348 gets freed when the objfile is destroyed. */
349
350static void
fba45db2 351read_unwind_info (struct objfile *objfile)
c906108c 352{
d4f3574e 353 asection *unwind_sec, *stub_unwind_sec;
241fd515 354 size_t unwind_size, stub_unwind_size, total_size;
d4f3574e 355 unsigned index, unwind_entries;
c906108c
SS
356 unsigned stub_entries, total_entries;
357 CORE_ADDR text_offset;
7c46b9fb
RC
358 struct hppa_unwind_info *ui;
359 struct hppa_objfile_private *obj_private;
c906108c 360
a99dad3d 361 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7c46b9fb
RC
362 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
363 sizeof (struct hppa_unwind_info));
c906108c
SS
364
365 ui->table = NULL;
366 ui->cache = NULL;
367 ui->last = -1;
368
d4f3574e
SS
369 /* For reasons unknown the HP PA64 tools generate multiple unwinder
370 sections in a single executable. So we just iterate over every
371 section in the BFD looking for unwinder sections intead of trying
1777feb0 372 to do a lookup with bfd_get_section_by_name.
c906108c 373
d4f3574e
SS
374 First determine the total size of the unwind tables so that we
375 can allocate memory in a nice big hunk. */
376 total_entries = 0;
377 for (unwind_sec = objfile->obfd->sections;
378 unwind_sec;
379 unwind_sec = unwind_sec->next)
c906108c 380 {
d4f3574e
SS
381 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
382 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
383 {
384 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
385 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 386
d4f3574e
SS
387 total_entries += unwind_entries;
388 }
c906108c
SS
389 }
390
d4f3574e 391 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 392 use stub unwinds at the current time. */
d4f3574e
SS
393 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
394
c906108c
SS
395 if (stub_unwind_sec)
396 {
397 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
398 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
399 }
400 else
401 {
402 stub_unwind_size = 0;
403 stub_entries = 0;
404 }
405
406 /* Compute total number of unwind entries and their total size. */
d4f3574e 407 total_entries += stub_entries;
c906108c
SS
408 total_size = total_entries * sizeof (struct unwind_table_entry);
409
410 /* Allocate memory for the unwind table. */
411 ui->table = (struct unwind_table_entry *)
8b92e4d5 412 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 413 ui->last = total_entries - 1;
c906108c 414
d4f3574e
SS
415 /* Now read in each unwind section and internalize the standard unwind
416 entries. */
c906108c 417 index = 0;
d4f3574e
SS
418 for (unwind_sec = objfile->obfd->sections;
419 unwind_sec;
420 unwind_sec = unwind_sec->next)
421 {
422 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
423 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
424 {
425 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
426 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
427
428 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
429 unwind_entries, unwind_size, text_offset);
430 index += unwind_entries;
431 }
432 }
433
434 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
435 if (stub_unwind_size > 0)
436 {
437 unsigned int i;
224c3ddb 438 char *buf = (char *) alloca (stub_unwind_size);
c906108c
SS
439
440 /* Read in the stub unwind entries. */
441 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
442 0, stub_unwind_size);
443
444 /* Now convert them into regular unwind entries. */
445 for (i = 0; i < stub_entries; i++, index++)
446 {
447 /* Clear out the next unwind entry. */
448 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
449
1777feb0 450 /* Convert offset & size into region_start and region_end.
c906108c
SS
451 Stuff away the stub type into "reserved" fields. */
452 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
453 (bfd_byte *) buf);
454 ui->table[index].region_start += text_offset;
455 buf += 4;
456 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 457 (bfd_byte *) buf);
c906108c
SS
458 buf += 2;
459 ui->table[index].region_end
c5aa993b
JM
460 = ui->table[index].region_start + 4 *
461 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
462 buf += 2;
463 }
464
465 }
466
467 /* Unwind table needs to be kept sorted. */
468 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
469 compare_unwind_entries);
470
471 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
472 obj_private = (struct hppa_objfile_private *)
473 objfile_data (objfile, hppa_objfile_priv_data);
474 if (obj_private == NULL)
77d18ded
RC
475 obj_private = hppa_init_objfile_priv_data (objfile);
476
c906108c
SS
477 obj_private->unwind_info = ui;
478}
479
480/* Lookup the unwind (stack backtrace) info for the given PC. We search all
481 of the objfiles seeking the unwind table entry for this PC. Each objfile
482 contains a sorted list of struct unwind_table_entry. Since we do a binary
483 search of the unwind tables, we depend upon them to be sorted. */
484
485struct unwind_table_entry *
fba45db2 486find_unwind_entry (CORE_ADDR pc)
c906108c
SS
487{
488 int first, middle, last;
489 struct objfile *objfile;
7c46b9fb 490 struct hppa_objfile_private *priv;
c906108c 491
369aa520 492 if (hppa_debug)
5af949e3
UW
493 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
494 hex_string (pc));
369aa520 495
1777feb0 496 /* A function at address 0? Not in HP-UX! */
c906108c 497 if (pc == (CORE_ADDR) 0)
369aa520
RC
498 {
499 if (hppa_debug)
500 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
501 return NULL;
502 }
c906108c
SS
503
504 ALL_OBJFILES (objfile)
c5aa993b 505 {
7c46b9fb 506 struct hppa_unwind_info *ui;
c5aa993b 507 ui = NULL;
9a3c8263
SM
508 priv = ((struct hppa_objfile_private *)
509 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb
RC
510 if (priv)
511 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 512
c5aa993b
JM
513 if (!ui)
514 {
515 read_unwind_info (objfile);
9a3c8263
SM
516 priv = ((struct hppa_objfile_private *)
517 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb 518 if (priv == NULL)
8a3fe4f8 519 error (_("Internal error reading unwind information."));
7c46b9fb 520 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 521 }
c906108c 522
1777feb0 523 /* First, check the cache. */
c906108c 524
c5aa993b
JM
525 if (ui->cache
526 && pc >= ui->cache->region_start
527 && pc <= ui->cache->region_end)
369aa520
RC
528 {
529 if (hppa_debug)
5af949e3
UW
530 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
531 hex_string ((uintptr_t) ui->cache));
369aa520
RC
532 return ui->cache;
533 }
c906108c 534
1777feb0 535 /* Not in the cache, do a binary search. */
c906108c 536
c5aa993b
JM
537 first = 0;
538 last = ui->last;
c906108c 539
c5aa993b
JM
540 while (first <= last)
541 {
542 middle = (first + last) / 2;
543 if (pc >= ui->table[middle].region_start
544 && pc <= ui->table[middle].region_end)
545 {
546 ui->cache = &ui->table[middle];
369aa520 547 if (hppa_debug)
5af949e3
UW
548 fprintf_unfiltered (gdb_stdlog, "%s }\n",
549 hex_string ((uintptr_t) ui->cache));
c5aa993b
JM
550 return &ui->table[middle];
551 }
c906108c 552
c5aa993b
JM
553 if (pc < ui->table[middle].region_start)
554 last = middle - 1;
555 else
556 first = middle + 1;
557 }
558 } /* ALL_OBJFILES() */
369aa520
RC
559
560 if (hppa_debug)
561 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
562
c906108c
SS
563 return NULL;
564}
565
c9cf6e20
MG
566/* Implement the stack_frame_destroyed_p gdbarch method.
567
568 The epilogue is defined here as the area either on the `bv' instruction
1777feb0 569 itself or an instruction which destroys the function's stack frame.
1fb24930
RC
570
571 We do not assume that the epilogue is at the end of a function as we can
572 also have return sequences in the middle of a function. */
c9cf6e20 573
1fb24930 574static int
c9cf6e20 575hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1fb24930 576{
e17a4113 577 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1fb24930
RC
578 unsigned long status;
579 unsigned int inst;
e362b510 580 gdb_byte buf[4];
1fb24930 581
8defab1a 582 status = target_read_memory (pc, buf, 4);
1fb24930
RC
583 if (status != 0)
584 return 0;
585
e17a4113 586 inst = extract_unsigned_integer (buf, 4, byte_order);
1fb24930
RC
587
588 /* The most common way to perform a stack adjustment ldo X(sp),sp
589 We are destroying a stack frame if the offset is negative. */
590 if ((inst & 0xffffc000) == 0x37de0000
591 && hppa_extract_14 (inst) < 0)
592 return 1;
593
594 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
595 if (((inst & 0x0fc010e0) == 0x0fc010e0
596 || (inst & 0x0fc010e0) == 0x0fc010e0)
597 && hppa_extract_14 (inst) < 0)
598 return 1;
599
600 /* bv %r0(%rp) or bv,n %r0(%rp) */
601 if (inst == 0xe840c000 || inst == 0xe840c002)
602 return 1;
603
604 return 0;
605}
606
04180708 607constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
598cc9dc 608
04180708 609typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
aaab4dba 610
e23457df
AC
611/* Return the name of a register. */
612
4a302917 613static const char *
d93859e2 614hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
615{
616 static char *names[] = {
617 "flags", "r1", "rp", "r3",
618 "r4", "r5", "r6", "r7",
619 "r8", "r9", "r10", "r11",
620 "r12", "r13", "r14", "r15",
621 "r16", "r17", "r18", "r19",
622 "r20", "r21", "r22", "r23",
623 "r24", "r25", "r26", "dp",
624 "ret0", "ret1", "sp", "r31",
625 "sar", "pcoqh", "pcsqh", "pcoqt",
626 "pcsqt", "eiem", "iir", "isr",
627 "ior", "ipsw", "goto", "sr4",
628 "sr0", "sr1", "sr2", "sr3",
629 "sr5", "sr6", "sr7", "cr0",
630 "cr8", "cr9", "ccr", "cr12",
631 "cr13", "cr24", "cr25", "cr26",
632 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
633 "fpsr", "fpe1", "fpe2", "fpe3",
634 "fpe4", "fpe5", "fpe6", "fpe7",
635 "fr4", "fr4R", "fr5", "fr5R",
636 "fr6", "fr6R", "fr7", "fr7R",
637 "fr8", "fr8R", "fr9", "fr9R",
638 "fr10", "fr10R", "fr11", "fr11R",
639 "fr12", "fr12R", "fr13", "fr13R",
640 "fr14", "fr14R", "fr15", "fr15R",
641 "fr16", "fr16R", "fr17", "fr17R",
642 "fr18", "fr18R", "fr19", "fr19R",
643 "fr20", "fr20R", "fr21", "fr21R",
644 "fr22", "fr22R", "fr23", "fr23R",
645 "fr24", "fr24R", "fr25", "fr25R",
646 "fr26", "fr26R", "fr27", "fr27R",
647 "fr28", "fr28R", "fr29", "fr29R",
648 "fr30", "fr30R", "fr31", "fr31R"
649 };
650 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
651 return NULL;
652 else
653 return names[i];
654}
655
4a302917 656static const char *
d93859e2 657hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
658{
659 static char *names[] = {
660 "flags", "r1", "rp", "r3",
661 "r4", "r5", "r6", "r7",
662 "r8", "r9", "r10", "r11",
663 "r12", "r13", "r14", "r15",
664 "r16", "r17", "r18", "r19",
665 "r20", "r21", "r22", "r23",
666 "r24", "r25", "r26", "dp",
667 "ret0", "ret1", "sp", "r31",
668 "sar", "pcoqh", "pcsqh", "pcoqt",
669 "pcsqt", "eiem", "iir", "isr",
670 "ior", "ipsw", "goto", "sr4",
671 "sr0", "sr1", "sr2", "sr3",
672 "sr5", "sr6", "sr7", "cr0",
673 "cr8", "cr9", "ccr", "cr12",
674 "cr13", "cr24", "cr25", "cr26",
675 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
676 "fpsr", "fpe1", "fpe2", "fpe3",
677 "fr4", "fr5", "fr6", "fr7",
678 "fr8", "fr9", "fr10", "fr11",
679 "fr12", "fr13", "fr14", "fr15",
680 "fr16", "fr17", "fr18", "fr19",
681 "fr20", "fr21", "fr22", "fr23",
682 "fr24", "fr25", "fr26", "fr27",
683 "fr28", "fr29", "fr30", "fr31"
684 };
685 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
686 return NULL;
687 else
688 return names[i];
689}
690
85c83e99 691/* Map dwarf DBX register numbers to GDB register numbers. */
1ef7fcb5 692static int
d3f73121 693hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5 694{
85c83e99 695 /* The general registers and the sar are the same in both sets. */
0fde2c53 696 if (reg >= 0 && reg <= 32)
1ef7fcb5
RC
697 return reg;
698
699 /* fr4-fr31 are mapped from 72 in steps of 2. */
85c83e99 700 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
1ef7fcb5
RC
701 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
702
1ef7fcb5
RC
703 return -1;
704}
705
79508e1e
AC
706/* This function pushes a stack frame with arguments as part of the
707 inferior function calling mechanism.
