Remove regcache_raw_write
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "bfd.h"
25#include "inferior.h"
4e052eda 26#include "regcache.h"
e5d66720 27#include "completer.h"
59623e27 28#include "osabi.h"
343af405 29#include "arch-utils.h"
1777feb0 30/* For argument passing to the inferior. */
c906108c 31#include "symtab.h"
fde2cceb 32#include "dis-asm.h"
26d08f08
AC
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
c906108c 36
c906108c
SS
37#include "gdbcore.h"
38#include "gdbcmd.h"
e6bb342a 39#include "gdbtypes.h"
c906108c 40#include "objfiles.h"
3ff7cf9e 41#include "hppa-tdep.h"
325fac50 42#include <algorithm>
c906108c 43
369aa520
RC
44static int hppa_debug = 0;
45
60383d10 46/* Some local constants. */
3ff7cf9e
JB
47static const int hppa32_num_regs = 128;
48static const int hppa64_num_regs = 96;
49
61a12cfa
JK
50/* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58/* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
7c46b9fb
RC
81/* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61a12cfa 87static const struct objfile_data *hppa_objfile_priv_data = NULL;
7c46b9fb 88
1777feb0 89/* Get at various relevent fields of an instruction word. */
e2ac8128
JB
90#define MASK_5 0x1f
91#define MASK_11 0x7ff
92#define MASK_14 0x3fff
93#define MASK_21 0x1fffff
94
e2ac8128
JB
95/* Sizes (in bytes) of the native unwind entries. */
96#define UNWIND_ENTRY_SIZE 16
97#define STUB_UNWIND_ENTRY_SIZE 8
98
c906108c 99/* Routines to extract various sized constants out of hppa
1777feb0 100 instructions. */
c906108c
SS
101
102/* This assumes that no garbage lies outside of the lower bits of
1777feb0 103 value. */
c906108c 104
63807e1d 105static int
abc485a1 106hppa_sign_extend (unsigned val, unsigned bits)
c906108c 107{
66c6502d 108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
c906108c
SS
109}
110
1777feb0 111/* For many immediate values the sign bit is the low bit! */
c906108c 112
63807e1d 113static int
abc485a1 114hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 115{
66c6502d 116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
c906108c
SS
117}
118
e2ac8128 119/* Extract the bits at positions between FROM and TO, using HP's numbering
1777feb0 120 (MSB = 0). */
e2ac8128 121
abc485a1
RC
122int
123hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
124{
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126}
127
1777feb0 128/* Extract the immediate field from a ld{bhw}s instruction. */
c906108c 129
abc485a1
RC
130int
131hppa_extract_5_load (unsigned word)
c906108c 132{
abc485a1 133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
134}
135
1777feb0 136/* Extract the immediate field from a break instruction. */
c906108c 137
abc485a1
RC
138unsigned
139hppa_extract_5r_store (unsigned word)
c906108c
SS
140{
141 return (word & MASK_5);
142}
143
1777feb0 144/* Extract the immediate field from a {sr}sm instruction. */
c906108c 145
abc485a1
RC
146unsigned
147hppa_extract_5R_store (unsigned word)
c906108c
SS
148{
149 return (word >> 16 & MASK_5);
150}
151
1777feb0 152/* Extract a 14 bit immediate field. */
c906108c 153
abc485a1
RC
154int
155hppa_extract_14 (unsigned word)
c906108c 156{
abc485a1 157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
158}
159
1777feb0 160/* Extract a 21 bit constant. */
c906108c 161
abc485a1
RC
162int
163hppa_extract_21 (unsigned word)
c906108c
SS
164{
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
abc485a1 169 val = hppa_get_field (word, 20, 20);
c906108c 170 val <<= 11;
abc485a1 171 val |= hppa_get_field (word, 9, 19);
c906108c 172 val <<= 2;
abc485a1 173 val |= hppa_get_field (word, 5, 6);
c906108c 174 val <<= 5;
abc485a1 175 val |= hppa_get_field (word, 0, 4);
c906108c 176 val <<= 2;
abc485a1
RC
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
179}
180
c906108c 181/* extract a 17 bit constant from branch instructions, returning the
1777feb0 182 19 bit signed value. */
c906108c 183
abc485a1
RC
184int
185hppa_extract_17 (unsigned word)
c906108c 186{
abc485a1
RC
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
190 (word & 0x1) << 16, 17) << 2;
191}
3388d7ff
RC
192
193CORE_ADDR
194hppa_symbol_address(const char *sym)
195{
3b7344d5 196 struct bound_minimal_symbol minsym;
3388d7ff
RC
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
3b7344d5 199 if (minsym.minsym)
77e371c0 200 return BMSYMBOL_VALUE_ADDRESS (minsym);
3388d7ff
RC
201 else
202 return (CORE_ADDR)-1;
203}
77d18ded 204
61a12cfa 205static struct hppa_objfile_private *
77d18ded
RC
206hppa_init_objfile_priv_data (struct objfile *objfile)
207{
e39db4db
SM
208 hppa_objfile_private *priv
209 = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private);
77d18ded 210
77d18ded 211 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
77d18ded
RC
212
213 return priv;
214}
c906108c
SS
215\f
216
217/* Compare the start address for two unwind entries returning 1 if
218 the first address is larger than the second, -1 if the second is
219 larger than the first, and zero if they are equal. */
220
221static int
fba45db2 222compare_unwind_entries (const void *arg1, const void *arg2)
c906108c 223{
9a3c8263
SM
224 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
225 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
c906108c
SS
226
227 if (a->region_start > b->region_start)
228 return 1;
229 else if (a->region_start < b->region_start)
230 return -1;
231 else
232 return 0;
233}
234
53a5351d 235static void
fdd72f95 236record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 237{
fdd72f95 238 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 239 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
240 {
241 bfd_vma value = section->vma - section->filepos;
242 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
243
244 if (value < *low_text_segment_address)
245 *low_text_segment_address = value;
246 }
53a5351d
JM
247}
248
c906108c 249static void
fba45db2 250internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
1777feb0 251 asection *section, unsigned int entries,
241fd515 252 size_t size, CORE_ADDR text_offset)
c906108c
SS
253{
254 /* We will read the unwind entries into temporary memory, then
255 fill in the actual unwind table. */
fdd72f95 256
c906108c
SS
257 if (size > 0)
258 {
5db8bbe5 259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
260 unsigned long tmp;
261 unsigned i;
224c3ddb 262 char *buf = (char *) alloca (size);
fdd72f95 263 CORE_ADDR low_text_segment_address;
c906108c 264
fdd72f95 265 /* For ELF targets, then unwinds are supposed to
1777feb0 266 be segment relative offsets instead of absolute addresses.
c2c6d25f
JM
267
268 Note that when loading a shared library (text_offset != 0) the
269 unwinds are already relative to the text_offset that will be
270 passed in. */
5db8bbe5 271 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
53a5351d 272 {
fdd72f95
RC
273 low_text_segment_address = -1;
274
53a5351d 275 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
276 record_text_segment_lowaddr,
277 &low_text_segment_address);
53a5351d 278
fdd72f95 279 text_offset = low_text_segment_address;
53a5351d 280 }
5db8bbe5 281 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
acf86d54 282 {
5db8bbe5 283 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
acf86d54 284 }
53a5351d 285
c906108c
SS
286 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
287
288 /* Now internalize the information being careful to handle host/target
c5aa993b 289 endian issues. */
c906108c
SS
290 for (i = 0; i < entries; i++)
291 {
292 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 293 (bfd_byte *) buf);
c906108c
SS
294 table[i].region_start += text_offset;
295 buf += 4;
c5aa993b 296 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
297 table[i].region_end += text_offset;
298 buf += 4;
c5aa993b 299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
300 buf += 4;
301 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
302 table[i].Millicode = (tmp >> 30) & 0x1;
303 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
304 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 305 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
306 table[i].Entry_SR = (tmp >> 25) & 0x1;
307 table[i].Entry_FR = (tmp >> 21) & 0xf;
308 table[i].Entry_GR = (tmp >> 16) & 0x1f;
309 table[i].Args_stored = (tmp >> 15) & 0x1;
310 table[i].Variable_Frame = (tmp >> 14) & 0x1;
311 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
312 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
313 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
314 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 315 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
316 table[i].cxx_info = (tmp >> 8) & 0x1;
317 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
318 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 319 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 323 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 324 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
330 table[i].alloca_frame = (tmp >> 28) & 0x1;
331 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
332 table[i].Total_frame_size = tmp & 0x7ffffff;
333
1777feb0 334 /* Stub unwinds are handled elsewhere. */
c906108c
SS
335 table[i].stub_unwind.stub_type = 0;
336 table[i].stub_unwind.padding = 0;
337 }
338 }
339}
340
341/* Read in the backtrace information stored in the `$UNWIND_START$' section of
342 the object file. This info is used mainly by find_unwind_entry() to find
343 out the stack frame size and frame pointer used by procedures. We put
344 everything on the psymbol obstack in the objfile so that it automatically
345 gets freed when the objfile is destroyed. */
346
347static void
fba45db2 348read_unwind_info (struct objfile *objfile)
c906108c 349{
d4f3574e 350 asection *unwind_sec, *stub_unwind_sec;
241fd515 351 size_t unwind_size, stub_unwind_size, total_size;
d4f3574e 352 unsigned index, unwind_entries;
c906108c
SS
353 unsigned stub_entries, total_entries;
354 CORE_ADDR text_offset;
7c46b9fb
RC
355 struct hppa_unwind_info *ui;
356 struct hppa_objfile_private *obj_private;
c906108c 357
a99dad3d 358 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7c46b9fb
RC
359 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
360 sizeof (struct hppa_unwind_info));
c906108c
SS
361
362 ui->table = NULL;
363 ui->cache = NULL;
364 ui->last = -1;
365
d4f3574e
SS
366 /* For reasons unknown the HP PA64 tools generate multiple unwinder
367 sections in a single executable. So we just iterate over every
368 section in the BFD looking for unwinder sections intead of trying
1777feb0 369 to do a lookup with bfd_get_section_by_name.
c906108c 370
d4f3574e
SS
371 First determine the total size of the unwind tables so that we
372 can allocate memory in a nice big hunk. */
373 total_entries = 0;
374 for (unwind_sec = objfile->obfd->sections;
375 unwind_sec;
376 unwind_sec = unwind_sec->next)
c906108c 377 {
d4f3574e
SS
378 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
379 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
380 {
381 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 383
d4f3574e
SS
384 total_entries += unwind_entries;
385 }
c906108c
SS
386 }
387
d4f3574e 388 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 389 use stub unwinds at the current time. */
d4f3574e
SS
390 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
391
c906108c
SS
392 if (stub_unwind_sec)
393 {
394 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
395 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
396 }
397 else
398 {
399 stub_unwind_size = 0;
400 stub_entries = 0;
401 }
402
403 /* Compute total number of unwind entries and their total size. */
d4f3574e 404 total_entries += stub_entries;
c906108c
SS
405 total_size = total_entries * sizeof (struct unwind_table_entry);
406
407 /* Allocate memory for the unwind table. */
408 ui->table = (struct unwind_table_entry *)
8b92e4d5 409 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 410 ui->last = total_entries - 1;
c906108c 411
d4f3574e
SS
412 /* Now read in each unwind section and internalize the standard unwind
413 entries. */
c906108c 414 index = 0;
d4f3574e
SS
415 for (unwind_sec = objfile->obfd->sections;
416 unwind_sec;
417 unwind_sec = unwind_sec->next)
418 {
419 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
420 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
421 {
422 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
423 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
424
425 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
426 unwind_entries, unwind_size, text_offset);
427 index += unwind_entries;
428 }
429 }
430
431 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
432 if (stub_unwind_size > 0)
433 {
434 unsigned int i;
224c3ddb 435 char *buf = (char *) alloca (stub_unwind_size);
c906108c
SS
436
437 /* Read in the stub unwind entries. */
438 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
439 0, stub_unwind_size);
440
441 /* Now convert them into regular unwind entries. */
442 for (i = 0; i < stub_entries; i++, index++)
443 {
444 /* Clear out the next unwind entry. */
445 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
446
1777feb0 447 /* Convert offset & size into region_start and region_end.
