* dwarf2-frame.c (dwarf2_frame_cache, dwarf2_frame_this_id)
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
a7aad9aa 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
197e01b6
EZ
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
e6bb342a 44#include "gdbtypes.h"
c906108c 45#include "objfiles.h"
3ff7cf9e 46#include "hppa-tdep.h"
c906108c 47
369aa520
RC
48static int hppa_debug = 0;
49
60383d10 50/* Some local constants. */
3ff7cf9e
JB
51static const int hppa32_num_regs = 128;
52static const int hppa64_num_regs = 96;
53
7c46b9fb
RC
54/* hppa-specific object data -- unwind and solib info.
55 TODO/maybe: think about splitting this into two parts; the unwind data is
56 common to all hppa targets, but is only used in this file; we can register
57 that separately and make this static. The solib data is probably hpux-
58 specific, so we can create a separate extern objfile_data that is registered
59 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
60const struct objfile_data *hppa_objfile_priv_data = NULL;
61
e2ac8128
JB
62/* Get at various relevent fields of an instruction word. */
63#define MASK_5 0x1f
64#define MASK_11 0x7ff
65#define MASK_14 0x3fff
66#define MASK_21 0x1fffff
67
e2ac8128
JB
68/* Sizes (in bytes) of the native unwind entries. */
69#define UNWIND_ENTRY_SIZE 16
70#define STUB_UNWIND_ENTRY_SIZE 8
71
d709c020
JB
72/* FIXME: brobecker 2002-11-07: We will likely be able to make the
73 following functions static, once we hppa is partially multiarched. */
d709c020 74int hppa_pc_requires_run_before_use (CORE_ADDR pc);
c906108c 75
c906108c
SS
76/* Routines to extract various sized constants out of hppa
77 instructions. */
78
79/* This assumes that no garbage lies outside of the lower bits of
80 value. */
81
abc485a1
RC
82int
83hppa_sign_extend (unsigned val, unsigned bits)
c906108c 84{
c5aa993b 85 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
86}
87
88/* For many immediate values the sign bit is the low bit! */
89
abc485a1
RC
90int
91hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 92{
c5aa993b 93 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
94}
95
e2ac8128
JB
96/* Extract the bits at positions between FROM and TO, using HP's numbering
97 (MSB = 0). */
98
abc485a1
RC
99int
100hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
101{
102 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
103}
104
c906108c
SS
105/* extract the immediate field from a ld{bhw}s instruction */
106
abc485a1
RC
107int
108hppa_extract_5_load (unsigned word)
c906108c 109{
abc485a1 110 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
111}
112
c906108c
SS
113/* extract the immediate field from a break instruction */
114
abc485a1
RC
115unsigned
116hppa_extract_5r_store (unsigned word)
c906108c
SS
117{
118 return (word & MASK_5);
119}
120
121/* extract the immediate field from a {sr}sm instruction */
122
abc485a1
RC
123unsigned
124hppa_extract_5R_store (unsigned word)
c906108c
SS
125{
126 return (word >> 16 & MASK_5);
127}
128
c906108c
SS
129/* extract a 14 bit immediate field */
130
abc485a1
RC
131int
132hppa_extract_14 (unsigned word)
c906108c 133{
abc485a1 134 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
135}
136
c906108c
SS
137/* extract a 21 bit constant */
138
abc485a1
RC
139int
140hppa_extract_21 (unsigned word)
c906108c
SS
141{
142 int val;
143
144 word &= MASK_21;
145 word <<= 11;
abc485a1 146 val = hppa_get_field (word, 20, 20);
c906108c 147 val <<= 11;
abc485a1 148 val |= hppa_get_field (word, 9, 19);
c906108c 149 val <<= 2;
abc485a1 150 val |= hppa_get_field (word, 5, 6);
c906108c 151 val <<= 5;
abc485a1 152 val |= hppa_get_field (word, 0, 4);
c906108c 153 val <<= 2;
abc485a1
RC
154 val |= hppa_get_field (word, 7, 8);
155 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
156}
157
c906108c
SS
158/* extract a 17 bit constant from branch instructions, returning the
159 19 bit signed value. */
160
abc485a1
RC
161int
162hppa_extract_17 (unsigned word)
c906108c 163{
abc485a1
RC
164 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
165 hppa_get_field (word, 29, 29) << 10 |
166 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
167 (word & 0x1) << 16, 17) << 2;
168}
3388d7ff
RC
169
170CORE_ADDR
171hppa_symbol_address(const char *sym)
172{
173 struct minimal_symbol *minsym;
174
175 minsym = lookup_minimal_symbol (sym, NULL, NULL);
176 if (minsym)
177 return SYMBOL_VALUE_ADDRESS (minsym);
178 else
179 return (CORE_ADDR)-1;
180}
77d18ded
RC
181
182struct hppa_objfile_private *
183hppa_init_objfile_priv_data (struct objfile *objfile)
184{
185 struct hppa_objfile_private *priv;
186
187 priv = (struct hppa_objfile_private *)
188 obstack_alloc (&objfile->objfile_obstack,
189 sizeof (struct hppa_objfile_private));
190 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
191 memset (priv, 0, sizeof (*priv));
192
193 return priv;
194}
c906108c
SS
195\f
196
197/* Compare the start address for two unwind entries returning 1 if
198 the first address is larger than the second, -1 if the second is
199 larger than the first, and zero if they are equal. */
200
201static int
fba45db2 202compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
203{
204 const struct unwind_table_entry *a = arg1;
205 const struct unwind_table_entry *b = arg2;
206
207 if (a->region_start > b->region_start)
208 return 1;
209 else if (a->region_start < b->region_start)
210 return -1;
211 else
212 return 0;
213}
214
53a5351d 215static void
fdd72f95 216record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 217{
fdd72f95 218 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 219 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
220 {
221 bfd_vma value = section->vma - section->filepos;
222 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
223
224 if (value < *low_text_segment_address)
225 *low_text_segment_address = value;
226 }
53a5351d
JM
227}
228
c906108c 229static void
fba45db2
KB
230internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
231 asection *section, unsigned int entries, unsigned int size,
232 CORE_ADDR text_offset)
c906108c
SS
233{
234 /* We will read the unwind entries into temporary memory, then
235 fill in the actual unwind table. */
fdd72f95 236
c906108c
SS
237 if (size > 0)
238 {
239 unsigned long tmp;
240 unsigned i;
241 char *buf = alloca (size);
fdd72f95 242 CORE_ADDR low_text_segment_address;
c906108c 243
fdd72f95 244 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
245 be segment relative offsets instead of absolute addresses.