708
709 This is the version of the function for the 32-bit PA machines, in
710 which later arguments appear at lower addresses. (The stack always
711 grows towards higher addresses.)
712
713 We simply allocate the appropriate amount of stack space and put
714 arguments into their proper slots. */
715
4a302917 716static CORE_ADDR
7d9b040b 717hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
718 struct regcache *regcache, CORE_ADDR bp_addr,
719 int nargs, struct value **args, CORE_ADDR sp,
720 int struct_return, CORE_ADDR struct_addr)
721{
e17a4113
UW
722 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
723
79508e1e
AC
724 /* Stack base address at which any pass-by-reference parameters are
725 stored. */
726 CORE_ADDR struct_end = 0;
727 /* Stack base address at which the first parameter is stored. */
728 CORE_ADDR param_end = 0;
729
79508e1e
AC
730 /* Two passes. First pass computes the location of everything,
731 second pass writes the bytes out. */
732 int write_pass;
d49771ef
RC
733
734 /* Global pointer (r19) of the function we are trying to call. */
735 CORE_ADDR gp;
736
737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
738
79508e1e
AC
739 for (write_pass = 0; write_pass < 2; write_pass++)
740 {
1797a8f6 741 CORE_ADDR struct_ptr = 0;
1777feb0 742 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
2a6228ef
RC
743 struct_ptr is adjusted for each argument below, so the first
744 argument will end up at sp-36. */
745 CORE_ADDR param_ptr = 32;
79508e1e 746 int i;
2a6228ef
RC
747 int small_struct = 0;
748
79508e1e
AC
749 for (i = 0; i < nargs; i++)
750 {
751 struct value *arg = args[i];
4991999e 752 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
753 /* The corresponding parameter that is pushed onto the
754 stack, and [possibly] passed in a register. */
948f8e3d 755 gdb_byte param_val[8];
79508e1e
AC
756 int param_len;
757 memset (param_val, 0, sizeof param_val);
758 if (TYPE_LENGTH (type) > 8)
759 {
760 /* Large parameter, pass by reference. Store the value
761 in "struct" area and then pass its address. */
762 param_len = 4;
1797a8f6 763 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 764 if (write_pass)
0fd88904 765 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 766 TYPE_LENGTH (type));
e17a4113
UW
767 store_unsigned_integer (param_val, 4, byte_order,
768 struct_end - struct_ptr);
79508e1e
AC
769 }
770 else if (TYPE_CODE (type) == TYPE_CODE_INT
771 || TYPE_CODE (type) == TYPE_CODE_ENUM)
772 {
773 /* Integer value store, right aligned. "unpack_long"
774 takes care of any sign-extension problems. */
775 param_len = align_up (TYPE_LENGTH (type), 4);
e17a4113 776 store_unsigned_integer (param_val, param_len, byte_order,
79508e1e 777 unpack_long (type,
0fd88904 778 value_contents (arg)));
79508e1e 779 }
2a6228ef
RC
780 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
781 {
782 /* Floating point value store, right aligned. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 784 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 785 }
79508e1e
AC
786 else
787 {
79508e1e 788 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
789
790 /* Small struct value are stored right-aligned. */
79508e1e 791 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 792 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
793
794 /* Structures of size 5, 6 and 7 bytes are special in that
795 the higher-ordered word is stored in the lower-ordered
796 argument, and even though it is a 8-byte quantity the
797 registers need not be 8-byte aligned. */
1b07b470 798 if (param_len > 4 && param_len < 8)
2a6228ef 799 small_struct = 1;
79508e1e 800 }
2a6228ef 801
1797a8f6 802 param_ptr += param_len;
2a6228ef
RC
803 if (param_len == 8 && !small_struct)
804 param_ptr = align_up (param_ptr, 8);
805
806 /* First 4 non-FP arguments are passed in gr26-gr23.
807 First 4 32-bit FP arguments are passed in fr4L-fr7L.
808 First 2 64-bit FP arguments are passed in fr5 and fr7.
809
810 The rest go on the stack, starting at sp-36, towards lower
811 addresses. 8-byte arguments must be aligned to a 8-byte
812 stack boundary. */
79508e1e
AC
813 if (write_pass)
814 {
1797a8f6 815 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
816
817 /* There are some cases when we don't know the type
818 expected by the callee (e.g. for variadic functions), so
819 pass the parameters in both general and fp regs. */
820 if (param_ptr <= 48)
79508e1e 821 {
2a6228ef
RC
822 int grreg = 26 - (param_ptr - 36) / 4;
823 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
824 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
825
826 regcache_cooked_write (regcache, grreg, param_val);
827 regcache_cooked_write (regcache, fpLreg, param_val);
828
79508e1e 829 if (param_len > 4)
2a6228ef
RC
830 {
831 regcache_cooked_write (regcache, grreg + 1,
832 param_val + 4);
833
834 regcache_cooked_write (regcache, fpreg, param_val);
835 regcache_cooked_write (regcache, fpreg + 1,
836 param_val + 4);
837 }
79508e1e
AC
838 }
839 }
840 }
841
842 /* Update the various stack pointers. */
843 if (!write_pass)
844 {
2a6228ef 845 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
846 /* PARAM_PTR already accounts for all the arguments passed
847 by the user. However, the ABI mandates minimum stack
848 space allocations for outgoing arguments. The ABI also
849 mandates minimum stack alignments which we must
850 preserve. */
2a6228ef 851 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
852 }
853 }
854
855 /* If a structure has to be returned, set up register 28 to hold its
1777feb0 856 address. */
79508e1e 857 if (struct_return)
9c9acae0 858 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 859
e38c262f 860 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
861
862 if (gp != 0)
9c9acae0 863 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 864
79508e1e 865 /* Set the return address. */
77d18ded
RC
866 if (!gdbarch_push_dummy_code_p (gdbarch))
867 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 868
c4557624 869 /* Update the Stack Pointer. */
34f75cc1 870 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 871
2a6228ef 872 return param_end;
79508e1e
AC
873}
874
38ca4e0c
MK
875/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
876 Runtime Architecture for PA-RISC 2.0", which is distributed as part
877 as of the HP-UX Software Transition Kit (STK). This implementation
878 is based on version 3.3, dated October 6, 1997. */
2f690297 879
38ca4e0c 880/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 881
38ca4e0c
MK
882static int
883hppa64_integral_or_pointer_p (const struct type *type)
884{
885 switch (TYPE_CODE (type))
886 {
887 case TYPE_CODE_INT:
888 case TYPE_CODE_BOOL:
889 case TYPE_CODE_CHAR:
890 case TYPE_CODE_ENUM:
891 case TYPE_CODE_RANGE:
892 {
893 int len = TYPE_LENGTH (type);
894 return (len == 1 || len == 2 || len == 4 || len == 8);
895 }
896 case TYPE_CODE_PTR:
897 case TYPE_CODE_REF:
898 return (TYPE_LENGTH (type) == 8);
899 default:
900 break;
901 }
902
903 return 0;
904}
905
906/* Check whether TYPE is a "Floating Scalar Type". */
907
908static int
909hppa64_floating_p (const struct type *type)
910{
911 switch (TYPE_CODE (type))
912 {
913 case TYPE_CODE_FLT:
914 {
915 int len = TYPE_LENGTH (type);
916 return (len == 4 || len == 8 || len == 16);
917 }
918 default:
919 break;
920 }
921
922 return 0;
923}
2f690297 924
1218e655
RC
925/* If CODE points to a function entry address, try to look up the corresponding
926 function descriptor and return its address instead. If CODE is not a
927 function entry address, then just return it unchanged. */
928static CORE_ADDR
e17a4113 929hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
1218e655 930{
e17a4113 931 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218e655
RC
932 struct obj_section *sec, *opd;
933
934 sec = find_pc_section (code);
935
936 if (!sec)
937 return code;
938
939 /* If CODE is in a data section, assume it's already a fptr. */
940 if (!(sec->the_bfd_section->flags & SEC_CODE))
941 return code;
942
943 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
944 {
945 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
aded6f54 946 break;
1218e655
RC
947 }
948
949 if (opd < sec->objfile->sections_end)
950 {
951 CORE_ADDR addr;
952
aded6f54
PA
953 for (addr = obj_section_addr (opd);
954 addr < obj_section_endaddr (opd);
955 addr += 2 * 8)
956 {
1218e655 957 ULONGEST opdaddr;
948f8e3d 958 gdb_byte tmp[8];
1218e655
RC
959
960 if (target_read_memory (addr, tmp, sizeof (tmp)))
961 break;
e17a4113 962 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
1218e655 963
aded6f54 964 if (opdaddr == code)
1218e655
RC
965 return addr - 16;
966 }
967 }
968
969 return code;
970}
971
4a302917 972static CORE_ADDR
7d9b040b 973hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
974 struct regcache *regcache, CORE_ADDR bp_addr,
975 int nargs, struct value **args, CORE_ADDR sp,
976 int struct_return, CORE_ADDR struct_addr)
977{
38ca4e0c 978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 979 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
38ca4e0c
MK
980 int i, offset = 0;
981 CORE_ADDR gp;
2f690297 982
38ca4e0c
MK
983 /* "The outgoing parameter area [...] must be aligned at a 16-byte
984 boundary." */
985 sp = align_up (sp, 16);
2f690297 986
38ca4e0c
MK
987 for (i = 0; i < nargs; i++)
988 {
989 struct value *arg = args[i];
990 struct type *type = value_type (arg);
991 int len = TYPE_LENGTH (type);
0fd88904 992 const bfd_byte *valbuf;
1218e655 993 bfd_byte fptrbuf[8];
38ca4e0c 994 int regnum;
2f690297 995
38ca4e0c
MK
996 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
997 offset = align_up (offset, 8);
77d18ded 998
38ca4e0c 999 if (hppa64_integral_or_pointer_p (type))
2f690297 1000 {
38ca4e0c
MK
1001 /* "Integral scalar parameters smaller than 64 bits are
1002 padded on the left (i.e., the value is in the
1003 least-significant bits of the 64-bit storage unit, and
1004 the high-order bits are undefined)." Therefore we can
1005 safely sign-extend them. */
1006 if (len < 8)
449e1137 1007 {
df4df182 1008 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
38ca4e0c
MK
1009 len = 8;
1010 }
1011 }
1012 else if (hppa64_floating_p (type))
1013 {
1014 if (len > 8)
1015 {
1016 /* "Quad-precision (128-bit) floating-point scalar
1017 parameters are aligned on a 16-byte boundary." */
1018 offset = align_up (offset, 16);
1019
1020 /* "Double-extended- and quad-precision floating-point
1021 parameters within the first 64 bytes of the parameter
1022 list are always passed in general registers." */
449e1137
AC
1023 }
1024 else
1025 {
38ca4e0c 1026 if (len == 4)
449e1137 1027 {
38ca4e0c
MK
1028 /* "Single-precision (32-bit) floating-point scalar
1029 parameters are padded on the left with 32 bits of
1030 garbage (i.e., the floating-point value is in the
1031 least-significant 32 bits of a 64-bit storage
1032 unit)." */
1033 offset += 4;
449e1137 1034 }
38ca4e0c
MK
1035
1036 /* "Single- and double-precision floating-point
1037 parameters in this area are passed according to the
1038 available formal parameter information in a function
1039 prototype. [...] If no prototype is in scope,
1040 floating-point parameters must be passed both in the
1041 corresponding general registers and in the
1042 corresponding floating-point registers." */
1043 regnum = HPPA64_FP4_REGNUM + offset / 8;
1044
1045 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1046 {
38ca4e0c
MK
1047 /* "Single-precision floating-point parameters, when
1048 passed in floating-point registers, are passed in
1049 the right halves of the floating point registers;
1050 the left halves are unused." */
1051 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1052 len, value_contents (arg));
449e1137
AC
1053 }
1054 }
2f690297 1055 }
38ca4e0c 1056 else
2f690297 1057 {