c906108c
SS
448 Stuff away the stub type into "reserved" fields. */
449 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
450 (bfd_byte *) buf);
451 ui->table[index].region_start += text_offset;
452 buf += 4;
453 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 454 (bfd_byte *) buf);
c906108c
SS
455 buf += 2;
456 ui->table[index].region_end
c5aa993b
JM
457 = ui->table[index].region_start + 4 *
458 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
459 buf += 2;
460 }
461
462 }
463
464 /* Unwind table needs to be kept sorted. */
465 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
466 compare_unwind_entries);
467
468 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
469 obj_private = (struct hppa_objfile_private *)
470 objfile_data (objfile, hppa_objfile_priv_data);
471 if (obj_private == NULL)
77d18ded
RC
472 obj_private = hppa_init_objfile_priv_data (objfile);
473
c906108c
SS
474 obj_private->unwind_info = ui;
475}
476
477/* Lookup the unwind (stack backtrace) info for the given PC. We search all
478 of the objfiles seeking the unwind table entry for this PC. Each objfile
479 contains a sorted list of struct unwind_table_entry. Since we do a binary
480 search of the unwind tables, we depend upon them to be sorted. */
481
482struct unwind_table_entry *
fba45db2 483find_unwind_entry (CORE_ADDR pc)
c906108c
SS
484{
485 int first, middle, last;
486 struct objfile *objfile;
7c46b9fb 487 struct hppa_objfile_private *priv;
c906108c 488
369aa520 489 if (hppa_debug)
5af949e3
UW
490 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
491 hex_string (pc));
369aa520 492
1777feb0 493 /* A function at address 0? Not in HP-UX! */
c906108c 494 if (pc == (CORE_ADDR) 0)
369aa520
RC
495 {
496 if (hppa_debug)
497 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
498 return NULL;
499 }
c906108c
SS
500
501 ALL_OBJFILES (objfile)
c5aa993b 502 {
7c46b9fb 503 struct hppa_unwind_info *ui;
c5aa993b 504 ui = NULL;
9a3c8263
SM
505 priv = ((struct hppa_objfile_private *)
506 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb
RC
507 if (priv)
508 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 509
c5aa993b
JM
510 if (!ui)
511 {
512 read_unwind_info (objfile);
9a3c8263
SM
513 priv = ((struct hppa_objfile_private *)
514 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb 515 if (priv == NULL)
8a3fe4f8 516 error (_("Internal error reading unwind information."));
7c46b9fb 517 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 518 }
c906108c 519
1777feb0 520 /* First, check the cache. */
c906108c 521
c5aa993b
JM
522 if (ui->cache
523 && pc >= ui->cache->region_start
524 && pc <= ui->cache->region_end)
369aa520
RC
525 {
526 if (hppa_debug)
5af949e3
UW
527 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
528 hex_string ((uintptr_t) ui->cache));
369aa520
RC
529 return ui->cache;
530 }
c906108c 531
1777feb0 532 /* Not in the cache, do a binary search. */
c906108c 533
c5aa993b
JM
534 first = 0;
535 last = ui->last;
c906108c 536
c5aa993b
JM
537 while (first <= last)
538 {
539 middle = (first + last) / 2;
540 if (pc >= ui->table[middle].region_start
541 && pc <= ui->table[middle].region_end)
542 {
543 ui->cache = &ui->table[middle];
369aa520 544 if (hppa_debug)
5af949e3
UW
545 fprintf_unfiltered (gdb_stdlog, "%s }\n",
546 hex_string ((uintptr_t) ui->cache));
c5aa993b
JM
547 return &ui->table[middle];
548 }
c906108c 549
c5aa993b
JM
550 if (pc < ui->table[middle].region_start)
551 last = middle - 1;
552 else
553 first = middle + 1;
554 }
555 } /* ALL_OBJFILES() */
369aa520
RC
556
557 if (hppa_debug)
558 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
559
c906108c
SS
560 return NULL;
561}
562
c9cf6e20
MG
563/* Implement the stack_frame_destroyed_p gdbarch method.
564
565 The epilogue is defined here as the area either on the `bv' instruction
1777feb0 566 itself or an instruction which destroys the function's stack frame.
1fb24930
RC
567
568 We do not assume that the epilogue is at the end of a function as we can
569 also have return sequences in the middle of a function. */
c9cf6e20 570
1fb24930 571static int
c9cf6e20 572hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1fb24930 573{
e17a4113 574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1fb24930
RC
575 unsigned long status;
576 unsigned int inst;
e362b510 577 gdb_byte buf[4];
1fb24930 578
8defab1a 579 status = target_read_memory (pc, buf, 4);
1fb24930
RC
580 if (status != 0)
581 return 0;
582
e17a4113 583 inst = extract_unsigned_integer (buf, 4, byte_order);
1fb24930
RC
584
585 /* The most common way to perform a stack adjustment ldo X(sp),sp
586 We are destroying a stack frame if the offset is negative. */
587 if ((inst & 0xffffc000) == 0x37de0000
588 && hppa_extract_14 (inst) < 0)
589 return 1;
590
591 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
592 if (((inst & 0x0fc010e0) == 0x0fc010e0
593 || (inst & 0x0fc010e0) == 0x0fc010e0)
594 && hppa_extract_14 (inst) < 0)
595 return 1;
596
597 /* bv %r0(%rp) or bv,n %r0(%rp) */
598 if (inst == 0xe840c000 || inst == 0xe840c002)
599 return 1;
600
601 return 0;
602}
603
04180708 604constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
598cc9dc 605
04180708 606typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
aaab4dba 607
e23457df
AC
608/* Return the name of a register. */
609
4a302917 610static const char *
d93859e2 611hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df 612{
a121b7c1 613 static const char *names[] = {
e23457df
AC
614 "flags", "r1", "rp", "r3",
615 "r4", "r5", "r6", "r7",
616 "r8", "r9", "r10", "r11",
617 "r12", "r13", "r14", "r15",
618 "r16", "r17", "r18", "r19",
619 "r20", "r21", "r22", "r23",
620 "r24", "r25", "r26", "dp",
621 "ret0", "ret1", "sp", "r31",
622 "sar", "pcoqh", "pcsqh", "pcoqt",
623 "pcsqt", "eiem", "iir", "isr",
624 "ior", "ipsw", "goto", "sr4",
625 "sr0", "sr1", "sr2", "sr3",
626 "sr5", "sr6", "sr7", "cr0",
627 "cr8", "cr9", "ccr", "cr12",
628 "cr13", "cr24", "cr25", "cr26",
629 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
630 "fpsr", "fpe1", "fpe2", "fpe3",
631 "fpe4", "fpe5", "fpe6", "fpe7",
632 "fr4", "fr4R", "fr5", "fr5R",
633 "fr6", "fr6R", "fr7", "fr7R",
634 "fr8", "fr8R", "fr9", "fr9R",
635 "fr10", "fr10R", "fr11", "fr11R",
636 "fr12", "fr12R", "fr13", "fr13R",
637 "fr14", "fr14R", "fr15", "fr15R",
638 "fr16", "fr16R", "fr17", "fr17R",
639 "fr18", "fr18R", "fr19", "fr19R",
640 "fr20", "fr20R", "fr21", "fr21R",
641 "fr22", "fr22R", "fr23", "fr23R",
642 "fr24", "fr24R", "fr25", "fr25R",
643 "fr26", "fr26R", "fr27", "fr27R",
644 "fr28", "fr28R", "fr29", "fr29R",
645 "fr30", "fr30R", "fr31", "fr31R"
646 };
647 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
648 return NULL;
649 else
650 return names[i];
651}
652
4a302917 653static const char *
d93859e2 654hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df 655{
a121b7c1 656 static const char *names[] = {
e23457df
AC
657 "flags", "r1", "rp", "r3",
658 "r4", "r5", "r6", "r7",
659 "r8", "r9", "r10", "r11",
660 "r12", "r13", "r14", "r15",
661 "r16", "r17", "r18", "r19",
662 "r20", "r21", "r22", "r23",
663 "r24", "r25", "r26", "dp",
664 "ret0", "ret1", "sp", "r31",
665 "sar", "pcoqh", "pcsqh", "pcoqt",
666 "pcsqt", "eiem", "iir", "isr",
667 "ior", "ipsw", "goto", "sr4",
668 "sr0", "sr1", "sr2", "sr3",
669 "sr5", "sr6", "sr7", "cr0",
670 "cr8", "cr9", "ccr", "cr12",
671 "cr13", "cr24", "cr25", "cr26",
672 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
673 "fpsr", "fpe1", "fpe2", "fpe3",
674 "fr4", "fr5", "fr6", "fr7",
675 "fr8", "fr9", "fr10", "fr11",
676 "fr12", "fr13", "fr14", "fr15",
677 "fr16", "fr17", "fr18", "fr19",
678 "fr20", "fr21", "fr22", "fr23",
679 "fr24", "fr25", "fr26", "fr27",
680 "fr28", "fr29", "fr30", "fr31"
681 };
682 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
683 return NULL;
684 else
685 return names[i];
686}
687
85c83e99 688/* Map dwarf DBX register numbers to GDB register numbers. */
1ef7fcb5 689static int
d3f73121 690hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5 691{
85c83e99 692 /* The general registers and the sar are the same in both sets. */
0fde2c53 693 if (reg >= 0 && reg <= 32)
1ef7fcb5
RC
694 return reg;
695
696 /* fr4-fr31 are mapped from 72 in steps of 2. */
85c83e99 697 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
1ef7fcb5
RC
698 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
699
1ef7fcb5
RC
700 return -1;
701}
702
79508e1e
AC
703/* This function pushes a stack frame with arguments as part of the
704 inferior function calling mechanism.
705
706 This is the version of the function for the 32-bit PA machines, in
707 which later arguments appear at lower addresses. (The stack always
708 grows towards higher addresses.)
709
710 We simply allocate the appropriate amount of stack space and put
711 arguments into their proper slots. */
712
4a302917 713static CORE_ADDR
7d9b040b 714hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
715 struct regcache *regcache, CORE_ADDR bp_addr,
716 int nargs, struct value **args, CORE_ADDR sp,
717 int struct_return, CORE_ADDR struct_addr)
718{
e17a4113
UW
719 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
720
79508e1e
AC
721 /* Stack base address at which any pass-by-reference parameters are
722 stored. */
723 CORE_ADDR struct_end = 0;
724 /* Stack base address at which the first parameter is stored. */
725 CORE_ADDR param_end = 0;
726
79508e1e
AC
727 /* Two passes. First pass computes the location of everything,
728 second pass writes the bytes out. */
729 int write_pass;
d49771ef
RC
730
731 /* Global pointer (r19) of the function we are trying to call. */
732 CORE_ADDR gp;
733
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735
79508e1e
AC
736 for (write_pass = 0; write_pass < 2; write_pass++)
737 {
1797a8f6 738 CORE_ADDR struct_ptr = 0;
1777feb0 739 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
2a6228ef
RC
740 struct_ptr is adjusted for each argument below, so the first
741 argument will end up at sp-36. */
742 CORE_ADDR param_ptr = 32;
79508e1e 743 int i;
2a6228ef
RC
744 int small_struct = 0;
745
79508e1e
AC
746 for (i = 0; i < nargs; i++)
747 {
748 struct value *arg = args[i];
4991999e 749 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
750 /* The corresponding parameter that is pushed onto the
751 stack, and [possibly] passed in a register. */
948f8e3d 752 gdb_byte param_val[8];
79508e1e
AC
753 int param_len;
754 memset (param_val, 0, sizeof param_val);
755 if (TYPE_LENGTH (type) > 8)
756 {
757 /* Large parameter, pass by reference. Store the value
758 in "struct" area and then pass its address. */
759 param_len = 4;
1797a8f6 760 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 761 if (write_pass)
0fd88904 762 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 763 TYPE_LENGTH (type));
e17a4113
UW
764 store_unsigned_integer (param_val, 4, byte_order,
765 struct_end - struct_ptr);
79508e1e
AC
766 }
767 else if (TYPE_CODE (type) == TYPE_CODE_INT
768 || TYPE_CODE (type) == TYPE_CODE_ENUM)
769 {
770 /* Integer value store, right aligned. "unpack_long"
771 takes care of any sign-extension problems. */
772 param_len = align_up (TYPE_LENGTH (type), 4);
e17a4113 773 store_unsigned_integer (param_val, param_len, byte_order,
79508e1e 774 unpack_long (type,
0fd88904 775 value_contents (arg)));
79508e1e 776 }
2a6228ef
RC
777 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
778 {
779 /* Floating point value store, right aligned. */
780 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 781 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 782 }
79508e1e
AC
783 else
784 {
79508e1e 785 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
786
787 /* Small struct value are stored right-aligned. */
79508e1e 788 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 789 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
790
791 /* Structures of size 5, 6 and 7 bytes are special in that
792 the higher-ordered word is stored in the lower-ordered
793 argument, and even though it is a 8-byte quantity the
794 registers need not be 8-byte aligned. */
1b07b470 795 if (param_len > 4 && param_len < 8)
2a6228ef 796 small_struct = 1;
79508e1e 797 }
2a6228ef 798
1797a8f6 799 param_ptr += param_len;
2a6228ef
RC
800 if (param_len == 8 && !small_struct)
801 param_ptr = align_up (param_ptr, 8);
802
803 /* First 4 non-FP arguments are passed in gr26-gr23.