246
247 Note that when loading a shared library (text_offset != 0) the
248 unwinds are already relative to the text_offset that will be
249 passed in. */
fdd72f95 250 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 251 {
fdd72f95
RC
252 low_text_segment_address = -1;
253
53a5351d 254 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
255 record_text_segment_lowaddr,
256 &low_text_segment_address);
53a5351d 257
fdd72f95 258 text_offset = low_text_segment_address;
53a5351d 259 }
acf86d54
RC
260 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
261 {
262 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
263 }
53a5351d 264
c906108c
SS
265 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
266
267 /* Now internalize the information being careful to handle host/target
c5aa993b 268 endian issues. */
c906108c
SS
269 for (i = 0; i < entries; i++)
270 {
271 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 272 (bfd_byte *) buf);
c906108c
SS
273 table[i].region_start += text_offset;
274 buf += 4;
c5aa993b 275 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
276 table[i].region_end += text_offset;
277 buf += 4;
c5aa993b 278 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
279 buf += 4;
280 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
281 table[i].Millicode = (tmp >> 30) & 0x1;
282 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
283 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 284 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
285 table[i].Entry_SR = (tmp >> 25) & 0x1;
286 table[i].Entry_FR = (tmp >> 21) & 0xf;
287 table[i].Entry_GR = (tmp >> 16) & 0x1f;
288 table[i].Args_stored = (tmp >> 15) & 0x1;
289 table[i].Variable_Frame = (tmp >> 14) & 0x1;
290 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
291 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
292 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
293 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 294 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
295 table[i].cxx_info = (tmp >> 8) & 0x1;
296 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
297 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 298 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
299 table[i].Save_SP = (tmp >> 4) & 0x1;
300 table[i].Save_RP = (tmp >> 3) & 0x1;
301 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 302 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 303 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 304 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
305 buf += 4;
306 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
307 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
308 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
309 table[i].alloca_frame = (tmp >> 28) & 0x1;
310 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
311 table[i].Total_frame_size = tmp & 0x7ffffff;
312
c5aa993b 313 /* Stub unwinds are handled elsewhere. */
c906108c
SS
314 table[i].stub_unwind.stub_type = 0;
315 table[i].stub_unwind.padding = 0;
316 }
317 }
318}
319
320/* Read in the backtrace information stored in the `$UNWIND_START$' section of
321 the object file. This info is used mainly by find_unwind_entry() to find
322 out the stack frame size and frame pointer used by procedures. We put
323 everything on the psymbol obstack in the objfile so that it automatically
324 gets freed when the objfile is destroyed. */
325
326static void
fba45db2 327read_unwind_info (struct objfile *objfile)
c906108c 328{
d4f3574e
SS
329 asection *unwind_sec, *stub_unwind_sec;
330 unsigned unwind_size, stub_unwind_size, total_size;
331 unsigned index, unwind_entries;
c906108c
SS
332 unsigned stub_entries, total_entries;
333 CORE_ADDR text_offset;
7c46b9fb
RC
334 struct hppa_unwind_info *ui;
335 struct hppa_objfile_private *obj_private;
c906108c
SS
336
337 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
338 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
339 sizeof (struct hppa_unwind_info));
c906108c
SS
340
341 ui->table = NULL;
342 ui->cache = NULL;
343 ui->last = -1;
344
d4f3574e
SS
345 /* For reasons unknown the HP PA64 tools generate multiple unwinder
346 sections in a single executable. So we just iterate over every
347 section in the BFD looking for unwinder sections intead of trying
348 to do a lookup with bfd_get_section_by_name.
c906108c 349
d4f3574e
SS
350 First determine the total size of the unwind tables so that we
351 can allocate memory in a nice big hunk. */
352 total_entries = 0;
353 for (unwind_sec = objfile->obfd->sections;
354 unwind_sec;
355 unwind_sec = unwind_sec->next)
c906108c 356 {
d4f3574e
SS
357 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
358 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
359 {
360 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
361 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 362
d4f3574e
SS
363 total_entries += unwind_entries;
364 }
c906108c
SS
365 }
366
d4f3574e 367 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 368 use stub unwinds at the current time. */
d4f3574e
SS
369 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
370
c906108c
SS
371 if (stub_unwind_sec)
372 {
373 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
374 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
375 }
376 else
377 {
378 stub_unwind_size = 0;
379 stub_entries = 0;
380 }
381
382 /* Compute total number of unwind entries and their total size. */
d4f3574e 383 total_entries += stub_entries;
c906108c
SS
384 total_size = total_entries * sizeof (struct unwind_table_entry);
385
386 /* Allocate memory for the unwind table. */
387 ui->table = (struct unwind_table_entry *)
8b92e4d5 388 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 389 ui->last = total_entries - 1;
c906108c 390
d4f3574e
SS
391 /* Now read in each unwind section and internalize the standard unwind
392 entries. */
c906108c 393 index = 0;
d4f3574e
SS
394 for (unwind_sec = objfile->obfd->sections;
395 unwind_sec;
396 unwind_sec = unwind_sec->next)
397 {
398 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
399 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
400 {
401 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
402 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
403
404 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
405 unwind_entries, unwind_size, text_offset);
406 index += unwind_entries;
407 }
408 }
409
410 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
411 if (stub_unwind_size > 0)
412 {
413 unsigned int i;
414 char *buf = alloca (stub_unwind_size);
415
416 /* Read in the stub unwind entries. */
417 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
418 0, stub_unwind_size);
419
420 /* Now convert them into regular unwind entries. */
421 for (i = 0; i < stub_entries; i++, index++)
422 {
423 /* Clear out the next unwind entry. */
424 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
425
426 /* Convert offset & size into region_start and region_end.