38ca4e0c
MK
1058 if (len > 8)
1059 {
1060 /* "Aggregates larger than 8 bytes are aligned on a
1061 16-byte boundary, possibly leaving an unused argument
1777feb0 1062 slot, which is filled with garbage. If necessary,
38ca4e0c
MK
1063 they are padded on the right (with garbage), to a
1064 multiple of 8 bytes." */
1065 offset = align_up (offset, 16);
1066 }
1067 }
1068
1218e655
RC
1069 /* If we are passing a function pointer, make sure we pass a function
1070 descriptor instead of the function entry address. */
1071 if (TYPE_CODE (type) == TYPE_CODE_PTR
1072 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1073 {
1074 ULONGEST codeptr, fptr;
1075
1076 codeptr = unpack_long (type, value_contents (arg));
e17a4113
UW
1077 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1078 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1079 fptr);
1218e655
RC
1080 valbuf = fptrbuf;
1081 }
1082 else
1083 {
1084 valbuf = value_contents (arg);
1085 }
1086
38ca4e0c 1087 /* Always store the argument in memory. */
1218e655 1088 write_memory (sp + offset, valbuf, len);
38ca4e0c 1089
38ca4e0c
MK
1090 regnum = HPPA_ARG0_REGNUM - offset / 8;
1091 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1092 {
1093 regcache_cooked_write_part (regcache, regnum,
325fac50
PA
1094 offset % 8, std::min (len, 8), valbuf);
1095 offset += std::min (len, 8);
1096 valbuf += std::min (len, 8);
1097 len -= std::min (len, 8);
38ca4e0c 1098 regnum--;
2f690297 1099 }
38ca4e0c
MK
1100
1101 offset += len;
2f690297
AC
1102 }
1103
38ca4e0c
MK
1104 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1105 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1106
1107 /* Allocate the outgoing parameter area. Make sure the outgoing
1108 parameter area is multiple of 16 bytes in length. */
325fac50 1109 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
38ca4e0c
MK
1110
1111 /* Allocate 32-bytes of scratch space. The documentation doesn't
1112 mention this, but it seems to be needed. */
1113 sp += 32;
1114
1115 /* Allocate the frame marker area. */
1116 sp += 16;
1117
1118 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1119 its address. */
2f690297 1120 if (struct_return)
38ca4e0c 1121 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1122
38ca4e0c 1123 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1124 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1125 if (gp != 0)
38ca4e0c 1126 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1127
38ca4e0c 1128 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1129 if (!gdbarch_push_dummy_code_p (gdbarch))
1130 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1131
38ca4e0c
MK
1132 /* Set up GR30 to hold the stack pointer (sp). */
1133 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1134
38ca4e0c 1135 return sp;
2f690297 1136}
38ca4e0c 1137\f
2f690297 1138
08a27113
MK
1139/* Handle 32/64-bit struct return conventions. */
1140
1141static enum return_value_convention
6a3a010b 1142hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1143 struct type *type, struct regcache *regcache,
e127f0db 1144 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1145{
1146 if (TYPE_LENGTH (type) <= 2 * 4)
1147 {
1148 /* The value always lives in the right hand end of the register
1149 (or register pair)? */
1150 int b;
1151 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1152 int part = TYPE_LENGTH (type) % 4;
1153 /* The left hand register contains only part of the value,
1154 transfer that first so that the rest can be xfered as entire
1155 4-byte registers. */
1156 if (part > 0)
1157 {
1158 if (readbuf != NULL)
1159 regcache_cooked_read_part (regcache, reg, 4 - part,
1160 part, readbuf);
1161 if (writebuf != NULL)
1162 regcache_cooked_write_part (regcache, reg, 4 - part,
1163 part, writebuf);
1164 reg++;
1165 }
1166 /* Now transfer the remaining register values. */
1167 for (b = part; b < TYPE_LENGTH (type); b += 4)
1168 {
1169 if (readbuf != NULL)
e127f0db 1170 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1171 if (writebuf != NULL)
e127f0db 1172 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1173 reg++;
1174 }
1175 return RETURN_VALUE_REGISTER_CONVENTION;
1176 }
1177 else
1178 return RETURN_VALUE_STRUCT_CONVENTION;
1179}
1180
1181static enum return_value_convention
6a3a010b 1182hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1183 struct type *type, struct regcache *regcache,
e127f0db 1184 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1185{
1186 int len = TYPE_LENGTH (type);
1187 int regnum, offset;
1188
bad43aa5 1189 if (len > 16)
08a27113
MK
1190 {
1191 /* All return values larget than 128 bits must be aggregate
1192 return values. */
9738b034
MK
1193 gdb_assert (!hppa64_integral_or_pointer_p (type));
1194 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1195
1196 /* "Aggregate return values larger than 128 bits are returned in
1197 a buffer allocated by the caller. The address of the buffer
1198 must be passed in GR 28." */
1199 return RETURN_VALUE_STRUCT_CONVENTION;
1200 }
1201
1202 if (hppa64_integral_or_pointer_p (type))
1203 {
1204 /* "Integral return values are returned in GR 28. Values
1205 smaller than 64 bits are padded on the left (with garbage)." */
1206 regnum = HPPA_RET0_REGNUM;
1207 offset = 8 - len;
1208 }
1209 else if (hppa64_floating_p (type))
1210 {
1211 if (len > 8)
1212 {
1213 /* "Double-extended- and quad-precision floating-point
1214 values are returned in GRs 28 and 29. The sign,
1215 exponent, and most-significant bits of the mantissa are
1216 returned in GR 28; the least-significant bits of the
1217 mantissa are passed in GR 29. For double-extended
1218 precision values, GR 29 is padded on the right with 48
1219 bits of garbage." */
1220 regnum = HPPA_RET0_REGNUM;
1221 offset = 0;
1222 }
1223 else
1224 {
1225 /* "Single-precision and double-precision floating-point
1226 return values are returned in FR 4R (single precision) or
1227 FR 4 (double-precision)." */
1228 regnum = HPPA64_FP4_REGNUM;
1229 offset = 8 - len;
1230 }
1231 }
1232 else
1233 {
1234 /* "Aggregate return values up to 64 bits in size are returned
1235 in GR 28. Aggregates smaller than 64 bits are left aligned
1236 in the register; the pad bits on the right are undefined."
1237
1238 "Aggregate return values between 65 and 128 bits are returned
1239 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1240 the remaining bits are placed, left aligned, in GR 29. The
1241 pad bits on the right of GR 29 (if any) are undefined." */
1242 regnum = HPPA_RET0_REGNUM;
1243 offset = 0;
1244 }
1245
1246 if (readbuf)
1247 {
08a27113
MK
1248 while (len > 0)
1249 {
1250 regcache_cooked_read_part (regcache, regnum, offset,
325fac50
PA
1251 std::min (len, 8), readbuf);
1252 readbuf += std::min (len, 8);
1253 len -= std::min (len, 8);
08a27113
MK
1254 regnum++;
1255 }
1256 }
1257
1258 if (writebuf)
1259 {
08a27113
MK
1260 while (len > 0)
1261 {
1262 regcache_cooked_write_part (regcache, regnum, offset,
325fac50
PA
1263 std::min (len, 8), writebuf);
1264 writebuf += std::min (len, 8);
1265 len -= std::min (len, 8);
08a27113
MK
1266 regnum++;
1267 }
1268 }
1269
1270 return RETURN_VALUE_REGISTER_CONVENTION;
1271}
1272\f
1273
d49771ef 1274static CORE_ADDR
a7aad9aa 1275hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1276 struct target_ops *targ)
1277{
1278 if (addr & 2)
1279 {
0dfff4cb 1280 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
a7aad9aa 1281 CORE_ADDR plabel = addr & ~3;
0dfff4cb 1282 return read_memory_typed_address (plabel, func_ptr_type);
d49771ef
RC
1283 }
1284
1285 return addr;
1286}
1287
1797a8f6
AC
1288static CORE_ADDR
1289hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1290{
1291 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1292 and not _bit_)! */
1293 return align_up (addr, 64);
1294}
1295
2f690297
AC
1296/* Force all frames to 16-byte alignment. Better safe than sorry. */
1297
1298static CORE_ADDR
1797a8f6 1299hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1300{
1301 /* Just always 16-byte align. */
1302 return align_up (addr, 16);
1303}
1304
cc72850f 1305CORE_ADDR
61a1198a 1306hppa_read_pc (struct regcache *regcache)
c906108c 1307{
cc72850f 1308 ULONGEST ipsw;
61a1198a 1309 ULONGEST pc;
c906108c 1310
61a1198a
UW
1311 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1312 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1313
1314 /* If the current instruction is nullified, then we are effectively
1315 still executing the previous instruction. Pretend we are still
cc72850f
MK
1316 there. This is needed when single stepping; if the nullified
1317 instruction is on a different line, we don't want GDB to think
1318 we've stepped onto that line. */
fe46cd3a
RC
1319 if (ipsw & 0x00200000)
1320 pc -= 4;
1321
cc72850f 1322 return pc & ~0x3;
c906108c
SS
1323}
1324
cc72850f 1325void
61a1198a 1326hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1327{
61a1198a
UW
1328 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1329 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1330}
1331
c906108c 1332/* For the given instruction (INST), return any adjustment it makes
1777feb0 1333 to the stack pointer or zero for no adjustment.
c906108c
SS
1334
1335 This only handles instructions commonly found in prologues. */
1336
1337static int
fba45db2 1338prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1339{
1340 /* This must persist across calls. */
1341 static int save_high21;
1342
1343 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1344 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1345 return hppa_extract_14 (inst);
c906108c
SS
1346
1347 /* stwm X,D(sp) */
1348 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1349 return hppa_extract_14 (inst);
c906108c 1350
104c1213
JM
1351 /* std,ma X,D(sp) */
1352 if ((inst & 0xffe00008) == 0x73c00008)
66c6502d 1353 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1354
e22b26cb 1355 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1356 save high bits in save_high21 for later use. */
e22b26cb 1357 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1358 {
abc485a1 1359 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1360 return 0;
1361 }
1362
1363 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1364 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1365
1366 /* fstws as used by the HP compilers. */
1367 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1368 return hppa_extract_5_load (inst);
c906108c
SS
1369
1370 /* No adjustment. */
1371 return 0;
1372}
1373
1374/* Return nonzero if INST is a branch of some kind, else return zero. */
1375
1376static int
fba45db2 1377is_branch (unsigned long inst)
c906108c
SS
1378{
1379 switch (inst >> 26)
1380 {
1381 case 0x20:
1382 case 0x21:
1383 case 0x22:
1384 case 0x23:
7be570e7 1385 case 0x27:
c906108c
SS
1386 case 0x28:
1387 case 0x29:
1388 case 0x2a:
1389 case 0x2b:
7be570e7 1390 case 0x2f:
c906108c
SS
1391 case 0x30:
1392 case 0x31:
1393 case 0x32:
1394 case 0x33:
1395 case 0x38:
1396 case 0x39:
1397 case 0x3a:
7be570e7 1398 case 0x3b:
c906108c
SS
1399 return 1;
1400
1401 default:
1402 return 0;
1403 }
1404}
1405
1406/* Return the register number for a GR which is saved by INST or
b35018fd 1407 zero if INST does not save a GR.
c906108c 1408
b35018fd 1409 Referenced from:
7be570e7 1410
b35018fd
CG
1411 parisc 1.1:
1412 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
c906108c 1413
b35018fd
CG
1414 parisc 2.0:
1415 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
c906108c 1416
b35018fd
CG
1417 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1418 on page 106 in parisc 2.0, all instructions for storing values from
1419 the general registers are:
c5aa993b 1420
b35018fd
CG
1421 Store: stb, sth, stw, std (according to Chapter 7, they
1422 are only in both "inst >> 26" and "inst >> 6".
