Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the HP PA architecture, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, | |
1e698235 | 4 | 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
c906108c SS |
5 | |
6 | Contributed by the Center for Software Science at the | |
7 | University of Utah (pa-gdb-bugs@cs.utah.edu). | |
8 | ||
c5aa993b | 9 | This file is part of GDB. |
c906108c | 10 | |
c5aa993b JM |
11 | This program is free software; you can redistribute it and/or modify |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
c906108c | 15 | |
c5aa993b JM |
16 | This program is distributed in the hope that it will be useful, |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
c906108c | 20 | |
c5aa993b JM |
21 | You should have received a copy of the GNU General Public License |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, | |
24 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
25 | |
26 | #include "defs.h" | |
27 | #include "frame.h" | |
28 | #include "bfd.h" | |
29 | #include "inferior.h" | |
30 | #include "value.h" | |
4e052eda | 31 | #include "regcache.h" |
e5d66720 | 32 | #include "completer.h" |
d709c020 | 33 | #include "language.h" |
59623e27 | 34 | #include "osabi.h" |
a7ff40e7 | 35 | #include "gdb_assert.h" |
65e82032 | 36 | #include "infttrace.h" |
c906108c SS |
37 | /* For argument passing to the inferior */ |
38 | #include "symtab.h" | |
04714b91 | 39 | #include "infcall.h" |
fde2cceb | 40 | #include "dis-asm.h" |
c906108c SS |
41 | |
42 | #ifdef USG | |
43 | #include <sys/types.h> | |
44 | #endif | |
45 | ||
46 | #include <dl.h> | |
47 | #include <sys/param.h> | |
48 | #include <signal.h> | |
49 | ||
50 | #include <sys/ptrace.h> | |
51 | #include <machine/save_state.h> | |
52 | ||
53 | #ifdef COFF_ENCAPSULATE | |
54 | #include "a.out.encap.h" | |
55 | #else | |
56 | #endif | |
57 | ||
c5aa993b | 58 | /*#include <sys/user.h> After a.out.h */ |
c906108c SS |
59 | #include <sys/file.h> |
60 | #include "gdb_stat.h" | |
03f2053f | 61 | #include "gdb_wait.h" |
c906108c SS |
62 | |
63 | #include "gdbcore.h" | |
64 | #include "gdbcmd.h" | |
65 | #include "target.h" | |
66 | #include "symfile.h" | |
67 | #include "objfiles.h" | |
3ff7cf9e | 68 | #include "hppa-tdep.h" |
c906108c | 69 | |
60383d10 | 70 | /* Some local constants. */ |
3ff7cf9e JB |
71 | static const int hppa32_num_regs = 128; |
72 | static const int hppa64_num_regs = 96; | |
73 | ||
74 | static const int hppa64_call_dummy_breakpoint_offset = 22 * 4; | |
75 | ||
76 | /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a | |
77 | word on the target machine, not the size of an instruction. Since | |
78 | a word on this target holds two instructions we have to divide the | |
79 | instruction size by two to get the word size of the dummy. */ | |
80 | static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28; | |
81 | static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2; | |
60383d10 | 82 | |
e2ac8128 JB |
83 | /* Get at various relevent fields of an instruction word. */ |
84 | #define MASK_5 0x1f | |
85 | #define MASK_11 0x7ff | |
86 | #define MASK_14 0x3fff | |
87 | #define MASK_21 0x1fffff | |
88 | ||
89 | /* Define offsets into the call dummy for the target function address. | |
90 | See comments related to CALL_DUMMY for more info. */ | |
91 | #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9) | |
92 | #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10) | |
93 | ||
94 | /* Define offsets into the call dummy for the _sr4export address. | |
95 | See comments related to CALL_DUMMY for more info. */ | |
96 | #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12) | |
97 | #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13) | |
98 | ||
c906108c SS |
99 | /* To support detection of the pseudo-initial frame |
100 | that threads have. */ | |
101 | #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit" | |
102 | #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL) | |
c5aa993b | 103 | |
e2ac8128 JB |
104 | /* Sizes (in bytes) of the native unwind entries. */ |
105 | #define UNWIND_ENTRY_SIZE 16 | |
106 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
107 | ||
108 | static int get_field (unsigned word, int from, int to); | |
109 | ||
a14ed312 | 110 | static int extract_5_load (unsigned int); |
c906108c | 111 | |
a14ed312 | 112 | static unsigned extract_5R_store (unsigned int); |
c906108c | 113 | |
a14ed312 | 114 | static unsigned extract_5r_store (unsigned int); |
c906108c | 115 | |
43bd9a9e | 116 | static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *); |
c906108c | 117 | |
a14ed312 | 118 | static int find_proc_framesize (CORE_ADDR); |
c906108c | 119 | |
a14ed312 | 120 | static int find_return_regnum (CORE_ADDR); |
c906108c | 121 | |
a14ed312 | 122 | struct unwind_table_entry *find_unwind_entry (CORE_ADDR); |
c906108c | 123 | |
a14ed312 | 124 | static int extract_17 (unsigned int); |
c906108c | 125 | |
a14ed312 | 126 | static unsigned deposit_21 (unsigned int, unsigned int); |
c906108c | 127 | |
a14ed312 | 128 | static int extract_21 (unsigned); |
c906108c | 129 | |
a14ed312 | 130 | static unsigned deposit_14 (int, unsigned int); |
c906108c | 131 | |
a14ed312 | 132 | static int extract_14 (unsigned); |
c906108c | 133 | |
a14ed312 | 134 | static void unwind_command (char *, int); |
c906108c | 135 | |
a14ed312 | 136 | static int low_sign_extend (unsigned int, unsigned int); |
c906108c | 137 | |
a14ed312 | 138 | static int sign_extend (unsigned int, unsigned int); |
c906108c | 139 | |
43bd9a9e | 140 | static int restore_pc_queue (CORE_ADDR *); |
c906108c | 141 | |
a14ed312 | 142 | static int hppa_alignof (struct type *); |
c906108c | 143 | |
a14ed312 | 144 | static int prologue_inst_adjust_sp (unsigned long); |
c906108c | 145 | |
a14ed312 | 146 | static int is_branch (unsigned long); |
c906108c | 147 | |
a14ed312 | 148 | static int inst_saves_gr (unsigned long); |
c906108c | 149 | |
a14ed312 | 150 | static int inst_saves_fr (unsigned long); |
c906108c | 151 | |
a14ed312 | 152 | static int pc_in_interrupt_handler (CORE_ADDR); |
c906108c | 153 | |
a14ed312 | 154 | static int pc_in_linker_stub (CORE_ADDR); |
c906108c | 155 | |
a14ed312 | 156 | static int compare_unwind_entries (const void *, const void *); |
c906108c | 157 | |
a14ed312 | 158 | static void read_unwind_info (struct objfile *); |
c906108c | 159 | |
a14ed312 KB |
160 | static void internalize_unwinds (struct objfile *, |
161 | struct unwind_table_entry *, | |
162 | asection *, unsigned int, | |
163 | unsigned int, CORE_ADDR); | |
164 | static void pa_print_registers (char *, int, int); | |
d9fcf2fb | 165 | static void pa_strcat_registers (char *, int, int, struct ui_file *); |
a14ed312 KB |
166 | static void pa_register_look_aside (char *, int, long *); |
167 | static void pa_print_fp_reg (int); | |
d9fcf2fb | 168 | static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type); |
a14ed312 | 169 | static void record_text_segment_lowaddr (bfd *, asection *, void *); |
d709c020 JB |
170 | /* FIXME: brobecker 2002-11-07: We will likely be able to make the |
171 | following functions static, once we hppa is partially multiarched. */ | |
172 | int hppa_reg_struct_has_addr (int gcc_p, struct type *type); | |
60383d10 JB |
173 | CORE_ADDR hppa_skip_prologue (CORE_ADDR pc); |
174 | CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc); | |
175 | int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name); | |
176 | int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name); | |
177 | CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame); | |
d709c020 | 178 | int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs); |
3ff7cf9e JB |
179 | CORE_ADDR hppa32_stack_align (CORE_ADDR sp); |
180 | CORE_ADDR hppa64_stack_align (CORE_ADDR sp); | |
d709c020 JB |
181 | int hppa_pc_requires_run_before_use (CORE_ADDR pc); |
182 | int hppa_instruction_nullified (void); | |
60e1ff27 | 183 | int hppa_register_raw_size (int reg_nr); |
d709c020 | 184 | int hppa_register_byte (int reg_nr); |
3ff7cf9e JB |
185 | struct type * hppa32_register_virtual_type (int reg_nr); |
186 | struct type * hppa64_register_virtual_type (int reg_nr); | |
d709c020 | 187 | void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp); |
3ff7cf9e JB |
188 | void hppa32_extract_return_value (struct type *type, char *regbuf, |
189 | char *valbuf); | |
190 | void hppa64_extract_return_value (struct type *type, char *regbuf, | |
191 | char *valbuf); | |
192 | int hppa32_use_struct_convention (int gcc_p, struct type *type); | |
193 | int hppa64_use_struct_convention (int gcc_p, struct type *type); | |
194 | void hppa32_store_return_value (struct type *type, char *valbuf); | |
195 | void hppa64_store_return_value (struct type *type, char *valbuf); | |
60383d10 | 196 | CORE_ADDR hppa_extract_struct_value_address (char *regbuf); |
d709c020 | 197 | int hppa_cannot_store_register (int regnum); |
60383d10 JB |
198 | void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame); |
199 | CORE_ADDR hppa_frame_chain (struct frame_info *frame); | |
200 | int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe); | |
201 | int hppa_frameless_function_invocation (struct frame_info *frame); | |
202 | CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame); | |
d709c020 | 203 | CORE_ADDR hppa_frame_args_address (struct frame_info *fi); |
60383d10 | 204 | int hppa_frame_num_args (struct frame_info *frame); |
7daf4f5b | 205 | void hppa_push_dummy_frame (void); |
60383d10 JB |
206 | void hppa_pop_frame (void); |
207 | CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, | |
208 | int nargs, struct value **args, | |
209 | struct type *type, int gcc_p); | |
210 | CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
211 | int struct_return, CORE_ADDR struct_addr); | |
d709c020 | 212 | CORE_ADDR hppa_smash_text_address (CORE_ADDR addr); |
60383d10 JB |
213 | CORE_ADDR hppa_target_read_pc (ptid_t ptid); |
214 | void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid); | |
215 | CORE_ADDR hppa_target_read_fp (void); | |
c906108c | 216 | |
c5aa993b JM |
217 | typedef struct |
218 | { | |
219 | struct minimal_symbol *msym; | |
220 | CORE_ADDR solib_handle; | |
a0b3c4fd | 221 | CORE_ADDR return_val; |
c5aa993b JM |
222 | } |
223 | args_for_find_stub; | |
c906108c | 224 | |
4efb68b1 | 225 | static int cover_find_stub_with_shl_get (void *); |
c906108c | 226 | |
c5aa993b | 227 | static int is_pa_2 = 0; /* False */ |
c906108c | 228 | |
c5aa993b | 229 | /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */ |
c906108c SS |
230 | extern int hp_som_som_object_present; |
231 | ||
232 | /* In breakpoint.c */ | |
233 | extern int exception_catchpoints_are_fragile; | |
234 | ||
c906108c | 235 | /* Should call_function allocate stack space for a struct return? */ |
d709c020 | 236 | |
c906108c | 237 | int |
3ff7cf9e | 238 | hppa32_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 239 | { |
b1e29e33 | 240 | return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE); |
c906108c | 241 | } |
3ff7cf9e JB |
242 | |
243 | /* Same as hppa32_use_struct_convention() for the PA64 ABI. */ | |
244 | ||
245 | int | |
246 | hppa64_use_struct_convention (int gcc_p, struct type *type) | |
247 | { | |
248 | /* RM: struct upto 128 bits are returned in registers */ | |
249 | return TYPE_LENGTH (type) > 16; | |
250 | } | |
c5aa993b | 251 | |
c906108c SS |
252 | /* Routines to extract various sized constants out of hppa |
253 | instructions. */ | |
254 | ||
255 | /* This assumes that no garbage lies outside of the lower bits of | |
256 | value. */ | |
257 | ||
258 | static int | |
fba45db2 | 259 | sign_extend (unsigned val, unsigned bits) |
c906108c | 260 | { |
c5aa993b | 261 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
262 | } |
263 | ||
264 | /* For many immediate values the sign bit is the low bit! */ | |
265 | ||
266 | static int | |
fba45db2 | 267 | low_sign_extend (unsigned val, unsigned bits) |
c906108c | 268 | { |
c5aa993b | 269 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
270 | } |
271 | ||
e2ac8128 JB |
272 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
273 | (MSB = 0). */ | |
274 | ||
275 | static int | |
276 | get_field (unsigned word, int from, int to) | |
277 | { | |
278 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
279 | } | |
280 | ||
c906108c SS |
281 | /* extract the immediate field from a ld{bhw}s instruction */ |
282 | ||
c906108c | 283 | static int |
fba45db2 | 284 | extract_5_load (unsigned word) |
c906108c SS |
285 | { |
286 | return low_sign_extend (word >> 16 & MASK_5, 5); | |
287 | } | |
288 | ||
c906108c SS |
289 | /* extract the immediate field from a break instruction */ |
290 | ||
291 | static unsigned | |
fba45db2 | 292 | extract_5r_store (unsigned word) |
c906108c SS |
293 | { |
294 | return (word & MASK_5); | |
295 | } | |
296 | ||
297 | /* extract the immediate field from a {sr}sm instruction */ | |
298 | ||
299 | static unsigned | |
fba45db2 | 300 | extract_5R_store (unsigned word) |
c906108c SS |
301 | { |
302 | return (word >> 16 & MASK_5); | |
303 | } | |
304 | ||
c906108c SS |
305 | /* extract a 14 bit immediate field */ |
306 | ||
307 | static int | |
fba45db2 | 308 | extract_14 (unsigned word) |
c906108c SS |
309 | { |
310 | return low_sign_extend (word & MASK_14, 14); | |
311 | } | |
312 | ||
313 | /* deposit a 14 bit constant in a word */ | |
314 | ||
315 | static unsigned | |
fba45db2 | 316 | deposit_14 (int opnd, unsigned word) |
c906108c SS |
317 | { |
318 | unsigned sign = (opnd < 0 ? 1 : 0); | |
319 | ||
c5aa993b | 320 | return word | ((unsigned) opnd << 1 & MASK_14) | sign; |
c906108c SS |
321 | } |
322 | ||
323 | /* extract a 21 bit constant */ | |
324 | ||
325 | static int | |
fba45db2 | 326 | extract_21 (unsigned word) |
c906108c SS |
327 | { |
328 | int val; | |
329 | ||
330 | word &= MASK_21; | |
331 | word <<= 11; | |
e2ac8128 | 332 | val = get_field (word, 20, 20); |
c906108c | 333 | val <<= 11; |
e2ac8128 | 334 | val |= get_field (word, 9, 19); |
c906108c | 335 | val <<= 2; |
e2ac8128 | 336 | val |= get_field (word, 5, 6); |
c906108c | 337 | val <<= 5; |
e2ac8128 | 338 | val |= get_field (word, 0, 4); |
c906108c | 339 | val <<= 2; |
e2ac8128 | 340 | val |= get_field (word, 7, 8); |
c906108c SS |
341 | return sign_extend (val, 21) << 11; |
342 | } | |
343 | ||
344 | /* deposit a 21 bit constant in a word. Although 21 bit constants are | |
345 | usually the top 21 bits of a 32 bit constant, we assume that only | |
346 | the low 21 bits of opnd are relevant */ | |
347 | ||
348 | static unsigned | |
fba45db2 | 349 | deposit_21 (unsigned opnd, unsigned word) |
c906108c SS |
350 | { |
351 | unsigned val = 0; | |
352 | ||
e2ac8128 | 353 | val |= get_field (opnd, 11 + 14, 11 + 18); |
c906108c | 354 | val <<= 2; |
e2ac8128 | 355 | val |= get_field (opnd, 11 + 12, 11 + 13); |
c906108c | 356 | val <<= 2; |
e2ac8128 | 357 | val |= get_field (opnd, 11 + 19, 11 + 20); |
c906108c | 358 | val <<= 11; |
e2ac8128 | 359 | val |= get_field (opnd, 11 + 1, 11 + 11); |
c906108c | 360 | val <<= 1; |
e2ac8128 | 361 | val |= get_field (opnd, 11 + 0, 11 + 0); |
c906108c SS |
362 | return word | val; |
363 | } | |
364 | ||
c906108c SS |
365 | /* extract a 17 bit constant from branch instructions, returning the |
366 | 19 bit signed value. */ | |
367 | ||
368 | static int | |
fba45db2 | 369 | extract_17 (unsigned word) |
c906108c | 370 | { |
e2ac8128 JB |
371 | return sign_extend (get_field (word, 19, 28) | |
372 | get_field (word, 29, 29) << 10 | | |
373 | get_field (word, 11, 15) << 11 | | |
c906108c SS |
374 | (word & 0x1) << 16, 17) << 2; |
375 | } | |
376 | \f | |
377 | ||
378 | /* Compare the start address for two unwind entries returning 1 if | |
379 | the first address is larger than the second, -1 if the second is | |
380 | larger than the first, and zero if they are equal. */ | |
381 | ||
382 | static int | |
fba45db2 | 383 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
384 | { |
385 | const struct unwind_table_entry *a = arg1; | |
386 | const struct unwind_table_entry *b = arg2; | |
387 | ||
388 | if (a->region_start > b->region_start) | |
389 | return 1; | |
390 | else if (a->region_start < b->region_start) | |
391 | return -1; | |
392 | else | |
393 | return 0; | |
394 | } | |
395 | ||
53a5351d JM |
396 | static CORE_ADDR low_text_segment_address; |
397 | ||
398 | static void | |
8fef05cc | 399 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored) |
53a5351d | 400 | { |
bf9c25dc | 401 | if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d JM |
402 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
403 | && section->vma < low_text_segment_address) | |
404 | low_text_segment_address = section->vma; | |
405 | } | |
406 | ||
c906108c | 407 | static void |
fba45db2 KB |
408 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
409 | asection *section, unsigned int entries, unsigned int size, | |
410 | CORE_ADDR text_offset) | |
c906108c SS |
411 | { |
412 | /* We will read the unwind entries into temporary memory, then | |
413 | fill in the actual unwind table. */ | |
414 | if (size > 0) | |
415 | { | |
416 | unsigned long tmp; | |
417 | unsigned i; | |
418 | char *buf = alloca (size); | |
419 | ||
53a5351d JM |
420 | low_text_segment_address = -1; |
421 | ||
422 | /* If addresses are 64 bits wide, then unwinds are supposed to | |
c2c6d25f JM |
423 | be segment relative offsets instead of absolute addresses. |
424 | ||
425 | Note that when loading a shared library (text_offset != 0) the | |
426 | unwinds are already relative to the text_offset that will be | |
427 | passed in. */ | |
428 | if (TARGET_PTR_BIT == 64 && text_offset == 0) | |
53a5351d JM |
429 | { |
430 | bfd_map_over_sections (objfile->obfd, | |
4efb68b1 | 431 | record_text_segment_lowaddr, NULL); |
53a5351d JM |
432 | |
433 | /* ?!? Mask off some low bits. Should this instead subtract | |
434 | out the lowest section's filepos or something like that? | |
435 | This looks very hokey to me. */ | |
436 | low_text_segment_address &= ~0xfff; | |
437 | text_offset += low_text_segment_address; | |
438 | } | |
439 | ||
c906108c SS |
440 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
441 | ||
442 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 443 | endian issues. */ |
c906108c SS |
444 | for (i = 0; i < entries; i++) |
445 | { | |
446 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 447 | (bfd_byte *) buf); |
c906108c SS |
448 | table[i].region_start += text_offset; |
449 | buf += 4; | |
c5aa993b | 450 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
451 | table[i].region_end += text_offset; |
452 | buf += 4; | |
c5aa993b | 453 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
454 | buf += 4; |
455 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
456 | table[i].Millicode = (tmp >> 30) & 0x1; | |
457 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
458 | table[i].Region_description = (tmp >> 27) & 0x3; | |
459 | table[i].reserved1 = (tmp >> 26) & 0x1; | |
460 | table[i].Entry_SR = (tmp >> 25) & 0x1; | |
461 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
462 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
463 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
464 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
465 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
466 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
467 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
468 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
469 | table[i].Ada_Region = (tmp >> 9) & 0x1; | |
470 | table[i].cxx_info = (tmp >> 8) & 0x1; | |
471 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
472 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
473 | table[i].reserved2 = (tmp >> 5) & 0x1; | |
474 | table[i].Save_SP = (tmp >> 4) & 0x1; | |
475 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
476 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
477 | table[i].extn_ptr_defined = (tmp >> 1) & 0x1; | |
478 | table[i].Cleanup_defined = tmp & 0x1; | |
c5aa993b | 479 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
480 | buf += 4; |
481 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
482 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
483 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
484 | table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1; | |
485 | table[i].reserved4 = (tmp >> 27) & 0x1; | |
486 | table[i].Total_frame_size = tmp & 0x7ffffff; | |
487 | ||
c5aa993b | 488 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
489 | table[i].stub_unwind.stub_type = 0; |
490 | table[i].stub_unwind.padding = 0; | |
491 | } | |
492 | } | |
493 | } | |
494 | ||
495 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
496 | the object file. This info is used mainly by find_unwind_entry() to find | |
497 | out the stack frame size and frame pointer used by procedures. We put | |
498 | everything on the psymbol obstack in the objfile so that it automatically | |
499 | gets freed when the objfile is destroyed. */ | |
500 | ||
501 | static void | |
fba45db2 | 502 | read_unwind_info (struct objfile *objfile) |
c906108c | 503 | { |
d4f3574e SS |
504 | asection *unwind_sec, *stub_unwind_sec; |
505 | unsigned unwind_size, stub_unwind_size, total_size; | |
506 | unsigned index, unwind_entries; | |
c906108c SS |
507 | unsigned stub_entries, total_entries; |
508 | CORE_ADDR text_offset; | |
509 | struct obj_unwind_info *ui; | |
510 | obj_private_data_t *obj_private; | |
511 | ||
512 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
c5aa993b JM |
513 | ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack, |
514 | sizeof (struct obj_unwind_info)); | |
c906108c SS |
515 | |
516 | ui->table = NULL; | |
517 | ui->cache = NULL; | |
518 | ui->last = -1; | |
519 | ||
d4f3574e SS |
520 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
521 | sections in a single executable. So we just iterate over every | |
522 | section in the BFD looking for unwinder sections intead of trying | |
523 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 524 | |
d4f3574e SS |
525 | First determine the total size of the unwind tables so that we |
526 | can allocate memory in a nice big hunk. */ | |
527 | total_entries = 0; | |
528 | for (unwind_sec = objfile->obfd->sections; | |
529 | unwind_sec; | |
530 | unwind_sec = unwind_sec->next) | |
c906108c | 531 | { |
d4f3574e SS |
532 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
533 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
534 | { | |
535 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
536 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 537 | |
d4f3574e SS |
538 | total_entries += unwind_entries; |
539 | } | |
c906108c SS |
540 | } |
541 | ||
d4f3574e SS |
542 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
543 | use stub unwinds at the curren time. */ | |
544 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); | |
545 | ||
c906108c SS |
546 | if (stub_unwind_sec) |
547 | { | |
548 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
549 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
550 | } | |
551 | else | |
552 | { | |
553 | stub_unwind_size = 0; | |
554 | stub_entries = 0; | |
555 | } | |
556 | ||
557 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 558 | total_entries += stub_entries; |
c906108c SS |
559 | total_size = total_entries * sizeof (struct unwind_table_entry); |
560 | ||
561 | /* Allocate memory for the unwind table. */ | |
562 | ui->table = (struct unwind_table_entry *) | |
563 | obstack_alloc (&objfile->psymbol_obstack, total_size); | |
c5aa993b | 564 | ui->last = total_entries - 1; |
c906108c | 565 | |
d4f3574e SS |
566 | /* Now read in each unwind section and internalize the standard unwind |
567 | entries. */ | |
c906108c | 568 | index = 0; |
d4f3574e SS |
569 | for (unwind_sec = objfile->obfd->sections; |
570 | unwind_sec; | |
571 | unwind_sec = unwind_sec->next) | |
572 | { | |
573 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
574 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
575 | { | |
576 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
577 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
578 | ||
579 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
580 | unwind_entries, unwind_size, text_offset); | |
581 | index += unwind_entries; | |
582 | } | |
583 | } | |
584 | ||
585 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
586 | if (stub_unwind_size > 0) |
587 | { | |
588 | unsigned int i; | |
589 | char *buf = alloca (stub_unwind_size); | |
590 | ||
591 | /* Read in the stub unwind entries. */ | |
592 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
593 | 0, stub_unwind_size); | |
594 | ||
595 | /* Now convert them into regular unwind entries. */ | |
596 | for (i = 0; i < stub_entries; i++, index++) | |
597 | { | |
598 | /* Clear out the next unwind entry. */ | |
599 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
600 | ||
601 | /* Convert offset & size into region_start and region_end. | |
602 | Stuff away the stub type into "reserved" fields. */ | |
603 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
604 | (bfd_byte *) buf); | |
605 | ui->table[index].region_start += text_offset; | |
606 | buf += 4; | |
607 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 608 | (bfd_byte *) buf); |
c906108c SS |
609 | buf += 2; |
610 | ui->table[index].region_end | |
c5aa993b JM |
611 | = ui->table[index].region_start + 4 * |
612 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
613 | buf += 2; |
614 | } | |
615 | ||
616 | } | |
617 | ||
618 | /* Unwind table needs to be kept sorted. */ | |
619 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
620 | compare_unwind_entries); | |
621 | ||
622 | /* Keep a pointer to the unwind information. */ | |
c5aa993b | 623 | if (objfile->obj_private == NULL) |
c906108c SS |
624 | { |
625 | obj_private = (obj_private_data_t *) | |
c5aa993b JM |
626 | obstack_alloc (&objfile->psymbol_obstack, |
627 | sizeof (obj_private_data_t)); | |
c906108c | 628 | obj_private->unwind_info = NULL; |
c5aa993b | 629 | obj_private->so_info = NULL; |
53a5351d | 630 | obj_private->dp = 0; |
c5aa993b | 631 | |
4efb68b1 | 632 | objfile->obj_private = obj_private; |
c906108c | 633 | } |
c5aa993b | 634 | obj_private = (obj_private_data_t *) objfile->obj_private; |
c906108c SS |
635 | obj_private->unwind_info = ui; |
636 | } | |
637 | ||
638 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
639 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
640 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
641 | search of the unwind tables, we depend upon them to be sorted. */ | |
642 | ||
643 | struct unwind_table_entry * | |
fba45db2 | 644 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
645 | { |
646 | int first, middle, last; | |
647 | struct objfile *objfile; | |
648 | ||
649 | /* A function at address 0? Not in HP-UX! */ | |
650 | if (pc == (CORE_ADDR) 0) | |
651 | return NULL; | |
652 | ||
653 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
654 | { |
655 | struct obj_unwind_info *ui; | |
656 | ui = NULL; | |
657 | if (objfile->obj_private) | |
658 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; | |
c906108c | 659 | |
c5aa993b JM |
660 | if (!ui) |
661 | { | |
662 | read_unwind_info (objfile); | |
663 | if (objfile->obj_private == NULL) | |
104c1213 | 664 | error ("Internal error reading unwind information."); |
c5aa993b JM |
665 | ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info; |
666 | } | |
c906108c | 667 | |
c5aa993b | 668 | /* First, check the cache */ |
c906108c | 669 | |
c5aa993b JM |
670 | if (ui->cache |
671 | && pc >= ui->cache->region_start | |
672 | && pc <= ui->cache->region_end) | |
673 | return ui->cache; | |
c906108c | 674 | |
c5aa993b | 675 | /* Not in the cache, do a binary search */ |
c906108c | 676 | |
c5aa993b JM |
677 | first = 0; |
678 | last = ui->last; | |
c906108c | 679 | |
c5aa993b JM |
680 | while (first <= last) |
681 | { | |
682 | middle = (first + last) / 2; | |
683 | if (pc >= ui->table[middle].region_start | |
684 | && pc <= ui->table[middle].region_end) | |
