import gdb-1999-08-23 snapshot
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c
SS
1/* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 87, 89, 90, 91, 92, 93, 94, 95, 96, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "frame.h"
27#include "bfd.h"
28#include "inferior.h"
29#include "value.h"
30
31/* For argument passing to the inferior */
32#include "symtab.h"
33
34#ifdef USG
35#include <sys/types.h>
36#endif
37
38#include <dl.h>
39#include <sys/param.h>
40#include <signal.h>
41
42#include <sys/ptrace.h>
43#include <machine/save_state.h>
44
45#ifdef COFF_ENCAPSULATE
46#include "a.out.encap.h"
47#else
48#endif
49
c5aa993b 50/*#include <sys/user.h> After a.out.h */
c906108c
SS
51#include <sys/file.h>
52#include "gdb_stat.h"
53#include "wait.h"
54
55#include "gdbcore.h"
56#include "gdbcmd.h"
57#include "target.h"
58#include "symfile.h"
59#include "objfiles.h"
60
61/* To support asking "What CPU is this?" */
62#include <unistd.h>
63
64/* To support detection of the pseudo-initial frame
65 that threads have. */
66#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
67#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 68
c906108c
SS
69static int extract_5_load PARAMS ((unsigned int));
70
71static unsigned extract_5R_store PARAMS ((unsigned int));
72
73static unsigned extract_5r_store PARAMS ((unsigned int));
74
75static void find_dummy_frame_regs PARAMS ((struct frame_info *,
76 struct frame_saved_regs *));
77
78static int find_proc_framesize PARAMS ((CORE_ADDR));
79
80static int find_return_regnum PARAMS ((CORE_ADDR));
81
82struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
83
84static int extract_17 PARAMS ((unsigned int));
85
86static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
87
88static int extract_21 PARAMS ((unsigned));
89
90static unsigned deposit_14 PARAMS ((int, unsigned int));
91
92static int extract_14 PARAMS ((unsigned));
93
94static void unwind_command PARAMS ((char *, int));
95
96static int low_sign_extend PARAMS ((unsigned int, unsigned int));
97
98static int sign_extend PARAMS ((unsigned int, unsigned int));
99
100static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
101
102static int hppa_alignof PARAMS ((struct type *));
103
104/* To support multi-threading and stepping. */
105int hppa_prepare_to_proceed PARAMS (());
106
107static int prologue_inst_adjust_sp PARAMS ((unsigned long));
108
109static int is_branch PARAMS ((unsigned long));
110
111static int inst_saves_gr PARAMS ((unsigned long));
112
113static int inst_saves_fr PARAMS ((unsigned long));
114
115static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
116
117static int pc_in_linker_stub PARAMS ((CORE_ADDR));
118
119static int compare_unwind_entries PARAMS ((const void *, const void *));
120
121static void read_unwind_info PARAMS ((struct objfile *));
122
123static void internalize_unwinds PARAMS ((struct objfile *,
124 struct unwind_table_entry *,
125 asection *, unsigned int,
126 unsigned int, CORE_ADDR));
127static void pa_print_registers PARAMS ((char *, int, int));
128static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *));
129static void pa_register_look_aside PARAMS ((char *, int, long *));
130static void pa_print_fp_reg PARAMS ((int));
131static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type));
53a5351d 132static void record_text_segment_lowaddr PARAMS ((bfd *, asection *, void *));
c906108c 133
c5aa993b
JM
134typedef struct
135 {
136 struct minimal_symbol *msym;
137 CORE_ADDR solib_handle;
a0b3c4fd 138 CORE_ADDR return_val;
c5aa993b
JM
139 }
140args_for_find_stub;
c906108c 141
a0b3c4fd 142static int cover_find_stub_with_shl_get (PTR);
c906108c 143
c5aa993b 144static int is_pa_2 = 0; /* False */
c906108c 145
c5aa993b 146/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
147extern int hp_som_som_object_present;
148
149/* In breakpoint.c */
150extern int exception_catchpoints_are_fragile;
151
152/* This is defined in valops.c. */
153extern value_ptr
c5aa993b 154 find_function_in_inferior PARAMS ((char *));
c906108c
SS
155
156/* Should call_function allocate stack space for a struct return? */
157int
158hppa_use_struct_convention (gcc_p, type)
159 int gcc_p;
160 struct type *type;
161{
162 return (TYPE_LENGTH (type) > 8);
163}
c906108c 164\f
c5aa993b 165
c906108c
SS
166/* Routines to extract various sized constants out of hppa
167 instructions. */
168
169/* This assumes that no garbage lies outside of the lower bits of
170 value. */
171
172static int
173sign_extend (val, bits)
174 unsigned val, bits;
175{
c5aa993b 176 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
177}
178
179/* For many immediate values the sign bit is the low bit! */
180
181static int
182low_sign_extend (val, bits)
183 unsigned val, bits;
184{
c5aa993b 185 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
186}
187
188/* extract the immediate field from a ld{bhw}s instruction */
189
c906108c
SS
190static int
191extract_5_load (word)
192 unsigned word;
193{
194 return low_sign_extend (word >> 16 & MASK_5, 5);
195}
196
c906108c
SS
197/* extract the immediate field from a break instruction */
198
199static unsigned
200extract_5r_store (word)
201 unsigned word;
202{
203 return (word & MASK_5);
204}
205
206/* extract the immediate field from a {sr}sm instruction */
207
208static unsigned
209extract_5R_store (word)
210 unsigned word;
211{
212 return (word >> 16 & MASK_5);
213}
214
c906108c
SS
215/* extract a 14 bit immediate field */
216
217static int
218extract_14 (word)
219 unsigned word;
220{
221 return low_sign_extend (word & MASK_14, 14);
222}
223
224/* deposit a 14 bit constant in a word */
225
226static unsigned
227deposit_14 (opnd, word)
228 int opnd;
229 unsigned word;
230{
231 unsigned sign = (opnd < 0 ? 1 : 0);
232
c5aa993b 233 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
234}
235
236/* extract a 21 bit constant */
237
238static int
239extract_21 (word)
240 unsigned word;
241{
242 int val;
243
244 word &= MASK_21;
245 word <<= 11;
246 val = GET_FIELD (word, 20, 20);
247 val <<= 11;
248 val |= GET_FIELD (word, 9, 19);
249 val <<= 2;
250 val |= GET_FIELD (word, 5, 6);
251 val <<= 5;
252 val |= GET_FIELD (word, 0, 4);
253 val <<= 2;
254 val |= GET_FIELD (word, 7, 8);
255 return sign_extend (val, 21) << 11;
256}
257
258/* deposit a 21 bit constant in a word. Although 21 bit constants are
259 usually the top 21 bits of a 32 bit constant, we assume that only
260 the low 21 bits of opnd are relevant */
261
262static unsigned
263deposit_21 (opnd, word)
264 unsigned opnd, word;
265{
266 unsigned val = 0;
267
268 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
269 val <<= 2;
270 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
271 val <<= 2;
272 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
273 val <<= 11;
274 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
275 val <<= 1;
276 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
277 return word | val;
278}
279
c906108c
SS
280/* extract a 17 bit constant from branch instructions, returning the
281 19 bit signed value. */
282
283static int
284extract_17 (word)
285 unsigned word;
286{
287 return sign_extend (GET_FIELD (word, 19, 28) |
288 GET_FIELD (word, 29, 29) << 10 |
289 GET_FIELD (word, 11, 15) << 11 |
290 (word & 0x1) << 16, 17) << 2;
291}
292\f
293
294/* Compare the start address for two unwind entries returning 1 if
295 the first address is larger than the second, -1 if the second is
296 larger than the first, and zero if they are equal. */
297
298static int
299compare_unwind_entries (arg1, arg2)
300 const void *arg1;
301 const void *arg2;
302{
303 const struct unwind_table_entry *a = arg1;
304 const struct unwind_table_entry *b = arg2;
305
306 if (a->region_start > b->region_start)
307 return 1;
308 else if (a->region_start < b->region_start)
309 return -1;
310 else
311 return 0;
312}
313
53a5351d
JM
314static CORE_ADDR low_text_segment_address;
315
316static void
317record_text_segment_lowaddr (abfd, section, ignored)
318 bfd *abfd ATTRIBUTE_UNUSED;
319 asection *section;
320 PTR ignored ATTRIBUTE_UNUSED;
321{
322 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
323 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
324 && section->vma < low_text_segment_address)
325 low_text_segment_address = section->vma;
326}
327
c906108c
SS
328static void
329internalize_unwinds (objfile, table, section, entries, size, text_offset)
330 struct objfile *objfile;
331 struct unwind_table_entry *table;
332 asection *section;
333 unsigned int entries, size;
334 CORE_ADDR text_offset;
335{
336 /* We will read the unwind entries into temporary memory, then
337 fill in the actual unwind table. */
338 if (size > 0)
339 {
340 unsigned long tmp;
341 unsigned i;
342 char *buf = alloca (size);
343
53a5351d
JM
344 low_text_segment_address = -1;
345
346 /* If addresses are 64 bits wide, then unwinds are supposed to
347 be segment relative offsets instead of absolute addresses. */
348 if (TARGET_PTR_BIT == 64)
349 {
350 bfd_map_over_sections (objfile->obfd,
351 record_text_segment_lowaddr, (PTR) NULL);
352
353 /* ?!? Mask off some low bits. Should this instead subtract
354 out the lowest section's filepos or something like that?
355 This looks very hokey to me. */
356 low_text_segment_address &= ~0xfff;
357 text_offset += low_text_segment_address;
358 }
359
c906108c
SS
360 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
361
362 /* Now internalize the information being careful to handle host/target
c5aa993b 363 endian issues. */
c906108c
SS
364 for (i = 0; i < entries; i++)
365 {
366 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 367 (bfd_byte *) buf);
c906108c
SS
368 table[i].region_start += text_offset;
369 buf += 4;
c5aa993b 370 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
371 table[i].region_end += text_offset;
372 buf += 4;
c5aa993b 373 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
374 buf += 4;
375 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
376 table[i].Millicode = (tmp >> 30) & 0x1;
377 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
378 table[i].Region_description = (tmp >> 27) & 0x3;
379 table[i].reserved1 = (tmp >> 26) & 0x1;
380 table[i].Entry_SR = (tmp >> 25) & 0x1;
381 table[i].Entry_FR = (tmp >> 21) & 0xf;
382 table[i].Entry_GR = (tmp >> 16) & 0x1f;
383 table[i].Args_stored = (tmp >> 15) & 0x1;
384 table[i].Variable_Frame = (tmp >> 14) & 0x1;
385 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
386 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
387 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
388 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
389 table[i].Ada_Region = (tmp >> 9) & 0x1;
390 table[i].cxx_info = (tmp >> 8) & 0x1;
391 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
392 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
393 table[i].reserved2 = (tmp >> 5) & 0x1;
394 table[i].Save_SP = (tmp >> 4) & 0x1;
395 table[i].Save_RP = (tmp >> 3) & 0x1;
396 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
397 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
398 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 399 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
400 buf += 4;
401 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
402 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
403 table[i].Large_frame = (tmp >> 29) & 0x1;
404 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
405 table[i].reserved4 = (tmp >> 27) & 0x1;
406 table[i].Total_frame_size = tmp & 0x7ffffff;
407
c5aa993b 408 /* Stub unwinds are handled elsewhere. */
c906108c
SS
409 table[i].stub_unwind.stub_type = 0;
410 table[i].stub_unwind.padding = 0;
411 }
412 }
413}
414
415/* Read in the backtrace information stored in the `$UNWIND_START$' section of
416 the object file. This info is used mainly by find_unwind_entry() to find
417 out the stack frame size and frame pointer used by procedures. We put
418 everything on the psymbol obstack in the objfile so that it automatically
419 gets freed when the objfile is destroyed. */
420
421static void
422read_unwind_info (objfile)
423 struct objfile *objfile;
424{
425 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
426 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
427 unsigned index, unwind_entries, elf_unwind_entries;
428 unsigned stub_entries, total_entries;
429 CORE_ADDR text_offset;
430 struct obj_unwind_info *ui;
431 obj_private_data_t *obj_private;
432
433 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
434 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
435 sizeof (struct obj_unwind_info));
c906108c
SS
436
437 ui->table = NULL;
438 ui->cache = NULL;
439 ui->last = -1;
440
441 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
442 section in ELF at the moment. */
443 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
444 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
445 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
446
447 /* Get sizes and unwind counts for all sections. */
448 if (unwind_sec)
449 {
450 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
451 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
452 }
453 else
454 {
455 unwind_size = 0;
456 unwind_entries = 0;
457 }
458
459 if (elf_unwind_sec)
460 {
c5aa993b
JM
461 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); /* purecov: deadcode */
462 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; /* purecov: deadcode */
c906108c
SS
463 }
464 else
465 {
466 elf_unwind_size = 0;
467 elf_unwind_entries = 0;
468 }
469
470 if (stub_unwind_sec)
471 {
472 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
473 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
474 }
475 else
476 {
477 stub_unwind_size = 0;
478 stub_entries = 0;
479 }
480
481 /* Compute total number of unwind entries and their total size. */
482 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
483 total_size = total_entries * sizeof (struct unwind_table_entry);
484
485 /* Allocate memory for the unwind table. */
486 ui->table = (struct unwind_table_entry *)
487 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 488 ui->last = total_entries - 1;
c906108c
SS
489
490 /* Internalize the standard unwind entries. */
491 index = 0;
492 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
493 unwind_entries, unwind_size, text_offset);
494 index += unwind_entries;
495 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
496 elf_unwind_entries, elf_unwind_size, text_offset);
497 index += elf_unwind_entries;
498
499 /* Now internalize the stub unwind entries. */
500 if (stub_unwind_size > 0)
501 {
502 unsigned int i;
503 char *buf = alloca (stub_unwind_size);
504
505 /* Read in the stub unwind entries. */
506 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
507 0, stub_unwind_size);
508
509 /* Now convert them into regular unwind entries. */
510 for (i = 0; i < stub_entries; i++, index++)
511 {
512 /* Clear out the next unwind entry. */
513 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
514
515 /* Convert offset & size into region_start and region_end.
516 Stuff away the stub type into "reserved" fields. */
517 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
518 (bfd_byte *) buf);
519 ui->table[index].region_start += text_offset;
520 buf += 4;
521 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 522 (bfd_byte *) buf);
c906108c
SS
523 buf += 2;
524 ui->table[index].region_end
c5aa993b
JM
525 = ui->table[index].region_start + 4 *
526 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
527 buf += 2;
528 }
529
530 }
531
532 /* Unwind table needs to be kept sorted. */
533 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
534 compare_unwind_entries);
535
536 /* Keep a pointer to the unwind information. */
c5aa993b 537 if (objfile->obj_private == NULL)
c906108c
SS
538 {
539 obj_private = (obj_private_data_t *)
c5aa993b
JM
540 obstack_alloc (&objfile->psymbol_obstack,
541 sizeof (obj_private_data_t));
c906108c 542 obj_private->unwind_info = NULL;
c5aa993b 543 obj_private->so_info = NULL;
53a5351d 544 obj_private->dp = 0;
c5aa993b 545
c906108c
SS
546 objfile->obj_private = (PTR) obj_private;
547 }
c5aa993b 548 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
549 obj_private->unwind_info = ui;
550}
551
552/* Lookup the unwind (stack backtrace) info for the given PC. We search all
553 of the objfiles seeking the unwind table entry for this PC. Each objfile
554 contains a sorted list of struct unwind_table_entry. Since we do a binary
555 search of the unwind tables, we depend upon them to be sorted. */
556
557struct unwind_table_entry *
c5aa993b 558find_unwind_entry (pc)
c906108c
SS
559 CORE_ADDR pc;
560{
561 int first, middle, last;
562 struct objfile *objfile;
563
564 /* A function at address 0? Not in HP-UX! */
565 if (pc == (CORE_ADDR) 0)
566 return NULL;
567
568 ALL_OBJFILES (objfile)
c5aa993b
JM
569 {
570 struct obj_unwind_info *ui;
571 ui = NULL;
572 if (objfile->obj_private)
573 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 574
c5aa993b
JM
575 if (!ui)
576 {
577 read_unwind_info (objfile);
578 if (objfile->obj_private == NULL)
579 error ("Internal error reading unwind information."); /* purecov: deadcode */
580 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
581 }
c906108c 582
c5aa993b 583 /* First, check the cache */
c906108c 584
c5aa993b
JM
585 if (ui->cache
586 && pc >= ui->cache->region_start
587 && pc <= ui->cache->region_end)
588 return ui->cache;
c906108c 589
c5aa993b 590 /* Not in the cache, do a binary search */
c906108c 591
c5aa993b
JM
592 first = 0;
593 last = ui->last;
c906108c 594
c5aa993b
JM
595 while (first <= last)
596 {
597 middle = (first + last) / 2;
598 if (pc >= ui->table[middle].region_start
599 && pc <= ui->table[middle].region_end)
600 {
601 ui->cache = &ui->table[middle];
602 return &ui->table[middle];
603 }
c906108c 604
c5aa993b
JM
605 if (pc < ui->table[middle].region_start)
606 last = middle - 1;
607 else
608 first = middle + 1;
609 }
610 } /* ALL_OBJFILES() */
c906108c
SS
611 return NULL;
612}
613
614/* Return the adjustment necessary to make for addresses on the stack
615 as presented by hpread.c.