1423 Store Absolute: stwa, stda (according to Chapter 7, they are only
1424 in "inst >> 6".
1425 Store Bytes: stby, stdby (according to Chapter 7, they are
1426 only in "inst >> 6").
1427
1428 For (inst >> 26), according to Chapter 7:
1429
1430 The effective memory reference address is formed by the addition
1431 of an immediate displacement to a base value.
1432
1433 - stb: 0x18, store a byte from a general register.
1434
1435 - sth: 0x19, store a halfword from a general register.
1436
1437 - stw: 0x1a, store a word from a general register.
1438
1439 - stwm: 0x1b, store a word from a general register and perform base
1440 register modification (2.0 will still treate it as stw).
1441
1442 - std: 0x1c, store a doubleword from a general register (2.0 only).
1443
1444 - stw: 0x1f, store a word from a general register (2.0 only).
1445
1446 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1447
1448 The effective memory reference address is formed by the addition
1449 of an index value to a base value specified in the instruction.
1450
1451 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1452
1453 - sth: 0x09, store a halfword from a general register (1.1 calls
1454 sths).
1455
1456 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1457
1458 - std: 0x0b: store a doubleword from a general register (2.0 only)
1459
1460 Implement fast byte moves (stores) to unaligned word or doubleword
1461 destination.
1462
1463 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1464
1465 - stdby: 0x0d for unaligned doubleword (2.0 only).
1466
1467 Store a word or doubleword using an absolute memory address formed
1468 using short or long displacement or indexed
1469
1470 - stwa: 0x0e, store a word from a general register to an absolute
1471 address (1.0 calls stwas).
1472
1473 - stda: 0x0f, store a doubleword from a general register to an
1474 absolute address (2.0 only). */
1475
1476static int
1477inst_saves_gr (unsigned long inst)
1478{
1479 switch ((inst >> 26) & 0x0f)
1480 {
1481 case 0x03:
1482 switch ((inst >> 6) & 0x0f)
1483 {
1484 case 0x08:
1485 case 0x09:
1486 case 0x0a:
1487 case 0x0b:
1488 case 0x0c:
1489 case 0x0d:
1490 case 0x0e:
1491 case 0x0f:
1492 return hppa_extract_5R_store (inst);
1493 default:
1494 return 0;
1495 }
1496 case 0x18:
1497 case 0x19:
1498 case 0x1a:
1499 case 0x1b:
1500 case 0x1c:
1501 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1502 case 0x1f:
1503 return hppa_extract_5R_store (inst);
1504 default:
1505 return 0;
1506 }
c906108c
SS
1507}
1508
1509/* Return the register number for a FR which is saved by INST or
1510 zero it INST does not save a FR.
1511
1512 Note we only care about full 64bit register stores (that's the only
1513 kind of stores the prologue will use).
1514
1515 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1516
1517static int
fba45db2 1518inst_saves_fr (unsigned long inst)
c906108c 1519{
1777feb0 1520 /* Is this an FSTD? */
c906108c 1521 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1522 return hppa_extract_5r_store (inst);
7be570e7 1523 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1524 return hppa_extract_5R_store (inst);
1777feb0 1525 /* Is this an FSTW? */
c906108c 1526 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1527 return hppa_extract_5r_store (inst);
7be570e7 1528 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1529 return hppa_extract_5R_store (inst);
c906108c
SS
1530 return 0;
1531}
1532
1533/* Advance PC across any function entry prologue instructions
1777feb0 1534 to reach some "real" code.
c906108c
SS
1535
1536 Use information in the unwind table to determine what exactly should
1537 be in the prologue. */
1538
1539
a71f8c30 1540static CORE_ADDR
be8626e0
MD
1541skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1542 int stop_before_branch)
c906108c 1543{
e17a4113 1544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 1545 gdb_byte buf[4];
c906108c
SS
1546 CORE_ADDR orig_pc = pc;
1547 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1548 unsigned long args_stored, status, i, restart_gr, restart_fr;
1549 struct unwind_table_entry *u;
a71f8c30 1550 int final_iteration;
c906108c
SS
1551
1552 restart_gr = 0;
1553 restart_fr = 0;
1554
1555restart:
1556 u = find_unwind_entry (pc);
1557 if (!u)
1558 return pc;
1559
1777feb0 1560 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1561 if ((pc & ~0x3) != u->region_start)
1562 return pc;
1563
1564 /* This is how much of a frame adjustment we need to account for. */
1565 stack_remaining = u->Total_frame_size << 3;
1566
1567 /* Magic register saves we want to know about. */
1568 save_rp = u->Save_RP;
1569 save_sp = u->Save_SP;
1570
1571 /* An indication that args may be stored into the stack. Unfortunately
1572 the HPUX compilers tend to set this in cases where no args were
1573 stored too!. */
1574 args_stored = 1;
1575
1576 /* Turn the Entry_GR field into a bitmask. */
1577 save_gr = 0;
1578 for (i = 3; i < u->Entry_GR + 3; i++)
1579 {
1580 /* Frame pointer gets saved into a special location. */
eded0a31 1581 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1582 continue;
1583
1584 save_gr |= (1 << i);
1585 }
1586 save_gr &= ~restart_gr;
1587
1588 /* Turn the Entry_FR field into a bitmask too. */
1589 save_fr = 0;
1590 for (i = 12; i < u->Entry_FR + 12; i++)
1591 save_fr |= (1 << i);
1592 save_fr &= ~restart_fr;
1593
a71f8c30
RC
1594 final_iteration = 0;
1595
c906108c
SS
1596 /* Loop until we find everything of interest or hit a branch.
1597
1598 For unoptimized GCC code and for any HP CC code this will never ever
1599 examine any user instructions.
1600
1601 For optimzied GCC code we're faced with problems. GCC will schedule
1602 its prologue and make prologue instructions available for delay slot
1603 filling. The end result is user code gets mixed in with the prologue
1604 and a prologue instruction may be in the delay slot of the first branch
1605 or call.
1606
1607 Some unexpected things are expected with debugging optimized code, so
1608 we allow this routine to walk past user instructions in optimized
1609 GCC code. */
1610 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1611 || args_stored)
1612 {
1613 unsigned int reg_num;
1614 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1615 unsigned long old_save_rp, old_save_sp, next_inst;
1616
1617 /* Save copies of all the triggers so we can compare them later
c5aa993b 1618 (only for HPC). */
c906108c
SS
1619 old_save_gr = save_gr;
1620 old_save_fr = save_fr;
1621 old_save_rp = save_rp;
1622 old_save_sp = save_sp;
1623 old_stack_remaining = stack_remaining;
1624
8defab1a 1625 status = target_read_memory (pc, buf, 4);
e17a4113 1626 inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1627
c906108c
SS
1628 /* Yow! */
1629 if (status != 0)
1630 return pc;
1631
1632 /* Note the interesting effects of this instruction. */
1633 stack_remaining -= prologue_inst_adjust_sp (inst);
1634
7be570e7
JM
1635 /* There are limited ways to store the return pointer into the
1636 stack. */
c4c79048 1637 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1638 save_rp = 0;
1639
104c1213 1640 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1641 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1642 if ((inst & 0xffffc000) == 0x6fc10000
1643 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1644 save_sp = 0;
1645
6426a772
JM
1646 /* Are we loading some register with an offset from the argument
1647 pointer? */
1648 if ((inst & 0xffe00000) == 0x37a00000
1649 || (inst & 0xffffffe0) == 0x081d0240)
1650 {
1651 pc += 4;
1652 continue;
1653 }
1654
c906108c
SS
1655 /* Account for general and floating-point register saves. */
1656 reg_num = inst_saves_gr (inst);
1657 save_gr &= ~(1 << reg_num);
1658
1659 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1660 Unfortunately args_stored only tells us that some arguments
1661 where stored into the stack. Not how many or what kind!
c906108c 1662
c5aa993b
JM
1663 This is a kludge as on the HP compiler sets this bit and it
1664 never does prologue scheduling. So once we see one, skip past
1665 all of them. We have similar code for the fp arg stores below.
c906108c 1666
c5aa993b
JM
1667 FIXME. Can still die if we have a mix of GR and FR argument
1668 stores! */
be8626e0 1669 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1670 && reg_num <= 26)
c906108c 1671 {
be8626e0 1672 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1673 && reg_num <= 26)
c906108c
SS
1674 {
1675 pc += 4;
8defab1a 1676 status = target_read_memory (pc, buf, 4);
e17a4113 1677 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1678 if (status != 0)
1679 return pc;
1680 reg_num = inst_saves_gr (inst);
1681 }
1682 args_stored = 0;
1683 continue;
1684 }
1685
1686 reg_num = inst_saves_fr (inst);
1687 save_fr &= ~(1 << reg_num);
1688
8defab1a 1689 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1690 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1691
c906108c
SS
1692 /* Yow! */
1693 if (status != 0)
1694 return pc;
1695
1696 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1697 save. */
c906108c
SS
1698 if ((inst & 0xfc000000) == 0x34000000
1699 && inst_saves_fr (next_inst) >= 4
819844ad 1700 && inst_saves_fr (next_inst)
be8626e0 1701 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1702 {
1703 /* So we drop into the code below in a reasonable state. */
1704 reg_num = inst_saves_fr (next_inst);
1705 pc -= 4;
1706 }
1707
1708 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1709 This is a kludge as on the HP compiler sets this bit and it
1710 never does prologue scheduling. So once we see one, skip past
1711 all of them. */
819844ad 1712 if (reg_num >= 4
be8626e0 1713 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1714 {
819844ad
UW
1715 while (reg_num >= 4
1716 && reg_num
be8626e0 1717 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1718 {
1719 pc += 8;
8defab1a 1720 status = target_read_memory (pc, buf, 4);
e17a4113 1721 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1722 if (status != 0)
1723 return pc;
1724 if ((inst & 0xfc000000) != 0x34000000)
1725 break;
8defab1a 1726 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1727 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1728 if (status != 0)
1729 return pc;
1730 reg_num = inst_saves_fr (next_inst);
1731 }
1732 args_stored = 0;
1733 continue;
1734 }
1735
1736 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1737 instruction is in the delay slot of the first call/branch. */
a71f8c30 1738 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1739 break;
1740
1741 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1742 arguments were stored into the stack (boo hiss). This could
1743 cause this code to then skip a bunch of user insns (up to the
1744 first branch).
1745
1746 To combat this we try to identify when args_stored was bogusly
1747 set and clear it. We only do this when args_stored is nonzero,
1748 all other resources are accounted for, and nothing changed on
1749 this pass. */
c906108c 1750 if (args_stored
c5aa993b 1751 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1752 && old_save_gr == save_gr && old_save_fr == save_fr
1753 && old_save_rp == save_rp && old_save_sp == save_sp
1754 && old_stack_remaining == stack_remaining)
1755 break;
c5aa993b 1756
c906108c
SS
1757 /* Bump the PC. */
1758 pc += 4;
a71f8c30
RC
1759
1760 /* !stop_before_branch, so also look at the insn in the delay slot
1761 of the branch. */
1762 if (final_iteration)
1763 break;
1764 if (is_branch (inst))
1765 final_iteration = 1;
c906108c
SS
1766 }
1767
1768 /* We've got a tenative location for the end of the prologue. However
1769 because of limitations in the unwind descriptor mechanism we may
1770 have went too far into user code looking for the save of a register
1771 that does not exist. So, if there registers we expected to be saved
1772 but never were, mask them out and restart.