685 | { | |
686 | ui->cache = &ui->table[middle]; | |
687 | return &ui->table[middle]; | |
688 | } | |
c906108c | 689 | |
c5aa993b JM |
690 | if (pc < ui->table[middle].region_start) |
691 | last = middle - 1; | |
692 | else | |
693 | first = middle + 1; | |
694 | } | |
695 | } /* ALL_OBJFILES() */ | |
c906108c SS |
696 | return NULL; |
697 | } | |
698 | ||
aaab4dba AC |
699 | const unsigned char * |
700 | hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len) | |
701 | { | |
702 | static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; | |
703 | (*len) = sizeof (breakpoint); | |
704 | return breakpoint; | |
705 | } | |
706 | ||
e23457df AC |
707 | /* Return the name of a register. */ |
708 | ||
709 | const char * | |
3ff7cf9e | 710 | hppa32_register_name (int i) |
e23457df AC |
711 | { |
712 | static char *names[] = { | |
713 | "flags", "r1", "rp", "r3", | |
714 | "r4", "r5", "r6", "r7", | |
715 | "r8", "r9", "r10", "r11", | |
716 | "r12", "r13", "r14", "r15", | |
717 | "r16", "r17", "r18", "r19", | |
718 | "r20", "r21", "r22", "r23", | |
719 | "r24", "r25", "r26", "dp", | |
720 | "ret0", "ret1", "sp", "r31", | |
721 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
722 | "pcsqt", "eiem", "iir", "isr", | |
723 | "ior", "ipsw", "goto", "sr4", | |
724 | "sr0", "sr1", "sr2", "sr3", | |
725 | "sr5", "sr6", "sr7", "cr0", | |
726 | "cr8", "cr9", "ccr", "cr12", | |
727 | "cr13", "cr24", "cr25", "cr26", | |
728 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
729 | "fpsr", "fpe1", "fpe2", "fpe3", | |
730 | "fpe4", "fpe5", "fpe6", "fpe7", | |
731 | "fr4", "fr4R", "fr5", "fr5R", | |
732 | "fr6", "fr6R", "fr7", "fr7R", | |
733 | "fr8", "fr8R", "fr9", "fr9R", | |
734 | "fr10", "fr10R", "fr11", "fr11R", | |
735 | "fr12", "fr12R", "fr13", "fr13R", | |
736 | "fr14", "fr14R", "fr15", "fr15R", | |
737 | "fr16", "fr16R", "fr17", "fr17R", | |
738 | "fr18", "fr18R", "fr19", "fr19R", | |
739 | "fr20", "fr20R", "fr21", "fr21R", | |
740 | "fr22", "fr22R", "fr23", "fr23R", | |
741 | "fr24", "fr24R", "fr25", "fr25R", | |
742 | "fr26", "fr26R", "fr27", "fr27R", | |
743 | "fr28", "fr28R", "fr29", "fr29R", | |
744 | "fr30", "fr30R", "fr31", "fr31R" | |
745 | }; | |
746 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
747 | return NULL; | |
748 | else | |
749 | return names[i]; | |
750 | } | |
751 | ||
752 | const char * | |
753 | hppa64_register_name (int i) | |
754 | { | |
755 | static char *names[] = { | |
756 | "flags", "r1", "rp", "r3", | |
757 | "r4", "r5", "r6", "r7", | |
758 | "r8", "r9", "r10", "r11", | |
759 | "r12", "r13", "r14", "r15", | |
760 | "r16", "r17", "r18", "r19", | |
761 | "r20", "r21", "r22", "r23", | |
762 | "r24", "r25", "r26", "dp", | |
763 | "ret0", "ret1", "sp", "r31", | |
764 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
765 | "pcsqt", "eiem", "iir", "isr", | |
766 | "ior", "ipsw", "goto", "sr4", | |
767 | "sr0", "sr1", "sr2", "sr3", | |
768 | "sr5", "sr6", "sr7", "cr0", | |
769 | "cr8", "cr9", "ccr", "cr12", | |
770 | "cr13", "cr24", "cr25", "cr26", | |
771 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
772 | "fpsr", "fpe1", "fpe2", "fpe3", | |
773 | "fr4", "fr5", "fr6", "fr7", | |
774 | "fr8", "fr9", "fr10", "fr11", | |
775 | "fr12", "fr13", "fr14", "fr15", | |
776 | "fr16", "fr17", "fr18", "fr19", | |
777 | "fr20", "fr21", "fr22", "fr23", | |
778 | "fr24", "fr25", "fr26", "fr27", | |
779 | "fr28", "fr29", "fr30", "fr31" | |
780 | }; | |
781 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
782 | return NULL; | |
783 | else | |
784 | return names[i]; | |
785 | } | |
786 | ||
787 | ||
788 | ||
c906108c SS |
789 | /* Return the adjustment necessary to make for addresses on the stack |
790 | as presented by hpread.c. | |
791 | ||
792 | This is necessary because of the stack direction on the PA and the | |
793 | bizarre way in which someone (?) decided they wanted to handle | |
794 | frame pointerless code in GDB. */ | |
795 | int | |
fba45db2 | 796 | hpread_adjust_stack_address (CORE_ADDR func_addr) |
c906108c SS |
797 | { |
798 | struct unwind_table_entry *u; | |
799 | ||
800 | u = find_unwind_entry (func_addr); | |
801 | if (!u) | |
802 | return 0; | |
803 | else | |
804 | return u->Total_frame_size << 3; | |
805 | } | |
806 | ||
807 | /* Called to determine if PC is in an interrupt handler of some | |
808 | kind. */ | |
809 | ||
810 | static int | |
fba45db2 | 811 | pc_in_interrupt_handler (CORE_ADDR pc) |
c906108c SS |
812 | { |
813 | struct unwind_table_entry *u; | |
814 | struct minimal_symbol *msym_us; | |
815 | ||
816 | u = find_unwind_entry (pc); | |
817 | if (!u) | |
818 | return 0; | |
819 | ||
820 | /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though | |
821 | its frame isn't a pure interrupt frame. Deal with this. */ | |
822 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
823 | ||
d7bd68ca | 824 | return (u->HP_UX_interrupt_marker |
22abf04a | 825 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))); |
c906108c SS |
826 | } |
827 | ||
828 | /* Called when no unwind descriptor was found for PC. Returns 1 if it | |
104c1213 JM |
829 | appears that PC is in a linker stub. |
830 | ||
831 | ?!? Need to handle stubs which appear in PA64 code. */ | |
c906108c SS |
832 | |
833 | static int | |
fba45db2 | 834 | pc_in_linker_stub (CORE_ADDR pc) |
c906108c SS |
835 | { |
836 | int found_magic_instruction = 0; | |
837 | int i; | |
838 | char buf[4]; | |
839 | ||
840 | /* If unable to read memory, assume pc is not in a linker stub. */ | |
841 | if (target_read_memory (pc, buf, 4) != 0) | |
842 | return 0; | |
843 | ||
844 | /* We are looking for something like | |
845 | ||
846 | ; $$dyncall jams RP into this special spot in the frame (RP') | |
847 | ; before calling the "call stub" | |
848 | ldw -18(sp),rp | |
849 | ||
850 | ldsid (rp),r1 ; Get space associated with RP into r1 | |
851 | mtsp r1,sp ; Move it into space register 0 | |
852 | be,n 0(sr0),rp) ; back to your regularly scheduled program */ | |
853 | ||
854 | /* Maximum known linker stub size is 4 instructions. Search forward | |
855 | from the given PC, then backward. */ | |
856 | for (i = 0; i < 4; i++) | |
857 | { | |
858 | /* If we hit something with an unwind, stop searching this direction. */ | |
859 | ||
860 | if (find_unwind_entry (pc + i * 4) != 0) | |
861 | break; | |
862 | ||
863 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 864 | return from a cross-space function call. */ |
c906108c SS |
865 | if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) |
866 | { | |
867 | found_magic_instruction = 1; | |
868 | break; | |
869 | } | |
870 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 871 | here. */ |
c906108c SS |
872 | } |
873 | ||
874 | if (found_magic_instruction != 0) | |
875 | return 1; | |
876 | ||
877 | /* Now look backward. */ | |
878 | for (i = 0; i < 4; i++) | |
879 | { | |
880 | /* If we hit something with an unwind, stop searching this direction. */ | |
881 | ||
882 | if (find_unwind_entry (pc - i * 4) != 0) | |
883 | break; | |
884 | ||
885 | /* Check for ldsid (rp),r1 which is the magic instruction for a | |
c5aa993b | 886 | return from a cross-space function call. */ |
c906108c SS |
887 | if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) |
888 | { | |
889 | found_magic_instruction = 1; | |
890 | break; | |
891 | } | |
892 | /* Add code to handle long call/branch and argument relocation stubs | |
c5aa993b | 893 | here. */ |
c906108c SS |
894 | } |
895 | return found_magic_instruction; | |
896 | } | |
897 | ||
898 | static int | |
fba45db2 | 899 | find_return_regnum (CORE_ADDR pc) |
c906108c SS |
900 | { |
901 | struct unwind_table_entry *u; | |
902 | ||
903 | u = find_unwind_entry (pc); | |
904 | ||
905 | if (!u) | |
906 | return RP_REGNUM; | |
907 | ||
908 | if (u->Millicode) | |
909 | return 31; | |
910 | ||
911 | return RP_REGNUM; | |
912 | } | |
913 | ||
914 | /* Return size of frame, or -1 if we should use a frame pointer. */ | |
915 | static int | |
fba45db2 | 916 | find_proc_framesize (CORE_ADDR pc) |
c906108c SS |
917 | { |
918 | struct unwind_table_entry *u; | |
919 | struct minimal_symbol *msym_us; | |
920 | ||
921 | /* This may indicate a bug in our callers... */ | |
c5aa993b | 922 | if (pc == (CORE_ADDR) 0) |
c906108c | 923 | return -1; |
c5aa993b | 924 | |
c906108c SS |
925 | u = find_unwind_entry (pc); |
926 | ||
927 | if (!u) | |
928 | { | |
929 | if (pc_in_linker_stub (pc)) | |
930 | /* Linker stubs have a zero size frame. */ | |
931 | return 0; | |
932 | else | |
933 | return -1; | |
934 | } | |
935 | ||
936 | msym_us = lookup_minimal_symbol_by_pc (pc); | |
937 | ||
938 | /* If Save_SP is set, and we're not in an interrupt or signal caller, | |
939 | then we have a frame pointer. Use it. */ | |
3fa41cdb JL |
940 | if (u->Save_SP |
941 | && !pc_in_interrupt_handler (pc) | |
942 | && msym_us | |
22abf04a | 943 | && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us))) |
c906108c SS |
944 | return -1; |
945 | ||
946 | return u->Total_frame_size << 3; | |
947 | } | |
948 | ||
949 | /* Return offset from sp at which rp is saved, or 0 if not saved. */ | |
a14ed312 | 950 | static int rp_saved (CORE_ADDR); |
c906108c SS |
951 | |
952 | static int | |
fba45db2 | 953 | rp_saved (CORE_ADDR pc) |
c906108c SS |
954 | { |
955 | struct unwind_table_entry *u; | |
956 | ||
957 | /* A function at, and thus a return PC from, address 0? Not in HP-UX! */ | |
958 | if (pc == (CORE_ADDR) 0) | |
959 | return 0; | |
960 | ||
961 | u = find_unwind_entry (pc); | |
962 | ||
963 | if (!u) | |
964 | { | |
965 | if (pc_in_linker_stub (pc)) | |
966 | /* This is the so-called RP'. */ | |
967 | return -24; | |
968 | else | |
969 | return 0; | |
970 | } | |
971 | ||
972 | if (u->Save_RP) | |
53a5351d | 973 | return (TARGET_PTR_BIT == 64 ? -16 : -20); |
c906108c SS |
974 | else if (u->stub_unwind.stub_type != 0) |
975 | { | |
976 | switch (u->stub_unwind.stub_type) | |
977 | { | |
978 | case EXPORT: | |
979 | case IMPORT: | |
980 | return -24; | |
981 | case PARAMETER_RELOCATION: | |
982 | return -8; | |
983 | default: | |
984 | return 0; | |
985 | } | |
986 | } | |
987 | else | |
988 | return 0; | |
989 | } | |
990 | \f | |
991 | int | |
60383d10 | 992 | hppa_frameless_function_invocation (struct frame_info *frame) |
c906108c SS |
993 | { |
994 | struct unwind_table_entry *u; | |
995 | ||
ef6e7e13 | 996 | u = find_unwind_entry (get_frame_pc (frame)); |
c906108c SS |
997 | |
998 | if (u == 0) | |
999 | return 0; | |
1000 | ||
1001 | return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0); | |
1002 | } | |
1003 | ||
d709c020 JB |
1004 | /* Immediately after a function call, return the saved pc. |
1005 | Can't go through the frames for this because on some machines | |
1006 | the new frame is not set up until the new function executes | |
1007 | some instructions. */ | |
1008 | ||
c906108c | 1009 | CORE_ADDR |
60383d10 | 1010 | hppa_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
1011 | { |
1012 | int ret_regnum; | |
1013 | CORE_ADDR pc; | |
1014 | struct unwind_table_entry *u; | |
1015 | ||
1016 | ret_regnum = find_return_regnum (get_frame_pc (frame)); | |
1017 | pc = read_register (ret_regnum) & ~0x3; | |
c5aa993b | 1018 | |
c906108c SS |
1019 | /* If PC is in a linker stub, then we need to dig the address |
1020 | the stub will return to out of the stack. */ | |
1021 | u = find_unwind_entry (pc); | |
1022 | if (u && u->stub_unwind.stub_type != 0) | |
8bedc050 | 1023 | return DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1024 | else |
1025 | return pc; | |
1026 | } | |
1027 | \f | |
1028 | CORE_ADDR | |
fba45db2 | 1029 | hppa_frame_saved_pc (struct frame_info *frame) |
c906108c SS |
1030 | { |
1031 | CORE_ADDR pc = get_frame_pc (frame); | |
1032 | struct unwind_table_entry *u; | |
65e82032 | 1033 | CORE_ADDR old_pc = 0; |
c5aa993b JM |
1034 | int spun_around_loop = 0; |
1035 | int rp_offset = 0; | |
c906108c SS |
1036 | |
1037 | /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner | |
1038 | at the base of the frame in an interrupt handler. Registers within | |
1039 | are saved in the exact same order as GDB numbers registers. How | |
1040 | convienent. */ | |
1041 | if (pc_in_interrupt_handler (pc)) | |
ef6e7e13 | 1042 | return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4, |
53a5351d | 1043 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c | 1044 | |
ef6e7e13 AC |
1045 | if ((get_frame_pc (frame) >= get_frame_base (frame) |
1046 | && (get_frame_pc (frame) | |
1047 | <= (get_frame_base (frame) | |
1048 | /* A call dummy is sized in words, but it is actually a | |
1049 | series of instructions. Account for that scaling | |
1050 | factor. */ | |
b1e29e33 AC |
1051 | + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE) |
1052 | * DEPRECATED_CALL_DUMMY_LENGTH) | |
ef6e7e13 AC |
1053 | /* Similarly we have to account for 64bit wide register |
1054 | saves. */ | |
b1e29e33 | 1055 | + (32 * DEPRECATED_REGISTER_SIZE) |
ef6e7e13 AC |
1056 | /* We always consider FP regs 8 bytes long. */ |
1057 | + (NUM_REGS - FP0_REGNUM) * 8 | |
1058 | /* Similarly we have to account for 64bit wide register | |
1059 | saves. */ | |
b1e29e33 | 1060 | + (6 * DEPRECATED_REGISTER_SIZE))))) |
104c1213 | 1061 | { |
ef6e7e13 | 1062 | return read_memory_integer ((get_frame_base (frame) |
104c1213 JM |
1063 | + (TARGET_PTR_BIT == 64 ? -16 : -20)), |
1064 | TARGET_PTR_BIT / 8) & ~0x3; | |
1065 | } | |
1066 | ||
c906108c SS |
1067 | #ifdef FRAME_SAVED_PC_IN_SIGTRAMP |
1068 | /* Deal with signal handler caller frames too. */ | |
5a203e44 | 1069 | if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1070 | { |
1071 | CORE_ADDR rp; | |
1072 | FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); | |
1073 | return rp & ~0x3; | |
1074 | } | |
1075 | #endif | |
1076 | ||
60383d10 | 1077 | if (hppa_frameless_function_invocation (frame)) |
c906108c SS |
1078 | { |
1079 | int ret_regnum; | |
1080 | ||
1081 | ret_regnum = find_return_regnum (pc); | |
1082 | ||
1083 | /* If the next frame is an interrupt frame or a signal | |
c5aa993b JM |
1084 | handler caller, then we need to look in the saved |
1085 | register area to get the return pointer (the values | |
1086 | in the registers may not correspond to anything useful). */ | |
ef6e7e13 AC |
1087 | if (get_next_frame (frame) |
1088 | && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) | |
1089 | || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame))))) | |
c906108c | 1090 | { |
43bd9a9e | 1091 | CORE_ADDR *saved_regs; |
ef6e7e13 | 1092 | hppa_frame_init_saved_regs (get_next_frame (frame)); |
1b1d3794 | 1093 | saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame)); |
43bd9a9e | 1094 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], |
53a5351d | 1095 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 1096 | { |
43bd9a9e | 1097 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 1098 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1099 | |
1100 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
1101 | with a return pointer in %rp and the kernel call with |
1102 | a return pointer in %r31. We return the %rp variant | |
1103 | if %r31 is the same as frame->pc. */ | |
ef6e7e13 | 1104 | if (pc == get_frame_pc (frame)) |
43bd9a9e | 1105 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1106 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1107 | } |
1108 | else | |
43bd9a9e | 1109 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1110 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1111 | } |
1112 | else | |
1113 | pc = read_register (ret_regnum) & ~0x3; | |
1114 | } | |
1115 | else | |
1116 | { | |
1117 | spun_around_loop = 0; | |
c5aa993b | 1118 | old_pc = pc; |
c906108c | 1119 | |
c5aa993b | 1120 | restart: |
c906108c SS |
1121 | rp_offset = rp_saved (pc); |
1122 | ||
1123 | /* Similar to code in frameless function case. If the next | |
c5aa993b JM |
1124 | frame is a signal or interrupt handler, then dig the right |
1125 | information out of the saved register info. */ | |
c906108c | 1126 | if (rp_offset == 0 |
ef6e7e13 AC |
1127 | && get_next_frame (frame) |
1128 | && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) | |
1129 | || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame))))) | |
c906108c | 1130 | { |
43bd9a9e | 1131 | CORE_ADDR *saved_regs; |
ef6e7e13 | 1132 | hppa_frame_init_saved_regs (get_next_frame (frame)); |
1b1d3794 | 1133 | saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame)); |
43bd9a9e | 1134 | if (read_memory_integer (saved_regs[FLAGS_REGNUM], |
53a5351d | 1135 | TARGET_PTR_BIT / 8) & 0x2) |
c906108c | 1136 | { |
43bd9a9e | 1137 | pc = read_memory_integer (saved_regs[31], |
53a5351d | 1138 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1139 | |
1140 | /* Syscalls are really two frames. The syscall stub itself | |
c5aa993b JM |
1141 | with a return pointer in %rp and the kernel call with |
1142 | a return pointer in %r31. We return the %rp variant | |
1143 | if %r31 is the same as frame->pc. */ | |
ef6e7e13 | 1144 | if (pc == get_frame_pc (frame)) |
43bd9a9e | 1145 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1146 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1147 | } |
1148 | else | |
43bd9a9e | 1149 | pc = read_memory_integer (saved_regs[RP_REGNUM], |
53a5351d | 1150 | TARGET_PTR_BIT / 8) & ~0x3; |
c906108c SS |
1151 | } |
1152 | else if (rp_offset == 0) | |
c5aa993b JM |
1153 | { |
1154 | old_pc = pc; | |
1155 | pc = read_register (RP_REGNUM) & ~0x3; | |
1156 | } | |
c906108c | 1157 | else |
c5aa993b JM |
1158 | { |
1159 | old_pc = pc; | |
ef6e7e13 | 1160 | pc = read_memory_integer (get_frame_base (frame) + rp_offset, |
53a5351d | 1161 | TARGET_PTR_BIT / 8) & ~0x3; |
c5aa993b | 1162 | } |
c906108c SS |
1163 | } |
1164 | ||
1165 | /* If PC is inside a linker stub, then dig out the address the stub | |
1166 | will return to. | |
1167 | ||
1168 | Don't do this for long branch stubs. Why? For some unknown reason | |
1169 | _start is marked as a long branch stub in hpux10. */ | |
1170 | u = find_unwind_entry (pc); | |
1171 | if (u && u->stub_unwind.stub_type != 0 | |
1172 | && u->stub_unwind.stub_type != LONG_BRANCH) | |
1173 | { | |
1174 | unsigned int insn; | |
1175 | ||
1176 | /* If this is a dynamic executable, and we're in a signal handler, | |
c5aa993b JM |
1177 | then the call chain will eventually point us into the stub for |
1178 | _sigreturn. Unlike most cases, we'll be pointed to the branch | |
1179 | to the real sigreturn rather than the code after the real branch!. | |
c906108c | 1180 | |
c5aa993b JM |
1181 | Else, try to dig the address the stub will return to in the normal |
1182 | fashion. */ | |
c906108c SS |
1183 | insn = read_memory_integer (pc, 4); |
1184 | if ((insn & 0xfc00e000) == 0xe8000000) | |
1185 | return (pc + extract_17 (insn) + 8) & ~0x3; | |
1186 | else | |
1187 | { | |
c5aa993b JM |
1188 | if (old_pc == pc) |
1189 | spun_around_loop++; | |
1190 | ||
1191 | if (spun_around_loop > 1) | |
1192 | { | |
1193 | /* We're just about to go around the loop again with | |
1194 | no more hope of success. Die. */ | |
1195 | error ("Unable to find return pc for this frame"); | |
1196 | } | |
1197 | else | |
1198 | goto restart; | |
c906108c SS |
1199 | } |
1200 | } | |
1201 | ||
1202 | return pc; | |
1203 | } | |
1204 | \f | |
1205 | /* We need to correct the PC and the FP for the outermost frame when we are | |
1206 | in a system call. */ | |
1207 | ||
1208 | void | |
60383d10 | 1209 | hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame) |
c906108c SS |
1210 | { |
1211 | int flags; | |
1212 | int framesize; | |
1213 | ||
ef6e7e13 | 1214 | if (get_next_frame (frame) && !fromleaf) |
c906108c SS |
1215 | return; |
1216 | ||
618ce49f AC |
1217 | /* If the next frame represents a frameless function invocation then |
1218 | we have to do some adjustments that are normally done by | |
1219 | DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in | |
1220 | this case.) */ | |
c906108c SS |
1221 | if (fromleaf) |
1222 | { | |
1223 | /* Find the framesize of *this* frame without peeking at the PC | |
c5aa993b | 1224 | in the current frame structure (it isn't set yet). */ |
8bedc050 | 1225 | framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame))); |
c906108c SS |
1226 | |
1227 | /* Now adjust our base frame accordingly. If we have a frame pointer | |
c5aa993b JM |
1228 | use it, else subtract the size of this frame from the current |
1229 | frame. (we always want frame->frame to point at the lowest address | |
1230 | in the frame). */ | |
c906108c | 1231 | if (framesize == -1) |
0ba6dca9 | 1232 | deprecated_update_frame_base_hack (frame, deprecated_read_fp ()); |
c906108c | 1233 | else |
ef6e7e13 | 1234 | deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize); |
c906108c SS |
1235 | return; |
1236 | } | |
1237 | ||
1238 | flags = read_register (FLAGS_REGNUM); | |
c5aa993b | 1239 | if (flags & 2) /* In system call? */ |
ef6e7e13 | 1240 | deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3); |
c906108c SS |
1241 | |
1242 | /* The outermost frame is always derived from PC-framesize | |
1243 | ||
1244 | One might think frameless innermost frames should have | |
1245 | a frame->frame that is the same as the parent's frame->frame. | |
1246 | That is wrong; frame->frame in that case should be the *high* | |
1247 | address of the parent's frame. It's complicated as hell to | |
1248 | explain, but the parent *always* creates some stack space for | |
1249 | the child. So the child actually does have a frame of some | |
1250 | sorts, and its base is the high address in its parent's frame. */ | |
ef6e7e13 | 1251 | framesize = find_proc_framesize (get_frame_pc (frame)); |
c906108c | 1252 | if (framesize == -1) |
0ba6dca9 | 1253 | deprecated_update_frame_base_hack (frame, deprecated_read_fp ()); |
c906108c | 1254 | else |
ef6e7e13 | 1255 | deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize); |
c906108c SS |
1256 | } |
1257 | \f | |
a5afb99f AC |
1258 | /* Given a GDB frame, determine the address of the calling function's |
1259 | frame. This will be used to create a new GDB frame struct, and | |
e9582e71 AC |
1260 | then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC |
1261 | will be called for the new frame. | |
c906108c SS |
1262 | |
1263 | This may involve searching through prologues for several functions | |
1264 | at boundaries where GCC calls HP C code, or where code which has | |
1265 | a frame pointer calls code without a frame pointer. */ | |
1266 | ||
1267 | CORE_ADDR | |
60383d10 | 1268 | hppa_frame_chain (struct frame_info *frame) |
c906108c SS |
1269 | { |
1270 | int my_framesize, caller_framesize; | |
1271 | struct unwind_table_entry *u; | |
1272 | CORE_ADDR frame_base; | |
1273 | struct frame_info *tmp_frame; | |
1274 | ||
c2c6d25f JM |
1275 | /* A frame in the current frame list, or zero. */ |
1276 | struct frame_info *saved_regs_frame = 0; | |
43bd9a9e AC |
1277 | /* Where the registers were saved in saved_regs_frame. If |
1278 | saved_regs_frame is zero, this is garbage. */ | |
1279 | CORE_ADDR *saved_regs = NULL; | |
c2c6d25f | 1280 | |
c5aa993b | 1281 | CORE_ADDR caller_pc; |
c906108c SS |
1282 | |
1283 | struct minimal_symbol *min_frame_symbol; | |
c5aa993b JM |
1284 | struct symbol *frame_symbol; |
1285 | char *frame_symbol_name; | |
c906108c SS |
1286 | |
1287 | /* If this is a threaded application, and we see the | |
1288 | routine "__pthread_exit", treat it as the stack root | |
1289 | for this thread. */ | |
ef6e7e13 AC |
1290 | min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame)); |
1291 | frame_symbol = find_pc_function (get_frame_pc (frame)); | |
c906108c | 1292 | |
c5aa993b | 1293 | if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ ) |
c906108c | 1294 | { |
c5aa993b JM |
1295 | /* The test above for "no user function name" would defend |
1296 | against the slim likelihood that a user might define a | |
1297 | routine named "__pthread_exit" and then try to debug it. | |
1298 | ||
1299 | If it weren't commented out, and you tried to debug the | |
1300 | pthread library itself, you'd get errors. | |
1301 | ||
1302 | So for today, we don't make that check. */ | |
22abf04a | 1303 | frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol); |
c5aa993b JM |
1304 | if (frame_symbol_name != 0) |
1305 | { | |
1306 | if (0 == strncmp (frame_symbol_name, | |
1307 | THREAD_INITIAL_FRAME_SYMBOL, | |
1308 | THREAD_INITIAL_FRAME_SYM_LEN)) | |
1309 | { | |
1310 | /* Pretend we've reached the bottom of the stack. */ | |
1311 | return (CORE_ADDR) 0; | |
1312 | } | |
1313 | } | |
1314 | } /* End of hacky code for threads. */ | |
1315 | ||
c906108c SS |
1316 | /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These |
1317 | are easy; at *sp we have a full save state strucutre which we can | |
1318 | pull the old stack pointer from. Also see frame_saved_pc for | |
1319 | code to dig a saved PC out of the save state structure. */ | |
ef6e7e13 AC |
1320 | if (pc_in_interrupt_handler (get_frame_pc (frame))) |
1321 | frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4, | |
53a5351d | 1322 | TARGET_PTR_BIT / 8); |
c906108c | 1323 | #ifdef FRAME_BASE_BEFORE_SIGTRAMP |
5a203e44 | 1324 | else if ((get_frame_type (frame) == SIGTRAMP_FRAME)) |
c906108c SS |
1325 | { |
1326 | FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); | |
1327 | } | |
1328 | #endif | |
1329 | else | |
ef6e7e13 | 1330 | frame_base = get_frame_base (frame); |
c906108c SS |
1331 | |
1332 | /* Get frame sizes for the current frame and the frame of the | |
1333 | caller. */ | |
ef6e7e13 | 1334 | my_framesize = find_proc_framesize (get_frame_pc (frame)); |
8bedc050 | 1335 | caller_pc = DEPRECATED_FRAME_SAVED_PC (frame); |
c906108c SS |
1336 | |
1337 | /* If we can't determine the caller's PC, then it's not likely we can | |
1338 | really determine anything meaningful about its frame. We'll consider | |
1339 | this to be stack bottom. */ | |
1340 | if (caller_pc == (CORE_ADDR) 0) | |
1341 | return (CORE_ADDR) 0; | |
1342 | ||
8bedc050 | 1343 | caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1344 | |
1345 | /* If caller does not have a frame pointer, then its frame | |
1346 | can be found at current_frame - caller_framesize. */ | |
1347 | if (caller_framesize != -1) | |
1348 | { | |
1349 | return frame_base - caller_framesize; | |
1350 | } | |
1351 | /* Both caller and callee have frame pointers and are GCC compiled | |
1352 | (SAVE_SP bit in unwind descriptor is on for both functions. | |
1353 | The previous frame pointer is found at the top of the current frame. */ | |
1354 | if (caller_framesize == -1 && my_framesize == -1) | |
1355 | { | |
53a5351d | 1356 | return read_memory_integer (frame_base, TARGET_PTR_BIT / 8); |
c906108c SS |
1357 | } |
1358 | /* Caller has a frame pointer, but callee does not. This is a little | |
1359 | more difficult as GCC and HP C lay out locals and callee register save | |
1360 | areas very differently. | |
1361 | ||
1362 | The previous frame pointer could be in a register, or in one of | |
1363 | several areas on the stack. | |
1364 | ||
1365 | Walk from the current frame to the innermost frame examining | |
1366 | unwind descriptors to determine if %r3 ever gets saved into the | |
1367 | stack. If so return whatever value got saved into the stack. | |
1368 | If it was never saved in the stack, then the value in %r3 is still | |
1369 | valid, so use it. | |
1370 | ||
1371 | We use information from unwind descriptors to determine if %r3 | |
1372 | is saved into the stack (Entry_GR field has this information). */ | |
1373 | ||
ef6e7e13 | 1374 | for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame)) |
c906108c | 1375 | { |
ef6e7e13 | 1376 | u = find_unwind_entry (get_frame_pc (tmp_frame)); |
c906108c SS |
1377 | |
1378 | if (!u) | |
1379 | { | |
1380 | /* We could find this information by examining prologues. I don't | |
1381 | think anyone has actually written any tools (not even "strip") | |
1382 | which leave them out of an executable, so maybe this is a moot | |
1383 | point. */ | |
c5aa993b JM |