616
617 This is necessary because of the stack direction on the PA and the
618 bizarre way in which someone (?) decided they wanted to handle
619 frame pointerless code in GDB. */
620int
621hpread_adjust_stack_address (func_addr)
622 CORE_ADDR func_addr;
623{
624 struct unwind_table_entry *u;
625
626 u = find_unwind_entry (func_addr);
627 if (!u)
628 return 0;
629 else
630 return u->Total_frame_size << 3;
631}
632
633/* Called to determine if PC is in an interrupt handler of some
634 kind. */
635
636static int
637pc_in_interrupt_handler (pc)
638 CORE_ADDR pc;
639{
640 struct unwind_table_entry *u;
641 struct minimal_symbol *msym_us;
642
643 u = find_unwind_entry (pc);
644 if (!u)
645 return 0;
646
647 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
648 its frame isn't a pure interrupt frame. Deal with this. */
649 msym_us = lookup_minimal_symbol_by_pc (pc);
650
651 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
652}
653
654/* Called when no unwind descriptor was found for PC. Returns 1 if it
655 appears that PC is in a linker stub. */
656
657static int
658pc_in_linker_stub (pc)
659 CORE_ADDR pc;
660{
661 int found_magic_instruction = 0;
662 int i;
663 char buf[4];
664
665 /* If unable to read memory, assume pc is not in a linker stub. */
666 if (target_read_memory (pc, buf, 4) != 0)
667 return 0;
668
669 /* We are looking for something like
670
671 ; $$dyncall jams RP into this special spot in the frame (RP')
672 ; before calling the "call stub"
673 ldw -18(sp),rp
674
675 ldsid (rp),r1 ; Get space associated with RP into r1
676 mtsp r1,sp ; Move it into space register 0
677 be,n 0(sr0),rp) ; back to your regularly scheduled program */
678
679 /* Maximum known linker stub size is 4 instructions. Search forward
680 from the given PC, then backward. */
681 for (i = 0; i < 4; i++)
682 {
683 /* If we hit something with an unwind, stop searching this direction. */
684
685 if (find_unwind_entry (pc + i * 4) != 0)
686 break;
687
688 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 689 return from a cross-space function call. */
c906108c
SS
690 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
691 {
692 found_magic_instruction = 1;
693 break;
694 }
695 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 696 here. */
c906108c
SS
697 }
698
699 if (found_magic_instruction != 0)
700 return 1;
701
702 /* Now look backward. */
703 for (i = 0; i < 4; i++)
704 {
705 /* If we hit something with an unwind, stop searching this direction. */
706
707 if (find_unwind_entry (pc - i * 4) != 0)
708 break;
709
710 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 711 return from a cross-space function call. */
c906108c
SS
712 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
713 {
714 found_magic_instruction = 1;
715 break;
716 }
717 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 718 here. */
c906108c
SS
719 }
720 return found_magic_instruction;
721}
722
723static int
c5aa993b 724find_return_regnum (pc)
c906108c
SS
725 CORE_ADDR pc;
726{
727 struct unwind_table_entry *u;
728
729 u = find_unwind_entry (pc);
730
731 if (!u)
732 return RP_REGNUM;
733
734 if (u->Millicode)
735 return 31;
736
737 return RP_REGNUM;
738}
739
740/* Return size of frame, or -1 if we should use a frame pointer. */
741static int
742find_proc_framesize (pc)
743 CORE_ADDR pc;
744{
745 struct unwind_table_entry *u;
746 struct minimal_symbol *msym_us;
747
748 /* This may indicate a bug in our callers... */
c5aa993b 749 if (pc == (CORE_ADDR) 0)
c906108c 750 return -1;
c5aa993b 751
c906108c
SS
752 u = find_unwind_entry (pc);
753
754 if (!u)
755 {
756 if (pc_in_linker_stub (pc))
757 /* Linker stubs have a zero size frame. */
758 return 0;
759 else
760 return -1;
761 }
762
763 msym_us = lookup_minimal_symbol_by_pc (pc);
764
765 /* If Save_SP is set, and we're not in an interrupt or signal caller,
766 then we have a frame pointer. Use it. */
767 if (u->Save_SP && !pc_in_interrupt_handler (pc)
768 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
769 return -1;
770
771 return u->Total_frame_size << 3;
772}
773
774/* Return offset from sp at which rp is saved, or 0 if not saved. */
775static int rp_saved PARAMS ((CORE_ADDR));
776
777static int
778rp_saved (pc)
779 CORE_ADDR pc;
780{
781 struct unwind_table_entry *u;
782
783 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
784 if (pc == (CORE_ADDR) 0)
785 return 0;
786
787 u = find_unwind_entry (pc);
788
789 if (!u)
790 {
791 if (pc_in_linker_stub (pc))
792 /* This is the so-called RP'. */
793 return -24;
794 else
795 return 0;
796 }
797
798 if (u->Save_RP)
53a5351d 799 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
800 else if (u->stub_unwind.stub_type != 0)
801 {
802 switch (u->stub_unwind.stub_type)
803 {
804 case EXPORT:
805 case IMPORT:
806 return -24;
807 case PARAMETER_RELOCATION:
808 return -8;
809 default:
810 return 0;
811 }
812 }
813 else
814 return 0;
815}
816\f
817int
818frameless_function_invocation (frame)
819 struct frame_info *frame;
820{
821 struct unwind_table_entry *u;
822
823 u = find_unwind_entry (frame->pc);
824
825 if (u == 0)
826 return 0;
827
828 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
829}
830
831CORE_ADDR
832saved_pc_after_call (frame)
833 struct frame_info *frame;
834{
835 int ret_regnum;
836 CORE_ADDR pc;
837 struct unwind_table_entry *u;
838
839 ret_regnum = find_return_regnum (get_frame_pc (frame));
840 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 841
c906108c
SS
842 /* If PC is in a linker stub, then we need to dig the address
843 the stub will return to out of the stack. */
844 u = find_unwind_entry (pc);
845 if (u && u->stub_unwind.stub_type != 0)
846 return FRAME_SAVED_PC (frame);
847 else
848 return pc;
849}
850\f
851CORE_ADDR
852hppa_frame_saved_pc (frame)
853 struct frame_info *frame;
854{
855 CORE_ADDR pc = get_frame_pc (frame);
856 struct unwind_table_entry *u;
857 CORE_ADDR old_pc;
c5aa993b
JM
858 int spun_around_loop = 0;
859 int rp_offset = 0;
c906108c
SS
860
861 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
862 at the base of the frame in an interrupt handler. Registers within
863 are saved in the exact same order as GDB numbers registers. How
864 convienent. */
865 if (pc_in_interrupt_handler (pc))
53a5351d
JM
866 return read_memory_integer (frame->frame + PC_REGNUM * 4,
867 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
868
869#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
870 /* Deal with signal handler caller frames too. */
871 if (frame->signal_handler_caller)
872 {
873 CORE_ADDR rp;
874 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
875 return rp & ~0x3;
876 }
877#endif
878
879 if (frameless_function_invocation (frame))
880 {
881 int ret_regnum;
882
883 ret_regnum = find_return_regnum (pc);
884
885 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
886 handler caller, then we need to look in the saved
887 register area to get the return pointer (the values
888 in the registers may not correspond to anything useful). */
889 if (frame->next
c906108c
SS
890 && (frame->next->signal_handler_caller
891 || pc_in_interrupt_handler (frame->next->pc)))
892 {
893 struct frame_saved_regs saved_regs;
894
895 get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
896 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
897 TARGET_PTR_BIT / 8) & 0x2)
c906108c 898 {
53a5351d
JM
899 pc = read_memory_integer (saved_regs.regs[31],
900 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
901
902 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
903 with a return pointer in %rp and the kernel call with
904 a return pointer in %r31. We return the %rp variant
905 if %r31 is the same as frame->pc. */
c906108c 906 if (pc == frame->pc)
53a5351d
JM
907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
908 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
909 }
910 else
53a5351d
JM
911 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
912 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
913 }
914 else
915 pc = read_register (ret_regnum) & ~0x3;
916 }
917 else
918 {
919 spun_around_loop = 0;
c5aa993b 920 old_pc = pc;
c906108c 921
c5aa993b 922 restart:
c906108c
SS
923 rp_offset = rp_saved (pc);
924
925 /* Similar to code in frameless function case. If the next
c5aa993b
JM
926 frame is a signal or interrupt handler, then dig the right
927 information out of the saved register info. */
c906108c
SS
928 if (rp_offset == 0
929 && frame->next
930 && (frame->next->signal_handler_caller
931 || pc_in_interrupt_handler (frame->next->pc)))
932 {
933 struct frame_saved_regs saved_regs;
934
935 get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
936 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
937 TARGET_PTR_BIT / 8) & 0x2)
c906108c 938 {
53a5351d
JM
939 pc = read_memory_integer (saved_regs.regs[31],
940 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
941
942 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
943 with a return pointer in %rp and the kernel call with
944 a return pointer in %r31. We return the %rp variant
945 if %r31 is the same as frame->pc. */
c906108c 946 if (pc == frame->pc)
53a5351d
JM
947 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
948 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
949 }
950 else
53a5351d
JM
951 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
952 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
953 }
954 else if (rp_offset == 0)
c5aa993b
JM
955 {
956 old_pc = pc;
957 pc = read_register (RP_REGNUM) & ~0x3;
958 }
c906108c 959 else
c5aa993b
JM
960 {
961 old_pc = pc;
53a5351d
JM
962 pc = read_memory_integer (frame->frame + rp_offset,
963 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 964 }
c906108c
SS
965 }
966
967 /* If PC is inside a linker stub, then dig out the address the stub
968 will return to.
969
970 Don't do this for long branch stubs. Why? For some unknown reason
971 _start is marked as a long branch stub in hpux10. */
972 u = find_unwind_entry (pc);
973 if (u && u->stub_unwind.stub_type != 0
974 && u->stub_unwind.stub_type != LONG_BRANCH)
975 {
976 unsigned int insn;
977
978 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
979 then the call chain will eventually point us into the stub for
980 _sigreturn. Unlike most cases, we'll be pointed to the branch
981 to the real sigreturn rather than the code after the real branch!.
c906108c 982
c5aa993b
JM
983 Else, try to dig the address the stub will return to in the normal
984 fashion. */
c906108c
SS
985 insn = read_memory_integer (pc, 4);
986 if ((insn & 0xfc00e000) == 0xe8000000)
987 return (pc + extract_17 (insn) + 8) & ~0x3;
988 else
989 {
c5aa993b
JM
990 if (old_pc == pc)
991 spun_around_loop++;
992
993 if (spun_around_loop > 1)
994 {
995 /* We're just about to go around the loop again with
996 no more hope of success. Die. */
997 error ("Unable to find return pc for this frame");
998 }
999 else
1000 goto restart;
c906108c
SS
1001 }
1002 }
1003
1004 return pc;
1005}
1006\f
1007/* We need to correct the PC and the FP for the outermost frame when we are
1008 in a system call. */
1009
1010void
1011init_extra_frame_info (fromleaf, frame)
1012 int fromleaf;
1013 struct frame_info *frame;
1014{
1015 int flags;
1016 int framesize;
1017
1018 if (frame->next && !fromleaf)
1019 return;
1020
1021 /* If the next frame represents a frameless function invocation
1022 then we have to do some adjustments that are normally done by
1023 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1024 if (fromleaf)
1025 {
1026 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1027 in the current frame structure (it isn't set yet). */
c906108c
SS
1028 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1029
1030 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1031 use it, else subtract the size of this frame from the current
1032 frame. (we always want frame->frame to point at the lowest address
1033 in the frame). */
c906108c
SS
1034 if (framesize == -1)
1035 frame->frame = TARGET_READ_FP ();
1036 else
1037 frame->frame -= framesize;
1038 return;
1039 }
1040
1041 flags = read_register (FLAGS_REGNUM);
c5aa993b 1042 if (flags & 2) /* In system call? */
c906108c
SS
1043 frame->pc = read_register (31) & ~0x3;
1044
1045 /* The outermost frame is always derived from PC-framesize
1046
1047 One might think frameless innermost frames should have
1048 a frame->frame that is the same as the parent's frame->frame.
1049 That is wrong; frame->frame in that case should be the *high*
1050 address of the parent's frame. It's complicated as hell to
1051 explain, but the parent *always* creates some stack space for
1052 the child. So the child actually does have a frame of some
1053 sorts, and its base is the high address in its parent's frame. */
c5aa993b 1054 framesize = find_proc_framesize (frame->pc);
c906108c
SS
1055 if (framesize == -1)
1056 frame->frame = TARGET_READ_FP ();
1057 else
1058 frame->frame = read_register (SP_REGNUM) - framesize;
1059}
1060\f
1061/* Given a GDB frame, determine the address of the calling function's frame.
1062 This will be used to create a new GDB frame struct, and then
1063 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1064
1065 This may involve searching through prologues for several functions
1066 at boundaries where GCC calls HP C code, or where code which has
1067 a frame pointer calls code without a frame pointer. */
1068
1069CORE_ADDR
1070frame_chain (frame)
1071 struct frame_info *frame;
1072{
1073 int my_framesize, caller_framesize;
1074 struct unwind_table_entry *u;
1075 CORE_ADDR frame_base;
1076 struct frame_info *tmp_frame;
1077
c5aa993b 1078 CORE_ADDR caller_pc;
c906108c
SS
1079
1080 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1081 struct symbol *frame_symbol;
1082 char *frame_symbol_name;
c906108c
SS
1083
1084 /* If this is a threaded application, and we see the
1085 routine "__pthread_exit", treat it as the stack root
1086 for this thread. */
c5aa993b
JM
1087 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1088 frame_symbol = find_pc_function (frame->pc);
c906108c 1089
c5aa993b 1090 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1091 {
c5aa993b
JM
1092 /* The test above for "no user function name" would defend
1093 against the slim likelihood that a user might define a
1094 routine named "__pthread_exit" and then try to debug it.
1095
1096 If it weren't commented out, and you tried to debug the
1097 pthread library itself, you'd get errors.
1098
1099 So for today, we don't make that check. */
1100 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1101 if (frame_symbol_name != 0)
1102 {
1103 if (0 == strncmp (frame_symbol_name,
1104 THREAD_INITIAL_FRAME_SYMBOL,
1105 THREAD_INITIAL_FRAME_SYM_LEN))
1106 {
1107 /* Pretend we've reached the bottom of the stack. */
1108 return (CORE_ADDR) 0;
1109 }
1110 }
1111 } /* End of hacky code for threads. */
1112
c906108c
SS
1113 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1114 are easy; at *sp we have a full save state strucutre which we can
1115 pull the old stack pointer from. Also see frame_saved_pc for
1116 code to dig a saved PC out of the save state structure. */
1117 if (pc_in_interrupt_handler (frame->pc))
53a5351d
JM
1118 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1119 TARGET_PTR_BIT / 8);
c906108c
SS
1120#ifdef FRAME_BASE_BEFORE_SIGTRAMP
1121 else if (frame->signal_handler_caller)
1122 {
1123 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1124 }
1125#endif
1126 else
1127 frame_base = frame->frame;
1128
1129 /* Get frame sizes for the current frame and the frame of the
1130 caller. */
1131 my_framesize = find_proc_framesize (frame->pc);
c5aa993b 1132 caller_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1133
1134 /* If we can't determine the caller's PC, then it's not likely we can
1135 really determine anything meaningful about its frame. We'll consider
1136 this to be stack bottom. */
1137 if (caller_pc == (CORE_ADDR) 0)
1138 return (CORE_ADDR) 0;
1139
c5aa993b 1140 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
c906108c
SS
1141
1142 /* If caller does not have a frame pointer, then its frame
1143 can be found at current_frame - caller_framesize. */
1144 if (caller_framesize != -1)
1145 {
1146 return frame_base - caller_framesize;
1147 }
1148 /* Both caller and callee have frame pointers and are GCC compiled
1149 (SAVE_SP bit in unwind descriptor is on for both functions.
1150 The previous frame pointer is found at the top of the current frame. */
1151 if (caller_framesize == -1 && my_framesize == -1)
1152 {
53a5351d 1153 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1154 }
1155 /* Caller has a frame pointer, but callee does not. This is a little
1156 more difficult as GCC and HP C lay out locals and callee register save
1157 areas very differently.
1158
1159 The previous frame pointer could be in a register, or in one of
1160 several areas on the stack.
1161
1162 Walk from the current frame to the innermost frame examining
1163 unwind descriptors to determine if %r3 ever gets saved into the
1164 stack. If so return whatever value got saved into the stack.
1165 If it was never saved in the stack, then the value in %r3 is still
1166 valid, so use it.
1167
1168 We use information from unwind descriptors to determine if %r3
1169 is saved into the stack (Entry_GR field has this information). */
1170
1171 tmp_frame = frame;
1172 while (tmp_frame)
1173 {
1174 u = find_unwind_entry (tmp_frame->pc);
1175
1176 if (!u)
1177 {
1178 /* We could find this information by examining prologues. I don't
1179 think anyone has actually written any tools (not even "strip")
1180 which leave them out of an executable, so maybe this is a moot
1181 point. */
c5aa993b
JM
1182 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1183 code that doesn't have unwind entries. For example, stepping into
1184 the dynamic linker will give you a PC that has none. Thus, I've
1185 disabled this warning. */
c906108c
SS
1186#if 0
1187 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1188#endif
1189 return (CORE_ADDR) 0;
1190 }
1191
1192 /* Entry_GR specifies the number of callee-saved general registers
c5aa993b 1193 saved in the stack. It starts at %r3, so %r3 would be 1. */
c906108c
SS
1194 if (u->Entry_GR >= 1 || u->Save_SP
1195 || tmp_frame->signal_handler_caller
1196 || pc_in_interrupt_handler (tmp_frame->pc))
1197 break;
1198 else
1199 tmp_frame = tmp_frame->next;
1200 }
1201
1202 if (tmp_frame)
1203 {
1204 /* We may have walked down the chain into a function with a frame
c5aa993b 1205 pointer. */
c906108c
SS
1206 if (u->Save_SP
1207 && !tmp_frame->signal_handler_caller
1208 && !pc_in_interrupt_handler (tmp_frame->pc))
1209 {
53a5351d 1210 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
c906108c
SS
1211 }
1212 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1213 else
c906108c
SS
1214 {
1215 struct frame_saved_regs saved_regs;
1216
1217 /* Sick.
