Commit | Line | Data |
---|---|---|
a7aad9aa | 1 | /* Target-dependent code for the HP PA-RISC architecture. |
cda5a58a | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
0fb0cc75 | 4 | 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 |
a7aad9aa | 5 | Free Software Foundation, Inc. |
c906108c SS |
6 | |
7 | Contributed by the Center for Software Science at the | |
8 | University of Utah (pa-gdb-bugs@cs.utah.edu). | |
9 | ||
c5aa993b | 10 | This file is part of GDB. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is free software; you can redistribute it and/or modify |
13 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 14 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 15 | (at your option) any later version. |
c906108c | 16 | |
c5aa993b JM |
17 | This program is distributed in the hope that it will be useful, |
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
20 | GNU General Public License for more details. | |
c906108c | 21 | |
c5aa993b | 22 | You should have received a copy of the GNU General Public License |
a9762ec7 | 23 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
24 | |
25 | #include "defs.h" | |
c906108c SS |
26 | #include "bfd.h" |
27 | #include "inferior.h" | |
4e052eda | 28 | #include "regcache.h" |
e5d66720 | 29 | #include "completer.h" |
59623e27 | 30 | #include "osabi.h" |
a7ff40e7 | 31 | #include "gdb_assert.h" |
343af405 | 32 | #include "arch-utils.h" |
c906108c SS |
33 | /* For argument passing to the inferior */ |
34 | #include "symtab.h" | |
fde2cceb | 35 | #include "dis-asm.h" |
26d08f08 AC |
36 | #include "trad-frame.h" |
37 | #include "frame-unwind.h" | |
38 | #include "frame-base.h" | |
c906108c | 39 | |
c906108c SS |
40 | #include "gdbcore.h" |
41 | #include "gdbcmd.h" | |
e6bb342a | 42 | #include "gdbtypes.h" |
c906108c | 43 | #include "objfiles.h" |
3ff7cf9e | 44 | #include "hppa-tdep.h" |
c906108c | 45 | |
369aa520 RC |
46 | static int hppa_debug = 0; |
47 | ||
60383d10 | 48 | /* Some local constants. */ |
3ff7cf9e JB |
49 | static const int hppa32_num_regs = 128; |
50 | static const int hppa64_num_regs = 96; | |
51 | ||
7c46b9fb RC |
52 | /* hppa-specific object data -- unwind and solib info. |
53 | TODO/maybe: think about splitting this into two parts; the unwind data is | |
54 | common to all hppa targets, but is only used in this file; we can register | |
55 | that separately and make this static. The solib data is probably hpux- | |
56 | specific, so we can create a separate extern objfile_data that is registered | |
57 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ | |
58 | const struct objfile_data *hppa_objfile_priv_data = NULL; | |
59 | ||
e2ac8128 JB |
60 | /* Get at various relevent fields of an instruction word. */ |
61 | #define MASK_5 0x1f | |
62 | #define MASK_11 0x7ff | |
63 | #define MASK_14 0x3fff | |
64 | #define MASK_21 0x1fffff | |
65 | ||
e2ac8128 JB |
66 | /* Sizes (in bytes) of the native unwind entries. */ |
67 | #define UNWIND_ENTRY_SIZE 16 | |
68 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
69 | ||
c906108c SS |
70 | /* Routines to extract various sized constants out of hppa |
71 | instructions. */ | |
72 | ||
73 | /* This assumes that no garbage lies outside of the lower bits of | |
74 | value. */ | |
75 | ||
63807e1d | 76 | static int |
abc485a1 | 77 | hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 78 | { |
c5aa993b | 79 | return (int) (val >> (bits - 1) ? (-1 << bits) | val : val); |
c906108c SS |
80 | } |
81 | ||
82 | /* For many immediate values the sign bit is the low bit! */ | |
83 | ||
63807e1d | 84 | static int |
abc485a1 | 85 | hppa_low_hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 86 | { |
c5aa993b | 87 | return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); |
c906108c SS |
88 | } |
89 | ||
e2ac8128 JB |
90 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
91 | (MSB = 0). */ | |
92 | ||
abc485a1 RC |
93 | int |
94 | hppa_get_field (unsigned word, int from, int to) | |
e2ac8128 JB |
95 | { |
96 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
97 | } | |
98 | ||
c906108c SS |
99 | /* extract the immediate field from a ld{bhw}s instruction */ |
100 | ||
abc485a1 RC |
101 | int |
102 | hppa_extract_5_load (unsigned word) | |
c906108c | 103 | { |
abc485a1 | 104 | return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
c906108c SS |
105 | } |
106 | ||
c906108c SS |
107 | /* extract the immediate field from a break instruction */ |
108 | ||
abc485a1 RC |
109 | unsigned |
110 | hppa_extract_5r_store (unsigned word) | |
c906108c SS |
111 | { |
112 | return (word & MASK_5); | |
113 | } | |
114 | ||
115 | /* extract the immediate field from a {sr}sm instruction */ | |
116 | ||
abc485a1 RC |
117 | unsigned |
118 | hppa_extract_5R_store (unsigned word) | |
c906108c SS |
119 | { |
120 | return (word >> 16 & MASK_5); | |
121 | } | |
122 | ||
c906108c SS |
123 | /* extract a 14 bit immediate field */ |
124 | ||
abc485a1 RC |
125 | int |
126 | hppa_extract_14 (unsigned word) | |
c906108c | 127 | { |
abc485a1 | 128 | return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
c906108c SS |
129 | } |
130 | ||
c906108c SS |
131 | /* extract a 21 bit constant */ |
132 | ||
abc485a1 RC |
133 | int |
134 | hppa_extract_21 (unsigned word) | |
c906108c SS |
135 | { |
136 | int val; | |
137 | ||
138 | word &= MASK_21; | |
139 | word <<= 11; | |
abc485a1 | 140 | val = hppa_get_field (word, 20, 20); |
c906108c | 141 | val <<= 11; |
abc485a1 | 142 | val |= hppa_get_field (word, 9, 19); |
c906108c | 143 | val <<= 2; |
abc485a1 | 144 | val |= hppa_get_field (word, 5, 6); |
c906108c | 145 | val <<= 5; |
abc485a1 | 146 | val |= hppa_get_field (word, 0, 4); |
c906108c | 147 | val <<= 2; |
abc485a1 RC |
148 | val |= hppa_get_field (word, 7, 8); |
149 | return hppa_sign_extend (val, 21) << 11; | |
c906108c SS |
150 | } |
151 | ||
c906108c SS |
152 | /* extract a 17 bit constant from branch instructions, returning the |
153 | 19 bit signed value. */ | |
154 | ||
abc485a1 RC |
155 | int |
156 | hppa_extract_17 (unsigned word) | |
c906108c | 157 | { |
abc485a1 RC |
158 | return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
159 | hppa_get_field (word, 29, 29) << 10 | | |
160 | hppa_get_field (word, 11, 15) << 11 | | |
c906108c SS |
161 | (word & 0x1) << 16, 17) << 2; |
162 | } | |
3388d7ff RC |
163 | |
164 | CORE_ADDR | |
165 | hppa_symbol_address(const char *sym) | |
166 | { | |
167 | struct minimal_symbol *minsym; | |
168 | ||
169 | minsym = lookup_minimal_symbol (sym, NULL, NULL); | |
170 | if (minsym) | |
171 | return SYMBOL_VALUE_ADDRESS (minsym); | |
172 | else | |
173 | return (CORE_ADDR)-1; | |
174 | } | |
77d18ded RC |
175 | |
176 | struct hppa_objfile_private * | |
177 | hppa_init_objfile_priv_data (struct objfile *objfile) | |
178 | { | |
179 | struct hppa_objfile_private *priv; | |
180 | ||
181 | priv = (struct hppa_objfile_private *) | |
182 | obstack_alloc (&objfile->objfile_obstack, | |
183 | sizeof (struct hppa_objfile_private)); | |
184 | set_objfile_data (objfile, hppa_objfile_priv_data, priv); | |
185 | memset (priv, 0, sizeof (*priv)); | |
186 | ||
187 | return priv; | |
188 | } | |
c906108c SS |
189 | \f |
190 | ||
191 | /* Compare the start address for two unwind entries returning 1 if | |
192 | the first address is larger than the second, -1 if the second is | |
193 | larger than the first, and zero if they are equal. */ | |
194 | ||
195 | static int | |
fba45db2 | 196 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c SS |
197 | { |
198 | const struct unwind_table_entry *a = arg1; | |
199 | const struct unwind_table_entry *b = arg2; | |
200 | ||
201 | if (a->region_start > b->region_start) | |
202 | return 1; | |
203 | else if (a->region_start < b->region_start) | |
204 | return -1; | |
205 | else | |
206 | return 0; | |
207 | } | |
208 | ||
53a5351d | 209 | static void |
fdd72f95 | 210 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
53a5351d | 211 | { |
fdd72f95 | 212 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d | 213 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
fdd72f95 RC |
214 | { |
215 | bfd_vma value = section->vma - section->filepos; | |
216 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; | |
217 | ||
218 | if (value < *low_text_segment_address) | |
219 | *low_text_segment_address = value; | |
220 | } | |
53a5351d JM |
221 | } |
222 | ||
c906108c | 223 | static void |
fba45db2 KB |
224 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
225 | asection *section, unsigned int entries, unsigned int size, | |
226 | CORE_ADDR text_offset) | |
c906108c SS |
227 | { |
228 | /* We will read the unwind entries into temporary memory, then | |
229 | fill in the actual unwind table. */ | |
fdd72f95 | 230 | |
c906108c SS |
231 | if (size > 0) |
232 | { | |
5db8bbe5 | 233 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c SS |
234 | unsigned long tmp; |
235 | unsigned i; | |
236 | char *buf = alloca (size); | |
fdd72f95 | 237 | CORE_ADDR low_text_segment_address; |
c906108c | 238 | |
fdd72f95 | 239 | /* For ELF targets, then unwinds are supposed to |
c2c6d25f JM |
240 | be segment relative offsets instead of absolute addresses. |
241 | ||
242 | Note that when loading a shared library (text_offset != 0) the | |
243 | unwinds are already relative to the text_offset that will be | |
244 | passed in. */ | |
5db8bbe5 | 245 | if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0) |
53a5351d | 246 | { |
fdd72f95 RC |
247 | low_text_segment_address = -1; |
248 | ||
53a5351d | 249 | bfd_map_over_sections (objfile->obfd, |
fdd72f95 RC |
250 | record_text_segment_lowaddr, |
251 | &low_text_segment_address); | |
53a5351d | 252 | |
fdd72f95 | 253 | text_offset = low_text_segment_address; |
53a5351d | 254 | } |
5db8bbe5 | 255 | else if (gdbarch_tdep (gdbarch)->solib_get_text_base) |
acf86d54 | 256 | { |
5db8bbe5 | 257 | text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile); |
acf86d54 | 258 | } |
53a5351d | 259 | |
c906108c SS |
260 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
261 | ||
262 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 263 | endian issues. */ |
c906108c SS |
264 | for (i = 0; i < entries; i++) |
265 | { | |
266 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 267 | (bfd_byte *) buf); |
c906108c SS |
268 | table[i].region_start += text_offset; |
269 | buf += 4; | |
c5aa993b | 270 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
271 | table[i].region_end += text_offset; |
272 | buf += 4; | |
c5aa993b | 273 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
274 | buf += 4; |
275 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
276 | table[i].Millicode = (tmp >> 30) & 0x1; | |
277 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
278 | table[i].Region_description = (tmp >> 27) & 0x3; | |
6fcecea0 | 279 | table[i].reserved = (tmp >> 26) & 0x1; |
c906108c SS |
280 | table[i].Entry_SR = (tmp >> 25) & 0x1; |
281 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
282 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
283 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
284 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
285 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
286 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
287 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
288 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
6fcecea0 | 289 | table[i].sr4export = (tmp >> 9) & 0x1; |
c906108c SS |
290 | table[i].cxx_info = (tmp >> 8) & 0x1; |
291 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
292 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
6fcecea0 | 293 | table[i].reserved1 = (tmp >> 5) & 0x1; |
c906108c SS |
294 | table[i].Save_SP = (tmp >> 4) & 0x1; |
295 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
296 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
6fcecea0 | 297 | table[i].save_r19 = (tmp >> 1) & 0x1; |
c906108c | 298 | table[i].Cleanup_defined = tmp & 0x1; |
c5aa993b | 299 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
300 | buf += 4; |
301 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
302 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
303 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
6fcecea0 RC |
304 | table[i].alloca_frame = (tmp >> 28) & 0x1; |
305 | table[i].reserved2 = (tmp >> 27) & 0x1; | |
c906108c SS |
306 | table[i].Total_frame_size = tmp & 0x7ffffff; |
307 | ||
c5aa993b | 308 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
309 | table[i].stub_unwind.stub_type = 0; |
310 | table[i].stub_unwind.padding = 0; | |
311 | } | |
312 | } | |
313 | } | |
314 | ||
315 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
316 | the object file. This info is used mainly by find_unwind_entry() to find | |
317 | out the stack frame size and frame pointer used by procedures. We put | |
318 | everything on the psymbol obstack in the objfile so that it automatically | |
319 | gets freed when the objfile is destroyed. */ | |
320 | ||
321 | static void | |
fba45db2 | 322 | read_unwind_info (struct objfile *objfile) |
c906108c | 323 | { |
d4f3574e SS |
324 | asection *unwind_sec, *stub_unwind_sec; |
325 | unsigned unwind_size, stub_unwind_size, total_size; | |
326 | unsigned index, unwind_entries; | |
c906108c SS |
327 | unsigned stub_entries, total_entries; |
328 | CORE_ADDR text_offset; | |
7c46b9fb RC |
329 | struct hppa_unwind_info *ui; |
330 | struct hppa_objfile_private *obj_private; | |
c906108c SS |
331 | |
332 | text_offset = ANOFFSET (objfile->section_offsets, 0); | |
7c46b9fb RC |
333 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
334 | sizeof (struct hppa_unwind_info)); | |
c906108c SS |
335 | |
336 | ui->table = NULL; | |
337 | ui->cache = NULL; | |
338 | ui->last = -1; | |
339 | ||
d4f3574e SS |
340 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
341 | sections in a single executable. So we just iterate over every | |
342 | section in the BFD looking for unwinder sections intead of trying | |
343 | to do a lookup with bfd_get_section_by_name. | |
c906108c | 344 | |
d4f3574e SS |
345 | First determine the total size of the unwind tables so that we |
346 | can allocate memory in a nice big hunk. */ | |
347 | total_entries = 0; | |
348 | for (unwind_sec = objfile->obfd->sections; | |
349 | unwind_sec; | |
350 | unwind_sec = unwind_sec->next) | |
c906108c | 351 | { |
d4f3574e SS |
352 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
353 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
354 | { | |
355 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
356 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
c906108c | 357 | |
d4f3574e SS |
358 | total_entries += unwind_entries; |
359 | } | |
c906108c SS |
360 | } |
361 | ||
d4f3574e | 362 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
043f5962 | 363 | use stub unwinds at the current time. */ |
d4f3574e SS |
364 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
365 | ||
c906108c SS |
366 | if (stub_unwind_sec) |
367 | { | |
368 | stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); | |
369 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; | |
370 | } | |
371 | else | |
372 | { | |
373 | stub_unwind_size = 0; | |
374 | stub_entries = 0; | |
375 | } | |
376 | ||
377 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 378 | total_entries += stub_entries; |
c906108c SS |
379 | total_size = total_entries * sizeof (struct unwind_table_entry); |
380 | ||
381 | /* Allocate memory for the unwind table. */ | |
382 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 383 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 384 | ui->last = total_entries - 1; |
c906108c | 385 | |
d4f3574e SS |
386 | /* Now read in each unwind section and internalize the standard unwind |
387 | entries. */ | |
c906108c | 388 | index = 0; |
d4f3574e SS |
389 | for (unwind_sec = objfile->obfd->sections; |
390 | unwind_sec; | |
391 | unwind_sec = unwind_sec->next) | |