1384 | /* ??rehrauer: Actually, it's quite possible to stepi your way into |
1385 | code that doesn't have unwind entries. For example, stepping into | |
1386 | the dynamic linker will give you a PC that has none. Thus, I've | |
1387 | disabled this warning. */ | |
c906108c | 1388 | #if 0 |
ef6e7e13 | 1389 | warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame)); |
c906108c SS |
1390 | #endif |
1391 | return (CORE_ADDR) 0; | |
1392 | } | |
1393 | ||
c2c6d25f | 1394 | if (u->Save_SP |
5a203e44 | 1395 | || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
ef6e7e13 | 1396 | || pc_in_interrupt_handler (get_frame_pc (tmp_frame))) |
c906108c | 1397 | break; |
c2c6d25f JM |
1398 | |
1399 | /* Entry_GR specifies the number of callee-saved general registers | |
1400 | saved in the stack. It starts at %r3, so %r3 would be 1. */ | |
1401 | if (u->Entry_GR >= 1) | |
1402 | { | |
1403 | /* The unwind entry claims that r3 is saved here. However, | |
1404 | in optimized code, GCC often doesn't actually save r3. | |
1405 | We'll discover this if we look at the prologue. */ | |
43bd9a9e | 1406 | hppa_frame_init_saved_regs (tmp_frame); |
1b1d3794 | 1407 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
c2c6d25f JM |
1408 | saved_regs_frame = tmp_frame; |
1409 | ||
1410 | /* If we have an address for r3, that's good. */ | |
0ba6dca9 | 1411 | if (saved_regs[DEPRECATED_FP_REGNUM]) |
c2c6d25f JM |
1412 | break; |
1413 | } | |
c906108c SS |
1414 | } |
1415 | ||
1416 | if (tmp_frame) | |
1417 | { | |
1418 | /* We may have walked down the chain into a function with a frame | |
c5aa993b | 1419 | pointer. */ |
c906108c | 1420 | if (u->Save_SP |
5a203e44 | 1421 | && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME) |
ef6e7e13 | 1422 | && !pc_in_interrupt_handler (get_frame_pc (tmp_frame))) |
c906108c | 1423 | { |
ef6e7e13 | 1424 | return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8); |
c906108c SS |
1425 | } |
1426 | /* %r3 was saved somewhere in the stack. Dig it out. */ | |
c5aa993b | 1427 | else |
c906108c | 1428 | { |
c906108c SS |
1429 | /* Sick. |
1430 | ||
1431 | For optimization purposes many kernels don't have the | |
1432 | callee saved registers into the save_state structure upon | |
1433 | entry into the kernel for a syscall; the optimization | |
1434 | is usually turned off if the process is being traced so | |
1435 | that the debugger can get full register state for the | |
1436 | process. | |
c5aa993b | 1437 | |
c906108c SS |
1438 | This scheme works well except for two cases: |
1439 | ||
c5aa993b JM |
1440 | * Attaching to a process when the process is in the |
1441 | kernel performing a system call (debugger can't get | |
1442 | full register state for the inferior process since | |
1443 | the process wasn't being traced when it entered the | |
1444 | system call). | |
c906108c | 1445 | |
c5aa993b JM |
1446 | * Register state is not complete if the system call |
1447 | causes the process to core dump. | |
c906108c SS |
1448 | |
1449 | ||
1450 | The following heinous code is an attempt to deal with | |
1451 | the lack of register state in a core dump. It will | |
1452 | fail miserably if the function which performs the | |
1453 | system call has a variable sized stack frame. */ | |
1454 | ||
c2c6d25f | 1455 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1456 | { |
1457 | hppa_frame_init_saved_regs (tmp_frame); | |
1b1d3794 | 1458 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
43bd9a9e | 1459 | } |
c906108c SS |
1460 | |
1461 | /* Abominable hack. */ | |
1462 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1463 | && ((saved_regs[FLAGS_REGNUM] |
1464 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1465 | TARGET_PTR_BIT / 8) |
c906108c | 1466 | & 0x2)) |
43bd9a9e | 1467 | || (saved_regs[FLAGS_REGNUM] == 0 |
c906108c SS |
1468 | && read_register (FLAGS_REGNUM) & 0x2))) |
1469 | { | |
8bedc050 | 1470 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1471 | if (!u) |
1472 | { | |
0ba6dca9 | 1473 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1474 | TARGET_PTR_BIT / 8); |
c906108c SS |
1475 | } |
1476 | else | |
1477 | { | |
1478 | return frame_base - (u->Total_frame_size << 3); | |
1479 | } | |
1480 | } | |
c5aa993b | 1481 | |
0ba6dca9 | 1482 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1483 | TARGET_PTR_BIT / 8); |
c906108c SS |
1484 | } |
1485 | } | |
1486 | else | |
1487 | { | |
c906108c SS |
1488 | /* Get the innermost frame. */ |
1489 | tmp_frame = frame; | |
ef6e7e13 AC |
1490 | while (get_next_frame (tmp_frame) != NULL) |
1491 | tmp_frame = get_next_frame (tmp_frame); | |
c906108c | 1492 | |
c2c6d25f | 1493 | if (tmp_frame != saved_regs_frame) |
43bd9a9e AC |
1494 | { |
1495 | hppa_frame_init_saved_regs (tmp_frame); | |
1b1d3794 | 1496 | saved_regs = deprecated_get_frame_saved_regs (tmp_frame); |
43bd9a9e | 1497 | } |
c2c6d25f | 1498 | |
c906108c SS |
1499 | /* Abominable hack. See above. */ |
1500 | if (current_target.to_has_execution == 0 | |
43bd9a9e AC |
1501 | && ((saved_regs[FLAGS_REGNUM] |
1502 | && (read_memory_integer (saved_regs[FLAGS_REGNUM], | |
53a5351d | 1503 | TARGET_PTR_BIT / 8) |
c906108c | 1504 | & 0x2)) |
43bd9a9e | 1505 | || (saved_regs[FLAGS_REGNUM] == 0 |
c5aa993b | 1506 | && read_register (FLAGS_REGNUM) & 0x2))) |
c906108c | 1507 | { |
8bedc050 | 1508 | u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame)); |
c906108c SS |
1509 | if (!u) |
1510 | { | |
0ba6dca9 | 1511 | return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM], |
53a5351d | 1512 | TARGET_PTR_BIT / 8); |
c906108c | 1513 | } |
c5aa993b JM |
1514 | else |
1515 | { | |
1516 | return frame_base - (u->Total_frame_size << 3); | |
1517 | } | |
c906108c | 1518 | } |
c5aa993b | 1519 | |
c906108c | 1520 | /* The value in %r3 was never saved into the stack (thus %r3 still |
c5aa993b | 1521 | holds the value of the previous frame pointer). */ |
0ba6dca9 | 1522 | return deprecated_read_fp (); |
c906108c SS |
1523 | } |
1524 | } | |
c906108c | 1525 | \f |
c5aa993b | 1526 | |
c906108c SS |
1527 | /* To see if a frame chain is valid, see if the caller looks like it |
1528 | was compiled with gcc. */ | |
1529 | ||
1530 | int | |
fba45db2 | 1531 | hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c SS |
1532 | { |
1533 | struct minimal_symbol *msym_us; | |
1534 | struct minimal_symbol *msym_start; | |
1535 | struct unwind_table_entry *u, *next_u = NULL; | |
1536 | struct frame_info *next; | |
1537 | ||
ef6e7e13 | 1538 | u = find_unwind_entry (get_frame_pc (thisframe)); |
c906108c SS |
1539 | |
1540 | if (u == NULL) | |
1541 | return 1; | |
1542 | ||
1543 | /* We can't just check that the same of msym_us is "_start", because | |
1544 | someone idiotically decided that they were going to make a Ltext_end | |
1545 | symbol with the same address. This Ltext_end symbol is totally | |
1546 | indistinguishable (as nearly as I can tell) from the symbol for a function | |
1547 | which is (legitimately, since it is in the user's namespace) | |
1548 | named Ltext_end, so we can't just ignore it. */ | |
8bedc050 | 1549 | msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe)); |
c906108c SS |
1550 | msym_start = lookup_minimal_symbol ("_start", NULL, NULL); |
1551 | if (msym_us | |
1552 | && msym_start | |
1553 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1554 | return 0; | |
1555 | ||
1556 | /* Grrrr. Some new idiot decided that they don't want _start for the | |
1557 | PRO configurations; $START$ calls main directly.... Deal with it. */ | |
1558 | msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); | |
1559 | if (msym_us | |
1560 | && msym_start | |
1561 | && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) | |
1562 | return 0; | |
1563 | ||
1564 | next = get_next_frame (thisframe); | |
1565 | if (next) | |
ef6e7e13 | 1566 | next_u = find_unwind_entry (get_frame_pc (next)); |
c906108c SS |
1567 | |
1568 | /* If this frame does not save SP, has no stack, isn't a stub, | |
1569 | and doesn't "call" an interrupt routine or signal handler caller, | |
1570 | then its not valid. */ | |
1571 | if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0 | |
ef6e7e13 | 1572 | || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)) |
c906108c SS |
1573 | || (next_u && next_u->HP_UX_interrupt_marker)) |
1574 | return 1; | |
1575 | ||
ef6e7e13 | 1576 | if (pc_in_linker_stub (get_frame_pc (thisframe))) |
c906108c SS |
1577 | return 1; |
1578 | ||
1579 | return 0; | |
1580 | } | |
1581 | ||
7daf4f5b JB |
1582 | /* These functions deal with saving and restoring register state |
1583 | around a function call in the inferior. They keep the stack | |
1584 | double-word aligned; eventually, on an hp700, the stack will have | |
1585 | to be aligned to a 64-byte boundary. */ | |
c906108c SS |
1586 | |
1587 | void | |
7daf4f5b | 1588 | hppa_push_dummy_frame (void) |
c906108c SS |
1589 | { |
1590 | CORE_ADDR sp, pc, pcspace; | |
52f0bd74 | 1591 | int regnum; |
53a5351d | 1592 | CORE_ADDR int_buffer; |
c906108c SS |
1593 | double freg_buffer; |
1594 | ||
60383d10 | 1595 | pc = hppa_target_read_pc (inferior_ptid); |
c906108c SS |
1596 | int_buffer = read_register (FLAGS_REGNUM); |
1597 | if (int_buffer & 0x2) | |
1598 | { | |
3371ccc0 | 1599 | const unsigned int sid = (pc >> 30) & 0x3; |
c906108c SS |
1600 | if (sid == 0) |
1601 | pcspace = read_register (SR4_REGNUM); | |
1602 | else | |
1603 | pcspace = read_register (SR4_REGNUM + 4 + sid); | |
c906108c SS |
1604 | } |
1605 | else | |
1606 | pcspace = read_register (PCSQ_HEAD_REGNUM); | |
1607 | ||
1608 | /* Space for "arguments"; the RP goes in here. */ | |
1609 | sp = read_register (SP_REGNUM) + 48; | |
1610 | int_buffer = read_register (RP_REGNUM) | 0x3; | |
53a5351d JM |
1611 | |
1612 | /* The 32bit and 64bit ABIs save the return pointer into different | |
1613 | stack slots. */ | |
b1e29e33 AC |
1614 | if (DEPRECATED_REGISTER_SIZE == 8) |
1615 | write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); | |
53a5351d | 1616 | else |
b1e29e33 | 1617 | write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); |
c906108c | 1618 | |
0ba6dca9 | 1619 | int_buffer = deprecated_read_fp (); |
b1e29e33 | 1620 | write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE); |
c906108c | 1621 | |
0ba6dca9 | 1622 | write_register (DEPRECATED_FP_REGNUM, sp); |
c906108c | 1623 | |
b1e29e33 | 1624 | sp += 2 * DEPRECATED_REGISTER_SIZE; |
c906108c SS |
1625 | |
1626 | for (regnum = 1; regnum < 32; regnum++) | |
0ba6dca9 | 1627 | if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM) |
c906108c SS |
1628 | sp = push_word (sp, read_register (regnum)); |
1629 | ||
53a5351d | 1630 | /* This is not necessary for the 64bit ABI. In fact it is dangerous. */ |
b1e29e33 | 1631 | if (DEPRECATED_REGISTER_SIZE != 8) |
53a5351d | 1632 | sp += 4; |
c906108c SS |
1633 | |
1634 | for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) | |
1635 | { | |
62700349 | 1636 | deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum), |
73937e03 | 1637 | (char *) &freg_buffer, 8); |
c5aa993b | 1638 | sp = push_bytes (sp, (char *) &freg_buffer, 8); |
c906108c SS |
1639 | } |
1640 | sp = push_word (sp, read_register (IPSW_REGNUM)); | |
1641 | sp = push_word (sp, read_register (SAR_REGNUM)); | |
1642 | sp = push_word (sp, pc); | |
1643 | sp = push_word (sp, pcspace); | |
1644 | sp = push_word (sp, pc + 4); | |
1645 | sp = push_word (sp, pcspace); | |
1646 | write_register (SP_REGNUM, sp); | |
1647 | } | |
1648 | ||
1649 | static void | |
fba45db2 | 1650 | find_dummy_frame_regs (struct frame_info *frame, |
43bd9a9e | 1651 | CORE_ADDR frame_saved_regs[]) |
c906108c | 1652 | { |
ef6e7e13 | 1653 | CORE_ADDR fp = get_frame_base (frame); |
c906108c SS |
1654 | int i; |
1655 | ||
53a5351d | 1656 | /* The 32bit and 64bit ABIs save RP into different locations. */ |
b1e29e33 | 1657 | if (DEPRECATED_REGISTER_SIZE == 8) |
43bd9a9e | 1658 | frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3; |
53a5351d | 1659 | else |
43bd9a9e | 1660 | frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3; |
53a5351d | 1661 | |
0ba6dca9 | 1662 | frame_saved_regs[DEPRECATED_FP_REGNUM] = fp; |
c906108c | 1663 | |
b1e29e33 | 1664 | frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE); |
53a5351d | 1665 | |
b1e29e33 | 1666 | for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++) |
c906108c | 1667 | { |
0ba6dca9 | 1668 | if (i != DEPRECATED_FP_REGNUM) |
c906108c | 1669 | { |
43bd9a9e | 1670 | frame_saved_regs[i] = fp; |
b1e29e33 | 1671 | fp += DEPRECATED_REGISTER_SIZE; |
c906108c SS |
1672 | } |
1673 | } | |
1674 | ||
53a5351d | 1675 | /* This is not necessary or desirable for the 64bit ABI. */ |
b1e29e33 | 1676 | if (DEPRECATED_REGISTER_SIZE != 8) |
53a5351d JM |
1677 | fp += 4; |
1678 | ||
c906108c | 1679 | for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) |
43bd9a9e AC |
1680 | frame_saved_regs[i] = fp; |
1681 | ||
1682 | frame_saved_regs[IPSW_REGNUM] = fp; | |
b1e29e33 AC |
1683 | frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE; |
1684 | frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE; | |
1685 | frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE; | |
1686 | frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE; | |
1687 | frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE; | |
c906108c SS |
1688 | } |
1689 | ||
1690 | void | |
fba45db2 | 1691 | hppa_pop_frame (void) |
c906108c | 1692 | { |
52f0bd74 AC |
1693 | struct frame_info *frame = get_current_frame (); |
1694 | CORE_ADDR fp, npc, target_pc; | |
1695 | int regnum; | |
43bd9a9e | 1696 | CORE_ADDR *fsr; |
c906108c SS |
1697 | double freg_buffer; |
1698 | ||
c193f6ac | 1699 | fp = get_frame_base (frame); |
43bd9a9e | 1700 | hppa_frame_init_saved_regs (frame); |
1b1d3794 | 1701 | fsr = deprecated_get_frame_saved_regs (frame); |
c906108c SS |
1702 | |
1703 | #ifndef NO_PC_SPACE_QUEUE_RESTORE | |
43bd9a9e AC |
1704 | if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */ |
1705 | restore_pc_queue (fsr); | |
c906108c SS |
1706 | #endif |
1707 | ||
1708 | for (regnum = 31; regnum > 0; regnum--) | |
43bd9a9e AC |
1709 | if (fsr[regnum]) |
1710 | write_register (regnum, read_memory_integer (fsr[regnum], | |
b1e29e33 | 1711 | DEPRECATED_REGISTER_SIZE)); |
c906108c | 1712 | |
c5aa993b | 1713 | for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--) |
43bd9a9e | 1714 | if (fsr[regnum]) |
c906108c | 1715 | { |
43bd9a9e | 1716 | read_memory (fsr[regnum], (char *) &freg_buffer, 8); |
62700349 | 1717 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum), |
73937e03 | 1718 | (char *) &freg_buffer, 8); |
c906108c SS |
1719 | } |
1720 | ||
43bd9a9e | 1721 | if (fsr[IPSW_REGNUM]) |
c906108c | 1722 | write_register (IPSW_REGNUM, |
43bd9a9e | 1723 | read_memory_integer (fsr[IPSW_REGNUM], |
b1e29e33 | 1724 | DEPRECATED_REGISTER_SIZE)); |
c906108c | 1725 | |
43bd9a9e | 1726 | if (fsr[SAR_REGNUM]) |
c906108c | 1727 | write_register (SAR_REGNUM, |
43bd9a9e | 1728 | read_memory_integer (fsr[SAR_REGNUM], |
b1e29e33 | 1729 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
1730 | |
1731 | /* If the PC was explicitly saved, then just restore it. */ | |
43bd9a9e | 1732 | if (fsr[PCOQ_TAIL_REGNUM]) |
c906108c | 1733 | { |
43bd9a9e | 1734 | npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM], |
b1e29e33 | 1735 | DEPRECATED_REGISTER_SIZE); |
c906108c SS |
1736 | write_register (PCOQ_TAIL_REGNUM, npc); |
1737 | } | |
1738 | /* Else use the value in %rp to set the new PC. */ | |
c5aa993b | 1739 | else |
c906108c SS |
1740 | { |
1741 | npc = read_register (RP_REGNUM); | |
1742 | write_pc (npc); | |
1743 | } | |
1744 | ||
b1e29e33 | 1745 | write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE)); |
c906108c | 1746 | |
43bd9a9e | 1747 | if (fsr[IPSW_REGNUM]) /* call dummy */ |
c906108c SS |
1748 | write_register (SP_REGNUM, fp - 48); |
1749 | else | |
1750 | write_register (SP_REGNUM, fp); | |
1751 | ||
1752 | /* The PC we just restored may be inside a return trampoline. If so | |
1753 | we want to restart the inferior and run it through the trampoline. | |
1754 | ||
1755 | Do this by setting a momentary breakpoint at the location the | |
1756 | trampoline returns to. | |
1757 | ||
1758 | Don't skip through the trampoline if we're popping a dummy frame. */ | |
1759 | target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; | |
43bd9a9e | 1760 | if (target_pc && !fsr[IPSW_REGNUM]) |
c906108c SS |
1761 | { |
1762 | struct symtab_and_line sal; | |
1763 | struct breakpoint *breakpoint; | |
1764 | struct cleanup *old_chain; | |
1765 | ||
1766 | /* Set up our breakpoint. Set it to be silent as the MI code | |
c5aa993b | 1767 | for "return_command" will print the frame we returned to. */ |
c906108c SS |
1768 | sal = find_pc_line (target_pc, 0); |
1769 | sal.pc = target_pc; | |
516b1f28 | 1770 | breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish); |
c906108c SS |
1771 | breakpoint->silent = 1; |
1772 | ||
1773 | /* So we can clean things up. */ | |
4d6140d9 | 1774 | old_chain = make_cleanup_delete_breakpoint (breakpoint); |
c906108c SS |
1775 | |
1776 | /* Start up the inferior. */ | |
1777 | clear_proceed_status (); | |
1778 | proceed_to_finish = 1; | |
2acceee2 | 1779 | proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); |
c906108c SS |
1780 | |
1781 | /* Perform our cleanups. */ | |
1782 | do_cleanups (old_chain); | |
1783 | } | |
1784 | flush_cached_frames (); | |
1785 | } | |
1786 | ||
1787 | /* After returning to a dummy on the stack, restore the instruction | |
1788 | queue space registers. */ | |
1789 | ||
1790 | static int | |
43bd9a9e | 1791 | restore_pc_queue (CORE_ADDR *fsr) |
c906108c SS |
1792 | { |
1793 | CORE_ADDR pc = read_pc (); | |
43bd9a9e | 1794 | CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM], |
53a5351d | 1795 | TARGET_PTR_BIT / 8); |
c906108c SS |
1796 | struct target_waitstatus w; |
1797 | int insn_count; | |
1798 | ||
1799 | /* Advance past break instruction in the call dummy. */ | |
1800 | write_register (PCOQ_HEAD_REGNUM, pc + 4); | |
1801 | write_register (PCOQ_TAIL_REGNUM, pc + 8); | |
1802 | ||
1803 | /* HPUX doesn't let us set the space registers or the space | |
1804 | registers of the PC queue through ptrace. Boo, hiss. | |
1805 | Conveniently, the call dummy has this sequence of instructions | |
1806 | after the break: | |
c5aa993b JM |
1807 | mtsp r21, sr0 |
1808 | ble,n 0(sr0, r22) | |
1809 | ||
c906108c SS |
1810 | So, load up the registers and single step until we are in the |
1811 | right place. */ | |
1812 | ||
43bd9a9e | 1813 | write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM], |
b1e29e33 | 1814 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
1815 | write_register (22, new_pc); |
1816 | ||
1817 | for (insn_count = 0; insn_count < 3; insn_count++) | |
1818 | { | |
1819 | /* FIXME: What if the inferior gets a signal right now? Want to | |
c5aa993b JM |
1820 | merge this into wait_for_inferior (as a special kind of |
1821 | watchpoint? By setting a breakpoint at the end? Is there | |
1822 | any other choice? Is there *any* way to do this stuff with | |
1823 | ptrace() or some equivalent?). */ | |
c906108c | 1824 | resume (1, 0); |
39f77062 | 1825 | target_wait (inferior_ptid, &w); |
c906108c SS |
1826 | |
1827 | if (w.kind == TARGET_WAITKIND_SIGNALLED) | |
c5aa993b JM |
1828 | { |
1829 | stop_signal = w.value.sig; | |
1830 | terminal_ours_for_output (); | |
1831 | printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", | |
c906108c SS |
1832 | target_signal_to_name (stop_signal), |
1833 | target_signal_to_string (stop_signal)); | |
c5aa993b JM |
1834 | gdb_flush (gdb_stdout); |
1835 | return 0; | |
1836 | } | |
c906108c SS |
1837 | } |
1838 | target_terminal_ours (); | |
1839 | target_fetch_registers (-1); | |
1840 | return 1; | |
1841 | } | |
1842 | ||
c2c6d25f JM |
1843 | |
1844 | #ifdef PA20W_CALLING_CONVENTIONS | |
1845 | ||
53a5351d JM |
1846 | /* This function pushes a stack frame with arguments as part of the |
1847 | inferior function calling mechanism. | |
c906108c | 1848 | |
c2c6d25f JM |
1849 | This is the version for the PA64, in which later arguments appear |
1850 | at higher addresses. (The stack always grows towards higher | |
1851 | addresses.) | |
c906108c | 1852 | |
53a5351d JM |
1853 | We simply allocate the appropriate amount of stack space and put |
1854 | arguments into their proper slots. The call dummy code will copy | |
1855 | arguments into registers as needed by the ABI. | |
c906108c | 1856 | |
c2c6d25f JM |
1857 | This ABI also requires that the caller provide an argument pointer |
1858 | to the callee, so we do that too. */ | |
53a5351d | 1859 | |
c906108c | 1860 | CORE_ADDR |
ea7c478f | 1861 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1862 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1863 | { |
1864 | /* array of arguments' offsets */ | |
c5aa993b | 1865 | int *offset = (int *) alloca (nargs * sizeof (int)); |
53a5351d JM |
1866 | |
1867 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1868 | word size */ | |
c5aa993b | 1869 | int *lengths = (int *) alloca (nargs * sizeof (int)); |
c906108c | 1870 | |
53a5351d JM |
1871 | /* The value of SP as it was passed into this function after |
1872 | aligning. */ | |
f27dd7fd | 1873 | CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp); |
c906108c | 1874 | |
53a5351d JM |
1875 | /* The number of stack bytes occupied by the current argument. */ |
1876 | int bytes_reserved; | |
1877 | ||
1878 | /* The total number of bytes reserved for the arguments. */ | |
1879 | int cum_bytes_reserved = 0; | |
c906108c | 1880 | |
53a5351d JM |
1881 | /* Similarly, but aligned. */ |
1882 | int cum_bytes_aligned = 0; | |
1883 | int i; | |
c5aa993b | 1884 | |
53a5351d | 1885 | /* Iterate over each argument provided by the user. */ |
c906108c SS |
1886 | for (i = 0; i < nargs; i++) |
1887 | { | |
c2c6d25f JM |
1888 | struct type *arg_type = VALUE_TYPE (args[i]); |
1889 | ||
1890 | /* Integral scalar values smaller than a register are padded on | |
1891 | the left. We do this by promoting them to full-width, | |
1892 | although the ABI says to pad them with garbage. */ | |
1893 | if (is_integral_type (arg_type) | |
b1e29e33 | 1894 | && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE) |
c2c6d25f JM |
1895 | { |
1896 | args[i] = value_cast ((TYPE_UNSIGNED (arg_type) | |
1897 | ? builtin_type_unsigned_long | |
1898 | : builtin_type_long), | |
1899 | args[i]); | |
1900 | arg_type = VALUE_TYPE (args[i]); | |
1901 | } | |
1902 | ||
1903 | lengths[i] = TYPE_LENGTH (arg_type); | |
c906108c | 1904 | |
53a5351d JM |
1905 | /* Align the size of the argument to the word size for this |
1906 | target. */ | |
b1e29e33 | 1907 | bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE; |
c906108c | 1908 | |
53a5351d JM |
1909 | offset[i] = cum_bytes_reserved; |
1910 | ||
c2c6d25f JM |
1911 | /* Aggregates larger than eight bytes (the only types larger |
1912 | than eight bytes we have) are aligned on a 16-byte boundary, | |
1913 | possibly padded on the right with garbage. This may leave an | |
1914 | empty word on the stack, and thus an unused register, as per | |
1915 | the ABI. */ | |
1916 | if (bytes_reserved > 8) | |
1917 | { | |
1918 | /* Round up the offset to a multiple of two slots. */ | |
b1e29e33 AC |
1919 | int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1) |
1920 | & -(2*DEPRECATED_REGISTER_SIZE)); | |
c906108c | 1921 | |
c2c6d25f JM |
1922 | /* Note the space we've wasted, if any. */ |
1923 | bytes_reserved += new_offset - offset[i]; | |
1924 | offset[i] = new_offset; | |
1925 | } | |
53a5351d | 1926 | |
c2c6d25f JM |
1927 | cum_bytes_reserved += bytes_reserved; |
1928 | } | |
1929 | ||
1930 | /* CUM_BYTES_RESERVED already accounts for all the arguments | |
1931 | passed by the user. However, the ABIs mandate minimum stack space | |
1932 | allocations for outgoing arguments. | |
1933 | ||
1934 | The ABIs also mandate minimum stack alignments which we must | |
1935 | preserve. */ | |
f27dd7fd | 1936 | cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved); |
c2c6d25f JM |
1937 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
1938 | ||
1939 | /* Now write each of the args at the proper offset down the stack. */ | |
1940 | for (i = 0; i < nargs; i++) | |
1941 | write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
1942 | ||
1943 | /* If a structure has to be returned, set up register 28 to hold its | |
1944 | address */ | |
1945 | if (struct_return) | |
1946 | write_register (28, struct_addr); | |
1947 | ||
1948 | /* For the PA64 we must pass a pointer to the outgoing argument list. | |
1949 | The ABI mandates that the pointer should point to the first byte of | |
1950 | storage beyond the register flushback area. | |
1951 | ||
1952 | However, the call dummy expects the outgoing argument pointer to | |
1953 | be passed in register %r4. */ | |
1954 | write_register (4, orig_sp + REG_PARM_STACK_SPACE); | |
1955 | ||
1956 | /* ?!? This needs further work. We need to set up the global data | |
1957 | pointer for this procedure. This assumes the same global pointer | |
1958 | for every procedure. The call dummy expects the dp value to | |
1959 | be passed in register %r6. */ | |
1960 | write_register (6, read_register (27)); | |
1961 | ||
1962 | /* The stack will have 64 bytes of additional space for a frame marker. */ | |
1963 | return sp + 64; | |
1964 | } | |
1965 | ||
1966 | #else | |
1967 | ||
1968 | /* This function pushes a stack frame with arguments as part of the | |
1969 | inferior function calling mechanism. | |
1970 | ||
1971 | This is the version of the function for the 32-bit PA machines, in | |
1972 | which later arguments appear at lower addresses. (The stack always | |
1973 | grows towards higher addresses.) | |
1974 | ||
1975 | We simply allocate the appropriate amount of stack space and put | |
1976 | arguments into their proper slots. The call dummy code will copy | |
1977 | arguments into registers as needed by the ABI. */ | |
1978 | ||
1979 | CORE_ADDR | |
ea7c478f | 1980 | hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1981 | int struct_return, CORE_ADDR struct_addr) |
c2c6d25f JM |
1982 | { |
1983 | /* array of arguments' offsets */ | |
1984 | int *offset = (int *) alloca (nargs * sizeof (int)); | |
1985 | ||
1986 | /* array of arguments' lengths: real lengths in bytes, not aligned to | |
1987 | word size */ | |
1988 | int *lengths = (int *) alloca (nargs * sizeof (int)); | |
1989 | ||
1990 | /* The number of stack bytes occupied by the current argument. */ | |
1991 | int bytes_reserved; | |
1992 | ||
1993 | /* The total number of bytes reserved for the arguments. */ | |
1994 | int cum_bytes_reserved = 0; | |
1995 | ||
1996 | /* Similarly, but aligned. */ | |
1997 | int cum_bytes_aligned = 0; | |
1998 | int i; | |
1999 | ||
2000 | /* Iterate over each argument provided by the user. */ | |
2001 | for (i = 0; i < nargs; i++) | |
2002 | { | |
2003 | lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i])); | |
2004 | ||
2005 | /* Align the size of the argument to the word size for this | |
2006 | target. */ | |
b1e29e33 | 2007 | bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE; |
c2c6d25f | 2008 | |
b6649e88 AC |
2009 | offset[i] = (cum_bytes_reserved |
2010 | + (lengths[i] > 4 ? bytes_reserved : lengths[i])); | |
c2c6d25f JM |
2011 | |
2012 | /* If the argument is a double word argument, then it needs to be | |
2013 | double word aligned. */ | |
b1e29e33 AC |
2014 | if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE) |
2015 | && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE)) | |
c5aa993b JM |
2016 | { |
2017 | int new_offset = 0; | |
53a5351d JM |
2018 | /* BYTES_RESERVED is already aligned to the word, so we put |
2019 | the argument at one word more down the stack. | |
2020 | ||
2021 | This will leave one empty word on the stack, and one unused | |
2022 | register as mandated by the ABI. */ | |
b1e29e33 AC |
2023 | new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1) |
2024 | & -(2 * DEPRECATED_REGISTER_SIZE)); | |
53a5351d | 2025 | |
b1e29e33 | 2026 | if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE) |