1218
1219 For optimization purposes many kernels don't have the
1220 callee saved registers into the save_state structure upon
1221 entry into the kernel for a syscall; the optimization
1222 is usually turned off if the process is being traced so
1223 that the debugger can get full register state for the
1224 process.
c5aa993b 1225
c906108c
SS
1226 This scheme works well except for two cases:
1227
c5aa993b
JM
1228 * Attaching to a process when the process is in the
1229 kernel performing a system call (debugger can't get
1230 full register state for the inferior process since
1231 the process wasn't being traced when it entered the
1232 system call).
c906108c 1233
c5aa993b
JM
1234 * Register state is not complete if the system call
1235 causes the process to core dump.
c906108c
SS
1236
1237
1238 The following heinous code is an attempt to deal with
1239 the lack of register state in a core dump. It will
1240 fail miserably if the function which performs the
1241 system call has a variable sized stack frame. */
1242
1243 get_frame_saved_regs (tmp_frame, &saved_regs);
1244
1245 /* Abominable hack. */
1246 if (current_target.to_has_execution == 0
1247 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1248 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1249 TARGET_PTR_BIT / 8)
c906108c
SS
1250 & 0x2))
1251 || (saved_regs.regs[FLAGS_REGNUM] == 0
1252 && read_register (FLAGS_REGNUM) & 0x2)))
1253 {
1254 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1255 if (!u)
1256 {
53a5351d
JM
1257 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1258 TARGET_PTR_BIT / 8);
c906108c
SS
1259 }
1260 else
1261 {
1262 return frame_base - (u->Total_frame_size << 3);
1263 }
1264 }
c5aa993b 1265
53a5351d
JM
1266 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1267 TARGET_PTR_BIT / 8);
c906108c
SS
1268 }
1269 }
1270 else
1271 {
1272 struct frame_saved_regs saved_regs;
1273
1274 /* Get the innermost frame. */
1275 tmp_frame = frame;
1276 while (tmp_frame->next != NULL)
1277 tmp_frame = tmp_frame->next;
1278
1279 get_frame_saved_regs (tmp_frame, &saved_regs);
1280 /* Abominable hack. See above. */
1281 if (current_target.to_has_execution == 0
1282 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1283 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1284 TARGET_PTR_BIT / 8)
c906108c
SS
1285 & 0x2))
1286 || (saved_regs.regs[FLAGS_REGNUM] == 0
c5aa993b 1287 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c
SS
1288 {
1289 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1290 if (!u)
1291 {
53a5351d
JM
1292 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1293 TARGET_PTR_BIT / 8);
c906108c 1294 }
c5aa993b
JM
1295 else
1296 {
1297 return frame_base - (u->Total_frame_size << 3);
1298 }
c906108c 1299 }
c5aa993b 1300
c906108c 1301 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1302 holds the value of the previous frame pointer). */
c906108c
SS
1303 return TARGET_READ_FP ();
1304 }
1305}
c906108c 1306\f
c5aa993b 1307
c906108c
SS
1308/* To see if a frame chain is valid, see if the caller looks like it
1309 was compiled with gcc. */
1310
1311int
1312hppa_frame_chain_valid (chain, thisframe)
1313 CORE_ADDR chain;
1314 struct frame_info *thisframe;
1315{
1316 struct minimal_symbol *msym_us;
1317 struct minimal_symbol *msym_start;
1318 struct unwind_table_entry *u, *next_u = NULL;
1319 struct frame_info *next;
1320
1321 if (!chain)
1322 return 0;
1323
1324 u = find_unwind_entry (thisframe->pc);
1325
1326 if (u == NULL)
1327 return 1;
1328
1329 /* We can't just check that the same of msym_us is "_start", because
1330 someone idiotically decided that they were going to make a Ltext_end
1331 symbol with the same address. This Ltext_end symbol is totally
1332 indistinguishable (as nearly as I can tell) from the symbol for a function
1333 which is (legitimately, since it is in the user's namespace)
1334 named Ltext_end, so we can't just ignore it. */
1335 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1336 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1337 if (msym_us
1338 && msym_start
1339 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1340 return 0;
1341
1342 /* Grrrr. Some new idiot decided that they don't want _start for the
1343 PRO configurations; $START$ calls main directly.... Deal with it. */
1344 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1345 if (msym_us
1346 && msym_start
1347 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1348 return 0;
1349
1350 next = get_next_frame (thisframe);
1351 if (next)
1352 next_u = find_unwind_entry (next->pc);
1353
1354 /* If this frame does not save SP, has no stack, isn't a stub,
1355 and doesn't "call" an interrupt routine or signal handler caller,
1356 then its not valid. */
1357 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1358 || (thisframe->next && thisframe->next->signal_handler_caller)
1359 || (next_u && next_u->HP_UX_interrupt_marker))
1360 return 1;
1361
1362 if (pc_in_linker_stub (thisframe->pc))
1363 return 1;
1364
1365 return 0;
1366}
1367
1368/*
1369 These functions deal with saving and restoring register state
1370 around a function call in the inferior. They keep the stack
1371 double-word aligned; eventually, on an hp700, the stack will have
1372 to be aligned to a 64-byte boundary. */
1373
1374void
1375push_dummy_frame (inf_status)
1376 struct inferior_status *inf_status;
1377{
1378 CORE_ADDR sp, pc, pcspace;
1379 register int regnum;
53a5351d 1380 CORE_ADDR int_buffer;
c906108c
SS
1381 double freg_buffer;
1382
1383 /* Oh, what a hack. If we're trying to perform an inferior call
1384 while the inferior is asleep, we have to make sure to clear
1385 the "in system call" bit in the flag register (the call will
1386 start after the syscall returns, so we're no longer in the system
1387 call!) This state is kept in "inf_status", change it there.
1388
1389 We also need a number of horrid hacks to deal with lossage in the
1390 PC queue registers (apparently they're not valid when the in syscall
1391 bit is set). */
1392 pc = target_read_pc (inferior_pid);
1393 int_buffer = read_register (FLAGS_REGNUM);
1394 if (int_buffer & 0x2)
1395 {
1396 unsigned int sid;
1397 int_buffer &= ~0x2;
7a292a7a
SS
1398 write_inferior_status_register (inf_status, 0, int_buffer);
1399 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1400 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1401 sid = (pc >> 30) & 0x3;
1402 if (sid == 0)
1403 pcspace = read_register (SR4_REGNUM);
1404 else
1405 pcspace = read_register (SR4_REGNUM + 4 + sid);
7a292a7a
SS
1406 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1407 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
c906108c
SS
1408 }
1409 else
1410 pcspace = read_register (PCSQ_HEAD_REGNUM);
1411
1412 /* Space for "arguments"; the RP goes in here. */
1413 sp = read_register (SP_REGNUM) + 48;
1414 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1415
1416 /* The 32bit and 64bit ABIs save the return pointer into different
1417 stack slots. */
1418 if (REGISTER_SIZE == 8)
1419 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1420 else
1421 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1422
1423 int_buffer = TARGET_READ_FP ();
53a5351d 1424 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1425
1426 write_register (FP_REGNUM, sp);
1427
53a5351d 1428 sp += 2 * REGISTER_SIZE;
c906108c
SS
1429
1430 for (regnum = 1; regnum < 32; regnum++)
1431 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1432 sp = push_word (sp, read_register (regnum));
1433
53a5351d
JM
1434 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1435 if (REGISTER_SIZE != 8)
1436 sp += 4;
c906108c
SS
1437
1438 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1439 {
c5aa993b
JM
1440 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1441 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1442 }
1443 sp = push_word (sp, read_register (IPSW_REGNUM));
1444 sp = push_word (sp, read_register (SAR_REGNUM));
1445 sp = push_word (sp, pc);
1446 sp = push_word (sp, pcspace);
1447 sp = push_word (sp, pc + 4);
1448 sp = push_word (sp, pcspace);
1449 write_register (SP_REGNUM, sp);
1450}
1451
1452static void
1453find_dummy_frame_regs (frame, frame_saved_regs)
1454 struct frame_info *frame;
1455 struct frame_saved_regs *frame_saved_regs;
1456{
1457 CORE_ADDR fp = frame->frame;
1458 int i;
1459
53a5351d
JM
1460 /* The 32bit and 64bit ABIs save RP into different locations. */
1461 if (REGISTER_SIZE == 8)
1462 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1463 else
1464 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1465
c906108c 1466 frame_saved_regs->regs[FP_REGNUM] = fp;
c906108c 1467
53a5351d
JM
1468 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1469
1470 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
c906108c
SS
1471 {
1472 if (i != FP_REGNUM)
1473 {
1474 frame_saved_regs->regs[i] = fp;
53a5351d 1475 fp += REGISTER_SIZE;
c906108c
SS
1476 }
1477 }
1478
53a5351d
JM
1479 /* This is not necessary or desirable for the 64bit ABI. */
1480 if (REGISTER_SIZE != 8)
1481 fp += 4;
1482
c906108c
SS
1483 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1484 frame_saved_regs->regs[i] = fp;
1485
1486 frame_saved_regs->regs[IPSW_REGNUM] = fp;
53a5351d
JM
1487 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1488 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1489 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1490 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1491 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
c906108c
SS
1492}
1493
1494void
1495hppa_pop_frame ()
1496{
1497 register struct frame_info *frame = get_current_frame ();
1498 register CORE_ADDR fp, npc, target_pc;
1499 register int regnum;
1500 struct frame_saved_regs fsr;
1501 double freg_buffer;
1502
1503 fp = FRAME_FP (frame);
1504 get_frame_saved_regs (frame, &fsr);
1505
1506#ifndef NO_PC_SPACE_QUEUE_RESTORE
c5aa993b 1507 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
c906108c
SS
1508 restore_pc_queue (&fsr);
1509#endif
1510
1511 for (regnum = 31; regnum > 0; regnum--)
1512 if (fsr.regs[regnum])
53a5351d
JM
1513 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1514 REGISTER_SIZE));
c906108c 1515
c5aa993b 1516 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
c906108c
SS
1517 if (fsr.regs[regnum])
1518 {
c5aa993b
JM
1519 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1520 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
c906108c
SS
1521 }
1522
1523 if (fsr.regs[IPSW_REGNUM])
1524 write_register (IPSW_REGNUM,
53a5351d
JM
1525 read_memory_integer (fsr.regs[IPSW_REGNUM],
1526 REGISTER_SIZE));
c906108c
SS
1527
1528 if (fsr.regs[SAR_REGNUM])
1529 write_register (SAR_REGNUM,
53a5351d
JM
1530 read_memory_integer (fsr.regs[SAR_REGNUM],
1531 REGISTER_SIZE));
c906108c
SS
1532
1533 /* If the PC was explicitly saved, then just restore it. */
1534 if (fsr.regs[PCOQ_TAIL_REGNUM])
1535 {
53a5351d
JM
1536 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1537 REGISTER_SIZE);
c906108c
SS
1538 write_register (PCOQ_TAIL_REGNUM, npc);
1539 }
1540 /* Else use the value in %rp to set the new PC. */
c5aa993b 1541 else
c906108c
SS
1542 {
1543 npc = read_register (RP_REGNUM);
1544 write_pc (npc);
1545 }
1546
53a5351d 1547 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
c906108c 1548
c5aa993b 1549 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1550 write_register (SP_REGNUM, fp - 48);
1551 else
1552 write_register (SP_REGNUM, fp);
1553
1554 /* The PC we just restored may be inside a return trampoline. If so
1555 we want to restart the inferior and run it through the trampoline.
1556
1557 Do this by setting a momentary breakpoint at the location the
1558 trampoline returns to.
1559
1560 Don't skip through the trampoline if we're popping a dummy frame. */
1561 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1562 if (target_pc && !fsr.regs[IPSW_REGNUM])
1563 {
1564 struct symtab_and_line sal;
1565 struct breakpoint *breakpoint;
1566 struct cleanup *old_chain;
1567
1568 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1569 for "return_command" will print the frame we returned to. */
c906108c
SS
1570 sal = find_pc_line (target_pc, 0);
1571 sal.pc = target_pc;
1572 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1573 breakpoint->silent = 1;
1574
1575 /* So we can clean things up. */
1576 old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
1577
1578 /* Start up the inferior. */
1579 clear_proceed_status ();
1580 proceed_to_finish = 1;
c5aa993b 1581 proceed ((CORE_ADDR) - 1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1582
1583 /* Perform our cleanups. */
1584 do_cleanups (old_chain);
1585 }
1586 flush_cached_frames ();
1587}
1588
1589/* After returning to a dummy on the stack, restore the instruction
1590 queue space registers. */
1591
1592static int
1593restore_pc_queue (fsr)
1594 struct frame_saved_regs *fsr;
1595{
1596 CORE_ADDR pc = read_pc ();
53a5351d
JM
1597 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1598 TARGET_PTR_BIT / 8);
c906108c
SS
1599 struct target_waitstatus w;
1600 int insn_count;
1601
1602 /* Advance past break instruction in the call dummy. */
1603 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1604 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1605
1606 /* HPUX doesn't let us set the space registers or the space
1607 registers of the PC queue through ptrace. Boo, hiss.
1608 Conveniently, the call dummy has this sequence of instructions
1609 after the break:
c5aa993b
JM
1610 mtsp r21, sr0
1611 ble,n 0(sr0, r22)
1612
c906108c
SS
1613 So, load up the registers and single step until we are in the
1614 right place. */
1615
53a5351d
JM
1616 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1617 REGISTER_SIZE));
c906108c
SS
1618 write_register (22, new_pc);
1619
1620 for (insn_count = 0; insn_count < 3; insn_count++)
1621 {
1622 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1623 merge this into wait_for_inferior (as a special kind of
1624 watchpoint? By setting a breakpoint at the end? Is there
1625 any other choice? Is there *any* way to do this stuff with
1626 ptrace() or some equivalent?). */
c906108c
SS
1627 resume (1, 0);
1628 target_wait (inferior_pid, &w);
1629
1630 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1631 {
1632 stop_signal = w.value.sig;
1633 terminal_ours_for_output ();
1634 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1635 target_signal_to_name (stop_signal),
1636 target_signal_to_string (stop_signal));
c5aa993b
JM
1637 gdb_flush (gdb_stdout);
1638 return 0;
1639 }
c906108c
SS
1640 }
1641 target_terminal_ours ();
1642 target_fetch_registers (-1);
1643 return 1;
1644}
1645
53a5351d
JM
1646/* This function pushes a stack frame with arguments as part of the
1647 inferior function calling mechanism.
c906108c 1648
53a5351d
JM
1649 For PAs the stack always grows to higher addresses. However the arguments
1650 may grow to either higher or lower addresses depending on which ABI is
1651 currently in use.
c906108c 1652
53a5351d
JM
1653 We simply allocate the appropriate amount of stack space and put
1654 arguments into their proper slots. The call dummy code will copy
1655 arguments into registers as needed by the ABI.
c906108c 1656
53a5351d
JM
1657 Note for the PA64 ABI we load up the argument pointer since the caller
1658 must provide the argument pointer to the callee. */
1659
c906108c
SS
1660CORE_ADDR
1661hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1662 int nargs;
1663 value_ptr *args;
1664 CORE_ADDR sp;
1665 int struct_return;
1666 CORE_ADDR struct_addr;
1667{
1668 /* array of arguments' offsets */
c5aa993b 1669 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1670
1671 /* array of arguments' lengths: real lengths in bytes, not aligned to
1672 word size */
c5aa993b 1673 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1674
53a5351d
JM
1675 /* The value of SP as it was passed into this function after
1676 aligning. */
1677 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1678
53a5351d
JM
1679 /* The number of stack bytes occupied by the current argument. */
1680 int bytes_reserved;
1681
1682 /* The total number of bytes reserved for the arguments. */
1683 int cum_bytes_reserved = 0;
c906108c 1684
53a5351d
JM
1685 /* Similarly, but aligned. */
1686 int cum_bytes_aligned = 0;
1687 int i;
c5aa993b 1688
53a5351d 1689 /* Iterate over each argument provided by the user. */
c906108c
SS
1690 for (i = 0; i < nargs; i++)
1691 {
c906108c
SS
1692 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1693
53a5351d
JM
1694 /* Align the size of the argument to the word size for this
1695 target. */
1696 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
c906108c 1697
53a5351d 1698#ifdef ARGS_GROW_DOWNWARD
c906108c 1699 offset[i] = cum_bytes_reserved + lengths[i];
53a5351d
JM
1700#else
1701 /* If the arguments grow towards lower addresses, then we want
1702 offset[i] to point to the start of the argument rather than
1703 the end of the argument. */
1704 offset[i] = cum_bytes_reserved;
1705
1706 offset[i] += (lengths[i] < REGISTER_SIZE
1707 ? REGISTER_SIZE - lengths[i] : 0);
1708#endif
c906108c 1709
53a5351d
JM
1710 /* If the argument is a double word argument, then it needs to be
1711 double word aligned.
1712
1713 ?!? I do not think this code is correct when !ARGS_GROW_DOWNWAR. */
1714 if ((bytes_reserved == 2 * REGISTER_SIZE)
1715 && (offset[i] % 2 * REGISTER_SIZE))
c5aa993b
JM
1716 {
1717 int new_offset = 0;
53a5351d
JM
1718 /* BYTES_RESERVED is already aligned to the word, so we put
1719 the argument at one word more down the stack.
1720
1721 This will leave one empty word on the stack, and one unused
1722 register as mandated by the ABI. */
1723 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1724 & -(2 * REGISTER_SIZE));
1725
1726 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
c5aa993b 1727 {
53a5351d
JM
1728 bytes_reserved += REGISTER_SIZE;
1729 offset[i] += REGISTER_SIZE;
c5aa993b
JM
1730 }
1731 }
c906108c
SS
1732
1733 cum_bytes_reserved += bytes_reserved;
1734
1735 }
1736
53a5351d
JM
1737 /* CUM_BYTES_RESERVED already accounts for all the arguments
1738 passed by the user. However, the ABIs mandate minimum stack space
1739 allocations for outgoing arguments.
1740
1741 The ABIs also mandate minimum stack alignments which we must
1742 preserve. */
c906108c 1743 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
1744 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1745
1746 /* Now write each of the args at the proper offset down the stack.