392 | { | |
393 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
394 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
395 | { | |
396 | unwind_size = bfd_section_size (objfile->obfd, unwind_sec); | |
397 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; | |
398 | ||
399 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
400 | unwind_entries, unwind_size, text_offset); | |
401 | index += unwind_entries; | |
402 | } | |
403 | } | |
404 | ||
405 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
406 | if (stub_unwind_size > 0) |
407 | { | |
408 | unsigned int i; | |
409 | char *buf = alloca (stub_unwind_size); | |
410 | ||
411 | /* Read in the stub unwind entries. */ | |
412 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
413 | 0, stub_unwind_size); | |
414 | ||
415 | /* Now convert them into regular unwind entries. */ | |
416 | for (i = 0; i < stub_entries; i++, index++) | |
417 | { | |
418 | /* Clear out the next unwind entry. */ | |
419 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
420 | ||
421 | /* Convert offset & size into region_start and region_end. | |
422 | Stuff away the stub type into "reserved" fields. */ | |
423 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
424 | (bfd_byte *) buf); | |
425 | ui->table[index].region_start += text_offset; | |
426 | buf += 4; | |
427 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 428 | (bfd_byte *) buf); |
c906108c SS |
429 | buf += 2; |
430 | ui->table[index].region_end | |
c5aa993b JM |
431 | = ui->table[index].region_start + 4 * |
432 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
433 | buf += 2; |
434 | } | |
435 | ||
436 | } | |
437 | ||
438 | /* Unwind table needs to be kept sorted. */ | |
439 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
440 | compare_unwind_entries); | |
441 | ||
442 | /* Keep a pointer to the unwind information. */ | |
7c46b9fb RC |
443 | obj_private = (struct hppa_objfile_private *) |
444 | objfile_data (objfile, hppa_objfile_priv_data); | |
445 | if (obj_private == NULL) | |
77d18ded RC |
446 | obj_private = hppa_init_objfile_priv_data (objfile); |
447 | ||
c906108c SS |
448 | obj_private->unwind_info = ui; |
449 | } | |
450 | ||
451 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
452 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
453 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
454 | search of the unwind tables, we depend upon them to be sorted. */ | |
455 | ||
456 | struct unwind_table_entry * | |
fba45db2 | 457 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
458 | { |
459 | int first, middle, last; | |
460 | struct objfile *objfile; | |
7c46b9fb | 461 | struct hppa_objfile_private *priv; |
c906108c | 462 | |
369aa520 RC |
463 | if (hppa_debug) |
464 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ", | |
465 | paddr_nz (pc)); | |
466 | ||
c906108c SS |
467 | /* A function at address 0? Not in HP-UX! */ |
468 | if (pc == (CORE_ADDR) 0) | |
369aa520 RC |
469 | { |
470 | if (hppa_debug) | |
471 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); | |
472 | return NULL; | |
473 | } | |
c906108c SS |
474 | |
475 | ALL_OBJFILES (objfile) | |
c5aa993b | 476 | { |
7c46b9fb | 477 | struct hppa_unwind_info *ui; |
c5aa993b | 478 | ui = NULL; |
7c46b9fb RC |
479 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
480 | if (priv) | |
481 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
c906108c | 482 | |
c5aa993b JM |
483 | if (!ui) |
484 | { | |
485 | read_unwind_info (objfile); | |
7c46b9fb RC |
486 | priv = objfile_data (objfile, hppa_objfile_priv_data); |
487 | if (priv == NULL) | |
8a3fe4f8 | 488 | error (_("Internal error reading unwind information.")); |
7c46b9fb | 489 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
c5aa993b | 490 | } |
c906108c | 491 | |
c5aa993b | 492 | /* First, check the cache */ |
c906108c | 493 | |
c5aa993b JM |
494 | if (ui->cache |
495 | && pc >= ui->cache->region_start | |
496 | && pc <= ui->cache->region_end) | |
369aa520 RC |
497 | { |
498 | if (hppa_debug) | |
499 | fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n", | |
e7b17823 | 500 | paddr_nz ((uintptr_t) ui->cache)); |
369aa520 RC |
501 | return ui->cache; |
502 | } | |
c906108c | 503 | |
c5aa993b | 504 | /* Not in the cache, do a binary search */ |
c906108c | 505 | |
c5aa993b JM |
506 | first = 0; |
507 | last = ui->last; | |
c906108c | 508 | |
c5aa993b JM |
509 | while (first <= last) |
510 | { | |
511 | middle = (first + last) / 2; | |
512 | if (pc >= ui->table[middle].region_start | |
513 | && pc <= ui->table[middle].region_end) | |
514 | { | |
515 | ui->cache = &ui->table[middle]; | |
369aa520 RC |
516 | if (hppa_debug) |
517 | fprintf_unfiltered (gdb_stdlog, "0x%s }\n", | |
e7b17823 | 518 | paddr_nz ((uintptr_t) ui->cache)); |
c5aa993b JM |
519 | return &ui->table[middle]; |
520 | } | |
c906108c | 521 | |
c5aa993b JM |
522 | if (pc < ui->table[middle].region_start) |
523 | last = middle - 1; | |
524 | else | |
525 | first = middle + 1; | |
526 | } | |
527 | } /* ALL_OBJFILES() */ | |
369aa520 RC |
528 | |
529 | if (hppa_debug) | |
530 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); | |
531 | ||
c906108c SS |
532 | return NULL; |
533 | } | |
534 | ||
1fb24930 RC |
535 | /* The epilogue is defined here as the area either on the `bv' instruction |
536 | itself or an instruction which destroys the function's stack frame. | |
537 | ||
538 | We do not assume that the epilogue is at the end of a function as we can | |
539 | also have return sequences in the middle of a function. */ | |
540 | static int | |
541 | hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
542 | { | |
543 | unsigned long status; | |
544 | unsigned int inst; | |
545 | char buf[4]; | |
546 | int off; | |
547 | ||
8defab1a | 548 | status = target_read_memory (pc, buf, 4); |
1fb24930 RC |
549 | if (status != 0) |
550 | return 0; | |
551 | ||
552 | inst = extract_unsigned_integer (buf, 4); | |
553 | ||
554 | /* The most common way to perform a stack adjustment ldo X(sp),sp | |
555 | We are destroying a stack frame if the offset is negative. */ | |
556 | if ((inst & 0xffffc000) == 0x37de0000 | |
557 | && hppa_extract_14 (inst) < 0) | |
558 | return 1; | |
559 | ||
560 | /* ldw,mb D(sp),X or ldd,mb D(sp),X */ | |
561 | if (((inst & 0x0fc010e0) == 0x0fc010e0 | |
562 | || (inst & 0x0fc010e0) == 0x0fc010e0) | |
563 | && hppa_extract_14 (inst) < 0) | |
564 | return 1; | |
565 | ||
566 | /* bv %r0(%rp) or bv,n %r0(%rp) */ | |
567 | if (inst == 0xe840c000 || inst == 0xe840c002) | |
568 | return 1; | |
569 | ||
570 | return 0; | |
571 | } | |
572 | ||
85f4f2d8 | 573 | static const unsigned char * |
67d57894 | 574 | hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len) |
aaab4dba | 575 | { |
56132691 | 576 | static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04}; |
aaab4dba AC |
577 | (*len) = sizeof (breakpoint); |
578 | return breakpoint; | |
579 | } | |
580 | ||
e23457df AC |
581 | /* Return the name of a register. */ |
582 | ||
4a302917 | 583 | static const char * |
d93859e2 | 584 | hppa32_register_name (struct gdbarch *gdbarch, int i) |
e23457df AC |
585 | { |
586 | static char *names[] = { | |
587 | "flags", "r1", "rp", "r3", | |
588 | "r4", "r5", "r6", "r7", | |
589 | "r8", "r9", "r10", "r11", | |
590 | "r12", "r13", "r14", "r15", | |
591 | "r16", "r17", "r18", "r19", | |
592 | "r20", "r21", "r22", "r23", | |
593 | "r24", "r25", "r26", "dp", | |
594 | "ret0", "ret1", "sp", "r31", | |
595 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
596 | "pcsqt", "eiem", "iir", "isr", | |
597 | "ior", "ipsw", "goto", "sr4", | |
598 | "sr0", "sr1", "sr2", "sr3", | |
599 | "sr5", "sr6", "sr7", "cr0", | |
600 | "cr8", "cr9", "ccr", "cr12", | |
601 | "cr13", "cr24", "cr25", "cr26", | |
602 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
603 | "fpsr", "fpe1", "fpe2", "fpe3", | |
604 | "fpe4", "fpe5", "fpe6", "fpe7", | |
605 | "fr4", "fr4R", "fr5", "fr5R", | |
606 | "fr6", "fr6R", "fr7", "fr7R", | |
607 | "fr8", "fr8R", "fr9", "fr9R", | |
608 | "fr10", "fr10R", "fr11", "fr11R", | |
609 | "fr12", "fr12R", "fr13", "fr13R", | |
610 | "fr14", "fr14R", "fr15", "fr15R", | |
611 | "fr16", "fr16R", "fr17", "fr17R", | |
612 | "fr18", "fr18R", "fr19", "fr19R", | |
613 | "fr20", "fr20R", "fr21", "fr21R", | |
614 | "fr22", "fr22R", "fr23", "fr23R", | |
615 | "fr24", "fr24R", "fr25", "fr25R", | |
616 | "fr26", "fr26R", "fr27", "fr27R", | |
617 | "fr28", "fr28R", "fr29", "fr29R", | |
618 | "fr30", "fr30R", "fr31", "fr31R" | |
619 | }; | |
620 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
621 | return NULL; | |
622 | else | |
623 | return names[i]; | |
624 | } | |
625 | ||
4a302917 | 626 | static const char * |
d93859e2 | 627 | hppa64_register_name (struct gdbarch *gdbarch, int i) |
e23457df AC |
628 | { |
629 | static char *names[] = { | |
630 | "flags", "r1", "rp", "r3", | |
631 | "r4", "r5", "r6", "r7", | |
632 | "r8", "r9", "r10", "r11", | |
633 | "r12", "r13", "r14", "r15", | |
634 | "r16", "r17", "r18", "r19", | |
635 | "r20", "r21", "r22", "r23", | |
636 | "r24", "r25", "r26", "dp", | |
637 | "ret0", "ret1", "sp", "r31", | |
638 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
639 | "pcsqt", "eiem", "iir", "isr", | |
640 | "ior", "ipsw", "goto", "sr4", | |
641 | "sr0", "sr1", "sr2", "sr3", | |
642 | "sr5", "sr6", "sr7", "cr0", | |
643 | "cr8", "cr9", "ccr", "cr12", | |
644 | "cr13", "cr24", "cr25", "cr26", | |
645 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
646 | "fpsr", "fpe1", "fpe2", "fpe3", | |
647 | "fr4", "fr5", "fr6", "fr7", | |
648 | "fr8", "fr9", "fr10", "fr11", | |
649 | "fr12", "fr13", "fr14", "fr15", | |
650 | "fr16", "fr17", "fr18", "fr19", | |
651 | "fr20", "fr21", "fr22", "fr23", | |
652 | "fr24", "fr25", "fr26", "fr27", | |
653 | "fr28", "fr29", "fr30", "fr31" | |
654 | }; | |
655 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
656 | return NULL; | |
657 | else | |
658 | return names[i]; | |
659 | } | |
660 | ||
85c83e99 | 661 | /* Map dwarf DBX register numbers to GDB register numbers. */ |
1ef7fcb5 | 662 | static int |
d3f73121 | 663 | hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
1ef7fcb5 | 664 | { |
85c83e99 | 665 | /* The general registers and the sar are the same in both sets. */ |
1ef7fcb5 RC |
666 | if (reg <= 32) |
667 | return reg; | |
668 | ||
669 | /* fr4-fr31 are mapped from 72 in steps of 2. */ | |
85c83e99 | 670 | if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) |
1ef7fcb5 RC |
671 | return HPPA64_FP4_REGNUM + (reg - 72) / 2; |
672 | ||
85c83e99 | 673 | warning (_("Unmapped DWARF DBX Register #%d encountered."), reg); |
1ef7fcb5 RC |
674 | return -1; |
675 | } | |
676 | ||
79508e1e AC |
677 | /* This function pushes a stack frame with arguments as part of the |
678 | inferior function calling mechanism. | |
679 | ||
680 | This is the version of the function for the 32-bit PA machines, in | |
681 | which later arguments appear at lower addresses. (The stack always | |
682 | grows towards higher addresses.) | |
683 | ||
684 | We simply allocate the appropriate amount of stack space and put | |
685 | arguments into their proper slots. */ | |
686 | ||
4a302917 | 687 | static CORE_ADDR |
7d9b040b | 688 | hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
79508e1e AC |
689 | struct regcache *regcache, CORE_ADDR bp_addr, |
690 | int nargs, struct value **args, CORE_ADDR sp, | |
691 | int struct_return, CORE_ADDR struct_addr) | |
692 | { | |
79508e1e AC |
693 | /* Stack base address at which any pass-by-reference parameters are |
694 | stored. */ | |
695 | CORE_ADDR struct_end = 0; | |
696 | /* Stack base address at which the first parameter is stored. */ | |
697 | CORE_ADDR param_end = 0; | |
698 | ||
699 | /* The inner most end of the stack after all the parameters have | |
700 | been pushed. */ | |
701 | CORE_ADDR new_sp = 0; | |
702 | ||
703 | /* Two passes. First pass computes the location of everything, | |
704 | second pass writes the bytes out. */ | |
705 | int write_pass; | |
d49771ef RC |
706 | |
707 | /* Global pointer (r19) of the function we are trying to call. */ | |
708 | CORE_ADDR gp; | |
709 | ||
710 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
711 | ||
79508e1e AC |
712 | for (write_pass = 0; write_pass < 2; write_pass++) |
713 | { | |
1797a8f6 | 714 | CORE_ADDR struct_ptr = 0; |
2a6228ef RC |
715 | /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
716 | struct_ptr is adjusted for each argument below, so the first | |
717 | argument will end up at sp-36. */ | |
718 | CORE_ADDR param_ptr = 32; | |
79508e1e | 719 | int i; |
2a6228ef RC |
720 | int small_struct = 0; |
721 | ||
79508e1e AC |
722 | for (i = 0; i < nargs; i++) |
723 | { | |
724 | struct value *arg = args[i]; | |
4991999e | 725 | struct type *type = check_typedef (value_type (arg)); |
79508e1e AC |
726 | /* The corresponding parameter that is pushed onto the |
727 | stack, and [possibly] passed in a register. */ | |
728 | char param_val[8]; | |
729 | int param_len; | |
730 | memset (param_val, 0, sizeof param_val); | |
731 | if (TYPE_LENGTH (type) > 8) | |
732 | { | |
733 | /* Large parameter, pass by reference. Store the value | |
734 | in "struct" area and then pass its address. */ | |
735 | param_len = 4; | |
1797a8f6 | 736 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 737 | if (write_pass) |
0fd88904 | 738 | write_memory (struct_end - struct_ptr, value_contents (arg), |
79508e1e | 739 | TYPE_LENGTH (type)); |
1797a8f6 | 740 | store_unsigned_integer (param_val, 4, struct_end - struct_ptr); |
79508e1e AC |
741 | } |
742 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
743 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
744 | { | |
745 | /* Integer value store, right aligned. "unpack_long" | |
746 | takes care of any sign-extension problems. */ | |
747 | param_len = align_up (TYPE_LENGTH (type), 4); | |
748 | store_unsigned_integer (param_val, param_len, | |
749 | unpack_long (type, | |
0fd88904 | 750 | value_contents (arg))); |
79508e1e | 751 | } |
2a6228ef RC |
752 | else if (TYPE_CODE (type) == TYPE_CODE_FLT) |
753 | { | |
754 | /* Floating point value store, right aligned. */ | |
755 | param_len = align_up (TYPE_LENGTH (type), 4); | |
0fd88904 | 756 | memcpy (param_val, value_contents (arg), param_len); |
2a6228ef | 757 | } |
79508e1e AC |
758 | else |
759 | { | |
79508e1e | 760 | param_len = align_up (TYPE_LENGTH (type), 4); |
2a6228ef RC |
761 | |
762 | /* Small struct value are stored right-aligned. */ | |
79508e1e | 763 | memcpy (param_val + param_len - TYPE_LENGTH (type), |
0fd88904 | 764 | value_contents (arg), TYPE_LENGTH (type)); |
2a6228ef RC |
765 | |
766 | /* Structures of size 5, 6 and 7 bytes are special in that | |
767 | the higher-ordered word is stored in the lower-ordered | |
768 | argument, and even though it is a 8-byte quantity the | |
769 | registers need not be 8-byte aligned. */ | |
1b07b470 | 770 | if (param_len > 4 && param_len < 8) |
2a6228ef | 771 | small_struct = 1; |
79508e1e | 772 | } |
2a6228ef | 773 | |
1797a8f6 | 774 | param_ptr += param_len; |
2a6228ef RC |
775 | if (param_len == 8 && !small_struct) |
776 | param_ptr = align_up (param_ptr, 8); | |
777 | ||
778 | /* First 4 non-FP arguments are passed in gr26-gr23. | |
779 | First 4 32-bit FP arguments are passed in fr4L-fr7L. | |
780 | First 2 64-bit FP arguments are passed in fr5 and fr7. | |
781 | ||
782 | The rest go on the stack, starting at sp-36, towards lower | |
783 | addresses. 8-byte arguments must be aligned to a 8-byte | |
784 | stack boundary. */ | |
79508e1e AC |
785 | if (write_pass) |
786 | { | |
1797a8f6 | 787 | write_memory (param_end - param_ptr, param_val, param_len); |
2a6228ef RC |
788 | |
789 | /* There are some cases when we don't know the type | |
790 | expected by the callee (e.g. for variadic functions), so | |
791 | pass the parameters in both general and fp regs. */ | |
792 | if (param_ptr <= 48) | |