427 Stuff away the stub type into "reserved" fields. */
428 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
429 (bfd_byte *) buf);
430 ui->table[index].region_start += text_offset;
431 buf += 4;
432 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 433 (bfd_byte *) buf);
c906108c
SS
434 buf += 2;
435 ui->table[index].region_end
c5aa993b
JM
436 = ui->table[index].region_start + 4 *
437 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
438 buf += 2;
439 }
440
441 }
442
443 /* Unwind table needs to be kept sorted. */
444 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
445 compare_unwind_entries);
446
447 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
448 obj_private = (struct hppa_objfile_private *)
449 objfile_data (objfile, hppa_objfile_priv_data);
450 if (obj_private == NULL)
77d18ded
RC
451 obj_private = hppa_init_objfile_priv_data (objfile);
452
c906108c
SS
453 obj_private->unwind_info = ui;
454}
455
456/* Lookup the unwind (stack backtrace) info for the given PC. We search all
457 of the objfiles seeking the unwind table entry for this PC. Each objfile
458 contains a sorted list of struct unwind_table_entry. Since we do a binary
459 search of the unwind tables, we depend upon them to be sorted. */
460
461struct unwind_table_entry *
fba45db2 462find_unwind_entry (CORE_ADDR pc)
c906108c
SS
463{
464 int first, middle, last;
465 struct objfile *objfile;
7c46b9fb 466 struct hppa_objfile_private *priv;
c906108c 467
369aa520
RC
468 if (hppa_debug)
469 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
470 paddr_nz (pc));
471
c906108c
SS
472 /* A function at address 0? Not in HP-UX! */
473 if (pc == (CORE_ADDR) 0)
369aa520
RC
474 {
475 if (hppa_debug)
476 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
477 return NULL;
478 }
c906108c
SS
479
480 ALL_OBJFILES (objfile)
c5aa993b 481 {
7c46b9fb 482 struct hppa_unwind_info *ui;
c5aa993b 483 ui = NULL;
7c46b9fb
RC
484 priv = objfile_data (objfile, hppa_objfile_priv_data);
485 if (priv)
486 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 487
c5aa993b
JM
488 if (!ui)
489 {
490 read_unwind_info (objfile);
7c46b9fb
RC
491 priv = objfile_data (objfile, hppa_objfile_priv_data);
492 if (priv == NULL)
8a3fe4f8 493 error (_("Internal error reading unwind information."));
7c46b9fb 494 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 495 }
c906108c 496
c5aa993b 497 /* First, check the cache */
c906108c 498
c5aa993b
JM
499 if (ui->cache
500 && pc >= ui->cache->region_start
501 && pc <= ui->cache->region_end)
369aa520
RC
502 {
503 if (hppa_debug)
504 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
505 paddr_nz ((CORE_ADDR) ui->cache));
506 return ui->cache;
507 }
c906108c 508
c5aa993b 509 /* Not in the cache, do a binary search */
c906108c 510
c5aa993b
JM
511 first = 0;
512 last = ui->last;
c906108c 513
c5aa993b
JM
514 while (first <= last)
515 {
516 middle = (first + last) / 2;
517 if (pc >= ui->table[middle].region_start
518 && pc <= ui->table[middle].region_end)
519 {
520 ui->cache = &ui->table[middle];
369aa520
RC
521 if (hppa_debug)
522 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
523 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
524 return &ui->table[middle];
525 }
c906108c 526
c5aa993b
JM
527 if (pc < ui->table[middle].region_start)
528 last = middle - 1;
529 else
530 first = middle + 1;
531 }
532 } /* ALL_OBJFILES() */
369aa520
RC
533
534 if (hppa_debug)
535 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
536
c906108c
SS
537 return NULL;
538}
539
1fb24930
RC
540/* The epilogue is defined here as the area either on the `bv' instruction
541 itself or an instruction which destroys the function's stack frame.
542
543 We do not assume that the epilogue is at the end of a function as we can
544 also have return sequences in the middle of a function. */
545static int
546hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
547{
548 unsigned long status;
549 unsigned int inst;
550 char buf[4];
551 int off;
552
359a9262 553 status = read_memory_nobpt (pc, buf, 4);
1fb24930
RC
554 if (status != 0)
555 return 0;
556
557 inst = extract_unsigned_integer (buf, 4);
558
559 /* The most common way to perform a stack adjustment ldo X(sp),sp
560 We are destroying a stack frame if the offset is negative. */
561 if ((inst & 0xffffc000) == 0x37de0000
562 && hppa_extract_14 (inst) < 0)
563 return 1;
564
565 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
566 if (((inst & 0x0fc010e0) == 0x0fc010e0
567 || (inst & 0x0fc010e0) == 0x0fc010e0)
568 && hppa_extract_14 (inst) < 0)
569 return 1;
570
571 /* bv %r0(%rp) or bv,n %r0(%rp) */
572 if (inst == 0xe840c000 || inst == 0xe840c002)
573 return 1;
574
575 return 0;
576}
577
85f4f2d8 578static const unsigned char *
aaab4dba
AC
579hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
580{
56132691 581 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
582 (*len) = sizeof (breakpoint);
583 return breakpoint;
584}
585
e23457df
AC
586/* Return the name of a register. */
587
4a302917 588static const char *
3ff7cf9e 589hppa32_register_name (int i)
e23457df
AC
590{
591 static char *names[] = {
592 "flags", "r1", "rp", "r3",
593 "r4", "r5", "r6", "r7",
594 "r8", "r9", "r10", "r11",
595 "r12", "r13", "r14", "r15",
596 "r16", "r17", "r18", "r19",
597 "r20", "r21", "r22", "r23",
598 "r24", "r25", "r26", "dp",
599 "ret0", "ret1", "sp", "r31",
600 "sar", "pcoqh", "pcsqh", "pcoqt",
601 "pcsqt", "eiem", "iir", "isr",
602 "ior", "ipsw", "goto", "sr4",
603 "sr0", "sr1", "sr2", "sr3",
604 "sr5", "sr6", "sr7", "cr0",
605 "cr8", "cr9", "ccr", "cr12",
606 "cr13", "cr24", "cr25", "cr26",
607 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
608 "fpsr", "fpe1", "fpe2", "fpe3",
609 "fpe4", "fpe5", "fpe6", "fpe7",
610 "fr4", "fr4R", "fr5", "fr5R",
611 "fr6", "fr6R", "fr7", "fr7R",
612 "fr8", "fr8R", "fr9", "fr9R",
613 "fr10", "fr10R", "fr11", "fr11R",