1747
1748 The two ABIs write arguments in different directions using different
1749 starting points. What fun.
c906108c 1750
53a5351d
JM
1751 ?!? We need to promote values to a full register instead of skipping
1752 words in the stack. */
1753#ifndef ARGS_GROW_DOWNWARD
1754 for (i = 0; i < nargs; i++)
1755 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1756#else
c906108c
SS
1757 for (i = 0; i < nargs; i++)
1758 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
53a5351d 1759#endif
c906108c 1760
53a5351d
JM
1761 /* If a structure has to be returned, set up register 28 to hold its
1762 address */
c906108c
SS
1763 if (struct_return)
1764 write_register (28, struct_addr);
1765
53a5351d
JM
1766#ifndef ARGS_GROW_DOWNWARD
1767 /* For the PA64 we must pass a pointer to the outgoing argument list.
1768 The ABI mandates that the pointer should point to the first byte of
1769 storage beyond the register flushback area.
1770
1771 However, the call dummy expects the outgoing argument pointer to
1772 be passed in register %r4. */
1773 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1774
1775 /* ?!? This needs further work. We need to set up the global data
1776 pointer for this procedure. This assumes the same global pointer
1777 for every procedure. The call dummy expects the dp value to
1778 be passed in register %r6. */
1779 write_register (6, read_register (27));
1780#endif
1781
1782 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
1783 return sp + 32;
1784}
1785
1786
1787/* elz: this function returns a value which is built looking at the given address.
1788 It is called from call_function_by_hand, in case we need to return a
1789 value which is larger than 64 bits, and it is stored in the stack rather than
1790 in the registers r28 and r29 or fr4.
1791 This function does the same stuff as value_being_returned in values.c, but
1792 gets the value from the stack rather than from the buffer where all the
1793 registers were saved when the function called completed. */
1794value_ptr
c5aa993b 1795hppa_value_returned_from_stack (valtype, addr)
c906108c
SS
1796 register struct type *valtype;
1797 CORE_ADDR addr;
1798{
1799 register value_ptr val;
1800
1801 val = allocate_value (valtype);
1802 CHECK_TYPEDEF (valtype);
c5aa993b 1803 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1804
1805 return val;
1806}
1807
1808
1809
1810/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1811 This function calls shl_findsym, indirectly through a
1812 call to __d_shl_get. __d_shl_get is in end.c, which is always
1813 linked in by the hp compilers/linkers.
1814 The call to shl_findsym cannot be made directly because it needs
1815 to be active in target address space.
1816 inputs: - minimal symbol pointer for the function we want to look up
1817 - address in target space of the descriptor for the library
1818 where we want to look the symbol up.
1819 This address is retrieved using the
1820 som_solib_get_solib_by_pc function (somsolib.c).
1821 output: - real address in the library of the function.
1822 note: the handle can be null, in which case shl_findsym will look for
1823 the symbol in all the loaded shared libraries.
1824 files to look at if you need reference on this stuff:
1825 dld.c, dld_shl_findsym.c
1826 end.c
1827 man entry for shl_findsym */
c906108c
SS
1828
1829CORE_ADDR
c5aa993b
JM
1830find_stub_with_shl_get (function, handle)
1831 struct minimal_symbol *function;
1832 CORE_ADDR handle;
c906108c 1833{
c5aa993b
JM
1834 struct symbol *get_sym, *symbol2;
1835 struct minimal_symbol *buff_minsym, *msymbol;
1836 struct type *ftype;
1837 value_ptr *args;
1838 value_ptr funcval, val;
1839
1840 int x, namelen, err_value, tmp = -1;
1841 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1842 CORE_ADDR stub_addr;
1843
1844
1845 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1846 funcval = find_function_in_inferior ("__d_shl_get");
1847 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1848 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1849 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1850 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1851 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1852 namelen = strlen (SYMBOL_NAME (function));
1853 value_return_addr = endo_buff_addr + namelen;
1854 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1855
1856 /* do alignment */
1857 if ((x = value_return_addr % 64) != 0)
1858 value_return_addr = value_return_addr + 64 - x;
1859
1860 errno_return_addr = value_return_addr + 64;
1861
1862
1863 /* set up stuff needed by __d_shl_get in buffer in end.o */
1864
1865 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1866
1867 target_write_memory (value_return_addr, (char *) &tmp, 4);
1868
1869 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1870
1871 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1872 (char *) &handle, 4);
1873
1874 /* now prepare the arguments for the call */
1875
1876 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1877 args[1] = value_from_longest (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1878 args[2] = value_from_longest (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1879 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1880 args[4] = value_from_longest (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1881 args[5] = value_from_longest (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1882
1883 /* now call the function */
1884
1885 val = call_function_by_hand (funcval, 6, args);
1886
1887 /* now get the results */
1888
1889 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1890
1891 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1892 if (stub_addr <= 0)
1893 error ("call to __d_shl_get failed, error code is %d", err_value); /* purecov: deadcode */
1894
1895 return (stub_addr);
c906108c
SS
1896}
1897
c5aa993b 1898/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd
JM
1899static int
1900cover_find_stub_with_shl_get (PTR args_untyped)
c906108c 1901{
a0b3c4fd
JM
1902 args_for_find_stub *args = args_untyped;
1903 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1904 return 0;
c906108c
SS
1905}
1906
c906108c
SS
1907/* Insert the specified number of args and function address
1908 into a call sequence of the above form stored at DUMMYNAME.
1909
1910 On the hppa we need to call the stack dummy through $$dyncall.
1911 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1912 real_pc, which is the location where gdb should start up the
cce74817
JM
1913 inferior to do the function call.
1914
1915 This has to work across several versions of hpux, bsd, osf1. It has to
1916 work regardless of what compiler was used to build the inferior program.
1917 It should work regardless of whether or not end.o is available. It has
1918 to work even if gdb can not call into the dynamic loader in the inferior
1919 to query it for symbol names and addresses.
1920
1921 Yes, all those cases should work. Luckily code exists to handle most
1922 of them. The complexity is in selecting exactly what scheme should
1923 be used to perform the inferior call.
1924
1925 At the current time this routine is known not to handle cases where
1926 the program was linked with HP's compiler without including end.o.
1927
1928 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
1929
1930CORE_ADDR
1931hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1932 char *dummy;
1933 CORE_ADDR pc;
1934 CORE_ADDR fun;
1935 int nargs;
1936 value_ptr *args;
1937 struct type *type;
1938 int gcc_p;
1939{
1940 CORE_ADDR dyncall_addr;
1941 struct minimal_symbol *msymbol;
1942 struct minimal_symbol *trampoline;
1943 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
1944 struct unwind_table_entry *u = NULL;
1945 CORE_ADDR new_stub = 0;
1946 CORE_ADDR solib_handle = 0;
1947
1948 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c5aa993b 1949 passed an import stub, not a PLABEL. It is also necessary to set %r19
cce74817 1950 (the PIC register) before performing the call.
c906108c 1951
cce74817
JM
1952 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
1953 are calling the target directly. When using __d_plt_call we want to
1954 use a PLABEL instead of an import stub. */
1955 int using_gcc_plt_call = 1;
1956
53a5351d
JM
1957#ifdef GDB_TARGET_IS_HPPA_20W
1958 /* We currently use completely different code for the PA2.0W inferior
1959 function call sequences. This needs to be cleaned up. */
1960 {
1961 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
1962 struct target_waitstatus w;
1963 int inst1, inst2;
1964 char buf[4];
1965 int status;
1966 struct objfile *objfile;
1967
1968 /* We can not modify the PC space queues directly, so we start
1969 up the inferior and execute a couple instructions to set the
1970 space queues so that they point to the call dummy in the stack. */
1971 pcsqh = read_register (PCSQ_HEAD_REGNUM);
1972 sr5 = read_register (SR5_REGNUM);
1973 if (1)
1974 {
1975 pcoqh = read_register (PCOQ_HEAD_REGNUM);
1976 pcoqt = read_register (PCOQ_TAIL_REGNUM);
1977 if (target_read_memory (pcoqh, buf, 4) != 0)
1978 error ("Couldn't modify space queue\n");
1979 inst1 = extract_unsigned_integer (buf, 4);
1980
1981 if (target_read_memory (pcoqt, buf, 4) != 0)
1982 error ("Couldn't modify space queue\n");
1983 inst2 = extract_unsigned_integer (buf, 4);
1984
1985 /* BVE (r1) */
1986 *((int *) buf) = 0xe820d000;
1987 if (target_write_memory (pcoqh, buf, 4) != 0)
1988 error ("Couldn't modify space queue\n");
1989
1990 /* NOP */
1991 *((int *) buf) = 0x08000240;
1992 if (target_write_memory (pcoqt, buf, 4) != 0)
1993 {
1994 *((int *) buf) = inst1;
1995 target_write_memory (pcoqh, buf, 4);
1996 error ("Couldn't modify space queue\n");
1997 }
1998
1999 write_register (1, pc);
2000
2001 /* Single step twice, the BVE instruction will set the space queue
2002 such that it points to the PC value written immediately above
2003 (ie the call dummy). */
2004 resume (1, 0);
2005 target_wait (inferior_pid, &w);
2006 resume (1, 0);
2007 target_wait (inferior_pid, &w);
2008
2009 /* Restore the two instructions at the old PC locations. */
2010 *((int *) buf) = inst1;
2011 target_write_memory (pcoqh, buf, 4);
2012 *((int *) buf) = inst2;
2013 target_write_memory (pcoqt, buf, 4);
2014 }
2015
2016 /* The call dummy wants the ultimate destination address initially
2017 in register %r5. */
2018 write_register (5, fun);
2019
2020 /* We need to see if this objfile has a different DP value than our
2021 own (it could be a shared library for example. */
2022 ALL_OBJFILES (objfile)
2023 {
2024 struct obj_section *s;
2025 obj_private_data_t *obj_private;
2026
2027 /* See if FUN is in any section within this shared library. */
2028 for (s = objfile->sections; s < objfile->sections_end; s++)
2029 if (s->addr <= fun && fun < s->endaddr)
2030 break;
2031
2032 if (s >= objfile->sections_end)
2033 continue;
2034
2035 obj_private = (obj_private_data_t *) objfile->obj_private;
2036
2037 /* The DP value may be different for each objfile. But within an
2038 objfile each function uses the same dp value. Thus we do not need
2039 to grope around the opd section looking for dp values.
2040
2041 ?!? This is not strictly correct since we may be in a shared library
2042 and want to call back into the main program. To make that case
2043 work correctly we need to set obj_private->dp for the main program's
2044 objfile, then remove this conditional. */
2045 if (obj_private->dp)
2046 write_register (27, obj_private->dp);
2047 break;
2048 }
2049 return pc;
2050 }
2051#endif
2052
2053#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2054 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2055 __gcc_plt_call works for any number of arguments. */
c906108c 2056 trampoline = NULL;
cce74817
JM
2057 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2058 using_gcc_plt_call = 0;
2059
c906108c
SS
2060 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2061 if (msymbol == NULL)
cce74817 2062 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2063
2064 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2065
2066 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2067 its real address and the value of its GOT/DP if we plan to
2068 call the routine via gcc_plt_call. */
2069 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2070 {
2071 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2072 at *(fun+4). Note the call dummy is *NOT* allowed to
2073 trash %r19 before calling the target function. */
53a5351d
JM
2074 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2075 REGISTER_SIZE));
c906108c
SS
2076
2077 /* Now get the real address for the function we are calling, it's
c5aa993b 2078 at *fun. */
53a5351d
JM
2079 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2080 TARGET_PTR_BIT / 8);
c906108c
SS
2081 }
2082 else
2083 {
2084
2085#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2086 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2087 a PLABEL. When using gcc's PLT call routine we must call an import
2088 stub rather than the export stub or real function for lazy binding
2089 to work correctly
cce74817 2090
c5aa993b
JM
2091 /* If we are using the gcc PLT call routine, then we need to
2092 get the import stub for the target function. */
cce74817 2093 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2094 {
2095 struct objfile *objfile;
2096 struct minimal_symbol *funsymbol, *stub_symbol;
2097 CORE_ADDR newfun = 0;
2098
2099 funsymbol = lookup_minimal_symbol_by_pc (fun);
2100 if (!funsymbol)
2101 error ("Unable to find minimal symbol for target fucntion.\n");
2102
2103 /* Search all the object files for an import symbol with the
2104 right name. */
2105 ALL_OBJFILES (objfile)
c5aa993b
JM
2106 {
2107 stub_symbol
2108 = lookup_minimal_symbol_solib_trampoline
2109 (SYMBOL_NAME (funsymbol), NULL, objfile);
2110
2111 if (!stub_symbol)
2112 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2113 NULL, objfile);
2114
2115 /* Found a symbol with the right name. */
2116 if (stub_symbol)
2117 {
2118 struct unwind_table_entry *u;
2119 /* It must be a shared library trampoline. */
2120 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2121 continue;
2122
2123 /* It must also be an import stub. */
2124 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2125 if (!u
2126 || (u->stub_unwind.stub_type != IMPORT)
2127 && u->stub_unwind.stub_type != IMPORT_SHLIB)
2128 continue;
2129
2130 /* OK. Looks like the correct import stub. */
2131 newfun = SYMBOL_VALUE (stub_symbol);
2132 fun = newfun;
2133 }
2134 }
cce74817
JM
2135
2136 /* Ouch. We did not find an import stub. Make an attempt to
2137 do the right thing instead of just croaking. Most of the
2138 time this will actually work. */
c906108c
SS
2139 if (newfun == 0)
2140 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2141
2142 u = find_unwind_entry (fun);
c5aa993b 2143 if (u
cce74817
JM
2144 && (u->stub_unwind.stub_type == IMPORT
2145 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2146 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2147
2148 /* If we found the import stub in the shared library, then we have
2149 to set %r19 before we call the stub. */
2150 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2151 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2152 }
c906108c
SS
2153#endif
2154 }
2155
cce74817
JM
2156 /* If we are calling into another load module then have sr4export call the
2157 magic __d_plt_call routine which is linked in from end.o.
c906108c 2158
cce74817
JM
2159 You can't use _sr4export to make the call as the value in sp-24 will get
2160 fried and you end up returning to the wrong location. You can't call the
2161 target as the code to bind the PLT entry to a function can't return to a
2162 stack address.
2163
2164 Also, query the dynamic linker in the inferior to provide a suitable
2165 PLABEL for the target function. */
c5aa993b 2166 if (!using_gcc_plt_call)
c906108c
SS
2167 {
2168 CORE_ADDR new_fun;
2169
cce74817 2170 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2171 handle we can query the shared library for a PLABEL. */
cce74817 2172 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2173
cce74817 2174 if (solib_handle)
c906108c 2175 {
cce74817 2176 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2177
cce74817
JM
2178 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2179
2180 if (trampoline == NULL)
2181 {
2182 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2183 }
2184
2185 /* This is where sr4export will jump to. */
2186 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2187
2188 /* If the function is in a shared library, then call __d_shl_get to
2189 get a PLABEL for the target function. */
2190 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2191
c5aa993b 2192 if (new_stub == 0)
cce74817 2193 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
c906108c
SS
2194
2195 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2196 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2197 (struct objfile *) NULL);
c906108c 2198
cce74817
JM
2199 if (msymbol == NULL)
2200 error ("Can't find an address for __shlib_funcptr");
2201 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2202 (char *) &new_stub, 4);
c906108c
SS
2203
2204 /* We want sr4export to call __d_plt_call, so we claim it is
2205 the final target. Clear trampoline. */
cce74817
JM
2206 fun = new_fun;
2207 trampoline = NULL;
c906108c
SS
2208 }
2209 }
2210
2211 /* Store upper 21 bits of function address into ldil. fun will either be
2212 the final target (most cases) or __d_plt_call when calling into a shared
2213 library and __gcc_plt_call is not available. */
2214 store_unsigned_integer
2215 (&dummy[FUNC_LDIL_OFFSET],
2216 INSTRUCTION_SIZE,
2217 deposit_21 (fun >> 11,
2218 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2219 INSTRUCTION_SIZE)));
2220
2221 /* Store lower 11 bits of function address into ldo */
2222 store_unsigned_integer
2223 (&dummy[FUNC_LDO_OFFSET],
2224 INSTRUCTION_SIZE,
2225 deposit_14 (fun & MASK_11,
2226 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2227 INSTRUCTION_SIZE)));
2228#ifdef SR4EXPORT_LDIL_OFFSET
2229
2230 {
2231 CORE_ADDR trampoline_addr;
2232
2233 /* We may still need sr4export's address too. */
2234
2235 if (trampoline == NULL)
2236 {
2237 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2238 if (msymbol == NULL)
cce74817 2239 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2240
2241 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2242 }
2243 else
2244 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2245
2246
2247 /* Store upper 21 bits of trampoline's address into ldil */
2248 store_unsigned_integer
2249 (&dummy[SR4EXPORT_LDIL_OFFSET],
2250 INSTRUCTION_SIZE,
2251 deposit_21 (trampoline_addr >> 11,
2252 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2253 INSTRUCTION_SIZE)));
2254
2255 /* Store lower 11 bits of trampoline's address into ldo */
2256 store_unsigned_integer
2257 (&dummy[SR4EXPORT_LDO_OFFSET],
2258 INSTRUCTION_SIZE,
2259 deposit_14 (trampoline_addr & MASK_11,
2260 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2261 INSTRUCTION_SIZE)));
2262 }
2263#endif
2264
2265 write_register (22, pc);
2266
2267 /* If we are in a syscall, then we should call the stack dummy
2268 directly. $$dyncall is not needed as the kernel sets up the
2269 space id registers properly based on the value in %r31. In
2270 fact calling $$dyncall will not work because the value in %r22
2271 will be clobbered on the syscall exit path.
2272
2273 Similarly if the current PC is in a shared library. Note however,
2274 this scheme won't work if the shared library isn't mapped into
2275 the same space as the stack. */
2276 if (flags & 2)
2277 return pc;
2278#ifndef GDB_TARGET_IS_PA_ELF
2279 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
2280 return pc;
2281#endif
2282 else
2283 return dyncall_addr;
53a5351d 2284#endif
c906108c
SS
2285}
2286
2287
2288
2289
2290/* If the pid is in a syscall, then the FP register is not readable.