c5aa993b | 2027 | { |
b1e29e33 AC |
2028 | bytes_reserved += DEPRECATED_REGISTER_SIZE; |
2029 | offset[i] += DEPRECATED_REGISTER_SIZE; | |
c5aa993b JM |
2030 | } |
2031 | } | |
c906108c SS |
2032 | |
2033 | cum_bytes_reserved += bytes_reserved; | |
2034 | ||
2035 | } | |
2036 | ||
c2c6d25f JM |
2037 | /* CUM_BYTES_RESERVED already accounts for all the arguments passed |
2038 | by the user. However, the ABI mandates minimum stack space | |
53a5351d JM |
2039 | allocations for outgoing arguments. |
2040 | ||
c2c6d25f | 2041 | The ABI also mandates minimum stack alignments which we must |
53a5351d | 2042 | preserve. */ |
f27dd7fd | 2043 | cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved); |
53a5351d JM |
2044 | sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE); |
2045 | ||
2046 | /* Now write each of the args at the proper offset down the stack. | |
53a5351d JM |
2047 | ?!? We need to promote values to a full register instead of skipping |
2048 | words in the stack. */ | |
c906108c SS |
2049 | for (i = 0; i < nargs; i++) |
2050 | write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]); | |
c906108c | 2051 | |
53a5351d JM |
2052 | /* If a structure has to be returned, set up register 28 to hold its |
2053 | address */ | |
c906108c SS |
2054 | if (struct_return) |
2055 | write_register (28, struct_addr); | |
2056 | ||
53a5351d | 2057 | /* The stack will have 32 bytes of additional space for a frame marker. */ |
c906108c SS |
2058 | return sp + 32; |
2059 | } | |
2060 | ||
c2c6d25f | 2061 | #endif |
c906108c SS |
2062 | |
2063 | /* elz: this function returns a value which is built looking at the given address. | |
2064 | It is called from call_function_by_hand, in case we need to return a | |
2065 | value which is larger than 64 bits, and it is stored in the stack rather than | |
2066 | in the registers r28 and r29 or fr4. | |
2067 | This function does the same stuff as value_being_returned in values.c, but | |
2068 | gets the value from the stack rather than from the buffer where all the | |
2069 | registers were saved when the function called completed. */ | |
64f395bf AC |
2070 | /* FIXME: cagney/2003-09-27: This function is no longer needed. The |
2071 | inferior function call code now directly handles the case described | |
2072 | above. */ | |
ea7c478f | 2073 | struct value * |
aa1ee363 | 2074 | hppa_value_returned_from_stack (struct type *valtype, CORE_ADDR addr) |
c906108c | 2075 | { |
52f0bd74 | 2076 | struct value *val; |
c906108c SS |
2077 | |
2078 | val = allocate_value (valtype); | |
2079 | CHECK_TYPEDEF (valtype); | |
c5aa993b | 2080 | target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype)); |
c906108c SS |
2081 | |
2082 | return val; | |
2083 | } | |
2084 | ||
2085 | ||
2086 | ||
2087 | /* elz: Used to lookup a symbol in the shared libraries. | |
c5aa993b JM |
2088 | This function calls shl_findsym, indirectly through a |
2089 | call to __d_shl_get. __d_shl_get is in end.c, which is always | |
2090 | linked in by the hp compilers/linkers. | |
2091 | The call to shl_findsym cannot be made directly because it needs | |
2092 | to be active in target address space. | |
2093 | inputs: - minimal symbol pointer for the function we want to look up | |
2094 | - address in target space of the descriptor for the library | |
2095 | where we want to look the symbol up. | |
2096 | This address is retrieved using the | |
2097 | som_solib_get_solib_by_pc function (somsolib.c). | |
2098 | output: - real address in the library of the function. | |
2099 | note: the handle can be null, in which case shl_findsym will look for | |
2100 | the symbol in all the loaded shared libraries. | |
2101 | files to look at if you need reference on this stuff: | |
2102 | dld.c, dld_shl_findsym.c | |
2103 | end.c | |
2104 | man entry for shl_findsym */ | |
c906108c SS |
2105 | |
2106 | CORE_ADDR | |
fba45db2 | 2107 | find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle) |
c906108c | 2108 | { |
c5aa993b JM |
2109 | struct symbol *get_sym, *symbol2; |
2110 | struct minimal_symbol *buff_minsym, *msymbol; | |
2111 | struct type *ftype; | |
ea7c478f AC |
2112 | struct value **args; |
2113 | struct value *funcval; | |
2114 | struct value *val; | |
c5aa993b JM |
2115 | |
2116 | int x, namelen, err_value, tmp = -1; | |
2117 | CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr; | |
2118 | CORE_ADDR stub_addr; | |
2119 | ||
2120 | ||
ea7c478f | 2121 | args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */ |
c5aa993b | 2122 | funcval = find_function_in_inferior ("__d_shl_get"); |
176620f1 | 2123 | get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL); |
c5aa993b JM |
2124 | buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL); |
2125 | msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL); | |
176620f1 | 2126 | symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL); |
c5aa993b | 2127 | endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym); |
22abf04a | 2128 | namelen = strlen (DEPRECATED_SYMBOL_NAME (function)); |
c5aa993b JM |
2129 | value_return_addr = endo_buff_addr + namelen; |
2130 | ftype = check_typedef (SYMBOL_TYPE (get_sym)); | |
2131 | ||
2132 | /* do alignment */ | |
2133 | if ((x = value_return_addr % 64) != 0) | |
2134 | value_return_addr = value_return_addr + 64 - x; | |
2135 | ||
2136 | errno_return_addr = value_return_addr + 64; | |
2137 | ||
2138 | ||
2139 | /* set up stuff needed by __d_shl_get in buffer in end.o */ | |
2140 | ||
22abf04a | 2141 | target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen); |
c5aa993b JM |
2142 | |
2143 | target_write_memory (value_return_addr, (char *) &tmp, 4); | |
2144 | ||
2145 | target_write_memory (errno_return_addr, (char *) &tmp, 4); | |
2146 | ||
2147 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
2148 | (char *) &handle, 4); | |
2149 | ||
2150 | /* now prepare the arguments for the call */ | |
2151 | ||
2152 | args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12); | |
4478b372 JB |
2153 | args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol)); |
2154 | args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr); | |
c5aa993b | 2155 | args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE); |
4478b372 JB |
2156 | args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr); |
2157 | args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr); | |
c5aa993b JM |
2158 | |
2159 | /* now call the function */ | |
2160 | ||
2161 | val = call_function_by_hand (funcval, 6, args); | |
2162 | ||
2163 | /* now get the results */ | |
2164 | ||
2165 | target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value)); | |
2166 | ||
2167 | target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr)); | |
2168 | if (stub_addr <= 0) | |
104c1213 | 2169 | error ("call to __d_shl_get failed, error code is %d", err_value); |
c5aa993b JM |
2170 | |
2171 | return (stub_addr); | |
c906108c SS |
2172 | } |
2173 | ||
c5aa993b | 2174 | /* Cover routine for find_stub_with_shl_get to pass to catch_errors */ |
a0b3c4fd | 2175 | static int |
4efb68b1 | 2176 | cover_find_stub_with_shl_get (void *args_untyped) |
c906108c | 2177 | { |
a0b3c4fd JM |
2178 | args_for_find_stub *args = args_untyped; |
2179 | args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle); | |
2180 | return 0; | |
c906108c SS |
2181 | } |
2182 | ||
c906108c SS |
2183 | /* Insert the specified number of args and function address |
2184 | into a call sequence of the above form stored at DUMMYNAME. | |
2185 | ||
2186 | On the hppa we need to call the stack dummy through $$dyncall. | |
b1e29e33 AC |
2187 | Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra |
2188 | argument, real_pc, which is the location where gdb should start up | |
2189 | the inferior to do the function call. | |
cce74817 JM |
2190 | |
2191 | This has to work across several versions of hpux, bsd, osf1. It has to | |
2192 | work regardless of what compiler was used to build the inferior program. | |
2193 | It should work regardless of whether or not end.o is available. It has | |
2194 | to work even if gdb can not call into the dynamic loader in the inferior | |
2195 | to query it for symbol names and addresses. | |
2196 | ||
2197 | Yes, all those cases should work. Luckily code exists to handle most | |
2198 | of them. The complexity is in selecting exactly what scheme should | |
2199 | be used to perform the inferior call. | |
2200 | ||
2201 | At the current time this routine is known not to handle cases where | |
2202 | the program was linked with HP's compiler without including end.o. | |
2203 | ||
2204 | Please contact Jeff Law (law@cygnus.com) before changing this code. */ | |
c906108c SS |
2205 | |
2206 | CORE_ADDR | |
fba45db2 | 2207 | hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 2208 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
2209 | { |
2210 | CORE_ADDR dyncall_addr; | |
2211 | struct minimal_symbol *msymbol; | |
2212 | struct minimal_symbol *trampoline; | |
2213 | int flags = read_register (FLAGS_REGNUM); | |
cce74817 JM |
2214 | struct unwind_table_entry *u = NULL; |
2215 | CORE_ADDR new_stub = 0; | |
2216 | CORE_ADDR solib_handle = 0; | |
2217 | ||
2218 | /* Nonzero if we will use GCC's PLT call routine. This routine must be | |
c2c6d25f JM |
2219 | passed an import stub, not a PLABEL. It is also necessary to set %r19 |
2220 | (the PIC register) before performing the call. | |
c906108c | 2221 | |
cce74817 JM |
2222 | If zero, then we are using __d_plt_call (HP's PLT call routine) or we |
2223 | are calling the target directly. When using __d_plt_call we want to | |
2224 | use a PLABEL instead of an import stub. */ | |
2225 | int using_gcc_plt_call = 1; | |
2226 | ||
53a5351d JM |
2227 | #ifdef GDB_TARGET_IS_HPPA_20W |
2228 | /* We currently use completely different code for the PA2.0W inferior | |
2229 | function call sequences. This needs to be cleaned up. */ | |
2230 | { | |
2231 | CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5; | |
2232 | struct target_waitstatus w; | |
2233 | int inst1, inst2; | |
2234 | char buf[4]; | |
2235 | int status; | |
2236 | struct objfile *objfile; | |
2237 | ||
2238 | /* We can not modify the PC space queues directly, so we start | |
2239 | up the inferior and execute a couple instructions to set the | |
2240 | space queues so that they point to the call dummy in the stack. */ | |
2241 | pcsqh = read_register (PCSQ_HEAD_REGNUM); | |
2242 | sr5 = read_register (SR5_REGNUM); | |
2243 | if (1) | |
2244 | { | |
2245 | pcoqh = read_register (PCOQ_HEAD_REGNUM); | |
2246 | pcoqt = read_register (PCOQ_TAIL_REGNUM); | |
2247 | if (target_read_memory (pcoqh, buf, 4) != 0) | |
2248 | error ("Couldn't modify space queue\n"); | |
2249 | inst1 = extract_unsigned_integer (buf, 4); | |
2250 | ||
2251 | if (target_read_memory (pcoqt, buf, 4) != 0) | |
2252 | error ("Couldn't modify space queue\n"); | |
2253 | inst2 = extract_unsigned_integer (buf, 4); | |
2254 | ||
2255 | /* BVE (r1) */ | |
2256 | *((int *) buf) = 0xe820d000; | |
2257 | if (target_write_memory (pcoqh, buf, 4) != 0) | |
2258 | error ("Couldn't modify space queue\n"); | |
2259 | ||
2260 | /* NOP */ | |
2261 | *((int *) buf) = 0x08000240; | |
2262 | if (target_write_memory (pcoqt, buf, 4) != 0) | |
2263 | { | |
2264 | *((int *) buf) = inst1; | |
2265 | target_write_memory (pcoqh, buf, 4); | |
2266 | error ("Couldn't modify space queue\n"); | |
2267 | } | |
2268 | ||
2269 | write_register (1, pc); | |
2270 | ||
2271 | /* Single step twice, the BVE instruction will set the space queue | |
2272 | such that it points to the PC value written immediately above | |
2273 | (ie the call dummy). */ | |
2274 | resume (1, 0); | |
39f77062 | 2275 | target_wait (inferior_ptid, &w); |
53a5351d | 2276 | resume (1, 0); |
39f77062 | 2277 | target_wait (inferior_ptid, &w); |
53a5351d JM |
2278 | |
2279 | /* Restore the two instructions at the old PC locations. */ | |
2280 | *((int *) buf) = inst1; | |
2281 | target_write_memory (pcoqh, buf, 4); | |
2282 | *((int *) buf) = inst2; | |
2283 | target_write_memory (pcoqt, buf, 4); | |
2284 | } | |
2285 | ||
2286 | /* The call dummy wants the ultimate destination address initially | |
2287 | in register %r5. */ | |
2288 | write_register (5, fun); | |
2289 | ||
2290 | /* We need to see if this objfile has a different DP value than our | |
c2c6d25f | 2291 | own (it could be a shared library for example). */ |
53a5351d JM |
2292 | ALL_OBJFILES (objfile) |
2293 | { | |
2294 | struct obj_section *s; | |
2295 | obj_private_data_t *obj_private; | |
2296 | ||
2297 | /* See if FUN is in any section within this shared library. */ | |
2298 | for (s = objfile->sections; s < objfile->sections_end; s++) | |
2299 | if (s->addr <= fun && fun < s->endaddr) | |
2300 | break; | |
2301 | ||
2302 | if (s >= objfile->sections_end) | |
2303 | continue; | |
2304 | ||
2305 | obj_private = (obj_private_data_t *) objfile->obj_private; | |
2306 | ||
2307 | /* The DP value may be different for each objfile. But within an | |
2308 | objfile each function uses the same dp value. Thus we do not need | |
2309 | to grope around the opd section looking for dp values. | |
2310 | ||
2311 | ?!? This is not strictly correct since we may be in a shared library | |
2312 | and want to call back into the main program. To make that case | |
2313 | work correctly we need to set obj_private->dp for the main program's | |
2314 | objfile, then remove this conditional. */ | |
2315 | if (obj_private->dp) | |
2316 | write_register (27, obj_private->dp); | |
2317 | break; | |
2318 | } | |
2319 | return pc; | |
2320 | } | |
2321 | #endif | |
2322 | ||
2323 | #ifndef GDB_TARGET_IS_HPPA_20W | |
cce74817 | 2324 | /* Prefer __gcc_plt_call over the HP supplied routine because |
c5aa993b | 2325 | __gcc_plt_call works for any number of arguments. */ |
c906108c | 2326 | trampoline = NULL; |
cce74817 JM |
2327 | if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL) |
2328 | using_gcc_plt_call = 0; | |
2329 | ||
c906108c SS |
2330 | msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); |
2331 | if (msymbol == NULL) | |
cce74817 | 2332 | error ("Can't find an address for $$dyncall trampoline"); |
c906108c SS |
2333 | |
2334 | dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2335 | ||
2336 | /* FUN could be a procedure label, in which case we have to get | |
cce74817 JM |
2337 | its real address and the value of its GOT/DP if we plan to |
2338 | call the routine via gcc_plt_call. */ | |
2339 | if ((fun & 0x2) && using_gcc_plt_call) | |
c906108c SS |
2340 | { |
2341 | /* Get the GOT/DP value for the target function. It's | |
c5aa993b JM |
2342 | at *(fun+4). Note the call dummy is *NOT* allowed to |
2343 | trash %r19 before calling the target function. */ | |
53a5351d | 2344 | write_register (19, read_memory_integer ((fun & ~0x3) + 4, |
b1e29e33 | 2345 | DEPRECATED_REGISTER_SIZE)); |
c906108c SS |
2346 | |
2347 | /* Now get the real address for the function we are calling, it's | |
c5aa993b | 2348 | at *fun. */ |
53a5351d JM |
2349 | fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, |
2350 | TARGET_PTR_BIT / 8); | |
c906108c SS |
2351 | } |
2352 | else | |
2353 | { | |
2354 | ||
2355 | #ifndef GDB_TARGET_IS_PA_ELF | |
cce74817 | 2356 | /* FUN could be an export stub, the real address of a function, or |
c5aa993b JM |
2357 | a PLABEL. When using gcc's PLT call routine we must call an import |
2358 | stub rather than the export stub or real function for lazy binding | |
2359 | to work correctly | |
cce74817 | 2360 | |
39f77062 | 2361 | If we are using the gcc PLT call routine, then we need to |
c5aa993b | 2362 | get the import stub for the target function. */ |
cce74817 | 2363 | if (using_gcc_plt_call && som_solib_get_got_by_pc (fun)) |
c906108c SS |
2364 | { |
2365 | struct objfile *objfile; | |
2366 | struct minimal_symbol *funsymbol, *stub_symbol; | |
2367 | CORE_ADDR newfun = 0; | |
2368 | ||
2369 | funsymbol = lookup_minimal_symbol_by_pc (fun); | |
2370 | if (!funsymbol) | |
4ce44c66 | 2371 | error ("Unable to find minimal symbol for target function.\n"); |
c906108c SS |
2372 | |
2373 | /* Search all the object files for an import symbol with the | |
2374 | right name. */ | |
2375 | ALL_OBJFILES (objfile) | |
c5aa993b JM |
2376 | { |
2377 | stub_symbol | |
2378 | = lookup_minimal_symbol_solib_trampoline | |
40324f1b | 2379 | (DEPRECATED_SYMBOL_NAME (funsymbol), objfile); |
c5aa993b JM |
2380 | |
2381 | if (!stub_symbol) | |
22abf04a | 2382 | stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol), |
c5aa993b JM |
2383 | NULL, objfile); |
2384 | ||
2385 | /* Found a symbol with the right name. */ | |
2386 | if (stub_symbol) | |
2387 | { | |
2388 | struct unwind_table_entry *u; | |
2389 | /* It must be a shared library trampoline. */ | |
2390 | if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) | |
2391 | continue; | |
2392 | ||
2393 | /* It must also be an import stub. */ | |
2394 | u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); | |
6426a772 JM |
2395 | if (u == NULL |
2396 | || (u->stub_unwind.stub_type != IMPORT | |
2397 | #ifdef GDB_NATIVE_HPUX_11 | |
2398 | /* Sigh. The hpux 10.20 dynamic linker will blow | |
2399 | chunks if we perform a call to an unbound function | |
2400 | via the IMPORT_SHLIB stub. The hpux 11.00 dynamic | |
2401 | linker will blow chunks if we do not call the | |
2402 | unbound function via the IMPORT_SHLIB stub. | |
2403 | ||
2404 | We currently have no way to select bevahior on just | |
2405 | the target. However, we only support HPUX/SOM in | |
2406 | native mode. So we conditinalize on a native | |
2407 | #ifdef. Ugly. Ugly. Ugly */ | |
2408 | && u->stub_unwind.stub_type != IMPORT_SHLIB | |
2409 | #endif | |
2410 | )) | |
c5aa993b JM |
2411 | continue; |
2412 | ||
2413 | /* OK. Looks like the correct import stub. */ | |
2414 | newfun = SYMBOL_VALUE (stub_symbol); | |
2415 | fun = newfun; | |
6426a772 JM |
2416 | |
2417 | /* If we found an IMPORT stub, then we want to stop | |
2418 | searching now. If we found an IMPORT_SHLIB, we want | |
2419 | to continue the search in the hopes that we will find | |
2420 | an IMPORT stub. */ | |
2421 | if (u->stub_unwind.stub_type == IMPORT) | |
2422 | break; | |
c5aa993b JM |
2423 | } |
2424 | } | |
cce74817 JM |
2425 | |
2426 | /* Ouch. We did not find an import stub. Make an attempt to | |
2427 | do the right thing instead of just croaking. Most of the | |
2428 | time this will actually work. */ | |
c906108c SS |
2429 | if (newfun == 0) |
2430 | write_register (19, som_solib_get_got_by_pc (fun)); | |
cce74817 JM |
2431 | |
2432 | u = find_unwind_entry (fun); | |
c5aa993b | 2433 | if (u |
cce74817 JM |
2434 | && (u->stub_unwind.stub_type == IMPORT |
2435 | || u->stub_unwind.stub_type == IMPORT_SHLIB)) | |
2436 | trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); | |
2437 | ||
2438 | /* If we found the import stub in the shared library, then we have | |
2439 | to set %r19 before we call the stub. */ | |
2440 | if (u && u->stub_unwind.stub_type == IMPORT_SHLIB) | |
2441 | write_register (19, som_solib_get_got_by_pc (fun)); | |
c906108c | 2442 | } |
c906108c SS |
2443 | #endif |
2444 | } | |
2445 | ||
cce74817 JM |
2446 | /* If we are calling into another load module then have sr4export call the |
2447 | magic __d_plt_call routine which is linked in from end.o. | |
c906108c | 2448 | |
cce74817 JM |
2449 | You can't use _sr4export to make the call as the value in sp-24 will get |
2450 | fried and you end up returning to the wrong location. You can't call the | |
2451 | target as the code to bind the PLT entry to a function can't return to a | |
2452 | stack address. | |
2453 | ||
2454 | Also, query the dynamic linker in the inferior to provide a suitable | |
2455 | PLABEL for the target function. */ | |
c5aa993b | 2456 | if (!using_gcc_plt_call) |
c906108c SS |
2457 | { |
2458 | CORE_ADDR new_fun; | |
2459 | ||
cce74817 | 2460 | /* Get a handle for the shared library containing FUN. Given the |
c5aa993b | 2461 | handle we can query the shared library for a PLABEL. */ |
cce74817 | 2462 | solib_handle = som_solib_get_solib_by_pc (fun); |
c906108c | 2463 | |
cce74817 | 2464 | if (solib_handle) |
c906108c | 2465 | { |
cce74817 | 2466 | struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun); |
c906108c | 2467 | |
cce74817 JM |
2468 | trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); |
2469 | ||
2470 | if (trampoline == NULL) | |
2471 | { | |
2472 | error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc."); | |
2473 | } | |
2474 | ||
2475 | /* This is where sr4export will jump to. */ | |
2476 | new_fun = SYMBOL_VALUE_ADDRESS (trampoline); | |
2477 | ||
2478 | /* If the function is in a shared library, then call __d_shl_get to | |
2479 | get a PLABEL for the target function. */ | |
2480 | new_stub = find_stub_with_shl_get (fmsymbol, solib_handle); | |
2481 | ||
c5aa993b | 2482 | if (new_stub == 0) |
22abf04a | 2483 | error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol)); |
c906108c SS |
2484 | |
2485 | /* We have to store the address of the stub in __shlib_funcptr. */ | |
cce74817 | 2486 | msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, |
c5aa993b | 2487 | (struct objfile *) NULL); |
c906108c | 2488 | |
cce74817 JM |
2489 | if (msymbol == NULL) |
2490 | error ("Can't find an address for __shlib_funcptr"); | |
2491 | target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), | |
c5aa993b | 2492 | (char *) &new_stub, 4); |
c906108c SS |
2493 | |
2494 | /* We want sr4export to call __d_plt_call, so we claim it is | |
2495 | the final target. Clear trampoline. */ | |
cce74817 JM |
2496 | fun = new_fun; |
2497 | trampoline = NULL; | |
c906108c SS |
2498 | } |
2499 | } | |
2500 | ||
2501 | /* Store upper 21 bits of function address into ldil. fun will either be | |
2502 | the final target (most cases) or __d_plt_call when calling into a shared | |
2503 | library and __gcc_plt_call is not available. */ | |
2504 | store_unsigned_integer | |
2505 | (&dummy[FUNC_LDIL_OFFSET], | |
2506 | INSTRUCTION_SIZE, | |
2507 | deposit_21 (fun >> 11, | |
2508 | extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], | |
2509 | INSTRUCTION_SIZE))); | |
2510 | ||
2511 | /* Store lower 11 bits of function address into ldo */ | |
2512 | store_unsigned_integer | |
2513 | (&dummy[FUNC_LDO_OFFSET], | |
2514 | INSTRUCTION_SIZE, | |
2515 | deposit_14 (fun & MASK_11, | |
2516 | extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], | |
2517 | INSTRUCTION_SIZE))); | |
2518 | #ifdef SR4EXPORT_LDIL_OFFSET | |
2519 | ||
2520 | { | |
2521 | CORE_ADDR trampoline_addr; | |
2522 | ||
2523 | /* We may still need sr4export's address too. */ | |
2524 | ||
2525 | if (trampoline == NULL) | |
2526 | { | |
2527 | msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
2528 | if (msymbol == NULL) | |
cce74817 | 2529 | error ("Can't find an address for _sr4export trampoline"); |
c906108c SS |
2530 | |
2531 | trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2532 | } | |
2533 | else | |
2534 | trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); | |
2535 | ||
2536 | ||
2537 | /* Store upper 21 bits of trampoline's address into ldil */ | |
2538 | store_unsigned_integer | |
2539 | (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2540 | INSTRUCTION_SIZE, | |
2541 | deposit_21 (trampoline_addr >> 11, | |
2542 | extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], | |
2543 | INSTRUCTION_SIZE))); | |
2544 | ||
2545 | /* Store lower 11 bits of trampoline's address into ldo */ | |
2546 | store_unsigned_integer | |
2547 | (&dummy[SR4EXPORT_LDO_OFFSET], | |
2548 | INSTRUCTION_SIZE, | |
2549 | deposit_14 (trampoline_addr & MASK_11, | |
2550 | extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], | |
2551 | INSTRUCTION_SIZE))); | |
2552 | } | |
2553 | #endif | |
2554 | ||
2555 | write_register (22, pc); | |
2556 | ||
2557 | /* If we are in a syscall, then we should call the stack dummy | |
2558 | directly. $$dyncall is not needed as the kernel sets up the | |
2559 | space id registers properly based on the value in %r31. In | |
2560 | fact calling $$dyncall will not work because the value in %r22 | |
2561 | will be clobbered on the syscall exit path. | |
2562 | ||
2563 | Similarly if the current PC is in a shared library. Note however, | |
2564 | this scheme won't work if the shared library isn't mapped into | |
2565 | the same space as the stack. */ | |
2566 | if (flags & 2) | |
2567 | return pc; | |
2568 | #ifndef GDB_TARGET_IS_PA_ELF | |
60383d10 | 2569 | else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid))) |
c906108c SS |
2570 | return pc; |
2571 | #endif | |
2572 | else | |
2573 | return dyncall_addr; | |
53a5351d | 2574 | #endif |
c906108c SS |
2575 | } |
2576 | ||
c906108c SS |
2577 | /* If the pid is in a syscall, then the FP register is not readable. |
2578 | We'll return zero in that case, rather than attempting to read it | |
2579 | and cause a warning. */ | |
60383d10 | 2580 | |
c906108c | 2581 | CORE_ADDR |
60383d10 | 2582 | hppa_read_fp (int pid) |
c906108c SS |
2583 | { |
2584 | int flags = read_register (FLAGS_REGNUM); | |
2585 | ||
c5aa993b JM |
2586 | if (flags & 2) |
2587 | { | |
2588 | return (CORE_ADDR) 0; | |
2589 | } | |
c906108c SS |
2590 | |
2591 | /* This is the only site that may directly read_register () the FP | |
0ba6dca9 AC |
2592 | register. All others must use deprecated_read_fp (). */ |
2593 | return read_register (DEPRECATED_FP_REGNUM); | |
c906108c SS |
2594 | } |
2595 | ||
60383d10 JB |
2596 | CORE_ADDR |
2597 | hppa_target_read_fp (void) | |
2598 | { | |
2599 | return hppa_read_fp (PIDGET (inferior_ptid)); | |
2600 | } | |
c906108c SS |
2601 | |
2602 | /* Get the PC from %r31 if currently in a syscall. Also mask out privilege | |
2603 | bits. */ | |
2604 | ||
2605 | CORE_ADDR | |
60383d10 | 2606 | hppa_target_read_pc (ptid_t ptid) |
c906108c | 2607 | { |
39f77062 | 2608 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2609 | |
2610 | /* The following test does not belong here. It is OS-specific, and belongs | |
2611 | in native code. */ | |
2612 | /* Test SS_INSYSCALL */ | |
2613 | if (flags & 2) | |
39f77062 | 2614 | return read_register_pid (31, ptid) & ~0x3; |
c906108c | 2615 | |
39f77062 | 2616 | return read_register_pid (PC_REGNUM, ptid) & ~0x3; |
c906108c SS |
2617 | } |
2618 | ||
2619 | /* Write out the PC. If currently in a syscall, then also write the new | |
2620 | PC value into %r31. */ | |
2621 | ||
2622 | void | |
60383d10 | 2623 | hppa_target_write_pc (CORE_ADDR v, ptid_t ptid) |
c906108c | 2624 | { |
39f77062 | 2625 | int flags = read_register_pid (FLAGS_REGNUM, ptid); |
c906108c SS |
2626 | |
2627 | /* The following test does not belong here. It is OS-specific, and belongs | |
2628 | in native code. */ | |
2629 | /* If in a syscall, then set %r31. Also make sure to get the | |
2630 | privilege bits set correctly. */ | |
2631 | /* Test SS_INSYSCALL */ | |
2632 | if (flags & 2) | |
39f77062 | 2633 | write_register_pid (31, v | 0x3, ptid); |
c906108c | 2634 | |
39f77062 | 2635 | write_register_pid (PC_REGNUM, v, ptid); |
efe59759 | 2636 | write_register_pid (DEPRECATED_NPC_REGNUM, v + 4, ptid); |
c906108c SS |
2637 | } |
2638 | ||
2639 | /* return the alignment of a type in bytes. Structures have the maximum | |
2640 | alignment required by their fields. */ | |
2641 | ||
2642 | static int | |
fba45db2 | 2643 | hppa_alignof (struct type *type) |
c906108c SS |
2644 | { |
2645 | int max_align, align, i; | |
2646 | CHECK_TYPEDEF (type); | |
2647 | switch (TYPE_CODE (type)) | |
2648 | { | |
2649 | case TYPE_CODE_PTR: | |
2650 | case TYPE_CODE_INT: | |
2651 | case TYPE_CODE_FLT: | |
2652 | return TYPE_LENGTH (type); | |
2653 | case TYPE_CODE_ARRAY: | |
2654 | return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); | |
2655 | case TYPE_CODE_STRUCT: | |
2656 | case TYPE_CODE_UNION: | |
2657 | max_align = 1; | |
2658 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2659 | { | |
2660 | /* Bit fields have no real alignment. */ | |
2661 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 2662 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
