2004-10-31 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
adc11376
AC
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
d709c020
JB
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
d709c020
JB
73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74int hppa_instruction_nullified (void);
c906108c 75
537987fc
AC
76/* Handle 32/64-bit struct return conventions. */
77
78static enum return_value_convention
79hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
82{
537987fc
AC
83 if (TYPE_LENGTH (type) <= 2 * 4)
84 {
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
87 int b;
34f75cc1 88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
537987fc
AC
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
92 4-byte registers. */
93 if (part > 0)
94 {
95 if (readbuf != NULL)
96 regcache_cooked_read_part (regcache, reg, 4 - part,
97 part, readbuf);
98 if (writebuf != NULL)
99 regcache_cooked_write_part (regcache, reg, 4 - part,
100 part, writebuf);
101 reg++;
102 }
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
105 {
106 if (readbuf != NULL)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
110 reg++;
111 }
112 return RETURN_VALUE_REGISTER_CONVENTION;
113 }
114 else
115 return RETURN_VALUE_STRUCT_CONVENTION;
116}
117
118static enum return_value_convention
119hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
122{
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
449e1137
AC
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
537987fc
AC
129 {
130 /* Floats are right aligned? */
34f75cc1 131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc 132 if (readbuf != NULL)
34f75cc1 133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
34f75cc1 136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
139 }
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
141 {
142 /* Integrals are right aligned. */
34f75cc1 143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc
AC
144 if (readbuf != NULL)
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
151 }
152 else if (TYPE_LENGTH (type) <= 2 * 8)
153 {
154 /* Composite values are left aligned. */
155 int b;
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
157 {
449e1137 158 int part = min (8, TYPE_LENGTH (type) - b);
537987fc 159 if (readbuf != NULL)
449e1137 160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
161 (char *) readbuf + b);
162 if (writebuf != NULL)
449e1137 163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
164 (const char *) writebuf + b);
165 }
449e1137 166 return RETURN_VALUE_REGISTER_CONVENTION;
537987fc
AC
167 }
168 else
169 return RETURN_VALUE_STRUCT_CONVENTION;
170}
171
c906108c
SS
172/* Routines to extract various sized constants out of hppa
173 instructions. */
174
175/* This assumes that no garbage lies outside of the lower bits of
176 value. */
177
abc485a1
RC
178int
179hppa_sign_extend (unsigned val, unsigned bits)
c906108c 180{
c5aa993b 181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
182}
183
184/* For many immediate values the sign bit is the low bit! */
185
abc485a1
RC
186int
187hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 188{
c5aa993b 189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
190}
191
e2ac8128
JB
192/* Extract the bits at positions between FROM and TO, using HP's numbering
193 (MSB = 0). */
194
abc485a1
RC
195int
196hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
197{
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
199}
200
c906108c
SS
201/* extract the immediate field from a ld{bhw}s instruction */
202
abc485a1
RC
203int
204hppa_extract_5_load (unsigned word)
c906108c 205{
abc485a1 206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
207}
208
c906108c
SS
209/* extract the immediate field from a break instruction */
210
abc485a1
RC
211unsigned
212hppa_extract_5r_store (unsigned word)
c906108c
SS
213{
214 return (word & MASK_5);
215}
216
217/* extract the immediate field from a {sr}sm instruction */
218
abc485a1
RC
219unsigned
220hppa_extract_5R_store (unsigned word)
c906108c
SS
221{
222 return (word >> 16 & MASK_5);
223}
224
c906108c
SS
225/* extract a 14 bit immediate field */
226
abc485a1
RC
227int
228hppa_extract_14 (unsigned word)
c906108c 229{
abc485a1 230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
231}
232
c906108c
SS
233/* extract a 21 bit constant */
234
abc485a1
RC
235int
236hppa_extract_21 (unsigned word)
c906108c
SS
237{
238 int val;
239
240 word &= MASK_21;
241 word <<= 11;
abc485a1 242 val = hppa_get_field (word, 20, 20);
c906108c 243 val <<= 11;
abc485a1 244 val |= hppa_get_field (word, 9, 19);
c906108c 245 val <<= 2;
abc485a1 246 val |= hppa_get_field (word, 5, 6);
c906108c 247 val <<= 5;
abc485a1 248 val |= hppa_get_field (word, 0, 4);
c906108c 249 val <<= 2;
abc485a1
RC
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
252}
253
c906108c
SS
254/* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
abc485a1
RC
257int
258hppa_extract_17 (unsigned word)
c906108c 259{
abc485a1
RC
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
263 (word & 0x1) << 16, 17) << 2;
264}
3388d7ff
RC
265
266CORE_ADDR
267hppa_symbol_address(const char *sym)
268{
269 struct minimal_symbol *minsym;
270
271 minsym = lookup_minimal_symbol (sym, NULL, NULL);
272 if (minsym)
273 return SYMBOL_VALUE_ADDRESS (minsym);
274 else
275 return (CORE_ADDR)-1;
276}
c906108c
SS
277\f
278
279/* Compare the start address for two unwind entries returning 1 if
280 the first address is larger than the second, -1 if the second is
281 larger than the first, and zero if they are equal. */
282
283static int
fba45db2 284compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
285{
286 const struct unwind_table_entry *a = arg1;
287 const struct unwind_table_entry *b = arg2;
288
289 if (a->region_start > b->region_start)
290 return 1;
291 else if (a->region_start < b->region_start)
292 return -1;
293 else
294 return 0;
295}
296
53a5351d 297static void
fdd72f95 298record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 299{
fdd72f95 300 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 301 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
302 {
303 bfd_vma value = section->vma - section->filepos;
304 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
305
306 if (value < *low_text_segment_address)
307 *low_text_segment_address = value;
308 }
53a5351d
JM
309}
310
c906108c 311static void
fba45db2
KB
312internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
313 asection *section, unsigned int entries, unsigned int size,
314 CORE_ADDR text_offset)
c906108c
SS
315{
316 /* We will read the unwind entries into temporary memory, then
317 fill in the actual unwind table. */
fdd72f95 318
c906108c
SS
319 if (size > 0)
320 {
321 unsigned long tmp;
322 unsigned i;
323 char *buf = alloca (size);
fdd72f95 324 CORE_ADDR low_text_segment_address;
c906108c 325
fdd72f95 326 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
327 be segment relative offsets instead of absolute addresses.
328
329 Note that when loading a shared library (text_offset != 0) the
330 unwinds are already relative to the text_offset that will be
331 passed in. */
fdd72f95 332 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 333 {
fdd72f95
RC
334 low_text_segment_address = -1;
335
53a5351d 336 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
337 record_text_segment_lowaddr,
338 &low_text_segment_address);
53a5351d 339
fdd72f95 340 text_offset = low_text_segment_address;
53a5351d
JM
341 }
342
c906108c
SS
343 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
344
345 /* Now internalize the information being careful to handle host/target
c5aa993b 346 endian issues. */
c906108c
SS
347 for (i = 0; i < entries; i++)
348 {
349 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 350 (bfd_byte *) buf);
c906108c
SS
351 table[i].region_start += text_offset;
352 buf += 4;
c5aa993b 353 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
354 table[i].region_end += text_offset;
355 buf += 4;
c5aa993b 356 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
357 buf += 4;
358 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
359 table[i].Millicode = (tmp >> 30) & 0x1;
360 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
361 table[i].Region_description = (tmp >> 27) & 0x3;
362 table[i].reserved1 = (tmp >> 26) & 0x1;
363 table[i].Entry_SR = (tmp >> 25) & 0x1;
364 table[i].Entry_FR = (tmp >> 21) & 0xf;
365 table[i].Entry_GR = (tmp >> 16) & 0x1f;
366 table[i].Args_stored = (tmp >> 15) & 0x1;
367 table[i].Variable_Frame = (tmp >> 14) & 0x1;
368 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
369 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
370 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
371 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
372 table[i].Ada_Region = (tmp >> 9) & 0x1;
373 table[i].cxx_info = (tmp >> 8) & 0x1;
374 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
375 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
376 table[i].reserved2 = (tmp >> 5) & 0x1;
377 table[i].Save_SP = (tmp >> 4) & 0x1;
378 table[i].Save_RP = (tmp >> 3) & 0x1;
379 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
380 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
381 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 382 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
383 buf += 4;
384 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
385 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
386 table[i].Large_frame = (tmp >> 29) & 0x1;
387 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
388 table[i].reserved4 = (tmp >> 27) & 0x1;
389 table[i].Total_frame_size = tmp & 0x7ffffff;
390
c5aa993b 391 /* Stub unwinds are handled elsewhere. */
c906108c
SS
392 table[i].stub_unwind.stub_type = 0;
393 table[i].stub_unwind.padding = 0;
394 }
395 }
396}
397
398/* Read in the backtrace information stored in the `$UNWIND_START$' section of
399 the object file. This info is used mainly by find_unwind_entry() to find
400 out the stack frame size and frame pointer used by procedures. We put
401 everything on the psymbol obstack in the objfile so that it automatically
402 gets freed when the objfile is destroyed. */
403
404static void
fba45db2 405read_unwind_info (struct objfile *objfile)
c906108c 406{
d4f3574e
SS
407 asection *unwind_sec, *stub_unwind_sec;
408 unsigned unwind_size, stub_unwind_size, total_size;
409 unsigned index, unwind_entries;
c906108c
SS
410 unsigned stub_entries, total_entries;
411 CORE_ADDR text_offset;
7c46b9fb
RC
412 struct hppa_unwind_info *ui;
413 struct hppa_objfile_private *obj_private;
c906108c
SS
414
415 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
416 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
417 sizeof (struct hppa_unwind_info));
c906108c
SS
418
419 ui->table = NULL;
420 ui->cache = NULL;
421 ui->last = -1;
422
d4f3574e
SS
423 /* For reasons unknown the HP PA64 tools generate multiple unwinder
424 sections in a single executable. So we just iterate over every
425 section in the BFD looking for unwinder sections intead of trying
426 to do a lookup with bfd_get_section_by_name.