1773
1774 This should only happen in optimized code, and should be very rare. */
c5aa993b 1775 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1776 {
1777 pc = orig_pc;
1778 restart_gr = save_gr;
1779 restart_fr = save_fr;
1780 goto restart;
1781 }
1782
1783 return pc;
1784}
1785
1786
7be570e7
JM
1787/* Return the address of the PC after the last prologue instruction if
1788 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1789
1790static CORE_ADDR
fba45db2 1791after_prologue (CORE_ADDR pc)
c906108c
SS
1792{
1793 struct symtab_and_line sal;
1794 CORE_ADDR func_addr, func_end;
c906108c 1795
7be570e7
JM
1796 /* If we can not find the symbol in the partial symbol table, then
1797 there is no hope we can determine the function's start address
1798 with this code. */
c906108c 1799 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1800 return 0;
c906108c 1801
7be570e7 1802 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1803 sal = find_pc_line (func_addr, 0);
1804
7be570e7
JM
1805 /* There are only two cases to consider. First, the end of the source line
1806 is within the function bounds. In that case we return the end of the
1807 source line. Second is the end of the source line extends beyond the
1808 bounds of the current function. We need to use the slow code to
1777feb0 1809 examine instructions in that case.
c906108c 1810
7be570e7
JM
1811 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1812 the wrong thing to do. In fact, it should be entirely possible for this
1813 function to always return zero since the slow instruction scanning code
1814 is supposed to *always* work. If it does not, then it is a bug. */
1815 if (sal.end < func_end)
1816 return sal.end;
c5aa993b 1817 else
7be570e7 1818 return 0;
c906108c
SS
1819}
1820
1821/* To skip prologues, I use this predicate. Returns either PC itself
1822 if the code at PC does not look like a function prologue; otherwise
1777feb0 1823 returns an address that (if we're lucky) follows the prologue.
a71f8c30
RC
1824
1825 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1777feb0 1826 It doesn't necessarily skips all the insns in the prologue. In fact
a71f8c30
RC
1827 we might not want to skip all the insns because a prologue insn may
1828 appear in the delay slot of the first branch, and we don't want to
1829 skip over the branch in that case. */
c906108c 1830
8d153463 1831static CORE_ADDR
6093d2eb 1832hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1833{
c5aa993b 1834 CORE_ADDR post_prologue_pc;
c906108c 1835
c5aa993b
JM
1836 /* See if we can determine the end of the prologue via the symbol table.
1837 If so, then return either PC, or the PC after the prologue, whichever
1838 is greater. */
c906108c 1839
c5aa993b 1840 post_prologue_pc = after_prologue (pc);
c906108c 1841
7be570e7
JM
1842 /* If after_prologue returned a useful address, then use it. Else
1843 fall back on the instruction skipping code.
1844
1845 Some folks have claimed this causes problems because the breakpoint
1846 may be the first instruction of the prologue. If that happens, then
1847 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b 1848 if (post_prologue_pc != 0)
325fac50 1849 return std::max (pc, post_prologue_pc);
c5aa993b 1850 else
be8626e0 1851 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1852}
1853
29d375ac 1854/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1855
29d375ac 1856static struct unwind_table_entry *
227e86ad 1857hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1858{
227e86ad 1859 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1860
1861 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
ad1193e7 1862 result of get_frame_address_in_block implies a problem.
93d42b30 1863 The bits should have been removed earlier, before the return
c7ce8faa 1864 value of gdbarch_unwind_pc. That might be happening already;
93d42b30
DJ
1865 if it isn't, it should be fixed. Then this call can be
1866 removed. */
227e86ad 1867 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1868 return find_unwind_entry (pc);
1869}
1870
26d08f08
AC
1871struct hppa_frame_cache
1872{
1873 CORE_ADDR base;
1874 struct trad_frame_saved_reg *saved_regs;
1875};
1876
1877static struct hppa_frame_cache *
227e86ad 1878hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1879{
227e86ad 1880 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1882 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
26d08f08
AC
1883 struct hppa_frame_cache *cache;
1884 long saved_gr_mask;
1885 long saved_fr_mask;
26d08f08
AC
1886 long frame_size;
1887 struct unwind_table_entry *u;
9f7194c3 1888 CORE_ADDR prologue_end;
50b2f48a 1889 int fp_in_r1 = 0;
26d08f08
AC
1890 int i;
1891
369aa520
RC
1892 if (hppa_debug)
1893 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1894 frame_relative_level(this_frame));
369aa520 1895
26d08f08 1896 if ((*this_cache) != NULL)
369aa520
RC
1897 {
1898 if (hppa_debug)
5af949e3
UW
1899 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1900 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 1901 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1902 }
26d08f08
AC
1903 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1904 (*this_cache) = cache;
227e86ad 1905 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1906
1907 /* Yow! */
227e86ad 1908 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1909 if (!u)
369aa520
RC
1910 {
1911 if (hppa_debug)
1912 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
9a3c8263 1913 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1914 }
26d08f08
AC
1915
1916 /* Turn the Entry_GR field into a bitmask. */
1917 saved_gr_mask = 0;
1918 for (i = 3; i < u->Entry_GR + 3; i++)
1919 {
1920 /* Frame pointer gets saved into a special location. */
eded0a31 1921 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1922 continue;
1923
1924 saved_gr_mask |= (1 << i);
1925 }
1926
1927 /* Turn the Entry_FR field into a bitmask too. */
1928 saved_fr_mask = 0;
1929 for (i = 12; i < u->Entry_FR + 12; i++)
1930 saved_fr_mask |= (1 << i);
1931
1932 /* Loop until we find everything of interest or hit a branch.
1933
1934 For unoptimized GCC code and for any HP CC code this will never ever
1935 examine any user instructions.
1936
1937 For optimized GCC code we're faced with problems. GCC will schedule
1938 its prologue and make prologue instructions available for delay slot
1939 filling. The end result is user code gets mixed in with the prologue
1940 and a prologue instruction may be in the delay slot of the first branch
1941 or call.
1942
1943 Some unexpected things are expected with debugging optimized code, so
1944 we allow this routine to walk past user instructions in optimized
1945 GCC code. */
1946 {
1947 int final_iteration = 0;
46acf081 1948 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1949 int looking_for_sp = u->Save_SP;
1950 int looking_for_rp = u->Save_RP;
1951 int fp_loc = -1;
9f7194c3 1952
a71f8c30 1953 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1954 skip_prologue_using_sal, in case we stepped into a function without
1955 symbol information. hppa_skip_prologue also bounds the returned
1956 pc by the passed in pc, so it will not return a pc in the next
1777feb0 1957 function.
a71f8c30
RC
1958
1959 We used to call hppa_skip_prologue to find the end of the prologue,
1960 but if some non-prologue instructions get scheduled into the prologue,
1961 and the program is compiled with debug information, the "easy" way
1962 in hppa_skip_prologue will return a prologue end that is too early
1963 for us to notice any potential frame adjustments. */
d5c27f81 1964
ef02daa9
DJ
1965 /* We used to use get_frame_func to locate the beginning of the
1966 function to pass to skip_prologue. However, when objects are
1967 compiled without debug symbols, get_frame_func can return the wrong
1777feb0 1968 function (or 0). We can do better than that by using unwind records.
46acf081 1969 This only works if the Region_description of the unwind record
1777feb0 1970 indicates that it includes the entry point of the function.
46acf081
RC
1971 HP compilers sometimes generate unwind records for regions that
1972 do not include the entry or exit point of a function. GNU tools
1973 do not do this. */
1974
1975 if ((u->Region_description & 0x2) == 0)
1976 start_pc = u->region_start;
1977 else
227e86ad 1978 start_pc = get_frame_func (this_frame);
d5c27f81 1979
be8626e0 1980 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1981 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1982
1983 if (prologue_end != 0 && end_pc > prologue_end)
1984 end_pc = prologue_end;
1985
26d08f08 1986 frame_size = 0;
9f7194c3 1987
46acf081 1988 for (pc = start_pc;
26d08f08
AC
1989 ((saved_gr_mask || saved_fr_mask
1990 || looking_for_sp || looking_for_rp
1991 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1992 && pc < end_pc);
26d08f08
AC
1993 pc += 4)
1994 {
1995 int reg;
e362b510 1996 gdb_byte buf4[4];
4a302917
RC
1997 long inst;
1998
227e86ad 1999 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 2000 {
5af949e3
UW
2001 error (_("Cannot read instruction at %s."),
2002 paddress (gdbarch, pc));
9a3c8263 2003 return (struct hppa_frame_cache *) (*this_cache);
4a302917
RC
2004 }
2005
e17a4113 2006 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
9f7194c3 2007
26d08f08
AC
2008 /* Note the interesting effects of this instruction. */
2009 frame_size += prologue_inst_adjust_sp (inst);
2010
2011 /* There are limited ways to store the return pointer into the
2012 stack. */
2013 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2014 {
2015 looking_for_rp = 0;
34f75cc1 2016 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 2017 }
dfaf8edb
MK
2018 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2019 {
2020 looking_for_rp = 0;
2021 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2022 }
c4c79048
RC
2023 else if (inst == 0x0fc212c1
2024 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
2025 {
2026 looking_for_rp = 0;
34f75cc1 2027 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
2028 }
2029
2030 /* Check to see if we saved SP into the stack. This also
2031 happens to indicate the location of the saved frame
2032 pointer. */
2033 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2034 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2035 {
2036 looking_for_sp = 0;
eded0a31 2037 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 2038 }
50b2f48a
RC
2039 else if (inst == 0x08030241) /* copy %r3, %r1 */
2040 {
2041 fp_in_r1 = 1;
2042 }
26d08f08
AC
2043
2044 /* Account for general and floating-point register saves. */
2045 reg = inst_saves_gr (inst);
2046 if (reg >= 3 && reg <= 18
eded0a31 2047 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
2048 {
2049 saved_gr_mask &= ~(1 << reg);
abc485a1 2050 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
2051 /* stwm with a positive displacement is a _post_
2052 _modify_. */
2053 cache->saved_regs[reg].addr = 0;
2054 else if ((inst & 0xfc00000c) == 0x70000008)
2055 /* A std has explicit post_modify forms. */
2056 cache->saved_regs[reg].addr = 0;
2057 else
2058 {
2059 CORE_ADDR offset;
2060
2061 if ((inst >> 26) == 0x1c)
66c6502d 2062 offset = (inst & 0x1 ? -(1 << 13) : 0)
1777feb0 2063 | (((inst >> 4) & 0x3ff) << 3);
26d08f08 2064 else if ((inst >> 26) == 0x03)
abc485a1 2065 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 2066 else
abc485a1 2067 offset = hppa_extract_14 (inst);
26d08f08
AC
2068
2069 /* Handle code with and without frame pointers. */
2070 if (u->Save_SP)
2071 cache->saved_regs[reg].addr = offset;
2072 else
1777feb0
MS
2073 cache->saved_regs[reg].addr
2074 = (u->Total_frame_size << 3) + offset;
26d08f08
AC
2075 }
2076 }
2077
2078 /* GCC handles callee saved FP regs a little differently.
2079
2080 It emits an instruction to put the value of the start of
2081 the FP store area into %r1. It then uses fstds,ma with a
2082 basereg of %r1 for the stores.