2291 We'll return zero in that case, rather than attempting to read it
2292 and cause a warning. */
2293CORE_ADDR
2294target_read_fp (pid)
c5aa993b 2295 int pid;
c906108c
SS
2296{
2297 int flags = read_register (FLAGS_REGNUM);
2298
c5aa993b
JM
2299 if (flags & 2)
2300 {
2301 return (CORE_ADDR) 0;
2302 }
c906108c
SS
2303
2304 /* This is the only site that may directly read_register () the FP
2305 register. All others must use TARGET_READ_FP (). */
2306 return read_register (FP_REGNUM);
2307}
2308
2309
2310/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2311 bits. */
2312
2313CORE_ADDR
2314target_read_pc (pid)
2315 int pid;
2316{
2317 int flags = read_register_pid (FLAGS_REGNUM, pid);
2318
2319 /* The following test does not belong here. It is OS-specific, and belongs
2320 in native code. */
2321 /* Test SS_INSYSCALL */
2322 if (flags & 2)
2323 return read_register_pid (31, pid) & ~0x3;
2324
2325 return read_register_pid (PC_REGNUM, pid) & ~0x3;
2326}
2327
2328/* Write out the PC. If currently in a syscall, then also write the new
2329 PC value into %r31. */
2330
2331void
2332target_write_pc (v, pid)
2333 CORE_ADDR v;
2334 int pid;
2335{
2336 int flags = read_register_pid (FLAGS_REGNUM, pid);
2337
2338 /* The following test does not belong here. It is OS-specific, and belongs
2339 in native code. */
2340 /* If in a syscall, then set %r31. Also make sure to get the
2341 privilege bits set correctly. */
2342 /* Test SS_INSYSCALL */
2343 if (flags & 2)
2344 write_register_pid (31, v | 0x3, pid);
2345
2346 write_register_pid (PC_REGNUM, v, pid);
2347 write_register_pid (NPC_REGNUM, v + 4, pid);
2348}
2349
2350/* return the alignment of a type in bytes. Structures have the maximum
2351 alignment required by their fields. */
2352
2353static int
2354hppa_alignof (type)
2355 struct type *type;
2356{
2357 int max_align, align, i;
2358 CHECK_TYPEDEF (type);
2359 switch (TYPE_CODE (type))
2360 {
2361 case TYPE_CODE_PTR:
2362 case TYPE_CODE_INT:
2363 case TYPE_CODE_FLT:
2364 return TYPE_LENGTH (type);
2365 case TYPE_CODE_ARRAY:
2366 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2367 case TYPE_CODE_STRUCT:
2368 case TYPE_CODE_UNION:
2369 max_align = 1;
2370 for (i = 0; i < TYPE_NFIELDS (type); i++)
2371 {
2372 /* Bit fields have no real alignment. */
2373 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2374 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2375 {
2376 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2377 max_align = max (max_align, align);
2378 }
2379 }
2380 return max_align;
2381 default:
2382 return 4;
2383 }
2384}
2385
2386/* Print the register regnum, or all registers if regnum is -1 */
2387
2388void
2389pa_do_registers_info (regnum, fpregs)
2390 int regnum;
2391 int fpregs;
2392{
c5aa993b 2393 char raw_regs[REGISTER_BYTES];
c906108c
SS
2394 int i;
2395
2396 /* Make a copy of gdb's save area (may cause actual
2397 reads from the target). */
2398 for (i = 0; i < NUM_REGS; i++)
2399 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2400
2401 if (regnum == -1)
2402 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2403 else if (regnum < FP4_REGNUM)
2404 {
2405 long reg_val[2];
2406
2407 /* Why is the value not passed through "extract_signed_integer"
2408 as in "pa_print_registers" below? */
2409 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2410
2411 if (!is_pa_2)
2412 {
2413 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2414 }
c906108c 2415 else
c5aa993b
JM
2416 {
2417 /* Fancy % formats to prevent leading zeros. */
2418 if (reg_val[0] == 0)
2419 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2420 else
2421 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2422 reg_val[0], reg_val[1]);
2423 }
c906108c 2424 }
c906108c 2425 else
c5aa993b
JM
2426 /* Note that real floating point values only start at
2427 FP4_REGNUM. FP0 and up are just status and error
2428 registers, which have integral (bit) values. */
c906108c
SS
2429 pa_print_fp_reg (regnum);
2430}
2431
2432/********** new function ********************/
2433void
2434pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
2435 int regnum;
2436 int fpregs;
2437 GDB_FILE *stream;
2438 enum precision_type precision;
2439{
c5aa993b 2440 char raw_regs[REGISTER_BYTES];
c906108c
SS
2441 int i;
2442
2443 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2444 reads from the target). */
c906108c
SS
2445 for (i = 0; i < NUM_REGS; i++)
2446 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2447
2448 if (regnum == -1)
2449 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2450
c5aa993b
JM
2451 else if (regnum < FP4_REGNUM)
2452 {
2453 long reg_val[2];
2454
2455 /* Why is the value not passed through "extract_signed_integer"
2456 as in "pa_print_registers" below? */
2457 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2458
c5aa993b
JM
2459 if (!is_pa_2)
2460 {
2461 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2462 }
c906108c 2463 else
c5aa993b
JM
2464 {
2465 /* Fancy % formats to prevent leading zeros. */
2466 if (reg_val[0] == 0)
2467 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2468 reg_val[1]);
2469 else
2470 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2471 reg_val[0], reg_val[1]);
2472 }
c906108c 2473 }
c906108c 2474 else
c5aa993b
JM
2475 /* Note that real floating point values only start at
2476 FP4_REGNUM. FP0 and up are just status and error
2477 registers, which have integral (bit) values. */
c906108c
SS
2478 pa_strcat_fp_reg (regnum, stream, precision);
2479}
2480
2481/* If this is a PA2.0 machine, fetch the real 64-bit register
2482 value. Otherwise use the info from gdb's saved register area.
2483
2484 Note that reg_val is really expected to be an array of longs,
2485 with two elements. */
2486static void
c5aa993b 2487pa_register_look_aside (raw_regs, regnum, raw_val)
c906108c 2488 char *raw_regs;
c5aa993b 2489 int regnum;
c906108c
SS
2490 long *raw_val;
2491{
c5aa993b 2492 static int know_which = 0; /* False */
c906108c 2493
c5aa993b 2494 int regaddr;
c906108c
SS
2495 unsigned int offset;
2496 register int i;
c5aa993b
JM
2497 int start;
2498
2499
c906108c
SS
2500 char buf[MAX_REGISTER_RAW_SIZE];
2501 long long reg_val;
2502
c5aa993b
JM
2503 if (!know_which)
2504 {
2505 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2506 {
2507 is_pa_2 = (1 == 1);
2508 }
2509
2510 know_which = 1; /* True */
2511 }
c906108c
SS
2512
2513 raw_val[0] = 0;
2514 raw_val[1] = 0;
2515
c5aa993b
JM
2516 if (!is_pa_2)
2517 {
2518 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2519 return;
c5aa993b 2520 }
c906108c
SS
2521
2522 /* Code below copied from hppah-nat.c, with fixes for wide
2523 registers, using different area of save_state, etc. */
2524 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2525 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2526 {
c906108c 2527 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2528 offset = U_REGS_OFFSET;
2529 regaddr = register_addr (regnum, offset);
2530 start = 1;
2531 }
2532 else
2533 {
c906108c
SS
2534 /* Use wide regs area, and calculate registers as 8 bytes wide.
2535
2536 We'd like to do this, but current version of "C" doesn't
2537 permit "offsetof":
2538
c5aa993b 2539 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2540
2541 Note that to avoid "C" doing typed pointer arithmetic, we
2542 have to cast away the type in our offset calculation:
2543 otherwise we get an offset of 1! */
2544
7a292a7a 2545 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2546 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2547 so to avoid compile-time warnings, we only compile this for
2548 PA 2.0 processors. This control path should only be followed
2549 if we're debugging a PA 2.0 processor, so this should not cause
2550 problems. */
2551
c906108c
SS
2552 /* #if the following code out so that this file can still be
2553 compiled on older HPUX boxes (< 10.20) which don't have
2554 this structure/structure member. */
2555#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2556 save_state_t temp;
2557
2558 offset = ((int) &temp.ss_wide) - ((int) &temp);
2559 regaddr = offset + regnum * 8;
c5aa993b 2560 start = 0;
c906108c 2561#endif
c5aa993b
JM
2562 }
2563
2564 for (i = start; i < 2; i++)
c906108c
SS
2565 {
2566 errno = 0;
2567 raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
c5aa993b 2568 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2569 if (errno != 0)
2570 {
2571 /* Warning, not error, in case we are attached; sometimes the
2572 kernel doesn't let us at the registers. */
2573 char *err = safe_strerror (errno);
2574 char *msg = alloca (strlen (err) + 128);
2575 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2576 warning (msg);
2577 goto error_exit;
2578 }
2579
2580 regaddr += sizeof (long);
2581 }
c5aa993b 2582
c906108c 2583 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2584 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2585
2586error_exit:
2587 ;
2588}
2589
2590/* "Info all-reg" command */
c5aa993b 2591
c906108c
SS
2592static void
2593pa_print_registers (raw_regs, regnum, fpregs)
2594 char *raw_regs;
2595 int regnum;
2596 int fpregs;
2597{
c5aa993b 2598 int i, j;
adf40b2e
JM
2599 /* Alas, we are compiled so that "long long" is 32 bits */
2600 long raw_val[2];
c906108c 2601 long long_val;
a0b3c4fd 2602 int rows = 48, columns = 2;
c906108c 2603
adf40b2e 2604 for (i = 0; i < rows; i++)
c906108c 2605 {
adf40b2e 2606 for (j = 0; j < columns; j++)
c906108c 2607 {
adf40b2e
JM
2608 /* We display registers in column-major order. */
2609 int regnum = i + j * rows;
2610
c5aa993b
JM
2611 /* Q: Why is the value passed through "extract_signed_integer",
2612 while above, in "pa_do_registers_info" it isn't?
2613 A: ? */
adf40b2e 2614 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2615
2616 /* Even fancier % formats to prevent leading zeros
2617 and still maintain the output in columns. */
2618 if (!is_pa_2)
2619 {
2620 /* Being big-endian, on this machine the low bits
2621 (the ones we want to look at) are in the second longword. */
2622 long_val = extract_signed_integer (&raw_val[1], 4);
a0b3c4fd 2623 printf_filtered ("%10.10s: %8x ",
adf40b2e 2624 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2625 }
2626 else
2627 {
2628 /* raw_val = extract_signed_integer(&raw_val, 8); */
2629 if (raw_val[0] == 0)
a0b3c4fd 2630 printf_filtered ("%10.10s: %8x ",
adf40b2e 2631 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2632 else
a0b3c4fd
JM
2633 printf_filtered ("%10.10s: %8x%8.8x ",
2634 REGISTER_NAME (regnum),
c5aa993b
JM
2635 raw_val[0], raw_val[1]);
2636 }
c906108c
SS
2637 }
2638 printf_unfiltered ("\n");
2639 }
c5aa993b 2640
c906108c 2641 if (fpregs)
c5aa993b 2642 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2643 pa_print_fp_reg (i);
2644}
2645
c5aa993b 2646/************* new function ******************/
c906108c
SS
2647static void
2648pa_strcat_registers (raw_regs, regnum, fpregs, stream)
2649 char *raw_regs;
2650 int regnum;
2651 int fpregs;
2652 GDB_FILE *stream;
2653{
c5aa993b
JM
2654 int i, j;
2655 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2656 long long_val;
2657 enum precision_type precision;
2658
2659 precision = unspecified_precision;
2660
2661 for (i = 0; i < 18; i++)
2662 {
2663 for (j = 0; j < 4; j++)
2664 {
c5aa993b
JM
2665 /* Q: Why is the value passed through "extract_signed_integer",
2666 while above, in "pa_do_registers_info" it isn't?
2667 A: ? */
2668 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2669
2670 /* Even fancier % formats to prevent leading zeros
2671 and still maintain the output in columns. */
2672 if (!is_pa_2)
2673 {
2674 /* Being big-endian, on this machine the low bits
2675 (the ones we want to look at) are in the second longword. */
2676 long_val = extract_signed_integer (&raw_val[1], 4);
2677 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2678 }
2679 else
2680 {
2681 /* raw_val = extract_signed_integer(&raw_val, 8); */
2682 if (raw_val[0] == 0)
2683 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2684 raw_val[1]);
2685 else
2686 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2687 raw_val[0], raw_val[1]);
2688 }
c906108c
SS
2689 }
2690 fprintf_unfiltered (stream, "\n");
2691 }
c5aa993b 2692
c906108c 2693 if (fpregs)
c5aa993b 2694 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2695 pa_strcat_fp_reg (i, stream, precision);
2696}
2697
2698static void
2699pa_print_fp_reg (i)
2700 int i;
2701{
2702 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2703 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2704
2705 /* Get 32bits of data. */
2706 read_relative_register_raw_bytes (i, raw_buffer);
2707
2708 /* Put it in the buffer. No conversions are ever necessary. */
2709 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2710
2711 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2712 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2713 fputs_filtered ("(single precision) ", gdb_stdout);
2714
2715 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2716 1, 0, Val_pretty_default);
2717 printf_filtered ("\n");
2718
2719 /* If "i" is even, then this register can also be a double-precision
2720 FP register. Dump it out as such. */
2721 if ((i % 2) == 0)
2722 {
2723 /* Get the data in raw format for the 2nd half. */
2724 read_relative_register_raw_bytes (i + 1, raw_buffer);
2725
2726 /* Copy it into the appropriate part of the virtual buffer. */
2727 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2728 REGISTER_RAW_SIZE (i));
2729
2730 /* Dump it as a double. */
2731 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2732 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2733 fputs_filtered ("(double precision) ", gdb_stdout);
2734
2735 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2736 1, 0, Val_pretty_default);
2737 printf_filtered ("\n");
2738 }
2739}
2740
2741/*************** new function ***********************/
2742static void
2743pa_strcat_fp_reg (i, stream, precision)
2744 int i;
2745 GDB_FILE *stream;
2746 enum precision_type precision;
2747{
2748 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2749 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2750
2751 fputs_filtered (REGISTER_NAME (i), stream);
2752 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2753
2754 /* Get 32bits of data. */
2755 read_relative_register_raw_bytes (i, raw_buffer);
2756
2757 /* Put it in the buffer. No conversions are ever necessary. */
2758 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2759
2760 if (precision == double_precision && (i % 2) == 0)
2761 {
2762
c5aa993b
JM
2763 char raw_buf[MAX_REGISTER_RAW_SIZE];
2764
2765 /* Get the data in raw format for the 2nd half. */
2766 read_relative_register_raw_bytes (i + 1, raw_buf);
2767
2768 /* Copy it into the appropriate part of the virtual buffer. */
2769 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2770
c5aa993b
JM
2771 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2772 1, 0, Val_pretty_default);
c906108c
SS
2773
2774 }
c5aa993b
JM
2775 else
2776 {
2777 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2778 1, 0, Val_pretty_default);
2779 }
c906108c
SS
2780
2781}
2782
2783/* Return one if PC is in the call path of a trampoline, else return zero.
2784
2785 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2786 just shared library trampolines (import, export). */
2787
2788int
2789in_solib_call_trampoline (pc, name)
2790 CORE_ADDR pc;
2791 char *name;
2792{
2793 struct minimal_symbol *minsym;
2794 struct unwind_table_entry *u;
2795 static CORE_ADDR dyncall = 0;
2796 static CORE_ADDR sr4export = 0;
2797
2798/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2799 new exec file */
2800
2801 /* First see if PC is in one of the two C-library trampolines. */
2802 if (!dyncall)
2803 {
2804 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2805 if (minsym)
2806 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2807 else
2808 dyncall = -1;
2809 }
2810
2811 if (!sr4export)
2812 {
2813 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2814 if (minsym)
2815 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2816 else
2817 sr4export = -1;
2818 }
2819
2820 if (pc == dyncall || pc == sr4export)
2821 return 1;
2822
2823 /* Get the unwind descriptor corresponding to PC, return zero
2824 if no unwind was found. */
2825 u = find_unwind_entry (pc);
2826 if (!u)
2827 return 0;
2828
2829 /* If this isn't a linker stub, then return now. */
2830 if (u->stub_unwind.stub_type == 0)
2831 return 0;
2832
2833 /* By definition a long-branch stub is a call stub. */
2834 if (u->stub_unwind.stub_type == LONG_BRANCH)
2835 return 1;
2836
2837 /* The call and return path execute the same instructions within
2838 an IMPORT stub! So an IMPORT stub is both a call and return
2839 trampoline. */
2840 if (u->stub_unwind.stub_type == IMPORT)
2841 return 1;
2842
2843 /* Parameter relocation stubs always have a call path and may have a
2844 return path. */
2845 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2846 || u->stub_unwind.stub_type == EXPORT)
2847 {
2848 CORE_ADDR addr;
2849
2850 /* Search forward from the current PC until we hit a branch
c5aa993b 2851 or the end of the stub. */
c906108c
SS
2852 for (addr = pc; addr <= u->region_end; addr += 4)
2853 {
2854 unsigned long insn;
2855
2856 insn = read_memory_integer (addr, 4);
2857
2858 /* Does it look like a bl? If so then it's the call path, if
2859 we find a bv or be first, then we're on the return path. */
2860 if ((insn & 0xfc00e000) == 0xe8000000)
2861 return 1;
2862 else if ((insn & 0xfc00e001) == 0xe800c000
2863 || (insn & 0xfc000000) == 0xe0000000)
2864 return 0;
2865 }
2866
2867 /* Should never happen. */
c5aa993b
JM
2868 warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
2869 return 0; /* purecov: deadcode */
c906108c
SS
2870 }
2871
2872 /* Unknown stub type. For now, just return zero. */
c5aa993b 2873 return 0; /* purecov: deadcode */
c906108c
SS
2874}
2875
2876/* Return one if PC is in the return path of a trampoline, else return zero.