804 First 4 32-bit FP arguments are passed in fr4L-fr7L.
805 First 2 64-bit FP arguments are passed in fr5 and fr7.
806
807 The rest go on the stack, starting at sp-36, towards lower
808 addresses. 8-byte arguments must be aligned to a 8-byte
809 stack boundary. */
79508e1e
AC
810 if (write_pass)
811 {
1797a8f6 812 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
813
814 /* There are some cases when we don't know the type
815 expected by the callee (e.g. for variadic functions), so
816 pass the parameters in both general and fp regs. */
817 if (param_ptr <= 48)
79508e1e 818 {
2a6228ef
RC
819 int grreg = 26 - (param_ptr - 36) / 4;
820 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
821 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
822
823 regcache_cooked_write (regcache, grreg, param_val);
824 regcache_cooked_write (regcache, fpLreg, param_val);
825
79508e1e 826 if (param_len > 4)
2a6228ef
RC
827 {
828 regcache_cooked_write (regcache, grreg + 1,
829 param_val + 4);
830
831 regcache_cooked_write (regcache, fpreg, param_val);
832 regcache_cooked_write (regcache, fpreg + 1,
833 param_val + 4);
834 }
79508e1e
AC
835 }
836 }
837 }
838
839 /* Update the various stack pointers. */
840 if (!write_pass)
841 {
2a6228ef 842 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
843 /* PARAM_PTR already accounts for all the arguments passed
844 by the user. However, the ABI mandates minimum stack
845 space allocations for outgoing arguments. The ABI also
846 mandates minimum stack alignments which we must
847 preserve. */
2a6228ef 848 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
849 }
850 }
851
852 /* If a structure has to be returned, set up register 28 to hold its
1777feb0 853 address. */
79508e1e 854 if (struct_return)
9c9acae0 855 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 856
e38c262f 857 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
858
859 if (gp != 0)
9c9acae0 860 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 861
79508e1e 862 /* Set the return address. */
77d18ded
RC
863 if (!gdbarch_push_dummy_code_p (gdbarch))
864 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 865
c4557624 866 /* Update the Stack Pointer. */
34f75cc1 867 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 868
2a6228ef 869 return param_end;
79508e1e
AC
870}
871
38ca4e0c
MK
872/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
873 Runtime Architecture for PA-RISC 2.0", which is distributed as part
874 as of the HP-UX Software Transition Kit (STK). This implementation
875 is based on version 3.3, dated October 6, 1997. */
2f690297 876
38ca4e0c 877/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 878
38ca4e0c
MK
879static int
880hppa64_integral_or_pointer_p (const struct type *type)
881{
882 switch (TYPE_CODE (type))
883 {
884 case TYPE_CODE_INT:
885 case TYPE_CODE_BOOL:
886 case TYPE_CODE_CHAR:
887 case TYPE_CODE_ENUM:
888 case TYPE_CODE_RANGE:
889 {
890 int len = TYPE_LENGTH (type);
891 return (len == 1 || len == 2 || len == 4 || len == 8);
892 }
893 case TYPE_CODE_PTR:
894 case TYPE_CODE_REF:
aa006118 895 case TYPE_CODE_RVALUE_REF:
38ca4e0c
MK
896 return (TYPE_LENGTH (type) == 8);
897 default:
898 break;
899 }
900
901 return 0;
902}
903
904/* Check whether TYPE is a "Floating Scalar Type". */
905
906static int
907hppa64_floating_p (const struct type *type)
908{
909 switch (TYPE_CODE (type))
910 {
911 case TYPE_CODE_FLT:
912 {
913 int len = TYPE_LENGTH (type);
914 return (len == 4 || len == 8 || len == 16);
915 }
916 default:
917 break;
918 }
919
920 return 0;
921}
2f690297 922
1218e655
RC
923/* If CODE points to a function entry address, try to look up the corresponding
924 function descriptor and return its address instead. If CODE is not a
925 function entry address, then just return it unchanged. */
926static CORE_ADDR
e17a4113 927hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
1218e655 928{
e17a4113 929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218e655
RC
930 struct obj_section *sec, *opd;
931
932 sec = find_pc_section (code);
933
934 if (!sec)
935 return code;
936
937 /* If CODE is in a data section, assume it's already a fptr. */
938 if (!(sec->the_bfd_section->flags & SEC_CODE))
939 return code;
940
941 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
942 {
943 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
aded6f54 944 break;
1218e655
RC
945 }
946
947 if (opd < sec->objfile->sections_end)
948 {
949 CORE_ADDR addr;
950
aded6f54
PA
951 for (addr = obj_section_addr (opd);
952 addr < obj_section_endaddr (opd);
953 addr += 2 * 8)
954 {
1218e655 955 ULONGEST opdaddr;
948f8e3d 956 gdb_byte tmp[8];
1218e655
RC
957
958 if (target_read_memory (addr, tmp, sizeof (tmp)))
959 break;
e17a4113 960 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
1218e655 961
aded6f54 962 if (opdaddr == code)
1218e655
RC
963 return addr - 16;
964 }
965 }
966
967 return code;
968}
969
4a302917 970static CORE_ADDR
7d9b040b 971hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
972 struct regcache *regcache, CORE_ADDR bp_addr,
973 int nargs, struct value **args, CORE_ADDR sp,
974 int struct_return, CORE_ADDR struct_addr)
975{
38ca4e0c 976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 977 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
38ca4e0c
MK
978 int i, offset = 0;
979 CORE_ADDR gp;
2f690297 980
38ca4e0c
MK
981 /* "The outgoing parameter area [...] must be aligned at a 16-byte
982 boundary." */
983 sp = align_up (sp, 16);
2f690297 984
38ca4e0c
MK
985 for (i = 0; i < nargs; i++)
986 {
987 struct value *arg = args[i];
988 struct type *type = value_type (arg);
989 int len = TYPE_LENGTH (type);
0fd88904 990 const bfd_byte *valbuf;
1218e655 991 bfd_byte fptrbuf[8];
38ca4e0c 992 int regnum;
2f690297 993
38ca4e0c
MK
994 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
995 offset = align_up (offset, 8);
77d18ded 996
38ca4e0c 997 if (hppa64_integral_or_pointer_p (type))
2f690297 998 {
38ca4e0c
MK
999 /* "Integral scalar parameters smaller than 64 bits are
1000 padded on the left (i.e., the value is in the
1001 least-significant bits of the 64-bit storage unit, and
1002 the high-order bits are undefined)." Therefore we can
1003 safely sign-extend them. */
1004 if (len < 8)
449e1137 1005 {
df4df182 1006 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
38ca4e0c
MK
1007 len = 8;
1008 }
1009 }
1010 else if (hppa64_floating_p (type))
1011 {
1012 if (len > 8)
1013 {
1014 /* "Quad-precision (128-bit) floating-point scalar
1015 parameters are aligned on a 16-byte boundary." */
1016 offset = align_up (offset, 16);
1017
1018 /* "Double-extended- and quad-precision floating-point
1019 parameters within the first 64 bytes of the parameter
1020 list are always passed in general registers." */
449e1137
AC
1021 }
1022 else
1023 {
38ca4e0c 1024 if (len == 4)
449e1137 1025 {
38ca4e0c
MK
1026 /* "Single-precision (32-bit) floating-point scalar
1027 parameters are padded on the left with 32 bits of
1028 garbage (i.e., the floating-point value is in the
1029 least-significant 32 bits of a 64-bit storage
1030 unit)." */
1031 offset += 4;
449e1137 1032 }
38ca4e0c
MK
1033
1034 /* "Single- and double-precision floating-point
1035 parameters in this area are passed according to the
1036 available formal parameter information in a function
1037 prototype. [...] If no prototype is in scope,
1038 floating-point parameters must be passed both in the
1039 corresponding general registers and in the
1040 corresponding floating-point registers." */
1041 regnum = HPPA64_FP4_REGNUM + offset / 8;
1042
1043 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1044 {
38ca4e0c
MK
1045 /* "Single-precision floating-point parameters, when
1046 passed in floating-point registers, are passed in
1047 the right halves of the floating point registers;
1048 the left halves are unused." */
1049 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1050 len, value_contents (arg));
449e1137
AC
1051 }
1052 }
2f690297 1053 }
38ca4e0c 1054 else
2f690297 1055 {
38ca4e0c
MK
1056 if (len > 8)
1057 {
1058 /* "Aggregates larger than 8 bytes are aligned on a
1059 16-byte boundary, possibly leaving an unused argument
1777feb0 1060 slot, which is filled with garbage. If necessary,
38ca4e0c
MK
1061 they are padded on the right (with garbage), to a
1062 multiple of 8 bytes." */
1063 offset = align_up (offset, 16);
1064 }
1065 }
1066
1218e655
RC
1067 /* If we are passing a function pointer, make sure we pass a function
1068 descriptor instead of the function entry address. */
1069 if (TYPE_CODE (type) == TYPE_CODE_PTR
1070 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1071 {
1072 ULONGEST codeptr, fptr;
1073
1074 codeptr = unpack_long (type, value_contents (arg));
e17a4113
UW
1075 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1076 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1077 fptr);
1218e655
RC
1078 valbuf = fptrbuf;
1079 }
1080 else
1081 {
1082 valbuf = value_contents (arg);
1083 }
1084
38ca4e0c 1085 /* Always store the argument in memory. */
1218e655 1086 write_memory (sp + offset, valbuf, len);
38ca4e0c 1087
38ca4e0c
MK
1088 regnum = HPPA_ARG0_REGNUM - offset / 8;
1089 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1090 {
1091 regcache_cooked_write_part (regcache, regnum,
325fac50
PA
1092 offset % 8, std::min (len, 8), valbuf);
1093 offset += std::min (len, 8);
1094 valbuf += std::min (len, 8);
1095 len -= std::min (len, 8);
38ca4e0c 1096 regnum--;
2f690297 1097 }
38ca4e0c
MK
1098
1099 offset += len;
2f690297
AC
1100 }
1101
38ca4e0c
MK
1102 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1103 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1104
1105 /* Allocate the outgoing parameter area. Make sure the outgoing
1106 parameter area is multiple of 16 bytes in length. */
325fac50 1107 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
38ca4e0c
MK
1108
1109 /* Allocate 32-bytes of scratch space. The documentation doesn't
1110 mention this, but it seems to be needed. */
1111 sp += 32;
1112
1113 /* Allocate the frame marker area. */
1114 sp += 16;
1115
1116 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1117 its address. */
2f690297 1118 if (struct_return)
38ca4e0c 1119 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1120
38ca4e0c 1121 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1122 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1123 if (gp != 0)
38ca4e0c 1124 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1125
38ca4e0c 1126 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1127 if (!gdbarch_push_dummy_code_p (gdbarch))
1128 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1129
38ca4e0c
MK
1130 /* Set up GR30 to hold the stack pointer (sp). */
1131 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1132
38ca4e0c 1133 return sp;
2f690297 1134}
38ca4e0c 1135\f
2f690297 1136
08a27113
MK
1137/* Handle 32/64-bit struct return conventions. */
1138
1139static enum return_value_convention
6a3a010b 1140hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1141 struct type *type, struct regcache *regcache,
e127f0db 1142 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1143{
1144 if (TYPE_LENGTH (type) <= 2 * 4)
1145 {
1146 /* The value always lives in the right hand end of the register
1147 (or register pair)? */
1148 int b;
1149 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1150 int part = TYPE_LENGTH (type) % 4;
1151 /* The left hand register contains only part of the value,
1152 transfer that first so that the rest can be xfered as entire
1153 4-byte registers. */
1154 if (part > 0)
1155 {
1156 if (readbuf != NULL)
1157 regcache_cooked_read_part (regcache, reg, 4 - part,
1158 part, readbuf);
1159 if (writebuf != NULL)
1160 regcache_cooked_write_part (regcache, reg, 4 - part,
1161 part, writebuf);
1162 reg++;
1163 }
1164 /* Now transfer the remaining register values. */
1165 for (b = part; b < TYPE_LENGTH (type); b += 4)
1166 {
1167 if (readbuf != NULL)
e127f0db 1168 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1169 if (writebuf != NULL)
e127f0db 1170 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1171 reg++;
1172 }
1173 return RETURN_VALUE_REGISTER_CONVENTION;
1174 }
1175 else
1176 return RETURN_VALUE_STRUCT_CONVENTION;
1177}
1178
1179static enum return_value_convention
6a3a010b 1180hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1181 struct type *type, struct regcache *regcache,
e127f0db 1182 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1183{
1184 int len = TYPE_LENGTH (type);
1185 int regnum, offset;
1186
bad43aa5 1187 if (len > 16)
08a27113
MK
1188 {
1189 /* All return values larget than 128 bits must be aggregate
1190 return values. */
9738b034
MK
1191 gdb_assert (!hppa64_integral_or_pointer_p (type));
1192 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1193
1194 /* "Aggregate return values larger than 128 bits are returned in
1195 a buffer allocated by the caller. The address of the buffer
1196 must be passed in GR 28." */
1197 return RETURN_VALUE_STRUCT_CONVENTION;
1198 }
1199
1200 if (hppa64_integral_or_pointer_p (type))
1201 {
1202 /* "Integral return values are returned in GR 28. Values
1203 smaller than 64 bits are padded on the left (with garbage)." */
1204 regnum = HPPA_RET0_REGNUM;
1205 offset = 8 - len;
1206 }
1207 else if (hppa64_floating_p (type))
1208 {
1209 if (len > 8)
1210 {
1211 /* "Double-extended- and quad-precision floating-point
1212 values are returned in GRs 28 and 29. The sign,
1213 exponent, and most-significant bits of the mantissa are
1214 returned in GR 28; the least-significant bits of the
1215 mantissa are passed in GR 29. For double-extended
1216 precision values, GR 29 is padded on the right with 48
1217 bits of garbage." */
1218 regnum = HPPA_RET0_REGNUM;
1219 offset = 0;
1220 }
1221 else
1222 {
1223 /* "Single-precision and double-precision floating-point
1224 return values are returned in FR 4R (single precision) or
1225 FR 4 (double-precision)." */
1226 regnum = HPPA64_FP4_REGNUM;
1227 offset = 8 - len;
1228 }
1229 }
1230 else
1231 {
1232 /* "Aggregate return values up to 64 bits in size are returned
1233 in GR 28. Aggregates smaller than 64 bits are left aligned
1234 in the register; the pad bits on the right are undefined."