2663 | { |
2664 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
2665 | max_align = max (max_align, align); | |
2666 | } | |
2667 | } | |
2668 | return max_align; | |
2669 | default: | |
2670 | return 4; | |
2671 | } | |
2672 | } | |
2673 | ||
2674 | /* Print the register regnum, or all registers if regnum is -1 */ | |
2675 | ||
2676 | void | |
fba45db2 | 2677 | pa_do_registers_info (int regnum, int fpregs) |
c906108c | 2678 | { |
b8b527c5 | 2679 | char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES); |
c906108c SS |
2680 | int i; |
2681 | ||
2682 | /* Make a copy of gdb's save area (may cause actual | |
2683 | reads from the target). */ | |
2684 | for (i = 0; i < NUM_REGS; i++) | |
62700349 AC |
2685 | frame_register_read (deprecated_selected_frame, i, |
2686 | raw_regs + DEPRECATED_REGISTER_BYTE (i)); | |
c906108c SS |
2687 | |
2688 | if (regnum == -1) | |
2689 | pa_print_registers (raw_regs, regnum, fpregs); | |
c5aa993b JM |
2690 | else if (regnum < FP4_REGNUM) |
2691 | { | |
2692 | long reg_val[2]; | |
2693 | ||
2694 | /* Why is the value not passed through "extract_signed_integer" | |
2695 | as in "pa_print_registers" below? */ | |
2696 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
2697 | ||
2698 | if (!is_pa_2) | |
2699 | { | |
ce414844 | 2700 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2701 | } |
c906108c | 2702 | else |
c5aa993b JM |
2703 | { |
2704 | /* Fancy % formats to prevent leading zeros. */ | |
2705 | if (reg_val[0] == 0) | |
ce414844 | 2706 | printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2707 | else |
ce414844 | 2708 | printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum), |
c5aa993b JM |
2709 | reg_val[0], reg_val[1]); |
2710 | } | |
c906108c | 2711 | } |
c906108c | 2712 | else |
c5aa993b JM |
2713 | /* Note that real floating point values only start at |
2714 | FP4_REGNUM. FP0 and up are just status and error | |
2715 | registers, which have integral (bit) values. */ | |
c906108c SS |
2716 | pa_print_fp_reg (regnum); |
2717 | } | |
2718 | ||
2719 | /********** new function ********************/ | |
2720 | void | |
fba45db2 KB |
2721 | pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream, |
2722 | enum precision_type precision) | |
c906108c | 2723 | { |
b8b527c5 | 2724 | char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES); |
c906108c SS |
2725 | int i; |
2726 | ||
2727 | /* Make a copy of gdb's save area (may cause actual | |
c5aa993b | 2728 | reads from the target). */ |
c906108c | 2729 | for (i = 0; i < NUM_REGS; i++) |
62700349 AC |
2730 | frame_register_read (deprecated_selected_frame, i, |
2731 | raw_regs + DEPRECATED_REGISTER_BYTE (i)); | |
c906108c SS |
2732 | |
2733 | if (regnum == -1) | |
2734 | pa_strcat_registers (raw_regs, regnum, fpregs, stream); | |
2735 | ||
c5aa993b JM |
2736 | else if (regnum < FP4_REGNUM) |
2737 | { | |
2738 | long reg_val[2]; | |
2739 | ||
2740 | /* Why is the value not passed through "extract_signed_integer" | |
2741 | as in "pa_print_registers" below? */ | |
2742 | pa_register_look_aside (raw_regs, regnum, ®_val[0]); | |
c906108c | 2743 | |
c5aa993b JM |
2744 | if (!is_pa_2) |
2745 | { | |
ce414844 | 2746 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]); |
c5aa993b | 2747 | } |
c906108c | 2748 | else |
c5aa993b JM |
2749 | { |
2750 | /* Fancy % formats to prevent leading zeros. */ | |
2751 | if (reg_val[0] == 0) | |
ce414844 | 2752 | fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2753 | reg_val[1]); |
2754 | else | |
ce414844 | 2755 | fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum), |
c5aa993b JM |
2756 | reg_val[0], reg_val[1]); |
2757 | } | |
c906108c | 2758 | } |
c906108c | 2759 | else |
c5aa993b JM |
2760 | /* Note that real floating point values only start at |
2761 | FP4_REGNUM. FP0 and up are just status and error | |
2762 | registers, which have integral (bit) values. */ | |
c906108c SS |
2763 | pa_strcat_fp_reg (regnum, stream, precision); |
2764 | } | |
2765 | ||
2766 | /* If this is a PA2.0 machine, fetch the real 64-bit register | |
2767 | value. Otherwise use the info from gdb's saved register area. | |
2768 | ||
2769 | Note that reg_val is really expected to be an array of longs, | |
2770 | with two elements. */ | |
2771 | static void | |
fba45db2 | 2772 | pa_register_look_aside (char *raw_regs, int regnum, long *raw_val) |
c906108c | 2773 | { |
c5aa993b | 2774 | static int know_which = 0; /* False */ |
c906108c | 2775 | |
c5aa993b | 2776 | int regaddr; |
c906108c | 2777 | unsigned int offset; |
52f0bd74 | 2778 | int i; |
c5aa993b JM |
2779 | int start; |
2780 | ||
2781 | ||
123a958e | 2782 | char buf[MAX_REGISTER_SIZE]; |
c906108c SS |
2783 | long long reg_val; |
2784 | ||
c5aa993b JM |
2785 | if (!know_which) |
2786 | { | |
2787 | if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION)) | |
2788 | { | |
2789 | is_pa_2 = (1 == 1); | |
2790 | } | |
2791 | ||
2792 | know_which = 1; /* True */ | |
2793 | } | |
c906108c SS |
2794 | |
2795 | raw_val[0] = 0; | |
2796 | raw_val[1] = 0; | |
2797 | ||
c5aa993b JM |
2798 | if (!is_pa_2) |
2799 | { | |
62700349 | 2800 | raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum)); |
c906108c | 2801 | return; |
c5aa993b | 2802 | } |
c906108c SS |
2803 | |
2804 | /* Code below copied from hppah-nat.c, with fixes for wide | |
2805 | registers, using different area of save_state, etc. */ | |
2806 | if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM || | |
c5aa993b JM |
2807 | !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) |
2808 | { | |
c906108c | 2809 | /* Use narrow regs area of save_state and default macro. */ |
c5aa993b JM |
2810 | offset = U_REGS_OFFSET; |
2811 | regaddr = register_addr (regnum, offset); | |
2812 | start = 1; | |
2813 | } | |
2814 | else | |
2815 | { | |
c906108c SS |
2816 | /* Use wide regs area, and calculate registers as 8 bytes wide. |
2817 | ||
2818 | We'd like to do this, but current version of "C" doesn't | |
2819 | permit "offsetof": | |
2820 | ||
c5aa993b | 2821 | offset = offsetof(save_state_t, ss_wide); |
c906108c SS |
2822 | |
2823 | Note that to avoid "C" doing typed pointer arithmetic, we | |
2824 | have to cast away the type in our offset calculation: | |
2825 | otherwise we get an offset of 1! */ | |
2826 | ||
7a292a7a | 2827 | /* NB: save_state_t is not available before HPUX 9. |
c5aa993b | 2828 | The ss_wide field is not available previous to HPUX 10.20, |
7a292a7a SS |
2829 | so to avoid compile-time warnings, we only compile this for |
2830 | PA 2.0 processors. This control path should only be followed | |
2831 | if we're debugging a PA 2.0 processor, so this should not cause | |
2832 | problems. */ | |
2833 | ||
c906108c SS |
2834 | /* #if the following code out so that this file can still be |
2835 | compiled on older HPUX boxes (< 10.20) which don't have | |
2836 | this structure/structure member. */ | |
2837 | #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1 | |
2838 | save_state_t temp; | |
2839 | ||
2840 | offset = ((int) &temp.ss_wide) - ((int) &temp); | |
2841 | regaddr = offset + regnum * 8; | |
c5aa993b | 2842 | start = 0; |
c906108c | 2843 | #endif |
c5aa993b JM |
2844 | } |
2845 | ||
2846 | for (i = start; i < 2; i++) | |
c906108c SS |
2847 | { |
2848 | errno = 0; | |
39f77062 | 2849 | raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid), |
c5aa993b | 2850 | (PTRACE_ARG3_TYPE) regaddr, 0); |
c906108c SS |
2851 | if (errno != 0) |
2852 | { | |
2853 | /* Warning, not error, in case we are attached; sometimes the | |
2854 | kernel doesn't let us at the registers. */ | |
2855 | char *err = safe_strerror (errno); | |
2856 | char *msg = alloca (strlen (err) + 128); | |
2857 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err); | |
2858 | warning (msg); | |
2859 | goto error_exit; | |
2860 | } | |
2861 | ||
2862 | regaddr += sizeof (long); | |
2863 | } | |
c5aa993b | 2864 | |
c906108c | 2865 | if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM) |
c5aa993b | 2866 | raw_val[1] &= ~0x3; /* I think we're masking out space bits */ |
c906108c SS |
2867 | |
2868 | error_exit: | |
2869 | ; | |
2870 | } | |
2871 | ||
2872 | /* "Info all-reg" command */ | |
c5aa993b | 2873 | |
c906108c | 2874 | static void |
fba45db2 | 2875 | pa_print_registers (char *raw_regs, int regnum, int fpregs) |
c906108c | 2876 | { |
c5aa993b | 2877 | int i, j; |
adf40b2e JM |
2878 | /* Alas, we are compiled so that "long long" is 32 bits */ |
2879 | long raw_val[2]; | |
c906108c | 2880 | long long_val; |
a0b3c4fd | 2881 | int rows = 48, columns = 2; |
c906108c | 2882 | |
adf40b2e | 2883 | for (i = 0; i < rows; i++) |
c906108c | 2884 | { |
adf40b2e | 2885 | for (j = 0; j < columns; j++) |
c906108c | 2886 | { |
adf40b2e JM |
2887 | /* We display registers in column-major order. */ |
2888 | int regnum = i + j * rows; | |
2889 | ||
c5aa993b JM |
2890 | /* Q: Why is the value passed through "extract_signed_integer", |
2891 | while above, in "pa_do_registers_info" it isn't? | |
2892 | A: ? */ | |
adf40b2e | 2893 | pa_register_look_aside (raw_regs, regnum, &raw_val[0]); |
c5aa993b JM |
2894 | |
2895 | /* Even fancier % formats to prevent leading zeros | |
2896 | and still maintain the output in columns. */ | |
2897 | if (!is_pa_2) | |
2898 | { | |
2899 | /* Being big-endian, on this machine the low bits | |
2900 | (the ones we want to look at) are in the second longword. */ | |
2901 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 | 2902 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2903 | REGISTER_NAME (regnum), long_val); |
c5aa993b JM |
2904 | } |
2905 | else | |
2906 | { | |
2907 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2908 | if (raw_val[0] == 0) | |
ce414844 | 2909 | printf_filtered ("%10.10s: %8lx ", |
adf40b2e | 2910 | REGISTER_NAME (regnum), raw_val[1]); |
c5aa993b | 2911 | else |
ce414844 | 2912 | printf_filtered ("%10.10s: %8lx%8.8lx ", |
a0b3c4fd | 2913 | REGISTER_NAME (regnum), |
c5aa993b JM |
2914 | raw_val[0], raw_val[1]); |
2915 | } | |
c906108c SS |
2916 | } |
2917 | printf_unfiltered ("\n"); | |
2918 | } | |
c5aa993b | 2919 | |
c906108c | 2920 | if (fpregs) |
c5aa993b | 2921 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2922 | pa_print_fp_reg (i); |
2923 | } | |
2924 | ||
c5aa993b | 2925 | /************* new function ******************/ |
c906108c | 2926 | static void |
fba45db2 KB |
2927 | pa_strcat_registers (char *raw_regs, int regnum, int fpregs, |
2928 | struct ui_file *stream) | |
c906108c | 2929 | { |
c5aa993b JM |
2930 | int i, j; |
2931 | long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */ | |
c906108c SS |
2932 | long long_val; |
2933 | enum precision_type precision; | |
2934 | ||
2935 | precision = unspecified_precision; | |
2936 | ||
2937 | for (i = 0; i < 18; i++) | |
2938 | { | |
2939 | for (j = 0; j < 4; j++) | |
2940 | { | |
c5aa993b JM |
2941 | /* Q: Why is the value passed through "extract_signed_integer", |
2942 | while above, in "pa_do_registers_info" it isn't? | |
2943 | A: ? */ | |
2944 | pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]); | |
2945 | ||
2946 | /* Even fancier % formats to prevent leading zeros | |
2947 | and still maintain the output in columns. */ | |
2948 | if (!is_pa_2) | |
2949 | { | |
2950 | /* Being big-endian, on this machine the low bits | |
2951 | (the ones we want to look at) are in the second longword. */ | |
2952 | long_val = extract_signed_integer (&raw_val[1], 4); | |
ce414844 AC |
2953 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2954 | REGISTER_NAME (i + (j * 18)), long_val); | |
c5aa993b JM |
2955 | } |
2956 | else | |
2957 | { | |
2958 | /* raw_val = extract_signed_integer(&raw_val, 8); */ | |
2959 | if (raw_val[0] == 0) | |
ce414844 AC |
2960 | fprintf_filtered (stream, "%8.8s: %8lx ", |
2961 | REGISTER_NAME (i + (j * 18)), raw_val[1]); | |
c5aa993b | 2962 | else |
ce414844 AC |
2963 | fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ", |
2964 | REGISTER_NAME (i + (j * 18)), raw_val[0], | |
2965 | raw_val[1]); | |
c5aa993b | 2966 | } |
c906108c SS |
2967 | } |
2968 | fprintf_unfiltered (stream, "\n"); | |
2969 | } | |
c5aa993b | 2970 | |
c906108c | 2971 | if (fpregs) |
c5aa993b | 2972 | for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */ |
c906108c SS |
2973 | pa_strcat_fp_reg (i, stream, precision); |
2974 | } | |
2975 | ||
2976 | static void | |
fba45db2 | 2977 | pa_print_fp_reg (int i) |
c906108c | 2978 | { |
123a958e AC |
2979 | char raw_buffer[MAX_REGISTER_SIZE]; |
2980 | char virtual_buffer[MAX_REGISTER_SIZE]; | |
c906108c SS |
2981 | |
2982 | /* Get 32bits of data. */ | |
6e7f8b9c | 2983 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
2984 | |
2985 | /* Put it in the buffer. No conversions are ever necessary. */ | |
12c266ea | 2986 | memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i)); |
c906108c SS |
2987 | |
2988 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
2989 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
2990 | fputs_filtered ("(single precision) ", gdb_stdout); | |
2991 | ||
2e092625 | 2992 | val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0, |
c906108c SS |
2993 | 1, 0, Val_pretty_default); |
2994 | printf_filtered ("\n"); | |
2995 | ||
2996 | /* If "i" is even, then this register can also be a double-precision | |
2997 | FP register. Dump it out as such. */ | |
2998 | if ((i % 2) == 0) | |
2999 | { | |
3000 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 3001 | frame_register_read (deprecated_selected_frame, i + 1, raw_buffer); |
c906108c SS |
3002 | |
3003 | /* Copy it into the appropriate part of the virtual buffer. */ | |
12c266ea AC |
3004 | memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer, |
3005 | DEPRECATED_REGISTER_RAW_SIZE (i)); | |
c906108c SS |
3006 | |
3007 | /* Dump it as a double. */ | |
3008 | fputs_filtered (REGISTER_NAME (i), gdb_stdout); | |
3009 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout); | |
3010 | fputs_filtered ("(double precision) ", gdb_stdout); | |
3011 | ||
3012 | val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0, | |
3013 | 1, 0, Val_pretty_default); | |
3014 | printf_filtered ("\n"); | |
3015 | } | |
3016 | } | |
3017 | ||
3018 | /*************** new function ***********************/ | |
3019 | static void | |
fba45db2 | 3020 | pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision) |
c906108c | 3021 | { |
123a958e AC |
3022 | char raw_buffer[MAX_REGISTER_SIZE]; |
3023 | char virtual_buffer[MAX_REGISTER_SIZE]; | |
c906108c SS |
3024 | |
3025 | fputs_filtered (REGISTER_NAME (i), stream); | |
3026 | print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream); | |
3027 | ||
3028 | /* Get 32bits of data. */ | |
6e7f8b9c | 3029 | frame_register_read (deprecated_selected_frame, i, raw_buffer); |
c906108c SS |
3030 | |
3031 | /* Put it in the buffer. No conversions are ever necessary. */ | |
12c266ea | 3032 | memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i)); |
c906108c SS |
3033 | |
3034 | if (precision == double_precision && (i % 2) == 0) | |
3035 | { | |
3036 | ||
123a958e | 3037 | char raw_buf[MAX_REGISTER_SIZE]; |
c5aa993b JM |
3038 | |
3039 | /* Get the data in raw format for the 2nd half. */ | |
6e7f8b9c | 3040 | frame_register_read (deprecated_selected_frame, i + 1, raw_buf); |
c5aa993b JM |
3041 | |
3042 | /* Copy it into the appropriate part of the virtual buffer. */ | |
12c266ea AC |
3043 | memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf, |
3044 | DEPRECATED_REGISTER_RAW_SIZE (i)); | |
c906108c | 3045 | |
c5aa993b JM |
3046 | val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0, |
3047 | 1, 0, Val_pretty_default); | |
c906108c SS |
3048 | |
3049 | } | |
c5aa993b JM |
3050 | else |
3051 | { | |
2e092625 | 3052 | val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0, |
c5aa993b JM |
3053 | 1, 0, Val_pretty_default); |
3054 | } | |
c906108c SS |
3055 | |
3056 | } | |
3057 | ||
3058 | /* Return one if PC is in the call path of a trampoline, else return zero. | |
3059 | ||
3060 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3061 | just shared library trampolines (import, export). */ | |
3062 | ||
3063 | int | |
60383d10 | 3064 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3065 | { |
3066 | struct minimal_symbol *minsym; | |
3067 | struct unwind_table_entry *u; | |
3068 | static CORE_ADDR dyncall = 0; | |
3069 | static CORE_ADDR sr4export = 0; | |
3070 | ||
c2c6d25f JM |
3071 | #ifdef GDB_TARGET_IS_HPPA_20W |
3072 | /* PA64 has a completely different stub/trampoline scheme. Is it | |
3073 | better? Maybe. It's certainly harder to determine with any | |
3074 | certainty that we are in a stub because we can not refer to the | |
3075 | unwinders to help. | |
3076 | ||
3077 | The heuristic is simple. Try to lookup the current PC value in th | |
3078 | minimal symbol table. If that fails, then assume we are not in a | |
3079 | stub and return. | |
3080 | ||
3081 | Then see if the PC value falls within the section bounds for the | |
3082 | section containing the minimal symbol we found in the first | |
3083 | step. If it does, then assume we are not in a stub and return. | |
3084 | ||
3085 | Finally peek at the instructions to see if they look like a stub. */ | |
3086 | { | |
3087 | struct minimal_symbol *minsym; | |
3088 | asection *sec; | |
3089 | CORE_ADDR addr; | |
3090 | int insn, i; | |
3091 | ||
3092 | minsym = lookup_minimal_symbol_by_pc (pc); | |
3093 | if (! minsym) | |
3094 | return 0; | |
3095 | ||
3096 | sec = SYMBOL_BFD_SECTION (minsym); | |
3097 | ||
b98ed7be AM |
3098 | if (bfd_get_section_vma (sec->owner, sec) <= pc |
3099 | && pc < (bfd_get_section_vma (sec->owner, sec) | |
3100 | + bfd_section_size (sec->owner, sec))) | |
c2c6d25f JM |
3101 | return 0; |
3102 | ||
3103 | /* We might be in a stub. Peek at the instructions. Stubs are 3 | |
3104 | instructions long. */ | |
3105 | insn = read_memory_integer (pc, 4); | |
3106 | ||
b84a8afe | 3107 | /* Find out where we think we are within the stub. */ |
c2c6d25f JM |
3108 | if ((insn & 0xffffc00e) == 0x53610000) |
3109 | addr = pc; | |
3110 | else if ((insn & 0xffffffff) == 0xe820d000) | |
3111 | addr = pc - 4; | |
3112 | else if ((insn & 0xffffc00e) == 0x537b0000) | |
3113 | addr = pc - 8; | |
3114 | else | |
3115 | return 0; | |
3116 | ||
3117 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3118 | insn = read_memory_integer (addr, 4); | |
3119 | if ((insn & 0xffffc00e) != 0x53610000) | |
3120 | return 0; | |
3121 | ||
3122 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3123 | insn = read_memory_integer (addr + 4, 4); | |
3124 | if ((insn & 0xffffffff) != 0xe820d000) | |
3125 | return 0; | |
3126 | ||
3127 | /* Now verify each insn in the range looks like a stub instruction. */ | |
3128 | insn = read_memory_integer (addr + 8, 4); | |
3129 | if ((insn & 0xffffc00e) != 0x537b0000) | |
3130 | return 0; | |
3131 | ||
3132 | /* Looks like a stub. */ | |
3133 | return 1; | |
3134 | } | |
3135 | #endif | |
3136 | ||
3137 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a | |
3138 | new exec file */ | |
c906108c SS |
3139 | |
3140 | /* First see if PC is in one of the two C-library trampolines. */ | |
3141 | if (!dyncall) | |
3142 | { | |
3143 | minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3144 | if (minsym) | |
3145 | dyncall = SYMBOL_VALUE_ADDRESS (minsym); | |
3146 | else | |
3147 | dyncall = -1; | |
3148 | } | |
3149 | ||
3150 | if (!sr4export) | |
3151 | { | |
3152 | minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3153 | if (minsym) | |
3154 | sr4export = SYMBOL_VALUE_ADDRESS (minsym); | |
3155 | else | |
3156 | sr4export = -1; | |
3157 | } | |
3158 | ||
3159 | if (pc == dyncall || pc == sr4export) | |
3160 | return 1; | |
3161 | ||
104c1213 | 3162 | minsym = lookup_minimal_symbol_by_pc (pc); |
22abf04a | 3163 | if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0) |
104c1213 JM |
3164 | return 1; |
3165 | ||
c906108c SS |
3166 | /* Get the unwind descriptor corresponding to PC, return zero |
3167 | if no unwind was found. */ | |
3168 | u = find_unwind_entry (pc); | |
3169 | if (!u) | |
3170 | return 0; | |
3171 | ||
3172 | /* If this isn't a linker stub, then return now. */ | |
3173 | if (u->stub_unwind.stub_type == 0) | |
3174 | return 0; | |
3175 | ||
3176 | /* By definition a long-branch stub is a call stub. */ | |
3177 | if (u->stub_unwind.stub_type == LONG_BRANCH) | |
3178 | return 1; | |
3179 | ||
3180 | /* The call and return path execute the same instructions within | |
3181 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3182 | trampoline. */ | |
3183 | if (u->stub_unwind.stub_type == IMPORT) | |
3184 | return 1; | |
3185 | ||
3186 | /* Parameter relocation stubs always have a call path and may have a | |
3187 | return path. */ | |
3188 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3189 | || u->stub_unwind.stub_type == EXPORT) | |
3190 | { | |
3191 | CORE_ADDR addr; | |
3192 | ||
3193 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3194 | or the end of the stub. */ |
c906108c SS |
3195 | for (addr = pc; addr <= u->region_end; addr += 4) |
3196 | { | |
3197 | unsigned long insn; | |
3198 | ||
3199 | insn = read_memory_integer (addr, 4); | |
3200 | ||
3201 | /* Does it look like a bl? If so then it's the call path, if | |
3202 | we find a bv or be first, then we're on the return path. */ | |
3203 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3204 | return 1; | |
3205 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3206 | || (insn & 0xfc000000) == 0xe0000000) | |
3207 | return 0; | |
3208 | } | |
3209 | ||
3210 | /* Should never happen. */ | |
104c1213 JM |
3211 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3212 | return 0; | |
c906108c SS |
3213 | } |
3214 | ||
3215 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3216 | return 0; |
c906108c SS |
3217 | } |
3218 | ||
3219 | /* Return one if PC is in the return path of a trampoline, else return zero. | |
3220 | ||
3221 | Note we return one for *any* call trampoline (long-call, arg-reloc), not | |
3222 | just shared library trampolines (import, export). */ | |
3223 | ||
3224 | int | |
60383d10 | 3225 | hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name) |
c906108c SS |
3226 | { |
3227 | struct unwind_table_entry *u; | |
3228 | ||
3229 | /* Get the unwind descriptor corresponding to PC, return zero | |
3230 | if no unwind was found. */ | |
3231 | u = find_unwind_entry (pc); | |
3232 | if (!u) | |
3233 | return 0; | |
3234 | ||
3235 | /* If this isn't a linker stub or it's just a long branch stub, then | |
3236 | return zero. */ | |
3237 | if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) | |
3238 | return 0; | |
3239 | ||
3240 | /* The call and return path execute the same instructions within | |
3241 | an IMPORT stub! So an IMPORT stub is both a call and return | |
3242 | trampoline. */ | |
3243 | if (u->stub_unwind.stub_type == IMPORT) | |
3244 | return 1; | |
3245 | ||
3246 | /* Parameter relocation stubs always have a call path and may have a | |
3247 | return path. */ | |
3248 | if (u->stub_unwind.stub_type == PARAMETER_RELOCATION | |
3249 | || u->stub_unwind.stub_type == EXPORT) | |
3250 | { | |
3251 | CORE_ADDR addr; | |
3252 | ||
3253 | /* Search forward from the current PC until we hit a branch | |
c5aa993b | 3254 | or the end of the stub. */ |
c906108c SS |
3255 | for (addr = pc; addr <= u->region_end; addr += 4) |
3256 | { | |
3257 | unsigned long insn; | |
3258 | ||
3259 | insn = read_memory_integer (addr, 4); | |
3260 | ||
3261 | /* Does it look like a bl? If so then it's the call path, if | |
3262 | we find a bv or be first, then we're on the return path. */ | |
3263 | if ((insn & 0xfc00e000) == 0xe8000000) | |
3264 | return 0; | |
3265 | else if ((insn & 0xfc00e001) == 0xe800c000 | |
3266 | || (insn & 0xfc000000) == 0xe0000000) | |
3267 | return 1; | |
3268 | } | |
3269 | ||
3270 | /* Should never happen. */ | |
104c1213 JM |
3271 | warning ("Unable to find branch in parameter relocation stub.\n"); |
3272 | return 0; | |
c906108c SS |
3273 | } |
3274 | ||
3275 | /* Unknown stub type. For now, just return zero. */ | |
104c1213 | 3276 | return 0; |
c906108c SS |
3277 | |
3278 | } | |
3279 | ||
3280 | /* Figure out if PC is in a trampoline, and if so find out where | |
3281 | the trampoline will jump to. If not in a trampoline, return zero. | |
3282 | ||
3283 | Simple code examination probably is not a good idea since the code | |
3284 | sequences in trampolines can also appear in user code. | |
3285 | ||
3286 | We use unwinds and information from the minimal symbol table to | |
3287 | determine when we're in a trampoline. This won't work for ELF | |
3288 | (yet) since it doesn't create stub unwind entries. Whether or | |
3289 | not ELF will create stub unwinds or normal unwinds for linker | |
3290 | stubs is still being debated. | |
3291 | ||
3292 | This should handle simple calls through dyncall or sr4export, | |
3293 | long calls, argument relocation stubs, and dyncall/sr4export | |
3294 | calling an argument relocation stub. It even handles some stubs | |
3295 | used in dynamic executables. */ | |
3296 | ||
c906108c | 3297 | CORE_ADDR |
60383d10 | 3298 | hppa_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
3299 | { |
3300 | long orig_pc = pc; | |
3301 | long prev_inst, curr_inst, loc; | |
3302 | static CORE_ADDR dyncall = 0; | |
3303 | static CORE_ADDR dyncall_external = 0; | |
3304 | static CORE_ADDR sr4export = 0; | |
3305 | struct minimal_symbol *msym; | |
3306 | struct unwind_table_entry *u; | |
3307 | ||
c2c6d25f JM |
3308 | /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a |
3309 | new exec file */ | |
c906108c SS |
3310 | |
3311 | if (!dyncall) | |
3312 | { | |
3313 | msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); | |
3314 | if (msym) | |
3315 | dyncall = SYMBOL_VALUE_ADDRESS (msym); | |
3316 | else | |
3317 | dyncall = -1; | |
3318 | } | |
3319 | ||
3320 | if (!dyncall_external) | |
3321 | { | |
3322 | msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL); | |
3323 | if (msym) | |
3324 | dyncall_external = SYMBOL_VALUE_ADDRESS (msym); | |
3325 | else | |
3326 | dyncall_external = -1; | |
3327 | } | |
3328 | ||
3329 | if (!sr4export) | |
3330 | { | |
3331 | msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); | |
3332 | if (msym) | |
3333 | sr4export = SYMBOL_VALUE_ADDRESS (msym); | |
3334 | else | |
3335 | sr4export = -1; | |
3336 | } | |
3337 | ||
3338 | /* Addresses passed to dyncall may *NOT* be the actual address | |
3339 | of the function. So we may have to do something special. */ | |
3340 | if (pc == dyncall) | |
3341 | { | |
3342 | pc = (CORE_ADDR) read_register (22); | |
3343 | ||
3344 | /* If bit 30 (counting from the left) is on, then pc is the address of | |
c5aa993b JM |
3345 | the PLT entry for this function, not the address of the function |
3346 | itself. Bit 31 has meaning too, but only for MPE. */ | |
c906108c | 3347 | if (pc & 0x2) |
53a5351d | 3348 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3349 | } |
3350 | if (pc == dyncall_external) | |
3351 | { | |
3352 | pc = (CORE_ADDR) read_register (22); | |
53a5351d | 3353 | pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8); |
c906108c SS |
3354 | } |
3355 | else if (pc == sr4export) | |
3356 | pc = (CORE_ADDR) (read_register (22)); | |
3357 | ||
3358 | /* Get the unwind descriptor corresponding to PC, return zero | |
3359 | if no unwind was found. */ | |
3360 | u = find_unwind_entry (pc); | |
3361 | if (!u) | |
3362 | return 0; | |
3363 | ||
3364 | /* If this isn't a linker stub, then return now. */ | |
3365 | /* elz: attention here! (FIXME) because of a compiler/linker | |
3366 | error, some stubs which should have a non zero stub_unwind.stub_type | |
3367 | have unfortunately a value of zero. So this function would return here | |
3368 | as if we were not in a trampoline. To fix this, we go look at the partial | |
3369 | symbol information, which reports this guy as a stub. | |
3370 | (FIXME): Unfortunately, we are not that lucky: it turns out that the | |