79508e1e | 793 | { |
2a6228ef RC |
794 | int grreg = 26 - (param_ptr - 36) / 4; |
795 | int fpLreg = 72 + (param_ptr - 36) / 4 * 2; | |
796 | int fpreg = 74 + (param_ptr - 32) / 8 * 4; | |
797 | ||
798 | regcache_cooked_write (regcache, grreg, param_val); | |
799 | regcache_cooked_write (regcache, fpLreg, param_val); | |
800 | ||
79508e1e | 801 | if (param_len > 4) |
2a6228ef RC |
802 | { |
803 | regcache_cooked_write (regcache, grreg + 1, | |
804 | param_val + 4); | |
805 | ||
806 | regcache_cooked_write (regcache, fpreg, param_val); | |
807 | regcache_cooked_write (regcache, fpreg + 1, | |
808 | param_val + 4); | |
809 | } | |
79508e1e AC |
810 | } |
811 | } | |
812 | } | |
813 | ||
814 | /* Update the various stack pointers. */ | |
815 | if (!write_pass) | |
816 | { | |
2a6228ef | 817 | struct_end = sp + align_up (struct_ptr, 64); |
79508e1e AC |
818 | /* PARAM_PTR already accounts for all the arguments passed |
819 | by the user. However, the ABI mandates minimum stack | |
820 | space allocations for outgoing arguments. The ABI also | |
821 | mandates minimum stack alignments which we must | |
822 | preserve. */ | |
2a6228ef | 823 | param_end = struct_end + align_up (param_ptr, 64); |
79508e1e AC |
824 | } |
825 | } | |
826 | ||
827 | /* If a structure has to be returned, set up register 28 to hold its | |
828 | address */ | |
829 | if (struct_return) | |
9c9acae0 | 830 | regcache_cooked_write_unsigned (regcache, 28, struct_addr); |
79508e1e | 831 | |
e38c262f | 832 | gp = tdep->find_global_pointer (gdbarch, function); |
d49771ef RC |
833 | |
834 | if (gp != 0) | |
9c9acae0 | 835 | regcache_cooked_write_unsigned (regcache, 19, gp); |
d49771ef | 836 | |
79508e1e | 837 | /* Set the return address. */ |
77d18ded RC |
838 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
839 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
79508e1e | 840 | |
c4557624 | 841 | /* Update the Stack Pointer. */ |
34f75cc1 | 842 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
c4557624 | 843 | |
2a6228ef | 844 | return param_end; |
79508e1e AC |
845 | } |
846 | ||
38ca4e0c MK |
847 | /* The 64-bit PA-RISC calling conventions are documented in "64-Bit |
848 | Runtime Architecture for PA-RISC 2.0", which is distributed as part | |
849 | as of the HP-UX Software Transition Kit (STK). This implementation | |
850 | is based on version 3.3, dated October 6, 1997. */ | |
2f690297 | 851 | |
38ca4e0c | 852 | /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ |
2f690297 | 853 | |
38ca4e0c MK |
854 | static int |
855 | hppa64_integral_or_pointer_p (const struct type *type) | |
856 | { | |
857 | switch (TYPE_CODE (type)) | |
858 | { | |
859 | case TYPE_CODE_INT: | |
860 | case TYPE_CODE_BOOL: | |
861 | case TYPE_CODE_CHAR: | |
862 | case TYPE_CODE_ENUM: | |
863 | case TYPE_CODE_RANGE: | |
864 | { | |
865 | int len = TYPE_LENGTH (type); | |
866 | return (len == 1 || len == 2 || len == 4 || len == 8); | |
867 | } | |
868 | case TYPE_CODE_PTR: | |
869 | case TYPE_CODE_REF: | |
870 | return (TYPE_LENGTH (type) == 8); | |
871 | default: | |
872 | break; | |
873 | } | |
874 | ||
875 | return 0; | |
876 | } | |
877 | ||
878 | /* Check whether TYPE is a "Floating Scalar Type". */ | |
879 | ||
880 | static int | |
881 | hppa64_floating_p (const struct type *type) | |
882 | { | |
883 | switch (TYPE_CODE (type)) | |
884 | { | |
885 | case TYPE_CODE_FLT: | |
886 | { | |
887 | int len = TYPE_LENGTH (type); | |
888 | return (len == 4 || len == 8 || len == 16); | |
889 | } | |
890 | default: | |
891 | break; | |
892 | } | |
893 | ||
894 | return 0; | |
895 | } | |
2f690297 | 896 | |
1218e655 RC |
897 | /* If CODE points to a function entry address, try to look up the corresponding |
898 | function descriptor and return its address instead. If CODE is not a | |
899 | function entry address, then just return it unchanged. */ | |
900 | static CORE_ADDR | |
901 | hppa64_convert_code_addr_to_fptr (CORE_ADDR code) | |
902 | { | |
903 | struct obj_section *sec, *opd; | |
904 | ||
905 | sec = find_pc_section (code); | |
906 | ||
907 | if (!sec) | |
908 | return code; | |
909 | ||
910 | /* If CODE is in a data section, assume it's already a fptr. */ | |
911 | if (!(sec->the_bfd_section->flags & SEC_CODE)) | |
912 | return code; | |
913 | ||
914 | ALL_OBJFILE_OSECTIONS (sec->objfile, opd) | |
915 | { | |
916 | if (strcmp (opd->the_bfd_section->name, ".opd") == 0) | |
aded6f54 | 917 | break; |
1218e655 RC |
918 | } |
919 | ||
920 | if (opd < sec->objfile->sections_end) | |
921 | { | |
922 | CORE_ADDR addr; | |
923 | ||
aded6f54 PA |
924 | for (addr = obj_section_addr (opd); |
925 | addr < obj_section_endaddr (opd); | |
926 | addr += 2 * 8) | |
927 | { | |
1218e655 RC |
928 | ULONGEST opdaddr; |
929 | char tmp[8]; | |
930 | ||
931 | if (target_read_memory (addr, tmp, sizeof (tmp))) | |
932 | break; | |
933 | opdaddr = extract_unsigned_integer (tmp, sizeof (tmp)); | |
934 | ||
aded6f54 | 935 | if (opdaddr == code) |
1218e655 RC |
936 | return addr - 16; |
937 | } | |
938 | } | |
939 | ||
940 | return code; | |
941 | } | |
942 | ||
4a302917 | 943 | static CORE_ADDR |
7d9b040b | 944 | hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
2f690297 AC |
945 | struct regcache *regcache, CORE_ADDR bp_addr, |
946 | int nargs, struct value **args, CORE_ADDR sp, | |
947 | int struct_return, CORE_ADDR struct_addr) | |
948 | { | |
38ca4e0c MK |
949 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
950 | int i, offset = 0; | |
951 | CORE_ADDR gp; | |
2f690297 | 952 | |
38ca4e0c MK |
953 | /* "The outgoing parameter area [...] must be aligned at a 16-byte |
954 | boundary." */ | |
955 | sp = align_up (sp, 16); | |
2f690297 | 956 | |
38ca4e0c MK |
957 | for (i = 0; i < nargs; i++) |
958 | { | |
959 | struct value *arg = args[i]; | |
960 | struct type *type = value_type (arg); | |
961 | int len = TYPE_LENGTH (type); | |
0fd88904 | 962 | const bfd_byte *valbuf; |
1218e655 | 963 | bfd_byte fptrbuf[8]; |
38ca4e0c | 964 | int regnum; |
2f690297 | 965 | |
38ca4e0c MK |
966 | /* "Each parameter begins on a 64-bit (8-byte) boundary." */ |
967 | offset = align_up (offset, 8); | |
77d18ded | 968 | |
38ca4e0c | 969 | if (hppa64_integral_or_pointer_p (type)) |
2f690297 | 970 | { |
38ca4e0c MK |
971 | /* "Integral scalar parameters smaller than 64 bits are |
972 | padded on the left (i.e., the value is in the | |
973 | least-significant bits of the 64-bit storage unit, and | |
974 | the high-order bits are undefined)." Therefore we can | |
975 | safely sign-extend them. */ | |
976 | if (len < 8) | |
449e1137 | 977 | { |
38ca4e0c MK |
978 | arg = value_cast (builtin_type_int64, arg); |
979 | len = 8; | |
980 | } | |
981 | } | |
982 | else if (hppa64_floating_p (type)) | |
983 | { | |
984 | if (len > 8) | |
985 | { | |
986 | /* "Quad-precision (128-bit) floating-point scalar | |
987 | parameters are aligned on a 16-byte boundary." */ | |
988 | offset = align_up (offset, 16); | |
989 | ||
990 | /* "Double-extended- and quad-precision floating-point | |
991 | parameters within the first 64 bytes of the parameter | |
992 | list are always passed in general registers." */ | |
449e1137 AC |
993 | } |
994 | else | |
995 | { | |
38ca4e0c | 996 | if (len == 4) |
449e1137 | 997 | { |
38ca4e0c MK |
998 | /* "Single-precision (32-bit) floating-point scalar |
999 | parameters are padded on the left with 32 bits of | |
1000 | garbage (i.e., the floating-point value is in the | |
1001 | least-significant 32 bits of a 64-bit storage | |
1002 | unit)." */ | |
1003 | offset += 4; | |
449e1137 | 1004 | } |
38ca4e0c MK |
1005 | |
1006 | /* "Single- and double-precision floating-point | |
1007 | parameters in this area are passed according to the | |
1008 | available formal parameter information in a function | |
1009 | prototype. [...] If no prototype is in scope, | |
1010 | floating-point parameters must be passed both in the | |
1011 | corresponding general registers and in the | |
1012 | corresponding floating-point registers." */ | |
1013 | regnum = HPPA64_FP4_REGNUM + offset / 8; | |
1014 | ||
1015 | if (regnum < HPPA64_FP4_REGNUM + 8) | |
449e1137 | 1016 | { |
38ca4e0c MK |
1017 | /* "Single-precision floating-point parameters, when |
1018 | passed in floating-point registers, are passed in | |
1019 | the right halves of the floating point registers; | |
1020 | the left halves are unused." */ | |
1021 | regcache_cooked_write_part (regcache, regnum, offset % 8, | |
0fd88904 | 1022 | len, value_contents (arg)); |
449e1137 AC |
1023 | } |
1024 | } | |
2f690297 | 1025 | } |
38ca4e0c | 1026 | else |
2f690297 | 1027 | { |
38ca4e0c MK |
1028 | if (len > 8) |
1029 | { | |
1030 | /* "Aggregates larger than 8 bytes are aligned on a | |
1031 | 16-byte boundary, possibly leaving an unused argument | |
1032 | slot, which is filled with garbage. If necessary, | |
1033 | they are padded on the right (with garbage), to a | |
1034 | multiple of 8 bytes." */ | |
1035 | offset = align_up (offset, 16); | |
1036 | } | |
1037 | } | |
1038 | ||
1218e655 RC |
1039 | /* If we are passing a function pointer, make sure we pass a function |
1040 | descriptor instead of the function entry address. */ | |
1041 | if (TYPE_CODE (type) == TYPE_CODE_PTR | |
1042 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
1043 | { | |
1044 | ULONGEST codeptr, fptr; | |
1045 | ||
1046 | codeptr = unpack_long (type, value_contents (arg)); | |
1047 | fptr = hppa64_convert_code_addr_to_fptr (codeptr); | |
1048 | store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr); | |
1049 | valbuf = fptrbuf; | |
1050 | } | |
1051 | else | |
1052 | { | |
1053 | valbuf = value_contents (arg); | |
1054 | } | |
1055 | ||
38ca4e0c | 1056 | /* Always store the argument in memory. */ |
1218e655 | 1057 | write_memory (sp + offset, valbuf, len); |
38ca4e0c | 1058 | |
38ca4e0c MK |
1059 | regnum = HPPA_ARG0_REGNUM - offset / 8; |
1060 | while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) | |
1061 | { | |
1062 | regcache_cooked_write_part (regcache, regnum, | |
1063 | offset % 8, min (len, 8), valbuf); | |
1064 | offset += min (len, 8); | |
1065 | valbuf += min (len, 8); | |
1066 | len -= min (len, 8); | |
1067 | regnum--; | |
2f690297 | 1068 | } |
38ca4e0c MK |
1069 | |
1070 | offset += len; | |
2f690297 AC |
1071 | } |
1072 | ||
38ca4e0c MK |
1073 | /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ |
1074 | regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); | |
1075 | ||
1076 | /* Allocate the outgoing parameter area. Make sure the outgoing | |
1077 | parameter area is multiple of 16 bytes in length. */ | |
1078 | sp += max (align_up (offset, 16), 64); | |
1079 | ||
1080 | /* Allocate 32-bytes of scratch space. The documentation doesn't | |
1081 | mention this, but it seems to be needed. */ | |
1082 | sp += 32; | |
1083 | ||
1084 | /* Allocate the frame marker area. */ | |
1085 | sp += 16; | |
1086 | ||
1087 | /* If a structure has to be returned, set up GR 28 (%ret0) to hold | |
1088 | its address. */ | |
2f690297 | 1089 | if (struct_return) |
38ca4e0c | 1090 | regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); |
2f690297 | 1091 | |
38ca4e0c | 1092 | /* Set up GR27 (%dp) to hold the global pointer (gp). */ |
e38c262f | 1093 | gp = tdep->find_global_pointer (gdbarch, function); |
77d18ded | 1094 | if (gp != 0) |
38ca4e0c | 1095 | regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); |
77d18ded | 1096 | |
38ca4e0c | 1097 | /* Set up GR2 (%rp) to hold the return pointer (rp). */ |
77d18ded RC |
1098 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
1099 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
2f690297 | 1100 | |
38ca4e0c MK |
1101 | /* Set up GR30 to hold the stack pointer (sp). */ |
1102 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); | |
c4557624 | 1103 | |
38ca4e0c | 1104 | return sp; |
2f690297 | 1105 | } |
38ca4e0c | 1106 | \f |
2f690297 | 1107 | |
08a27113 MK |
1108 | /* Handle 32/64-bit struct return conventions. */ |
1109 | ||
1110 | static enum return_value_convention | |
c055b101 | 1111 | hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type, |
08a27113 | 1112 | struct type *type, struct regcache *regcache, |
e127f0db | 1113 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1114 | { |
1115 | if (TYPE_LENGTH (type) <= 2 * 4) | |
1116 | { | |
1117 | /* The value always lives in the right hand end of the register | |
1118 | (or register pair)? */ | |
1119 | int b; | |
1120 | int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; | |
1121 | int part = TYPE_LENGTH (type) % 4; | |
1122 | /* The left hand register contains only part of the value, | |
1123 | transfer that first so that the rest can be xfered as entire | |
1124 | 4-byte registers. */ | |
1125 | if (part > 0) | |
1126 | { | |
1127 | if (readbuf != NULL) | |
1128 | regcache_cooked_read_part (regcache, reg, 4 - part, | |
1129 | part, readbuf); | |
1130 | if (writebuf != NULL) | |
1131 | regcache_cooked_write_part (regcache, reg, 4 - part, | |
1132 | part, writebuf); | |
1133 | reg++; | |
1134 | } | |
1135 | /* Now transfer the remaining register values. */ | |
1136 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
1137 | { | |
1138 | if (readbuf != NULL) | |
e127f0db | 1139 | regcache_cooked_read (regcache, reg, readbuf + b); |
08a27113 | 1140 | if (writebuf != NULL) |
e127f0db | 1141 | regcache_cooked_write (regcache, reg, writebuf + b); |
08a27113 MK |
1142 | reg++; |
1143 | } | |
1144 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1145 | } | |
1146 | else | |
1147 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1148 | } | |
1149 | ||
1150 | static enum return_value_convention | |
c055b101 | 1151 | hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type, |
08a27113 | 1152 | struct type *type, struct regcache *regcache, |
e127f0db | 1153 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1154 | { |
1155 | int len = TYPE_LENGTH (type); | |
1156 | int regnum, offset; | |
1157 | ||
1158 | if (len > 16) | |
1159 | { | |
1160 | /* All return values larget than 128 bits must be aggregate | |
1161 | return values. */ | |
9738b034 MK |
1162 | gdb_assert (!hppa64_integral_or_pointer_p (type)); |
1163 | gdb_assert (!hppa64_floating_p (type)); | |
08a27113 MK |
1164 | |
1165 | /* "Aggregate return values larger than 128 bits are returned in | |
1166 | a buffer allocated by the caller. The address of the buffer | |
1167 | must be passed in GR 28." */ | |
1168 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1169 | } | |
1170 | ||
1171 | if (hppa64_integral_or_pointer_p (type)) | |
1172 | { | |
1173 | /* "Integral return values are returned in GR 28. Values | |
1174 | smaller than 64 bits are padded on the left (with garbage)." */ | |
1175 | regnum = HPPA_RET0_REGNUM; | |
1176 | offset = 8 - len; | |
1177 | } | |
1178 | else if (hppa64_floating_p (type)) | |
1179 | { | |
1180 | if (len > 8) | |
1181 | { | |
1182 | /* "Double-extended- and quad-precision floating-point | |
1183 | values are returned in GRs 28 and 29. The sign, | |
1184 | exponent, and most-significant bits of the mantissa are | |
1185 | returned in GR 28; the least-significant bits of the | |
1186 | mantissa are passed in GR 29. For double-extended | |
1187 | precision values, GR 29 is padded on the right with 48 | |
1188 | bits of garbage." */ | |
1189 | regnum = HPPA_RET0_REGNUM; | |
1190 | offset = 0; | |
1191 | } | |
1192 | else | |
1193 | { | |
1194 | /* "Single-precision and double-precision floating-point | |
1195 | return values are returned in FR 4R (single precision) or | |
1196 | FR 4 (double-precision)." */ | |
1197 | regnum = HPPA64_FP4_REGNUM; | |
1198 | offset = 8 - len; | |
1199 | } | |
1200 | } | |
1201 | else | |
1202 | { | |
1203 | /* "Aggregate return values up to 64 bits in size are returned | |
1204 | in GR 28. Aggregates smaller than 64 bits are left aligned | |
1205 | in the register; the pad bits on the right are undefined." | |
1206 | ||