1235
1236 "Aggregate return values between 65 and 128 bits are returned
1237 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1238 the remaining bits are placed, left aligned, in GR 29. The
1239 pad bits on the right of GR 29 (if any) are undefined." */
1240 regnum = HPPA_RET0_REGNUM;
1241 offset = 0;
1242 }
1243
1244 if (readbuf)
1245 {
08a27113
MK
1246 while (len > 0)
1247 {
1248 regcache_cooked_read_part (regcache, regnum, offset,
325fac50
PA
1249 std::min (len, 8), readbuf);
1250 readbuf += std::min (len, 8);
1251 len -= std::min (len, 8);
08a27113
MK
1252 regnum++;
1253 }
1254 }
1255
1256 if (writebuf)
1257 {
08a27113
MK
1258 while (len > 0)
1259 {
1260 regcache_cooked_write_part (regcache, regnum, offset,
325fac50
PA
1261 std::min (len, 8), writebuf);
1262 writebuf += std::min (len, 8);
1263 len -= std::min (len, 8);
08a27113
MK
1264 regnum++;
1265 }
1266 }
1267
1268 return RETURN_VALUE_REGISTER_CONVENTION;
1269}
1270\f
1271
d49771ef 1272static CORE_ADDR
a7aad9aa 1273hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1274 struct target_ops *targ)
1275{
1276 if (addr & 2)
1277 {
0dfff4cb 1278 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
a7aad9aa 1279 CORE_ADDR plabel = addr & ~3;
0dfff4cb 1280 return read_memory_typed_address (plabel, func_ptr_type);
d49771ef
RC
1281 }
1282
1283 return addr;
1284}
1285
1797a8f6
AC
1286static CORE_ADDR
1287hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1288{
1289 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1290 and not _bit_)! */
1291 return align_up (addr, 64);
1292}
1293
2f690297
AC
1294/* Force all frames to 16-byte alignment. Better safe than sorry. */
1295
1296static CORE_ADDR
1797a8f6 1297hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1298{
1299 /* Just always 16-byte align. */
1300 return align_up (addr, 16);
1301}
1302
cc72850f 1303CORE_ADDR
c113ed0c 1304hppa_read_pc (readable_regcache *regcache)
c906108c 1305{
cc72850f 1306 ULONGEST ipsw;
61a1198a 1307 ULONGEST pc;
c906108c 1308
c113ed0c
YQ
1309 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1310 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1311
1312 /* If the current instruction is nullified, then we are effectively
1313 still executing the previous instruction. Pretend we are still
cc72850f
MK
1314 there. This is needed when single stepping; if the nullified
1315 instruction is on a different line, we don't want GDB to think
1316 we've stepped onto that line. */
fe46cd3a
RC
1317 if (ipsw & 0x00200000)
1318 pc -= 4;
1319
cc72850f 1320 return pc & ~0x3;
c906108c
SS
1321}
1322
cc72850f 1323void
61a1198a 1324hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1325{
61a1198a
UW
1326 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1327 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1328}
1329
c906108c 1330/* For the given instruction (INST), return any adjustment it makes
1777feb0 1331 to the stack pointer or zero for no adjustment.
c906108c
SS
1332
1333 This only handles instructions commonly found in prologues. */
1334
1335static int
fba45db2 1336prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1337{
1338 /* This must persist across calls. */
1339 static int save_high21;
1340
1341 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1342 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1343 return hppa_extract_14 (inst);
c906108c
SS
1344
1345 /* stwm X,D(sp) */
1346 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1347 return hppa_extract_14 (inst);
c906108c 1348
104c1213
JM
1349 /* std,ma X,D(sp) */
1350 if ((inst & 0xffe00008) == 0x73c00008)
66c6502d 1351 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1352
e22b26cb 1353 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1354 save high bits in save_high21 for later use. */
e22b26cb 1355 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1356 {
abc485a1 1357 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1358 return 0;
1359 }
1360
1361 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1362 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1363
1364 /* fstws as used by the HP compilers. */
1365 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1366 return hppa_extract_5_load (inst);
c906108c
SS
1367
1368 /* No adjustment. */
1369 return 0;
1370}
1371
1372/* Return nonzero if INST is a branch of some kind, else return zero. */
1373
1374static int
fba45db2 1375is_branch (unsigned long inst)
c906108c
SS
1376{
1377 switch (inst >> 26)
1378 {
1379 case 0x20:
1380 case 0x21:
1381 case 0x22:
1382 case 0x23:
7be570e7 1383 case 0x27:
c906108c
SS
1384 case 0x28:
1385 case 0x29:
1386 case 0x2a:
1387 case 0x2b:
7be570e7 1388 case 0x2f:
c906108c
SS
1389 case 0x30:
1390 case 0x31:
1391 case 0x32:
1392 case 0x33:
1393 case 0x38:
1394 case 0x39:
1395 case 0x3a:
7be570e7 1396 case 0x3b:
c906108c
SS
1397 return 1;
1398
1399 default:
1400 return 0;
1401 }
1402}
1403
1404/* Return the register number for a GR which is saved by INST or
b35018fd 1405 zero if INST does not save a GR.
c906108c 1406
b35018fd 1407 Referenced from:
7be570e7 1408
b35018fd
CG
1409 parisc 1.1:
1410 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
c906108c 1411
b35018fd
CG
1412 parisc 2.0:
1413 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
c906108c 1414
b35018fd
CG
1415 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1416 on page 106 in parisc 2.0, all instructions for storing values from
1417 the general registers are:
c5aa993b 1418
b35018fd
CG
1419 Store: stb, sth, stw, std (according to Chapter 7, they
1420 are only in both "inst >> 26" and "inst >> 6".
1421 Store Absolute: stwa, stda (according to Chapter 7, they are only
1422 in "inst >> 6".
1423 Store Bytes: stby, stdby (according to Chapter 7, they are
1424 only in "inst >> 6").
1425
1426 For (inst >> 26), according to Chapter 7:
1427
1428 The effective memory reference address is formed by the addition
1429 of an immediate displacement to a base value.
1430
1431 - stb: 0x18, store a byte from a general register.
1432
1433 - sth: 0x19, store a halfword from a general register.
1434
1435 - stw: 0x1a, store a word from a general register.
1436
1437 - stwm: 0x1b, store a word from a general register and perform base
1438 register modification (2.0 will still treate it as stw).
1439
1440 - std: 0x1c, store a doubleword from a general register (2.0 only).
1441
1442 - stw: 0x1f, store a word from a general register (2.0 only).
1443
1444 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1445
1446 The effective memory reference address is formed by the addition
1447 of an index value to a base value specified in the instruction.
1448
1449 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1450
1451 - sth: 0x09, store a halfword from a general register (1.1 calls
1452 sths).
1453
1454 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1455
1456 - std: 0x0b: store a doubleword from a general register (2.0 only)
1457
1458 Implement fast byte moves (stores) to unaligned word or doubleword
1459 destination.
1460
1461 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1462
1463 - stdby: 0x0d for unaligned doubleword (2.0 only).
1464
1465 Store a word or doubleword using an absolute memory address formed
1466 using short or long displacement or indexed
1467
1468 - stwa: 0x0e, store a word from a general register to an absolute
1469 address (1.0 calls stwas).
1470
1471 - stda: 0x0f, store a doubleword from a general register to an
1472 absolute address (2.0 only). */
1473
1474static int
1475inst_saves_gr (unsigned long inst)
1476{
1477 switch ((inst >> 26) & 0x0f)
1478 {
1479 case 0x03:
1480 switch ((inst >> 6) & 0x0f)
1481 {
1482 case 0x08:
1483 case 0x09:
1484 case 0x0a:
1485 case 0x0b:
1486 case 0x0c:
1487 case 0x0d:
1488 case 0x0e:
1489 case 0x0f:
1490 return hppa_extract_5R_store (inst);
1491 default:
1492 return 0;
1493 }
1494 case 0x18:
1495 case 0x19:
1496 case 0x1a:
1497 case 0x1b:
1498 case 0x1c:
1499 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1500 case 0x1f:
1501 return hppa_extract_5R_store (inst);
1502 default:
1503 return 0;
1504 }
c906108c
SS
1505}
1506
1507/* Return the register number for a FR which is saved by INST or
1508 zero it INST does not save a FR.
1509
1510 Note we only care about full 64bit register stores (that's the only
1511 kind of stores the prologue will use).
1512
1513 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1514
1515static int
fba45db2 1516inst_saves_fr (unsigned long inst)
c906108c 1517{
1777feb0 1518 /* Is this an FSTD? */
c906108c 1519 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1520 return hppa_extract_5r_store (inst);
7be570e7 1521 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1522 return hppa_extract_5R_store (inst);
1777feb0 1523 /* Is this an FSTW? */
c906108c 1524 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1525 return hppa_extract_5r_store (inst);
7be570e7 1526 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1527 return hppa_extract_5R_store (inst);
c906108c
SS
1528 return 0;
1529}
1530
1531/* Advance PC across any function entry prologue instructions
1777feb0 1532 to reach some "real" code.
c906108c
SS
1533
1534 Use information in the unwind table to determine what exactly should
1535 be in the prologue. */
1536
1537
a71f8c30 1538static CORE_ADDR
be8626e0
MD
1539skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1540 int stop_before_branch)
c906108c 1541{
e17a4113 1542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 1543 gdb_byte buf[4];
c906108c
SS
1544 CORE_ADDR orig_pc = pc;
1545 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1546 unsigned long args_stored, status, i, restart_gr, restart_fr;
1547 struct unwind_table_entry *u;
a71f8c30 1548 int final_iteration;
c906108c
SS
1549
1550 restart_gr = 0;
1551 restart_fr = 0;
1552
1553restart:
1554 u = find_unwind_entry (pc);
1555 if (!u)
1556 return pc;
1557
1777feb0 1558 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1559 if ((pc & ~0x3) != u->region_start)
1560 return pc;
1561
1562 /* This is how much of a frame adjustment we need to account for. */
1563 stack_remaining = u->Total_frame_size << 3;
1564
1565 /* Magic register saves we want to know about. */
1566 save_rp = u->Save_RP;
1567 save_sp = u->Save_SP;
1568
1569 /* An indication that args may be stored into the stack. Unfortunately
1570 the HPUX compilers tend to set this in cases where no args were
1571 stored too!. */
1572 args_stored = 1;
1573
1574 /* Turn the Entry_GR field into a bitmask. */
1575 save_gr = 0;
1576 for (i = 3; i < u->Entry_GR + 3; i++)
1577 {
1578 /* Frame pointer gets saved into a special location. */
eded0a31 1579 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1580 continue;
1581
1582 save_gr |= (1 << i);
1583 }
1584 save_gr &= ~restart_gr;
1585
1586 /* Turn the Entry_FR field into a bitmask too. */
1587 save_fr = 0;
1588 for (i = 12; i < u->Entry_FR + 12; i++)
1589 save_fr |= (1 << i);
1590 save_fr &= ~restart_fr;
1591
a71f8c30
RC
1592 final_iteration = 0;
1593
c906108c
SS
1594 /* Loop until we find everything of interest or hit a branch.
1595
1596 For unoptimized GCC code and for any HP CC code this will never ever
1597 examine any user instructions.
1598
1599 For optimzied GCC code we're faced with problems. GCC will schedule
1600 its prologue and make prologue instructions available for delay slot
1601 filling. The end result is user code gets mixed in with the prologue
1602 and a prologue instruction may be in the delay slot of the first branch
1603 or call.