c906108c 427
d4f3574e
SS
428 First determine the total size of the unwind tables so that we
429 can allocate memory in a nice big hunk. */
430 total_entries = 0;
431 for (unwind_sec = objfile->obfd->sections;
432 unwind_sec;
433 unwind_sec = unwind_sec->next)
c906108c 434 {
d4f3574e
SS
435 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
436 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
437 {
438 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
439 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 440
d4f3574e
SS
441 total_entries += unwind_entries;
442 }
c906108c
SS
443 }
444
d4f3574e
SS
445 /* Now compute the size of the stub unwinds. Note the ELF tools do not
446 use stub unwinds at the curren time. */
447 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
448
c906108c
SS
449 if (stub_unwind_sec)
450 {
451 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
452 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
453 }
454 else
455 {
456 stub_unwind_size = 0;
457 stub_entries = 0;
458 }
459
460 /* Compute total number of unwind entries and their total size. */
d4f3574e 461 total_entries += stub_entries;
c906108c
SS
462 total_size = total_entries * sizeof (struct unwind_table_entry);
463
464 /* Allocate memory for the unwind table. */
465 ui->table = (struct unwind_table_entry *)
8b92e4d5 466 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 467 ui->last = total_entries - 1;
c906108c 468
d4f3574e
SS
469 /* Now read in each unwind section and internalize the standard unwind
470 entries. */
c906108c 471 index = 0;
d4f3574e
SS
472 for (unwind_sec = objfile->obfd->sections;
473 unwind_sec;
474 unwind_sec = unwind_sec->next)
475 {
476 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
477 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
478 {
479 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
480 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
481
482 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
483 unwind_entries, unwind_size, text_offset);
484 index += unwind_entries;
485 }
486 }
487
488 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
489 if (stub_unwind_size > 0)
490 {
491 unsigned int i;
492 char *buf = alloca (stub_unwind_size);
493
494 /* Read in the stub unwind entries. */
495 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
496 0, stub_unwind_size);
497
498 /* Now convert them into regular unwind entries. */
499 for (i = 0; i < stub_entries; i++, index++)
500 {
501 /* Clear out the next unwind entry. */
502 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
503
504 /* Convert offset & size into region_start and region_end.
505 Stuff away the stub type into "reserved" fields. */
506 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
507 (bfd_byte *) buf);
508 ui->table[index].region_start += text_offset;
509 buf += 4;
510 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 511 (bfd_byte *) buf);
c906108c
SS
512 buf += 2;
513 ui->table[index].region_end
c5aa993b
JM
514 = ui->table[index].region_start + 4 *
515 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
516 buf += 2;
517 }
518
519 }
520
521 /* Unwind table needs to be kept sorted. */
522 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
523 compare_unwind_entries);
524
525 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
526 obj_private = (struct hppa_objfile_private *)
527 objfile_data (objfile, hppa_objfile_priv_data);
528 if (obj_private == NULL)
c906108c 529 {
7c46b9fb
RC
530 obj_private = (struct hppa_objfile_private *)
531 obstack_alloc (&objfile->objfile_obstack,
532 sizeof (struct hppa_objfile_private));
533 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
c906108c 534 obj_private->unwind_info = NULL;
c5aa993b 535 obj_private->so_info = NULL;
53a5351d 536 obj_private->dp = 0;
c906108c 537 }
c906108c
SS
538 obj_private->unwind_info = ui;
539}
540
541/* Lookup the unwind (stack backtrace) info for the given PC. We search all
542 of the objfiles seeking the unwind table entry for this PC. Each objfile
543 contains a sorted list of struct unwind_table_entry. Since we do a binary
544 search of the unwind tables, we depend upon them to be sorted. */
545
546struct unwind_table_entry *
fba45db2 547find_unwind_entry (CORE_ADDR pc)
c906108c
SS
548{
549 int first, middle, last;
550 struct objfile *objfile;
7c46b9fb 551 struct hppa_objfile_private *priv;
c906108c 552
369aa520
RC
553 if (hppa_debug)
554 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
555 paddr_nz (pc));
556
c906108c
SS
557 /* A function at address 0? Not in HP-UX! */
558 if (pc == (CORE_ADDR) 0)
369aa520
RC
559 {
560 if (hppa_debug)
561 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
562 return NULL;
563 }
c906108c
SS
564
565 ALL_OBJFILES (objfile)
c5aa993b 566 {
7c46b9fb 567 struct hppa_unwind_info *ui;
c5aa993b 568 ui = NULL;
7c46b9fb
RC
569 priv = objfile_data (objfile, hppa_objfile_priv_data);
570 if (priv)
571 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 572
c5aa993b
JM
573 if (!ui)
574 {
575 read_unwind_info (objfile);
7c46b9fb
RC
576 priv = objfile_data (objfile, hppa_objfile_priv_data);
577 if (priv == NULL)
104c1213 578 error ("Internal error reading unwind information.");
7c46b9fb 579 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 580 }
c906108c 581
c5aa993b 582 /* First, check the cache */
c906108c 583
c5aa993b
JM
584 if (ui->cache
585 && pc >= ui->cache->region_start
586 && pc <= ui->cache->region_end)
369aa520
RC
587 {
588 if (hppa_debug)
589 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
590 paddr_nz ((CORE_ADDR) ui->cache));
591 return ui->cache;
592 }
c906108c 593
c5aa993b 594 /* Not in the cache, do a binary search */
c906108c 595
c5aa993b
JM
596 first = 0;
597 last = ui->last;
c906108c 598
c5aa993b
JM
599 while (first <= last)
600 {
601 middle = (first + last) / 2;
602 if (pc >= ui->table[middle].region_start
603 && pc <= ui->table[middle].region_end)
604 {
605 ui->cache = &ui->table[middle];
369aa520
RC
606 if (hppa_debug)
607 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
608 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
609 return &ui->table[middle];
610 }
c906108c 611
c5aa993b
JM
612 if (pc < ui->table[middle].region_start)
613 last = middle - 1;
614 else
615 first = middle + 1;
616 }
617 } /* ALL_OBJFILES() */
369aa520
RC
618
619 if (hppa_debug)
620 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
621
c906108c
SS
622 return NULL;
623}
624
85f4f2d8 625static const unsigned char *
aaab4dba
AC
626hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
627{
56132691 628 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
629 (*len) = sizeof (breakpoint);
630 return breakpoint;
631}
632
e23457df
AC
633/* Return the name of a register. */
634
635const char *
3ff7cf9e 636hppa32_register_name (int i)
e23457df
AC
637{
638 static char *names[] = {
639 "flags", "r1", "rp", "r3",
640 "r4", "r5", "r6", "r7",
641 "r8", "r9", "r10", "r11",
642 "r12", "r13", "r14", "r15",
643 "r16", "r17", "r18", "r19",
644 "r20", "r21", "r22", "r23",
645 "r24", "r25", "r26", "dp",
646 "ret0", "ret1", "sp", "r31",
647 "sar", "pcoqh", "pcsqh", "pcoqt",
648 "pcsqt", "eiem", "iir", "isr",
649 "ior", "ipsw", "goto", "sr4",
650 "sr0", "sr1", "sr2", "sr3",
651 "sr5", "sr6", "sr7", "cr0",
652 "cr8", "cr9", "ccr", "cr12",
653 "cr13", "cr24", "cr25", "cr26",
654 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
655 "fpsr", "fpe1", "fpe2", "fpe3",
656 "fpe4", "fpe5", "fpe6", "fpe7",
657 "fr4", "fr4R", "fr5", "fr5R",
658 "fr6", "fr6R", "fr7", "fr7R",
659 "fr8", "fr8R", "fr9", "fr9R",
660 "fr10", "fr10R", "fr11", "fr11R",
661 "fr12", "fr12R", "fr13", "fr13R",
662 "fr14", "fr14R", "fr15", "fr15R",
663 "fr16", "fr16R", "fr17", "fr17R",
664 "fr18", "fr18R", "fr19", "fr19R",
665 "fr20", "fr20R", "fr21", "fr21R",
666 "fr22", "fr22R", "fr23", "fr23R",
667 "fr24", "fr24R", "fr25", "fr25R",
668 "fr26", "fr26R", "fr27", "fr27R",
669 "fr28", "fr28R", "fr29", "fr29R",
670 "fr30", "fr30R", "fr31", "fr31R"
671 };
672 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
673 return NULL;
674 else
675 return names[i];
676}
677
678const char *
679hppa64_register_name (int i)
680{
681 static char *names[] = {
682 "flags", "r1", "rp", "r3",
683 "r4", "r5", "r6", "r7",
684 "r8", "r9", "r10", "r11",
685 "r12", "r13", "r14", "r15",
686 "r16", "r17", "r18", "r19",
687 "r20", "r21", "r22", "r23",
688 "r24", "r25", "r26", "dp",
689 "ret0", "ret1", "sp", "r31",
690 "sar", "pcoqh", "pcsqh", "pcoqt",
691 "pcsqt", "eiem", "iir", "isr",
692 "ior", "ipsw", "goto", "sr4",
693 "sr0", "sr1", "sr2", "sr3",
694 "sr5", "sr6", "sr7", "cr0",
695 "cr8", "cr9", "ccr", "cr12",
696 "cr13", "cr24", "cr25", "cr26",
697 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
698 "fpsr", "fpe1", "fpe2", "fpe3",
699 "fr4", "fr5", "fr6", "fr7",
700 "fr8", "fr9", "fr10", "fr11",
701 "fr12", "fr13", "fr14", "fr15",
702 "fr16", "fr17", "fr18", "fr19",
703 "fr20", "fr21", "fr22", "fr23",
704 "fr24", "fr25", "fr26", "fr27",
705 "fr28", "fr29", "fr30", "fr31"
706 };
707 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
708 return NULL;
709 else
710 return names[i];
711}
712
79508e1e
AC
713/* This function pushes a stack frame with arguments as part of the
714 inferior function calling mechanism.
715
716 This is the version of the function for the 32-bit PA machines, in
717 which later arguments appear at lower addresses. (The stack always
718 grows towards higher addresses.)