614 "fr12", "fr12R", "fr13", "fr13R",
615 "fr14", "fr14R", "fr15", "fr15R",
616 "fr16", "fr16R", "fr17", "fr17R",
617 "fr18", "fr18R", "fr19", "fr19R",
618 "fr20", "fr20R", "fr21", "fr21R",
619 "fr22", "fr22R", "fr23", "fr23R",
620 "fr24", "fr24R", "fr25", "fr25R",
621 "fr26", "fr26R", "fr27", "fr27R",
622 "fr28", "fr28R", "fr29", "fr29R",
623 "fr30", "fr30R", "fr31", "fr31R"
624 };
625 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
626 return NULL;
627 else
628 return names[i];
629}
630
4a302917 631static const char *
e23457df
AC
632hppa64_register_name (int i)
633{
634 static char *names[] = {
635 "flags", "r1", "rp", "r3",
636 "r4", "r5", "r6", "r7",
637 "r8", "r9", "r10", "r11",
638 "r12", "r13", "r14", "r15",
639 "r16", "r17", "r18", "r19",
640 "r20", "r21", "r22", "r23",
641 "r24", "r25", "r26", "dp",
642 "ret0", "ret1", "sp", "r31",
643 "sar", "pcoqh", "pcsqh", "pcoqt",
644 "pcsqt", "eiem", "iir", "isr",
645 "ior", "ipsw", "goto", "sr4",
646 "sr0", "sr1", "sr2", "sr3",
647 "sr5", "sr6", "sr7", "cr0",
648 "cr8", "cr9", "ccr", "cr12",
649 "cr13", "cr24", "cr25", "cr26",
650 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
651 "fpsr", "fpe1", "fpe2", "fpe3",
652 "fr4", "fr5", "fr6", "fr7",
653 "fr8", "fr9", "fr10", "fr11",
654 "fr12", "fr13", "fr14", "fr15",
655 "fr16", "fr17", "fr18", "fr19",
656 "fr20", "fr21", "fr22", "fr23",
657 "fr24", "fr25", "fr26", "fr27",
658 "fr28", "fr29", "fr30", "fr31"
659 };
660 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
661 return NULL;
662 else
663 return names[i];
664}
665
1ef7fcb5
RC
666static int
667hppa64_dwarf_reg_to_regnum (int reg)
668{
669 /* r0-r31 and sar map one-to-one. */
670 if (reg <= 32)
671 return reg;
672
673 /* fr4-fr31 are mapped from 72 in steps of 2. */
674 if (reg >= 72 || reg < 72 + 28 * 2)
675 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
676
677 error ("Invalid DWARF register num %d.", reg);
678 return -1;
679}
680
79508e1e
AC
681/* This function pushes a stack frame with arguments as part of the
682 inferior function calling mechanism.
683
684 This is the version of the function for the 32-bit PA machines, in
685 which later arguments appear at lower addresses. (The stack always
686 grows towards higher addresses.)
687
688 We simply allocate the appropriate amount of stack space and put
689 arguments into their proper slots. */
690
4a302917 691static CORE_ADDR
7d9b040b 692hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
693 struct regcache *regcache, CORE_ADDR bp_addr,
694 int nargs, struct value **args, CORE_ADDR sp,
695 int struct_return, CORE_ADDR struct_addr)
696{
79508e1e
AC
697 /* Stack base address at which any pass-by-reference parameters are
698 stored. */
699 CORE_ADDR struct_end = 0;
700 /* Stack base address at which the first parameter is stored. */
701 CORE_ADDR param_end = 0;
702
703 /* The inner most end of the stack after all the parameters have
704 been pushed. */
705 CORE_ADDR new_sp = 0;
706
707 /* Two passes. First pass computes the location of everything,
708 second pass writes the bytes out. */
709 int write_pass;
d49771ef
RC
710
711 /* Global pointer (r19) of the function we are trying to call. */
712 CORE_ADDR gp;
713
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715
79508e1e
AC
716 for (write_pass = 0; write_pass < 2; write_pass++)
717 {
1797a8f6 718 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
719 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
720 struct_ptr is adjusted for each argument below, so the first
721 argument will end up at sp-36. */
722 CORE_ADDR param_ptr = 32;
79508e1e 723 int i;
2a6228ef
RC
724 int small_struct = 0;
725
79508e1e
AC
726 for (i = 0; i < nargs; i++)
727 {
728 struct value *arg = args[i];
4991999e 729 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
730 /* The corresponding parameter that is pushed onto the
731 stack, and [possibly] passed in a register. */
732 char param_val[8];
733 int param_len;
734 memset (param_val, 0, sizeof param_val);
735 if (TYPE_LENGTH (type) > 8)
736 {
737 /* Large parameter, pass by reference. Store the value
738 in "struct" area and then pass its address. */
739 param_len = 4;
1797a8f6 740 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 741 if (write_pass)
0fd88904 742 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 743 TYPE_LENGTH (type));
1797a8f6 744 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
745 }
746 else if (TYPE_CODE (type) == TYPE_CODE_INT
747 || TYPE_CODE (type) == TYPE_CODE_ENUM)
748 {
749 /* Integer value store, right aligned. "unpack_long"
750 takes care of any sign-extension problems. */
751 param_len = align_up (TYPE_LENGTH (type), 4);
752 store_unsigned_integer (param_val, param_len,
753 unpack_long (type,
0fd88904 754 value_contents (arg)));
79508e1e 755 }
2a6228ef
RC
756 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
757 {
758 /* Floating point value store, right aligned. */
759 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 760 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 761 }
79508e1e
AC
762 else
763 {
79508e1e 764 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
765
766 /* Small struct value are stored right-aligned. */
79508e1e 767 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 768 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
769
770 /* Structures of size 5, 6 and 7 bytes are special in that
771 the higher-ordered word is stored in the lower-ordered
772 argument, and even though it is a 8-byte quantity the
773 registers need not be 8-byte aligned. */
1b07b470 774 if (param_len > 4 && param_len < 8)
2a6228ef 775 small_struct = 1;
79508e1e 776 }
2a6228ef 777
1797a8f6 778 param_ptr += param_len;
2a6228ef
RC
779 if (param_len == 8 && !small_struct)
780 param_ptr = align_up (param_ptr, 8);
781
782 /* First 4 non-FP arguments are passed in gr26-gr23.