1604
1605 Some unexpected things are expected with debugging optimized code, so
1606 we allow this routine to walk past user instructions in optimized
1607 GCC code. */
1608 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1609 || args_stored)
1610 {
1611 unsigned int reg_num;
1612 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1613 unsigned long old_save_rp, old_save_sp, next_inst;
1614
1615 /* Save copies of all the triggers so we can compare them later
c5aa993b 1616 (only for HPC). */
c906108c
SS
1617 old_save_gr = save_gr;
1618 old_save_fr = save_fr;
1619 old_save_rp = save_rp;
1620 old_save_sp = save_sp;
1621 old_stack_remaining = stack_remaining;
1622
8defab1a 1623 status = target_read_memory (pc, buf, 4);
e17a4113 1624 inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1625
c906108c
SS
1626 /* Yow! */
1627 if (status != 0)
1628 return pc;
1629
1630 /* Note the interesting effects of this instruction. */
1631 stack_remaining -= prologue_inst_adjust_sp (inst);
1632
7be570e7
JM
1633 /* There are limited ways to store the return pointer into the
1634 stack. */
c4c79048 1635 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1636 save_rp = 0;
1637
104c1213 1638 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1639 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1640 if ((inst & 0xffffc000) == 0x6fc10000
1641 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1642 save_sp = 0;
1643
6426a772
JM
1644 /* Are we loading some register with an offset from the argument
1645 pointer? */
1646 if ((inst & 0xffe00000) == 0x37a00000
1647 || (inst & 0xffffffe0) == 0x081d0240)
1648 {
1649 pc += 4;
1650 continue;
1651 }
1652
c906108c
SS
1653 /* Account for general and floating-point register saves. */
1654 reg_num = inst_saves_gr (inst);
1655 save_gr &= ~(1 << reg_num);
1656
1657 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1658 Unfortunately args_stored only tells us that some arguments
1659 where stored into the stack. Not how many or what kind!
c906108c 1660
c5aa993b
JM
1661 This is a kludge as on the HP compiler sets this bit and it
1662 never does prologue scheduling. So once we see one, skip past
1663 all of them. We have similar code for the fp arg stores below.
c906108c 1664
c5aa993b
JM
1665 FIXME. Can still die if we have a mix of GR and FR argument
1666 stores! */
be8626e0 1667 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1668 && reg_num <= 26)
c906108c 1669 {
be8626e0 1670 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1671 && reg_num <= 26)
c906108c
SS
1672 {
1673 pc += 4;
8defab1a 1674 status = target_read_memory (pc, buf, 4);
e17a4113 1675 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1676 if (status != 0)
1677 return pc;
1678 reg_num = inst_saves_gr (inst);
1679 }
1680 args_stored = 0;
1681 continue;
1682 }
1683
1684 reg_num = inst_saves_fr (inst);
1685 save_fr &= ~(1 << reg_num);
1686
8defab1a 1687 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1688 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1689
c906108c
SS
1690 /* Yow! */
1691 if (status != 0)
1692 return pc;
1693
1694 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1695 save. */
c906108c
SS
1696 if ((inst & 0xfc000000) == 0x34000000
1697 && inst_saves_fr (next_inst) >= 4
819844ad 1698 && inst_saves_fr (next_inst)
be8626e0 1699 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1700 {
1701 /* So we drop into the code below in a reasonable state. */
1702 reg_num = inst_saves_fr (next_inst);
1703 pc -= 4;
1704 }
1705
1706 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1707 This is a kludge as on the HP compiler sets this bit and it
1708 never does prologue scheduling. So once we see one, skip past
1709 all of them. */
819844ad 1710 if (reg_num >= 4
be8626e0 1711 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1712 {
819844ad
UW
1713 while (reg_num >= 4
1714 && reg_num
be8626e0 1715 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1716 {
1717 pc += 8;
8defab1a 1718 status = target_read_memory (pc, buf, 4);
e17a4113 1719 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1720 if (status != 0)
1721 return pc;
1722 if ((inst & 0xfc000000) != 0x34000000)
1723 break;
8defab1a 1724 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1725 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1726 if (status != 0)
1727 return pc;
1728 reg_num = inst_saves_fr (next_inst);
1729 }
1730 args_stored = 0;
1731 continue;
1732 }
1733
1734 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1735 instruction is in the delay slot of the first call/branch. */
a71f8c30 1736 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1737 break;
1738
1739 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1740 arguments were stored into the stack (boo hiss). This could
1741 cause this code to then skip a bunch of user insns (up to the
1742 first branch).
1743
1744 To combat this we try to identify when args_stored was bogusly
1745 set and clear it. We only do this when args_stored is nonzero,
1746 all other resources are accounted for, and nothing changed on
1747 this pass. */
c906108c 1748 if (args_stored
c5aa993b 1749 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1750 && old_save_gr == save_gr && old_save_fr == save_fr
1751 && old_save_rp == save_rp && old_save_sp == save_sp
1752 && old_stack_remaining == stack_remaining)
1753 break;
c5aa993b 1754
c906108c
SS
1755 /* Bump the PC. */
1756 pc += 4;
a71f8c30
RC
1757
1758 /* !stop_before_branch, so also look at the insn in the delay slot
1759 of the branch. */
1760 if (final_iteration)
1761 break;
1762 if (is_branch (inst))
1763 final_iteration = 1;
c906108c
SS
1764 }
1765
1766 /* We've got a tenative location for the end of the prologue. However
1767 because of limitations in the unwind descriptor mechanism we may
1768 have went too far into user code looking for the save of a register
1769 that does not exist. So, if there registers we expected to be saved
1770 but never were, mask them out and restart.
1771
1772 This should only happen in optimized code, and should be very rare. */
c5aa993b 1773 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1774 {
1775 pc = orig_pc;
1776 restart_gr = save_gr;
1777 restart_fr = save_fr;
1778 goto restart;
1779 }
1780
1781 return pc;
1782}
1783
1784
7be570e7
JM
1785/* Return the address of the PC after the last prologue instruction if
1786 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1787
1788static CORE_ADDR
fba45db2 1789after_prologue (CORE_ADDR pc)
c906108c
SS
1790{
1791 struct symtab_and_line sal;
1792 CORE_ADDR func_addr, func_end;
c906108c 1793
7be570e7
JM
1794 /* If we can not find the symbol in the partial symbol table, then
1795 there is no hope we can determine the function's start address
1796 with this code. */
c906108c 1797 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1798 return 0;
c906108c 1799
7be570e7 1800 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1801 sal = find_pc_line (func_addr, 0);
1802
7be570e7
JM
1803 /* There are only two cases to consider. First, the end of the source line
1804 is within the function bounds. In that case we return the end of the
1805 source line. Second is the end of the source line extends beyond the
1806 bounds of the current function. We need to use the slow code to
1777feb0 1807 examine instructions in that case.
c906108c 1808
7be570e7
JM
1809 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1810 the wrong thing to do. In fact, it should be entirely possible for this
1811 function to always return zero since the slow instruction scanning code
1812 is supposed to *always* work. If it does not, then it is a bug. */
1813 if (sal.end < func_end)
1814 return sal.end;
c5aa993b 1815 else
7be570e7 1816 return 0;
c906108c
SS
1817}
1818
1819/* To skip prologues, I use this predicate. Returns either PC itself
1820 if the code at PC does not look like a function prologue; otherwise
1777feb0 1821 returns an address that (if we're lucky) follows the prologue.
a71f8c30
RC
1822
1823 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1777feb0 1824 It doesn't necessarily skips all the insns in the prologue. In fact
a71f8c30
RC
1825 we might not want to skip all the insns because a prologue insn may
1826 appear in the delay slot of the first branch, and we don't want to
1827 skip over the branch in that case. */
c906108c 1828
8d153463 1829static CORE_ADDR
6093d2eb 1830hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1831{
c5aa993b 1832 CORE_ADDR post_prologue_pc;
c906108c 1833
c5aa993b
JM
1834 /* See if we can determine the end of the prologue via the symbol table.
1835 If so, then return either PC, or the PC after the prologue, whichever
1836 is greater. */
c906108c 1837
c5aa993b 1838 post_prologue_pc = after_prologue (pc);
c906108c 1839
7be570e7
JM
1840 /* If after_prologue returned a useful address, then use it. Else
1841 fall back on the instruction skipping code.
1842
1843 Some folks have claimed this causes problems because the breakpoint
1844 may be the first instruction of the prologue. If that happens, then
1845 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b 1846 if (post_prologue_pc != 0)
325fac50 1847 return std::max (pc, post_prologue_pc);
c5aa993b 1848 else
be8626e0 1849 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1850}
1851
29d375ac 1852/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1853
29d375ac 1854static struct unwind_table_entry *
227e86ad 1855hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1856{
227e86ad 1857 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1858
1859 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
ad1193e7 1860 result of get_frame_address_in_block implies a problem.
93d42b30 1861 The bits should have been removed earlier, before the return
c7ce8faa 1862 value of gdbarch_unwind_pc. That might be happening already;
93d42b30
DJ
1863 if it isn't, it should be fixed. Then this call can be
1864 removed. */
227e86ad 1865 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1866 return find_unwind_entry (pc);
1867}
1868
26d08f08
AC
1869struct hppa_frame_cache
1870{
1871 CORE_ADDR base;
1872 struct trad_frame_saved_reg *saved_regs;
1873};
1874
1875static struct hppa_frame_cache *
227e86ad 1876hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1877{
227e86ad 1878 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1880 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
26d08f08
AC
1881 struct hppa_frame_cache *cache;
1882 long saved_gr_mask;
1883 long saved_fr_mask;
26d08f08
AC
1884 long frame_size;
1885 struct unwind_table_entry *u;
9f7194c3 1886 CORE_ADDR prologue_end;
50b2f48a 1887 int fp_in_r1 = 0;
26d08f08
AC
1888 int i;
1889
369aa520
RC
1890 if (hppa_debug)
1891 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1892 frame_relative_level(this_frame));
369aa520 1893
26d08f08 1894 if ((*this_cache) != NULL)
369aa520
RC
1895 {
1896 if (hppa_debug)
5af949e3
UW
1897 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1898 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 1899 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1900 }
26d08f08
AC
1901 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1902 (*this_cache) = cache;
227e86ad 1903 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1904
1905 /* Yow! */
227e86ad 1906 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1907 if (!u)
369aa520
RC
1908 {
1909 if (hppa_debug)
1910 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
9a3c8263 1911 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1912 }
26d08f08
AC
1913
1914 /* Turn the Entry_GR field into a bitmask. */
1915 saved_gr_mask = 0;
1916 for (i = 3; i < u->Entry_GR + 3; i++)
1917 {
1918 /* Frame pointer gets saved into a special location. */
eded0a31 1919 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1920 continue;
1921
1922 saved_gr_mask |= (1 << i);
1923 }
1924
1925 /* Turn the Entry_FR field into a bitmask too. */
1926 saved_fr_mask = 0;
1927 for (i = 12; i < u->Entry_FR + 12; i++)
1928 saved_fr_mask |= (1 << i);
1929
1930 /* Loop until we find everything of interest or hit a branch.
1931
1932 For unoptimized GCC code and for any HP CC code this will never ever
1933 examine any user instructions.
1934
1935 For optimized GCC code we're faced with problems. GCC will schedule
1936 its prologue and make prologue instructions available for delay slot
1937 filling. The end result is user code gets mixed in with the prologue
1938 and a prologue instruction may be in the delay slot of the first branch
1939 or call.
1940
1941 Some unexpected things are expected with debugging optimized code, so
1942 we allow this routine to walk past user instructions in optimized
1943 GCC code. */
1944 {
1945 int final_iteration = 0;
46acf081 1946 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1947 int looking_for_sp = u->Save_SP;
1948 int looking_for_rp = u->Save_RP;
1949 int fp_loc = -1;
9f7194c3 1950
a71f8c30 1951 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1952 skip_prologue_using_sal, in case we stepped into a function without
1953 symbol information. hppa_skip_prologue also bounds the returned
1954 pc by the passed in pc, so it will not return a pc in the next
1777feb0 1955 function.
a71f8c30
RC
1956
1957 We used to call hppa_skip_prologue to find the end of the prologue,
1958 but if some non-prologue instructions get scheduled into the prologue,
1959 and the program is compiled with debug information, the "easy" way
1960 in hppa_skip_prologue will return a prologue end that is too early
1961 for us to notice any potential frame adjustments. */
d5c27f81 1962
ef02daa9
DJ
1963 /* We used to use get_frame_func to locate the beginning of the
1964 function to pass to skip_prologue. However, when objects are
1965 compiled without debug symbols, get_frame_func can return the wrong
1777feb0 1966 function (or 0). We can do better than that by using unwind records.
46acf081 1967 This only works if the Region_description of the unwind record
1777feb0 1968 indicates that it includes the entry point of the function.