2083
2084 HP CC emits them at the current stack pointer modifying the
2085 stack pointer as it stores each register. */
2086
2087 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2088 if ((inst & 0xffffc000) == 0x34610000
2089 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2090 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2091
2092 reg = inst_saves_fr (inst);
2093 if (reg >= 12 && reg <= 21)
2094 {
2095 /* Note +4 braindamage below is necessary because the FP
2096 status registers are internally 8 registers rather than
2097 the expected 4 registers. */
2098 saved_fr_mask &= ~(1 << reg);
2099 if (fp_loc == -1)
2100 {
2101 /* 1st HP CC FP register store. After this
2102 instruction we've set enough state that the GCC and
2103 HPCC code are both handled in the same manner. */
34f75cc1 2104 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2105 fp_loc = 8;
2106 }
2107 else
2108 {
eded0a31 2109 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2110 fp_loc += 8;
2111 }
2112 }
2113
1777feb0 2114 /* Quit if we hit any kind of branch the previous iteration. */
26d08f08
AC
2115 if (final_iteration)
2116 break;
2117 /* We want to look precisely one instruction beyond the branch
2118 if we have not found everything yet. */
2119 if (is_branch (inst))
2120 final_iteration = 1;
2121 }
2122 }
2123
2124 {
2125 /* The frame base always represents the value of %sp at entry to
2126 the current function (and is thus equivalent to the "saved"
2127 stack pointer. */
227e86ad
JB
2128 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2129 HPPA_SP_REGNUM);
ed70ba00 2130 CORE_ADDR fp;
9f7194c3
RC
2131
2132 if (hppa_debug)
5af949e3
UW
2133 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2134 "prologue_end=%s) ",
2135 paddress (gdbarch, this_sp),
2136 paddress (gdbarch, get_frame_pc (this_frame)),
2137 paddress (gdbarch, prologue_end));
9f7194c3 2138
ed70ba00
RC
2139 /* Check to see if a frame pointer is available, and use it for
2140 frame unwinding if it is.
2141
2142 There are some situations where we need to rely on the frame
2143 pointer to do stack unwinding. For example, if a function calls
2144 alloca (), the stack pointer can get adjusted inside the body of
2145 the function. In this case, the ABI requires that the compiler
2146 maintain a frame pointer for the function.
2147
2148 The unwind record has a flag (alloca_frame) that indicates that
2149 a function has a variable frame; unfortunately, gcc/binutils
2150 does not set this flag. Instead, whenever a frame pointer is used
2151 and saved on the stack, the Save_SP flag is set. We use this to
2152 decide whether to use the frame pointer for unwinding.
2153
ed70ba00
RC
2154 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2155 instead of Save_SP. */
2156
227e86ad 2157 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2158
6fcecea0 2159 if (u->alloca_frame)
46acf081 2160 fp -= u->Total_frame_size << 3;
ed70ba00 2161
227e86ad 2162 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2163 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2164 {
2165 cache->base = fp;
2166
2167 if (hppa_debug)
5af949e3
UW
2168 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2169 paddress (gdbarch, cache->base));
ed70ba00 2170 }
1658da49
RC
2171 else if (u->Save_SP
2172 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2173 {
9f7194c3
RC
2174 /* Both we're expecting the SP to be saved and the SP has been
2175 saved. The entry SP value is saved at this frame's SP
2176 address. */
e17a4113 2177 cache->base = read_memory_integer (this_sp, word_size, byte_order);
9f7194c3
RC
2178
2179 if (hppa_debug)
5af949e3
UW
2180 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2181 paddress (gdbarch, cache->base));
9f7194c3 2182 }
26d08f08 2183 else
9f7194c3 2184 {
1658da49
RC
2185 /* The prologue has been slowly allocating stack space. Adjust
2186 the SP back. */
2187 cache->base = this_sp - frame_size;
9f7194c3 2188 if (hppa_debug)
5af949e3
UW
2189 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2190 paddress (gdbarch, cache->base));
9f7194c3
RC
2191
2192 }
eded0a31 2193 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2194 }
2195
412275d5
AC
2196 /* The PC is found in the "return register", "Millicode" uses "r31"
2197 as the return register while normal code uses "rp". */
26d08f08 2198 if (u->Millicode)
9f7194c3 2199 {
5859efe5 2200 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2201 {
2202 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2203 if (hppa_debug)
2204 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2205 }
9f7194c3
RC
2206 else
2207 {
227e86ad 2208 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2209 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2210 if (hppa_debug)
2211 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2212 }
2213 }
26d08f08 2214 else
9f7194c3 2215 {
34f75cc1 2216 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2217 {
2218 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2219 cache->saved_regs[HPPA_RP_REGNUM];
2220 if (hppa_debug)
2221 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2222 }
9f7194c3
RC
2223 else
2224 {
227e86ad
JB
2225 ULONGEST rp = get_frame_register_unsigned (this_frame,
2226 HPPA_RP_REGNUM);
34f75cc1 2227 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2228 if (hppa_debug)
2229 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2230 }
2231 }
26d08f08 2232
50b2f48a
RC
2233 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2234 frame. However, there is a one-insn window where we haven't saved it
2235 yet, but we've already clobbered it. Detect this case and fix it up.
2236
2237 The prologue sequence for frame-pointer functions is:
2238 0: stw %rp, -20(%sp)
2239 4: copy %r3, %r1
2240 8: copy %sp, %r3
2241 c: stw,ma %r1, XX(%sp)
2242
2243 So if we are at offset c, the r3 value that we want is not yet saved
2244 on the stack, but it's been overwritten. The prologue analyzer will
2245 set fp_in_r1 when it sees the copy insn so we know to get the value
2246 from r1 instead. */
2247 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2248 && fp_in_r1)
2249 {
227e86ad 2250 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2251 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2252 }
1658da49 2253
26d08f08
AC
2254 {
2255 /* Convert all the offsets into addresses. */
2256 int reg;
65c5db89 2257 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2258 {
2259 if (trad_frame_addr_p (cache->saved_regs, reg))
2260 cache->saved_regs[reg].addr += cache->base;
2261 }
2262 }
2263
f77a2124 2264 {
f77a2124
RC
2265 struct gdbarch_tdep *tdep;
2266
f77a2124
RC
2267 tdep = gdbarch_tdep (gdbarch);
2268
2269 if (tdep->unwind_adjust_stub)
227e86ad 2270 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2271 }
2272
369aa520 2273 if (hppa_debug)
5af949e3
UW
2274 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2275 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 2276 return (struct hppa_frame_cache *) (*this_cache);
26d08f08
AC
2277}
2278
2279static void
227e86ad
JB
2280hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2281 struct frame_id *this_id)
26d08f08 2282{
d5c27f81 2283 struct hppa_frame_cache *info;
d5c27f81
RC
2284 struct unwind_table_entry *u;
2285
227e86ad
JB
2286 info = hppa_frame_cache (this_frame, this_cache);
2287 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2288
2289 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2290}
2291
227e86ad
JB
2292static struct value *
2293hppa_frame_prev_register (struct frame_info *this_frame,
2294 void **this_cache, int regnum)
26d08f08 2295{
227e86ad
JB
2296 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2297
1777feb0
MS
2298 return hppa_frame_prev_register_helper (this_frame,
2299 info->saved_regs, regnum);
227e86ad
JB
2300}
2301
2302static int
2303hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2304 struct frame_info *this_frame, void **this_cache)
2305{
2306 if (hppa_find_unwind_entry_in_block (this_frame))
2307 return 1;
2308
2309 return 0;
0da28f8a
RC
2310}
2311
2312static const struct frame_unwind hppa_frame_unwind =
2313{
2314 NORMAL_FRAME,
8fbca658 2315 default_frame_unwind_stop_reason,
0da28f8a 2316 hppa_frame_this_id,
227e86ad
JB
2317 hppa_frame_prev_register,
2318 NULL,
2319 hppa_frame_unwind_sniffer
0da28f8a
RC
2320};
2321
0da28f8a
RC
2322/* This is a generic fallback frame unwinder that kicks in if we fail all
2323 the other ones. Normally we would expect the stub and regular unwinder
2324 to work, but in some cases we might hit a function that just doesn't
2325 have any unwind information available. In this case we try to do
2326 unwinding solely based on code reading. This is obviously going to be
2327 slow, so only use this as a last resort. Currently this will only
2328 identify the stack and pc for the frame. */
2329
2330static struct hppa_frame_cache *
227e86ad 2331hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a 2332{
e17a4113
UW
2333 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0da28f8a 2335 struct hppa_frame_cache *cache;
4ba6a975
MK
2336 unsigned int frame_size = 0;
2337 int found_rp = 0;
2338 CORE_ADDR start_pc;
0da28f8a 2339
d5c27f81 2340 if (hppa_debug)
4ba6a975
MK
2341 fprintf_unfiltered (gdb_stdlog,
2342 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2343 frame_relative_level (this_frame));
d5c27f81 2344
0da28f8a
RC
2345 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2346 (*this_cache) = cache;
227e86ad 2347 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2348
227e86ad 2349 start_pc = get_frame_func (this_frame);
4ba6a975 2350 if (start_pc)
0da28f8a 2351 {
227e86ad 2352 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2353 CORE_ADDR pc;
0da28f8a 2354
4ba6a975
MK
2355 for (pc = start_pc; pc < cur_pc; pc += 4)
2356 {
2357 unsigned int insn;
0da28f8a 2358
e17a4113 2359 insn = read_memory_unsigned_integer (pc, 4, byte_order);
4ba6a975 2360 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2361
4ba6a975
MK
2362 /* There are limited ways to store the return pointer into the
2363 stack. */
2364 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2365 {
2366 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2367 found_rp = 1;
2368 }
c4c79048
RC
2369 else if (insn == 0x0fc212c1
2370 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2371 {
2372 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2373 found_rp = 1;
2374 }
2375 }
412275d5 2376 }
0da28f8a 2377
d5c27f81 2378 if (hppa_debug)
4ba6a975
MK
2379 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2380 frame_size, found_rp);
d5c27f81 2381
227e86ad 2382 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2383 cache->base -= frame_size;
6d1be3f1 2384 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2385
2386 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2387 {
2388 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2389 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2390 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2391 }
412275d5
AC
2392 else
2393 {
4ba6a975 2394 ULONGEST rp;
227e86ad 2395 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2396 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2397 }
0da28f8a
RC
2398
2399 return cache;
26d08f08
AC
2400}
2401
0da28f8a 2402static void
227e86ad 2403hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2404 struct frame_id *this_id)
2405{
2406 struct hppa_frame_cache *info =
227e86ad
JB
2407 hppa_fallback_frame_cache (this_frame, this_cache);
2408
2409 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2410}
2411
227e86ad
JB
2412static struct value *
2413hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2414 void **this_cache, int regnum)
0da28f8a 2415{
1777feb0
MS
2416 struct hppa_frame_cache *info
2417 = hppa_fallback_frame_cache (this_frame, this_cache);
227e86ad 2418
1777feb0
MS
2419 return hppa_frame_prev_register_helper (this_frame,
2420 info->saved_regs, regnum);
0da28f8a
RC
2421}
2422
2423static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2424{
2425 NORMAL_FRAME,
8fbca658 2426 default_frame_unwind_stop_reason,
0da28f8a 2427 hppa_fallback_frame_this_id,
227e86ad
JB
2428 hppa_fallback_frame_prev_register,
2429 NULL,
2430 default_frame_sniffer
26d08f08
AC
2431};
2432
7f07c5b6
RC
2433/* Stub frames, used for all kinds of call stubs. */
2434struct hppa_stub_unwind_cache
2435{
2436 CORE_ADDR base;
2437 struct trad_frame_saved_reg *saved_regs;
2438};
2439
2440static struct hppa_stub_unwind_cache *
227e86ad 2441hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2442 void **this_cache)
2443{
227e86ad 2444 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7f07c5b6 2445 struct hppa_stub_unwind_cache *info;
22b0923d 2446 struct unwind_table_entry *u;
7f07c5b6
RC
2447
2448 if (*this_cache)
9a3c8263 2449 return (struct hppa_stub_unwind_cache *) *this_cache;
7f07c5b6
RC
2450
2451 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2452 *this_cache = info;
227e86ad 2453 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2454
227e86ad 2455 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2456