3371 | partial symbol information is also wrong sometimes. This is because | |
3372 | when it is entered (somread.c::som_symtab_read()) it can happen that | |
3373 | if the type of the symbol (from the som) is Entry, and the symbol is | |
3374 | in a shared library, then it can also be a trampoline. This would | |
3375 | be OK, except that I believe the way they decide if we are ina shared library | |
3376 | does not work. SOOOO..., even if we have a regular function w/o trampolines | |
3377 | its minimal symbol can be assigned type mst_solib_trampoline. | |
3378 | Also, if we find that the symbol is a real stub, then we fix the unwind | |
3379 | descriptor, and define the stub type to be EXPORT. | |
c5aa993b | 3380 | Hopefully this is correct most of the times. */ |
c906108c | 3381 | if (u->stub_unwind.stub_type == 0) |
c5aa993b | 3382 | { |
c906108c SS |
3383 | |
3384 | /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed | |
3385 | we can delete all the code which appears between the lines */ | |
3386 | /*--------------------------------------------------------------------------*/ | |
c5aa993b | 3387 | msym = lookup_minimal_symbol_by_pc (pc); |
c906108c | 3388 | |
c5aa993b JM |
3389 | if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
3390 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3391 | ||
3392 | else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) | |
3393 | { | |
3394 | struct objfile *objfile; | |
3395 | struct minimal_symbol *msymbol; | |
3396 | int function_found = 0; | |
3397 | ||
3398 | /* go look if there is another minimal symbol with the same name as | |
3399 | this one, but with type mst_text. This would happen if the msym | |
3400 | is an actual trampoline, in which case there would be another | |
3401 | symbol with the same name corresponding to the real function */ | |
3402 | ||
3403 | ALL_MSYMBOLS (objfile, msymbol) | |
3404 | { | |
3405 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
22abf04a | 3406 | && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym))) |
c5aa993b JM |
3407 | { |
3408 | function_found = 1; | |
3409 | break; | |
3410 | } | |
3411 | } | |
3412 | ||
3413 | if (function_found) | |
3414 | /* the type of msym is correct (mst_solib_trampoline), but | |
3415 | the unwind info is wrong, so set it to the correct value */ | |
3416 | u->stub_unwind.stub_type = EXPORT; | |
3417 | else | |
3418 | /* the stub type info in the unwind is correct (this is not a | |
3419 | trampoline), but the msym type information is wrong, it | |
3420 | should be mst_text. So we need to fix the msym, and also | |
3421 | get out of this function */ | |
3422 | { | |
3423 | MSYMBOL_TYPE (msym) = mst_text; | |
3424 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3425 | } | |
3426 | } | |
c906108c | 3427 | |
c906108c | 3428 | /*--------------------------------------------------------------------------*/ |
c5aa993b | 3429 | } |
c906108c SS |
3430 | |
3431 | /* It's a stub. Search for a branch and figure out where it goes. | |
3432 | Note we have to handle multi insn branch sequences like ldil;ble. | |
3433 | Most (all?) other branches can be determined by examining the contents | |
3434 | of certain registers and the stack. */ | |
3435 | ||
3436 | loc = pc; | |
3437 | curr_inst = 0; | |
3438 | prev_inst = 0; | |
3439 | while (1) | |
3440 | { | |
3441 | /* Make sure we haven't walked outside the range of this stub. */ | |
3442 | if (u != find_unwind_entry (loc)) | |
3443 | { | |
3444 | warning ("Unable to find branch in linker stub"); | |
3445 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3446 | } | |
3447 | ||
3448 | prev_inst = curr_inst; | |
3449 | curr_inst = read_memory_integer (loc, 4); | |
3450 | ||
3451 | /* Does it look like a branch external using %r1? Then it's the | |
c5aa993b | 3452 | branch from the stub to the actual function. */ |
c906108c SS |
3453 | if ((curr_inst & 0xffe0e000) == 0xe0202000) |
3454 | { | |
3455 | /* Yup. See if the previous instruction loaded | |
3456 | a value into %r1. If so compute and return the jump address. */ | |
3457 | if ((prev_inst & 0xffe00000) == 0x20200000) | |
3458 | return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; | |
3459 | else | |
3460 | { | |
3461 | warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); | |
3462 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3463 | } | |
3464 | } | |
3465 | ||
3466 | /* Does it look like a be 0(sr0,%r21)? OR | |
3467 | Does it look like a be, n 0(sr0,%r21)? OR | |
3468 | Does it look like a bve (r21)? (this is on PA2.0) | |
3469 | Does it look like a bve, n(r21)? (this is also on PA2.0) | |
3470 | That's the branch from an | |
c5aa993b | 3471 | import stub to an export stub. |
c906108c | 3472 | |
c5aa993b JM |
3473 | It is impossible to determine the target of the branch via |
3474 | simple examination of instructions and/or data (consider | |
3475 | that the address in the plabel may be the address of the | |
3476 | bind-on-reference routine in the dynamic loader). | |
c906108c | 3477 | |
c5aa993b | 3478 | So we have try an alternative approach. |
c906108c | 3479 | |
c5aa993b JM |
3480 | Get the name of the symbol at our current location; it should |
3481 | be a stub symbol with the same name as the symbol in the | |
3482 | shared library. | |
c906108c | 3483 | |
c5aa993b JM |
3484 | Then lookup a minimal symbol with the same name; we should |
3485 | get the minimal symbol for the target routine in the shared | |
3486 | library as those take precedence of import/export stubs. */ | |
c906108c | 3487 | if ((curr_inst == 0xe2a00000) || |
c5aa993b JM |
3488 | (curr_inst == 0xe2a00002) || |
3489 | (curr_inst == 0xeaa0d000) || | |
3490 | (curr_inst == 0xeaa0d002)) | |
c906108c SS |
3491 | { |
3492 | struct minimal_symbol *stubsym, *libsym; | |
3493 | ||
3494 | stubsym = lookup_minimal_symbol_by_pc (loc); | |
3495 | if (stubsym == NULL) | |
3496 | { | |
ce414844 | 3497 | warning ("Unable to find symbol for 0x%lx", loc); |
c906108c SS |
3498 | return orig_pc == pc ? 0 : pc & ~0x3; |
3499 | } | |
3500 | ||
22abf04a | 3501 | libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL); |
c906108c SS |
3502 | if (libsym == NULL) |
3503 | { | |
3504 | warning ("Unable to find library symbol for %s\n", | |
22abf04a | 3505 | DEPRECATED_SYMBOL_NAME (stubsym)); |
c906108c SS |
3506 | return orig_pc == pc ? 0 : pc & ~0x3; |
3507 | } | |
3508 | ||
3509 | return SYMBOL_VALUE (libsym); | |
3510 | } | |
3511 | ||
3512 | /* Does it look like bl X,%rp or bl X,%r0? Another way to do a | |
c5aa993b JM |
3513 | branch from the stub to the actual function. */ |
3514 | /*elz */ | |
c906108c SS |
3515 | else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
3516 | || (curr_inst & 0xffe0e000) == 0xe8000000 | |
c5aa993b | 3517 | || (curr_inst & 0xffe0e000) == 0xe800A000) |
c906108c SS |
3518 | return (loc + extract_17 (curr_inst) + 8) & ~0x3; |
3519 | ||
3520 | /* Does it look like bv (rp)? Note this depends on the | |
c5aa993b JM |
3521 | current stack pointer being the same as the stack |
3522 | pointer in the stub itself! This is a branch on from the | |
3523 | stub back to the original caller. */ | |
3524 | /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ | |
c906108c SS |
3525 | else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
3526 | { | |
3527 | /* Yup. See if the previous instruction loaded | |
3528 | rp from sp - 8. */ | |
3529 | if (prev_inst == 0x4bc23ff1) | |
3530 | return (read_memory_integer | |
3531 | (read_register (SP_REGNUM) - 8, 4)) & ~0x3; | |
3532 | else | |
3533 | { | |
3534 | warning ("Unable to find restore of %%rp before bv (%%rp)."); | |
3535 | return orig_pc == pc ? 0 : pc & ~0x3; | |
3536 | } | |
3537 | } | |
3538 | ||
3539 | /* elz: added this case to capture the new instruction | |
3540 | at the end of the return part of an export stub used by | |
3541 | the PA2.0: BVE, n (rp) */ | |
3542 | else if ((curr_inst & 0xffe0f000) == 0xe840d000) | |
3543 | { | |
c5aa993b | 3544 | return (read_memory_integer |
53a5351d | 3545 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3546 | } |
3547 | ||
3548 | /* What about be,n 0(sr0,%rp)? It's just another way we return to | |
c5aa993b | 3549 | the original caller from the stub. Used in dynamic executables. */ |
c906108c SS |
3550 | else if (curr_inst == 0xe0400002) |
3551 | { | |
3552 | /* The value we jump to is sitting in sp - 24. But that's | |
3553 | loaded several instructions before the be instruction. | |
3554 | I guess we could check for the previous instruction being | |
3555 | mtsp %r1,%sr0 if we want to do sanity checking. */ | |
c5aa993b | 3556 | return (read_memory_integer |
53a5351d | 3557 | (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3; |
c906108c SS |
3558 | } |
3559 | ||
3560 | /* Haven't found the branch yet, but we're still in the stub. | |
c5aa993b | 3561 | Keep looking. */ |
c906108c SS |
3562 | loc += 4; |
3563 | } | |
3564 | } | |
3565 | ||
3566 | ||
3567 | /* For the given instruction (INST), return any adjustment it makes | |
3568 | to the stack pointer or zero for no adjustment. | |
3569 | ||
3570 | This only handles instructions commonly found in prologues. */ | |
3571 | ||
3572 | static int | |
fba45db2 | 3573 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
3574 | { |
3575 | /* This must persist across calls. */ | |
3576 | static int save_high21; | |
3577 | ||
3578 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
3579 | if ((inst & 0xffffc000) == 0x37de0000) | |
3580 | return extract_14 (inst); | |
3581 | ||
3582 | /* stwm X,D(sp) */ | |
3583 | if ((inst & 0xffe00000) == 0x6fc00000) | |
3584 | return extract_14 (inst); | |
3585 | ||
104c1213 JM |
3586 | /* std,ma X,D(sp) */ |
3587 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 3588 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 3589 | |
c906108c SS |
3590 | /* addil high21,%r1; ldo low11,(%r1),%r30) |
3591 | save high bits in save_high21 for later use. */ | |
3592 | if ((inst & 0xffe00000) == 0x28200000) | |
3593 | { | |
3594 | save_high21 = extract_21 (inst); | |
3595 | return 0; | |
3596 | } | |
3597 | ||
3598 | if ((inst & 0xffff0000) == 0x343e0000) | |
3599 | return save_high21 + extract_14 (inst); | |
3600 | ||
3601 | /* fstws as used by the HP compilers. */ | |
3602 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
3603 | return extract_5_load (inst); | |
3604 | ||
3605 | /* No adjustment. */ | |
3606 | return 0; | |
3607 | } | |
3608 | ||
3609 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
3610 | ||
3611 | static int | |
fba45db2 | 3612 | is_branch (unsigned long inst) |
c906108c SS |
3613 | { |
3614 | switch (inst >> 26) | |
3615 | { | |
3616 | case 0x20: | |
3617 | case 0x21: | |
3618 | case 0x22: | |
3619 | case 0x23: | |
7be570e7 | 3620 | case 0x27: |
c906108c SS |
3621 | case 0x28: |
3622 | case 0x29: | |
3623 | case 0x2a: | |
3624 | case 0x2b: | |
7be570e7 | 3625 | case 0x2f: |
c906108c SS |
3626 | case 0x30: |
3627 | case 0x31: | |
3628 | case 0x32: | |
3629 | case 0x33: | |
3630 | case 0x38: | |
3631 | case 0x39: | |
3632 | case 0x3a: | |
7be570e7 | 3633 | case 0x3b: |
c906108c SS |
3634 | return 1; |
3635 | ||
3636 | default: | |
3637 | return 0; | |
3638 | } | |
3639 | } | |
3640 | ||
3641 | /* Return the register number for a GR which is saved by INST or | |
3642 | zero it INST does not save a GR. */ | |
3643 | ||
3644 | static int | |
fba45db2 | 3645 | inst_saves_gr (unsigned long inst) |
c906108c SS |
3646 | { |
3647 | /* Does it look like a stw? */ | |
7be570e7 JM |
3648 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
3649 | || (inst >> 26) == 0x1f | |
3650 | || ((inst >> 26) == 0x1f | |
3651 | && ((inst >> 6) == 0xa))) | |
3652 | return extract_5R_store (inst); | |
3653 | ||
3654 | /* Does it look like a std? */ | |
3655 | if ((inst >> 26) == 0x1c | |
3656 | || ((inst >> 26) == 0x03 | |
3657 | && ((inst >> 6) & 0xf) == 0xb)) | |
c906108c SS |
3658 | return extract_5R_store (inst); |
3659 | ||
3660 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
3661 | if ((inst >> 26) == 0x1b) | |
3662 | return extract_5R_store (inst); | |
3663 | ||
3664 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
3665 | too. */ | |
7be570e7 JM |
3666 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
3667 | || ((inst >> 26) == 0x3 | |
3668 | && (((inst >> 6) & 0xf) == 0x8 | |
3669 | || (inst >> 6) & 0xf) == 0x9)) | |
c906108c | 3670 | return extract_5R_store (inst); |
c5aa993b | 3671 | |
c906108c SS |
3672 | return 0; |
3673 | } | |
3674 | ||
3675 | /* Return the register number for a FR which is saved by INST or | |
3676 | zero it INST does not save a FR. | |
3677 | ||
3678 | Note we only care about full 64bit register stores (that's the only | |
3679 | kind of stores the prologue will use). | |
3680 | ||
3681 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
3682 | ||
3683 | static int | |
fba45db2 | 3684 | inst_saves_fr (unsigned long inst) |
c906108c | 3685 | { |
7be570e7 | 3686 | /* is this an FSTD ? */ |
c906108c SS |
3687 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
3688 | return extract_5r_store (inst); | |
7be570e7 JM |
3689 | if ((inst & 0xfc000002) == 0x70000002) |
3690 | return extract_5R_store (inst); | |
3691 | /* is this an FSTW ? */ | |
c906108c SS |
3692 | if ((inst & 0xfc00df80) == 0x24001200) |
3693 | return extract_5r_store (inst); | |
7be570e7 JM |
3694 | if ((inst & 0xfc000002) == 0x7c000000) |
3695 | return extract_5R_store (inst); | |
c906108c SS |
3696 | return 0; |
3697 | } | |
3698 | ||
3699 | /* Advance PC across any function entry prologue instructions | |
3700 | to reach some "real" code. | |
3701 | ||
3702 | Use information in the unwind table to determine what exactly should | |
3703 | be in the prologue. */ | |
3704 | ||
3705 | ||
3706 | CORE_ADDR | |
fba45db2 | 3707 | skip_prologue_hard_way (CORE_ADDR pc) |
c906108c SS |
3708 | { |
3709 | char buf[4]; | |
3710 | CORE_ADDR orig_pc = pc; | |
3711 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
3712 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
3713 | struct unwind_table_entry *u; | |
3714 | ||
3715 | restart_gr = 0; | |
3716 | restart_fr = 0; | |
3717 | ||
3718 | restart: | |
3719 | u = find_unwind_entry (pc); | |
3720 | if (!u) | |
3721 | return pc; | |
3722 | ||
c5aa993b | 3723 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
3724 | if ((pc & ~0x3) != u->region_start) |
3725 | return pc; | |
3726 | ||
3727 | /* This is how much of a frame adjustment we need to account for. */ | |
3728 | stack_remaining = u->Total_frame_size << 3; | |
3729 | ||
3730 | /* Magic register saves we want to know about. */ | |
3731 | save_rp = u->Save_RP; | |
3732 | save_sp = u->Save_SP; | |
3733 | ||
3734 | /* An indication that args may be stored into the stack. Unfortunately | |
3735 | the HPUX compilers tend to set this in cases where no args were | |
3736 | stored too!. */ | |
3737 | args_stored = 1; | |
3738 | ||
3739 | /* Turn the Entry_GR field into a bitmask. */ | |
3740 | save_gr = 0; | |
3741 | for (i = 3; i < u->Entry_GR + 3; i++) | |
3742 | { | |
3743 | /* Frame pointer gets saved into a special location. */ | |
0ba6dca9 | 3744 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) |
c906108c SS |
3745 | continue; |
3746 | ||
3747 | save_gr |= (1 << i); | |
3748 | } | |
3749 | save_gr &= ~restart_gr; | |
3750 | ||
3751 | /* Turn the Entry_FR field into a bitmask too. */ | |
3752 | save_fr = 0; | |
3753 | for (i = 12; i < u->Entry_FR + 12; i++) | |
3754 | save_fr |= (1 << i); | |
3755 | save_fr &= ~restart_fr; | |
3756 | ||
3757 | /* Loop until we find everything of interest or hit a branch. | |
3758 | ||
3759 | For unoptimized GCC code and for any HP CC code this will never ever | |
3760 | examine any user instructions. | |
3761 | ||
3762 | For optimzied GCC code we're faced with problems. GCC will schedule | |
3763 | its prologue and make prologue instructions available for delay slot | |
3764 | filling. The end result is user code gets mixed in with the prologue | |
3765 | and a prologue instruction may be in the delay slot of the first branch | |
3766 | or call. | |
3767 | ||
3768 | Some unexpected things are expected with debugging optimized code, so | |
3769 | we allow this routine to walk past user instructions in optimized | |
3770 | GCC code. */ | |
3771 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
3772 | || args_stored) | |
3773 | { | |
3774 | unsigned int reg_num; | |
3775 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
3776 | unsigned long old_save_rp, old_save_sp, next_inst; | |
3777 | ||
3778 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 3779 | (only for HPC). */ |
c906108c SS |
3780 | old_save_gr = save_gr; |
3781 | old_save_fr = save_fr; | |
3782 | old_save_rp = save_rp; | |
3783 | old_save_sp = save_sp; | |
3784 | old_stack_remaining = stack_remaining; | |
3785 | ||
3786 | status = target_read_memory (pc, buf, 4); | |
3787 | inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3788 | |
c906108c SS |
3789 | /* Yow! */ |
3790 | if (status != 0) | |
3791 | return pc; | |
3792 | ||
3793 | /* Note the interesting effects of this instruction. */ | |
3794 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
3795 | ||
7be570e7 JM |
3796 | /* There are limited ways to store the return pointer into the |
3797 | stack. */ | |
3798 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1) | |
c906108c SS |
3799 | save_rp = 0; |
3800 | ||
104c1213 | 3801 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 3802 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
3803 | if ((inst & 0xffffc000) == 0x6fc10000 |
3804 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
3805 | save_sp = 0; |
3806 | ||
6426a772 JM |
3807 | /* Are we loading some register with an offset from the argument |
3808 | pointer? */ | |
3809 | if ((inst & 0xffe00000) == 0x37a00000 | |
3810 | || (inst & 0xffffffe0) == 0x081d0240) | |
3811 | { | |
3812 | pc += 4; | |
3813 | continue; | |
3814 | } | |
3815 | ||
c906108c SS |
3816 | /* Account for general and floating-point register saves. */ |
3817 | reg_num = inst_saves_gr (inst); | |
3818 | save_gr &= ~(1 << reg_num); | |
3819 | ||
3820 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3821 | Unfortunately args_stored only tells us that some arguments |
3822 | where stored into the stack. Not how many or what kind! | |
c906108c | 3823 | |
c5aa993b JM |
3824 | This is a kludge as on the HP compiler sets this bit and it |
3825 | never does prologue scheduling. So once we see one, skip past | |
3826 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 3827 | |
c5aa993b JM |
3828 | FIXME. Can still die if we have a mix of GR and FR argument |
3829 | stores! */ | |
6426a772 | 3830 | if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c | 3831 | { |
6426a772 | 3832 | while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26) |
c906108c SS |
3833 | { |
3834 | pc += 4; | |
3835 | status = target_read_memory (pc, buf, 4); | |
3836 | inst = extract_unsigned_integer (buf, 4); | |
3837 | if (status != 0) | |
3838 | return pc; | |
3839 | reg_num = inst_saves_gr (inst); | |
3840 | } | |
3841 | args_stored = 0; | |
3842 | continue; | |
3843 | } | |
3844 | ||
3845 | reg_num = inst_saves_fr (inst); | |
3846 | save_fr &= ~(1 << reg_num); | |
3847 | ||
3848 | status = target_read_memory (pc + 4, buf, 4); | |
3849 | next_inst = extract_unsigned_integer (buf, 4); | |
c5aa993b | 3850 | |
c906108c SS |
3851 | /* Yow! */ |
3852 | if (status != 0) | |
3853 | return pc; | |
3854 | ||
3855 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 3856 | save. */ |
c906108c SS |
3857 | if ((inst & 0xfc000000) == 0x34000000 |
3858 | && inst_saves_fr (next_inst) >= 4 | |
6426a772 | 3859 | && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3860 | { |
3861 | /* So we drop into the code below in a reasonable state. */ | |
3862 | reg_num = inst_saves_fr (next_inst); | |
3863 | pc -= 4; | |
3864 | } | |
3865 | ||
3866 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
3867 | This is a kludge as on the HP compiler sets this bit and it |
3868 | never does prologue scheduling. So once we see one, skip past | |
3869 | all of them. */ | |
6426a772 | 3870 | if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c | 3871 | { |
6426a772 | 3872 | while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7)) |
c906108c SS |
3873 | { |
3874 | pc += 8; | |
3875 | status = target_read_memory (pc, buf, 4); | |
3876 | inst = extract_unsigned_integer (buf, 4); | |
3877 | if (status != 0) | |
3878 | return pc; | |
3879 | if ((inst & 0xfc000000) != 0x34000000) | |
3880 | break; | |
3881 | status = target_read_memory (pc + 4, buf, 4); | |
3882 | next_inst = extract_unsigned_integer (buf, 4); | |
3883 | if (status != 0) | |
3884 | return pc; | |
3885 | reg_num = inst_saves_fr (next_inst); | |
3886 | } | |
3887 | args_stored = 0; | |
3888 | continue; | |
3889 | } | |
3890 | ||
3891 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 3892 | instruction is in the delay slot of the first call/branch. */ |
c906108c SS |
3893 | if (is_branch (inst)) |
3894 | break; | |
3895 | ||
3896 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
3897 | arguments were stored into the stack (boo hiss). This could |
3898 | cause this code to then skip a bunch of user insns (up to the | |
3899 | first branch). | |
3900 | ||
3901 | To combat this we try to identify when args_stored was bogusly | |
3902 | set and clear it. We only do this when args_stored is nonzero, | |
3903 | all other resources are accounted for, and nothing changed on | |
3904 | this pass. */ | |
c906108c | 3905 | if (args_stored |
c5aa993b | 3906 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
3907 | && old_save_gr == save_gr && old_save_fr == save_fr |
3908 | && old_save_rp == save_rp && old_save_sp == save_sp | |
3909 | && old_stack_remaining == stack_remaining) | |
3910 | break; | |
c5aa993b | 3911 | |
c906108c SS |
3912 | /* Bump the PC. */ |
3913 | pc += 4; | |
3914 | } | |
3915 | ||
3916 | /* We've got a tenative location for the end of the prologue. However | |
3917 | because of limitations in the unwind descriptor mechanism we may | |
3918 | have went too far into user code looking for the save of a register | |
3919 | that does not exist. So, if there registers we expected to be saved | |
3920 | but never were, mask them out and restart. | |
3921 | ||
3922 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 3923 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
3924 | { |
3925 | pc = orig_pc; | |
3926 | restart_gr = save_gr; | |
3927 | restart_fr = save_fr; | |
3928 | goto restart; | |
3929 | } | |
3930 | ||
3931 | return pc; | |
3932 | } | |
3933 | ||
3934 | ||
7be570e7 JM |
3935 | /* Return the address of the PC after the last prologue instruction if |
3936 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
3937 | |
3938 | static CORE_ADDR | |
fba45db2 | 3939 | after_prologue (CORE_ADDR pc) |
c906108c SS |
3940 | { |
3941 | struct symtab_and_line sal; | |
3942 | CORE_ADDR func_addr, func_end; | |
3943 | struct symbol *f; | |
3944 | ||
7be570e7 JM |
3945 | /* If we can not find the symbol in the partial symbol table, then |
3946 | there is no hope we can determine the function's start address | |
3947 | with this code. */ | |
c906108c | 3948 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 3949 | return 0; |
c906108c | 3950 | |
7be570e7 | 3951 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
3952 | sal = find_pc_line (func_addr, 0); |
3953 | ||
7be570e7 JM |
3954 | /* There are only two cases to consider. First, the end of the source line |
3955 | is within the function bounds. In that case we return the end of the | |
3956 | source line. Second is the end of the source line extends beyond the | |
3957 | bounds of the current function. We need to use the slow code to | |
3958 | examine instructions in that case. | |
c906108c | 3959 | |
7be570e7 JM |
3960 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
3961 | the wrong thing to do. In fact, it should be entirely possible for this | |
3962 | function to always return zero since the slow instruction scanning code | |
3963 | is supposed to *always* work. If it does not, then it is a bug. */ | |
3964 | if (sal.end < func_end) | |
3965 | return sal.end; | |
c5aa993b | 3966 | else |
7be570e7 | 3967 | return 0; |
c906108c SS |
3968 | } |
3969 | ||
3970 | /* To skip prologues, I use this predicate. Returns either PC itself | |
3971 | if the code at PC does not look like a function prologue; otherwise | |
3972 | returns an address that (if we're lucky) follows the prologue. If | |
3973 | LENIENT, then we must skip everything which is involved in setting | |
3974 | up the frame (it's OK to skip more, just so long as we don't skip | |
3975 | anything which might clobber the registers which are being saved. | |
3976 | Currently we must not skip more on the alpha, but we might the lenient | |
3977 | stuff some day. */ | |
3978 | ||
3979 | CORE_ADDR | |
fba45db2 | 3980 | hppa_skip_prologue (CORE_ADDR pc) |
c906108c | 3981 | { |
c5aa993b JM |
3982 | unsigned long inst; |
3983 | int offset; | |
3984 | CORE_ADDR post_prologue_pc; | |
3985 | char buf[4]; | |
c906108c | 3986 | |
c5aa993b JM |
3987 | /* See if we can determine the end of the prologue via the symbol table. |
3988 | If so, then return either PC, or the PC after the prologue, whichever | |
3989 | is greater. */ | |
c906108c | 3990 | |
c5aa993b | 3991 | post_prologue_pc = after_prologue (pc); |
c906108c | 3992 | |
7be570e7 JM |
3993 | /* If after_prologue returned a useful address, then use it. Else |
3994 | fall back on the instruction skipping code. | |
3995 | ||
3996 | Some folks have claimed this causes problems because the breakpoint | |
3997 | may be the first instruction of the prologue. If that happens, then | |
3998 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
3999 | if (post_prologue_pc != 0) |
4000 | return max (pc, post_prologue_pc); | |
c5aa993b JM |
4001 | else |
4002 | return (skip_prologue_hard_way (pc)); | |
c906108c SS |
4003 | } |
4004 | ||
43bd9a9e AC |
4005 | /* Put here the code to store, into the SAVED_REGS, the addresses of |
4006 | the saved registers of frame described by FRAME_INFO. This | |
4007 | includes special registers such as pc and fp saved in special ways | |
4008 | in the stack frame. sp is even more special: the address we return | |
4009 | for it IS the sp for the next frame. */ | |
c906108c SS |
4010 | |
4011 | void | |
fba45db2 | 4012 | hppa_frame_find_saved_regs (struct frame_info *frame_info, |
43bd9a9e | 4013 | CORE_ADDR frame_saved_regs[]) |
c906108c SS |
4014 | { |
4015 | CORE_ADDR pc; | |
4016 | struct unwind_table_entry *u; | |
4017 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
4018 | int status, i, reg; | |
4019 | char buf[4]; | |
4020 | int fp_loc = -1; | |
d4f3574e | 4021 | int final_iteration; |
c906108c SS |
4022 | |
4023 | /* Zero out everything. */ | |
43bd9a9e | 4024 | memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); |
c906108c SS |
4025 | |
4026 | /* Call dummy frames always look the same, so there's no need to | |
4027 | examine the dummy code to determine locations of saved registers; | |
4028 | instead, let find_dummy_frame_regs fill in the correct offsets | |
4029 | for the saved registers. */ | |
ef6e7e13 AC |
4030 | if ((get_frame_pc (frame_info) >= get_frame_base (frame_info) |
4031 | && (get_frame_pc (frame_info) | |
4032 | <= (get_frame_base (frame_info) | |
4033 | /* A call dummy is sized in words, but it is actually a | |
4034 | series of instructions. Account for that scaling | |
4035 | factor. */ | |
b1e29e33 AC |
4036 | + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE) |
4037 | * DEPRECATED_CALL_DUMMY_LENGTH) | |
ef6e7e13 AC |
4038 | /* Similarly we have to account for 64bit wide register |
4039 | saves. */ | |
b1e29e33 | 4040 | + (32 * DEPRECATED_REGISTER_SIZE) |
ef6e7e13 AC |
4041 | /* We always consider FP regs 8 bytes long. */ |
4042 | + (NUM_REGS - FP0_REGNUM) * 8 | |
4043 | /* Similarly we have to account for 64bit wide register | |
4044 | saves. */ | |
b1e29e33 | 4045 | + (6 * DEPRECATED_REGISTER_SIZE))))) |