2877
2878 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2879 just shared library trampolines (import, export). */
2880
2881int
2882in_solib_return_trampoline (pc, name)
2883 CORE_ADDR pc;
2884 char *name;
2885{
2886 struct unwind_table_entry *u;
2887
2888 /* Get the unwind descriptor corresponding to PC, return zero
2889 if no unwind was found. */
2890 u = find_unwind_entry (pc);
2891 if (!u)
2892 return 0;
2893
2894 /* If this isn't a linker stub or it's just a long branch stub, then
2895 return zero. */
2896 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
2897 return 0;
2898
2899 /* The call and return path execute the same instructions within
2900 an IMPORT stub! So an IMPORT stub is both a call and return
2901 trampoline. */
2902 if (u->stub_unwind.stub_type == IMPORT)
2903 return 1;
2904
2905 /* Parameter relocation stubs always have a call path and may have a
2906 return path. */
2907 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2908 || u->stub_unwind.stub_type == EXPORT)
2909 {
2910 CORE_ADDR addr;
2911
2912 /* Search forward from the current PC until we hit a branch
c5aa993b 2913 or the end of the stub. */
c906108c
SS
2914 for (addr = pc; addr <= u->region_end; addr += 4)
2915 {
2916 unsigned long insn;
2917
2918 insn = read_memory_integer (addr, 4);
2919
2920 /* Does it look like a bl? If so then it's the call path, if
2921 we find a bv or be first, then we're on the return path. */
2922 if ((insn & 0xfc00e000) == 0xe8000000)
2923 return 0;
2924 else if ((insn & 0xfc00e001) == 0xe800c000
2925 || (insn & 0xfc000000) == 0xe0000000)
2926 return 1;
2927 }
2928
2929 /* Should never happen. */
c5aa993b
JM
2930 warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
2931 return 0; /* purecov: deadcode */
c906108c
SS
2932 }
2933
2934 /* Unknown stub type. For now, just return zero. */
c5aa993b 2935 return 0; /* purecov: deadcode */
c906108c
SS
2936
2937}
2938
2939/* Figure out if PC is in a trampoline, and if so find out where
2940 the trampoline will jump to. If not in a trampoline, return zero.
2941
2942 Simple code examination probably is not a good idea since the code
2943 sequences in trampolines can also appear in user code.
2944
2945 We use unwinds and information from the minimal symbol table to
2946 determine when we're in a trampoline. This won't work for ELF
2947 (yet) since it doesn't create stub unwind entries. Whether or
2948 not ELF will create stub unwinds or normal unwinds for linker
2949 stubs is still being debated.
2950
2951 This should handle simple calls through dyncall or sr4export,
2952 long calls, argument relocation stubs, and dyncall/sr4export
2953 calling an argument relocation stub. It even handles some stubs
2954 used in dynamic executables. */
2955
c906108c
SS
2956CORE_ADDR
2957skip_trampoline_code (pc, name)
2958 CORE_ADDR pc;
2959 char *name;
2960{
2961 long orig_pc = pc;
2962 long prev_inst, curr_inst, loc;
2963 static CORE_ADDR dyncall = 0;
2964 static CORE_ADDR dyncall_external = 0;
2965 static CORE_ADDR sr4export = 0;
2966 struct minimal_symbol *msym;
2967 struct unwind_table_entry *u;
2968
2969
2970/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2971 new exec file */
2972
2973 if (!dyncall)
2974 {
2975 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2976 if (msym)
2977 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2978 else
2979 dyncall = -1;
2980 }
2981
2982 if (!dyncall_external)
2983 {
2984 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
2985 if (msym)
2986 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
2987 else
2988 dyncall_external = -1;
2989 }
2990
2991 if (!sr4export)
2992 {
2993 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2994 if (msym)
2995 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2996 else
2997 sr4export = -1;
2998 }
2999
3000 /* Addresses passed to dyncall may *NOT* be the actual address
3001 of the function. So we may have to do something special. */
3002 if (pc == dyncall)
3003 {
3004 pc = (CORE_ADDR) read_register (22);
3005
3006 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3007 the PLT entry for this function, not the address of the function
3008 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3009 if (pc & 0x2)
53a5351d 3010 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3011 }
3012 if (pc == dyncall_external)
3013 {
3014 pc = (CORE_ADDR) read_register (22);
53a5351d 3015 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3016 }
3017 else if (pc == sr4export)
3018 pc = (CORE_ADDR) (read_register (22));
3019
3020 /* Get the unwind descriptor corresponding to PC, return zero
3021 if no unwind was found. */
3022 u = find_unwind_entry (pc);
3023 if (!u)
3024 return 0;
3025
3026 /* If this isn't a linker stub, then return now. */
3027 /* elz: attention here! (FIXME) because of a compiler/linker
3028 error, some stubs which should have a non zero stub_unwind.stub_type
3029 have unfortunately a value of zero. So this function would return here
3030 as if we were not in a trampoline. To fix this, we go look at the partial
3031 symbol information, which reports this guy as a stub.
3032 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3033 partial symbol information is also wrong sometimes. This is because
3034 when it is entered (somread.c::som_symtab_read()) it can happen that
3035 if the type of the symbol (from the som) is Entry, and the symbol is
3036 in a shared library, then it can also be a trampoline. This would
3037 be OK, except that I believe the way they decide if we are ina shared library
3038 does not work. SOOOO..., even if we have a regular function w/o trampolines
3039 its minimal symbol can be assigned type mst_solib_trampoline.
3040 Also, if we find that the symbol is a real stub, then we fix the unwind
3041 descriptor, and define the stub type to be EXPORT.
c5aa993b 3042 Hopefully this is correct most of the times. */
c906108c 3043 if (u->stub_unwind.stub_type == 0)
c5aa993b 3044 {
c906108c
SS
3045
3046/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3047 we can delete all the code which appears between the lines */
3048/*--------------------------------------------------------------------------*/
c5aa993b 3049 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3050
c5aa993b
JM
3051 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3052 return orig_pc == pc ? 0 : pc & ~0x3;
3053
3054 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3055 {
3056 struct objfile *objfile;
3057 struct minimal_symbol *msymbol;
3058 int function_found = 0;
3059
3060 /* go look if there is another minimal symbol with the same name as
3061 this one, but with type mst_text. This would happen if the msym
3062 is an actual trampoline, in which case there would be another
3063 symbol with the same name corresponding to the real function */
3064
3065 ALL_MSYMBOLS (objfile, msymbol)
3066 {
3067 if (MSYMBOL_TYPE (msymbol) == mst_text
3068 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3069 {
3070 function_found = 1;
3071 break;
3072 }
3073 }
3074
3075 if (function_found)
3076 /* the type of msym is correct (mst_solib_trampoline), but
3077 the unwind info is wrong, so set it to the correct value */
3078 u->stub_unwind.stub_type = EXPORT;
3079 else
3080 /* the stub type info in the unwind is correct (this is not a
3081 trampoline), but the msym type information is wrong, it
3082 should be mst_text. So we need to fix the msym, and also
3083 get out of this function */
3084 {
3085 MSYMBOL_TYPE (msym) = mst_text;
3086 return orig_pc == pc ? 0 : pc & ~0x3;
3087 }
3088 }
c906108c 3089
c906108c 3090/*--------------------------------------------------------------------------*/
c5aa993b 3091 }
c906108c
SS
3092
3093 /* It's a stub. Search for a branch and figure out where it goes.
3094 Note we have to handle multi insn branch sequences like ldil;ble.
3095 Most (all?) other branches can be determined by examining the contents
3096 of certain registers and the stack. */
3097
3098 loc = pc;
3099 curr_inst = 0;
3100 prev_inst = 0;
3101 while (1)
3102 {
3103 /* Make sure we haven't walked outside the range of this stub. */
3104 if (u != find_unwind_entry (loc))
3105 {
3106 warning ("Unable to find branch in linker stub");
3107 return orig_pc == pc ? 0 : pc & ~0x3;
3108 }
3109
3110 prev_inst = curr_inst;
3111 curr_inst = read_memory_integer (loc, 4);
3112
3113 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3114 branch from the stub to the actual function. */
c906108c
SS
3115 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3116 {
3117 /* Yup. See if the previous instruction loaded
3118 a value into %r1. If so compute and return the jump address. */
3119 if ((prev_inst & 0xffe00000) == 0x20200000)
3120 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3121 else
3122 {
3123 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3124 return orig_pc == pc ? 0 : pc & ~0x3;
3125 }
3126 }
3127
3128 /* Does it look like a be 0(sr0,%r21)? OR
3129 Does it look like a be, n 0(sr0,%r21)? OR
3130 Does it look like a bve (r21)? (this is on PA2.0)
3131 Does it look like a bve, n(r21)? (this is also on PA2.0)
3132 That's the branch from an
c5aa993b 3133 import stub to an export stub.
c906108c 3134
c5aa993b
JM
3135 It is impossible to determine the target of the branch via
3136 simple examination of instructions and/or data (consider
3137 that the address in the plabel may be the address of the
3138 bind-on-reference routine in the dynamic loader).
c906108c 3139
c5aa993b 3140 So we have try an alternative approach.
c906108c 3141
c5aa993b
JM
3142 Get the name of the symbol at our current location; it should
3143 be a stub symbol with the same name as the symbol in the
3144 shared library.
c906108c 3145
c5aa993b
JM
3146 Then lookup a minimal symbol with the same name; we should
3147 get the minimal symbol for the target routine in the shared
3148 library as those take precedence of import/export stubs. */
c906108c 3149 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3150 (curr_inst == 0xe2a00002) ||
3151 (curr_inst == 0xeaa0d000) ||
3152 (curr_inst == 0xeaa0d002))
c906108c
SS
3153 {
3154 struct minimal_symbol *stubsym, *libsym;
3155
3156 stubsym = lookup_minimal_symbol_by_pc (loc);
3157 if (stubsym == NULL)
3158 {
3159 warning ("Unable to find symbol for 0x%x", loc);
3160 return orig_pc == pc ? 0 : pc & ~0x3;
3161 }
3162
3163 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3164 if (libsym == NULL)
3165 {
3166 warning ("Unable to find library symbol for %s\n",
3167 SYMBOL_NAME (stubsym));
3168 return orig_pc == pc ? 0 : pc & ~0x3;
3169 }
3170
3171 return SYMBOL_VALUE (libsym);
3172 }
3173
3174 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3175 branch from the stub to the actual function. */
3176 /*elz */
c906108c
SS
3177 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3178 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3179 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3180 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3181
3182 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3183 current stack pointer being the same as the stack
3184 pointer in the stub itself! This is a branch on from the
3185 stub back to the original caller. */
3186 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3187 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3188 {
3189 /* Yup. See if the previous instruction loaded
3190 rp from sp - 8. */
3191 if (prev_inst == 0x4bc23ff1)
3192 return (read_memory_integer
3193 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3194 else
3195 {
3196 warning ("Unable to find restore of %%rp before bv (%%rp).");
3197 return orig_pc == pc ? 0 : pc & ~0x3;
3198 }
3199 }
3200
3201 /* elz: added this case to capture the new instruction
3202 at the end of the return part of an export stub used by
3203 the PA2.0: BVE, n (rp) */
3204 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3205 {
c5aa993b 3206 return (read_memory_integer
53a5351d 3207 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3208 }
3209
3210 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3211 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3212 else if (curr_inst == 0xe0400002)
3213 {
3214 /* The value we jump to is sitting in sp - 24. But that's
3215 loaded several instructions before the be instruction.
3216 I guess we could check for the previous instruction being
3217 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3218 return (read_memory_integer
53a5351d 3219 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3220 }
3221
3222 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3223 Keep looking. */
c906108c
SS
3224 loc += 4;
3225 }
3226}
3227
3228
3229/* For the given instruction (INST), return any adjustment it makes
3230 to the stack pointer or zero for no adjustment.
3231
3232 This only handles instructions commonly found in prologues. */
3233
3234static int
3235prologue_inst_adjust_sp (inst)
3236 unsigned long inst;
3237{
3238 /* This must persist across calls. */
3239 static int save_high21;
3240
3241 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3242 if ((inst & 0xffffc000) == 0x37de0000)
3243 return extract_14 (inst);
3244
3245 /* stwm X,D(sp) */
3246 if ((inst & 0xffe00000) == 0x6fc00000)
3247 return extract_14 (inst);
3248
3249 /* addil high21,%r1; ldo low11,(%r1),%r30)
3250 save high bits in save_high21 for later use. */
3251 if ((inst & 0xffe00000) == 0x28200000)
3252 {
3253 save_high21 = extract_21 (inst);
3254 return 0;
3255 }
3256
3257 if ((inst & 0xffff0000) == 0x343e0000)
3258 return save_high21 + extract_14 (inst);
3259
3260 /* fstws as used by the HP compilers. */
3261 if ((inst & 0xffffffe0) == 0x2fd01220)
3262 return extract_5_load (inst);
3263
3264 /* No adjustment. */
3265 return 0;
3266}
3267
3268/* Return nonzero if INST is a branch of some kind, else return zero. */
3269
3270static int
3271is_branch (inst)
3272 unsigned long inst;
3273{
3274 switch (inst >> 26)
3275 {
3276 case 0x20:
3277 case 0x21:
3278 case 0x22:
3279 case 0x23:
7be570e7 3280 case 0x27:
c906108c
SS
3281 case 0x28:
3282 case 0x29:
3283 case 0x2a:
3284 case 0x2b:
7be570e7 3285 case 0x2f:
c906108c
SS
3286 case 0x30:
3287 case 0x31:
3288 case 0x32:
3289 case 0x33:
3290 case 0x38:
3291 case 0x39:
3292 case 0x3a:
7be570e7 3293 case 0x3b:
c906108c
SS
3294 return 1;
3295
3296 default:
3297 return 0;
3298 }
3299}
3300
3301/* Return the register number for a GR which is saved by INST or
3302 zero it INST does not save a GR. */
3303
3304static int
3305inst_saves_gr (inst)
3306 unsigned long inst;
3307{
3308 /* Does it look like a stw? */
7be570e7
JM
3309 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3310 || (inst >> 26) == 0x1f
3311 || ((inst >> 26) == 0x1f
3312 && ((inst >> 6) == 0xa)))
3313 return extract_5R_store (inst);
3314
3315 /* Does it look like a std? */
3316 if ((inst >> 26) == 0x1c
3317 || ((inst >> 26) == 0x03
3318 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3319 return extract_5R_store (inst);
3320
3321 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3322 if ((inst >> 26) == 0x1b)
3323 return extract_5R_store (inst);
3324
3325 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3326 too. */
7be570e7
JM
3327 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3328 || ((inst >> 26) == 0x3
3329 && (((inst >> 6) & 0xf) == 0x8
3330 || (inst >> 6) & 0xf) == 0x9))
c906108c 3331 return extract_5R_store (inst);
c5aa993b 3332
c906108c
SS
3333 return 0;
3334}
3335
3336/* Return the register number for a FR which is saved by INST or
3337 zero it INST does not save a FR.
3338
3339 Note we only care about full 64bit register stores (that's the only
3340 kind of stores the prologue will use).
3341
3342 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3343
3344static int
3345inst_saves_fr (inst)
3346 unsigned long inst;
3347{
7be570e7 3348 /* is this an FSTD ? */
c906108c
SS
3349 if ((inst & 0xfc00dfc0) == 0x2c001200)
3350 return extract_5r_store (inst);
7be570e7
JM
3351 if ((inst & 0xfc000002) == 0x70000002)
3352 return extract_5R_store (inst);
3353 /* is this an FSTW ? */
c906108c
SS
3354 if ((inst & 0xfc00df80) == 0x24001200)
3355 return extract_5r_store (inst);
7be570e7
JM
3356 if ((inst & 0xfc000002) == 0x7c000000)
3357 return extract_5R_store (inst);
c906108c
SS
3358 return 0;
3359}
3360
3361/* Advance PC across any function entry prologue instructions
3362 to reach some "real" code.
3363
3364 Use information in the unwind table to determine what exactly should
3365 be in the prologue. */
3366
3367
3368CORE_ADDR
3369skip_prologue_hard_way (pc)
3370 CORE_ADDR pc;
3371{
3372 char buf[4];
3373 CORE_ADDR orig_pc = pc;
3374 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3375 unsigned long args_stored, status, i, restart_gr, restart_fr;
3376 struct unwind_table_entry *u;
3377
3378 restart_gr = 0;
3379 restart_fr = 0;
3380
3381restart:
3382 u = find_unwind_entry (pc);
3383 if (!u)
3384 return pc;
3385
c5aa993b 3386 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3387 if ((pc & ~0x3) != u->region_start)
3388 return pc;
3389
3390 /* This is how much of a frame adjustment we need to account for. */
3391 stack_remaining = u->Total_frame_size << 3;
3392
3393 /* Magic register saves we want to know about. */
3394 save_rp = u->Save_RP;
3395 save_sp = u->Save_SP;
3396
3397 /* An indication that args may be stored into the stack. Unfortunately
3398 the HPUX compilers tend to set this in cases where no args were
3399 stored too!. */
3400 args_stored = 1;
3401
3402 /* Turn the Entry_GR field into a bitmask. */
3403 save_gr = 0;
3404 for (i = 3; i < u->Entry_GR + 3; i++)
3405 {
3406 /* Frame pointer gets saved into a special location. */
3407 if (u->Save_SP && i == FP_REGNUM)
3408 continue;
3409
3410 save_gr |= (1 << i);
3411 }
3412 save_gr &= ~restart_gr;
3413
3414 /* Turn the Entry_FR field into a bitmask too. */
3415 save_fr = 0;
3416 for (i = 12; i < u->Entry_FR + 12; i++)
3417 save_fr |= (1 << i);
3418 save_fr &= ~restart_fr;
3419
3420 /* Loop until we find everything of interest or hit a branch.
3421
3422 For unoptimized GCC code and for any HP CC code this will never ever
3423 examine any user instructions.
3424
3425 For optimzied GCC code we're faced with problems. GCC will schedule
3426 its prologue and make prologue instructions available for delay slot
3427 filling. The end result is user code gets mixed in with the prologue
3428 and a prologue instruction may be in the delay slot of the first branch
3429 or call.