1207 | "Aggregate return values between 65 and 128 bits are returned | |
1208 | in GRs 28 and 29. The first 64 bits are placed in GR 28, and | |
1209 | the remaining bits are placed, left aligned, in GR 29. The | |
1210 | pad bits on the right of GR 29 (if any) are undefined." */ | |
1211 | regnum = HPPA_RET0_REGNUM; | |
1212 | offset = 0; | |
1213 | } | |
1214 | ||
1215 | if (readbuf) | |
1216 | { | |
08a27113 MK |
1217 | while (len > 0) |
1218 | { | |
1219 | regcache_cooked_read_part (regcache, regnum, offset, | |
e127f0db MK |
1220 | min (len, 8), readbuf); |
1221 | readbuf += min (len, 8); | |
08a27113 MK |
1222 | len -= min (len, 8); |
1223 | regnum++; | |
1224 | } | |
1225 | } | |
1226 | ||
1227 | if (writebuf) | |
1228 | { | |
08a27113 MK |
1229 | while (len > 0) |
1230 | { | |
1231 | regcache_cooked_write_part (regcache, regnum, offset, | |
e127f0db MK |
1232 | min (len, 8), writebuf); |
1233 | writebuf += min (len, 8); | |
08a27113 MK |
1234 | len -= min (len, 8); |
1235 | regnum++; | |
1236 | } | |
1237 | } | |
1238 | ||
1239 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1240 | } | |
1241 | \f | |
1242 | ||
d49771ef | 1243 | static CORE_ADDR |
a7aad9aa | 1244 | hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
d49771ef RC |
1245 | struct target_ops *targ) |
1246 | { | |
1247 | if (addr & 2) | |
1248 | { | |
0dfff4cb | 1249 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
a7aad9aa | 1250 | CORE_ADDR plabel = addr & ~3; |
0dfff4cb | 1251 | return read_memory_typed_address (plabel, func_ptr_type); |
d49771ef RC |
1252 | } |
1253 | ||
1254 | return addr; | |
1255 | } | |
1256 | ||
1797a8f6 AC |
1257 | static CORE_ADDR |
1258 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1259 | { | |
1260 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
1261 | and not _bit_)! */ | |
1262 | return align_up (addr, 64); | |
1263 | } | |
1264 | ||
2f690297 AC |
1265 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
1266 | ||
1267 | static CORE_ADDR | |
1797a8f6 | 1268 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
1269 | { |
1270 | /* Just always 16-byte align. */ | |
1271 | return align_up (addr, 16); | |
1272 | } | |
1273 | ||
cc72850f | 1274 | CORE_ADDR |
61a1198a | 1275 | hppa_read_pc (struct regcache *regcache) |
c906108c | 1276 | { |
cc72850f | 1277 | ULONGEST ipsw; |
61a1198a | 1278 | ULONGEST pc; |
c906108c | 1279 | |
61a1198a UW |
1280 | regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw); |
1281 | regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc); | |
fe46cd3a RC |
1282 | |
1283 | /* If the current instruction is nullified, then we are effectively | |
1284 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
1285 | there. This is needed when single stepping; if the nullified |
1286 | instruction is on a different line, we don't want GDB to think | |
1287 | we've stepped onto that line. */ | |
fe46cd3a RC |
1288 | if (ipsw & 0x00200000) |
1289 | pc -= 4; | |
1290 | ||
cc72850f | 1291 | return pc & ~0x3; |
c906108c SS |
1292 | } |
1293 | ||
cc72850f | 1294 | void |
61a1198a | 1295 | hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) |
c906108c | 1296 | { |
61a1198a UW |
1297 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); |
1298 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); | |
c906108c SS |
1299 | } |
1300 | ||
1301 | /* return the alignment of a type in bytes. Structures have the maximum | |
1302 | alignment required by their fields. */ | |
1303 | ||
1304 | static int | |
fba45db2 | 1305 | hppa_alignof (struct type *type) |
c906108c SS |
1306 | { |
1307 | int max_align, align, i; | |
1308 | CHECK_TYPEDEF (type); | |
1309 | switch (TYPE_CODE (type)) | |
1310 | { | |
1311 | case TYPE_CODE_PTR: | |
1312 | case TYPE_CODE_INT: | |
1313 | case TYPE_CODE_FLT: | |
1314 | return TYPE_LENGTH (type); | |
1315 | case TYPE_CODE_ARRAY: | |
262452ec | 1316 | return hppa_alignof (TYPE_INDEX_TYPE (type)); |
c906108c SS |
1317 | case TYPE_CODE_STRUCT: |
1318 | case TYPE_CODE_UNION: | |
1319 | max_align = 1; | |
1320 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
1321 | { | |
1322 | /* Bit fields have no real alignment. */ | |
1323 | /* if (!TYPE_FIELD_BITPOS (type, i)) */ | |
c5aa993b | 1324 | if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */ |
c906108c SS |
1325 | { |
1326 | align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); | |
1327 | max_align = max (max_align, align); | |
1328 | } | |
1329 | } | |
1330 | return max_align; | |
1331 | default: | |
1332 | return 4; | |
1333 | } | |
1334 | } | |
1335 | ||
c906108c SS |
1336 | /* For the given instruction (INST), return any adjustment it makes |
1337 | to the stack pointer or zero for no adjustment. | |
1338 | ||
1339 | This only handles instructions commonly found in prologues. */ | |
1340 | ||
1341 | static int | |
fba45db2 | 1342 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
1343 | { |
1344 | /* This must persist across calls. */ | |
1345 | static int save_high21; | |
1346 | ||
1347 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1348 | if ((inst & 0xffffc000) == 0x37de0000) | |
abc485a1 | 1349 | return hppa_extract_14 (inst); |
c906108c SS |
1350 | |
1351 | /* stwm X,D(sp) */ | |
1352 | if ((inst & 0xffe00000) == 0x6fc00000) | |
abc485a1 | 1353 | return hppa_extract_14 (inst); |
c906108c | 1354 | |
104c1213 JM |
1355 | /* std,ma X,D(sp) */ |
1356 | if ((inst & 0xffe00008) == 0x73c00008) | |
d4f3574e | 1357 | return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 1358 | |
e22b26cb | 1359 | /* addil high21,%r30; ldo low11,(%r1),%r30) |
c906108c | 1360 | save high bits in save_high21 for later use. */ |
e22b26cb | 1361 | if ((inst & 0xffe00000) == 0x2bc00000) |
c906108c | 1362 | { |
abc485a1 | 1363 | save_high21 = hppa_extract_21 (inst); |
c906108c SS |
1364 | return 0; |
1365 | } | |
1366 | ||
1367 | if ((inst & 0xffff0000) == 0x343e0000) | |
abc485a1 | 1368 | return save_high21 + hppa_extract_14 (inst); |
c906108c SS |
1369 | |
1370 | /* fstws as used by the HP compilers. */ | |
1371 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
abc485a1 | 1372 | return hppa_extract_5_load (inst); |
c906108c SS |
1373 | |
1374 | /* No adjustment. */ | |
1375 | return 0; | |
1376 | } | |
1377 | ||
1378 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1379 | ||
1380 | static int | |
fba45db2 | 1381 | is_branch (unsigned long inst) |
c906108c SS |
1382 | { |
1383 | switch (inst >> 26) | |
1384 | { | |
1385 | case 0x20: | |
1386 | case 0x21: | |
1387 | case 0x22: | |
1388 | case 0x23: | |
7be570e7 | 1389 | case 0x27: |
c906108c SS |
1390 | case 0x28: |
1391 | case 0x29: | |
1392 | case 0x2a: | |
1393 | case 0x2b: | |
7be570e7 | 1394 | case 0x2f: |
c906108c SS |
1395 | case 0x30: |
1396 | case 0x31: | |
1397 | case 0x32: | |
1398 | case 0x33: | |
1399 | case 0x38: | |
1400 | case 0x39: | |
1401 | case 0x3a: | |
7be570e7 | 1402 | case 0x3b: |
c906108c SS |
1403 | return 1; |
1404 | ||
1405 | default: | |
1406 | return 0; | |
1407 | } | |
1408 | } | |
1409 | ||
1410 | /* Return the register number for a GR which is saved by INST or | |
1411 | zero it INST does not save a GR. */ | |
1412 | ||
1413 | static int | |
fba45db2 | 1414 | inst_saves_gr (unsigned long inst) |
c906108c SS |
1415 | { |
1416 | /* Does it look like a stw? */ | |
7be570e7 JM |
1417 | if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b |
1418 | || (inst >> 26) == 0x1f | |
1419 | || ((inst >> 26) == 0x1f | |
1420 | && ((inst >> 6) == 0xa))) | |
abc485a1 | 1421 | return hppa_extract_5R_store (inst); |
7be570e7 JM |
1422 | |
1423 | /* Does it look like a std? */ | |
1424 | if ((inst >> 26) == 0x1c | |
1425 | || ((inst >> 26) == 0x03 | |
1426 | && ((inst >> 6) & 0xf) == 0xb)) | |
abc485a1 | 1427 | return hppa_extract_5R_store (inst); |
c906108c SS |
1428 | |
1429 | /* Does it look like a stwm? GCC & HPC may use this in prologues. */ | |
1430 | if ((inst >> 26) == 0x1b) | |
abc485a1 | 1431 | return hppa_extract_5R_store (inst); |
c906108c SS |
1432 | |
1433 | /* Does it look like sth or stb? HPC versions 9.0 and later use these | |
1434 | too. */ | |
7be570e7 JM |
1435 | if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18 |
1436 | || ((inst >> 26) == 0x3 | |
1437 | && (((inst >> 6) & 0xf) == 0x8 | |
1438 | || (inst >> 6) & 0xf) == 0x9)) | |
abc485a1 | 1439 | return hppa_extract_5R_store (inst); |
c5aa993b | 1440 | |
c906108c SS |
1441 | return 0; |
1442 | } | |
1443 | ||
1444 | /* Return the register number for a FR which is saved by INST or | |
1445 | zero it INST does not save a FR. | |
1446 | ||
1447 | Note we only care about full 64bit register stores (that's the only | |
1448 | kind of stores the prologue will use). | |
1449 | ||
1450 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
1451 | ||
1452 | static int | |
fba45db2 | 1453 | inst_saves_fr (unsigned long inst) |
c906108c | 1454 | { |
7be570e7 | 1455 | /* is this an FSTD ? */ |
c906108c | 1456 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
abc485a1 | 1457 | return hppa_extract_5r_store (inst); |
7be570e7 | 1458 | if ((inst & 0xfc000002) == 0x70000002) |
abc485a1 | 1459 | return hppa_extract_5R_store (inst); |
7be570e7 | 1460 | /* is this an FSTW ? */ |
c906108c | 1461 | if ((inst & 0xfc00df80) == 0x24001200) |
abc485a1 | 1462 | return hppa_extract_5r_store (inst); |
7be570e7 | 1463 | if ((inst & 0xfc000002) == 0x7c000000) |
abc485a1 | 1464 | return hppa_extract_5R_store (inst); |
c906108c SS |
1465 | return 0; |
1466 | } | |
1467 | ||
1468 | /* Advance PC across any function entry prologue instructions | |
1469 | to reach some "real" code. | |
1470 | ||
1471 | Use information in the unwind table to determine what exactly should | |
1472 | be in the prologue. */ | |
1473 | ||
1474 | ||
a71f8c30 | 1475 | static CORE_ADDR |
be8626e0 MD |
1476 | skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, |
1477 | int stop_before_branch) | |
c906108c SS |
1478 | { |
1479 | char buf[4]; | |
1480 | CORE_ADDR orig_pc = pc; | |
1481 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1482 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
1483 | struct unwind_table_entry *u; | |
a71f8c30 | 1484 | int final_iteration; |
c906108c SS |
1485 | |
1486 | restart_gr = 0; | |
1487 | restart_fr = 0; | |
1488 | ||
1489 | restart: | |
1490 | u = find_unwind_entry (pc); | |
1491 | if (!u) | |
1492 | return pc; | |
1493 | ||
c5aa993b | 1494 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
1495 | if ((pc & ~0x3) != u->region_start) |
1496 | return pc; | |
1497 | ||
1498 | /* This is how much of a frame adjustment we need to account for. */ | |
1499 | stack_remaining = u->Total_frame_size << 3; | |
1500 | ||
1501 | /* Magic register saves we want to know about. */ | |
1502 | save_rp = u->Save_RP; | |
1503 | save_sp = u->Save_SP; | |
1504 | ||
1505 | /* An indication that args may be stored into the stack. Unfortunately | |
1506 | the HPUX compilers tend to set this in cases where no args were | |
1507 | stored too!. */ | |
1508 | args_stored = 1; | |
1509 | ||
1510 | /* Turn the Entry_GR field into a bitmask. */ | |
1511 | save_gr = 0; | |
1512 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1513 | { | |
1514 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1515 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
c906108c SS |
1516 | continue; |
1517 | ||
1518 | save_gr |= (1 << i); | |
1519 | } | |
1520 | save_gr &= ~restart_gr; | |
1521 | ||
1522 | /* Turn the Entry_FR field into a bitmask too. */ | |
1523 | save_fr = 0; | |
1524 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1525 | save_fr |= (1 << i); | |
1526 | save_fr &= ~restart_fr; | |
1527 | ||
a71f8c30 RC |
1528 | final_iteration = 0; |
1529 | ||
c906108c SS |
1530 | /* Loop until we find everything of interest or hit a branch. |
1531 | ||
1532 | For unoptimized GCC code and for any HP CC code this will never ever | |
1533 | examine any user instructions. | |
1534 | ||
1535 | For optimzied GCC code we're faced with problems. GCC will schedule | |
1536 | its prologue and make prologue instructions available for delay slot | |
1537 | filling. The end result is user code gets mixed in with the prologue | |
1538 | and a prologue instruction may be in the delay slot of the first branch | |
1539 | or call. | |
1540 | ||
1541 | Some unexpected things are expected with debugging optimized code, so | |
1542 | we allow this routine to walk past user instructions in optimized | |
1543 | GCC code. */ | |
1544 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
1545 | || args_stored) | |
1546 | { | |
1547 | unsigned int reg_num; | |
1548 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1549 | unsigned long old_save_rp, old_save_sp, next_inst; | |
1550 | ||
1551 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 1552 | (only for HPC). */ |
c906108c SS |
1553 | old_save_gr = save_gr; |
1554 | old_save_fr = save_fr; | |
1555 | old_save_rp = save_rp; | |
1556 | old_save_sp = save_sp; | |
1557 | old_stack_remaining = stack_remaining; | |
1558 | ||
8defab1a | 1559 | status = target_read_memory (pc, buf, 4); |
c906108c | 1560 | inst = extract_unsigned_integer (buf, 4); |
c5aa993b | 1561 | |
c906108c SS |
1562 | /* Yow! */ |
1563 | if (status != 0) | |
1564 | return pc; | |
1565 | ||
1566 | /* Note the interesting effects of this instruction. */ | |
1567 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1568 | ||
7be570e7 JM |
1569 | /* There are limited ways to store the return pointer into the |
1570 | stack. */ | |
c4c79048 | 1571 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) |
c906108c SS |
1572 | save_rp = 0; |
1573 | ||
104c1213 | 1574 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 1575 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
1576 | if ((inst & 0xffffc000) == 0x6fc10000 |
1577 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
1578 | save_sp = 0; |
1579 | ||
6426a772 JM |
1580 | /* Are we loading some register with an offset from the argument |
1581 | pointer? */ | |
1582 | if ((inst & 0xffe00000) == 0x37a00000 | |
1583 | || (inst & 0xffffffe0) == 0x081d0240) | |
1584 | { | |
1585 | pc += 4; | |
1586 | continue; | |
1587 | } | |
1588 | ||
c906108c SS |
1589 | /* Account for general and floating-point register saves. */ |
1590 | reg_num = inst_saves_gr (inst); | |
1591 | save_gr &= ~(1 << reg_num); | |
1592 | ||
1593 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1594 | Unfortunately args_stored only tells us that some arguments |
1595 | where stored into the stack. Not how many or what kind! | |
c906108c | 1596 | |
c5aa993b JM |
1597 | This is a kludge as on the HP compiler sets this bit and it |
1598 | never does prologue scheduling. So once we see one, skip past | |
1599 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 1600 | |
c5aa993b JM |
1601 | FIXME. Can still die if we have a mix of GR and FR argument |
1602 | stores! */ | |
be8626e0 | 1603 | if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1604 | && reg_num <= 26) |
c906108c | 1605 | { |
be8626e0 | 1606 | while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1607 | && reg_num <= 26) |
c906108c SS |
1608 | { |
1609 | pc += 4; | |
8defab1a | 1610 | status = target_read_memory (pc, buf, 4); |
c906108c SS |
1611 | inst = extract_unsigned_integer (buf, 4); |
1612 | if (status != 0) | |
1613 | return pc; | |
1614 | reg_num = inst_saves_gr (inst); | |
1615 | } | |
1616 | args_stored = 0; | |
1617 | continue; | |
1618 | } | |
1619 | ||
1620 | reg_num = inst_saves_fr (inst); | |
1621 | save_fr &= ~(1 << reg_num); | |
1622 | ||
8defab1a | 1623 | status = target_read_memory (pc + 4, buf, 4); |
c906108c | 1624 | next_inst = extract_unsigned_integer (buf, 4); |
c5aa993b | 1625 | |
c906108c SS |
1626 | /* Yow! */ |
1627 | if (status != 0) | |
1628 | return pc; | |
1629 | ||
1630 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 1631 | save. */ |
c906108c SS |
1632 | if ((inst & 0xfc000000) == 0x34000000 |
1633 | && inst_saves_fr (next_inst) >= 4 | |