783 First 4 32-bit FP arguments are passed in fr4L-fr7L.
784 First 2 64-bit FP arguments are passed in fr5 and fr7.
785
786 The rest go on the stack, starting at sp-36, towards lower
787 addresses. 8-byte arguments must be aligned to a 8-byte
788 stack boundary. */
79508e1e
AC
789 if (write_pass)
790 {
1797a8f6 791 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
792
793 /* There are some cases when we don't know the type
794 expected by the callee (e.g. for variadic functions), so
795 pass the parameters in both general and fp regs. */
796 if (param_ptr <= 48)
79508e1e 797 {
2a6228ef
RC
798 int grreg = 26 - (param_ptr - 36) / 4;
799 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
800 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
801
802 regcache_cooked_write (regcache, grreg, param_val);
803 regcache_cooked_write (regcache, fpLreg, param_val);
804
79508e1e 805 if (param_len > 4)
2a6228ef
RC
806 {
807 regcache_cooked_write (regcache, grreg + 1,
808 param_val + 4);
809
810 regcache_cooked_write (regcache, fpreg, param_val);
811 regcache_cooked_write (regcache, fpreg + 1,
812 param_val + 4);
813 }
79508e1e
AC
814 }
815 }
816 }
817
818 /* Update the various stack pointers. */
819 if (!write_pass)
820 {
2a6228ef 821 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
822 /* PARAM_PTR already accounts for all the arguments passed
823 by the user. However, the ABI mandates minimum stack
824 space allocations for outgoing arguments. The ABI also
825 mandates minimum stack alignments which we must
826 preserve. */
2a6228ef 827 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
828 }
829 }
830
831 /* If a structure has to be returned, set up register 28 to hold its
832 address */
833 if (struct_return)
834 write_register (28, struct_addr);
835
d49771ef
RC
836 gp = tdep->find_global_pointer (function);
837
838 if (gp != 0)
839 write_register (19, gp);
840
79508e1e 841 /* Set the return address. */
77d18ded
RC
842 if (!gdbarch_push_dummy_code_p (gdbarch))
843 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 844
c4557624 845 /* Update the Stack Pointer. */
34f75cc1 846 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 847
2a6228ef 848 return param_end;
79508e1e
AC
849}
850
38ca4e0c
MK
851/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
852 Runtime Architecture for PA-RISC 2.0", which is distributed as part
853 as of the HP-UX Software Transition Kit (STK). This implementation
854 is based on version 3.3, dated October 6, 1997. */
2f690297 855
38ca4e0c 856/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 857
38ca4e0c
MK
858static int
859hppa64_integral_or_pointer_p (const struct type *type)
860{
861 switch (TYPE_CODE (type))
862 {
863 case TYPE_CODE_INT:
864 case TYPE_CODE_BOOL:
865 case TYPE_CODE_CHAR:
866 case TYPE_CODE_ENUM:
867 case TYPE_CODE_RANGE:
868 {
869 int len = TYPE_LENGTH (type);
870 return (len == 1 || len == 2 || len == 4 || len == 8);
871 }
872 case TYPE_CODE_PTR:
873 case TYPE_CODE_REF:
874 return (TYPE_LENGTH (type) == 8);
875 default:
876 break;
877 }
878
879 return 0;
880}
881
882/* Check whether TYPE is a "Floating Scalar Type". */
883
884static int
885hppa64_floating_p (const struct type *type)
886{
887 switch (TYPE_CODE (type))
888 {
889 case TYPE_CODE_FLT:
890 {
891 int len = TYPE_LENGTH (type);
892 return (len == 4 || len == 8 || len == 16);
893 }
894 default:
895 break;
896 }
897
898 return 0;
899}
2f690297 900
1218e655
RC
901/* If CODE points to a function entry address, try to look up the corresponding
902 function descriptor and return its address instead. If CODE is not a
903 function entry address, then just return it unchanged. */
904static CORE_ADDR
905hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
906{
907 struct obj_section *sec, *opd;
908
909 sec = find_pc_section (code);
910
911 if (!sec)
912 return code;
913
914 /* If CODE is in a data section, assume it's already a fptr. */
915 if (!(sec->the_bfd_section->flags & SEC_CODE))
916 return code;
917
918 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
919 {
920 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
921 break;
922 }
923
924 if (opd < sec->objfile->sections_end)
925 {
926 CORE_ADDR addr;
927
928 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
929 {
930 ULONGEST opdaddr;
931 char tmp[8];
932
933 if (target_read_memory (addr, tmp, sizeof (tmp)))
934 break;
935 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
936
937 if (opdaddr == code)
938 return addr - 16;
939 }
940 }
941
942 return code;
943}
944
4a302917 945static CORE_ADDR
7d9b040b 946hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
947 struct regcache *regcache, CORE_ADDR bp_addr,
948 int nargs, struct value **args, CORE_ADDR sp,
949 int struct_return, CORE_ADDR struct_addr)
950{
38ca4e0c
MK
951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
952 int i, offset = 0;
953 CORE_ADDR gp;
2f690297 954
38ca4e0c
MK
955 /* "The outgoing parameter area [...] must be aligned at a 16-byte
956 boundary." */
957 sp = align_up (sp, 16);
2f690297 958
38ca4e0c
MK
959 for (i = 0; i < nargs; i++)
960 {
961 struct value *arg = args[i];
962 struct type *type = value_type (arg);
963 int len = TYPE_LENGTH (type);
0fd88904 964 const bfd_byte *valbuf;
1218e655 965 bfd_byte fptrbuf[8];
38ca4e0c 966 int regnum;
2f690297 967
38ca4e0c
MK
968 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
969 offset = align_up (offset, 8);
77d18ded 970
38ca4e0c 971 if (hppa64_integral_or_pointer_p (type))
2f690297 972 {
38ca4e0c
MK
973 /* "Integral scalar parameters smaller than 64 bits are
974 padded on the left (i.e., the value is in the
975 least-significant bits of the 64-bit storage unit, and
976 the high-order bits are undefined)." Therefore we can
977 safely sign-extend them. */
978 if (len < 8)
449e1137 979 {