719
720 We simply allocate the appropriate amount of stack space and put
721 arguments into their proper slots. */
722
723CORE_ADDR
7d9b040b 724hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
725 struct regcache *regcache, CORE_ADDR bp_addr,
726 int nargs, struct value **args, CORE_ADDR sp,
727 int struct_return, CORE_ADDR struct_addr)
728{
79508e1e
AC
729 /* Stack base address at which any pass-by-reference parameters are
730 stored. */
731 CORE_ADDR struct_end = 0;
732 /* Stack base address at which the first parameter is stored. */
733 CORE_ADDR param_end = 0;
734
735 /* The inner most end of the stack after all the parameters have
736 been pushed. */
737 CORE_ADDR new_sp = 0;
738
739 /* Two passes. First pass computes the location of everything,
740 second pass writes the bytes out. */
741 int write_pass;
d49771ef
RC
742
743 /* Global pointer (r19) of the function we are trying to call. */
744 CORE_ADDR gp;
745
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
747
79508e1e
AC
748 for (write_pass = 0; write_pass < 2; write_pass++)
749 {
1797a8f6 750 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
751 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
752 struct_ptr is adjusted for each argument below, so the first
753 argument will end up at sp-36. */
754 CORE_ADDR param_ptr = 32;
79508e1e 755 int i;
2a6228ef
RC
756 int small_struct = 0;
757
79508e1e
AC
758 for (i = 0; i < nargs; i++)
759 {
760 struct value *arg = args[i];
761 struct type *type = check_typedef (VALUE_TYPE (arg));
762 /* The corresponding parameter that is pushed onto the
763 stack, and [possibly] passed in a register. */
764 char param_val[8];
765 int param_len;
766 memset (param_val, 0, sizeof param_val);
767 if (TYPE_LENGTH (type) > 8)
768 {
769 /* Large parameter, pass by reference. Store the value
770 in "struct" area and then pass its address. */
771 param_len = 4;
1797a8f6 772 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 773 if (write_pass)
1797a8f6 774 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
79508e1e 775 TYPE_LENGTH (type));
1797a8f6 776 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
777 }
778 else if (TYPE_CODE (type) == TYPE_CODE_INT
779 || TYPE_CODE (type) == TYPE_CODE_ENUM)
780 {
781 /* Integer value store, right aligned. "unpack_long"
782 takes care of any sign-extension problems. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
784 store_unsigned_integer (param_val, param_len,
785 unpack_long (type,
786 VALUE_CONTENTS (arg)));
787 }
2a6228ef
RC
788 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
789 {
790 /* Floating point value store, right aligned. */
791 param_len = align_up (TYPE_LENGTH (type), 4);
792 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
793 }
79508e1e
AC
794 else
795 {
79508e1e 796 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
797
798 /* Small struct value are stored right-aligned. */
79508e1e
AC
799 memcpy (param_val + param_len - TYPE_LENGTH (type),
800 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
2a6228ef
RC
801
802 /* Structures of size 5, 6 and 7 bytes are special in that
803 the higher-ordered word is stored in the lower-ordered
804 argument, and even though it is a 8-byte quantity the
805 registers need not be 8-byte aligned. */
1b07b470 806 if (param_len > 4 && param_len < 8)
2a6228ef 807 small_struct = 1;
79508e1e 808 }
2a6228ef 809
1797a8f6 810 param_ptr += param_len;
2a6228ef
RC
811 if (param_len == 8 && !small_struct)
812 param_ptr = align_up (param_ptr, 8);
813
814 /* First 4 non-FP arguments are passed in gr26-gr23.
815 First 4 32-bit FP arguments are passed in fr4L-fr7L.
816 First 2 64-bit FP arguments are passed in fr5 and fr7.
817
818 The rest go on the stack, starting at sp-36, towards lower
819 addresses. 8-byte arguments must be aligned to a 8-byte
820 stack boundary. */
79508e1e
AC
821 if (write_pass)
822 {
1797a8f6 823 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
824
825 /* There are some cases when we don't know the type
826 expected by the callee (e.g. for variadic functions), so
827 pass the parameters in both general and fp regs. */
828 if (param_ptr <= 48)
79508e1e 829 {
2a6228ef
RC
830 int grreg = 26 - (param_ptr - 36) / 4;
831 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
832 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
833
834 regcache_cooked_write (regcache, grreg, param_val);
835 regcache_cooked_write (regcache, fpLreg, param_val);
836
79508e1e 837 if (param_len > 4)
2a6228ef
RC
838 {
839 regcache_cooked_write (regcache, grreg + 1,
840 param_val + 4);
841
842 regcache_cooked_write (regcache, fpreg, param_val);
843 regcache_cooked_write (regcache, fpreg + 1,
844 param_val + 4);
845 }
79508e1e
AC
846 }
847 }
848 }
849
850 /* Update the various stack pointers. */
851 if (!write_pass)
852 {
2a6228ef 853 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
854 /* PARAM_PTR already accounts for all the arguments passed
855 by the user. However, the ABI mandates minimum stack
856 space allocations for outgoing arguments. The ABI also
857 mandates minimum stack alignments which we must
858 preserve. */
2a6228ef 859 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
860 }
861 }
862
863 /* If a structure has to be returned, set up register 28 to hold its
864 address */
865 if (struct_return)
866 write_register (28, struct_addr);
867
d49771ef
RC
868 gp = tdep->find_global_pointer (function);
869
870 if (gp != 0)
871 write_register (19, gp);
872
79508e1e 873 /* Set the return address. */
34f75cc1 874 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 875
c4557624 876 /* Update the Stack Pointer. */
34f75cc1 877 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 878
2a6228ef 879 return param_end;
79508e1e
AC
880}
881
2f690297
AC
882/* This function pushes a stack frame with arguments as part of the
883 inferior function calling mechanism.
884
885 This is the version for the PA64, in which later arguments appear
886 at higher addresses. (The stack always grows towards higher
887 addresses.)
888
889 We simply allocate the appropriate amount of stack space and put
890 arguments into their proper slots.
891
892 This ABI also requires that the caller provide an argument pointer
893 to the callee, so we do that too. */
894
895CORE_ADDR
7d9b040b 896hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
897 struct regcache *regcache, CORE_ADDR bp_addr,
898 int nargs, struct value **args, CORE_ADDR sp,
899 int struct_return, CORE_ADDR struct_addr)
900{
449e1137
AC
901 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
902 reverse engineering testsuite failures. */
2f690297 903
449e1137
AC
904 /* Stack base address at which any pass-by-reference parameters are
905 stored. */
906 CORE_ADDR struct_end = 0;
907 /* Stack base address at which the first parameter is stored. */
908 CORE_ADDR param_end = 0;
2f690297 909
449e1137
AC
910 /* The inner most end of the stack after all the parameters have
911 been pushed. */
912 CORE_ADDR new_sp = 0;
2f690297 913
449e1137
AC
914 /* Two passes. First pass computes the location of everything,
915 second pass writes the bytes out. */
916 int write_pass;
917 for (write_pass = 0; write_pass < 2; write_pass++)
2f690297 918 {
449e1137
AC
919 CORE_ADDR struct_ptr = 0;
920 CORE_ADDR param_ptr = 0;
921 int i;
922 for (i = 0; i < nargs; i++)
2f690297 923 {
449e1137
AC
924 struct value *arg = args[i];
925 struct type *type = check_typedef (VALUE_TYPE (arg));
926 if ((TYPE_CODE (type) == TYPE_CODE_INT
927 || TYPE_CODE (type) == TYPE_CODE_ENUM)
928 && TYPE_LENGTH (type) <= 8)
929 {
930 /* Integer value store, right aligned. "unpack_long"
931 takes care of any sign-extension problems. */
932 param_ptr += 8;
933 if (write_pass)
934 {
935 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
936 int reg = 27 - param_ptr / 8;
937 write_memory_unsigned_integer (param_end - param_ptr,
938 val, 8);
939 if (reg >= 19)
940 regcache_cooked_write_unsigned (regcache, reg, val);
941 }
942 }
943 else
944 {
945 /* Small struct value, store left aligned? */
946 int reg;
947 if (TYPE_LENGTH (type) > 8)
948 {
949 param_ptr = align_up (param_ptr, 16);
950 reg = 26 - param_ptr / 8;
951 param_ptr += align_up (TYPE_LENGTH (type), 16);
952 }
953 else
954 {
955 param_ptr = align_up (param_ptr, 8);
956 reg = 26 - param_ptr / 8;
957 param_ptr += align_up (TYPE_LENGTH (type), 8);
958 }
959 if (write_pass)
960 {
961 int byte;
962 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
963 TYPE_LENGTH (type));
964 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
965 {
966 if (reg >= 19)
967 {
968 int len = min (8, TYPE_LENGTH (type) - byte);
969 regcache_cooked_write_part (regcache, reg, 0, len,
970 VALUE_CONTENTS (arg) + byte);
971 }
972 reg--;
973 }
974 }
975 }
2f690297 976 }
449e1137
AC
977 /* Update the various stack pointers. */
978 if (!write_pass)
2f690297 979 {
449e1137
AC
980 struct_end = sp + struct_ptr;
981 /* PARAM_PTR already accounts for all the arguments passed
982 by the user. However, the ABI mandates minimum stack
983 space allocations for outgoing arguments. The ABI also
984 mandates minimum stack alignments which we must
985 preserve. */
d0bd2d18 986 param_end = struct_end + max (align_up (param_ptr, 16), 64);
2f690297 987 }
2f690297
AC
988 }
989
2f690297
AC
990 /* If a structure has to be returned, set up register 28 to hold its
991 address */
992 if (struct_return)
993 write_register (28, struct_addr);
994
2f690297 995 /* Set the return address. */
34f75cc1 996 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 997
c4557624 998 /* Update the Stack Pointer. */
34f75cc1 999 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
c4557624 1000
449e1137
AC
1001 /* The stack will have 32 bytes of additional space for a frame marker. */
1002 return param_end + 64;
2f690297
AC
1003}
1004
d49771ef
RC
1005static CORE_ADDR
1006hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1007 CORE_ADDR addr,
1008 struct target_ops *targ)
1009{
1010 if (addr & 2)
1011 {
1012 CORE_ADDR plabel;
1013
1014 plabel = addr & ~3;
1015 target_read_memory(plabel, (char *)&addr, 4);
1016 }
1017
1018 return addr;
1019}
1020
1797a8f6
AC
1021static CORE_ADDR
1022hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1023{
1024 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1025 and not _bit_)! */
1026 return align_up (addr, 64);
1027}
1028
2f690297
AC
1029/* Force all frames to 16-byte alignment. Better safe than sorry. */
1030
1031static CORE_ADDR
1797a8f6 1032hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1033{
1034 /* Just always 16-byte align. */
1035 return align_up (addr, 16);
1036}
1037
1038
c906108c
SS
1039/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1040 bits. */
1041
8d153463 1042static CORE_ADDR
60383d10 1043hppa_target_read_pc (ptid_t ptid)
c906108c 1044{
34f75cc1 1045 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1046
1047 /* The following test does not belong here. It is OS-specific, and belongs
1048 in native code. */
1049 /* Test SS_INSYSCALL */
1050 if (flags & 2)
39f77062 1051 return read_register_pid (31, ptid) & ~0x3;
c906108c 1052
34f75cc1 1053 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
c906108c
SS
1054}
1055
1056/* Write out the PC. If currently in a syscall, then also write the new
1057 PC value into %r31. */
1058
8d153463 1059static void
60383d10 1060hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 1061{
34f75cc1 1062 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1063
1064 /* The following test does not belong here. It is OS-specific, and belongs
1065 in native code. */
1066 /* If in a syscall, then set %r31. Also make sure to get the
1067 privilege bits set correctly. */
1068 /* Test SS_INSYSCALL */
1069 if (flags & 2)
39f77062 1070 write_register_pid (31, v | 0x3, ptid);
c906108c 1071
34f75cc1
RC
1072 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1073 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
c906108c
SS
1074}
1075
1076/* return the alignment of a type in bytes. Structures have the maximum
1077 alignment required by their fields. */
1078
1079static int
fba45db2 1080hppa_alignof (struct type *type)
c906108c
SS
1081{
1082 int max_align, align, i;
1083 CHECK_TYPEDEF (type);
1084 switch (TYPE_CODE (type))
1085 {
1086 case TYPE_CODE_PTR:
1087 case TYPE_CODE_INT:
1088 case TYPE_CODE_FLT:
1089 return TYPE_LENGTH (type);
1090 case TYPE_CODE_ARRAY:
1091 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1092 case TYPE_CODE_STRUCT:
1093 case TYPE_CODE_UNION:
1094 max_align = 1;
1095 for (i = 0; i < TYPE_NFIELDS (type); i++)
1096 {
1097 /* Bit fields have no real alignment. */
1098 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1099 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1100 {
1101 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1102 max_align = max (max_align, align);
1103 }
1104 }
1105 return max_align;
1106 default:
1107 return 4;
1108 }
1109}
1110
c906108c
SS
1111/* For the given instruction (INST), return any adjustment it makes
1112 to the stack pointer or zero for no adjustment.