819844ad | 1634 | && inst_saves_fr (next_inst) |
be8626e0 | 1635 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1636 | { |
1637 | /* So we drop into the code below in a reasonable state. */ | |
1638 | reg_num = inst_saves_fr (next_inst); | |
1639 | pc -= 4; | |
1640 | } | |
1641 | ||
1642 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1643 | This is a kludge as on the HP compiler sets this bit and it |
1644 | never does prologue scheduling. So once we see one, skip past | |
1645 | all of them. */ | |
819844ad | 1646 | if (reg_num >= 4 |
be8626e0 | 1647 | && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c | 1648 | { |
819844ad UW |
1649 | while (reg_num >= 4 |
1650 | && reg_num | |
be8626e0 | 1651 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1652 | { |
1653 | pc += 8; | |
8defab1a | 1654 | status = target_read_memory (pc, buf, 4); |
c906108c SS |
1655 | inst = extract_unsigned_integer (buf, 4); |
1656 | if (status != 0) | |
1657 | return pc; | |
1658 | if ((inst & 0xfc000000) != 0x34000000) | |
1659 | break; | |
8defab1a | 1660 | status = target_read_memory (pc + 4, buf, 4); |
c906108c SS |
1661 | next_inst = extract_unsigned_integer (buf, 4); |
1662 | if (status != 0) | |
1663 | return pc; | |
1664 | reg_num = inst_saves_fr (next_inst); | |
1665 | } | |
1666 | args_stored = 0; | |
1667 | continue; | |
1668 | } | |
1669 | ||
1670 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 1671 | instruction is in the delay slot of the first call/branch. */ |
a71f8c30 | 1672 | if (is_branch (inst) && stop_before_branch) |
c906108c SS |
1673 | break; |
1674 | ||
1675 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
1676 | arguments were stored into the stack (boo hiss). This could |
1677 | cause this code to then skip a bunch of user insns (up to the | |
1678 | first branch). | |
1679 | ||
1680 | To combat this we try to identify when args_stored was bogusly | |
1681 | set and clear it. We only do this when args_stored is nonzero, | |
1682 | all other resources are accounted for, and nothing changed on | |
1683 | this pass. */ | |
c906108c | 1684 | if (args_stored |
c5aa993b | 1685 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
1686 | && old_save_gr == save_gr && old_save_fr == save_fr |
1687 | && old_save_rp == save_rp && old_save_sp == save_sp | |
1688 | && old_stack_remaining == stack_remaining) | |
1689 | break; | |
c5aa993b | 1690 | |
c906108c SS |
1691 | /* Bump the PC. */ |
1692 | pc += 4; | |
a71f8c30 RC |
1693 | |
1694 | /* !stop_before_branch, so also look at the insn in the delay slot | |
1695 | of the branch. */ | |
1696 | if (final_iteration) | |
1697 | break; | |
1698 | if (is_branch (inst)) | |
1699 | final_iteration = 1; | |
c906108c SS |
1700 | } |
1701 | ||
1702 | /* We've got a tenative location for the end of the prologue. However | |
1703 | because of limitations in the unwind descriptor mechanism we may | |
1704 | have went too far into user code looking for the save of a register | |
1705 | that does not exist. So, if there registers we expected to be saved | |
1706 | but never were, mask them out and restart. | |
1707 | ||
1708 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 1709 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
1710 | { |
1711 | pc = orig_pc; | |
1712 | restart_gr = save_gr; | |
1713 | restart_fr = save_fr; | |
1714 | goto restart; | |
1715 | } | |
1716 | ||
1717 | return pc; | |
1718 | } | |
1719 | ||
1720 | ||
7be570e7 JM |
1721 | /* Return the address of the PC after the last prologue instruction if |
1722 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
1723 | |
1724 | static CORE_ADDR | |
fba45db2 | 1725 | after_prologue (CORE_ADDR pc) |
c906108c SS |
1726 | { |
1727 | struct symtab_and_line sal; | |
1728 | CORE_ADDR func_addr, func_end; | |
1729 | struct symbol *f; | |
1730 | ||
7be570e7 JM |
1731 | /* If we can not find the symbol in the partial symbol table, then |
1732 | there is no hope we can determine the function's start address | |
1733 | with this code. */ | |
c906108c | 1734 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 1735 | return 0; |
c906108c | 1736 | |
7be570e7 | 1737 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
1738 | sal = find_pc_line (func_addr, 0); |
1739 | ||
7be570e7 JM |
1740 | /* There are only two cases to consider. First, the end of the source line |
1741 | is within the function bounds. In that case we return the end of the | |
1742 | source line. Second is the end of the source line extends beyond the | |
1743 | bounds of the current function. We need to use the slow code to | |
1744 | examine instructions in that case. | |
c906108c | 1745 | |
7be570e7 JM |
1746 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
1747 | the wrong thing to do. In fact, it should be entirely possible for this | |
1748 | function to always return zero since the slow instruction scanning code | |
1749 | is supposed to *always* work. If it does not, then it is a bug. */ | |
1750 | if (sal.end < func_end) | |
1751 | return sal.end; | |
c5aa993b | 1752 | else |
7be570e7 | 1753 | return 0; |
c906108c SS |
1754 | } |
1755 | ||
1756 | /* To skip prologues, I use this predicate. Returns either PC itself | |
1757 | if the code at PC does not look like a function prologue; otherwise | |
a71f8c30 RC |
1758 | returns an address that (if we're lucky) follows the prologue. |
1759 | ||
1760 | hppa_skip_prologue is called by gdb to place a breakpoint in a function. | |
1761 | It doesn't necessarily skips all the insns in the prologue. In fact | |
1762 | we might not want to skip all the insns because a prologue insn may | |
1763 | appear in the delay slot of the first branch, and we don't want to | |
1764 | skip over the branch in that case. */ | |
c906108c | 1765 | |
8d153463 | 1766 | static CORE_ADDR |
6093d2eb | 1767 | hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1768 | { |
c5aa993b JM |
1769 | unsigned long inst; |
1770 | int offset; | |
1771 | CORE_ADDR post_prologue_pc; | |
1772 | char buf[4]; | |
c906108c | 1773 | |
c5aa993b JM |
1774 | /* See if we can determine the end of the prologue via the symbol table. |
1775 | If so, then return either PC, or the PC after the prologue, whichever | |
1776 | is greater. */ | |
c906108c | 1777 | |
c5aa993b | 1778 | post_prologue_pc = after_prologue (pc); |
c906108c | 1779 | |
7be570e7 JM |
1780 | /* If after_prologue returned a useful address, then use it. Else |
1781 | fall back on the instruction skipping code. | |
1782 | ||
1783 | Some folks have claimed this causes problems because the breakpoint | |
1784 | may be the first instruction of the prologue. If that happens, then | |
1785 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b JM |
1786 | if (post_prologue_pc != 0) |
1787 | return max (pc, post_prologue_pc); | |
c5aa993b | 1788 | else |
be8626e0 | 1789 | return (skip_prologue_hard_way (gdbarch, pc, 1)); |
c906108c SS |
1790 | } |
1791 | ||
29d375ac | 1792 | /* Return an unwind entry that falls within the frame's code block. */ |
227e86ad | 1793 | |
29d375ac | 1794 | static struct unwind_table_entry * |
227e86ad | 1795 | hppa_find_unwind_entry_in_block (struct frame_info *this_frame) |
29d375ac | 1796 | { |
227e86ad | 1797 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
93d42b30 DJ |
1798 | |
1799 | /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the | |
ad1193e7 | 1800 | result of get_frame_address_in_block implies a problem. |
93d42b30 | 1801 | The bits should have been removed earlier, before the return |
eb2f4a08 | 1802 | value of frame_pc_unwind. That might be happening already; |
93d42b30 DJ |
1803 | if it isn't, it should be fixed. Then this call can be |
1804 | removed. */ | |
227e86ad | 1805 | pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); |
29d375ac RC |
1806 | return find_unwind_entry (pc); |
1807 | } | |
1808 | ||
26d08f08 AC |
1809 | struct hppa_frame_cache |
1810 | { | |
1811 | CORE_ADDR base; | |
1812 | struct trad_frame_saved_reg *saved_regs; | |
1813 | }; | |
1814 | ||
1815 | static struct hppa_frame_cache * | |
227e86ad | 1816 | hppa_frame_cache (struct frame_info *this_frame, void **this_cache) |
26d08f08 | 1817 | { |
227e86ad | 1818 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
26d08f08 AC |
1819 | struct hppa_frame_cache *cache; |
1820 | long saved_gr_mask; | |
1821 | long saved_fr_mask; | |
1822 | CORE_ADDR this_sp; | |
1823 | long frame_size; | |
1824 | struct unwind_table_entry *u; | |
9f7194c3 | 1825 | CORE_ADDR prologue_end; |
50b2f48a | 1826 | int fp_in_r1 = 0; |
26d08f08 AC |
1827 | int i; |
1828 | ||
369aa520 RC |
1829 | if (hppa_debug) |
1830 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", | |
227e86ad | 1831 | frame_relative_level(this_frame)); |
369aa520 | 1832 | |
26d08f08 | 1833 | if ((*this_cache) != NULL) |
369aa520 RC |
1834 | { |
1835 | if (hppa_debug) | |
1836 | fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }", | |
1837 | paddr_nz (((struct hppa_frame_cache *)*this_cache)->base)); | |
1838 | return (*this_cache); | |
1839 | } | |
26d08f08 AC |
1840 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
1841 | (*this_cache) = cache; | |
227e86ad | 1842 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
26d08f08 AC |
1843 | |
1844 | /* Yow! */ | |
227e86ad | 1845 | u = hppa_find_unwind_entry_in_block (this_frame); |
26d08f08 | 1846 | if (!u) |
369aa520 RC |
1847 | { |
1848 | if (hppa_debug) | |
1849 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); | |
1850 | return (*this_cache); | |
1851 | } | |
26d08f08 AC |
1852 | |
1853 | /* Turn the Entry_GR field into a bitmask. */ | |
1854 | saved_gr_mask = 0; | |
1855 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1856 | { | |
1857 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1858 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
26d08f08 AC |
1859 | continue; |
1860 | ||
1861 | saved_gr_mask |= (1 << i); | |
1862 | } | |
1863 | ||
1864 | /* Turn the Entry_FR field into a bitmask too. */ | |
1865 | saved_fr_mask = 0; | |
1866 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1867 | saved_fr_mask |= (1 << i); | |
1868 | ||
1869 | /* Loop until we find everything of interest or hit a branch. | |
1870 | ||
1871 | For unoptimized GCC code and for any HP CC code this will never ever | |
1872 | examine any user instructions. | |
1873 | ||
1874 | For optimized GCC code we're faced with problems. GCC will schedule | |
1875 | its prologue and make prologue instructions available for delay slot | |
1876 | filling. The end result is user code gets mixed in with the prologue | |
1877 | and a prologue instruction may be in the delay slot of the first branch | |
1878 | or call. | |
1879 | ||
1880 | Some unexpected things are expected with debugging optimized code, so | |
1881 | we allow this routine to walk past user instructions in optimized | |
1882 | GCC code. */ | |
1883 | { | |
1884 | int final_iteration = 0; | |
46acf081 | 1885 | CORE_ADDR pc, start_pc, end_pc; |
26d08f08 AC |
1886 | int looking_for_sp = u->Save_SP; |
1887 | int looking_for_rp = u->Save_RP; | |
1888 | int fp_loc = -1; | |
9f7194c3 | 1889 | |
a71f8c30 | 1890 | /* We have to use skip_prologue_hard_way instead of just |
9f7194c3 RC |
1891 | skip_prologue_using_sal, in case we stepped into a function without |
1892 | symbol information. hppa_skip_prologue also bounds the returned | |
1893 | pc by the passed in pc, so it will not return a pc in the next | |
a71f8c30 RC |
1894 | function. |
1895 | ||
1896 | We used to call hppa_skip_prologue to find the end of the prologue, | |
1897 | but if some non-prologue instructions get scheduled into the prologue, | |
1898 | and the program is compiled with debug information, the "easy" way | |
1899 | in hppa_skip_prologue will return a prologue end that is too early | |
1900 | for us to notice any potential frame adjustments. */ | |
d5c27f81 | 1901 | |
ef02daa9 DJ |
1902 | /* We used to use get_frame_func to locate the beginning of the |
1903 | function to pass to skip_prologue. However, when objects are | |
1904 | compiled without debug symbols, get_frame_func can return the wrong | |
46acf081 RC |
1905 | function (or 0). We can do better than that by using unwind records. |
1906 | This only works if the Region_description of the unwind record | |
1907 | indicates that it includes the entry point of the function. | |
1908 | HP compilers sometimes generate unwind records for regions that | |
1909 | do not include the entry or exit point of a function. GNU tools | |
1910 | do not do this. */ | |
1911 | ||
1912 | if ((u->Region_description & 0x2) == 0) | |
1913 | start_pc = u->region_start; | |
1914 | else | |
227e86ad | 1915 | start_pc = get_frame_func (this_frame); |
d5c27f81 | 1916 | |
be8626e0 | 1917 | prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); |
227e86ad | 1918 | end_pc = get_frame_pc (this_frame); |
9f7194c3 RC |
1919 | |
1920 | if (prologue_end != 0 && end_pc > prologue_end) | |
1921 | end_pc = prologue_end; | |
1922 | ||
26d08f08 | 1923 | frame_size = 0; |
9f7194c3 | 1924 | |
46acf081 | 1925 | for (pc = start_pc; |
26d08f08 AC |
1926 | ((saved_gr_mask || saved_fr_mask |
1927 | || looking_for_sp || looking_for_rp | |
1928 | || frame_size < (u->Total_frame_size << 3)) | |
9f7194c3 | 1929 | && pc < end_pc); |
26d08f08 AC |
1930 | pc += 4) |
1931 | { | |
1932 | int reg; | |
1933 | char buf4[4]; | |
4a302917 RC |
1934 | long inst; |
1935 | ||
227e86ad | 1936 | if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4)) |
4a302917 | 1937 | { |
8a3fe4f8 | 1938 | error (_("Cannot read instruction at 0x%s."), paddr_nz (pc)); |
4a302917 RC |
1939 | return (*this_cache); |
1940 | } | |
1941 | ||
1942 | inst = extract_unsigned_integer (buf4, sizeof buf4); | |
9f7194c3 | 1943 | |
26d08f08 AC |
1944 | /* Note the interesting effects of this instruction. */ |
1945 | frame_size += prologue_inst_adjust_sp (inst); | |
1946 | ||
1947 | /* There are limited ways to store the return pointer into the | |
1948 | stack. */ | |
1949 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
1950 | { | |
1951 | looking_for_rp = 0; | |
34f75cc1 | 1952 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
26d08f08 | 1953 | } |
dfaf8edb MK |
1954 | else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
1955 | { | |
1956 | looking_for_rp = 0; | |
1957 | cache->saved_regs[HPPA_RP_REGNUM].addr = -24; | |
1958 | } | |
c4c79048 RC |
1959 | else if (inst == 0x0fc212c1 |
1960 | || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
26d08f08 AC |
1961 | { |
1962 | looking_for_rp = 0; | |
34f75cc1 | 1963 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
26d08f08 AC |
1964 | } |
1965 | ||
1966 | /* Check to see if we saved SP into the stack. This also | |
1967 | happens to indicate the location of the saved frame | |
1968 | pointer. */ | |
1969 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
1970 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
1971 | { | |
1972 | looking_for_sp = 0; | |
eded0a31 | 1973 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
26d08f08 | 1974 | } |
50b2f48a RC |
1975 | else if (inst == 0x08030241) /* copy %r3, %r1 */ |
1976 | { | |
1977 | fp_in_r1 = 1; | |
1978 | } | |
26d08f08 AC |
1979 | |
1980 | /* Account for general and floating-point register saves. */ | |
1981 | reg = inst_saves_gr (inst); | |
1982 | if (reg >= 3 && reg <= 18 | |
eded0a31 | 1983 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
26d08f08 AC |
1984 | { |
1985 | saved_gr_mask &= ~(1 << reg); | |
abc485a1 | 1986 | if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
26d08f08 AC |
1987 | /* stwm with a positive displacement is a _post_ |
1988 | _modify_. */ | |
1989 | cache->saved_regs[reg].addr = 0; | |
1990 | else if ((inst & 0xfc00000c) == 0x70000008) | |
1991 | /* A std has explicit post_modify forms. */ | |
1992 | cache->saved_regs[reg].addr = 0; | |
1993 | else | |
1994 | { | |
1995 | CORE_ADDR offset; | |
1996 | ||