46acf081
RC
1969 HP compilers sometimes generate unwind records for regions that
1970 do not include the entry or exit point of a function. GNU tools
1971 do not do this. */
1972
1973 if ((u->Region_description & 0x2) == 0)
1974 start_pc = u->region_start;
1975 else
227e86ad 1976 start_pc = get_frame_func (this_frame);
d5c27f81 1977
be8626e0 1978 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1979 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1980
1981 if (prologue_end != 0 && end_pc > prologue_end)
1982 end_pc = prologue_end;
1983
26d08f08 1984 frame_size = 0;
9f7194c3 1985
46acf081 1986 for (pc = start_pc;
26d08f08
AC
1987 ((saved_gr_mask || saved_fr_mask
1988 || looking_for_sp || looking_for_rp
1989 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1990 && pc < end_pc);
26d08f08
AC
1991 pc += 4)
1992 {
1993 int reg;
e362b510 1994 gdb_byte buf4[4];
4a302917
RC
1995 long inst;
1996
227e86ad 1997 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 1998 {
5af949e3
UW
1999 error (_("Cannot read instruction at %s."),
2000 paddress (gdbarch, pc));
9a3c8263 2001 return (struct hppa_frame_cache *) (*this_cache);
4a302917
RC
2002 }
2003
e17a4113 2004 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
9f7194c3 2005
26d08f08
AC
2006 /* Note the interesting effects of this instruction. */
2007 frame_size += prologue_inst_adjust_sp (inst);
2008
2009 /* There are limited ways to store the return pointer into the
2010 stack. */
2011 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2012 {
2013 looking_for_rp = 0;
34f75cc1 2014 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 2015 }
dfaf8edb
MK
2016 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2017 {
2018 looking_for_rp = 0;
2019 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2020 }
c4c79048
RC
2021 else if (inst == 0x0fc212c1
2022 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
2023 {
2024 looking_for_rp = 0;
34f75cc1 2025 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
2026 }
2027
2028 /* Check to see if we saved SP into the stack. This also
2029 happens to indicate the location of the saved frame
2030 pointer. */
2031 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2032 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2033 {
2034 looking_for_sp = 0;
eded0a31 2035 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 2036 }
50b2f48a
RC
2037 else if (inst == 0x08030241) /* copy %r3, %r1 */
2038 {
2039 fp_in_r1 = 1;
2040 }
26d08f08
AC
2041
2042 /* Account for general and floating-point register saves. */
2043 reg = inst_saves_gr (inst);
2044 if (reg >= 3 && reg <= 18
eded0a31 2045 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
2046 {
2047 saved_gr_mask &= ~(1 << reg);
abc485a1 2048 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
2049 /* stwm with a positive displacement is a _post_
2050 _modify_. */
2051 cache->saved_regs[reg].addr = 0;
2052 else if ((inst & 0xfc00000c) == 0x70000008)
2053 /* A std has explicit post_modify forms. */
2054 cache->saved_regs[reg].addr = 0;
2055 else
2056 {
2057 CORE_ADDR offset;
2058
2059 if ((inst >> 26) == 0x1c)
66c6502d 2060 offset = (inst & 0x1 ? -(1 << 13) : 0)
1777feb0 2061 | (((inst >> 4) & 0x3ff) << 3);
26d08f08 2062 else if ((inst >> 26) == 0x03)
abc485a1 2063 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 2064 else
abc485a1 2065 offset = hppa_extract_14 (inst);
26d08f08
AC
2066
2067 /* Handle code with and without frame pointers. */
2068 if (u->Save_SP)
2069 cache->saved_regs[reg].addr = offset;
2070 else
1777feb0
MS
2071 cache->saved_regs[reg].addr
2072 = (u->Total_frame_size << 3) + offset;
26d08f08
AC
2073 }
2074 }
2075
2076 /* GCC handles callee saved FP regs a little differently.
2077
2078 It emits an instruction to put the value of the start of
2079 the FP store area into %r1. It then uses fstds,ma with a
2080 basereg of %r1 for the stores.
2081
2082 HP CC emits them at the current stack pointer modifying the
2083 stack pointer as it stores each register. */
2084
2085 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2086 if ((inst & 0xffffc000) == 0x34610000
2087 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2088 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2089
2090 reg = inst_saves_fr (inst);
2091 if (reg >= 12 && reg <= 21)
2092 {
2093 /* Note +4 braindamage below is necessary because the FP
2094 status registers are internally 8 registers rather than
2095 the expected 4 registers. */
2096 saved_fr_mask &= ~(1 << reg);
2097 if (fp_loc == -1)
2098 {
2099 /* 1st HP CC FP register store. After this
2100 instruction we've set enough state that the GCC and
2101 HPCC code are both handled in the same manner. */
34f75cc1 2102 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2103 fp_loc = 8;
2104 }
2105 else
2106 {
eded0a31 2107 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2108 fp_loc += 8;
2109 }
2110 }
2111
1777feb0 2112 /* Quit if we hit any kind of branch the previous iteration. */
26d08f08
AC
2113 if (final_iteration)
2114 break;
2115 /* We want to look precisely one instruction beyond the branch
2116 if we have not found everything yet. */
2117 if (is_branch (inst))
2118 final_iteration = 1;
2119 }
2120 }
2121
2122 {
2123 /* The frame base always represents the value of %sp at entry to
2124 the current function (and is thus equivalent to the "saved"
2125 stack pointer. */
227e86ad
JB
2126 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2127 HPPA_SP_REGNUM);
ed70ba00 2128 CORE_ADDR fp;
9f7194c3
RC
2129
2130 if (hppa_debug)
5af949e3
UW
2131 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2132 "prologue_end=%s) ",
2133 paddress (gdbarch, this_sp),
2134 paddress (gdbarch, get_frame_pc (this_frame)),
2135 paddress (gdbarch, prologue_end));
9f7194c3 2136
ed70ba00
RC
2137 /* Check to see if a frame pointer is available, and use it for
2138 frame unwinding if it is.
2139
2140 There are some situations where we need to rely on the frame
2141 pointer to do stack unwinding. For example, if a function calls
2142 alloca (), the stack pointer can get adjusted inside the body of
2143 the function. In this case, the ABI requires that the compiler
2144 maintain a frame pointer for the function.
2145
2146 The unwind record has a flag (alloca_frame) that indicates that
2147 a function has a variable frame; unfortunately, gcc/binutils
2148 does not set this flag. Instead, whenever a frame pointer is used
2149 and saved on the stack, the Save_SP flag is set. We use this to
2150 decide whether to use the frame pointer for unwinding.
2151
ed70ba00
RC
2152 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2153 instead of Save_SP. */
2154
227e86ad 2155 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2156
6fcecea0 2157 if (u->alloca_frame)
46acf081 2158 fp -= u->Total_frame_size << 3;
ed70ba00 2159
227e86ad 2160 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2161 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2162 {
2163 cache->base = fp;
2164
2165 if (hppa_debug)
5af949e3
UW
2166 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2167 paddress (gdbarch, cache->base));
ed70ba00 2168 }
1658da49
RC
2169 else if (u->Save_SP
2170 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2171 {
9f7194c3
RC
2172 /* Both we're expecting the SP to be saved and the SP has been
2173 saved. The entry SP value is saved at this frame's SP
2174 address. */
e17a4113 2175 cache->base = read_memory_integer (this_sp, word_size, byte_order);
9f7194c3
RC
2176
2177 if (hppa_debug)
5af949e3
UW
2178 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2179 paddress (gdbarch, cache->base));
9f7194c3 2180 }
26d08f08 2181 else
9f7194c3 2182 {
1658da49
RC
2183 /* The prologue has been slowly allocating stack space. Adjust
2184 the SP back. */
2185 cache->base = this_sp - frame_size;
9f7194c3 2186 if (hppa_debug)
5af949e3
UW
2187 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2188 paddress (gdbarch, cache->base));
9f7194c3
RC
2189
2190 }
eded0a31 2191 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2192 }
2193
412275d5
AC
2194 /* The PC is found in the "return register", "Millicode" uses "r31"
2195 as the return register while normal code uses "rp". */
26d08f08 2196 if (u->Millicode)
9f7194c3 2197 {
5859efe5 2198 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2199 {
2200 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2201 if (hppa_debug)
2202 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2203 }
9f7194c3
RC
2204 else
2205 {
227e86ad 2206 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2207 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2208 if (hppa_debug)
2209 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2210 }
2211 }
26d08f08 2212 else
9f7194c3 2213 {
34f75cc1 2214 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2215 {
2216 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2217 cache->saved_regs[HPPA_RP_REGNUM];
2218 if (hppa_debug)
2219 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2220 }
9f7194c3
RC
2221 else
2222 {
227e86ad
JB
2223 ULONGEST rp = get_frame_register_unsigned (this_frame,
2224 HPPA_RP_REGNUM);
34f75cc1 2225 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2226 if (hppa_debug)
2227 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2228 }
2229 }
26d08f08 2230
50b2f48a
RC
2231 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2232 frame. However, there is a one-insn window where we haven't saved it
2233 yet, but we've already clobbered it. Detect this case and fix it up.
2234
2235 The prologue sequence for frame-pointer functions is:
2236 0: stw %rp, -20(%sp)
2237 4: copy %r3, %r1
2238 8: copy %sp, %r3
2239 c: stw,ma %r1, XX(%sp)
2240
2241 So if we are at offset c, the r3 value that we want is not yet saved
2242 on the stack, but it's been overwritten. The prologue analyzer will
2243 set fp_in_r1 when it sees the copy insn so we know to get the value
2244 from r1 instead. */
2245 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2246 && fp_in_r1)
2247 {
227e86ad 2248 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2249 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2250 }
1658da49 2251
26d08f08
AC
2252 {
2253 /* Convert all the offsets into addresses. */
2254 int reg;
65c5db89 2255 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2256 {
2257 if (trad_frame_addr_p (cache->saved_regs, reg))
2258 cache->saved_regs[reg].addr += cache->base;
2259 }
2260 }
2261
f77a2124 2262 {
f77a2124
RC
2263 struct gdbarch_tdep *tdep;
2264
f77a2124
RC
2265 tdep = gdbarch_tdep (gdbarch);
2266
2267 if (tdep->unwind_adjust_stub)
227e86ad 2268 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2269 }
2270
369aa520 2271 if (hppa_debug)
5af949e3
UW
2272 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2273 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 2274 return (struct hppa_frame_cache *) (*this_cache);
26d08f08
AC
2275}
2276
2277static void
227e86ad
JB
2278hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2279 struct frame_id *this_id)
26d08f08 2280{
d5c27f81 2281 struct hppa_frame_cache *info;
d5c27f81
RC
2282 struct unwind_table_entry *u;
2283
227e86ad
JB
2284 info = hppa_frame_cache (this_frame, this_cache);
2285 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2286
2287 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2288}
2289
227e86ad
JB
2290static struct value *
2291hppa_frame_prev_register (struct frame_info *this_frame,
2292 void **this_cache, int regnum)
26d08f08 2293{
227e86ad
JB
2294 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2295
1777feb0
MS
2296 return hppa_frame_prev_register_helper (this_frame,
2297 info->saved_regs, regnum);
227e86ad
JB
2298}
2299
2300static int
2301hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2302 struct frame_info *this_frame, void **this_cache)
2303{
2304 if (hppa_find_unwind_entry_in_block (this_frame))
2305 return 1;
2306
2307 return 0;
0da28f8a
RC
2308}
2309
2310static const struct frame_unwind hppa_frame_unwind =
2311{
2312 NORMAL_FRAME,
8fbca658 2313 default_frame_unwind_stop_reason,
0da28f8a 2314 hppa_frame_this_id,
227e86ad
JB
2315 hppa_frame_prev_register,
2316 NULL,
2317 hppa_frame_unwind_sniffer
0da28f8a
RC
2318};
2319
0da28f8a
RC
2320/* This is a generic fallback frame unwinder that kicks in if we fail all
2321 the other ones. Normally we would expect the stub and regular unwinder
2322 to work, but in some cases we might hit a function that just doesn't
2323 have any unwind information available. In this case we try to do
2324 unwinding solely based on code reading. This is obviously going to be
2325 slow, so only use this as a last resort. Currently this will only
2326 identify the stack and pc for the frame. */
2327
2328static struct hppa_frame_cache *
227e86ad 2329hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a 2330{
e17a4113
UW
2331 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0da28f8a 2333 struct hppa_frame_cache *cache;