1113
1114 This only handles instructions commonly found in prologues. */
1115
1116static int
fba45db2 1117prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1118{
1119 /* This must persist across calls. */
1120 static int save_high21;
1121
1122 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1123 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1124 return hppa_extract_14 (inst);
c906108c
SS
1125
1126 /* stwm X,D(sp) */
1127 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1128 return hppa_extract_14 (inst);
c906108c 1129
104c1213
JM
1130 /* std,ma X,D(sp) */
1131 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1132 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1133
c906108c
SS
1134 /* addil high21,%r1; ldo low11,(%r1),%r30)
1135 save high bits in save_high21 for later use. */
1136 if ((inst & 0xffe00000) == 0x28200000)
1137 {
abc485a1 1138 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1139 return 0;
1140 }
1141
1142 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1143 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1144
1145 /* fstws as used by the HP compilers. */
1146 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1147 return hppa_extract_5_load (inst);
c906108c
SS
1148
1149 /* No adjustment. */
1150 return 0;
1151}
1152
1153/* Return nonzero if INST is a branch of some kind, else return zero. */
1154
1155static int
fba45db2 1156is_branch (unsigned long inst)
c906108c
SS
1157{
1158 switch (inst >> 26)
1159 {
1160 case 0x20:
1161 case 0x21:
1162 case 0x22:
1163 case 0x23:
7be570e7 1164 case 0x27:
c906108c
SS
1165 case 0x28:
1166 case 0x29:
1167 case 0x2a:
1168 case 0x2b:
7be570e7 1169 case 0x2f:
c906108c
SS
1170 case 0x30:
1171 case 0x31:
1172 case 0x32:
1173 case 0x33:
1174 case 0x38:
1175 case 0x39:
1176 case 0x3a:
7be570e7 1177 case 0x3b:
c906108c
SS
1178 return 1;
1179
1180 default:
1181 return 0;
1182 }
1183}
1184
1185/* Return the register number for a GR which is saved by INST or
1186 zero it INST does not save a GR. */
1187
1188static int
fba45db2 1189inst_saves_gr (unsigned long inst)
c906108c
SS
1190{
1191 /* Does it look like a stw? */
7be570e7
JM
1192 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1193 || (inst >> 26) == 0x1f
1194 || ((inst >> 26) == 0x1f
1195 && ((inst >> 6) == 0xa)))
abc485a1 1196 return hppa_extract_5R_store (inst);
7be570e7
JM
1197
1198 /* Does it look like a std? */
1199 if ((inst >> 26) == 0x1c
1200 || ((inst >> 26) == 0x03
1201 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1202 return hppa_extract_5R_store (inst);
c906108c
SS
1203
1204 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1205 if ((inst >> 26) == 0x1b)
abc485a1 1206 return hppa_extract_5R_store (inst);
c906108c
SS
1207
1208 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1209 too. */
7be570e7
JM
1210 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1211 || ((inst >> 26) == 0x3
1212 && (((inst >> 6) & 0xf) == 0x8
1213 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1214 return hppa_extract_5R_store (inst);
c5aa993b 1215
c906108c
SS
1216 return 0;
1217}
1218
1219/* Return the register number for a FR which is saved by INST or
1220 zero it INST does not save a FR.
1221
1222 Note we only care about full 64bit register stores (that's the only
1223 kind of stores the prologue will use).
1224
1225 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1226
1227static int
fba45db2 1228inst_saves_fr (unsigned long inst)
c906108c 1229{
7be570e7 1230 /* is this an FSTD ? */
c906108c 1231 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1232 return hppa_extract_5r_store (inst);
7be570e7 1233 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1234 return hppa_extract_5R_store (inst);
7be570e7 1235 /* is this an FSTW ? */
c906108c 1236 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1237 return hppa_extract_5r_store (inst);
7be570e7 1238 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1239 return hppa_extract_5R_store (inst);
c906108c
SS
1240 return 0;
1241}
1242
1243/* Advance PC across any function entry prologue instructions
1244 to reach some "real" code.
1245
1246 Use information in the unwind table to determine what exactly should
1247 be in the prologue. */
1248
1249
1250CORE_ADDR
fba45db2 1251skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
1252{
1253 char buf[4];
1254 CORE_ADDR orig_pc = pc;
1255 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1256 unsigned long args_stored, status, i, restart_gr, restart_fr;
1257 struct unwind_table_entry *u;
1258
1259 restart_gr = 0;
1260 restart_fr = 0;
1261
1262restart:
1263 u = find_unwind_entry (pc);
1264 if (!u)
1265 return pc;
1266
c5aa993b 1267 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1268 if ((pc & ~0x3) != u->region_start)
1269 return pc;
1270
1271 /* This is how much of a frame adjustment we need to account for. */
1272 stack_remaining = u->Total_frame_size << 3;
1273
1274 /* Magic register saves we want to know about. */
1275 save_rp = u->Save_RP;
1276 save_sp = u->Save_SP;
1277
1278 /* An indication that args may be stored into the stack. Unfortunately
1279 the HPUX compilers tend to set this in cases where no args were
1280 stored too!. */
1281 args_stored = 1;
1282
1283 /* Turn the Entry_GR field into a bitmask. */
1284 save_gr = 0;
1285 for (i = 3; i < u->Entry_GR + 3; i++)
1286 {
1287 /* Frame pointer gets saved into a special location. */
eded0a31 1288 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1289 continue;
1290
1291 save_gr |= (1 << i);
1292 }
1293 save_gr &= ~restart_gr;
1294
1295 /* Turn the Entry_FR field into a bitmask too. */
1296 save_fr = 0;
1297 for (i = 12; i < u->Entry_FR + 12; i++)
1298 save_fr |= (1 << i);
1299 save_fr &= ~restart_fr;
1300
1301 /* Loop until we find everything of interest or hit a branch.
1302
1303 For unoptimized GCC code and for any HP CC code this will never ever
1304 examine any user instructions.
1305
1306 For optimzied GCC code we're faced with problems. GCC will schedule
1307 its prologue and make prologue instructions available for delay slot
1308 filling. The end result is user code gets mixed in with the prologue
1309 and a prologue instruction may be in the delay slot of the first branch
1310 or call.