1997 | if ((inst >> 26) == 0x1c) | |
1998 | offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3); | |
1999 | else if ((inst >> 26) == 0x03) | |
abc485a1 | 2000 | offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
26d08f08 | 2001 | else |
abc485a1 | 2002 | offset = hppa_extract_14 (inst); |
26d08f08 AC |
2003 | |
2004 | /* Handle code with and without frame pointers. */ | |
2005 | if (u->Save_SP) | |
2006 | cache->saved_regs[reg].addr = offset; | |
2007 | else | |
2008 | cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset; | |
2009 | } | |
2010 | } | |
2011 | ||
2012 | /* GCC handles callee saved FP regs a little differently. | |
2013 | ||
2014 | It emits an instruction to put the value of the start of | |
2015 | the FP store area into %r1. It then uses fstds,ma with a | |
2016 | basereg of %r1 for the stores. | |
2017 | ||
2018 | HP CC emits them at the current stack pointer modifying the | |
2019 | stack pointer as it stores each register. */ | |
2020 | ||
2021 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2022 | if ((inst & 0xffffc000) == 0x34610000 | |
2023 | || (inst & 0xffffc000) == 0x37c10000) | |
abc485a1 | 2024 | fp_loc = hppa_extract_14 (inst); |
26d08f08 AC |
2025 | |
2026 | reg = inst_saves_fr (inst); | |
2027 | if (reg >= 12 && reg <= 21) | |
2028 | { | |
2029 | /* Note +4 braindamage below is necessary because the FP | |
2030 | status registers are internally 8 registers rather than | |
2031 | the expected 4 registers. */ | |
2032 | saved_fr_mask &= ~(1 << reg); | |
2033 | if (fp_loc == -1) | |
2034 | { | |
2035 | /* 1st HP CC FP register store. After this | |
2036 | instruction we've set enough state that the GCC and | |
2037 | HPCC code are both handled in the same manner. */ | |
34f75cc1 | 2038 | cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; |
26d08f08 AC |
2039 | fp_loc = 8; |
2040 | } | |
2041 | else | |
2042 | { | |
eded0a31 | 2043 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
26d08f08 AC |
2044 | fp_loc += 8; |
2045 | } | |
2046 | } | |
2047 | ||
2048 | /* Quit if we hit any kind of branch the previous iteration. */ | |
2049 | if (final_iteration) | |
2050 | break; | |
2051 | /* We want to look precisely one instruction beyond the branch | |
2052 | if we have not found everything yet. */ | |
2053 | if (is_branch (inst)) | |
2054 | final_iteration = 1; | |
2055 | } | |
2056 | } | |
2057 | ||
2058 | { | |
2059 | /* The frame base always represents the value of %sp at entry to | |
2060 | the current function (and is thus equivalent to the "saved" | |
2061 | stack pointer. */ | |
227e86ad JB |
2062 | CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, |
2063 | HPPA_SP_REGNUM); | |
ed70ba00 | 2064 | CORE_ADDR fp; |
9f7194c3 RC |
2065 | |
2066 | if (hppa_debug) | |
2067 | fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, " | |
2068 | "prologue_end=0x%s) ", | |
2069 | paddr_nz (this_sp), | |
227e86ad | 2070 | paddr_nz (get_frame_pc (this_frame)), |
9f7194c3 RC |
2071 | paddr_nz (prologue_end)); |
2072 | ||
ed70ba00 RC |
2073 | /* Check to see if a frame pointer is available, and use it for |
2074 | frame unwinding if it is. | |
2075 | ||
2076 | There are some situations where we need to rely on the frame | |
2077 | pointer to do stack unwinding. For example, if a function calls | |
2078 | alloca (), the stack pointer can get adjusted inside the body of | |
2079 | the function. In this case, the ABI requires that the compiler | |
2080 | maintain a frame pointer for the function. | |
2081 | ||
2082 | The unwind record has a flag (alloca_frame) that indicates that | |
2083 | a function has a variable frame; unfortunately, gcc/binutils | |
2084 | does not set this flag. Instead, whenever a frame pointer is used | |
2085 | and saved on the stack, the Save_SP flag is set. We use this to | |
2086 | decide whether to use the frame pointer for unwinding. | |
2087 | ||
ed70ba00 RC |
2088 | TODO: For the HP compiler, maybe we should use the alloca_frame flag |
2089 | instead of Save_SP. */ | |
2090 | ||
227e86ad | 2091 | fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); |
46acf081 | 2092 | |
6fcecea0 | 2093 | if (u->alloca_frame) |
46acf081 | 2094 | fp -= u->Total_frame_size << 3; |
ed70ba00 | 2095 | |
227e86ad | 2096 | if (get_frame_pc (this_frame) >= prologue_end |
6fcecea0 | 2097 | && (u->Save_SP || u->alloca_frame) && fp != 0) |
ed70ba00 RC |
2098 | { |
2099 | cache->base = fp; | |
2100 | ||
2101 | if (hppa_debug) | |
9ed5ba24 | 2102 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]", |
ed70ba00 RC |
2103 | paddr_nz (cache->base)); |
2104 | } | |
1658da49 RC |
2105 | else if (u->Save_SP |
2106 | && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) | |
9f7194c3 | 2107 | { |
9f7194c3 RC |
2108 | /* Both we're expecting the SP to be saved and the SP has been |
2109 | saved. The entry SP value is saved at this frame's SP | |
2110 | address. */ | |
819844ad | 2111 | cache->base = read_memory_integer |
65c5db89 | 2112 | (this_sp, gdbarch_ptr_bit (gdbarch) / 8); |
9f7194c3 RC |
2113 | |
2114 | if (hppa_debug) | |
9ed5ba24 | 2115 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]", |
9f7194c3 | 2116 | paddr_nz (cache->base)); |
9f7194c3 | 2117 | } |
26d08f08 | 2118 | else |
9f7194c3 | 2119 | { |
1658da49 RC |
2120 | /* The prologue has been slowly allocating stack space. Adjust |
2121 | the SP back. */ | |
2122 | cache->base = this_sp - frame_size; | |
9f7194c3 | 2123 | if (hppa_debug) |
9ed5ba24 | 2124 | fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]", |
9f7194c3 RC |
2125 | paddr_nz (cache->base)); |
2126 | ||
2127 | } | |
eded0a31 | 2128 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
26d08f08 AC |
2129 | } |
2130 | ||
412275d5 AC |
2131 | /* The PC is found in the "return register", "Millicode" uses "r31" |
2132 | as the return register while normal code uses "rp". */ | |
26d08f08 | 2133 | if (u->Millicode) |
9f7194c3 | 2134 | { |
5859efe5 | 2135 | if (trad_frame_addr_p (cache->saved_regs, 31)) |
9ed5ba24 RC |
2136 | { |
2137 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; | |
2138 | if (hppa_debug) | |
2139 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } "); | |
2140 | } | |
9f7194c3 RC |
2141 | else |
2142 | { | |
227e86ad | 2143 | ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); |
34f75cc1 | 2144 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); |
9ed5ba24 RC |
2145 | if (hppa_debug) |
2146 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } "); | |
9f7194c3 RC |
2147 | } |
2148 | } | |
26d08f08 | 2149 | else |
9f7194c3 | 2150 | { |
34f75cc1 | 2151 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
9ed5ba24 RC |
2152 | { |
2153 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = | |
2154 | cache->saved_regs[HPPA_RP_REGNUM]; | |
2155 | if (hppa_debug) | |
2156 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } "); | |
2157 | } | |
9f7194c3 RC |
2158 | else |
2159 | { | |
227e86ad JB |
2160 | ULONGEST rp = get_frame_register_unsigned (this_frame, |
2161 | HPPA_RP_REGNUM); | |
34f75cc1 | 2162 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
9ed5ba24 RC |
2163 | if (hppa_debug) |
2164 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } "); | |
9f7194c3 RC |
2165 | } |
2166 | } | |
26d08f08 | 2167 | |
50b2f48a RC |
2168 | /* If Save_SP is set, then we expect the frame pointer to be saved in the |
2169 | frame. However, there is a one-insn window where we haven't saved it | |
2170 | yet, but we've already clobbered it. Detect this case and fix it up. | |
2171 | ||
2172 | The prologue sequence for frame-pointer functions is: | |
2173 | 0: stw %rp, -20(%sp) | |
2174 | 4: copy %r3, %r1 | |
2175 | 8: copy %sp, %r3 | |
2176 | c: stw,ma %r1, XX(%sp) | |
2177 | ||
2178 | So if we are at offset c, the r3 value that we want is not yet saved | |
2179 | on the stack, but it's been overwritten. The prologue analyzer will | |
2180 | set fp_in_r1 when it sees the copy insn so we know to get the value | |
2181 | from r1 instead. */ | |
2182 | if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM) | |
2183 | && fp_in_r1) | |
2184 | { | |
227e86ad | 2185 | ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); |
50b2f48a RC |
2186 | trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1); |
2187 | } | |
1658da49 | 2188 | |
26d08f08 AC |
2189 | { |
2190 | /* Convert all the offsets into addresses. */ | |
2191 | int reg; | |
65c5db89 | 2192 | for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) |
26d08f08 AC |
2193 | { |
2194 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2195 | cache->saved_regs[reg].addr += cache->base; | |
2196 | } | |
2197 | } | |
2198 | ||
f77a2124 | 2199 | { |
f77a2124 RC |
2200 | struct gdbarch_tdep *tdep; |
2201 | ||
f77a2124 RC |
2202 | tdep = gdbarch_tdep (gdbarch); |
2203 | ||
2204 | if (tdep->unwind_adjust_stub) | |
227e86ad | 2205 | tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); |
f77a2124 RC |
2206 | } |
2207 | ||
369aa520 RC |
2208 | if (hppa_debug) |
2209 | fprintf_unfiltered (gdb_stdlog, "base=0x%s }", | |
2210 | paddr_nz (((struct hppa_frame_cache *)*this_cache)->base)); | |
26d08f08 AC |
2211 | return (*this_cache); |
2212 | } | |
2213 | ||
2214 | static void | |
227e86ad JB |
2215 | hppa_frame_this_id (struct frame_info *this_frame, void **this_cache, |
2216 | struct frame_id *this_id) | |
26d08f08 | 2217 | { |
d5c27f81 | 2218 | struct hppa_frame_cache *info; |
227e86ad | 2219 | CORE_ADDR pc = get_frame_pc (this_frame); |
d5c27f81 RC |
2220 | struct unwind_table_entry *u; |
2221 | ||
227e86ad JB |
2222 | info = hppa_frame_cache (this_frame, this_cache); |
2223 | u = hppa_find_unwind_entry_in_block (this_frame); | |
d5c27f81 RC |
2224 | |
2225 | (*this_id) = frame_id_build (info->base, u->region_start); | |
26d08f08 AC |
2226 | } |
2227 | ||
227e86ad JB |
2228 | static struct value * |
2229 | hppa_frame_prev_register (struct frame_info *this_frame, | |
2230 | void **this_cache, int regnum) | |
26d08f08 | 2231 | { |
227e86ad JB |
2232 | struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); |
2233 | ||
2234 | return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum); | |
2235 | } | |
2236 | ||
2237 | static int | |
2238 | hppa_frame_unwind_sniffer (const struct frame_unwind *self, | |
2239 | struct frame_info *this_frame, void **this_cache) | |
2240 | { | |
2241 | if (hppa_find_unwind_entry_in_block (this_frame)) | |
2242 | return 1; | |
2243 | ||
2244 | return 0; | |
0da28f8a RC |
2245 | } |
2246 | ||
2247 | static const struct frame_unwind hppa_frame_unwind = | |
2248 | { | |
2249 | NORMAL_FRAME, | |
2250 | hppa_frame_this_id, | |
227e86ad JB |
2251 | hppa_frame_prev_register, |
2252 | NULL, | |
2253 | hppa_frame_unwind_sniffer | |
0da28f8a RC |
2254 | }; |
2255 | ||
0da28f8a RC |
2256 | /* This is a generic fallback frame unwinder that kicks in if we fail all |
2257 | the other ones. Normally we would expect the stub and regular unwinder | |
2258 | to work, but in some cases we might hit a function that just doesn't | |
2259 | have any unwind information available. In this case we try to do | |
2260 | unwinding solely based on code reading. This is obviously going to be | |
2261 | slow, so only use this as a last resort. Currently this will only | |
2262 | identify the stack and pc for the frame. */ | |
2263 | ||
2264 | static struct hppa_frame_cache * | |
227e86ad | 2265 | hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache) |
0da28f8a RC |
2266 | { |
2267 | struct hppa_frame_cache *cache; | |
4ba6a975 MK |
2268 | unsigned int frame_size = 0; |
2269 | int found_rp = 0; | |
2270 | CORE_ADDR start_pc; | |
0da28f8a | 2271 | |
d5c27f81 | 2272 | if (hppa_debug) |
4ba6a975 MK |
2273 | fprintf_unfiltered (gdb_stdlog, |
2274 | "{ hppa_fallback_frame_cache (frame=%d) -> ", | |
227e86ad | 2275 | frame_relative_level (this_frame)); |
d5c27f81 | 2276 | |
0da28f8a RC |
2277 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
2278 | (*this_cache) = cache; | |
227e86ad | 2279 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
0da28f8a | 2280 | |
227e86ad | 2281 | start_pc = get_frame_func (this_frame); |
4ba6a975 | 2282 | if (start_pc) |
0da28f8a | 2283 | { |
227e86ad | 2284 | CORE_ADDR cur_pc = get_frame_pc (this_frame); |
4ba6a975 | 2285 | CORE_ADDR pc; |
0da28f8a | 2286 | |
4ba6a975 MK |
2287 | for (pc = start_pc; pc < cur_pc; pc += 4) |
2288 | { | |
2289 | unsigned int insn; | |
0da28f8a | 2290 | |
4ba6a975 MK |
2291 | insn = read_memory_unsigned_integer (pc, 4); |
2292 | frame_size += prologue_inst_adjust_sp (insn); | |
6d1be3f1 | 2293 | |
4ba6a975 MK |
2294 | /* There are limited ways to store the return pointer into the |
2295 | stack. */ | |
2296 | if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
2297 | { | |
2298 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; | |
2299 | found_rp = 1; | |
2300 | } | |
c4c79048 RC |
2301 | else if (insn == 0x0fc212c1 |
2302 | || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
4ba6a975 MK |
2303 | { |
2304 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; | |
2305 | found_rp = 1; | |
2306 | } | |
2307 | } | |
412275d5 | 2308 | } |
0da28f8a | 2309 | |
d5c27f81 | 2310 | if (hppa_debug) |
4ba6a975 MK |
2311 | fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", |
2312 | frame_size, found_rp); | |
d5c27f81 | 2313 | |
227e86ad | 2314 | cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
4ba6a975 | 2315 | cache->base -= frame_size; |
6d1be3f1 | 2316 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
0da28f8a RC |
2317 | |
2318 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) | |
2319 | { | |
2320 | cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; | |
4ba6a975 MK |
2321 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
2322 | cache->saved_regs[HPPA_RP_REGNUM]; | |
0da28f8a | 2323 | } |
412275d5 AC |
2324 | else |
2325 | { | |
4ba6a975 | 2326 | ULONGEST rp; |
227e86ad | 2327 | rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); |
0da28f8a | 2328 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
412275d5 | 2329 | } |
0da28f8a RC |
2330 | |
2331 | return cache; | |
26d08f08 AC |
2332 | } |
2333 | ||
0da28f8a | 2334 | static void |
227e86ad | 2335 | hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache, |
0da28f8a RC |
2336 | struct frame_id *this_id) |
2337 | { | |
2338 | struct hppa_frame_cache *info = | |
227e86ad JB |
2339 | hppa_fallback_frame_cache (this_frame, this_cache); |
2340 | ||
2341 | (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); | |
0da28f8a RC |
2342 | } |
2343 | ||
227e86ad JB |
2344 | static struct value * |
2345 | hppa_fallback_frame_prev_register (struct frame_info *this_frame, | |
2346 | void **this_cache, int regnum) | |
0da28f8a RC |
2347 | { |
2348 | struct hppa_frame_cache *info = | |
227e86ad JB |
2349 | hppa_fallback_frame_cache (this_frame, this_cache); |
2350 | ||
2351 | return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum); | |
0da28f8a RC |
2352 | } |
2353 | ||
2354 | static const struct frame_unwind hppa_fallback_frame_unwind = | |
26d08f08 AC |
2355 | { |
2356 | NORMAL_FRAME, | |
0da28f8a | 2357 | hppa_fallback_frame_this_id, |
227e86ad JB |
2358 | hppa_fallback_frame_prev_register, |
2359 | NULL, | |
2360 | default_frame_sniffer | |
26d08f08 AC |
2361 | }; |
2362 | ||
7f07c5b6 RC |
2363 | /* Stub frames, used for all kinds of call stubs. */ |
2364 | struct hppa_stub_unwind_cache | |
2365 | { | |
2366 | CORE_ADDR base; | |
2367 | struct trad_frame_saved_reg *saved_regs; | |
2368 | }; | |
2369 | ||
2370 | static struct hppa_stub_unwind_cache * | |
227e86ad | 2371 | hppa_stub_frame_unwind_cache (struct frame_info *this_frame, |
7f07c5b6 RC |
2372 | void **this_cache) |
2373 | { | |
227e86ad | 2374 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
7f07c5b6 | 2375 | struct hppa_stub_unwind_cache *info; |
22b0923d | 2376 | struct unwind_table_entry *u; |
7f07c5b6 RC |
2377 | |
2378 | if (*this_cache) | |
2379 | return *this_cache; | |
2380 | ||