4ba6a975
MK
2334 unsigned int frame_size = 0;
2335 int found_rp = 0;
2336 CORE_ADDR start_pc;
0da28f8a 2337
d5c27f81 2338 if (hppa_debug)
4ba6a975
MK
2339 fprintf_unfiltered (gdb_stdlog,
2340 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2341 frame_relative_level (this_frame));
d5c27f81 2342
0da28f8a
RC
2343 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2344 (*this_cache) = cache;
227e86ad 2345 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2346
227e86ad 2347 start_pc = get_frame_func (this_frame);
4ba6a975 2348 if (start_pc)
0da28f8a 2349 {
227e86ad 2350 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2351 CORE_ADDR pc;
0da28f8a 2352
4ba6a975
MK
2353 for (pc = start_pc; pc < cur_pc; pc += 4)
2354 {
2355 unsigned int insn;
0da28f8a 2356
e17a4113 2357 insn = read_memory_unsigned_integer (pc, 4, byte_order);
4ba6a975 2358 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2359
4ba6a975
MK
2360 /* There are limited ways to store the return pointer into the
2361 stack. */
2362 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2363 {
2364 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2365 found_rp = 1;
2366 }
c4c79048
RC
2367 else if (insn == 0x0fc212c1
2368 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2369 {
2370 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2371 found_rp = 1;
2372 }
2373 }
412275d5 2374 }
0da28f8a 2375
d5c27f81 2376 if (hppa_debug)
4ba6a975
MK
2377 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2378 frame_size, found_rp);
d5c27f81 2379
227e86ad 2380 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2381 cache->base -= frame_size;
6d1be3f1 2382 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2383
2384 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2385 {
2386 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2387 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2388 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2389 }
412275d5
AC
2390 else
2391 {
4ba6a975 2392 ULONGEST rp;
227e86ad 2393 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2394 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2395 }
0da28f8a
RC
2396
2397 return cache;
26d08f08
AC
2398}
2399
0da28f8a 2400static void
227e86ad 2401hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2402 struct frame_id *this_id)
2403{
2404 struct hppa_frame_cache *info =
227e86ad
JB
2405 hppa_fallback_frame_cache (this_frame, this_cache);
2406
2407 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2408}
2409
227e86ad
JB
2410static struct value *
2411hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2412 void **this_cache, int regnum)
0da28f8a 2413{
1777feb0
MS
2414 struct hppa_frame_cache *info
2415 = hppa_fallback_frame_cache (this_frame, this_cache);
227e86ad 2416
1777feb0
MS
2417 return hppa_frame_prev_register_helper (this_frame,
2418 info->saved_regs, regnum);
0da28f8a
RC
2419}
2420
2421static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2422{
2423 NORMAL_FRAME,
8fbca658 2424 default_frame_unwind_stop_reason,
0da28f8a 2425 hppa_fallback_frame_this_id,
227e86ad
JB
2426 hppa_fallback_frame_prev_register,
2427 NULL,
2428 default_frame_sniffer
26d08f08
AC
2429};
2430
7f07c5b6
RC
2431/* Stub frames, used for all kinds of call stubs. */
2432struct hppa_stub_unwind_cache
2433{
2434 CORE_ADDR base;
2435 struct trad_frame_saved_reg *saved_regs;
2436};
2437
2438static struct hppa_stub_unwind_cache *
227e86ad 2439hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2440 void **this_cache)
2441{
227e86ad 2442 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7f07c5b6 2443 struct hppa_stub_unwind_cache *info;
22b0923d 2444 struct unwind_table_entry *u;
7f07c5b6
RC
2445
2446 if (*this_cache)
9a3c8263 2447 return (struct hppa_stub_unwind_cache *) *this_cache;
7f07c5b6
RC
2448
2449 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2450 *this_cache = info;
227e86ad 2451 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2452
227e86ad 2453 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2454
22b0923d
RC
2455 /* By default we assume that stubs do not change the rp. */
2456 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2457
7f07c5b6
RC
2458 return info;
2459}
2460
2461static void
227e86ad 2462hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2463 void **this_prologue_cache,
2464 struct frame_id *this_id)
2465{
2466 struct hppa_stub_unwind_cache *info
227e86ad 2467 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2468
2469 if (info)
227e86ad 2470 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
7f07c5b6
RC
2471}
2472
227e86ad
JB
2473static struct value *
2474hppa_stub_frame_prev_register (struct frame_info *this_frame,
2475 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2476{
2477 struct hppa_stub_unwind_cache *info
227e86ad 2478 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2479
227e86ad 2480 if (info == NULL)
8a3fe4f8 2481 error (_("Requesting registers from null frame."));
7f07c5b6 2482
1777feb0
MS
2483 return hppa_frame_prev_register_helper (this_frame,
2484 info->saved_regs, regnum);
227e86ad 2485}
7f07c5b6 2486
227e86ad
JB
2487static int
2488hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2489 struct frame_info *this_frame,
2490 void **this_cache)
7f07c5b6 2491{
227e86ad
JB
2492 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2493 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2495
6d1be3f1 2496 if (pc == 0
84674fe1 2497 || (tdep->in_solib_call_trampoline != NULL
3e5d3a5a 2498 && tdep->in_solib_call_trampoline (gdbarch, pc))
464963c9 2499 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2500 return 1;
2501 return 0;
7f07c5b6
RC
2502}
2503
227e86ad
JB
2504static const struct frame_unwind hppa_stub_frame_unwind = {
2505 NORMAL_FRAME,
8fbca658 2506 default_frame_unwind_stop_reason,
227e86ad
JB
2507 hppa_stub_frame_this_id,
2508 hppa_stub_frame_prev_register,
2509 NULL,
2510 hppa_stub_unwind_sniffer
2511};
2512
26d08f08 2513static struct frame_id
227e86ad 2514hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2515{
227e86ad
JB
2516 return frame_id_build (get_frame_register_unsigned (this_frame,
2517 HPPA_SP_REGNUM),
2518 get_frame_pc (this_frame));
26d08f08
AC
2519}
2520
cc72850f 2521CORE_ADDR
26d08f08
AC
2522hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2523{
fe46cd3a
RC
2524 ULONGEST ipsw;
2525 CORE_ADDR pc;
2526
cc72850f
MK
2527 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2528 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2529
2530 /* If the current instruction is nullified, then we are effectively
2531 still executing the previous instruction. Pretend we are still
cc72850f
MK
2532 there. This is needed when single stepping; if the nullified
2533 instruction is on a different line, we don't want GDB to think
2534 we've stepped onto that line. */
fe46cd3a
RC
2535 if (ipsw & 0x00200000)
2536 pc -= 4;
2537
cc72850f 2538 return pc & ~0x3;
26d08f08
AC
2539}
2540
ff644745
JB
2541/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2542 Return NULL if no such symbol was found. */
2543
3b7344d5 2544struct bound_minimal_symbol
ff644745
JB
2545hppa_lookup_stub_minimal_symbol (const char *name,
2546 enum unwind_stub_types stub_type)
2547{
2548 struct objfile *objfile;
2549 struct minimal_symbol *msym;
3b7344d5 2550 struct bound_minimal_symbol result = { NULL, NULL };
ff644745
JB
2551
2552 ALL_MSYMBOLS (objfile, msym)
2553 {
efd66ac6 2554 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
ff644745
JB
2555 {
2556 struct unwind_table_entry *u;
2557
efd66ac6 2558 u = find_unwind_entry (MSYMBOL_VALUE (msym));
ff644745 2559 if (u != NULL && u->stub_unwind.stub_type == stub_type)
3b7344d5
TT
2560 {
2561 result.objfile = objfile;
2562 result.minsym = msym;
2563 return result;
2564 }
ff644745
JB
2565 }
2566 }
2567
3b7344d5 2568 return result;
ff644745
JB
2569}
2570
c906108c 2571static void
c482f52c 2572unwind_command (const char *exp, int from_tty)
c906108c
SS
2573{
2574 CORE_ADDR address;
2575 struct unwind_table_entry *u;
2576
2577 /* If we have an expression, evaluate it and use it as the address. */
2578
2579 if (exp != 0 && *exp != 0)
2580 address = parse_and_eval_address (exp);
2581 else
2582 return;
2583
2584 u = find_unwind_entry (address);
2585
2586 if (!u)
2587 {
2588 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2589 return;
2590 }
2591
3329c4b5 2592 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
c906108c 2593
5af949e3 2594 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
d5c27f81 2595 gdb_flush (gdb_stdout);
c906108c 2596
5af949e3 2597 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
d5c27f81 2598 gdb_flush (gdb_stdout);
c906108c 2599
c906108c 2600#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2601
2602 printf_unfiltered ("\n\tflags =");
2603 pif (Cannot_unwind);
2604 pif (Millicode);
2605 pif (Millicode_save_sr0);
2606 pif (Entry_SR);
2607 pif (Args_stored);
2608 pif (Variable_Frame);
2609 pif (Separate_Package_Body);
2610 pif (Frame_Extension_Millicode);
2611 pif (Stack_Overflow_Check);
2612 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2613 pif (sr4export);
2614 pif (cxx_info);
2615 pif (cxx_try_catch);
2616 pif (sched_entry_seq);
c906108c
SS
2617 pif (Save_SP);
2618 pif (Save_RP);
2619 pif (Save_MRP_in_frame);
6fcecea0 2620 pif (save_r19);
c906108c
SS
2621 pif (Cleanup_defined);
2622 pif (MPE_XL_interrupt_marker);
2623 pif (HP_UX_interrupt_marker);
2624 pif (Large_frame);
6fcecea0 2625 pif (alloca_frame);
c906108c
SS
2626
2627 putchar_unfiltered ('\n');
2628
c906108c 2629#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2630
2631 pin (Region_description);
2632 pin (Entry_FR);
2633 pin (Entry_GR);
2634 pin (Total_frame_size);
57dac9e1
RC
2635
2636 if (u->stub_unwind.stub_type)
2637 {
2638 printf_unfiltered ("\tstub type = ");
2639 switch (u->stub_unwind.stub_type)
2640 {
2641 case LONG_BRANCH:
2642 printf_unfiltered ("long branch\n");
2643 break;
2644 case PARAMETER_RELOCATION:
2645 printf_unfiltered ("parameter relocation\n");
2646 break;
2647 case EXPORT:
2648 printf_unfiltered ("export\n");
2649 break;
2650 case IMPORT:
2651 printf_unfiltered ("import\n");
2652 break;
2653 case IMPORT_SHLIB:
2654 printf_unfiltered ("import shlib\n");
2655 break;
2656 default:
2657 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2658 }
2659 }
c906108c 2660}
c906108c 2661
38ca4e0c
MK
2662/* Return the GDB type object for the "standard" data type of data in
2663 register REGNUM. */
d709c020 2664
eded0a31 2665static struct type *
38ca4e0c 2666hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2667{
38ca4e0c 2668 if (regnum < HPPA_FP4_REGNUM)
df4df182 2669 return builtin_type (gdbarch)->builtin_uint32;
d709c020 2670 else
27067745 2671 return builtin_type (gdbarch)->builtin_float;
d709c020
JB
2672}
2673
eded0a31 2674static struct type *
38ca4e0c 2675hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2676{
38ca4e0c 2677 if (regnum < HPPA64_FP4_REGNUM)
df4df182 2678 return builtin_type (gdbarch)->builtin_uint64;
3ff7cf9e 2679 else
27067745 2680 return builtin_type (gdbarch)->builtin_double;
3ff7cf9e
JB
2681}
2682
38ca4e0c
MK
2683/* Return non-zero if REGNUM is not a register available to the user
2684 through ptrace/ttrace. */
d709c020 2685
8d153463 2686static int
64a3914f 2687hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2688{
2689 return (regnum == 0
34f75cc1
RC
2690 || regnum == HPPA_PCSQ_HEAD_REGNUM
2691 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2692 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2693}
d709c020 2694
d037d088 2695static int
64a3914f 2696hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2697{
2698 /* cr26 and cr27 are readable (but not writable) from userspace. */
2699 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2700 return 0;
2701 else
64a3914f 2702 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2703}
2704
38ca4e0c 2705static int
64a3914f 2706hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2707{
2708 return (regnum == 0
2709 || regnum == HPPA_PCSQ_HEAD_REGNUM
2710 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2711 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2712}
2713
d037d088 2714static int
64a3914f 2715hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2716{
2717 /* cr26 and cr27 are readable (but not writable) from userspace. */
2718 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2719 return 0;
2720 else
64a3914f 2721 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2722}
2723
8d153463 2724static CORE_ADDR
85ddcc70 2725hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
d709c020
JB
2726{
2727 /* The low two bits of the PC on the PA contain the privilege level.
2728 Some genius implementing a (non-GCC) compiler apparently decided
2729 this means that "addresses" in a text section therefore include a
2730 privilege level, and thus symbol tables should contain these bits.