38ca4e0c
MK
980 arg = value_cast (builtin_type_int64, arg);
981 len = 8;
982 }
983 }
984 else if (hppa64_floating_p (type))
985 {
986 if (len > 8)
987 {
988 /* "Quad-precision (128-bit) floating-point scalar
989 parameters are aligned on a 16-byte boundary." */
990 offset = align_up (offset, 16);
991
992 /* "Double-extended- and quad-precision floating-point
993 parameters within the first 64 bytes of the parameter
994 list are always passed in general registers." */
449e1137
AC
995 }
996 else
997 {
38ca4e0c 998 if (len == 4)
449e1137 999 {
38ca4e0c
MK
1000 /* "Single-precision (32-bit) floating-point scalar
1001 parameters are padded on the left with 32 bits of
1002 garbage (i.e., the floating-point value is in the
1003 least-significant 32 bits of a 64-bit storage
1004 unit)." */
1005 offset += 4;
449e1137 1006 }
38ca4e0c
MK
1007
1008 /* "Single- and double-precision floating-point
1009 parameters in this area are passed according to the
1010 available formal parameter information in a function
1011 prototype. [...] If no prototype is in scope,
1012 floating-point parameters must be passed both in the
1013 corresponding general registers and in the
1014 corresponding floating-point registers." */
1015 regnum = HPPA64_FP4_REGNUM + offset / 8;
1016
1017 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1018 {
38ca4e0c
MK
1019 /* "Single-precision floating-point parameters, when
1020 passed in floating-point registers, are passed in
1021 the right halves of the floating point registers;
1022 the left halves are unused." */
1023 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1024 len, value_contents (arg));
449e1137
AC
1025 }
1026 }
2f690297 1027 }
38ca4e0c 1028 else
2f690297 1029 {
38ca4e0c
MK
1030 if (len > 8)
1031 {
1032 /* "Aggregates larger than 8 bytes are aligned on a
1033 16-byte boundary, possibly leaving an unused argument
1034 slot, which is filled with garbage. If necessary,
1035 they are padded on the right (with garbage), to a
1036 multiple of 8 bytes." */
1037 offset = align_up (offset, 16);
1038 }
1039 }
1040
1218e655
RC
1041 /* If we are passing a function pointer, make sure we pass a function
1042 descriptor instead of the function entry address. */
1043 if (TYPE_CODE (type) == TYPE_CODE_PTR
1044 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1045 {
1046 ULONGEST codeptr, fptr;
1047
1048 codeptr = unpack_long (type, value_contents (arg));
1049 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1050 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1051 valbuf = fptrbuf;
1052 }
1053 else
1054 {
1055 valbuf = value_contents (arg);
1056 }
1057
38ca4e0c 1058 /* Always store the argument in memory. */
1218e655 1059 write_memory (sp + offset, valbuf, len);
38ca4e0c 1060
38ca4e0c
MK
1061 regnum = HPPA_ARG0_REGNUM - offset / 8;
1062 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1063 {
1064 regcache_cooked_write_part (regcache, regnum,
1065 offset % 8, min (len, 8), valbuf);
1066 offset += min (len, 8);
1067 valbuf += min (len, 8);
1068 len -= min (len, 8);
1069 regnum--;
2f690297 1070 }
38ca4e0c
MK
1071
1072 offset += len;
2f690297
AC
1073 }
1074
38ca4e0c
MK
1075 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1076 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1077
1078 /* Allocate the outgoing parameter area. Make sure the outgoing
1079 parameter area is multiple of 16 bytes in length. */
1080 sp += max (align_up (offset, 16), 64);
1081
1082 /* Allocate 32-bytes of scratch space. The documentation doesn't
1083 mention this, but it seems to be needed. */
1084 sp += 32;
1085
1086 /* Allocate the frame marker area. */
1087 sp += 16;
1088
1089 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1090 its address. */
2f690297 1091 if (struct_return)
38ca4e0c 1092 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1093
38ca4e0c 1094 /* Set up GR27 (%dp) to hold the global pointer (gp). */
77d18ded 1095 gp = tdep->find_global_pointer (function);
77d18ded 1096 if (gp != 0)
38ca4e0c 1097 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1098
38ca4e0c 1099 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1100 if (!gdbarch_push_dummy_code_p (gdbarch))
1101 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1102
38ca4e0c
MK
1103 /* Set up GR30 to hold the stack pointer (sp). */
1104 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1105
38ca4e0c 1106 return sp;
2f690297 1107}
38ca4e0c 1108\f
2f690297 1109
08a27113
MK
1110/* Handle 32/64-bit struct return conventions. */
1111
1112static enum return_value_convention
1113hppa32_return_value (struct gdbarch *gdbarch,
1114 struct type *type, struct regcache *regcache,
e127f0db 1115 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1116{
1117 if (TYPE_LENGTH (type) <= 2 * 4)
1118 {
1119 /* The value always lives in the right hand end of the register
1120 (or register pair)? */
1121 int b;
1122 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1123 int part = TYPE_LENGTH (type) % 4;
1124 /* The left hand register contains only part of the value,
1125 transfer that first so that the rest can be xfered as entire
1126 4-byte registers. */
1127 if (part > 0)
1128 {
1129 if (readbuf != NULL)
1130 regcache_cooked_read_part (regcache, reg, 4 - part,
1131 part, readbuf);
1132 if (writebuf != NULL)
1133 regcache_cooked_write_part (regcache, reg, 4 - part,
1134 part, writebuf);
1135 reg++;
1136 }
1137 /* Now transfer the remaining register values. */
1138 for (b = part; b < TYPE_LENGTH (type); b += 4)
1139 {
1140 if (readbuf != NULL)
e127f0db 1141 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1142 if (writebuf != NULL)
e127f0db 1143 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1144 reg++;
1145 }
1146 return RETURN_VALUE_REGISTER_CONVENTION;
1147 }
1148 else
1149 return RETURN_VALUE_STRUCT_CONVENTION;