22b0923d
RC
2457 /* By default we assume that stubs do not change the rp. */
2458 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2459
7f07c5b6
RC
2460 return info;
2461}
2462
2463static void
227e86ad 2464hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2465 void **this_prologue_cache,
2466 struct frame_id *this_id)
2467{
2468 struct hppa_stub_unwind_cache *info
227e86ad 2469 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2470
2471 if (info)
227e86ad 2472 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
7f07c5b6
RC
2473}
2474
227e86ad
JB
2475static struct value *
2476hppa_stub_frame_prev_register (struct frame_info *this_frame,
2477 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2478{
2479 struct hppa_stub_unwind_cache *info
227e86ad 2480 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2481
227e86ad 2482 if (info == NULL)
8a3fe4f8 2483 error (_("Requesting registers from null frame."));
7f07c5b6 2484
1777feb0
MS
2485 return hppa_frame_prev_register_helper (this_frame,
2486 info->saved_regs, regnum);
227e86ad 2487}
7f07c5b6 2488
227e86ad
JB
2489static int
2490hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2491 struct frame_info *this_frame,
2492 void **this_cache)
7f07c5b6 2493{
227e86ad
JB
2494 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2495 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2496 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2497
6d1be3f1 2498 if (pc == 0
84674fe1 2499 || (tdep->in_solib_call_trampoline != NULL
3e5d3a5a 2500 && tdep->in_solib_call_trampoline (gdbarch, pc))
464963c9 2501 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2502 return 1;
2503 return 0;
7f07c5b6
RC
2504}
2505
227e86ad
JB
2506static const struct frame_unwind hppa_stub_frame_unwind = {
2507 NORMAL_FRAME,
8fbca658 2508 default_frame_unwind_stop_reason,
227e86ad
JB
2509 hppa_stub_frame_this_id,
2510 hppa_stub_frame_prev_register,
2511 NULL,
2512 hppa_stub_unwind_sniffer
2513};
2514
26d08f08 2515static struct frame_id
227e86ad 2516hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2517{
227e86ad
JB
2518 return frame_id_build (get_frame_register_unsigned (this_frame,
2519 HPPA_SP_REGNUM),
2520 get_frame_pc (this_frame));
26d08f08
AC
2521}
2522
cc72850f 2523CORE_ADDR
26d08f08
AC
2524hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2525{
fe46cd3a
RC
2526 ULONGEST ipsw;
2527 CORE_ADDR pc;
2528
cc72850f
MK
2529 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2530 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2531
2532 /* If the current instruction is nullified, then we are effectively
2533 still executing the previous instruction. Pretend we are still
cc72850f
MK
2534 there. This is needed when single stepping; if the nullified
2535 instruction is on a different line, we don't want GDB to think
2536 we've stepped onto that line. */
fe46cd3a
RC
2537 if (ipsw & 0x00200000)
2538 pc -= 4;
2539
cc72850f 2540 return pc & ~0x3;
26d08f08
AC
2541}
2542
ff644745
JB
2543/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2544 Return NULL if no such symbol was found. */
2545
3b7344d5 2546struct bound_minimal_symbol
ff644745
JB
2547hppa_lookup_stub_minimal_symbol (const char *name,
2548 enum unwind_stub_types stub_type)
2549{
2550 struct objfile *objfile;
2551 struct minimal_symbol *msym;
3b7344d5 2552 struct bound_minimal_symbol result = { NULL, NULL };
ff644745
JB
2553
2554 ALL_MSYMBOLS (objfile, msym)
2555 {
efd66ac6 2556 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
ff644745
JB
2557 {
2558 struct unwind_table_entry *u;
2559
efd66ac6 2560 u = find_unwind_entry (MSYMBOL_VALUE (msym));
ff644745 2561 if (u != NULL && u->stub_unwind.stub_type == stub_type)
3b7344d5
TT
2562 {
2563 result.objfile = objfile;
2564 result.minsym = msym;
2565 return result;
2566 }
ff644745
JB
2567 }
2568 }
2569
3b7344d5 2570 return result;
ff644745
JB
2571}
2572
c906108c 2573static void
fba45db2 2574unwind_command (char *exp, int from_tty)
c906108c
SS
2575{
2576 CORE_ADDR address;
2577 struct unwind_table_entry *u;
2578
2579 /* If we have an expression, evaluate it and use it as the address. */
2580
2581 if (exp != 0 && *exp != 0)
2582 address = parse_and_eval_address (exp);
2583 else
2584 return;
2585
2586 u = find_unwind_entry (address);
2587
2588 if (!u)
2589 {
2590 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2591 return;
2592 }
2593
3329c4b5 2594 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
c906108c 2595
5af949e3 2596 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
d5c27f81 2597 gdb_flush (gdb_stdout);
c906108c 2598
5af949e3 2599 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
d5c27f81 2600 gdb_flush (gdb_stdout);
c906108c 2601
c906108c 2602#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2603
2604 printf_unfiltered ("\n\tflags =");
2605 pif (Cannot_unwind);
2606 pif (Millicode);
2607 pif (Millicode_save_sr0);
2608 pif (Entry_SR);
2609 pif (Args_stored);
2610 pif (Variable_Frame);
2611 pif (Separate_Package_Body);
2612 pif (Frame_Extension_Millicode);
2613 pif (Stack_Overflow_Check);
2614 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2615 pif (sr4export);
2616 pif (cxx_info);
2617 pif (cxx_try_catch);
2618 pif (sched_entry_seq);
c906108c
SS
2619 pif (Save_SP);
2620 pif (Save_RP);
2621 pif (Save_MRP_in_frame);
6fcecea0 2622 pif (save_r19);
c906108c
SS
2623 pif (Cleanup_defined);
2624 pif (MPE_XL_interrupt_marker);
2625 pif (HP_UX_interrupt_marker);
2626 pif (Large_frame);
6fcecea0 2627 pif (alloca_frame);
c906108c
SS
2628
2629 putchar_unfiltered ('\n');
2630
c906108c 2631#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2632
2633 pin (Region_description);
2634 pin (Entry_FR);
2635 pin (Entry_GR);
2636 pin (Total_frame_size);
57dac9e1
RC
2637
2638 if (u->stub_unwind.stub_type)
2639 {
2640 printf_unfiltered ("\tstub type = ");
2641 switch (u->stub_unwind.stub_type)
2642 {
2643 case LONG_BRANCH:
2644 printf_unfiltered ("long branch\n");
2645 break;
2646 case PARAMETER_RELOCATION:
2647 printf_unfiltered ("parameter relocation\n");
2648 break;
2649 case EXPORT:
2650 printf_unfiltered ("export\n");
2651 break;
2652 case IMPORT:
2653 printf_unfiltered ("import\n");
2654 break;
2655 case IMPORT_SHLIB:
2656 printf_unfiltered ("import shlib\n");
2657 break;
2658 default:
2659 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2660 }
2661 }
c906108c 2662}
c906108c 2663
38ca4e0c
MK
2664/* Return the GDB type object for the "standard" data type of data in
2665 register REGNUM. */
d709c020 2666
eded0a31 2667static struct type *
38ca4e0c 2668hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2669{
38ca4e0c 2670 if (regnum < HPPA_FP4_REGNUM)
df4df182 2671 return builtin_type (gdbarch)->builtin_uint32;
d709c020 2672 else
27067745 2673 return builtin_type (gdbarch)->builtin_float;
d709c020
JB
2674}
2675
eded0a31 2676static struct type *
38ca4e0c 2677hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2678{
38ca4e0c 2679 if (regnum < HPPA64_FP4_REGNUM)
df4df182 2680 return builtin_type (gdbarch)->builtin_uint64;
3ff7cf9e 2681 else
27067745 2682 return builtin_type (gdbarch)->builtin_double;
3ff7cf9e
JB
2683}
2684
38ca4e0c
MK
2685/* Return non-zero if REGNUM is not a register available to the user
2686 through ptrace/ttrace. */
d709c020 2687
8d153463 2688static int
64a3914f 2689hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2690{
2691 return (regnum == 0
34f75cc1
RC
2692 || regnum == HPPA_PCSQ_HEAD_REGNUM
2693 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2694 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2695}
d709c020 2696
d037d088 2697static int
64a3914f 2698hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2699{
2700 /* cr26 and cr27 are readable (but not writable) from userspace. */
2701 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2702 return 0;
2703 else
64a3914f 2704 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2705}
2706
38ca4e0c 2707static int
64a3914f 2708hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2709{
2710 return (regnum == 0
2711 || regnum == HPPA_PCSQ_HEAD_REGNUM
2712 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2713 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2714}
2715
d037d088 2716static int
64a3914f 2717hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2718{
2719 /* cr26 and cr27 are readable (but not writable) from userspace. */
2720 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2721 return 0;
2722 else
64a3914f 2723 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2724}
2725
8d153463 2726static CORE_ADDR
85ddcc70 2727hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
d709c020
JB
2728{
2729 /* The low two bits of the PC on the PA contain the privilege level.
2730 Some genius implementing a (non-GCC) compiler apparently decided
2731 this means that "addresses" in a text section therefore include a
2732 privilege level, and thus symbol tables should contain these bits.
2733 This seems like a bonehead thing to do--anyway, it seems to work
2734 for our purposes to just ignore those bits. */
2735
2736 return (addr &= ~0x3);
2737}
2738
e127f0db
MK
2739/* Get the ARGIth function argument for the current function. */
2740
4a302917 2741static CORE_ADDR
143985b7
AF
2742hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2743 struct type *type)
2744{
e127f0db 2745 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2746}
2747
05d1431c 2748static enum register_status
0f8d9d59 2749hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2750 int regnum, gdb_byte *buf)
0f8d9d59 2751{
05d1431c
PA
2752 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2753 ULONGEST tmp;
2754 enum register_status status;
0f8d9d59 2755
05d1431c
PA
2756 status = regcache_raw_read_unsigned (regcache, regnum, &tmp);
2757 if (status == REG_VALID)
2758 {
2759 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2760 tmp &= ~0x3;
2761 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2762 }
2763 return status;
0f8d9d59
RC
2764}
2765
d49771ef 2766static CORE_ADDR
e38c262f 2767hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2768{
2769 return 0;
2770}
2771
227e86ad
JB
2772struct value *
2773hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2774 struct trad_frame_saved_reg saved_regs[],
227e86ad 2775 int regnum)
0da28f8a 2776{
227e86ad 2777 struct gdbarch *arch = get_frame_arch (this_frame);
e17a4113 2778 enum bfd_endian byte_order = gdbarch_byte_order (arch);
8f4e467c 2779
8693c419
MK
2780 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2781 {
227e86ad
JB
2782 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2783 CORE_ADDR pc;
2784 struct value *pcoq_val =
2785 trad_frame_get_prev_register (this_frame, saved_regs,
2786 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2787
e17a4113
UW
2788 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2789 size, byte_order);
227e86ad 2790 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2791 }
0da28f8a 2792
227e86ad 2793 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2794}
8693c419 2795\f
0da28f8a 2796
34f55018
MK
2797/* An instruction to match. */
2798struct insn_pattern
2799{
2800 unsigned int data; /* See if it matches this.... */
2801 unsigned int mask; /* ... with this mask. */
2802};
2803
2804/* See bfd/elf32-hppa.c */
2805static struct insn_pattern hppa_long_branch_stub[] = {
2806 /* ldil LR'xxx,%r1 */
2807 { 0x20200000, 0xffe00000 },
2808 /* be,n RR'xxx(%sr4,%r1) */
2809 { 0xe0202002, 0xffe02002 },
2810 { 0, 0 }
2811};
2812
2813static struct insn_pattern hppa_long_branch_pic_stub[] = {
2814 /* b,l .+8, %r1 */
2815 { 0xe8200000, 0xffe00000 },
2816 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2817 { 0x28200000, 0xffe00000 },
2818 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2819 { 0xe0202002, 0xffe02002 },
2820 { 0, 0 }
2821};
2822
2823static struct insn_pattern hppa_import_stub[] = {
2824 /* addil LR'xxx, %dp */
2825 { 0x2b600000, 0xffe00000 },
2826 /* ldw RR'xxx(%r1), %r21 */
2827 { 0x48350000, 0xffffb000 },
2828 /* bv %r0(%r21) */
2829 { 0xeaa0c000, 0xffffffff },
2830 /* ldw RR'xxx+4(%r1), %r19 */
2831 { 0x48330000, 0xffffb000 },
2832 { 0, 0 }
2833};
2834
2835static struct insn_pattern hppa_import_pic_stub[] = {
2836 /* addil LR'xxx,%r19 */
2837 { 0x2a600000, 0xffe00000 },
2838 /* ldw RR'xxx(%r1),%r21 */
2839 { 0x48350000, 0xffffb000 },
2840 /* bv %r0(%r21) */
2841 { 0xeaa0c000, 0xffffffff },
2842 /* ldw RR'xxx+4(%r1),%r19 */
2843 { 0x48330000, 0xffffb000 },
2844 { 0, 0 },
2845};
2846
2847static struct insn_pattern hppa_plt_stub[] = {
2848 /* b,l 1b, %r20 - 1b is 3 insns before here */
2849 { 0xea9f1fdd, 0xffffffff },
2850 /* depi 0,31,2,%r20 */
2851 { 0xd6801c1e, 0xffffffff },
2852 { 0, 0 }
34f55018
MK
2853};
2854
2855/* Maximum number of instructions on the patterns above. */
2856#define HPPA_MAX_INSN_PATTERN_LEN 4
2857
2858/* Return non-zero if the instructions at PC match the series
2859 described in PATTERN, or zero otherwise. PATTERN is an array of
2860 'struct insn_pattern' objects, terminated by an entry whose mask is
2861 zero.