1311
1312 Some unexpected things are expected with debugging optimized code, so
1313 we allow this routine to walk past user instructions in optimized
1314 GCC code. */
1315 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1316 || args_stored)
1317 {
1318 unsigned int reg_num;
1319 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1320 unsigned long old_save_rp, old_save_sp, next_inst;
1321
1322 /* Save copies of all the triggers so we can compare them later
c5aa993b 1323 (only for HPC). */
c906108c
SS
1324 old_save_gr = save_gr;
1325 old_save_fr = save_fr;
1326 old_save_rp = save_rp;
1327 old_save_sp = save_sp;
1328 old_stack_remaining = stack_remaining;
1329
1f602b35 1330 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c 1331 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1332
c906108c
SS
1333 /* Yow! */
1334 if (status != 0)
1335 return pc;
1336
1337 /* Note the interesting effects of this instruction. */
1338 stack_remaining -= prologue_inst_adjust_sp (inst);
1339
7be570e7
JM
1340 /* There are limited ways to store the return pointer into the
1341 stack. */
1342 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
1343 save_rp = 0;
1344
104c1213 1345 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1346 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1347 if ((inst & 0xffffc000) == 0x6fc10000
1348 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1349 save_sp = 0;
1350
6426a772
JM
1351 /* Are we loading some register with an offset from the argument
1352 pointer? */
1353 if ((inst & 0xffe00000) == 0x37a00000
1354 || (inst & 0xffffffe0) == 0x081d0240)
1355 {
1356 pc += 4;
1357 continue;
1358 }
1359
c906108c
SS
1360 /* Account for general and floating-point register saves. */
1361 reg_num = inst_saves_gr (inst);
1362 save_gr &= ~(1 << reg_num);
1363
1364 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1365 Unfortunately args_stored only tells us that some arguments
1366 where stored into the stack. Not how many or what kind!
c906108c 1367
c5aa993b
JM
1368 This is a kludge as on the HP compiler sets this bit and it
1369 never does prologue scheduling. So once we see one, skip past
1370 all of them. We have similar code for the fp arg stores below.
c906108c 1371
c5aa993b
JM
1372 FIXME. Can still die if we have a mix of GR and FR argument
1373 stores! */
6426a772 1374 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1375 {
6426a772 1376 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1377 {
1378 pc += 4;
1f602b35 1379 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1380 inst = extract_unsigned_integer (buf, 4);
1381 if (status != 0)
1382 return pc;
1383 reg_num = inst_saves_gr (inst);
1384 }
1385 args_stored = 0;
1386 continue;
1387 }
1388
1389 reg_num = inst_saves_fr (inst);
1390 save_fr &= ~(1 << reg_num);
1391
1f602b35 1392 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c 1393 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1394
c906108c
SS
1395 /* Yow! */
1396 if (status != 0)
1397 return pc;
1398
1399 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1400 save. */
c906108c
SS
1401 if ((inst & 0xfc000000) == 0x34000000
1402 && inst_saves_fr (next_inst) >= 4
6426a772 1403 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1404 {
1405 /* So we drop into the code below in a reasonable state. */
1406 reg_num = inst_saves_fr (next_inst);
1407 pc -= 4;
1408 }
1409
1410 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1411 This is a kludge as on the HP compiler sets this bit and it
1412 never does prologue scheduling. So once we see one, skip past
1413 all of them. */
6426a772 1414 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1415 {
6426a772 1416 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1417 {
1418 pc += 8;
1f602b35 1419 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1420 inst = extract_unsigned_integer (buf, 4);
1421 if (status != 0)
1422 return pc;
1423 if ((inst & 0xfc000000) != 0x34000000)
1424 break;
1f602b35 1425 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1426 next_inst = extract_unsigned_integer (buf, 4);
1427 if (status != 0)
1428 return pc;
1429 reg_num = inst_saves_fr (next_inst);
1430 }
1431 args_stored = 0;
1432 continue;
1433 }
1434
1435 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1436 instruction is in the delay slot of the first call/branch. */
c906108c
SS
1437 if (is_branch (inst))
1438 break;
1439
1440 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1441 arguments were stored into the stack (boo hiss). This could
1442 cause this code to then skip a bunch of user insns (up to the
1443 first branch).
1444
1445 To combat this we try to identify when args_stored was bogusly
1446 set and clear it. We only do this when args_stored is nonzero,
1447 all other resources are accounted for, and nothing changed on
1448 this pass. */
c906108c 1449 if (args_stored
c5aa993b 1450 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1451 && old_save_gr == save_gr && old_save_fr == save_fr
1452 && old_save_rp == save_rp && old_save_sp == save_sp
1453 && old_stack_remaining == stack_remaining)
1454 break;
c5aa993b 1455
c906108c
SS
1456 /* Bump the PC. */
1457 pc += 4;
1458 }
1459
1460 /* We've got a tenative location for the end of the prologue. However
1461 because of limitations in the unwind descriptor mechanism we may
1462 have went too far into user code looking for the save of a register
1463 that does not exist. So, if there registers we expected to be saved
1464 but never were, mask them out and restart.
1465
1466 This should only happen in optimized code, and should be very rare. */
c5aa993b 1467 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1468 {
1469 pc = orig_pc;
1470 restart_gr = save_gr;
1471 restart_fr = save_fr;
1472 goto restart;
1473 }
1474
1475 return pc;
1476}
1477
1478
7be570e7
JM
1479/* Return the address of the PC after the last prologue instruction if
1480 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1481
1482static CORE_ADDR
fba45db2 1483after_prologue (CORE_ADDR pc)
c906108c
SS
1484{
1485 struct symtab_and_line sal;
1486 CORE_ADDR func_addr, func_end;
1487 struct symbol *f;
1488
7be570e7
JM
1489 /* If we can not find the symbol in the partial symbol table, then
1490 there is no hope we can determine the function's start address
1491 with this code. */
c906108c 1492 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1493 return 0;
c906108c 1494
7be570e7 1495 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1496 sal = find_pc_line (func_addr, 0);
1497
7be570e7
JM
1498 /* There are only two cases to consider. First, the end of the source line
1499 is within the function bounds. In that case we return the end of the
1500 source line. Second is the end of the source line extends beyond the
1501 bounds of the current function. We need to use the slow code to
1502 examine instructions in that case.
c906108c 1503
7be570e7
JM
1504 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1505 the wrong thing to do. In fact, it should be entirely possible for this
1506 function to always return zero since the slow instruction scanning code
1507 is supposed to *always* work. If it does not, then it is a bug. */
1508 if (sal.end < func_end)
1509 return sal.end;
c5aa993b 1510 else
7be570e7 1511 return 0;
c906108c
SS
1512}
1513
1514/* To skip prologues, I use this predicate. Returns either PC itself
1515 if the code at PC does not look like a function prologue; otherwise
1516 returns an address that (if we're lucky) follows the prologue. If
1517 LENIENT, then we must skip everything which is involved in setting
1518 up the frame (it's OK to skip more, just so long as we don't skip
1519 anything which might clobber the registers which are being saved.
1520 Currently we must not skip more on the alpha, but we might the lenient
1521 stuff some day. */
1522
8d153463 1523static CORE_ADDR
fba45db2 1524hppa_skip_prologue (CORE_ADDR pc)
c906108c 1525{
c5aa993b
JM
1526 unsigned long inst;
1527 int offset;
1528 CORE_ADDR post_prologue_pc;
1529 char buf[4];
c906108c 1530
c5aa993b
JM
1531 /* See if we can determine the end of the prologue via the symbol table.
1532 If so, then return either PC, or the PC after the prologue, whichever
1533 is greater. */
c906108c 1534
c5aa993b 1535 post_prologue_pc = after_prologue (pc);
c906108c 1536
7be570e7
JM
1537 /* If after_prologue returned a useful address, then use it. Else
1538 fall back on the instruction skipping code.
1539
1540 Some folks have claimed this causes problems because the breakpoint
1541 may be the first instruction of the prologue. If that happens, then
1542 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1543 if (post_prologue_pc != 0)
1544 return max (pc, post_prologue_pc);
c5aa993b
JM
1545 else
1546 return (skip_prologue_hard_way (pc));
c906108c
SS
1547}
1548
26d08f08
AC
1549struct hppa_frame_cache
1550{
1551 CORE_ADDR base;
1552 struct trad_frame_saved_reg *saved_regs;
1553};
1554
1555static struct hppa_frame_cache *
1556hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1557{
1558 struct hppa_frame_cache *cache;
1559 long saved_gr_mask;
1560 long saved_fr_mask;
1561 CORE_ADDR this_sp;
1562 long frame_size;
1563 struct unwind_table_entry *u;
9f7194c3 1564 CORE_ADDR prologue_end;
26d08f08
AC
1565 int i;
1566
369aa520
RC
1567 if (hppa_debug)
1568 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1569 frame_relative_level(next_frame));
1570
26d08f08 1571 if ((*this_cache) != NULL)
369aa520
RC
1572 {
1573 if (hppa_debug)
1574 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1575 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1576 return (*this_cache);
1577 }
26d08f08
AC
1578 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1579 (*this_cache) = cache;
1580 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1581
1582 /* Yow! */
1583 u = find_unwind_entry (frame_func_unwind (next_frame));
1584 if (!u)
369aa520
RC
1585 {
1586 if (hppa_debug)
1587 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1588 return (*this_cache);
1589 }
26d08f08
AC
1590
1591 /* Turn the Entry_GR field into a bitmask. */
1592 saved_gr_mask = 0;
1593 for (i = 3; i < u->Entry_GR + 3; i++)
1594 {
1595 /* Frame pointer gets saved into a special location. */
eded0a31 1596 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1597 continue;
1598
1599 saved_gr_mask |= (1 << i);
1600 }
1601
1602 /* Turn the Entry_FR field into a bitmask too. */
1603 saved_fr_mask = 0;
1604 for (i = 12; i < u->Entry_FR + 12; i++)
1605 saved_fr_mask |= (1 << i);
1606
1607 /* Loop until we find everything of interest or hit a branch.
1608
1609 For unoptimized GCC code and for any HP CC code this will never ever
1610 examine any user instructions.
1611
1612 For optimized GCC code we're faced with problems. GCC will schedule
1613 its prologue and make prologue instructions available for delay slot
1614 filling. The end result is user code gets mixed in with the prologue
1615 and a prologue instruction may be in the delay slot of the first branch
1616 or call.