2381 | info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); | |
2382 | *this_cache = info; | |
227e86ad | 2383 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
7f07c5b6 | 2384 | |
227e86ad | 2385 | info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
7f07c5b6 | 2386 | |
090ccbb7 | 2387 | if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM) |
22b0923d RC |
2388 | { |
2389 | /* HPUX uses export stubs in function calls; the export stub clobbers | |
2390 | the return value of the caller, and, later restores it from the | |
2391 | stack. */ | |
227e86ad | 2392 | u = find_unwind_entry (get_frame_pc (this_frame)); |
22b0923d RC |
2393 | |
2394 | if (u && u->stub_unwind.stub_type == EXPORT) | |
2395 | { | |
2396 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24; | |
2397 | ||
2398 | return info; | |
2399 | } | |
2400 | } | |
2401 | ||
2402 | /* By default we assume that stubs do not change the rp. */ | |
2403 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; | |
2404 | ||
7f07c5b6 RC |
2405 | return info; |
2406 | } | |
2407 | ||
2408 | static void | |
227e86ad | 2409 | hppa_stub_frame_this_id (struct frame_info *this_frame, |
7f07c5b6 RC |
2410 | void **this_prologue_cache, |
2411 | struct frame_id *this_id) | |
2412 | { | |
2413 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2414 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 RC |
2415 | |
2416 | if (info) | |
227e86ad | 2417 | *this_id = frame_id_build (info->base, get_frame_func (this_frame)); |
f1b38a57 RC |
2418 | else |
2419 | *this_id = null_frame_id; | |
7f07c5b6 RC |
2420 | } |
2421 | ||
227e86ad JB |
2422 | static struct value * |
2423 | hppa_stub_frame_prev_register (struct frame_info *this_frame, | |
2424 | void **this_prologue_cache, int regnum) | |
7f07c5b6 RC |
2425 | { |
2426 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2427 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 | 2428 | |
227e86ad | 2429 | if (info == NULL) |
8a3fe4f8 | 2430 | error (_("Requesting registers from null frame.")); |
7f07c5b6 | 2431 | |
227e86ad JB |
2432 | return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum); |
2433 | } | |
7f07c5b6 | 2434 | |
227e86ad JB |
2435 | static int |
2436 | hppa_stub_unwind_sniffer (const struct frame_unwind *self, | |
2437 | struct frame_info *this_frame, | |
2438 | void **this_cache) | |
7f07c5b6 | 2439 | { |
227e86ad JB |
2440 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
2441 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
84674fe1 | 2442 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7f07c5b6 | 2443 | |
6d1be3f1 | 2444 | if (pc == 0 |
84674fe1 AC |
2445 | || (tdep->in_solib_call_trampoline != NULL |
2446 | && tdep->in_solib_call_trampoline (pc, NULL)) | |
464963c9 | 2447 | || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) |
227e86ad JB |
2448 | return 1; |
2449 | return 0; | |
7f07c5b6 RC |
2450 | } |
2451 | ||
227e86ad JB |
2452 | static const struct frame_unwind hppa_stub_frame_unwind = { |
2453 | NORMAL_FRAME, | |
2454 | hppa_stub_frame_this_id, | |
2455 | hppa_stub_frame_prev_register, | |
2456 | NULL, | |
2457 | hppa_stub_unwind_sniffer | |
2458 | }; | |
2459 | ||
26d08f08 | 2460 | static struct frame_id |
227e86ad | 2461 | hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
26d08f08 | 2462 | { |
227e86ad JB |
2463 | return frame_id_build (get_frame_register_unsigned (this_frame, |
2464 | HPPA_SP_REGNUM), | |
2465 | get_frame_pc (this_frame)); | |
26d08f08 AC |
2466 | } |
2467 | ||
cc72850f | 2468 | CORE_ADDR |
26d08f08 AC |
2469 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
2470 | { | |
fe46cd3a RC |
2471 | ULONGEST ipsw; |
2472 | CORE_ADDR pc; | |
2473 | ||
cc72850f MK |
2474 | ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); |
2475 | pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); | |
fe46cd3a RC |
2476 | |
2477 | /* If the current instruction is nullified, then we are effectively | |
2478 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
2479 | there. This is needed when single stepping; if the nullified |
2480 | instruction is on a different line, we don't want GDB to think | |
2481 | we've stepped onto that line. */ | |
fe46cd3a RC |
2482 | if (ipsw & 0x00200000) |
2483 | pc -= 4; | |
2484 | ||
cc72850f | 2485 | return pc & ~0x3; |
26d08f08 AC |
2486 | } |
2487 | ||
ff644745 JB |
2488 | /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. |
2489 | Return NULL if no such symbol was found. */ | |
2490 | ||
2491 | struct minimal_symbol * | |
2492 | hppa_lookup_stub_minimal_symbol (const char *name, | |
2493 | enum unwind_stub_types stub_type) | |
2494 | { | |
2495 | struct objfile *objfile; | |
2496 | struct minimal_symbol *msym; | |
2497 | ||
2498 | ALL_MSYMBOLS (objfile, msym) | |
2499 | { | |
2500 | if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0) | |
2501 | { | |
2502 | struct unwind_table_entry *u; | |
2503 | ||
2504 | u = find_unwind_entry (SYMBOL_VALUE (msym)); | |
2505 | if (u != NULL && u->stub_unwind.stub_type == stub_type) | |
2506 | return msym; | |
2507 | } | |
2508 | } | |
2509 | ||
2510 | return NULL; | |
2511 | } | |
2512 | ||
c906108c | 2513 | static void |
fba45db2 | 2514 | unwind_command (char *exp, int from_tty) |
c906108c SS |
2515 | { |
2516 | CORE_ADDR address; | |
2517 | struct unwind_table_entry *u; | |
2518 | ||
2519 | /* If we have an expression, evaluate it and use it as the address. */ | |
2520 | ||
2521 | if (exp != 0 && *exp != 0) | |
2522 | address = parse_and_eval_address (exp); | |
2523 | else | |
2524 | return; | |
2525 | ||
2526 | u = find_unwind_entry (address); | |
2527 | ||
2528 | if (!u) | |
2529 | { | |
2530 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
2531 | return; | |
2532 | } | |
2533 | ||
99d64d77 | 2534 | printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u); |
c906108c SS |
2535 | |
2536 | printf_unfiltered ("\tregion_start = "); | |
2537 | print_address (u->region_start, gdb_stdout); | |
d5c27f81 | 2538 | gdb_flush (gdb_stdout); |
c906108c SS |
2539 | |
2540 | printf_unfiltered ("\n\tregion_end = "); | |
2541 | print_address (u->region_end, gdb_stdout); | |
d5c27f81 | 2542 | gdb_flush (gdb_stdout); |
c906108c | 2543 | |
c906108c | 2544 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
2545 | |
2546 | printf_unfiltered ("\n\tflags ="); | |
2547 | pif (Cannot_unwind); | |
2548 | pif (Millicode); | |
2549 | pif (Millicode_save_sr0); | |
2550 | pif (Entry_SR); | |
2551 | pif (Args_stored); | |
2552 | pif (Variable_Frame); | |
2553 | pif (Separate_Package_Body); | |
2554 | pif (Frame_Extension_Millicode); | |
2555 | pif (Stack_Overflow_Check); | |
2556 | pif (Two_Instruction_SP_Increment); | |
6fcecea0 RC |
2557 | pif (sr4export); |
2558 | pif (cxx_info); | |
2559 | pif (cxx_try_catch); | |
2560 | pif (sched_entry_seq); | |
c906108c SS |
2561 | pif (Save_SP); |
2562 | pif (Save_RP); | |
2563 | pif (Save_MRP_in_frame); | |
6fcecea0 | 2564 | pif (save_r19); |
c906108c SS |
2565 | pif (Cleanup_defined); |
2566 | pif (MPE_XL_interrupt_marker); | |
2567 | pif (HP_UX_interrupt_marker); | |
2568 | pif (Large_frame); | |
6fcecea0 | 2569 | pif (alloca_frame); |
c906108c SS |
2570 | |
2571 | putchar_unfiltered ('\n'); | |
2572 | ||
c906108c | 2573 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
2574 | |
2575 | pin (Region_description); | |
2576 | pin (Entry_FR); | |
2577 | pin (Entry_GR); | |
2578 | pin (Total_frame_size); | |
57dac9e1 RC |
2579 | |
2580 | if (u->stub_unwind.stub_type) | |
2581 | { | |
2582 | printf_unfiltered ("\tstub type = "); | |
2583 | switch (u->stub_unwind.stub_type) | |
2584 | { | |
2585 | case LONG_BRANCH: | |
2586 | printf_unfiltered ("long branch\n"); | |
2587 | break; | |
2588 | case PARAMETER_RELOCATION: | |
2589 | printf_unfiltered ("parameter relocation\n"); | |
2590 | break; | |
2591 | case EXPORT: | |
2592 | printf_unfiltered ("export\n"); | |
2593 | break; | |
2594 | case IMPORT: | |
2595 | printf_unfiltered ("import\n"); | |
2596 | break; | |
2597 | case IMPORT_SHLIB: | |
2598 | printf_unfiltered ("import shlib\n"); | |
2599 | break; | |
2600 | default: | |
2601 | printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); | |
2602 | } | |
2603 | } | |
c906108c | 2604 | } |
c906108c | 2605 | |
38ca4e0c MK |
2606 | /* Return the GDB type object for the "standard" data type of data in |
2607 | register REGNUM. */ | |
d709c020 | 2608 | |
eded0a31 | 2609 | static struct type * |
38ca4e0c | 2610 | hppa32_register_type (struct gdbarch *gdbarch, int regnum) |
d709c020 | 2611 | { |
38ca4e0c | 2612 | if (regnum < HPPA_FP4_REGNUM) |
eded0a31 | 2613 | return builtin_type_uint32; |
d709c020 | 2614 | else |
8da61cc4 | 2615 | return builtin_type_ieee_single; |
d709c020 JB |
2616 | } |
2617 | ||
eded0a31 | 2618 | static struct type * |
38ca4e0c | 2619 | hppa64_register_type (struct gdbarch *gdbarch, int regnum) |
3ff7cf9e | 2620 | { |
38ca4e0c | 2621 | if (regnum < HPPA64_FP4_REGNUM) |
eded0a31 | 2622 | return builtin_type_uint64; |
3ff7cf9e | 2623 | else |
8da61cc4 | 2624 | return builtin_type_ieee_double; |
3ff7cf9e JB |
2625 | } |
2626 | ||
38ca4e0c MK |
2627 | /* Return non-zero if REGNUM is not a register available to the user |
2628 | through ptrace/ttrace. */ | |
d709c020 | 2629 | |
8d153463 | 2630 | static int |
64a3914f | 2631 | hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
d709c020 JB |
2632 | { |
2633 | return (regnum == 0 | |
34f75cc1 RC |
2634 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
2635 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2636 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); | |
38ca4e0c | 2637 | } |
d709c020 | 2638 | |
d037d088 | 2639 | static int |
64a3914f | 2640 | hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2641 | { |
2642 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2643 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2644 | return 0; | |
2645 | else | |
64a3914f | 2646 | return hppa32_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2647 | } |
2648 | ||
38ca4e0c | 2649 | static int |
64a3914f | 2650 | hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
38ca4e0c MK |
2651 | { |
2652 | return (regnum == 0 | |
2653 | || regnum == HPPA_PCSQ_HEAD_REGNUM | |
2654 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2655 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); | |
d709c020 JB |
2656 | } |
2657 | ||
d037d088 | 2658 | static int |
64a3914f | 2659 | hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2660 | { |
2661 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2662 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2663 | return 0; | |
2664 | else | |
64a3914f | 2665 | return hppa64_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2666 | } |
2667 | ||
8d153463 | 2668 | static CORE_ADDR |
24568a2c | 2669 | hppa_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR addr) |
d709c020 JB |
2670 | { |
2671 | /* The low two bits of the PC on the PA contain the privilege level. | |
2672 | Some genius implementing a (non-GCC) compiler apparently decided | |
2673 | this means that "addresses" in a text section therefore include a | |
2674 | privilege level, and thus symbol tables should contain these bits. | |
2675 | This seems like a bonehead thing to do--anyway, it seems to work | |
2676 | for our purposes to just ignore those bits. */ | |
2677 | ||
2678 | return (addr &= ~0x3); | |
2679 | } | |
2680 | ||
e127f0db MK |
2681 | /* Get the ARGIth function argument for the current function. */ |
2682 | ||
4a302917 | 2683 | static CORE_ADDR |
143985b7 AF |
2684 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, |
2685 | struct type *type) | |
2686 | { | |
e127f0db | 2687 | return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); |
143985b7 AF |
2688 | } |
2689 | ||
0f8d9d59 RC |
2690 | static void |
2691 | hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
e127f0db | 2692 | int regnum, gdb_byte *buf) |
0f8d9d59 RC |
2693 | { |
2694 | ULONGEST tmp; | |
2695 | ||
2696 | regcache_raw_read_unsigned (regcache, regnum, &tmp); | |
34f75cc1 | 2697 | if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) |
0f8d9d59 | 2698 | tmp &= ~0x3; |
e127f0db | 2699 | store_unsigned_integer (buf, sizeof tmp, tmp); |
0f8d9d59 RC |
2700 | } |
2701 | ||
d49771ef | 2702 | static CORE_ADDR |
e38c262f | 2703 | hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) |
d49771ef RC |
2704 | { |
2705 | return 0; | |
2706 | } | |
2707 | ||
227e86ad JB |
2708 | struct value * |
2709 | hppa_frame_prev_register_helper (struct frame_info *this_frame, | |
0da28f8a | 2710 | struct trad_frame_saved_reg saved_regs[], |
227e86ad | 2711 | int regnum) |
0da28f8a | 2712 | { |
227e86ad | 2713 | struct gdbarch *arch = get_frame_arch (this_frame); |
8f4e467c | 2714 | |
8693c419 MK |
2715 | if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
2716 | { | |
227e86ad JB |
2717 | int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); |
2718 | CORE_ADDR pc; | |
2719 | struct value *pcoq_val = | |
2720 | trad_frame_get_prev_register (this_frame, saved_regs, | |
2721 | HPPA_PCOQ_HEAD_REGNUM); | |
8693c419 | 2722 | |
227e86ad JB |
2723 | pc = extract_unsigned_integer (value_contents_all (pcoq_val), size); |
2724 | return frame_unwind_got_constant (this_frame, regnum, pc + 4); | |
8693c419 | 2725 | } |
0da28f8a | 2726 | |
cc72850f MK |
2727 | /* Make sure the "flags" register is zero in all unwound frames. |
2728 | The "flags" registers is a HP-UX specific wart, and only the code | |
2729 | in hppa-hpux-tdep.c depends on it. However, it is easier to deal | |
2730 | with it here. This shouldn't affect other systems since those | |
2731 | should provide zero for the "flags" register anyway. */ | |
2732 | if (regnum == HPPA_FLAGS_REGNUM) | |
227e86ad | 2733 | return frame_unwind_got_constant (this_frame, regnum, 0); |
cc72850f | 2734 | |
227e86ad | 2735 | return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
0da28f8a | 2736 | } |
8693c419 | 2737 | \f |
0da28f8a | 2738 | |
34f55018 MK |
2739 | /* An instruction to match. */ |
2740 | struct insn_pattern | |
2741 | { | |
2742 | unsigned int data; /* See if it matches this.... */ | |
2743 | unsigned int mask; /* ... with this mask. */ | |
2744 | }; | |
2745 | ||
2746 | /* See bfd/elf32-hppa.c */ | |
2747 | static struct insn_pattern hppa_long_branch_stub[] = { | |
2748 | /* ldil LR'xxx,%r1 */ | |
2749 | { 0x20200000, 0xffe00000 }, | |
2750 | /* be,n RR'xxx(%sr4,%r1) */ | |
2751 | { 0xe0202002, 0xffe02002 }, | |
2752 | { 0, 0 } | |
2753 | }; | |
2754 | ||
2755 | static struct insn_pattern hppa_long_branch_pic_stub[] = { | |
2756 | /* b,l .+8, %r1 */ | |
2757 | { 0xe8200000, 0xffe00000 }, | |
2758 | /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ | |
2759 | { 0x28200000, 0xffe00000 }, | |
2760 | /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ | |
2761 | { 0xe0202002, 0xffe02002 }, | |
2762 | { 0, 0 } | |
2763 | }; | |
2764 | ||
2765 | static struct insn_pattern hppa_import_stub[] = { | |
2766 | /* addil LR'xxx, %dp */ | |
2767 | { 0x2b600000, 0xffe00000 }, | |
2768 | /* ldw RR'xxx(%r1), %r21 */ | |
2769 | { 0x48350000, 0xffffb000 }, | |
2770 | /* bv %r0(%r21) */ | |
2771 | { 0xeaa0c000, 0xffffffff }, | |
2772 | /* ldw RR'xxx+4(%r1), %r19 */ | |
2773 | { 0x48330000, 0xffffb000 }, | |
2774 | { 0, 0 } | |
2775 | }; | |
2776 | ||
2777 | static struct insn_pattern hppa_import_pic_stub[] = { | |
2778 | /* addil LR'xxx,%r19 */ | |
2779 | { 0x2a600000, 0xffe00000 }, | |
2780 | /* ldw RR'xxx(%r1),%r21 */ | |
2781 | { 0x48350000, 0xffffb000 }, | |
2782 | /* bv %r0(%r21) */ | |
2783 | { 0xeaa0c000, 0xffffffff }, | |
2784 | /* ldw RR'xxx+4(%r1),%r19 */ | |
2785 | { 0x48330000, 0xffffb000 }, | |
2786 | { 0, 0 }, | |
2787 | }; | |
2788 | ||
2789 | static struct insn_pattern hppa_plt_stub[] = { | |
2790 | /* b,l 1b, %r20 - 1b is 3 insns before here */ | |
2791 | { 0xea9f1fdd, 0xffffffff }, | |
2792 | /* depi 0,31,2,%r20 */ | |