1150}
1151
1152static enum return_value_convention
1153hppa64_return_value (struct gdbarch *gdbarch,
1154 struct type *type, struct regcache *regcache,
e127f0db 1155 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1156{
1157 int len = TYPE_LENGTH (type);
1158 int regnum, offset;
1159
1160 if (len > 16)
1161 {
1162 /* All return values larget than 128 bits must be aggregate
1163 return values. */
9738b034
MK
1164 gdb_assert (!hppa64_integral_or_pointer_p (type));
1165 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1166
1167 /* "Aggregate return values larger than 128 bits are returned in
1168 a buffer allocated by the caller. The address of the buffer
1169 must be passed in GR 28." */
1170 return RETURN_VALUE_STRUCT_CONVENTION;
1171 }
1172
1173 if (hppa64_integral_or_pointer_p (type))
1174 {
1175 /* "Integral return values are returned in GR 28. Values
1176 smaller than 64 bits are padded on the left (with garbage)." */
1177 regnum = HPPA_RET0_REGNUM;
1178 offset = 8 - len;
1179 }
1180 else if (hppa64_floating_p (type))
1181 {
1182 if (len > 8)
1183 {
1184 /* "Double-extended- and quad-precision floating-point
1185 values are returned in GRs 28 and 29. The sign,
1186 exponent, and most-significant bits of the mantissa are
1187 returned in GR 28; the least-significant bits of the
1188 mantissa are passed in GR 29. For double-extended
1189 precision values, GR 29 is padded on the right with 48
1190 bits of garbage." */
1191 regnum = HPPA_RET0_REGNUM;
1192 offset = 0;
1193 }
1194 else
1195 {
1196 /* "Single-precision and double-precision floating-point
1197 return values are returned in FR 4R (single precision) or
1198 FR 4 (double-precision)." */
1199 regnum = HPPA64_FP4_REGNUM;
1200 offset = 8 - len;
1201 }
1202 }
1203 else
1204 {
1205 /* "Aggregate return values up to 64 bits in size are returned
1206 in GR 28. Aggregates smaller than 64 bits are left aligned
1207 in the register; the pad bits on the right are undefined."
1208
1209 "Aggregate return values between 65 and 128 bits are returned
1210 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1211 the remaining bits are placed, left aligned, in GR 29. The
1212 pad bits on the right of GR 29 (if any) are undefined." */
1213 regnum = HPPA_RET0_REGNUM;
1214 offset = 0;
1215 }
1216
1217 if (readbuf)
1218 {
08a27113
MK
1219 while (len > 0)
1220 {
1221 regcache_cooked_read_part (regcache, regnum, offset,
e127f0db
MK
1222 min (len, 8), readbuf);
1223 readbuf += min (len, 8);
08a27113
MK
1224 len -= min (len, 8);
1225 regnum++;
1226 }
1227 }
1228
1229 if (writebuf)
1230 {
08a27113
MK
1231 while (len > 0)
1232 {
1233 regcache_cooked_write_part (regcache, regnum, offset,
e127f0db
MK
1234 min (len, 8), writebuf);
1235 writebuf += min (len, 8);
08a27113
MK
1236 len -= min (len, 8);
1237 regnum++;
1238 }
1239 }
1240
1241 return RETURN_VALUE_REGISTER_CONVENTION;
1242}
1243\f
1244
d49771ef 1245static CORE_ADDR
a7aad9aa 1246hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1247 struct target_ops *targ)
1248{
1249 if (addr & 2)
1250 {
a7aad9aa
MK
1251 CORE_ADDR plabel = addr & ~3;
1252 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
d49771ef
RC
1253 }
1254
1255 return addr;
1256}
1257
1797a8f6
AC
1258static CORE_ADDR
1259hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1260{
1261 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1262 and not _bit_)! */
1263 return align_up (addr, 64);
1264}
1265
2f690297
AC
1266/* Force all frames to 16-byte alignment. Better safe than sorry. */
1267
1268static CORE_ADDR
1797a8f6 1269hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1270{
1271 /* Just always 16-byte align. */
1272 return align_up (addr, 16);
1273}
1274
cc72850f
MK
1275CORE_ADDR
1276hppa_read_pc (ptid_t ptid)
c906108c 1277{
cc72850f 1278 ULONGEST ipsw;
fe46cd3a 1279 CORE_ADDR pc;
c906108c 1280
cc72850f
MK
1281 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1282 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
fe46cd3a
RC
1283
1284 /* If the current instruction is nullified, then we are effectively
1285 still executing the previous instruction. Pretend we are still
cc72850f
MK
1286 there. This is needed when single stepping; if the nullified
1287 instruction is on a different line, we don't want GDB to think
1288 we've stepped onto that line. */
fe46cd3a
RC
1289 if (ipsw & 0x00200000)
1290 pc -= 4;
1291
cc72850f 1292 return pc & ~0x3;
c906108c
SS
1293}
1294
cc72850f
MK
1295void
1296hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
c906108c 1297{
cc72850f
MK
1298 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1299 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
c906108c
SS
1300}
1301
1302/* return the alignment of a type in bytes. Structures have the maximum
1303 alignment required by their fields. */
1304
1305static int
fba45db2 1306hppa_alignof (struct type *type)
c906108c
SS
1307{
1308 int max_align, align, i;
1309 CHECK_TYPEDEF (type);
1310 switch (TYPE_CODE (type))
1311 {
1312 case TYPE_CODE_PTR:
1313 case TYPE_CODE_INT:
1314 case TYPE_CODE_FLT:
1315 return TYPE_LENGTH (type);
1316 case TYPE_CODE_ARRAY:
1317 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1318 case TYPE_CODE_STRUCT:
1319 case TYPE_CODE_UNION:
1320 max_align = 1;
1321 for (i = 0; i < TYPE_NFIELDS (type); i++)
1322 {
1323 /* Bit fields have no real alignment. */
1324 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1325 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1326 {
1327 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1328 max_align = max (max_align, align);
1329 }
1330 }
1331 return max_align;
1332 default:
1333 return 4;
1334 }
1335}
1336
c906108c
SS
1337/* For the given instruction (INST), return any adjustment it makes
1338 to the stack pointer or zero for no adjustment.