2862
2863 When the match is successful, fill INSN[i] with what PATTERN[i]
2864 matched. */
2865
2866static int
e17a4113
UW
2867hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2868 struct insn_pattern *pattern, unsigned int *insn)
34f55018 2869{
e17a4113 2870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
34f55018
MK
2871 CORE_ADDR npc = pc;
2872 int i;
2873
2874 for (i = 0; pattern[i].mask; i++)
2875 {
2876 gdb_byte buf[HPPA_INSN_SIZE];
2877
8defab1a 2878 target_read_memory (npc, buf, HPPA_INSN_SIZE);
e17a4113 2879 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
34f55018
MK
2880 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2881 npc += 4;
2882 else
2883 return 0;
2884 }
2885
2886 return 1;
2887}
2888
2889/* This relaxed version of the insstruction matcher allows us to match
2890 from somewhere inside the pattern, by looking backwards in the
2891 instruction scheme. */
2892
2893static int
e17a4113
UW
2894hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2895 struct insn_pattern *pattern, unsigned int *insn)
34f55018
MK
2896{
2897 int offset, len = 0;
2898
2899 while (pattern[len].mask)
2900 len++;
2901
2902 for (offset = 0; offset < len; offset++)
e17a4113
UW
2903 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2904 pattern, insn))
34f55018
MK
2905 return 1;
2906
2907 return 0;
2908}
2909
2910static int
2911hppa_in_dyncall (CORE_ADDR pc)
2912{
2913 struct unwind_table_entry *u;
2914
2915 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2916 if (!u)
2917 return 0;
2918
2919 return (pc >= u->region_start && pc <= u->region_end);
2920}
2921
2922int
3e5d3a5a 2923hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
34f55018
MK
2924{
2925 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2926 struct unwind_table_entry *u;
2927
3e5d3a5a 2928 if (in_plt_section (pc) || hppa_in_dyncall (pc))
34f55018
MK
2929 return 1;
2930
2931 /* The GNU toolchain produces linker stubs without unwind
2932 information. Since the pattern matching for linker stubs can be
2933 quite slow, so bail out if we do have an unwind entry. */
2934
2935 u = find_unwind_entry (pc);
806e23c0 2936 if (u != NULL)
34f55018
MK
2937 return 0;
2938
e17a4113
UW
2939 return
2940 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2941 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2942 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2943 || hppa_match_insns_relaxed (gdbarch, pc,
2944 hppa_long_branch_pic_stub, insn));
34f55018
MK
2945}
2946
2947/* This code skips several kind of "trampolines" used on PA-RISC
2948 systems: $$dyncall, import stubs and PLT stubs. */
2949
2950CORE_ADDR
52f729a7 2951hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018 2952{
0dfff4cb
UW
2953 struct gdbarch *gdbarch = get_frame_arch (frame);
2954 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2955
34f55018
MK
2956 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2957 int dp_rel;
2958
2959 /* $$dyncall handles both PLABELs and direct addresses. */
2960 if (hppa_in_dyncall (pc))
2961 {
52f729a7 2962 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2963
2964 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2965 if (pc & 0x2)
0dfff4cb 2966 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
34f55018
MK
2967
2968 return pc;
2969 }
2970
e17a4113
UW
2971 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2972 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
34f55018
MK
2973 {
2974 /* Extract the target address from the addil/ldw sequence. */
2975 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2976
2977 if (dp_rel)
52f729a7 2978 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 2979 else
52f729a7 2980 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
2981
2982 /* fallthrough */
2983 }
2984
3e5d3a5a 2985 if (in_plt_section (pc))
34f55018 2986 {
0dfff4cb 2987 pc = read_memory_typed_address (pc, func_ptr_type);
34f55018
MK
2988
2989 /* If the PLT slot has not yet been resolved, the target will be
2990 the PLT stub. */
3e5d3a5a 2991 if (in_plt_section (pc))
34f55018
MK
2992 {
2993 /* Sanity check: are we pointing to the PLT stub? */
e17a4113 2994 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
34f55018 2995 {
5af949e3
UW
2996 warning (_("Cannot resolve PLT stub at %s."),
2997 paddress (gdbarch, pc));
34f55018
MK
2998 return 0;
2999 }
3000
3001 /* This should point to the fixup routine. */
0dfff4cb 3002 pc = read_memory_typed_address (pc + 8, func_ptr_type);
34f55018
MK
3003 }
3004 }
3005
3006 return pc;
3007}
3008\f
3009
8e8b2dba
MC
3010/* Here is a table of C type sizes on hppa with various compiles
3011 and options. I measured this on PA 9000/800 with HP-UX 11.11
3012 and these compilers:
3013
3014 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3015 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3016 /opt/aCC/bin/aCC B3910B A.03.45
3017 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3018
3019 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3020 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3021 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3022 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3023 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3024 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3025 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3026 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3027
3028 Each line is:
3029
3030 compiler and options
3031 char, short, int, long, long long
3032 float, double, long double
3033 char *, void (*)()
3034
3035 So all these compilers use either ILP32 or LP64 model.
3036 TODO: gcc has more options so it needs more investigation.
3037
a2379359
MC
3038 For floating point types, see:
3039
3040 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3041 HP-UX floating-point guide, hpux 11.00
3042
8e8b2dba
MC
3043 -- chastain 2003-12-18 */
3044
e6e68f1f
JB
3045static struct gdbarch *
3046hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3047{
3ff7cf9e 3048 struct gdbarch_tdep *tdep;
e6e68f1f
JB
3049 struct gdbarch *gdbarch;
3050
3051 /* find a candidate among the list of pre-declared architectures. */
3052 arches = gdbarch_list_lookup_by_info (arches, &info);
3053 if (arches != NULL)
3054 return (arches->gdbarch);
3055
3056 /* If none found, then allocate and initialize one. */
41bf6aca 3057 tdep = XCNEW (struct gdbarch_tdep);
3ff7cf9e
JB
3058 gdbarch = gdbarch_alloc (&info, tdep);
3059
3060 /* Determine from the bfd_arch_info structure if we are dealing with
3061 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3062 then default to a 32bit machine. */
3063 if (info.bfd_arch_info != NULL)
3064 tdep->bytes_per_address =
3065 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3066 else
3067 tdep->bytes_per_address = 4;
3068
d49771ef
RC
3069 tdep->find_global_pointer = hppa_find_global_pointer;
3070
3ff7cf9e
JB
3071 /* Some parts of the gdbarch vector depend on whether we are running
3072 on a 32 bits or 64 bits target. */
3073 switch (tdep->bytes_per_address)
3074 {
3075 case 4:
3076 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3077 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3078 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3079 set_gdbarch_cannot_store_register (gdbarch,
3080 hppa32_cannot_store_register);
3081 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3082 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3083 break;
3084 case 8:
3085 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3086 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3087 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3088 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3089 set_gdbarch_cannot_store_register (gdbarch,
3090 hppa64_cannot_store_register);
3091 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3092 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3093 break;
3094 default:
e2e0b3e5 3095 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3096 tdep->bytes_per_address);
3097 }
3098
3ff7cf9e 3099 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3100 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3101
8e8b2dba
MC
3102 /* The following gdbarch vector elements are the same in both ILP32
3103 and LP64, but might show differences some day. */
3104 set_gdbarch_long_long_bit (gdbarch, 64);
3105 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3106 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3107
3ff7cf9e
JB
3108 /* The following gdbarch vector elements do not depend on the address
3109 size, or in any other gdbarch element previously set. */
60383d10 3110 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
c9cf6e20
MG
3111 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3112 hppa_stack_frame_destroyed_p);
a2a84a72 3113 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3114 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3115 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
85ddcc70 3116 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
60383d10 3117 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3118 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3119 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3120
143985b7
AF
3121 /* Helper for function argument information. */
3122 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3123
36482093
AC
3124 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3125
3a3bc038
AC
3126 /* When a hardware watchpoint triggers, we'll move the inferior past
3127 it by removing all eventpoints; stepping past the instruction
3128 that caused the trigger; reinserting eventpoints; and checking
3129 whether any watched location changed. */
3130 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3131
5979bc46 3132 /* Inferior function call methods. */
fca7aa43 3133 switch (tdep->bytes_per_address)
5979bc46 3134 {
fca7aa43
AC
3135 case 4:
3136 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3137 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3138 set_gdbarch_convert_from_func_ptr_addr
3139 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3140 break;
3141 case 8:
782eae8b
AC
3142 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3143 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3144 break;
782eae8b 3145 default:
e2e0b3e5 3146 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3147 }
3148
3149 /* Struct return methods. */
fca7aa43 3150 switch (tdep->bytes_per_address)
fad850b2 3151 {
fca7aa43
AC
3152 case 4:
3153 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3154 break;
3155 case 8:
782eae8b 3156 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3157 break;
fca7aa43 3158 default:
e2e0b3e5 3159 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3160 }
7f07c5b6 3161
04180708
YQ
3162 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3163 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
7f07c5b6 3164 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3165
5979bc46 3166 /* Frame unwind methods. */
227e86ad 3167 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3168 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3169
50306a9d
RC
3170 /* Hook in ABI-specific overrides, if they have been registered. */
3171 gdbarch_init_osabi (info, gdbarch);
3172
7f07c5b6 3173 /* Hook in the default unwinders. */
227e86ad
JB
3174 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3175 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3176 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3177
e6e68f1f
JB
3178 return gdbarch;
3179}
3180
3181static void
464963c9 3182hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3183{
464963c9 3184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3185
3186 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3187 tdep->bytes_per_address);
3188 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3189}
3190
72753510
PA
3191/* Provide a prototype to silence -Wmissing-prototypes. */
3192extern initialize_file_ftype _initialize_hppa_tdep;
3193
4facf7e8
JB
3194void
3195_initialize_hppa_tdep (void)
3196{
e6e68f1f 3197 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3198
7c46b9fb
RC
3199 hppa_objfile_priv_data = register_objfile_data ();
3200
4facf7e8 3201 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3202 _("Print unwind table entry at given address."),
4facf7e8
JB
3203 &maintenanceprintlist);
3204
1777feb0 3205 /* Debug this files internals. */
7915a72c
AC
3206 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3207Set whether hppa target specific debugging information should be displayed."),
3208 _("\
3209Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3210This flag controls whether hppa target specific debugging information is\n\
3211displayed. This information is particularly useful for debugging frame\n\
7915a72c 3212unwinding problems."),
2c5b56ce 3213 NULL,
7915a72c 3214 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3215 &setdebuglist, &showdebuglist);
4facf7e8 3216}
This page took 1.496173 seconds and 4 git commands to generate.