2793 | { 0xd6801c1e, 0xffffffff }, | |
2794 | { 0, 0 } | |
2795 | }; | |
2796 | ||
2797 | static struct insn_pattern hppa_sigtramp[] = { | |
2798 | /* ldi 0, %r25 or ldi 1, %r25 */ | |
2799 | { 0x34190000, 0xfffffffd }, | |
2800 | /* ldi __NR_rt_sigreturn, %r20 */ | |
2801 | { 0x3414015a, 0xffffffff }, | |
2802 | /* be,l 0x100(%sr2, %r0), %sr0, %r31 */ | |
2803 | { 0xe4008200, 0xffffffff }, | |
2804 | /* nop */ | |
2805 | { 0x08000240, 0xffffffff }, | |
2806 | { 0, 0 } | |
2807 | }; | |
2808 | ||
2809 | /* Maximum number of instructions on the patterns above. */ | |
2810 | #define HPPA_MAX_INSN_PATTERN_LEN 4 | |
2811 | ||
2812 | /* Return non-zero if the instructions at PC match the series | |
2813 | described in PATTERN, or zero otherwise. PATTERN is an array of | |
2814 | 'struct insn_pattern' objects, terminated by an entry whose mask is | |
2815 | zero. | |
2816 | ||
2817 | When the match is successful, fill INSN[i] with what PATTERN[i] | |
2818 | matched. */ | |
2819 | ||
2820 | static int | |
2821 | hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern, | |
2822 | unsigned int *insn) | |
2823 | { | |
2824 | CORE_ADDR npc = pc; | |
2825 | int i; | |
2826 | ||
2827 | for (i = 0; pattern[i].mask; i++) | |
2828 | { | |
2829 | gdb_byte buf[HPPA_INSN_SIZE]; | |
2830 | ||
8defab1a | 2831 | target_read_memory (npc, buf, HPPA_INSN_SIZE); |
34f55018 MK |
2832 | insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE); |
2833 | if ((insn[i] & pattern[i].mask) == pattern[i].data) | |
2834 | npc += 4; | |
2835 | else | |
2836 | return 0; | |
2837 | } | |
2838 | ||
2839 | return 1; | |
2840 | } | |
2841 | ||
2842 | /* This relaxed version of the insstruction matcher allows us to match | |
2843 | from somewhere inside the pattern, by looking backwards in the | |
2844 | instruction scheme. */ | |
2845 | ||
2846 | static int | |
2847 | hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern, | |
2848 | unsigned int *insn) | |
2849 | { | |
2850 | int offset, len = 0; | |
2851 | ||
2852 | while (pattern[len].mask) | |
2853 | len++; | |
2854 | ||
2855 | for (offset = 0; offset < len; offset++) | |
2856 | if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn)) | |
2857 | return 1; | |
2858 | ||
2859 | return 0; | |
2860 | } | |
2861 | ||
2862 | static int | |
2863 | hppa_in_dyncall (CORE_ADDR pc) | |
2864 | { | |
2865 | struct unwind_table_entry *u; | |
2866 | ||
2867 | u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); | |
2868 | if (!u) | |
2869 | return 0; | |
2870 | ||
2871 | return (pc >= u->region_start && pc <= u->region_end); | |
2872 | } | |
2873 | ||
2874 | int | |
2875 | hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name) | |
2876 | { | |
2877 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; | |
2878 | struct unwind_table_entry *u; | |
2879 | ||
2880 | if (in_plt_section (pc, name) || hppa_in_dyncall (pc)) | |
2881 | return 1; | |
2882 | ||
2883 | /* The GNU toolchain produces linker stubs without unwind | |
2884 | information. Since the pattern matching for linker stubs can be | |
2885 | quite slow, so bail out if we do have an unwind entry. */ | |
2886 | ||
2887 | u = find_unwind_entry (pc); | |
806e23c0 | 2888 | if (u != NULL) |
34f55018 MK |
2889 | return 0; |
2890 | ||
2891 | return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn) | |
2892 | || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn) | |
2893 | || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn) | |
2894 | || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn)); | |
2895 | } | |
2896 | ||
2897 | /* This code skips several kind of "trampolines" used on PA-RISC | |
2898 | systems: $$dyncall, import stubs and PLT stubs. */ | |
2899 | ||
2900 | CORE_ADDR | |
52f729a7 | 2901 | hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
34f55018 | 2902 | { |
0dfff4cb UW |
2903 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2904 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; | |
2905 | ||
34f55018 MK |
2906 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
2907 | int dp_rel; | |
2908 | ||
2909 | /* $$dyncall handles both PLABELs and direct addresses. */ | |
2910 | if (hppa_in_dyncall (pc)) | |
2911 | { | |
52f729a7 | 2912 | pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); |
34f55018 MK |
2913 | |
2914 | /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ | |
2915 | if (pc & 0x2) | |
0dfff4cb | 2916 | pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); |
34f55018 MK |
2917 | |
2918 | return pc; | |
2919 | } | |
2920 | ||
2921 | dp_rel = hppa_match_insns (pc, hppa_import_stub, insn); | |
2922 | if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn)) | |
2923 | { | |
2924 | /* Extract the target address from the addil/ldw sequence. */ | |
2925 | pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); | |
2926 | ||
2927 | if (dp_rel) | |
52f729a7 | 2928 | pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); |
34f55018 | 2929 | else |
52f729a7 | 2930 | pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); |
34f55018 MK |
2931 | |
2932 | /* fallthrough */ | |
2933 | } | |
2934 | ||
2935 | if (in_plt_section (pc, NULL)) | |
2936 | { | |
0dfff4cb | 2937 | pc = read_memory_typed_address (pc, func_ptr_type); |
34f55018 MK |
2938 | |
2939 | /* If the PLT slot has not yet been resolved, the target will be | |
2940 | the PLT stub. */ | |
2941 | if (in_plt_section (pc, NULL)) | |
2942 | { | |
2943 | /* Sanity check: are we pointing to the PLT stub? */ | |
2944 | if (!hppa_match_insns (pc, hppa_plt_stub, insn)) | |
2945 | { | |
2946 | warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc)); | |
2947 | return 0; | |
2948 | } | |
2949 | ||
2950 | /* This should point to the fixup routine. */ | |
0dfff4cb | 2951 | pc = read_memory_typed_address (pc + 8, func_ptr_type); |
34f55018 MK |
2952 | } |
2953 | } | |
2954 | ||
2955 | return pc; | |
2956 | } | |
2957 | \f | |
2958 | ||
8e8b2dba MC |
2959 | /* Here is a table of C type sizes on hppa with various compiles |
2960 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
2961 | and these compilers: | |
2962 | ||
2963 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
2964 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
2965 | /opt/aCC/bin/aCC B3910B A.03.45 | |
2966 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
2967 | ||
2968 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
2969 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2970 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2971 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2972 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2973 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2974 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
2975 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
2976 | ||
2977 | Each line is: | |
2978 | ||
2979 | compiler and options | |
2980 | char, short, int, long, long long | |
2981 | float, double, long double | |
2982 | char *, void (*)() | |
2983 | ||
2984 | So all these compilers use either ILP32 or LP64 model. | |
2985 | TODO: gcc has more options so it needs more investigation. | |
2986 | ||
a2379359 MC |
2987 | For floating point types, see: |
2988 | ||
2989 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
2990 | HP-UX floating-point guide, hpux 11.00 | |
2991 | ||
8e8b2dba MC |
2992 | -- chastain 2003-12-18 */ |
2993 | ||
e6e68f1f JB |
2994 | static struct gdbarch * |
2995 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2996 | { | |
3ff7cf9e | 2997 | struct gdbarch_tdep *tdep; |
e6e68f1f | 2998 | struct gdbarch *gdbarch; |
59623e27 JB |
2999 | |
3000 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 3001 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
59623e27 | 3002 | { |
4be87837 DJ |
3003 | /* If it's a SOM file, assume it's HP/UX SOM. */ |
3004 | if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour) | |
3005 | info.osabi = GDB_OSABI_HPUX_SOM; | |
59623e27 | 3006 | } |
e6e68f1f JB |
3007 | |
3008 | /* find a candidate among the list of pre-declared architectures. */ | |
3009 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3010 | if (arches != NULL) | |
3011 | return (arches->gdbarch); | |
3012 | ||
3013 | /* If none found, then allocate and initialize one. */ | |
fdd72f95 | 3014 | tdep = XZALLOC (struct gdbarch_tdep); |
3ff7cf9e JB |
3015 | gdbarch = gdbarch_alloc (&info, tdep); |
3016 | ||
3017 | /* Determine from the bfd_arch_info structure if we are dealing with | |
3018 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
3019 | then default to a 32bit machine. */ | |
3020 | if (info.bfd_arch_info != NULL) | |
3021 | tdep->bytes_per_address = | |
3022 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
3023 | else | |
3024 | tdep->bytes_per_address = 4; | |
3025 | ||
d49771ef RC |
3026 | tdep->find_global_pointer = hppa_find_global_pointer; |
3027 | ||
3ff7cf9e JB |
3028 | /* Some parts of the gdbarch vector depend on whether we are running |
3029 | on a 32 bits or 64 bits target. */ | |
3030 | switch (tdep->bytes_per_address) | |
3031 | { | |
3032 | case 4: | |
3033 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
3034 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
eded0a31 | 3035 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
38ca4e0c MK |
3036 | set_gdbarch_cannot_store_register (gdbarch, |
3037 | hppa32_cannot_store_register); | |
3038 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3039 | hppa32_cannot_fetch_register); |
3ff7cf9e JB |
3040 | break; |
3041 | case 8: | |
3042 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
3043 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
eded0a31 | 3044 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
1ef7fcb5 | 3045 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); |
38ca4e0c MK |
3046 | set_gdbarch_cannot_store_register (gdbarch, |
3047 | hppa64_cannot_store_register); | |
3048 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3049 | hppa64_cannot_fetch_register); |
3ff7cf9e JB |
3050 | break; |
3051 | default: | |
e2e0b3e5 | 3052 | internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), |
3ff7cf9e JB |
3053 | tdep->bytes_per_address); |
3054 | } | |
3055 | ||
3ff7cf9e | 3056 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
3ff7cf9e | 3057 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 3058 | |
8e8b2dba MC |
3059 | /* The following gdbarch vector elements are the same in both ILP32 |
3060 | and LP64, but might show differences some day. */ | |
3061 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3062 | set_gdbarch_long_double_bit (gdbarch, 128); | |
8da61cc4 | 3063 | set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
8e8b2dba | 3064 | |
3ff7cf9e JB |
3065 | /* The following gdbarch vector elements do not depend on the address |
3066 | size, or in any other gdbarch element previously set. */ | |
60383d10 | 3067 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
1fb24930 RC |
3068 | set_gdbarch_in_function_epilogue_p (gdbarch, |
3069 | hppa_in_function_epilogue_p); | |
a2a84a72 | 3070 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
eded0a31 AC |
3071 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
3072 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); | |
b6fbdd1d | 3073 | set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address); |
60383d10 JB |
3074 | set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address); |
3075 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
cc72850f MK |
3076 | set_gdbarch_read_pc (gdbarch, hppa_read_pc); |
3077 | set_gdbarch_write_pc (gdbarch, hppa_write_pc); | |
60383d10 | 3078 | |
143985b7 AF |
3079 | /* Helper for function argument information. */ |
3080 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
3081 | ||
36482093 AC |
3082 | set_gdbarch_print_insn (gdbarch, print_insn_hppa); |
3083 | ||
3a3bc038 AC |
3084 | /* When a hardware watchpoint triggers, we'll move the inferior past |
3085 | it by removing all eventpoints; stepping past the instruction | |
3086 | that caused the trigger; reinserting eventpoints; and checking | |
3087 | whether any watched location changed. */ | |
3088 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
3089 | ||
5979bc46 | 3090 | /* Inferior function call methods. */ |
fca7aa43 | 3091 | switch (tdep->bytes_per_address) |
5979bc46 | 3092 | { |
fca7aa43 AC |
3093 | case 4: |
3094 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
3095 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
d49771ef RC |
3096 | set_gdbarch_convert_from_func_ptr_addr |
3097 | (gdbarch, hppa32_convert_from_func_ptr_addr); | |
fca7aa43 AC |
3098 | break; |
3099 | case 8: | |
782eae8b AC |
3100 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
3101 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); | |
fca7aa43 | 3102 | break; |
782eae8b | 3103 | default: |
e2e0b3e5 | 3104 | internal_error (__FILE__, __LINE__, _("bad switch")); |
fad850b2 AC |
3105 | } |
3106 | ||
3107 | /* Struct return methods. */ | |
fca7aa43 | 3108 | switch (tdep->bytes_per_address) |
fad850b2 | 3109 | { |
fca7aa43 AC |
3110 | case 4: |
3111 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
3112 | break; | |
3113 | case 8: | |
782eae8b | 3114 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
f5f907e2 | 3115 | break; |
fca7aa43 | 3116 | default: |
e2e0b3e5 | 3117 | internal_error (__FILE__, __LINE__, _("bad switch")); |
e963316f | 3118 | } |
7f07c5b6 | 3119 | |
85f4f2d8 | 3120 | set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc); |
7f07c5b6 | 3121 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
85f4f2d8 | 3122 | |
5979bc46 | 3123 | /* Frame unwind methods. */ |
227e86ad | 3124 | set_gdbarch_dummy_id (gdbarch, hppa_dummy_id); |
782eae8b | 3125 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); |
7f07c5b6 | 3126 | |
50306a9d RC |
3127 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3128 | gdbarch_init_osabi (info, gdbarch); | |
3129 | ||
7f07c5b6 | 3130 | /* Hook in the default unwinders. */ |
227e86ad JB |
3131 | frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); |
3132 | frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); | |
3133 | frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); | |
5979bc46 | 3134 | |
e6e68f1f JB |
3135 | return gdbarch; |
3136 | } | |
3137 | ||
3138 | static void | |
464963c9 | 3139 | hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
e6e68f1f | 3140 | { |
464963c9 | 3141 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
fdd72f95 RC |
3142 | |
3143 | fprintf_unfiltered (file, "bytes_per_address = %d\n", | |
3144 | tdep->bytes_per_address); | |
3145 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); | |
e6e68f1f JB |
3146 | } |
3147 | ||
4facf7e8 JB |
3148 | void |
3149 | _initialize_hppa_tdep (void) | |
3150 | { | |
3151 | struct cmd_list_element *c; | |
4facf7e8 | 3152 | |
e6e68f1f | 3153 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 | 3154 | |
7c46b9fb RC |
3155 | hppa_objfile_priv_data = register_objfile_data (); |
3156 | ||
4facf7e8 | 3157 | add_cmd ("unwind", class_maintenance, unwind_command, |
1a966eab | 3158 | _("Print unwind table entry at given address."), |
4facf7e8 JB |
3159 | &maintenanceprintlist); |
3160 | ||
369aa520 | 3161 | /* Debug this files internals. */ |
7915a72c AC |
3162 | add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ |
3163 | Set whether hppa target specific debugging information should be displayed."), | |
3164 | _("\ | |
3165 | Show whether hppa target specific debugging information is displayed."), _("\ | |
4a302917 RC |
3166 | This flag controls whether hppa target specific debugging information is\n\ |
3167 | displayed. This information is particularly useful for debugging frame\n\ | |
7915a72c | 3168 | unwinding problems."), |
2c5b56ce | 3169 | NULL, |
7915a72c | 3170 | NULL, /* FIXME: i18n: hppa debug flag is %s. */ |
2c5b56ce | 3171 | &setdebuglist, &showdebuglist); |
4facf7e8 | 3172 | } |