1617
1618 Some unexpected things are expected with debugging optimized code, so
1619 we allow this routine to walk past user instructions in optimized
1620 GCC code. */
1621 {
1622 int final_iteration = 0;
9f7194c3 1623 CORE_ADDR pc, end_pc;
26d08f08
AC
1624 int looking_for_sp = u->Save_SP;
1625 int looking_for_rp = u->Save_RP;
1626 int fp_loc = -1;
9f7194c3
RC
1627
1628 /* We have to use hppa_skip_prologue instead of just
1629 skip_prologue_using_sal, in case we stepped into a function without
1630 symbol information. hppa_skip_prologue also bounds the returned
1631 pc by the passed in pc, so it will not return a pc in the next
1632 function. */
1633 prologue_end = hppa_skip_prologue (frame_func_unwind (next_frame));
1634 end_pc = frame_pc_unwind (next_frame);
1635
1636 if (prologue_end != 0 && end_pc > prologue_end)
1637 end_pc = prologue_end;
1638
26d08f08 1639 frame_size = 0;
9f7194c3 1640
26d08f08
AC
1641 for (pc = frame_func_unwind (next_frame);
1642 ((saved_gr_mask || saved_fr_mask
1643 || looking_for_sp || looking_for_rp
1644 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1645 && pc < end_pc);
26d08f08
AC
1646 pc += 4)
1647 {
1648 int reg;
1649 char buf4[4];
1f602b35 1650 long status = deprecated_read_memory_nobpt (pc, buf4, sizeof buf4);
26d08f08 1651 long inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1652
26d08f08
AC
1653 /* Note the interesting effects of this instruction. */
1654 frame_size += prologue_inst_adjust_sp (inst);
1655
1656 /* There are limited ways to store the return pointer into the
1657 stack. */
1658 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1659 {
1660 looking_for_rp = 0;
34f75cc1 1661 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1662 }
dfaf8edb
MK
1663 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1664 {
1665 looking_for_rp = 0;
1666 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1667 }
26d08f08
AC
1668 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1669 {
1670 looking_for_rp = 0;
34f75cc1 1671 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1672 }
1673
1674 /* Check to see if we saved SP into the stack. This also
1675 happens to indicate the location of the saved frame
1676 pointer. */
1677 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1678 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1679 {
1680 looking_for_sp = 0;
eded0a31 1681 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08
AC
1682 }
1683
1684 /* Account for general and floating-point register saves. */
1685 reg = inst_saves_gr (inst);
1686 if (reg >= 3 && reg <= 18
eded0a31 1687 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1688 {
1689 saved_gr_mask &= ~(1 << reg);
abc485a1 1690 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1691 /* stwm with a positive displacement is a _post_
1692 _modify_. */
1693 cache->saved_regs[reg].addr = 0;
1694 else if ((inst & 0xfc00000c) == 0x70000008)
1695 /* A std has explicit post_modify forms. */
1696 cache->saved_regs[reg].addr = 0;
1697 else
1698 {
1699 CORE_ADDR offset;
1700
1701 if ((inst >> 26) == 0x1c)
1702 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1703 else if ((inst >> 26) == 0x03)
abc485a1 1704 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1705 else
abc485a1 1706 offset = hppa_extract_14 (inst);
26d08f08
AC
1707
1708 /* Handle code with and without frame pointers. */
1709 if (u->Save_SP)
1710 cache->saved_regs[reg].addr = offset;
1711 else
1712 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1713 }
1714 }
1715
1716 /* GCC handles callee saved FP regs a little differently.
1717
1718 It emits an instruction to put the value of the start of
1719 the FP store area into %r1. It then uses fstds,ma with a
1720 basereg of %r1 for the stores.
1721
1722 HP CC emits them at the current stack pointer modifying the
1723 stack pointer as it stores each register. */
1724
1725 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1726 if ((inst & 0xffffc000) == 0x34610000
1727 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 1728 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
1729
1730 reg = inst_saves_fr (inst);
1731 if (reg >= 12 && reg <= 21)
1732 {
1733 /* Note +4 braindamage below is necessary because the FP
1734 status registers are internally 8 registers rather than
1735 the expected 4 registers. */
1736 saved_fr_mask &= ~(1 << reg);
1737 if (fp_loc == -1)
1738 {
1739 /* 1st HP CC FP register store. After this
1740 instruction we've set enough state that the GCC and
1741 HPCC code are both handled in the same manner. */
34f75cc1 1742 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
1743 fp_loc = 8;
1744 }
1745 else
1746 {
eded0a31 1747 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
1748 fp_loc += 8;
1749 }
1750 }
1751
1752 /* Quit if we hit any kind of branch the previous iteration. */
1753 if (final_iteration)
1754 break;
1755 /* We want to look precisely one instruction beyond the branch
1756 if we have not found everything yet. */
1757 if (is_branch (inst))
1758 final_iteration = 1;
1759 }
1760 }
1761
1762 {
1763 /* The frame base always represents the value of %sp at entry to
1764 the current function (and is thus equivalent to the "saved"
1765 stack pointer. */
eded0a31 1766 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 1767 CORE_ADDR fp;
9f7194c3
RC
1768
1769 if (hppa_debug)
1770 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1771 "prologue_end=0x%s) ",
1772 paddr_nz (this_sp),
1773 paddr_nz (frame_pc_unwind (next_frame)),
1774 paddr_nz (prologue_end));
1775
ed70ba00
RC
1776 /* Check to see if a frame pointer is available, and use it for
1777 frame unwinding if it is.
1778
1779 There are some situations where we need to rely on the frame
1780 pointer to do stack unwinding. For example, if a function calls
1781 alloca (), the stack pointer can get adjusted inside the body of
1782 the function. In this case, the ABI requires that the compiler
1783 maintain a frame pointer for the function.
1784
1785 The unwind record has a flag (alloca_frame) that indicates that
1786 a function has a variable frame; unfortunately, gcc/binutils
1787 does not set this flag. Instead, whenever a frame pointer is used
1788 and saved on the stack, the Save_SP flag is set. We use this to
1789 decide whether to use the frame pointer for unwinding.
1790
1658da49
RC
1791 fp may be zero if it is not available in an inner frame because
1792 it has been modified by not yet saved.
ed70ba00
RC
1793
1794 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1795 instead of Save_SP. */
1796
1797 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1798
1799 if (frame_pc_unwind (next_frame) >= prologue_end
1800 && u->Save_SP && fp != 0)
1801 {
1802 cache->base = fp;
1803
1804 if (hppa_debug)
1805 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1806 paddr_nz (cache->base));
1807 }
1658da49
RC
1808 else if (u->Save_SP
1809 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 1810 {
9f7194c3
RC
1811 /* Both we're expecting the SP to be saved and the SP has been
1812 saved. The entry SP value is saved at this frame's SP
1813 address. */
1814 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1815
1816 if (hppa_debug)
1817 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1818 paddr_nz (cache->base));
9f7194c3 1819 }
26d08f08 1820 else
9f7194c3 1821 {
1658da49
RC
1822 /* The prologue has been slowly allocating stack space. Adjust
1823 the SP back. */
1824 cache->base = this_sp - frame_size;
9f7194c3 1825 if (hppa_debug)
1658da49 1826 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
9f7194c3
RC
1827 paddr_nz (cache->base));
1828
1829 }
eded0a31 1830 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
1831 }
1832
412275d5
AC
1833 /* The PC is found in the "return register", "Millicode" uses "r31"
1834 as the return register while normal code uses "rp". */
26d08f08 1835 if (u->Millicode)
9f7194c3 1836 {
5859efe5 1837 if (trad_frame_addr_p (cache->saved_regs, 31))
34f75cc1 1838 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
9f7194c3
RC
1839 else
1840 {
1841 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 1842 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9f7194c3
RC
1843 }
1844 }
26d08f08 1845 else
9f7194c3 1846 {
34f75cc1
RC
1847 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1848 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
9f7194c3
RC
1849 else
1850 {
34f75cc1
RC
1851 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1852 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9f7194c3
RC
1853 }
1854 }
26d08f08 1855
1658da49
RC
1856 /* If the frame pointer was not saved in this frame, but we should be saving
1857 it, set it to an invalid value so that another frame will not pick up the
1858 wrong frame pointer. This can happen if we start unwinding after the
1859 frame pointer has been modified, but before we've saved it to the
1860 stack. */
1861 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM))
1862 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, 0);
1863
26d08f08
AC
1864 {
1865 /* Convert all the offsets into addresses. */
1866 int reg;
1867 for (reg = 0; reg < NUM_REGS; reg++)
1868 {
1869 if (trad_frame_addr_p (cache->saved_regs, reg))
1870 cache->saved_regs[reg].addr += cache->base;
1871 }
1872 }
1873
369aa520
RC
1874 if (hppa_debug)
1875 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1876 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
1877 return (*this_cache);
1878}
1879
1880static void
1881hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1882 struct frame_id *this_id)
1883{
1884 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1885 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1886}
1887
1888static void
1889hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
1890 void **this_cache,
1891 int regnum, int *optimizedp,
1892 enum lval_type *lvalp, CORE_ADDR *addrp,
1893 int *realnump, void *valuep)
26d08f08
AC
1894{
1895 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
1896 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1897 optimizedp, lvalp, addrp, realnump, valuep);
1898}
1899
1900static const struct frame_unwind hppa_frame_unwind =
1901{
1902 NORMAL_FRAME,
1903 hppa_frame_this_id,
1904 hppa_frame_prev_register
1905};
1906
1907static const struct frame_unwind *
1908hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1909{
1910 CORE_ADDR pc = frame_pc_unwind (next_frame);
1911
1912 if (find_unwind_entry (pc))
1913 return &hppa_frame_unwind;
1914
1915 return NULL;
1916}
1917
1918/* This is a generic fallback frame unwinder that kicks in if we fail all
1919 the other ones. Normally we would expect the stub and regular unwinder
1920 to work, but in some cases we might hit a function that just doesn't
1921 have any unwind information available. In this case we try to do
1922 unwinding solely based on code reading. This is obviously going to be
1923 slow, so only use this as a last resort. Currently this will only
1924 identify the stack and pc for the frame. */
1925
1926static struct hppa_frame_cache *
1927hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1928{
1929 struct hppa_frame_cache *cache;
6d1be3f1 1930 unsigned int frame_size;
0da28f8a
RC
1931 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1932
1933 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1934 (*this_cache) = cache;
1935 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1936
1937 pc = frame_func_unwind (next_frame);
1938 cur_pc = frame_pc_unwind (next_frame);
6d1be3f1 1939 frame_size = 0;
0da28f8a
RC
1940
1941 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1942
1943 if (start_pc == 0 || end_pc == 0)
412275d5 1944 {
0da28f8a
RC
1945 error ("Cannot find bounds of current function (@0x%s), unwinding will "
1946 "fail.", paddr_nz (pc));
1947 return cache;
1948 }
1949
1950 if (end_pc > cur_pc)
1951 end_pc = cur_pc;
1952
1953 for (pc = start_pc; pc < end_pc; pc += 4)
1954 {