3430
3431 Some unexpected things are expected with debugging optimized code, so
3432 we allow this routine to walk past user instructions in optimized
3433 GCC code. */
3434 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3435 || args_stored)
3436 {
3437 unsigned int reg_num;
3438 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3439 unsigned long old_save_rp, old_save_sp, next_inst;
3440
3441 /* Save copies of all the triggers so we can compare them later
c5aa993b 3442 (only for HPC). */
c906108c
SS
3443 old_save_gr = save_gr;
3444 old_save_fr = save_fr;
3445 old_save_rp = save_rp;
3446 old_save_sp = save_sp;
3447 old_stack_remaining = stack_remaining;
3448
3449 status = target_read_memory (pc, buf, 4);
3450 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3451
c906108c
SS
3452 /* Yow! */
3453 if (status != 0)
3454 return pc;
3455
3456 /* Note the interesting effects of this instruction. */
3457 stack_remaining -= prologue_inst_adjust_sp (inst);
3458
7be570e7
JM
3459 /* There are limited ways to store the return pointer into the
3460 stack. */
3461 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3462 save_rp = 0;
3463
3464 /* This is the only way we save SP into the stack. At this time
c5aa993b 3465 the HP compilers never bother to save SP into the stack. */
c906108c
SS
3466 if ((inst & 0xffffc000) == 0x6fc10000)
3467 save_sp = 0;
3468
3469 /* Account for general and floating-point register saves. */
3470 reg_num = inst_saves_gr (inst);
3471 save_gr &= ~(1 << reg_num);
3472
3473 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3474 Unfortunately args_stored only tells us that some arguments
3475 where stored into the stack. Not how many or what kind!
c906108c 3476
c5aa993b
JM
3477 This is a kludge as on the HP compiler sets this bit and it
3478 never does prologue scheduling. So once we see one, skip past
3479 all of them. We have similar code for the fp arg stores below.
c906108c 3480
c5aa993b
JM
3481 FIXME. Can still die if we have a mix of GR and FR argument
3482 stores! */
c906108c
SS
3483 if (reg_num >= 23 && reg_num <= 26)
3484 {
3485 while (reg_num >= 23 && reg_num <= 26)
3486 {
3487 pc += 4;
3488 status = target_read_memory (pc, buf, 4);
3489 inst = extract_unsigned_integer (buf, 4);
3490 if (status != 0)
3491 return pc;
3492 reg_num = inst_saves_gr (inst);
3493 }
3494 args_stored = 0;
3495 continue;
3496 }
3497
3498 reg_num = inst_saves_fr (inst);
3499 save_fr &= ~(1 << reg_num);
3500
3501 status = target_read_memory (pc + 4, buf, 4);
3502 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3503
c906108c
SS
3504 /* Yow! */
3505 if (status != 0)
3506 return pc;
3507
3508 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3509 save. */
c906108c
SS
3510 if ((inst & 0xfc000000) == 0x34000000
3511 && inst_saves_fr (next_inst) >= 4
3512 && inst_saves_fr (next_inst) <= 7)
3513 {
3514 /* So we drop into the code below in a reasonable state. */
3515 reg_num = inst_saves_fr (next_inst);
3516 pc -= 4;
3517 }
3518
3519 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3520 This is a kludge as on the HP compiler sets this bit and it
3521 never does prologue scheduling. So once we see one, skip past
3522 all of them. */
c906108c
SS
3523 if (reg_num >= 4 && reg_num <= 7)
3524 {
3525 while (reg_num >= 4 && reg_num <= 7)
3526 {
3527 pc += 8;
3528 status = target_read_memory (pc, buf, 4);
3529 inst = extract_unsigned_integer (buf, 4);
3530 if (status != 0)
3531 return pc;
3532 if ((inst & 0xfc000000) != 0x34000000)
3533 break;
3534 status = target_read_memory (pc + 4, buf, 4);
3535 next_inst = extract_unsigned_integer (buf, 4);
3536 if (status != 0)
3537 return pc;
3538 reg_num = inst_saves_fr (next_inst);
3539 }
3540 args_stored = 0;
3541 continue;
3542 }
3543
3544 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3545 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3546 if (is_branch (inst))
3547 break;
3548
3549 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3550 arguments were stored into the stack (boo hiss). This could
3551 cause this code to then skip a bunch of user insns (up to the
3552 first branch).
3553
3554 To combat this we try to identify when args_stored was bogusly
3555 set and clear it. We only do this when args_stored is nonzero,
3556 all other resources are accounted for, and nothing changed on
3557 this pass. */
c906108c 3558 if (args_stored
c5aa993b 3559 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3560 && old_save_gr == save_gr && old_save_fr == save_fr
3561 && old_save_rp == save_rp && old_save_sp == save_sp
3562 && old_stack_remaining == stack_remaining)
3563 break;
c5aa993b 3564
c906108c
SS
3565 /* Bump the PC. */
3566 pc += 4;
3567 }
3568
3569 /* We've got a tenative location for the end of the prologue. However
3570 because of limitations in the unwind descriptor mechanism we may
3571 have went too far into user code looking for the save of a register
3572 that does not exist. So, if there registers we expected to be saved
3573 but never were, mask them out and restart.
3574
3575 This should only happen in optimized code, and should be very rare. */
c5aa993b 3576 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3577 {
3578 pc = orig_pc;
3579 restart_gr = save_gr;
3580 restart_fr = save_fr;
3581 goto restart;
3582 }
3583
3584 return pc;
3585}
3586
3587
7be570e7
JM
3588/* Return the address of the PC after the last prologue instruction if
3589 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3590
3591static CORE_ADDR
3592after_prologue (pc)
3593 CORE_ADDR pc;
3594{
3595 struct symtab_and_line sal;
3596 CORE_ADDR func_addr, func_end;
3597 struct symbol *f;
3598
7be570e7
JM
3599 /* If we can not find the symbol in the partial symbol table, then
3600 there is no hope we can determine the function's start address
3601 with this code. */
c906108c 3602 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3603 return 0;
c906108c 3604
7be570e7 3605 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3606 sal = find_pc_line (func_addr, 0);
3607
7be570e7
JM
3608 /* There are only two cases to consider. First, the end of the source line
3609 is within the function bounds. In that case we return the end of the
3610 source line. Second is the end of the source line extends beyond the
3611 bounds of the current function. We need to use the slow code to
3612 examine instructions in that case.
c906108c 3613
7be570e7
JM
3614 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3615 the wrong thing to do. In fact, it should be entirely possible for this
3616 function to always return zero since the slow instruction scanning code
3617 is supposed to *always* work. If it does not, then it is a bug. */
3618 if (sal.end < func_end)
3619 return sal.end;
c5aa993b 3620 else
7be570e7 3621 return 0;
c906108c
SS
3622}
3623
3624/* To skip prologues, I use this predicate. Returns either PC itself
3625 if the code at PC does not look like a function prologue; otherwise
3626 returns an address that (if we're lucky) follows the prologue. If
3627 LENIENT, then we must skip everything which is involved in setting
3628 up the frame (it's OK to skip more, just so long as we don't skip
3629 anything which might clobber the registers which are being saved.
3630 Currently we must not skip more on the alpha, but we might the lenient
3631 stuff some day. */
3632
3633CORE_ADDR
b83266a0 3634hppa_skip_prologue (pc)
c906108c
SS
3635 CORE_ADDR pc;
3636{
c5aa993b
JM
3637 unsigned long inst;
3638 int offset;
3639 CORE_ADDR post_prologue_pc;
3640 char buf[4];
c906108c 3641
c5aa993b
JM
3642 /* See if we can determine the end of the prologue via the symbol table.
3643 If so, then return either PC, or the PC after the prologue, whichever
3644 is greater. */
c906108c 3645
c5aa993b 3646 post_prologue_pc = after_prologue (pc);
c906108c 3647
7be570e7
JM
3648 /* If after_prologue returned a useful address, then use it. Else
3649 fall back on the instruction skipping code.
3650
3651 Some folks have claimed this causes problems because the breakpoint
3652 may be the first instruction of the prologue. If that happens, then
3653 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3654 if (post_prologue_pc != 0)
3655 return max (pc, post_prologue_pc);
c5aa993b
JM
3656 else
3657 return (skip_prologue_hard_way (pc));
c906108c
SS
3658}
3659
3660/* Put here the code to store, into a struct frame_saved_regs,
3661 the addresses of the saved registers of frame described by FRAME_INFO.
3662 This includes special registers such as pc and fp saved in special
3663 ways in the stack frame. sp is even more special:
3664 the address we return for it IS the sp for the next frame. */
3665
3666void
3667hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
3668 struct frame_info *frame_info;
3669 struct frame_saved_regs *frame_saved_regs;
3670{
3671 CORE_ADDR pc;
3672 struct unwind_table_entry *u;
3673 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3674 int status, i, reg;
3675 char buf[4];
3676 int fp_loc = -1;
3677
3678 /* Zero out everything. */
3679 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3680
3681 /* Call dummy frames always look the same, so there's no need to
3682 examine the dummy code to determine locations of saved registers;
3683 instead, let find_dummy_frame_regs fill in the correct offsets
3684 for the saved registers. */
3685 if ((frame_info->pc >= frame_info->frame
53a5351d
JM
3686 && frame_info->pc <= (frame_info->frame
3687 /* A call dummy is sized in words, but it is
3688 actually a series of instructions. Account
3689 for that scaling factor. */
3690 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3691 * CALL_DUMMY_LENGTH)
3692 /* Similarly we have to account for 64bit
3693 wide register saves. */
3694 + (32 * REGISTER_SIZE)
3695 /* We always consider FP regs 8 bytes long. */
3696 + (NUM_REGS - FP0_REGNUM) * 8
3697 /* Similarly we have to account for 64bit
3698 wide register saves. */
3699 + (6 * REGISTER_SIZE))))
c906108c
SS
3700 find_dummy_frame_regs (frame_info, frame_saved_regs);
3701
3702 /* Interrupt handlers are special too. They lay out the register
3703 state in the exact same order as the register numbers in GDB. */
3704 if (pc_in_interrupt_handler (frame_info->pc))
3705 {
3706 for (i = 0; i < NUM_REGS; i++)
3707 {
3708 /* SP is a little special. */
3709 if (i == SP_REGNUM)
3710 frame_saved_regs->regs[SP_REGNUM]
53a5351d
JM
3711 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3712 TARGET_PTR_BIT / 8);
c906108c
SS
3713 else
3714 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3715 }
3716 return;
3717 }
3718
3719#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3720 /* Handle signal handler callers. */
3721 if (frame_info->signal_handler_caller)
3722 {
3723 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3724 return;
3725 }
3726#endif
3727
3728 /* Get the starting address of the function referred to by the PC
3729 saved in frame. */
3730 pc = get_pc_function_start (frame_info->pc);
3731
3732 /* Yow! */
3733 u = find_unwind_entry (pc);
3734 if (!u)
3735 return;
3736
3737 /* This is how much of a frame adjustment we need to account for. */
3738 stack_remaining = u->Total_frame_size << 3;
3739
3740 /* Magic register saves we want to know about. */
3741 save_rp = u->Save_RP;
3742 save_sp = u->Save_SP;
3743
3744 /* Turn the Entry_GR field into a bitmask. */
3745 save_gr = 0;
3746 for (i = 3; i < u->Entry_GR + 3; i++)
3747 {
3748 /* Frame pointer gets saved into a special location. */
3749 if (u->Save_SP && i == FP_REGNUM)
3750 continue;
3751
3752 save_gr |= (1 << i);
3753 }
3754
3755 /* Turn the Entry_FR field into a bitmask too. */
3756 save_fr = 0;
3757 for (i = 12; i < u->Entry_FR + 12; i++)
3758 save_fr |= (1 << i);
3759
3760 /* The frame always represents the value of %sp at entry to the
3761 current function (and is thus equivalent to the "saved" stack
3762 pointer. */
3763 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3764
3765 /* Loop until we find everything of interest or hit a branch.
3766
3767 For unoptimized GCC code and for any HP CC code this will never ever
3768 examine any user instructions.
3769
7be570e7 3770 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
3771 its prologue and make prologue instructions available for delay slot
3772 filling. The end result is user code gets mixed in with the prologue
3773 and a prologue instruction may be in the delay slot of the first branch
3774 or call.
3775
3776 Some unexpected things are expected with debugging optimized code, so
3777 we allow this routine to walk past user instructions in optimized
3778 GCC code. */
3779 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3780 {
3781 status = target_read_memory (pc, buf, 4);
3782 inst = extract_unsigned_integer (buf, 4);
3783
3784 /* Yow! */
3785 if (status != 0)
3786 return;
3787
3788 /* Note the interesting effects of this instruction. */
3789 stack_remaining -= prologue_inst_adjust_sp (inst);
3790
3791 /* There is only one instruction used for saving RP into the stack. */
3792 if (inst == 0x6bc23fd9)
3793 {
3794 save_rp = 0;
3795 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3796 }
3797
3798 /* Just note that we found the save of SP into the stack. The
c5aa993b 3799 value for frame_saved_regs was computed above. */
c906108c
SS
3800 if ((inst & 0xffffc000) == 0x6fc10000)
3801 save_sp = 0;
3802
3803 /* Account for general and floating-point register saves. */
3804 reg = inst_saves_gr (inst);
3805 if (reg >= 3 && reg <= 18
3806 && (!u->Save_SP || reg != FP_REGNUM))
3807 {
3808 save_gr &= ~(1 << reg);
3809
3810 /* stwm with a positive displacement is a *post modify*. */
3811 if ((inst >> 26) == 0x1b
3812 && extract_14 (inst) >= 0)
3813 frame_saved_regs->regs[reg] = frame_info->frame;
3814 else
3815 {
3816 /* Handle code with and without frame pointers. */
3817 if (u->Save_SP)
3818 frame_saved_regs->regs[reg]
3819 = frame_info->frame + extract_14 (inst);
3820 else
3821 frame_saved_regs->regs[reg]
3822 = frame_info->frame + (u->Total_frame_size << 3)
c5aa993b 3823 + extract_14 (inst);
c906108c
SS
3824 }
3825 }
3826
3827
3828 /* GCC handles callee saved FP regs a little differently.
3829
c5aa993b
JM
3830 It emits an instruction to put the value of the start of
3831 the FP store area into %r1. It then uses fstds,ma with
3832 a basereg of %r1 for the stores.
c906108c 3833
c5aa993b
JM
3834 HP CC emits them at the current stack pointer modifying
3835 the stack pointer as it stores each register. */
c906108c
SS
3836
3837 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
3838 if ((inst & 0xffffc000) == 0x34610000
3839 || (inst & 0xffffc000) == 0x37c10000)
3840 fp_loc = extract_14 (inst);
c5aa993b 3841
c906108c
SS
3842 reg = inst_saves_fr (inst);
3843 if (reg >= 12 && reg <= 21)
3844 {
3845 /* Note +4 braindamage below is necessary because the FP status
3846 registers are internally 8 registers rather than the expected
3847 4 registers. */
3848 save_fr &= ~(1 << reg);
3849 if (fp_loc == -1)
3850 {
3851 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
3852 we've set enough state that the GCC and HPCC code are
3853 both handled in the same manner. */
c906108c
SS
3854 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
3855 fp_loc = 8;
3856 }
3857 else
3858 {
3859 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
3860 = frame_info->frame + fp_loc;
3861 fp_loc += 8;
3862 }
3863 }
3864
3865 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3866 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3867 if (is_branch (inst))
3868 break;
3869
3870 /* Bump the PC. */
3871 pc += 4;
3872 }
3873}
3874
3875
3876/* Exception handling support for the HP-UX ANSI C++ compiler.
3877 The compiler (aCC) provides a callback for exception events;
3878 GDB can set a breakpoint on this callback and find out what
3879 exception event has occurred. */
3880
3881/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
3882static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
3883/* The name of the function to be used to set the hook value */
3884static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
3885/* The name of the callback function in end.o */
c906108c 3886static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
3887/* Name of function in end.o on which a break is set (called by above) */
3888static char HP_ACC_EH_break[] = "__d_eh_break";
3889/* Name of flag (in end.o) that enables catching throws */
3890static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
3891/* Name of flag (in end.o) that enables catching catching */
3892static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
3893/* The enum used by aCC */
3894typedef enum
3895 {
3896 __EH_NOTIFY_THROW,
3897 __EH_NOTIFY_CATCH
3898 }
3899__eh_notification;
c906108c
SS
3900
3901/* Is exception-handling support available with this executable? */
3902static int hp_cxx_exception_support = 0;
3903/* Has the initialize function been run? */
3904int hp_cxx_exception_support_initialized = 0;
3905/* Similar to above, but imported from breakpoint.c -- non-target-specific */
3906extern int exception_support_initialized;
3907/* Address of __eh_notify_hook */
a0b3c4fd 3908static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 3909/* Address of __d_eh_notify_callback */
a0b3c4fd 3910static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 3911/* Address of __d_eh_break */
a0b3c4fd 3912static CORE_ADDR eh_break_addr = 0;
c906108c 3913/* Address of __d_eh_catch_catch */
a0b3c4fd 3914static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 3915/* Address of __d_eh_catch_throw */
a0b3c4fd 3916static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 3917/* Sal for __d_eh_break */
a0b3c4fd 3918static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
3919
3920/* Code in end.c expects __d_pid to be set in the inferior,
3921 otherwise __d_eh_notify_callback doesn't bother to call
3922 __d_eh_break! So we poke the pid into this symbol
3923 ourselves.