2731 This seems like a bonehead thing to do--anyway, it seems to work
2732 for our purposes to just ignore those bits. */
2733
2734 return (addr &= ~0x3);
2735}
2736
e127f0db
MK
2737/* Get the ARGIth function argument for the current function. */
2738
4a302917 2739static CORE_ADDR
143985b7
AF
2740hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2741 struct type *type)
2742{
e127f0db 2743 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2744}
2745
05d1431c 2746static enum register_status
849d0ba8 2747hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
e127f0db 2748 int regnum, gdb_byte *buf)
0f8d9d59 2749{
05d1431c
PA
2750 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2751 ULONGEST tmp;
2752 enum register_status status;
0f8d9d59 2753
03f50fc8 2754 status = regcache->raw_read (regnum, &tmp);
05d1431c
PA
2755 if (status == REG_VALID)
2756 {
2757 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2758 tmp &= ~0x3;
2759 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2760 }
2761 return status;
0f8d9d59
RC
2762}
2763
d49771ef 2764static CORE_ADDR
e38c262f 2765hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2766{
2767 return 0;
2768}
2769
227e86ad
JB
2770struct value *
2771hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2772 struct trad_frame_saved_reg saved_regs[],
227e86ad 2773 int regnum)
0da28f8a 2774{
227e86ad 2775 struct gdbarch *arch = get_frame_arch (this_frame);
e17a4113 2776 enum bfd_endian byte_order = gdbarch_byte_order (arch);
8f4e467c 2777
8693c419
MK
2778 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2779 {
227e86ad
JB
2780 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2781 CORE_ADDR pc;
2782 struct value *pcoq_val =
2783 trad_frame_get_prev_register (this_frame, saved_regs,
2784 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2785
e17a4113
UW
2786 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2787 size, byte_order);
227e86ad 2788 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2789 }
0da28f8a 2790
227e86ad 2791 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2792}
8693c419 2793\f
0da28f8a 2794
34f55018
MK
2795/* An instruction to match. */
2796struct insn_pattern
2797{
2798 unsigned int data; /* See if it matches this.... */
2799 unsigned int mask; /* ... with this mask. */
2800};
2801
2802/* See bfd/elf32-hppa.c */
2803static struct insn_pattern hppa_long_branch_stub[] = {
2804 /* ldil LR'xxx,%r1 */
2805 { 0x20200000, 0xffe00000 },
2806 /* be,n RR'xxx(%sr4,%r1) */
2807 { 0xe0202002, 0xffe02002 },
2808 { 0, 0 }
2809};
2810
2811static struct insn_pattern hppa_long_branch_pic_stub[] = {
2812 /* b,l .+8, %r1 */
2813 { 0xe8200000, 0xffe00000 },
2814 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2815 { 0x28200000, 0xffe00000 },
2816 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2817 { 0xe0202002, 0xffe02002 },
2818 { 0, 0 }
2819};
2820
2821static struct insn_pattern hppa_import_stub[] = {
2822 /* addil LR'xxx, %dp */
2823 { 0x2b600000, 0xffe00000 },
2824 /* ldw RR'xxx(%r1), %r21 */
2825 { 0x48350000, 0xffffb000 },
2826 /* bv %r0(%r21) */
2827 { 0xeaa0c000, 0xffffffff },
2828 /* ldw RR'xxx+4(%r1), %r19 */
2829 { 0x48330000, 0xffffb000 },
2830 { 0, 0 }
2831};
2832
2833static struct insn_pattern hppa_import_pic_stub[] = {
2834 /* addil LR'xxx,%r19 */
2835 { 0x2a600000, 0xffe00000 },
2836 /* ldw RR'xxx(%r1),%r21 */
2837 { 0x48350000, 0xffffb000 },
2838 /* bv %r0(%r21) */
2839 { 0xeaa0c000, 0xffffffff },
2840 /* ldw RR'xxx+4(%r1),%r19 */
2841 { 0x48330000, 0xffffb000 },
2842 { 0, 0 },
2843};
2844
2845static struct insn_pattern hppa_plt_stub[] = {
2846 /* b,l 1b, %r20 - 1b is 3 insns before here */
2847 { 0xea9f1fdd, 0xffffffff },
2848 /* depi 0,31,2,%r20 */
2849 { 0xd6801c1e, 0xffffffff },
2850 { 0, 0 }
34f55018
MK
2851};
2852
2853/* Maximum number of instructions on the patterns above. */
2854#define HPPA_MAX_INSN_PATTERN_LEN 4
2855
2856/* Return non-zero if the instructions at PC match the series
2857 described in PATTERN, or zero otherwise. PATTERN is an array of
2858 'struct insn_pattern' objects, terminated by an entry whose mask is
2859 zero.
2860
2861 When the match is successful, fill INSN[i] with what PATTERN[i]
2862 matched. */
2863
2864static int
e17a4113
UW
2865hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2866 struct insn_pattern *pattern, unsigned int *insn)
34f55018 2867{
e17a4113 2868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
34f55018
MK
2869 CORE_ADDR npc = pc;
2870 int i;
2871
2872 for (i = 0; pattern[i].mask; i++)
2873 {
2874 gdb_byte buf[HPPA_INSN_SIZE];
2875
8defab1a 2876 target_read_memory (npc, buf, HPPA_INSN_SIZE);
e17a4113 2877 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
34f55018
MK
2878 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2879 npc += 4;
2880 else
2881 return 0;
2882 }
2883
2884 return 1;
2885}
2886
2887/* This relaxed version of the insstruction matcher allows us to match
2888 from somewhere inside the pattern, by looking backwards in the
2889 instruction scheme. */
2890
2891static int
e17a4113
UW
2892hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2893 struct insn_pattern *pattern, unsigned int *insn)
34f55018
MK
2894{
2895 int offset, len = 0;
2896
2897 while (pattern[len].mask)
2898 len++;
2899
2900 for (offset = 0; offset < len; offset++)
e17a4113
UW
2901 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2902 pattern, insn))
34f55018
MK
2903 return 1;
2904
2905 return 0;
2906}
2907
2908static int
2909hppa_in_dyncall (CORE_ADDR pc)
2910{
2911 struct unwind_table_entry *u;
2912
2913 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2914 if (!u)
2915 return 0;
2916
2917 return (pc >= u->region_start && pc <= u->region_end);
2918}
2919
2920int
3e5d3a5a 2921hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
34f55018
MK
2922{
2923 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2924 struct unwind_table_entry *u;
2925
3e5d3a5a 2926 if (in_plt_section (pc) || hppa_in_dyncall (pc))
34f55018
MK
2927 return 1;
2928
2929 /* The GNU toolchain produces linker stubs without unwind
2930 information. Since the pattern matching for linker stubs can be
2931 quite slow, so bail out if we do have an unwind entry. */
2932
2933 u = find_unwind_entry (pc);
806e23c0 2934 if (u != NULL)
34f55018
MK
2935 return 0;
2936
e17a4113
UW
2937 return
2938 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2939 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2940 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2941 || hppa_match_insns_relaxed (gdbarch, pc,
2942 hppa_long_branch_pic_stub, insn));
34f55018
MK
2943}
2944
2945/* This code skips several kind of "trampolines" used on PA-RISC
2946 systems: $$dyncall, import stubs and PLT stubs. */
2947
2948CORE_ADDR
52f729a7 2949hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018 2950{
0dfff4cb
UW
2951 struct gdbarch *gdbarch = get_frame_arch (frame);
2952 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2953
34f55018
MK
2954 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2955 int dp_rel;
2956
2957 /* $$dyncall handles both PLABELs and direct addresses. */
2958 if (hppa_in_dyncall (pc))
2959 {
52f729a7 2960 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2961
2962 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2963 if (pc & 0x2)
0dfff4cb 2964 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
34f55018
MK
2965
2966 return pc;
2967 }
2968
e17a4113
UW
2969 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2970 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
34f55018
MK
2971 {
2972 /* Extract the target address from the addil/ldw sequence. */
2973 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2974
2975 if (dp_rel)
52f729a7 2976 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 2977 else
52f729a7 2978 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
2979
2980 /* fallthrough */
2981 }
2982
3e5d3a5a 2983 if (in_plt_section (pc))
34f55018 2984 {
0dfff4cb 2985 pc = read_memory_typed_address (pc, func_ptr_type);
34f55018
MK
2986
2987 /* If the PLT slot has not yet been resolved, the target will be
2988 the PLT stub. */
3e5d3a5a 2989 if (in_plt_section (pc))
34f55018
MK
2990 {
2991 /* Sanity check: are we pointing to the PLT stub? */
e17a4113 2992 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
34f55018 2993 {
5af949e3
UW
2994 warning (_("Cannot resolve PLT stub at %s."),
2995 paddress (gdbarch, pc));
34f55018
MK
2996 return 0;
2997 }
2998
2999 /* This should point to the fixup routine. */
0dfff4cb 3000 pc = read_memory_typed_address (pc + 8, func_ptr_type);
34f55018
MK
3001 }
3002 }
3003
3004 return pc;
3005}
3006\f
3007
8e8b2dba
MC
3008/* Here is a table of C type sizes on hppa with various compiles
3009 and options. I measured this on PA 9000/800 with HP-UX 11.11
3010 and these compilers:
3011
3012 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3013 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3014 /opt/aCC/bin/aCC B3910B A.03.45
3015 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3016
3017 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3018 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3019 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3020 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3021 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3022 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3023 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3024 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3025
3026 Each line is:
3027
3028 compiler and options
3029 char, short, int, long, long long
3030 float, double, long double
3031 char *, void (*)()
3032
3033 So all these compilers use either ILP32 or LP64 model.
3034 TODO: gcc has more options so it needs more investigation.
3035
a2379359
MC
3036 For floating point types, see:
3037
3038 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3039 HP-UX floating-point guide, hpux 11.00
3040
8e8b2dba
MC
3041 -- chastain 2003-12-18 */
3042
e6e68f1f
JB
3043static struct gdbarch *
3044hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3045{
3ff7cf9e 3046 struct gdbarch_tdep *tdep;
e6e68f1f
JB
3047 struct gdbarch *gdbarch;
3048
3049 /* find a candidate among the list of pre-declared architectures. */
3050 arches = gdbarch_list_lookup_by_info (arches, &info);
3051 if (arches != NULL)
3052 return (arches->gdbarch);
3053
3054 /* If none found, then allocate and initialize one. */
41bf6aca 3055 tdep = XCNEW (struct gdbarch_tdep);
3ff7cf9e
JB
3056 gdbarch = gdbarch_alloc (&info, tdep);
3057
3058 /* Determine from the bfd_arch_info structure if we are dealing with
3059 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3060 then default to a 32bit machine. */
3061 if (info.bfd_arch_info != NULL)
3062 tdep->bytes_per_address =
3063 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3064 else
3065 tdep->bytes_per_address = 4;
3066
d49771ef
RC
3067 tdep->find_global_pointer = hppa_find_global_pointer;
3068
3ff7cf9e
JB
3069 /* Some parts of the gdbarch vector depend on whether we are running
3070 on a 32 bits or 64 bits target. */
3071 switch (tdep->bytes_per_address)
3072 {
3073 case 4:
3074 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3075 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3076 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3077 set_gdbarch_cannot_store_register (gdbarch,
3078 hppa32_cannot_store_register);
3079 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3080 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3081 break;
3082 case 8:
3083 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3084 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3085 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3086 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3087 set_gdbarch_cannot_store_register (gdbarch,
3088 hppa64_cannot_store_register);
3089 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3090 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3091 break;
3092 default:
e2e0b3e5 3093 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3094 tdep->bytes_per_address);
3095 }
3096
3ff7cf9e 3097 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3098 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3099
8e8b2dba
MC
3100 /* The following gdbarch vector elements are the same in both ILP32
3101 and LP64, but might show differences some day. */
3102 set_gdbarch_long_long_bit (gdbarch, 64);
3103 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3104 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3105
3ff7cf9e
JB
3106 /* The following gdbarch vector elements do not depend on the address
3107 size, or in any other gdbarch element previously set. */
60383d10 3108 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
c9cf6e20
MG
3109 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3110 hppa_stack_frame_destroyed_p);
a2a84a72 3111 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3112 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3113 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
85ddcc70 3114 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
60383d10 3115 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3116 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3117 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3118
143985b7
AF
3119 /* Helper for function argument information. */
3120 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3121
3a3bc038
AC
3122 /* When a hardware watchpoint triggers, we'll move the inferior past
3123 it by removing all eventpoints; stepping past the instruction
3124 that caused the trigger; reinserting eventpoints; and checking
3125 whether any watched location changed. */
3126 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3127
5979bc46 3128 /* Inferior function call methods. */
fca7aa43 3129 switch (tdep->bytes_per_address)
5979bc46 3130 {
fca7aa43
AC
3131 case 4:
3132 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3133 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3134 set_gdbarch_convert_from_func_ptr_addr
3135 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3136 break;
3137 case 8:
782eae8b
AC
3138 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3139 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3140 break;
782eae8b 3141 default:
e2e0b3e5 3142 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3143 }
3144
3145 /* Struct return methods. */
fca7aa43 3146 switch (tdep->bytes_per_address)
fad850b2 3147 {
fca7aa43
AC
3148 case 4:
3149 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3150 break;
3151 case 8:
782eae8b 3152 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3153 break;
fca7aa43 3154 default:
e2e0b3e5 3155 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3156 }
7f07c5b6 3157
04180708
YQ
3158 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3159 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
7f07c5b6 3160 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3161
5979bc46 3162 /* Frame unwind methods. */
227e86ad 3163 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3164 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3165
50306a9d
RC
3166 /* Hook in ABI-specific overrides, if they have been registered. */
3167 gdbarch_init_osabi (info, gdbarch);
3168
7f07c5b6 3169 /* Hook in the default unwinders. */
227e86ad
JB
3170 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3171 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3172 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3173
e6e68f1f
JB
3174 return gdbarch;
3175}
3176
3177static void
464963c9 3178hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3179{
464963c9 3180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3181
3182 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3183 tdep->bytes_per_address);
3184 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3185}
3186
4facf7e8
JB
3187void
3188_initialize_hppa_tdep (void)
3189{
e6e68f1f 3190 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3191
7c46b9fb
RC
3192 hppa_objfile_priv_data = register_objfile_data ();
3193
4facf7e8 3194 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3195 _("Print unwind table entry at given address."),
4facf7e8
JB
3196 &maintenanceprintlist);
3197
1777feb0 3198 /* Debug this files internals. */
7915a72c
AC
3199 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3200Set whether hppa target specific debugging information should be displayed."),
3201 _("\
3202Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3203This flag controls whether hppa target specific debugging information is\n\
3204displayed. This information is particularly useful for debugging frame\n\
7915a72c 3205unwinding problems."),
2c5b56ce 3206 NULL,
7915a72c 3207 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3208 &setdebuglist, &showdebuglist);
4facf7e8 3209}
This page took 1.697058 seconds and 4 git commands to generate.