1955 unsigned int insn;
1956
1957 insn = read_memory_unsigned_integer (pc, 4);
1958
6d1be3f1
RC
1959 frame_size += prologue_inst_adjust_sp (insn);
1960
0da28f8a
RC
1961 /* There are limited ways to store the return pointer into the
1962 stack. */
1963 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
6d1be3f1 1964 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
0da28f8a 1965 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
6d1be3f1 1966 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
412275d5 1967 }
0da28f8a 1968
6d1be3f1
RC
1969 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
1970 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
1971
1972 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1973 {
1974 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
1975 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1976 }
412275d5
AC
1977 else
1978 {
0da28f8a
RC
1979 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1980 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 1981 }
0da28f8a
RC
1982
1983 return cache;
26d08f08
AC
1984}
1985
0da28f8a
RC
1986static void
1987hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
1988 struct frame_id *this_id)
1989{
1990 struct hppa_frame_cache *info =
1991 hppa_fallback_frame_cache (next_frame, this_cache);
1992 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1993}
1994
1995static void
1996hppa_fallback_frame_prev_register (struct frame_info *next_frame,
1997 void **this_cache,
1998 int regnum, int *optimizedp,
1999 enum lval_type *lvalp, CORE_ADDR *addrp,
2000 int *realnump, void *valuep)
2001{
2002 struct hppa_frame_cache *info =
2003 hppa_fallback_frame_cache (next_frame, this_cache);
2004 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2005 optimizedp, lvalp, addrp, realnump, valuep);
2006}
2007
2008static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2009{
2010 NORMAL_FRAME,
0da28f8a
RC
2011 hppa_fallback_frame_this_id,
2012 hppa_fallback_frame_prev_register
26d08f08
AC
2013};
2014
2015static const struct frame_unwind *
0da28f8a 2016hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2017{
0da28f8a 2018 return &hppa_fallback_frame_unwind;
26d08f08
AC
2019}
2020
7f07c5b6
RC
2021/* Stub frames, used for all kinds of call stubs. */
2022struct hppa_stub_unwind_cache
2023{
2024 CORE_ADDR base;
2025 struct trad_frame_saved_reg *saved_regs;
2026};
2027
2028static struct hppa_stub_unwind_cache *
2029hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2030 void **this_cache)
2031{
2032 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2033 struct hppa_stub_unwind_cache *info;
22b0923d 2034 struct unwind_table_entry *u;
7f07c5b6
RC
2035
2036 if (*this_cache)
2037 return *this_cache;
2038
2039 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2040 *this_cache = info;
2041 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2042
7f07c5b6
RC
2043 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2044
090ccbb7 2045 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2046 {
2047 /* HPUX uses export stubs in function calls; the export stub clobbers
2048 the return value of the caller, and, later restores it from the
2049 stack. */
2050 u = find_unwind_entry (frame_pc_unwind (next_frame));
2051
2052 if (u && u->stub_unwind.stub_type == EXPORT)
2053 {
2054 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2055
2056 return info;
2057 }
2058 }
2059
2060 /* By default we assume that stubs do not change the rp. */
2061 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2062
7f07c5b6
RC
2063 return info;
2064}
2065
2066static void
2067hppa_stub_frame_this_id (struct frame_info *next_frame,
2068 void **this_prologue_cache,
2069 struct frame_id *this_id)
2070{
2071 struct hppa_stub_unwind_cache *info
2072 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2073 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2074}
2075
2076static void
2077hppa_stub_frame_prev_register (struct frame_info *next_frame,
2078 void **this_prologue_cache,
2079 int regnum, int *optimizedp,
2080 enum lval_type *lvalp, CORE_ADDR *addrp,
0da28f8a 2081 int *realnump, void *valuep)
7f07c5b6
RC
2082{
2083 struct hppa_stub_unwind_cache *info
2084 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
0da28f8a
RC
2085 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2086 optimizedp, lvalp, addrp, realnump, valuep);
7f07c5b6
RC
2087}
2088
2089static const struct frame_unwind hppa_stub_frame_unwind = {
2090 NORMAL_FRAME,
2091 hppa_stub_frame_this_id,
2092 hppa_stub_frame_prev_register
2093};
2094
2095static const struct frame_unwind *
2096hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2097{
2098 CORE_ADDR pc = frame_pc_unwind (next_frame);
84674fe1
AC
2099 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2101
6d1be3f1 2102 if (pc == 0
84674fe1
AC
2103 || (tdep->in_solib_call_trampoline != NULL
2104 && tdep->in_solib_call_trampoline (pc, NULL))
7f07c5b6
RC
2105 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2106 return &hppa_stub_frame_unwind;
2107 return NULL;
2108}
2109
26d08f08
AC
2110static struct frame_id
2111hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2112{
2113 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2114 HPPA_SP_REGNUM),
26d08f08
AC
2115 frame_pc_unwind (next_frame));
2116}
2117
2118static CORE_ADDR
2119hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2120{
34f75cc1 2121 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
26d08f08
AC
2122}
2123
9a043c1d
AC
2124/* Instead of this nasty cast, add a method pvoid() that prints out a
2125 host VOID data type (remember %p isn't portable). */
2126
2127static CORE_ADDR
2128hppa_pointer_to_address_hack (void *ptr)
2129{
2130 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2131 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2132}
2133
c906108c 2134static void
fba45db2 2135unwind_command (char *exp, int from_tty)
c906108c
SS
2136{
2137 CORE_ADDR address;
2138 struct unwind_table_entry *u;
2139
2140 /* If we have an expression, evaluate it and use it as the address. */
2141
2142 if (exp != 0 && *exp != 0)
2143 address = parse_and_eval_address (exp);
2144 else
2145 return;
2146
2147 u = find_unwind_entry (address);
2148
2149 if (!u)
2150 {
2151 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2152 return;
2153 }
2154
ce414844 2155 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 2156 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
2157
2158 printf_unfiltered ("\tregion_start = ");
2159 print_address (u->region_start, gdb_stdout);
2160
2161 printf_unfiltered ("\n\tregion_end = ");
2162 print_address (u->region_end, gdb_stdout);
2163
c906108c 2164#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2165
2166 printf_unfiltered ("\n\tflags =");
2167 pif (Cannot_unwind);
2168 pif (Millicode);
2169 pif (Millicode_save_sr0);
2170 pif (Entry_SR);
2171 pif (Args_stored);
2172 pif (Variable_Frame);
2173 pif (Separate_Package_Body);
2174 pif (Frame_Extension_Millicode);
2175 pif (Stack_Overflow_Check);
2176 pif (Two_Instruction_SP_Increment);
2177 pif (Ada_Region);
2178 pif (Save_SP);
2179 pif (Save_RP);
2180 pif (Save_MRP_in_frame);
2181 pif (extn_ptr_defined);
2182 pif (Cleanup_defined);
2183 pif (MPE_XL_interrupt_marker);
2184 pif (HP_UX_interrupt_marker);
2185 pif (Large_frame);
2186
2187 putchar_unfiltered ('\n');
2188
c906108c 2189#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2190
2191 pin (Region_description);
2192 pin (Entry_FR);
2193 pin (Entry_GR);
2194 pin (Total_frame_size);
2195}
c906108c 2196
c2c6d25f 2197void
fba45db2 2198hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
2199{
2200 /* To step over a breakpoint instruction on the PA takes some
2201 fiddling with the instruction address queue.
2202
2203 When we stop at a breakpoint, the IA queue front (the instruction
2204 we're executing now) points at the breakpoint instruction, and
2205 the IA queue back (the next instruction to execute) points to
2206 whatever instruction we would execute after the breakpoint, if it
2207 were an ordinary instruction. This is the case even if the
2208 breakpoint is in the delay slot of a branch instruction.
2209
2210 Clearly, to step past the breakpoint, we need to set the queue
2211 front to the back. But what do we put in the back? What
2212 instruction comes after that one? Because of the branch delay
2213 slot, the next insn is always at the back + 4. */
34f75cc1
RC
2214 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2215 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
c2c6d25f 2216
34f75cc1 2217 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
c2c6d25f
JM
2218 /* We can leave the tail's space the same, since there's no jump. */
2219}
2220
d709c020
JB
2221int
2222hppa_pc_requires_run_before_use (CORE_ADDR pc)
2223{
2224 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2225
2226 An example of this occurs when an a.out is linked against a foo.sl.
2227 The foo.sl defines a global bar(), and the a.out declares a signature
2228 for bar(). However, the a.out doesn't directly call bar(), but passes
2229 its address in another call.
2230
2231 If you have this scenario and attempt to "break bar" before running,
2232 gdb will find a minimal symbol for bar() in the a.out. But that
2233 symbol's address will be negative. What this appears to denote is
2234 an index backwards from the base of the procedure linkage table (PLT)
2235 into the data linkage table (DLT), the end of which is contiguous
2236 with the start of the PLT. This is clearly not a valid address for
2237 us to set a breakpoint on.
2238
2239 Note that one must be careful in how one checks for a negative address.
2240 0xc0000000 is a legitimate address of something in a shared text
2241 segment, for example. Since I don't know what the possible range
2242 is of these "really, truly negative" addresses that come from the
2243 minimal symbols, I'm resorting to the gross hack of checking the
2244 top byte of the address for all 1's. Sigh. */
2245
2246 return (!target_has_stack && (pc & 0xFF000000));
2247}
2248
2249int
2250hppa_instruction_nullified (void)
2251{
2252 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2253 avoid the type cast. I'm leaving it as is for now as I'm doing
2254 semi-mechanical multiarching-related changes. */
34f75cc1
RC
2255 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2256 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
d709c020
JB
2257
2258 return ((ipsw & 0x00200000) && !(flags & 0x2));
2259}
2260
d709c020
JB
2261/* Return the GDB type object for the "standard" data type of data
2262 in register N. */
2263
eded0a31
AC
2264static struct type *
2265hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
d709c020 2266{
34f75cc1 2267 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2268 return builtin_type_uint32;
d709c020 2269 else
eded0a31 2270 return builtin_type_ieee_single_big;
d709c020
JB
2271}
2272
3ff7cf9e
JB
2273/* Return the GDB type object for the "standard" data type of data
2274 in register N. hppa64 version. */
2275
eded0a31
AC
2276static struct type *
2277hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
3ff7cf9e 2278{
34f75cc1 2279 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2280 return builtin_type_uint64;
3ff7cf9e 2281 else
eded0a31 2282 return builtin_type_ieee_double_big;
3ff7cf9e
JB
2283}
2284
d709c020
JB
2285/* Return True if REGNUM is not a register available to the user
2286 through ptrace(). */
2287
8d153463 2288static int
d709c020
JB
2289hppa_cannot_store_register (int regnum)
2290{
2291 return (regnum == 0
34f75cc1
RC
2292 || regnum == HPPA_PCSQ_HEAD_REGNUM
2293 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2294 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
d709c020
JB
2295
2296}
2297
8d153463 2298static CORE_ADDR
d709c020
JB
2299hppa_smash_text_address (CORE_ADDR addr)
2300{
2301 /* The low two bits of the PC on the PA contain the privilege level.