3924 0 => success
c5aa993b 3925 1 => failure */
c906108c
SS
3926int
3927setup_d_pid_in_inferior ()
3928{
3929 CORE_ADDR anaddr;
c5aa993b
JM
3930 struct minimal_symbol *msymbol;
3931 char buf[4]; /* FIXME 32x64? */
3932
c906108c
SS
3933 /* Slam the pid of the process into __d_pid; failing is only a warning! */
3934 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
3935 if (msymbol == NULL)
3936 {
3937 warning ("Unable to find __d_pid symbol in object file.");
3938 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
3939 return 1;
3940 }
3941
3942 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
c5aa993b
JM
3943 store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
3944 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
3945 {
3946 warning ("Unable to write __d_pid");
3947 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
3948 return 1;
3949 }
3950 return 0;
3951}
3952
3953/* Initialize exception catchpoint support by looking for the
3954 necessary hooks/callbacks in end.o, etc., and set the hook value to
3955 point to the required debug function
3956
3957 Return 0 => failure
c5aa993b 3958 1 => success */
c906108c
SS
3959
3960static int
3961initialize_hp_cxx_exception_support ()
3962{
3963 struct symtabs_and_lines sals;
c5aa993b
JM
3964 struct cleanup *old_chain;
3965 struct cleanup *canonical_strings_chain = NULL;
c906108c 3966 int i;
c5aa993b
JM
3967 char *addr_start;
3968 char *addr_end = NULL;
3969 char **canonical = (char **) NULL;
c906108c 3970 int thread = -1;
c5aa993b
JM
3971 struct symbol *sym = NULL;
3972 struct minimal_symbol *msym = NULL;
3973 struct objfile *objfile;
c906108c
SS
3974 asection *shlib_info;
3975
3976 /* Detect and disallow recursion. On HP-UX with aCC, infinite
3977 recursion is a possibility because finding the hook for exception
3978 callbacks involves making a call in the inferior, which means
3979 re-inserting breakpoints which can re-invoke this code */
3980
c5aa993b
JM
3981 static int recurse = 0;
3982 if (recurse > 0)
c906108c
SS
3983 {
3984 hp_cxx_exception_support_initialized = 0;
3985 exception_support_initialized = 0;
3986 return 0;
3987 }
3988
3989 hp_cxx_exception_support = 0;
3990
3991 /* First check if we have seen any HP compiled objects; if not,
3992 it is very unlikely that HP's idiosyncratic callback mechanism
3993 for exception handling debug support will be available!
3994 This will percolate back up to breakpoint.c, where our callers
3995 will decide to try the g++ exception-handling support instead. */
3996 if (!hp_som_som_object_present)
3997 return 0;
c5aa993b 3998
c906108c
SS
3999 /* We have a SOM executable with SOM debug info; find the hooks */
4000
4001 /* First look for the notify hook provided by aCC runtime libs */
4002 /* If we find this symbol, we conclude that the executable must
4003 have HP aCC exception support built in. If this symbol is not
4004 found, even though we're a HP SOM-SOM file, we may have been
4005 built with some other compiler (not aCC). This results percolates
4006 back up to our callers in breakpoint.c which can decide to
4007 try the g++ style of exception support instead.
4008 If this symbol is found but the other symbols we require are
4009 not found, there is something weird going on, and g++ support
4010 should *not* be tried as an alternative.
c5aa993b 4011
c906108c
SS
4012 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4013 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4014
c906108c
SS
4015 /* libCsup has this hook; it'll usually be non-debuggable */
4016 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4017 if (msym)
4018 {
4019 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4020 hp_cxx_exception_support = 1;
c5aa993b 4021 }
c906108c
SS
4022 else
4023 {
4024 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4025 warning ("Executable may not have been compiled debuggable with HP aCC.");
4026 warning ("GDB will be unable to intercept exception events.");
4027 eh_notify_hook_addr = 0;
4028 hp_cxx_exception_support = 0;
4029 return 0;
4030 }
4031
c906108c 4032 /* Next look for the notify callback routine in end.o */
c5aa993b 4033 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4034 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4035 if (msym)
4036 {
4037 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4038 hp_cxx_exception_support = 1;
c5aa993b
JM
4039 }
4040 else
c906108c
SS
4041 {
4042 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4043 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4044 warning ("GDB will be unable to intercept exception events.");
4045 eh_notify_callback_addr = 0;
4046 return 0;
4047 }
4048
53a5351d 4049#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4050 /* Check whether the executable is dynamically linked or archive bound */
4051 /* With an archive-bound executable we can use the raw addresses we find
4052 for the callback function, etc. without modification. For an executable
4053 with shared libraries, we have to do more work to find the plabel, which
4054 can be the target of a call through $$dyncall from the aCC runtime support
4055 library (libCsup) which is linked shared by default by aCC. */
4056 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4057 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4058 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4059 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4060 {
4061 /* The minsym we have has the local code address, but that's not the
4062 plabel that can be used by an inter-load-module call. */
4063 /* Find solib handle for main image (which has end.o), and use that
4064 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4065 of shl_findsym()) to find the plabel. */
c906108c
SS
4066
4067 args_for_find_stub args;
4068 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4069
c906108c
SS
4070 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4071 args.msym = msym;
a0b3c4fd 4072 args.return_val = 0;
c5aa993b 4073
c906108c 4074 recurse++;
a0b3c4fd
JM
4075 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4076 RETURN_MASK_ALL);
4077 eh_notify_callback_addr = args.return_val;
c906108c 4078 recurse--;
c5aa993b 4079
c906108c 4080 exception_catchpoints_are_fragile = 1;
c5aa993b 4081
c906108c 4082 if (!eh_notify_callback_addr)
c5aa993b
JM
4083 {
4084 /* We can get here either if there is no plabel in the export list
4085 for the main image, or if something strange happened (??) */
4086 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4087 warning ("GDB will not be able to intercept exception events.");
4088 return 0;
4089 }
c906108c
SS
4090 }
4091 else
4092 exception_catchpoints_are_fragile = 0;
53a5351d 4093#endif
c906108c 4094
c906108c 4095 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4096 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4097 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4098 if (msym)
4099 {
4100 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4101 hp_cxx_exception_support = 1;
c5aa993b 4102 }
c906108c
SS
4103 else
4104 {
4105 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4106 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4107 warning ("GDB will be unable to intercept exception events.");
4108 eh_break_addr = 0;
4109 return 0;
4110 }
4111
c906108c
SS
4112 /* Next look for the catch enable flag provided in end.o */
4113 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4114 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4115 if (sym) /* sometimes present in debug info */
c906108c
SS
4116 {
4117 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4118 hp_cxx_exception_support = 1;
4119 }
c5aa993b
JM
4120 else
4121 /* otherwise look in SOM symbol dict. */
c906108c
SS
4122 {
4123 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4124 if (msym)
c5aa993b
JM
4125 {
4126 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4127 hp_cxx_exception_support = 1;
4128 }
c906108c 4129 else
c5aa993b
JM
4130 {
4131 warning ("Unable to enable interception of exception catches.");
4132 warning ("Executable may not have been compiled debuggable with HP aCC.");
4133 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4134 return 0;
4135 }
c906108c
SS
4136 }
4137
c906108c
SS
4138 /* Next look for the catch enable flag provided end.o */
4139 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4140 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4141 if (sym) /* sometimes present in debug info */
c906108c
SS
4142 {
4143 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4144 hp_cxx_exception_support = 1;
4145 }
c5aa993b
JM
4146 else
4147 /* otherwise look in SOM symbol dict. */
c906108c
SS
4148 {
4149 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4150 if (msym)
c5aa993b
JM
4151 {
4152 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4153 hp_cxx_exception_support = 1;
4154 }
c906108c 4155 else
c5aa993b
JM
4156 {
4157 warning ("Unable to enable interception of exception throws.");
4158 warning ("Executable may not have been compiled debuggable with HP aCC.");
4159 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4160 return 0;
4161 }
c906108c
SS
4162 }
4163
c5aa993b
JM
4164 /* Set the flags */
4165 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4166 hp_cxx_exception_support_initialized = 1;
4167 exception_support_initialized = 1;
4168
4169 return 1;
4170}
4171
4172/* Target operation for enabling or disabling interception of
4173 exception events.
4174 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4175 ENABLE is either 0 (disable) or 1 (enable).
4176 Return value is NULL if no support found;
4177 -1 if something went wrong,
4178 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4179 address was found. */
c906108c 4180
c5aa993b 4181struct symtab_and_line *
c906108c 4182child_enable_exception_callback (kind, enable)
c5aa993b
JM
4183 enum exception_event_kind kind;
4184 int enable;
c906108c
SS
4185{
4186 char buf[4];
4187
4188 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4189 if (!initialize_hp_cxx_exception_support ())
4190 return NULL;
4191
4192 switch (hp_cxx_exception_support)
4193 {
c5aa993b
JM
4194 case 0:
4195 /* Assuming no HP support at all */
4196 return NULL;
4197 case 1:
4198 /* HP support should be present, but something went wrong */
4199 return (struct symtab_and_line *) -1; /* yuck! */
4200 /* there may be other cases in the future */
c906108c 4201 }
c5aa993b 4202
c906108c 4203 /* Set the EH hook to point to the callback routine */
c5aa993b 4204 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4205 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4206 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4207 {
4208 warning ("Could not write to target memory for exception event callback.");
4209 warning ("Interception of exception events may not work.");
c5aa993b 4210 return (struct symtab_and_line *) -1;
c906108c
SS
4211 }
4212 if (enable)
4213 {
c5aa993b 4214 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
c906108c 4215 if (inferior_pid > 0)
c5aa993b
JM
4216 {
4217 if (setup_d_pid_in_inferior ())
4218 return (struct symtab_and_line *) -1;
4219 }
c906108c 4220 else
c5aa993b
JM
4221 {
4222 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); /* purecov: deadcode */
4223 return (struct symtab_and_line *) -1; /* purecov: deadcode */
4224 }
c906108c 4225 }
c5aa993b 4226
c906108c
SS
4227 switch (kind)
4228 {
c5aa993b
JM
4229 case EX_EVENT_THROW:
4230 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4231 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4232 {
4233 warning ("Couldn't enable exception throw interception.");
4234 return (struct symtab_and_line *) -1;
4235 }
4236 break;
4237 case EX_EVENT_CATCH:
4238 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4239 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4240 {
4241 warning ("Couldn't enable exception catch interception.");
4242 return (struct symtab_and_line *) -1;
4243 }
4244 break;
4245 default: /* purecov: deadcode */
4246 error ("Request to enable unknown or unsupported exception event."); /* purecov: deadcode */
c906108c 4247 }
c5aa993b 4248
c906108c
SS
4249 /* Copy break address into new sal struct, malloc'ing if needed. */
4250 if (!break_callback_sal)
4251 {
4252 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4253 }
c5aa993b 4254 INIT_SAL (break_callback_sal);
c906108c
SS
4255 break_callback_sal->symtab = NULL;
4256 break_callback_sal->pc = eh_break_addr;
4257 break_callback_sal->line = 0;
4258 break_callback_sal->end = eh_break_addr;
c5aa993b 4259
c906108c
SS
4260 return break_callback_sal;
4261}
4262
c5aa993b 4263/* Record some information about the current exception event */
c906108c 4264static struct exception_event_record current_ex_event;
c5aa993b
JM
4265/* Convenience struct */
4266static struct symtab_and_line null_symtab_and_line =
4267{NULL, 0, 0, 0};
c906108c
SS
4268
4269/* Report current exception event. Returns a pointer to a record
4270 that describes the kind of the event, where it was thrown from,
4271 and where it will be caught. More information may be reported
c5aa993b 4272 in the future */
c906108c
SS
4273struct exception_event_record *
4274child_get_current_exception_event ()
4275{
c5aa993b
JM
4276 CORE_ADDR event_kind;
4277 CORE_ADDR throw_addr;
4278 CORE_ADDR catch_addr;
c906108c
SS
4279 struct frame_info *fi, *curr_frame;
4280 int level = 1;
4281
c5aa993b 4282 curr_frame = get_current_frame ();
c906108c
SS
4283 if (!curr_frame)
4284 return (struct exception_event_record *) NULL;
4285
4286 /* Go up one frame to __d_eh_notify_callback, because at the
4287 point when this code is executed, there's garbage in the
4288 arguments of __d_eh_break. */
4289 fi = find_relative_frame (curr_frame, &level);
4290 if (level != 0)
4291 return (struct exception_event_record *) NULL;
4292
4293 select_frame (fi, -1);
4294
4295 /* Read in the arguments */
4296 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4297 1. event kind catch or throw
4298 2. the target address if known
4299 3. a flag -- not sure what this is. pai/1997-07-17 */
4300 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4301 catch_addr = read_register (ARG1_REGNUM);
4302
4303 /* Now go down to a user frame */
4304 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4305 __d_eh_notify_callback which is called by
4306 __notify_throw which is called
4307 from user code.
c906108c 4308 For a catch, __d_eh_break is called by
c5aa993b
JM
4309 __d_eh_notify_callback which is called by
4310 <stackwalking stuff> which is called by
4311 __throw__<stuff> or __rethrow_<stuff> which is called
4312 from user code. */
4313 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4314 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4315 fi = find_relative_frame (curr_frame, &level);
4316 if (level != 0)
4317 return (struct exception_event_record *) NULL;
4318
4319 select_frame (fi, -1);
4320 throw_addr = fi->pc;
4321
4322 /* Go back to original (top) frame */
4323 select_frame (curr_frame, -1);
4324
4325 current_ex_event.kind = (enum exception_event_kind) event_kind;
4326 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4327 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4328
4329 return &current_ex_event;
4330}
4331
c906108c
SS
4332static void
4333unwind_command (exp, from_tty)
4334 char *exp;
4335 int from_tty;
4336{
4337 CORE_ADDR address;
4338 struct unwind_table_entry *u;
4339
4340 /* If we have an expression, evaluate it and use it as the address. */
4341
4342 if (exp != 0 && *exp != 0)
4343 address = parse_and_eval_address (exp);
4344 else
4345 return;
4346
4347 u = find_unwind_entry (address);
4348
4349 if (!u)
4350 {
4351 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4352 return;
4353 }
4354
4355 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4356
4357 printf_unfiltered ("\tregion_start = ");
4358 print_address (u->region_start, gdb_stdout);
4359
4360 printf_unfiltered ("\n\tregion_end = ");
4361 print_address (u->region_end, gdb_stdout);
4362
4363#ifdef __STDC__
4364#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4365#else
4366#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
4367#endif
4368
4369 printf_unfiltered ("\n\tflags =");
4370 pif (Cannot_unwind);
4371 pif (Millicode);
4372 pif (Millicode_save_sr0);
4373 pif (Entry_SR);
4374 pif (Args_stored);
4375 pif (Variable_Frame);
4376 pif (Separate_Package_Body);
4377 pif (Frame_Extension_Millicode);
4378 pif (Stack_Overflow_Check);
4379 pif (Two_Instruction_SP_Increment);
4380 pif (Ada_Region);
4381 pif (Save_SP);
4382 pif (Save_RP);
4383 pif (Save_MRP_in_frame);
4384 pif (extn_ptr_defined);
4385 pif (Cleanup_defined);
4386 pif (MPE_XL_interrupt_marker);
4387 pif (HP_UX_interrupt_marker);
4388 pif (Large_frame);
4389
4390 putchar_unfiltered ('\n');
4391
4392#ifdef __STDC__
4393#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4394#else
4395#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
4396#endif
4397
4398 pin (Region_description);
4399 pin (Entry_FR);
4400 pin (Entry_GR);
4401 pin (Total_frame_size);
4402}
c906108c
SS
4403
4404#ifdef PREPARE_TO_PROCEED
4405
4406/* If the user has switched threads, and there is a breakpoint
4407 at the old thread's pc location, then switch to that thread
4408 and return TRUE, else return FALSE and don't do a thread
4409 switch (or rather, don't seem to have done a thread switch).
4410
4411 Ptrace-based gdb will always return FALSE to the thread-switch
4412 query, and thus also to PREPARE_TO_PROCEED.
4413
4414 The important thing is whether there is a BPT instruction,
4415 not how many user breakpoints there are. So we have to worry
4416 about things like these:
4417
4418 o Non-bp stop -- NO
4419
4420 o User hits bp, no switch -- NO
4421
4422 o User hits bp, switches threads -- YES
4423
4424 o User hits bp, deletes bp, switches threads -- NO
4425
4426 o User hits bp, deletes one of two or more bps
c5aa993b 4427 at that PC, user switches threads -- YES
c906108c
SS
4428
4429 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4430 breakpoint, deleted the breakpoint and then gotten another
4431 hit on that same breakpoint on another thread which
4432 actually hit before the delete. (FIXME in breakpoint.c
4433 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4434
4435 For these reasons, we have to violate information hiding and
4436 call "breakpoint_here_p". If core gdb thinks there is a bpt
4437 here, that's what counts, as core gdb is the one which is
4438 putting the BPT instruction in and taking it out. */
4439int
c5aa993b 4440hppa_prepare_to_proceed ()
c906108c
SS
4441{
4442 pid_t old_thread;
4443 pid_t current_thread;
4444
c5aa993b 4445 old_thread = hppa_switched_threads (inferior_pid);
c906108c
SS
4446 if (old_thread != 0)
4447 {
4448 /* Switched over from "old_thread". Try to do
4449 as little work as possible, 'cause mostly
4450 we're going to switch back. */
4451 CORE_ADDR new_pc;
c5aa993b 4452 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4453
4454 /* Yuk, shouldn't use global to specify current
4455 thread. But that's how gdb does it. */
4456 current_thread = inferior_pid;
c5aa993b 4457 inferior_pid = old_thread;
c906108c 4458
c5aa993b
JM
4459 new_pc = read_pc ();
4460 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4461 && breakpoint_here_p (new_pc))
c5aa993b 4462 {
c906108c 4463 /* User hasn't deleted the BP.
c5aa993b 4464 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4465 flush_cached_frames ();
4466 registers_changed ();
4467#if 0
c5aa993b 4468 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
c906108c
SS
4469 current_thread, inferior_pid);
4470#endif
c5aa993b 4471
c906108c 4472 return 1;
c5aa993b 4473 }
c906108c
SS
4474
4475 /* Otherwise switch back to the user-chosen thread. */
4476 inferior_pid = current_thread;
c5aa993b 4477 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4478 }
4479
4480 return 0;
4481}
4482#endif /* PREPARE_TO_PROCEED */
4483
4484void
4485_initialize_hppa_tdep ()
4486{
4487 tm_print_insn = print_insn_hppa;
4488
c906108c
SS
4489 add_cmd ("unwind", class_maintenance, unwind_command,
4490 "Print unwind table entry at given address.",
4491 &maintenanceprintlist);
c906108c 4492}
This page took 0.239302 seconds and 4 git commands to generate.