c906108c SS |
4046 | find_dummy_frame_regs (frame_info, frame_saved_regs); |
4047 | ||
4048 | /* Interrupt handlers are special too. They lay out the register | |
4049 | state in the exact same order as the register numbers in GDB. */ | |
ef6e7e13 | 4050 | if (pc_in_interrupt_handler (get_frame_pc (frame_info))) |
c906108c SS |
4051 | { |
4052 | for (i = 0; i < NUM_REGS; i++) | |
4053 | { | |
4054 | /* SP is a little special. */ | |
4055 | if (i == SP_REGNUM) | |
43bd9a9e | 4056 | frame_saved_regs[SP_REGNUM] |
ef6e7e13 | 4057 | = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4, |
53a5351d | 4058 | TARGET_PTR_BIT / 8); |
c906108c | 4059 | else |
ef6e7e13 | 4060 | frame_saved_regs[i] = get_frame_base (frame_info) + i * 4; |
c906108c SS |
4061 | } |
4062 | return; | |
4063 | } | |
4064 | ||
4065 | #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP | |
4066 | /* Handle signal handler callers. */ | |
5a203e44 | 4067 | if ((get_frame_type (frame_info) == SIGTRAMP_FRAME)) |
c906108c SS |
4068 | { |
4069 | FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); | |
4070 | return; | |
4071 | } | |
4072 | #endif | |
4073 | ||
4074 | /* Get the starting address of the function referred to by the PC | |
4075 | saved in frame. */ | |
be41e9f4 | 4076 | pc = get_frame_func (frame_info); |
c906108c SS |
4077 | |
4078 | /* Yow! */ | |
4079 | u = find_unwind_entry (pc); | |
4080 | if (!u) | |
4081 | return; | |
4082 | ||
4083 | /* This is how much of a frame adjustment we need to account for. */ | |
4084 | stack_remaining = u->Total_frame_size << 3; | |
4085 | ||
4086 | /* Magic register saves we want to know about. */ | |
4087 | save_rp = u->Save_RP; | |
4088 | save_sp = u->Save_SP; | |
4089 | ||
4090 | /* Turn the Entry_GR field into a bitmask. */ | |
4091 | save_gr = 0; | |
4092 | for (i = 3; i < u->Entry_GR + 3; i++) | |
4093 | { | |
4094 | /* Frame pointer gets saved into a special location. */ | |
0ba6dca9 | 4095 | if (u->Save_SP && i == DEPRECATED_FP_REGNUM) |
c906108c SS |
4096 | continue; |
4097 | ||
4098 | save_gr |= (1 << i); | |
4099 | } | |
4100 | ||
4101 | /* Turn the Entry_FR field into a bitmask too. */ | |
4102 | save_fr = 0; | |
4103 | for (i = 12; i < u->Entry_FR + 12; i++) | |
4104 | save_fr |= (1 << i); | |
4105 | ||
4106 | /* The frame always represents the value of %sp at entry to the | |
4107 | current function (and is thus equivalent to the "saved" stack | |
4108 | pointer. */ | |
ef6e7e13 | 4109 | frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info); |
c906108c SS |
4110 | |
4111 | /* Loop until we find everything of interest or hit a branch. | |
4112 | ||
4113 | For unoptimized GCC code and for any HP CC code this will never ever | |
4114 | examine any user instructions. | |
4115 | ||
7be570e7 | 4116 | For optimized GCC code we're faced with problems. GCC will schedule |
c906108c SS |
4117 | its prologue and make prologue instructions available for delay slot |
4118 | filling. The end result is user code gets mixed in with the prologue | |
4119 | and a prologue instruction may be in the delay slot of the first branch | |
4120 | or call. | |
4121 | ||
4122 | Some unexpected things are expected with debugging optimized code, so | |
4123 | we allow this routine to walk past user instructions in optimized | |
4124 | GCC code. */ | |
d4f3574e SS |
4125 | final_iteration = 0; |
4126 | while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) | |
ef6e7e13 | 4127 | && pc <= get_frame_pc (frame_info)) |
c906108c SS |
4128 | { |
4129 | status = target_read_memory (pc, buf, 4); | |
4130 | inst = extract_unsigned_integer (buf, 4); | |
4131 | ||
4132 | /* Yow! */ | |
4133 | if (status != 0) | |
4134 | return; | |
4135 | ||
4136 | /* Note the interesting effects of this instruction. */ | |
4137 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
4138 | ||
104c1213 JM |
4139 | /* There are limited ways to store the return pointer into the |
4140 | stack. */ | |
c2c6d25f | 4141 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
c906108c SS |
4142 | { |
4143 | save_rp = 0; | |
ef6e7e13 | 4144 | frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20; |
c906108c | 4145 | } |
c2c6d25f JM |
4146 | else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */ |
4147 | { | |
4148 | save_rp = 0; | |
ef6e7e13 | 4149 | frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16; |
c2c6d25f | 4150 | } |
c906108c | 4151 | |
104c1213 JM |
4152 | /* Note if we saved SP into the stack. This also happens to indicate |
4153 | the location of the saved frame pointer. */ | |
c2c6d25f JM |
4154 | if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
4155 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
104c1213 | 4156 | { |
0ba6dca9 | 4157 | frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info); |
104c1213 JM |
4158 | save_sp = 0; |
4159 | } | |
c906108c SS |
4160 | |
4161 | /* Account for general and floating-point register saves. */ | |
4162 | reg = inst_saves_gr (inst); | |
4163 | if (reg >= 3 && reg <= 18 | |
0ba6dca9 | 4164 | && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM)) |
c906108c SS |
4165 | { |
4166 | save_gr &= ~(1 << reg); | |
4167 | ||
4168 | /* stwm with a positive displacement is a *post modify*. */ | |
4169 | if ((inst >> 26) == 0x1b | |
4170 | && extract_14 (inst) >= 0) | |
ef6e7e13 | 4171 | frame_saved_regs[reg] = get_frame_base (frame_info); |
104c1213 JM |
4172 | /* A std has explicit post_modify forms. */ |
4173 | else if ((inst & 0xfc00000c0) == 0x70000008) | |
ef6e7e13 | 4174 | frame_saved_regs[reg] = get_frame_base (frame_info); |
c906108c SS |
4175 | else |
4176 | { | |
104c1213 JM |
4177 | CORE_ADDR offset; |
4178 | ||
4179 | if ((inst >> 26) == 0x1c) | |
d4f3574e | 4180 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 JM |
4181 | else if ((inst >> 26) == 0x03) |
4182 | offset = low_sign_extend (inst & 0x1f, 5); | |
4183 | else | |
4184 | offset = extract_14 (inst); | |
4185 | ||
c906108c SS |
4186 | /* Handle code with and without frame pointers. */ |
4187 | if (u->Save_SP) | |
43bd9a9e | 4188 | frame_saved_regs[reg] |
ef6e7e13 | 4189 | = get_frame_base (frame_info) + offset; |
c906108c | 4190 | else |
43bd9a9e | 4191 | frame_saved_regs[reg] |
ef6e7e13 | 4192 | = (get_frame_base (frame_info) + (u->Total_frame_size << 3) |
104c1213 | 4193 | + offset); |
c906108c SS |
4194 | } |
4195 | } | |
4196 | ||
4197 | ||
4198 | /* GCC handles callee saved FP regs a little differently. | |
4199 | ||
c5aa993b JM |
4200 | It emits an instruction to put the value of the start of |
4201 | the FP store area into %r1. It then uses fstds,ma with | |
4202 | a basereg of %r1 for the stores. | |
c906108c | 4203 | |
c5aa993b JM |
4204 | HP CC emits them at the current stack pointer modifying |
4205 | the stack pointer as it stores each register. */ | |
c906108c SS |
4206 | |
4207 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
4208 | if ((inst & 0xffffc000) == 0x34610000 | |
4209 | || (inst & 0xffffc000) == 0x37c10000) | |
4210 | fp_loc = extract_14 (inst); | |
c5aa993b | 4211 | |
c906108c SS |
4212 | reg = inst_saves_fr (inst); |
4213 | if (reg >= 12 && reg <= 21) | |
4214 | { | |
4215 | /* Note +4 braindamage below is necessary because the FP status | |
4216 | registers are internally 8 registers rather than the expected | |
4217 | 4 registers. */ | |
4218 | save_fr &= ~(1 << reg); | |
4219 | if (fp_loc == -1) | |
4220 | { | |
4221 | /* 1st HP CC FP register store. After this instruction | |
c5aa993b JM |
4222 | we've set enough state that the GCC and HPCC code are |
4223 | both handled in the same manner. */ | |
ef6e7e13 | 4224 | frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info); |
c906108c SS |
4225 | fp_loc = 8; |
4226 | } | |
4227 | else | |
4228 | { | |
43bd9a9e | 4229 | frame_saved_regs[reg + FP0_REGNUM + 4] |
ef6e7e13 | 4230 | = get_frame_base (frame_info) + fp_loc; |
c906108c SS |
4231 | fp_loc += 8; |
4232 | } | |
4233 | } | |
4234 | ||
39f77062 | 4235 | /* Quit if we hit any kind of branch the previous iteration. */ |
d4f3574e | 4236 | if (final_iteration) |
c906108c SS |
4237 | break; |
4238 | ||
d4f3574e SS |
4239 | /* We want to look precisely one instruction beyond the branch |
4240 | if we have not found everything yet. */ | |
4241 | if (is_branch (inst)) | |
4242 | final_iteration = 1; | |
4243 | ||
c906108c SS |
4244 | /* Bump the PC. */ |
4245 | pc += 4; | |
4246 | } | |
4247 | } | |
4248 | ||
43bd9a9e AC |
4249 | /* XXX - deprecated. This is a compatibility function for targets |
4250 | that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */ | |
4251 | /* Find the addresses in which registers are saved in FRAME. */ | |
4252 | ||
4253 | void | |
4254 | hppa_frame_init_saved_regs (struct frame_info *frame) | |
4255 | { | |
1b1d3794 | 4256 | if (deprecated_get_frame_saved_regs (frame) == NULL) |
43bd9a9e | 4257 | frame_saved_regs_zalloc (frame); |
1b1d3794 | 4258 | hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame)); |
43bd9a9e | 4259 | } |
c906108c SS |
4260 | |
4261 | /* Exception handling support for the HP-UX ANSI C++ compiler. | |
4262 | The compiler (aCC) provides a callback for exception events; | |
4263 | GDB can set a breakpoint on this callback and find out what | |
4264 | exception event has occurred. */ | |
4265 | ||
4266 | /* The name of the hook to be set to point to the callback function */ | |
c5aa993b JM |
4267 | static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook"; |
4268 | /* The name of the function to be used to set the hook value */ | |
4269 | static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value"; | |
4270 | /* The name of the callback function in end.o */ | |
c906108c | 4271 | static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback"; |
c5aa993b JM |
4272 | /* Name of function in end.o on which a break is set (called by above) */ |
4273 | static char HP_ACC_EH_break[] = "__d_eh_break"; | |
4274 | /* Name of flag (in end.o) that enables catching throws */ | |
4275 | static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw"; | |
4276 | /* Name of flag (in end.o) that enables catching catching */ | |
4277 | static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch"; | |
4278 | /* The enum used by aCC */ | |
4279 | typedef enum | |
4280 | { | |
4281 | __EH_NOTIFY_THROW, | |
4282 | __EH_NOTIFY_CATCH | |
4283 | } | |
4284 | __eh_notification; | |
c906108c SS |
4285 | |
4286 | /* Is exception-handling support available with this executable? */ | |
4287 | static int hp_cxx_exception_support = 0; | |
4288 | /* Has the initialize function been run? */ | |
4289 | int hp_cxx_exception_support_initialized = 0; | |
4290 | /* Similar to above, but imported from breakpoint.c -- non-target-specific */ | |
4291 | extern int exception_support_initialized; | |
4292 | /* Address of __eh_notify_hook */ | |
a0b3c4fd | 4293 | static CORE_ADDR eh_notify_hook_addr = 0; |
c906108c | 4294 | /* Address of __d_eh_notify_callback */ |
a0b3c4fd | 4295 | static CORE_ADDR eh_notify_callback_addr = 0; |
c906108c | 4296 | /* Address of __d_eh_break */ |
a0b3c4fd | 4297 | static CORE_ADDR eh_break_addr = 0; |
c906108c | 4298 | /* Address of __d_eh_catch_catch */ |
a0b3c4fd | 4299 | static CORE_ADDR eh_catch_catch_addr = 0; |
c906108c | 4300 | /* Address of __d_eh_catch_throw */ |
a0b3c4fd | 4301 | static CORE_ADDR eh_catch_throw_addr = 0; |
c906108c | 4302 | /* Sal for __d_eh_break */ |
a0b3c4fd | 4303 | static struct symtab_and_line *break_callback_sal = 0; |
c906108c SS |
4304 | |
4305 | /* Code in end.c expects __d_pid to be set in the inferior, | |
4306 | otherwise __d_eh_notify_callback doesn't bother to call | |
4307 | __d_eh_break! So we poke the pid into this symbol | |
4308 | ourselves. | |
4309 | 0 => success | |
c5aa993b | 4310 | 1 => failure */ |
c906108c | 4311 | int |
fba45db2 | 4312 | setup_d_pid_in_inferior (void) |
c906108c SS |
4313 | { |
4314 | CORE_ADDR anaddr; | |
c5aa993b JM |
4315 | struct minimal_symbol *msymbol; |
4316 | char buf[4]; /* FIXME 32x64? */ | |
4317 | ||
c906108c SS |
4318 | /* Slam the pid of the process into __d_pid; failing is only a warning! */ |
4319 | msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile); | |
4320 | if (msymbol == NULL) | |
4321 | { | |
4322 | warning ("Unable to find __d_pid symbol in object file."); | |
4323 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4324 | return 1; | |
4325 | } | |
4326 | ||
4327 | anaddr = SYMBOL_VALUE_ADDRESS (msymbol); | |
39f77062 | 4328 | store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */ |
c5aa993b | 4329 | if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */ |
c906108c SS |
4330 | { |
4331 | warning ("Unable to write __d_pid"); | |
4332 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4333 | return 1; | |
4334 | } | |
4335 | return 0; | |
4336 | } | |
4337 | ||
4338 | /* Initialize exception catchpoint support by looking for the | |
4339 | necessary hooks/callbacks in end.o, etc., and set the hook value to | |
4340 | point to the required debug function | |
4341 | ||
4342 | Return 0 => failure | |
c5aa993b | 4343 | 1 => success */ |
c906108c SS |
4344 | |
4345 | static int | |
fba45db2 | 4346 | initialize_hp_cxx_exception_support (void) |
c906108c SS |
4347 | { |
4348 | struct symtabs_and_lines sals; | |
c5aa993b JM |
4349 | struct cleanup *old_chain; |
4350 | struct cleanup *canonical_strings_chain = NULL; | |
c906108c | 4351 | int i; |
c5aa993b JM |
4352 | char *addr_start; |
4353 | char *addr_end = NULL; | |
4354 | char **canonical = (char **) NULL; | |
c906108c | 4355 | int thread = -1; |
c5aa993b JM |
4356 | struct symbol *sym = NULL; |
4357 | struct minimal_symbol *msym = NULL; | |
4358 | struct objfile *objfile; | |
c906108c SS |
4359 | asection *shlib_info; |
4360 | ||
4361 | /* Detect and disallow recursion. On HP-UX with aCC, infinite | |
4362 | recursion is a possibility because finding the hook for exception | |
4363 | callbacks involves making a call in the inferior, which means | |
4364 | re-inserting breakpoints which can re-invoke this code */ | |
4365 | ||
c5aa993b JM |
4366 | static int recurse = 0; |
4367 | if (recurse > 0) | |
c906108c SS |
4368 | { |
4369 | hp_cxx_exception_support_initialized = 0; | |
4370 | exception_support_initialized = 0; | |
4371 | return 0; | |
4372 | } | |
4373 | ||
4374 | hp_cxx_exception_support = 0; | |
4375 | ||
4376 | /* First check if we have seen any HP compiled objects; if not, | |
4377 | it is very unlikely that HP's idiosyncratic callback mechanism | |
4378 | for exception handling debug support will be available! | |
4379 | This will percolate back up to breakpoint.c, where our callers | |
4380 | will decide to try the g++ exception-handling support instead. */ | |
4381 | if (!hp_som_som_object_present) | |
4382 | return 0; | |
c5aa993b | 4383 | |
c906108c SS |
4384 | /* We have a SOM executable with SOM debug info; find the hooks */ |
4385 | ||
4386 | /* First look for the notify hook provided by aCC runtime libs */ | |
4387 | /* If we find this symbol, we conclude that the executable must | |
4388 | have HP aCC exception support built in. If this symbol is not | |
4389 | found, even though we're a HP SOM-SOM file, we may have been | |
4390 | built with some other compiler (not aCC). This results percolates | |
4391 | back up to our callers in breakpoint.c which can decide to | |
4392 | try the g++ style of exception support instead. | |
4393 | If this symbol is found but the other symbols we require are | |
4394 | not found, there is something weird going on, and g++ support | |
4395 | should *not* be tried as an alternative. | |
c5aa993b | 4396 | |
c906108c SS |
4397 | ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined. |
4398 | ASSUMPTION: HP aCC and g++ modules cannot be linked together. */ | |
c5aa993b | 4399 | |
c906108c SS |
4400 | /* libCsup has this hook; it'll usually be non-debuggable */ |
4401 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL); | |
4402 | if (msym) | |
4403 | { | |
4404 | eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4405 | hp_cxx_exception_support = 1; | |
c5aa993b | 4406 | } |
c906108c SS |
4407 | else |
4408 | { | |
4409 | warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook); | |
4410 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4411 | warning ("GDB will be unable to intercept exception events."); | |
4412 | eh_notify_hook_addr = 0; | |
4413 | hp_cxx_exception_support = 0; | |
4414 | return 0; | |
4415 | } | |
4416 | ||
c906108c | 4417 | /* Next look for the notify callback routine in end.o */ |
c5aa993b | 4418 | /* This is always available in the SOM symbol dictionary if end.o is linked in */ |
c906108c SS |
4419 | msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL); |
4420 | if (msym) | |
4421 | { | |
4422 | eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4423 | hp_cxx_exception_support = 1; | |
c5aa993b JM |
4424 | } |
4425 | else | |
c906108c SS |
4426 | { |
4427 | warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback); | |
4428 | warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o)."); | |
4429 | warning ("GDB will be unable to intercept exception events."); | |
4430 | eh_notify_callback_addr = 0; | |
4431 | return 0; | |
4432 | } | |
4433 | ||
53a5351d | 4434 | #ifndef GDB_TARGET_IS_HPPA_20W |
c906108c SS |
4435 | /* Check whether the executable is dynamically linked or archive bound */ |
4436 | /* With an archive-bound executable we can use the raw addresses we find | |
4437 | for the callback function, etc. without modification. For an executable | |
4438 | with shared libraries, we have to do more work to find the plabel, which | |
4439 | can be the target of a call through $$dyncall from the aCC runtime support | |
4440 | library (libCsup) which is linked shared by default by aCC. */ | |
4441 | /* This test below was copied from somsolib.c/somread.c. It may not be a very | |
c5aa993b | 4442 | reliable one to test that an executable is linked shared. pai/1997-07-18 */ |
c906108c SS |
4443 | shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$"); |
4444 | if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0)) | |
4445 | { | |
4446 | /* The minsym we have has the local code address, but that's not the | |
4447 | plabel that can be used by an inter-load-module call. */ | |
4448 | /* Find solib handle for main image (which has end.o), and use that | |
4449 | and the min sym as arguments to __d_shl_get() (which does the equivalent | |
c5aa993b | 4450 | of shl_findsym()) to find the plabel. */ |
c906108c SS |
4451 | |
4452 | args_for_find_stub args; | |
4453 | static char message[] = "Error while finding exception callback hook:\n"; | |
c5aa993b | 4454 | |
c906108c SS |
4455 | args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr); |
4456 | args.msym = msym; | |
a0b3c4fd | 4457 | args.return_val = 0; |
c5aa993b | 4458 | |
c906108c | 4459 | recurse++; |
4efb68b1 | 4460 | catch_errors (cover_find_stub_with_shl_get, &args, message, |
a0b3c4fd JM |
4461 | RETURN_MASK_ALL); |
4462 | eh_notify_callback_addr = args.return_val; | |
c906108c | 4463 | recurse--; |
c5aa993b | 4464 | |
c906108c | 4465 | exception_catchpoints_are_fragile = 1; |
c5aa993b | 4466 | |
c906108c | 4467 | if (!eh_notify_callback_addr) |
c5aa993b JM |
4468 | { |
4469 | /* We can get here either if there is no plabel in the export list | |
1faa59a8 | 4470 | for the main image, or if something strange happened (?) */ |
c5aa993b JM |
4471 | warning ("Couldn't find a plabel (indirect function label) for the exception callback."); |
4472 | warning ("GDB will not be able to intercept exception events."); | |
4473 | return 0; | |
4474 | } | |
c906108c SS |
4475 | } |
4476 | else | |
4477 | exception_catchpoints_are_fragile = 0; | |
53a5351d | 4478 | #endif |
c906108c | 4479 | |
c906108c | 4480 | /* Now, look for the breakpointable routine in end.o */ |
c5aa993b | 4481 | /* This should also be available in the SOM symbol dict. if end.o linked in */ |
c906108c SS |
4482 | msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL); |
4483 | if (msym) | |
4484 | { | |
4485 | eh_break_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4486 | hp_cxx_exception_support = 1; | |
c5aa993b | 4487 | } |
c906108c SS |
4488 | else |
4489 | { | |
4490 | warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break); | |
4491 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4492 | warning ("GDB will be unable to intercept exception events."); | |
4493 | eh_break_addr = 0; | |
4494 | return 0; | |
4495 | } | |
4496 | ||
c906108c SS |
4497 | /* Next look for the catch enable flag provided in end.o */ |
4498 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
176620f1 | 4499 | VAR_DOMAIN, 0, (struct symtab **) NULL); |
c5aa993b | 4500 | if (sym) /* sometimes present in debug info */ |
c906108c SS |
4501 | { |
4502 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4503 | hp_cxx_exception_support = 1; | |
4504 | } | |
c5aa993b JM |
4505 | else |
4506 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4507 | { |
4508 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL); | |
4509 | if (msym) | |
c5aa993b JM |
4510 | { |
4511 | eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4512 | hp_cxx_exception_support = 1; | |
4513 | } | |
c906108c | 4514 | else |
c5aa993b JM |
4515 | { |
4516 | warning ("Unable to enable interception of exception catches."); | |
4517 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4518 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4519 | return 0; | |
4520 | } | |
c906108c SS |
4521 | } |
4522 | ||
c906108c SS |
4523 | /* Next look for the catch enable flag provided end.o */ |
4524 | sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL, | |
176620f1 | 4525 | VAR_DOMAIN, 0, (struct symtab **) NULL); |
c5aa993b | 4526 | if (sym) /* sometimes present in debug info */ |
c906108c SS |
4527 | { |
4528 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym); | |
4529 | hp_cxx_exception_support = 1; | |
4530 | } | |
c5aa993b JM |
4531 | else |
4532 | /* otherwise look in SOM symbol dict. */ | |
c906108c SS |
4533 | { |
4534 | msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL); | |
4535 | if (msym) | |
c5aa993b JM |
4536 | { |
4537 | eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym); | |
4538 | hp_cxx_exception_support = 1; | |
4539 | } | |
c906108c | 4540 | else |
c5aa993b JM |
4541 | { |
4542 | warning ("Unable to enable interception of exception throws."); | |
4543 | warning ("Executable may not have been compiled debuggable with HP aCC."); | |
4544 | warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o)."); | |
4545 | return 0; | |
4546 | } | |
c906108c SS |
4547 | } |
4548 | ||
c5aa993b JM |
4549 | /* Set the flags */ |
4550 | hp_cxx_exception_support = 2; /* everything worked so far */ | |
c906108c SS |
4551 | hp_cxx_exception_support_initialized = 1; |
4552 | exception_support_initialized = 1; | |
4553 | ||
4554 | return 1; | |
4555 | } | |
4556 | ||
4557 | /* Target operation for enabling or disabling interception of | |
4558 | exception events. | |
4559 | KIND is either EX_EVENT_THROW or EX_EVENT_CATCH | |
4560 | ENABLE is either 0 (disable) or 1 (enable). | |
4561 | Return value is NULL if no support found; | |
4562 | -1 if something went wrong, | |
4563 | or a pointer to a symtab/line struct if the breakpointable | |
c5aa993b | 4564 | address was found. */ |
c906108c | 4565 | |
c5aa993b | 4566 | struct symtab_and_line * |
fba45db2 | 4567 | child_enable_exception_callback (enum exception_event_kind kind, int enable) |
c906108c SS |
4568 | { |
4569 | char buf[4]; | |
4570 | ||
4571 | if (!exception_support_initialized || !hp_cxx_exception_support_initialized) | |
4572 | if (!initialize_hp_cxx_exception_support ()) | |
4573 | return NULL; | |
4574 | ||
4575 | switch (hp_cxx_exception_support) | |
4576 | { | |
c5aa993b JM |
4577 | case 0: |
4578 | /* Assuming no HP support at all */ | |
4579 | return NULL; | |
4580 | case 1: | |
4581 | /* HP support should be present, but something went wrong */ | |
4582 | return (struct symtab_and_line *) -1; /* yuck! */ | |
4583 | /* there may be other cases in the future */ | |
c906108c | 4584 | } |
c5aa993b | 4585 | |
c906108c | 4586 | /* Set the EH hook to point to the callback routine */ |
c5aa993b | 4587 | store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */ |
c906108c | 4588 | /* pai: (temp) FIXME should there be a pack operation first? */ |
c5aa993b | 4589 | if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */ |
c906108c SS |
4590 | { |
4591 | warning ("Could not write to target memory for exception event callback."); | |
4592 | warning ("Interception of exception events may not work."); | |
c5aa993b | 4593 | return (struct symtab_and_line *) -1; |
c906108c SS |
4594 | } |
4595 | if (enable) | |
4596 | { | |
c5aa993b | 4597 | /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */ |
39f77062 | 4598 | if (PIDGET (inferior_ptid) > 0) |
c5aa993b JM |
4599 | { |
4600 | if (setup_d_pid_in_inferior ()) | |
4601 | return (struct symtab_and_line *) -1; | |
4602 | } | |
c906108c | 4603 | else |
c5aa993b | 4604 | { |
104c1213 JM |
4605 | warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); |
4606 | return (struct symtab_and_line *) -1; | |
c5aa993b | 4607 | } |
c906108c | 4608 | } |
c5aa993b | 4609 | |
c906108c SS |
4610 | switch (kind) |
4611 | { | |
c5aa993b JM |
4612 | case EX_EVENT_THROW: |
4613 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4614 | if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */ | |
4615 | { | |
4616 | warning ("Couldn't enable exception throw interception."); | |
4617 | return (struct symtab_and_line *) -1; | |
4618 | } | |
4619 | break; | |
4620 | case EX_EVENT_CATCH: | |
4621 | store_unsigned_integer (buf, 4, enable ? 1 : 0); | |
4622 | if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */ | |
4623 | { | |
4624 | warning ("Couldn't enable exception catch interception."); | |
4625 | return (struct symtab_and_line *) -1; | |
4626 | } | |
4627 | break; | |
104c1213 JM |
4628 | default: |
4629 | error ("Request to enable unknown or unsupported exception event."); | |
c906108c | 4630 | } |
c5aa993b | 4631 | |
c906108c SS |
4632 | /* Copy break address into new sal struct, malloc'ing if needed. */ |
4633 | if (!break_callback_sal) | |
4634 | { | |
4635 | break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line)); | |
4636 | } | |
fe39c653 | 4637 | init_sal (break_callback_sal); |
c906108c SS |
4638 | break_callback_sal->symtab = NULL; |
4639 | break_callback_sal->pc = eh_break_addr; | |
4640 | break_callback_sal->line = 0; | |
4641 | break_callback_sal->end = eh_break_addr; | |
c5aa993b | 4642 | |
c906108c SS |
4643 | return break_callback_sal; |
4644 | } | |
4645 | ||
c5aa993b | 4646 | /* Record some information about the current exception event */ |
c906108c | 4647 | static struct exception_event_record current_ex_event; |
c5aa993b JM |
4648 | /* Convenience struct */ |
4649 | static struct symtab_and_line null_symtab_and_line = | |
4650 | {NULL, 0, 0, 0}; | |
c906108c SS |
4651 | |
4652 | /* Report current exception event. Returns a pointer to a record | |
4653 | that describes the kind of the event, where it was thrown from, | |
4654 | and where it will be caught. More information may be reported | |
c5aa993b | 4655 | in the future */ |
c906108c | 4656 | struct exception_event_record * |
fba45db2 | 4657 | child_get_current_exception_event (void) |
c906108c | 4658 | { |
c5aa993b JM |
4659 | CORE_ADDR event_kind; |
4660 | CORE_ADDR throw_addr; | |
4661 | CORE_ADDR catch_addr; | |
c906108c SS |
4662 | struct frame_info *fi, *curr_frame; |
4663 | int level = 1; | |
4664 | ||
c5aa993b | 4665 | curr_frame = get_current_frame (); |
c906108c SS |
4666 | if (!curr_frame) |
4667 | return (struct exception_event_record *) NULL; | |
4668 | ||
4669 | /* Go up one frame to __d_eh_notify_callback, because at the | |
4670 | point when this code is executed, there's garbage in the | |
4671 | arguments of __d_eh_break. */ | |
4672 | fi = find_relative_frame (curr_frame, &level); | |
4673 | if (level != 0) | |