2302 Some genius implementing a (non-GCC) compiler apparently decided
2303 this means that "addresses" in a text section therefore include a
2304 privilege level, and thus symbol tables should contain these bits.
2305 This seems like a bonehead thing to do--anyway, it seems to work
2306 for our purposes to just ignore those bits. */
2307
2308 return (addr &= ~0x3);
2309}
2310
143985b7
AF
2311/* Get the ith function argument for the current function. */
2312CORE_ADDR
2313hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2314 struct type *type)
2315{
2316 CORE_ADDR addr;
34f75cc1 2317 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
143985b7
AF
2318 return addr;
2319}
2320
0f8d9d59
RC
2321static void
2322hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2323 int regnum, void *buf)
2324{
2325 ULONGEST tmp;
2326
2327 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2328 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59
RC
2329 tmp &= ~0x3;
2330 store_unsigned_integer (buf, sizeof(tmp), tmp);
2331}
2332
d49771ef
RC
2333static CORE_ADDR
2334hppa_find_global_pointer (struct value *function)
2335{
2336 return 0;
2337}
2338
0da28f8a
RC
2339void
2340hppa_frame_prev_register_helper (struct frame_info *next_frame,
2341 struct trad_frame_saved_reg saved_regs[],
2342 int regnum, int *optimizedp,
2343 enum lval_type *lvalp, CORE_ADDR *addrp,
2344 int *realnump, void *valuep)
2345{
8693c419
MK
2346 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2347 {
2348 if (valuep)
2349 {
2350 CORE_ADDR pc;
0da28f8a 2351
1f67027d
AC
2352 trad_frame_get_prev_register (next_frame, saved_regs,
2353 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2354 lvalp, addrp, realnump, valuep);
8693c419
MK
2355
2356 pc = extract_unsigned_integer (valuep, 4);
2357 store_unsigned_integer (valuep, 4, pc + 4);
2358 }
2359
2360 /* It's a computed value. */
2361 *optimizedp = 0;
2362 *lvalp = not_lval;
2363 *addrp = 0;
2364 *realnump = -1;
2365 return;
2366 }
0da28f8a 2367
1f67027d
AC
2368 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2369 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2370}
8693c419 2371\f
0da28f8a 2372
8e8b2dba
MC
2373/* Here is a table of C type sizes on hppa with various compiles
2374 and options. I measured this on PA 9000/800 with HP-UX 11.11
2375 and these compilers:
2376
2377 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2378 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2379 /opt/aCC/bin/aCC B3910B A.03.45
2380 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2381
2382 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2383 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2384 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2385 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2386 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2387 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2388 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2389 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2390
2391 Each line is:
2392
2393 compiler and options
2394 char, short, int, long, long long
2395 float, double, long double
2396 char *, void (*)()
2397
2398 So all these compilers use either ILP32 or LP64 model.
2399 TODO: gcc has more options so it needs more investigation.
2400
a2379359
MC
2401 For floating point types, see:
2402
2403 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2404 HP-UX floating-point guide, hpux 11.00
2405
8e8b2dba
MC
2406 -- chastain 2003-12-18 */
2407
e6e68f1f
JB
2408static struct gdbarch *
2409hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2410{
3ff7cf9e 2411 struct gdbarch_tdep *tdep;
e6e68f1f 2412 struct gdbarch *gdbarch;
59623e27
JB
2413
2414 /* Try to determine the ABI of the object we are loading. */
4be87837 2415 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2416 {
4be87837
DJ
2417 /* If it's a SOM file, assume it's HP/UX SOM. */
2418 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2419 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2420 }
e6e68f1f
JB
2421
2422 /* find a candidate among the list of pre-declared architectures. */
2423 arches = gdbarch_list_lookup_by_info (arches, &info);
2424 if (arches != NULL)
2425 return (arches->gdbarch);
2426
2427 /* If none found, then allocate and initialize one. */
fdd72f95 2428 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
2429 gdbarch = gdbarch_alloc (&info, tdep);
2430
2431 /* Determine from the bfd_arch_info structure if we are dealing with
2432 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2433 then default to a 32bit machine. */
2434 if (info.bfd_arch_info != NULL)
2435 tdep->bytes_per_address =
2436 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2437 else
2438 tdep->bytes_per_address = 4;
2439
d49771ef
RC
2440 tdep->find_global_pointer = hppa_find_global_pointer;
2441
3ff7cf9e
JB
2442 /* Some parts of the gdbarch vector depend on whether we are running
2443 on a 32 bits or 64 bits target. */
2444 switch (tdep->bytes_per_address)
2445 {
2446 case 4:
2447 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2448 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 2449 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3ff7cf9e
JB
2450 break;
2451 case 8:
2452 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2453 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 2454 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3ff7cf9e
JB
2455 break;
2456 default:
2457 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2458 tdep->bytes_per_address);
2459 }
2460
3ff7cf9e 2461 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 2462 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 2463
8e8b2dba
MC
2464 /* The following gdbarch vector elements are the same in both ILP32
2465 and LP64, but might show differences some day. */
2466 set_gdbarch_long_long_bit (gdbarch, 64);
2467 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 2468 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 2469
3ff7cf9e
JB
2470 /* The following gdbarch vector elements do not depend on the address
2471 size, or in any other gdbarch element previously set. */
60383d10 2472 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
a2a84a72 2473 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
2474 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2475 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
60383d10 2476 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
50306a9d 2477 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
b6fbdd1d 2478 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
2479 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2480 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2481 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2482 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
60383d10 2483
143985b7
AF
2484 /* Helper for function argument information. */
2485 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2486
36482093
AC
2487 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2488
3a3bc038
AC
2489 /* When a hardware watchpoint triggers, we'll move the inferior past
2490 it by removing all eventpoints; stepping past the instruction
2491 that caused the trigger; reinserting eventpoints; and checking
2492 whether any watched location changed. */
2493 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2494
5979bc46 2495 /* Inferior function call methods. */
fca7aa43 2496 switch (tdep->bytes_per_address)
5979bc46 2497 {
fca7aa43
AC
2498 case 4:
2499 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2500 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
2501 set_gdbarch_convert_from_func_ptr_addr
2502 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
2503 break;
2504 case 8:
782eae8b
AC
2505 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2506 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 2507 break;
782eae8b
AC
2508 default:
2509 internal_error (__FILE__, __LINE__, "bad switch");
fad850b2
AC
2510 }
2511
2512 /* Struct return methods. */
fca7aa43 2513 switch (tdep->bytes_per_address)
fad850b2 2514 {
fca7aa43
AC
2515 case 4:
2516 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2517 break;
2518 case 8:
782eae8b 2519 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 2520 break;
fca7aa43
AC
2521 default:
2522 internal_error (__FILE__, __LINE__, "bad switch");
e963316f 2523 }
7f07c5b6 2524
85f4f2d8 2525 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 2526 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 2527
5979bc46 2528 /* Frame unwind methods. */
782eae8b
AC
2529 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2530 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 2531
50306a9d
RC
2532 /* Hook in ABI-specific overrides, if they have been registered. */
2533 gdbarch_init_osabi (info, gdbarch);
2534
7f07c5b6
RC
2535 /* Hook in the default unwinders. */
2536 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 2537 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 2538 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 2539
e6e68f1f
JB
2540 return gdbarch;
2541}
2542
2543static void
2544hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2545{
fdd72f95
RC
2546 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2547
2548 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2549 tdep->bytes_per_address);
2550 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
2551}
2552
4facf7e8
JB
2553void
2554_initialize_hppa_tdep (void)
2555{
2556 struct cmd_list_element *c;
2557 void break_at_finish_command (char *arg, int from_tty);
2558 void tbreak_at_finish_command (char *arg, int from_tty);
2559 void break_at_finish_at_depth_command (char *arg, int from_tty);
2560
e6e68f1f 2561 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 2562
7c46b9fb
RC
2563 hppa_objfile_priv_data = register_objfile_data ();
2564
4facf7e8
JB
2565 add_cmd ("unwind", class_maintenance, unwind_command,
2566 "Print unwind table entry at given address.",
2567 &maintenanceprintlist);
2568
2569 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2570 break_at_finish_command,
2571 concat ("Set breakpoint at procedure exit. \n\
2572Argument may be function name, or \"*\" and an address.\n\
2573If function is specified, break at end of code for that function.\n\
2574If an address is specified, break at the end of the function that contains \n\
2575that exact address.\n",
2576 "With no arg, uses current execution address of selected stack frame.\n\
2577This is useful for breaking on return to a stack frame.\n\
2578\n\
2579Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2580\n\
2581Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2582 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2583 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2584 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2585 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2586
2587 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2588 tbreak_at_finish_command,
2589"Set temporary breakpoint at procedure exit. Either there should\n\
2590be no argument or the argument must be a depth.\n"), NULL);
2591 set_cmd_completer (c, location_completer);
2592
2593 if (xdb_commands)
2594 deprecate_cmd (add_com ("bx", class_breakpoint,
2595 break_at_finish_at_depth_command,
2596"Set breakpoint at procedure exit. Either there should\n\
2597be no argument or the argument must be a depth.\n"), NULL);
369aa520
RC
2598
2599 /* Debug this files internals. */
cb1a6d5f
AC
2600 deprecated_add_show_from_set
2601 (add_set_cmd ("hppa", class_maintenance, var_zinteger,
2602 &hppa_debug, "Set hppa debugging.\n\
2603When non-zero, hppa specific debugging is enabled.", &setdebuglist),
2604 &showdebuglist);
4facf7e8 2605}
This page took 0.720367 seconds and 4 git commands to generate.