4674 | return (struct exception_event_record *) NULL; | |
4675 | ||
0f7d239c | 4676 | select_frame (fi); |
c906108c SS |
4677 | |
4678 | /* Read in the arguments */ | |
4679 | /* __d_eh_notify_callback() is called with 3 arguments: | |
c5aa993b JM |
4680 | 1. event kind catch or throw |
4681 | 2. the target address if known | |
4682 | 3. a flag -- not sure what this is. pai/1997-07-17 */ | |
4683 | event_kind = read_register (ARG0_REGNUM); | |
c906108c SS |
4684 | catch_addr = read_register (ARG1_REGNUM); |
4685 | ||
4686 | /* Now go down to a user frame */ | |
4687 | /* For a throw, __d_eh_break is called by | |
c5aa993b JM |
4688 | __d_eh_notify_callback which is called by |
4689 | __notify_throw which is called | |
4690 | from user code. | |
c906108c | 4691 | For a catch, __d_eh_break is called by |
c5aa993b JM |
4692 | __d_eh_notify_callback which is called by |
4693 | <stackwalking stuff> which is called by | |
4694 | __throw__<stuff> or __rethrow_<stuff> which is called | |
4695 | from user code. */ | |
4696 | /* FIXME: Don't use such magic numbers; search for the frames */ | |
c906108c SS |
4697 | level = (event_kind == EX_EVENT_THROW) ? 3 : 4; |
4698 | fi = find_relative_frame (curr_frame, &level); | |
4699 | if (level != 0) | |
4700 | return (struct exception_event_record *) NULL; | |
4701 | ||
0f7d239c | 4702 | select_frame (fi); |
ef6e7e13 | 4703 | throw_addr = get_frame_pc (fi); |
c906108c SS |
4704 | |
4705 | /* Go back to original (top) frame */ | |
0f7d239c | 4706 | select_frame (curr_frame); |
c906108c SS |
4707 | |
4708 | current_ex_event.kind = (enum exception_event_kind) event_kind; | |
4709 | current_ex_event.throw_sal = find_pc_line (throw_addr, 1); | |
4710 | current_ex_event.catch_sal = find_pc_line (catch_addr, 1); | |
4711 | ||
4712 | return ¤t_ex_event; | |
4713 | } | |
4714 | ||
9a043c1d AC |
4715 | /* Instead of this nasty cast, add a method pvoid() that prints out a |
4716 | host VOID data type (remember %p isn't portable). */ | |
4717 | ||
4718 | static CORE_ADDR | |
4719 | hppa_pointer_to_address_hack (void *ptr) | |
4720 | { | |
4721 | gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr)); | |
4722 | return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); | |
4723 | } | |
4724 | ||
c906108c | 4725 | static void |
fba45db2 | 4726 | unwind_command (char *exp, int from_tty) |
c906108c SS |
4727 | { |
4728 | CORE_ADDR address; | |
4729 | struct unwind_table_entry *u; | |
4730 | ||
4731 | /* If we have an expression, evaluate it and use it as the address. */ | |
4732 | ||
4733 | if (exp != 0 && *exp != 0) | |
4734 | address = parse_and_eval_address (exp); | |
4735 | else | |
4736 | return; | |
4737 | ||
4738 | u = find_unwind_entry (address); | |
4739 | ||
4740 | if (!u) | |
4741 | { | |
4742 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
4743 | return; | |
4744 | } | |
4745 | ||
ce414844 | 4746 | printf_unfiltered ("unwind_table_entry (0x%s):\n", |
9a043c1d | 4747 | paddr_nz (hppa_pointer_to_address_hack (u))); |
c906108c SS |
4748 | |
4749 | printf_unfiltered ("\tregion_start = "); | |
4750 | print_address (u->region_start, gdb_stdout); | |
4751 | ||
4752 | printf_unfiltered ("\n\tregion_end = "); | |
4753 | print_address (u->region_end, gdb_stdout); | |
4754 | ||
c906108c | 4755 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
4756 | |
4757 | printf_unfiltered ("\n\tflags ="); | |
4758 | pif (Cannot_unwind); | |
4759 | pif (Millicode); | |
4760 | pif (Millicode_save_sr0); | |
4761 | pif (Entry_SR); | |
4762 | pif (Args_stored); | |
4763 | pif (Variable_Frame); | |
4764 | pif (Separate_Package_Body); | |
4765 | pif (Frame_Extension_Millicode); | |
4766 | pif (Stack_Overflow_Check); | |
4767 | pif (Two_Instruction_SP_Increment); | |
4768 | pif (Ada_Region); | |
4769 | pif (Save_SP); | |
4770 | pif (Save_RP); | |
4771 | pif (Save_MRP_in_frame); | |
4772 | pif (extn_ptr_defined); | |
4773 | pif (Cleanup_defined); | |
4774 | pif (MPE_XL_interrupt_marker); | |
4775 | pif (HP_UX_interrupt_marker); | |
4776 | pif (Large_frame); | |
4777 | ||
4778 | putchar_unfiltered ('\n'); | |
4779 | ||
c906108c | 4780 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
4781 | |
4782 | pin (Region_description); | |
4783 | pin (Entry_FR); | |
4784 | pin (Entry_GR); | |
4785 | pin (Total_frame_size); | |
4786 | } | |
c906108c | 4787 | |
c2c6d25f | 4788 | void |
fba45db2 | 4789 | hppa_skip_permanent_breakpoint (void) |
c2c6d25f JM |
4790 | { |
4791 | /* To step over a breakpoint instruction on the PA takes some | |
4792 | fiddling with the instruction address queue. | |
4793 | ||
4794 | When we stop at a breakpoint, the IA queue front (the instruction | |
4795 | we're executing now) points at the breakpoint instruction, and | |
4796 | the IA queue back (the next instruction to execute) points to | |
4797 | whatever instruction we would execute after the breakpoint, if it | |
4798 | were an ordinary instruction. This is the case even if the | |
4799 | breakpoint is in the delay slot of a branch instruction. | |
4800 | ||
4801 | Clearly, to step past the breakpoint, we need to set the queue | |
4802 | front to the back. But what do we put in the back? What | |
4803 | instruction comes after that one? Because of the branch delay | |
4804 | slot, the next insn is always at the back + 4. */ | |
4805 | write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM)); | |
4806 | write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM)); | |
4807 | ||
4808 | write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4); | |
4809 | /* We can leave the tail's space the same, since there's no jump. */ | |
4810 | } | |
4811 | ||
1cdb71fe JL |
4812 | /* Copy the function value from VALBUF into the proper location |
4813 | for a function return. | |
4814 | ||
4815 | Called only in the context of the "return" command. */ | |
4816 | ||
4817 | void | |
3ff7cf9e | 4818 | hppa32_store_return_value (struct type *type, char *valbuf) |
1cdb71fe JL |
4819 | { |
4820 | /* For software floating point, the return value goes into the | |
4821 | integer registers. But we do not have any flag to key this on, | |
4822 | so we always store the value into the integer registers. | |
4823 | ||
4824 | If its a float value, then we also store it into the floating | |
4825 | point registers. */ | |
62700349 | 4826 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28) |
73937e03 AC |
4827 | + (TYPE_LENGTH (type) > 4 |
4828 | ? (8 - TYPE_LENGTH (type)) | |
4829 | : (4 - TYPE_LENGTH (type))), | |
4830 | valbuf, TYPE_LENGTH (type)); | |
77296879 | 4831 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
62700349 | 4832 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM), |
73937e03 | 4833 | valbuf, TYPE_LENGTH (type)); |
1cdb71fe JL |
4834 | } |
4835 | ||
3ff7cf9e JB |
4836 | /* Same as hppa32_store_return_value(), but for the PA64 ABI. */ |
4837 | ||
4838 | void | |
4839 | hppa64_store_return_value (struct type *type, char *valbuf) | |
4840 | { | |
4841 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4842 | deprecated_write_register_bytes | |
62700349 | 4843 | (DEPRECATED_REGISTER_BYTE (FP4_REGNUM) |
3ff7cf9e JB |
4844 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
4845 | valbuf, TYPE_LENGTH (type)); | |
4846 | else if (is_integral_type(type)) | |
4847 | deprecated_write_register_bytes | |
62700349 | 4848 | (DEPRECATED_REGISTER_BYTE (28) |
3ff7cf9e JB |
4849 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
4850 | valbuf, TYPE_LENGTH (type)); | |
4851 | else if (TYPE_LENGTH (type) <= 8) | |
4852 | deprecated_write_register_bytes | |
62700349 | 4853 | (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type)); |
3ff7cf9e JB |
4854 | else if (TYPE_LENGTH (type) <= 16) |
4855 | { | |
62700349 | 4856 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8); |
3ff7cf9e | 4857 | deprecated_write_register_bytes |
62700349 | 4858 | (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8); |
3ff7cf9e JB |
4859 | } |
4860 | } | |
4861 | ||
1cdb71fe JL |
4862 | /* Copy the function's return value into VALBUF. |
4863 | ||
4864 | This function is called only in the context of "target function calls", | |
4865 | ie. when the debugger forces a function to be called in the child, and | |
4866 | when the debugger forces a fucntion to return prematurely via the | |
4867 | "return" command. */ | |
4868 | ||
4869 | void | |
3ff7cf9e | 4870 | hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf) |
1cdb71fe | 4871 | { |
77296879 | 4872 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
62700349 | 4873 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type)); |
1cdb71fe JL |
4874 | else |
4875 | memcpy (valbuf, | |
3ff7cf9e | 4876 | (regbuf |
62700349 | 4877 | + DEPRECATED_REGISTER_BYTE (28) |
1cdb71fe JL |
4878 | + (TYPE_LENGTH (type) > 4 |
4879 | ? (8 - TYPE_LENGTH (type)) | |
4880 | : (4 - TYPE_LENGTH (type)))), | |
4881 | TYPE_LENGTH (type)); | |
4882 | } | |
4facf7e8 | 4883 | |
3ff7cf9e JB |
4884 | /* Same as hppa32_extract_return_value but for the PA64 ABI case. */ |
4885 | ||
4886 | void | |
4887 | hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
4888 | { | |
4889 | /* RM: Floats are returned in FR4R, doubles in FR4. | |
4890 | Integral values are in r28, padded on the left. | |
4891 | Aggregates less that 65 bits are in r28, right padded. | |
4892 | Aggregates upto 128 bits are in r28 and r29, right padded. */ | |
4893 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4894 | memcpy (valbuf, | |
62700349 | 4895 | regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM) |
3ff7cf9e JB |
4896 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
4897 | TYPE_LENGTH (type)); | |
4898 | else if (is_integral_type(type)) | |
4899 | memcpy (valbuf, | |
62700349 | 4900 | regbuf + DEPRECATED_REGISTER_BYTE (28) |
3ff7cf9e JB |
4901 | + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type), |
4902 | TYPE_LENGTH (type)); | |
4903 | else if (TYPE_LENGTH (type) <= 8) | |
62700349 AC |
4904 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), |
4905 | TYPE_LENGTH (type)); | |
3ff7cf9e JB |
4906 | else if (TYPE_LENGTH (type) <= 16) |
4907 | { | |
62700349 AC |
4908 | memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8); |
4909 | memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29), | |
4910 | TYPE_LENGTH (type) - 8); | |
3ff7cf9e JB |
4911 | } |
4912 | } | |
4913 | ||
d709c020 JB |
4914 | int |
4915 | hppa_reg_struct_has_addr (int gcc_p, struct type *type) | |
4916 | { | |
4917 | /* On the PA, any pass-by-value structure > 8 bytes is actually passed | |
4918 | via a pointer regardless of its type or the compiler used. */ | |
4919 | return (TYPE_LENGTH (type) > 8); | |
4920 | } | |
4921 | ||
4922 | int | |
4923 | hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs) | |
4924 | { | |
4925 | /* Stack grows upward */ | |
4926 | return (lhs > rhs); | |
4927 | } | |
4928 | ||
4929 | CORE_ADDR | |
3ff7cf9e | 4930 | hppa32_stack_align (CORE_ADDR sp) |
d709c020 JB |
4931 | { |
4932 | /* elz: adjust the quantity to the next highest value which is | |
4933 | 64-bit aligned. This is used in valops.c, when the sp is adjusted. | |
4934 | On hppa the sp must always be kept 64-bit aligned */ | |
4935 | return ((sp % 8) ? (sp + 7) & -8 : sp); | |
4936 | } | |
4937 | ||
3ff7cf9e JB |
4938 | CORE_ADDR |
4939 | hppa64_stack_align (CORE_ADDR sp) | |
4940 | { | |
4941 | /* The PA64 ABI mandates a 16 byte stack alignment. */ | |
4942 | return ((sp % 16) ? (sp + 15) & -16 : sp); | |
4943 | } | |
4944 | ||
d709c020 JB |
4945 | int |
4946 | hppa_pc_requires_run_before_use (CORE_ADDR pc) | |
4947 | { | |
4948 | /* Sometimes we may pluck out a minimal symbol that has a negative address. | |
4949 | ||
4950 | An example of this occurs when an a.out is linked against a foo.sl. | |
4951 | The foo.sl defines a global bar(), and the a.out declares a signature | |
4952 | for bar(). However, the a.out doesn't directly call bar(), but passes | |
4953 | its address in another call. | |
4954 | ||
4955 | If you have this scenario and attempt to "break bar" before running, | |
4956 | gdb will find a minimal symbol for bar() in the a.out. But that | |
4957 | symbol's address will be negative. What this appears to denote is | |
4958 | an index backwards from the base of the procedure linkage table (PLT) | |
4959 | into the data linkage table (DLT), the end of which is contiguous | |
4960 | with the start of the PLT. This is clearly not a valid address for | |
4961 | us to set a breakpoint on. | |
4962 | ||
4963 | Note that one must be careful in how one checks for a negative address. | |
4964 | 0xc0000000 is a legitimate address of something in a shared text | |
4965 | segment, for example. Since I don't know what the possible range | |
4966 | is of these "really, truly negative" addresses that come from the | |
4967 | minimal symbols, I'm resorting to the gross hack of checking the | |
4968 | top byte of the address for all 1's. Sigh. */ | |
4969 | ||
4970 | return (!target_has_stack && (pc & 0xFF000000)); | |
4971 | } | |
4972 | ||
4973 | int | |
4974 | hppa_instruction_nullified (void) | |
4975 | { | |
4976 | /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would | |
4977 | avoid the type cast. I'm leaving it as is for now as I'm doing | |
4978 | semi-mechanical multiarching-related changes. */ | |
4979 | const int ipsw = (int) read_register (IPSW_REGNUM); | |
4980 | const int flags = (int) read_register (FLAGS_REGNUM); | |
4981 | ||
4982 | return ((ipsw & 0x00200000) && !(flags & 0x2)); | |
4983 | } | |
4984 | ||
60e1ff27 JB |
4985 | int |
4986 | hppa_register_raw_size (int reg_nr) | |
4987 | { | |
4988 | /* All registers have the same size. */ | |
b1e29e33 | 4989 | return DEPRECATED_REGISTER_SIZE; |
60e1ff27 JB |
4990 | } |
4991 | ||
d709c020 JB |
4992 | /* Index within the register vector of the first byte of the space i |
4993 | used for register REG_NR. */ | |
4994 | ||
4995 | int | |
4996 | hppa_register_byte (int reg_nr) | |
4997 | { | |
3ff7cf9e JB |
4998 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
4999 | ||
5000 | return reg_nr * tdep->bytes_per_address; | |
d709c020 JB |
5001 | } |
5002 | ||
5003 | /* Return the GDB type object for the "standard" data type of data | |
5004 | in register N. */ | |
5005 | ||
5006 | struct type * | |
3ff7cf9e | 5007 | hppa32_register_virtual_type (int reg_nr) |
d709c020 JB |
5008 | { |
5009 | if (reg_nr < FP4_REGNUM) | |
5010 | return builtin_type_int; | |
5011 | else | |
5012 | return builtin_type_float; | |
5013 | } | |
5014 | ||
3ff7cf9e JB |
5015 | /* Return the GDB type object for the "standard" data type of data |
5016 | in register N. hppa64 version. */ | |
5017 | ||
5018 | struct type * | |
5019 | hppa64_register_virtual_type (int reg_nr) | |
5020 | { | |
5021 | if (reg_nr < FP4_REGNUM) | |
5022 | return builtin_type_unsigned_long_long; | |
5023 | else | |
5024 | return builtin_type_double; | |
5025 | } | |
5026 | ||
d709c020 JB |
5027 | /* Store the address of the place in which to copy the structure the |
5028 | subroutine will return. This is called from call_function. */ | |
5029 | ||
5030 | void | |
5031 | hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
5032 | { | |
5033 | write_register (28, addr); | |
5034 | } | |
5035 | ||
60383d10 JB |
5036 | CORE_ADDR |
5037 | hppa_extract_struct_value_address (char *regbuf) | |
5038 | { | |
5039 | /* Extract from an array REGBUF containing the (raw) register state | |
5040 | the address in which a function should return its structure value, | |
5041 | as a CORE_ADDR (or an expression that can be used as one). */ | |
5042 | /* FIXME: brobecker 2002-12-26. | |
5043 | The current implementation is historical, but we should eventually | |
5044 | implement it in a more robust manner as it relies on the fact that | |
5045 | the address size is equal to the size of an int* _on the host_... | |
5046 | One possible implementation that crossed my mind is to use | |
5047 | extract_address. */ | |
64f395bf AC |
5048 | /* FIXME: cagney/2003-09-27: This function can probably go. ELZ |
5049 | writes: We cannot assume on the pa that r28 still contains the | |
5050 | address of the returned structure. Usually this will be | |
5051 | overwritten by the callee. */ | |
62700349 | 5052 | return (*(int *)(regbuf + DEPRECATED_REGISTER_BYTE (28))); |
60383d10 JB |
5053 | } |
5054 | ||
d709c020 JB |
5055 | /* Return True if REGNUM is not a register available to the user |
5056 | through ptrace(). */ | |
5057 | ||
5058 | int | |
5059 | hppa_cannot_store_register (int regnum) | |
5060 | { | |
5061 | return (regnum == 0 | |
5062 | || regnum == PCSQ_HEAD_REGNUM | |
5063 | || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM) | |
5064 | || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM)); | |
5065 | ||
5066 | } | |
5067 | ||
d709c020 JB |
5068 | CORE_ADDR |
5069 | hppa_smash_text_address (CORE_ADDR addr) | |
5070 | { | |
5071 | /* The low two bits of the PC on the PA contain the privilege level. | |
5072 | Some genius implementing a (non-GCC) compiler apparently decided | |
5073 | this means that "addresses" in a text section therefore include a | |
5074 | privilege level, and thus symbol tables should contain these bits. | |
5075 | This seems like a bonehead thing to do--anyway, it seems to work | |
5076 | for our purposes to just ignore those bits. */ | |
5077 | ||
5078 | return (addr &= ~0x3); | |
5079 | } | |
5080 | ||
143985b7 AF |
5081 | /* Get the ith function argument for the current function. */ |
5082 | CORE_ADDR | |
5083 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, | |
5084 | struct type *type) | |
5085 | { | |
5086 | CORE_ADDR addr; | |
7f5f525d | 5087 | get_frame_register (frame, R0_REGNUM + 26 - argi, &addr); |
143985b7 AF |
5088 | return addr; |
5089 | } | |
5090 | ||
e6e68f1f JB |
5091 | static struct gdbarch * |
5092 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
5093 | { | |
3ff7cf9e | 5094 | struct gdbarch_tdep *tdep; |
e6e68f1f | 5095 | struct gdbarch *gdbarch; |
59623e27 JB |
5096 | |
5097 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 5098 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 5099 | { |
4be87837 DJ |
5100 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
5101 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
5102 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 5103 | } |
e6e68f1f JB |
5104 | |
5105 | /* find a candidate among the list of pre-declared architectures. */ | |
5106 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
5107 | if (arches != NULL) | |
5108 | return (arches->gdbarch); | |
5109 | ||
5110 | /* If none found, then allocate and initialize one. */ | |
3ff7cf9e JB |
5111 | tdep = XMALLOC (struct gdbarch_tdep); |
5112 | gdbarch = gdbarch_alloc (&info, tdep); | |
5113 | ||
5114 | /* Determine from the bfd_arch_info structure if we are dealing with | |
5115 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
5116 | then default to a 32bit machine. */ | |
5117 | if (info.bfd_arch_info != NULL) | |
5118 | tdep->bytes_per_address = | |
5119 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
5120 | else | |
5121 | tdep->bytes_per_address = 4; | |
5122 | ||
5123 | /* Some parts of the gdbarch vector depend on whether we are running | |
5124 | on a 32 bits or 64 bits target. */ | |
5125 | switch (tdep->bytes_per_address) | |
5126 | { | |
5127 | case 4: | |
5128 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
5129 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
5130 | set_gdbarch_deprecated_register_virtual_type | |
5131 | (gdbarch, hppa32_register_virtual_type); | |
5132 | set_gdbarch_deprecated_call_dummy_length | |
5133 | (gdbarch, hppa32_call_dummy_length); | |
f27dd7fd | 5134 | set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align); |
2110b94f MK |
5135 | set_gdbarch_deprecated_reg_struct_has_addr |
5136 | (gdbarch, hppa_reg_struct_has_addr); | |
3ff7cf9e JB |
5137 | set_gdbarch_deprecated_extract_return_value |
5138 | (gdbarch, hppa32_extract_return_value); | |
5139 | set_gdbarch_use_struct_convention | |
5140 | (gdbarch, hppa32_use_struct_convention); | |
5141 | set_gdbarch_deprecated_store_return_value | |
5142 | (gdbarch, hppa32_store_return_value); | |
5143 | break; | |
5144 | case 8: | |
5145 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
5146 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
5147 | set_gdbarch_deprecated_register_virtual_type | |
5148 | (gdbarch, hppa64_register_virtual_type); | |
5149 | set_gdbarch_deprecated_call_dummy_breakpoint_offset | |
5150 | (gdbarch, hppa64_call_dummy_breakpoint_offset); | |
5151 | set_gdbarch_deprecated_call_dummy_length | |
5152 | (gdbarch, hppa64_call_dummy_length); | |
f27dd7fd | 5153 | set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align); |
3ff7cf9e JB |
5154 | set_gdbarch_deprecated_extract_return_value |
5155 | (gdbarch, hppa64_extract_return_value); | |
5156 | set_gdbarch_use_struct_convention | |
5157 | (gdbarch, hppa64_use_struct_convention); | |
5158 | set_gdbarch_deprecated_store_return_value | |
5159 | (gdbarch, hppa64_store_return_value); | |
5160 | break; | |
5161 | default: | |
5162 | internal_error (__FILE__, __LINE__, "Unsupported address size: %d", | |
5163 | tdep->bytes_per_address); | |
5164 | } | |
5165 | ||
5166 | /* The following gdbarch vector elements depend on other parts of this | |
5167 | vector which have been set above, depending on the ABI. */ | |
5168 | set_gdbarch_deprecated_register_bytes | |
5169 | (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address); | |
5170 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); | |
5171 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5172 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); | |
e6e68f1f | 5173 | |
3ff7cf9e JB |
5174 | /* The following gdbarch vector elements do not depend on the address |
5175 | size, or in any other gdbarch element previously set. */ | |
60383d10 JB |
5176 | set_gdbarch_function_start_offset (gdbarch, 0); |
5177 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); | |
5178 | set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); | |
5179 | set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline); | |
5180 | set_gdbarch_in_solib_return_trampoline (gdbarch, | |
5181 | hppa_in_solib_return_trampoline); | |
6913c89a | 5182 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call); |
60383d10 | 5183 | set_gdbarch_inner_than (gdbarch, hppa_inner_than); |
60383d10 | 5184 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
3ff7cf9e | 5185 | set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address); |
0ba6dca9 | 5186 | set_gdbarch_deprecated_fp_regnum (gdbarch, 3); |
60383d10 JB |
5187 | set_gdbarch_sp_regnum (gdbarch, 30); |
5188 | set_gdbarch_fp0_regnum (gdbarch, 64); | |
5189 | set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM); | |
efe59759 | 5190 | set_gdbarch_deprecated_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM); |
9c04cab7 | 5191 | set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size); |
9c04cab7 AC |
5192 | set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte); |
5193 | set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size); | |
3ff7cf9e | 5194 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address); |
a0ed5532 | 5195 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); |
4183d812 | 5196 | set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return); |
60383d10 JB |
5197 | set_gdbarch_deprecated_extract_struct_value_address |
5198 | (gdbarch, hppa_extract_struct_value_address); | |
5199 | set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register); | |
e9582e71 | 5200 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info); |
618ce49f AC |
5201 | set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain); |
5202 | set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid); | |
60383d10 JB |
5203 | set_gdbarch_frameless_function_invocation |
5204 | (gdbarch, hppa_frameless_function_invocation); | |
8bedc050 | 5205 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc); |
60383d10 | 5206 | set_gdbarch_frame_args_skip (gdbarch, 0); |
5ef7553b | 5207 | set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame); |
749b82f6 | 5208 | set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame); |
b1e29e33 | 5209 | /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */ |
b81774d8 | 5210 | set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments); |
b6fbdd1d | 5211 | set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address); |
60383d10 JB |
5212 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
5213 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
5214 | set_gdbarch_read_pc (gdbarch, hppa_target_read_pc); | |
5215 | set_gdbarch_write_pc (gdbarch, hppa_target_write_pc); | |
0ba6dca9 | 5216 | set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp); |
60383d10 | 5217 | |
143985b7 AF |
5218 | /* Helper for function argument information. */ |
5219 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
5220 | ||
36482093 AC |
5221 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
5222 | ||
3a3bc038 AC |
5223 | /* When a hardware watchpoint triggers, we'll move the inferior past |
5224 | it by removing all eventpoints; stepping past the instruction | |
5225 | that caused the trigger; reinserting eventpoints; and checking | |
5226 | whether any watched location changed. */ | |
5227 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
5228 | ||
752d4ac1 JB |
5229 | /* Hook in ABI-specific overrides, if they have been registered. */ |
5230 | gdbarch_init_osabi (info, gdbarch); | |
5231 | ||
e6e68f1f JB |
5232 | return gdbarch; |
5233 | } | |
5234 | ||
5235 | static void | |
5236 | hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
5237 | { | |
5238 | /* Nothing to print for the moment. */ | |
5239 | } | |
5240 | ||
4facf7e8 JB |
5241 | void |
5242 | _initialize_hppa_tdep (void) | |
5243 | { | |
5244 | struct cmd_list_element *c; | |
5245 | void break_at_finish_command (char *arg, int from_tty); | |
5246 | void tbreak_at_finish_command (char *arg, int from_tty); | |
5247 | void break_at_finish_at_depth_command (char *arg, int from_tty); | |
5248 | ||
e6e68f1f | 5249 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 JB |
5250 | |
5251 | add_cmd ("unwind", class_maintenance, unwind_command, | |
5252 | "Print unwind table entry at given address.", | |
5253 | &maintenanceprintlist); | |
5254 | ||
5255 | deprecate_cmd (add_com ("xbreak", class_breakpoint, | |
5256 | break_at_finish_command, | |
5257 | concat ("Set breakpoint at procedure exit. \n\ | |
5258 | Argument may be function name, or \"*\" and an address.\n\ | |
5259 | If function is specified, break at end of code for that function.\n\ | |
5260 | If an address is specified, break at the end of the function that contains \n\ | |
5261 | that exact address.\n", | |
5262 | "With no arg, uses current execution address of selected stack frame.\n\ | |
5263 | This is useful for breaking on return to a stack frame.\n\ | |
5264 | \n\ | |
5265 | Multiple breakpoints at one place are permitted, and useful if conditional.\n\ | |
5266 | \n\ | |
5267 | Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL); | |
5268 | deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL); | |
5269 | deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL); | |
5270 | deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL); | |
5271 | deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL); | |
5272 | ||
5273 | deprecate_cmd (c = add_com ("txbreak", class_breakpoint, | |
5274 | tbreak_at_finish_command, | |
5275 | "Set temporary breakpoint at procedure exit. Either there should\n\ | |
5276 | be no argument or the argument must be a depth.\n"), NULL); | |
5277 | set_cmd_completer (c, location_completer); | |
5278 | ||
5279 | if (xdb_commands) | |
5280 | deprecate_cmd (add_com ("bx", class_breakpoint, | |
5281 | break_at_finish_at_depth_command, | |
5282 | "Set breakpoint at procedure exit. Either there should\n\ | |
5283 | be no argument or the argument must be a depth.\n"), NULL); | |
5284 | } | |
5285 |