1339
1340 This only handles instructions commonly found in prologues. */
1341
1342static int
fba45db2 1343prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1344{
1345 /* This must persist across calls. */
1346 static int save_high21;
1347
1348 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1349 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1350 return hppa_extract_14 (inst);
c906108c
SS
1351
1352 /* stwm X,D(sp) */
1353 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1354 return hppa_extract_14 (inst);
c906108c 1355
104c1213
JM
1356 /* std,ma X,D(sp) */
1357 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1358 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1359
e22b26cb 1360 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1361 save high bits in save_high21 for later use. */
e22b26cb 1362 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1363 {
abc485a1 1364 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1365 return 0;
1366 }
1367
1368 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1369 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1370
1371 /* fstws as used by the HP compilers. */
1372 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1373 return hppa_extract_5_load (inst);
c906108c
SS
1374
1375 /* No adjustment. */
1376 return 0;
1377}
1378
1379/* Return nonzero if INST is a branch of some kind, else return zero. */
1380
1381static int
fba45db2 1382is_branch (unsigned long inst)
c906108c
SS
1383{
1384 switch (inst >> 26)
1385 {
1386 case 0x20:
1387 case 0x21:
1388 case 0x22:
1389 case 0x23:
7be570e7 1390 case 0x27:
c906108c
SS
1391 case 0x28:
1392 case 0x29:
1393 case 0x2a:
1394 case 0x2b:
7be570e7 1395 case 0x2f:
c906108c
SS
1396 case 0x30:
1397 case 0x31:
1398 case 0x32:
1399 case 0x33:
1400 case 0x38:
1401 case 0x39:
1402 case 0x3a:
7be570e7 1403 case 0x3b:
c906108c
SS
1404 return 1;
1405
1406 default:
1407 return 0;
1408 }
1409}
1410
1411/* Return the register number for a GR which is saved by INST or
1412 zero it INST does not save a GR. */
1413
1414static int
fba45db2 1415inst_saves_gr (unsigned long inst)
c906108c
SS
1416{
1417 /* Does it look like a stw? */
7be570e7
JM
1418 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1419 || (inst >> 26) == 0x1f
1420 || ((inst >> 26) == 0x1f
1421 && ((inst >> 6) == 0xa)))
abc485a1 1422 return hppa_extract_5R_store (inst);
7be570e7
JM
1423
1424 /* Does it look like a std? */
1425 if ((inst >> 26) == 0x1c
1426 || ((inst >> 26) == 0x03
1427 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1428 return hppa_extract_5R_store (inst);
c906108c
SS
1429
1430 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1431 if ((inst >> 26) == 0x1b)
abc485a1 1432 return hppa_extract_5R_store (inst);
c906108c
SS
1433
1434 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1435 too. */
7be570e7
JM
1436 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1437 || ((inst >> 26) == 0x3
1438 && (((inst >> 6) & 0xf) == 0x8
1439 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1440 return hppa_extract_5R_store (inst);
c5aa993b 1441
c906108c
SS
1442 return 0;
1443}
1444
1445/* Return the register number for a FR which is saved by INST or
1446 zero it INST does not save a FR.
1447
1448 Note we only care about full 64bit register stores (that's the only
1449 kind of stores the prologue will use).
1450
1451 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1452
1453static int
fba45db2 1454inst_saves_fr (unsigned long inst)
c906108c 1455{
7be570e7 1456 /* is this an FSTD ? */
c906108c 1457 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1458 return hppa_extract_5r_store (inst);
7be570e7 1459 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1460 return hppa_extract_5R_store (inst);
7be570e7 1461 /* is this an FSTW ? */
c906108c 1462 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1463 return hppa_extract_5r_store (inst);
7be570e7 1464 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1465 return hppa_extract_5R_store (inst);
c906108c
SS
1466 return 0;
1467}
1468
1469/* Advance PC across any function entry prologue instructions
1470 to reach some "real" code.
1471
1472 Use information in the unwind table to determine what exactly should
1473 be in the prologue. */
1474
1475
a71f8c30
RC
1476static CORE_ADDR
1477skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
c906108c
SS
1478{
1479 char buf[4];
1480 CORE_ADDR orig_pc = pc;
1481 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1482 unsigned long args_stored, status, i, restart_gr, restart_fr;
1483 struct unwind_table_entry *u;
a71f8c30 1484 int final_iteration;
c906108c
SS
1485
1486 restart_gr = 0;
1487 restart_fr = 0;
1488
1489restart:
1490 u = find_unwind_entry (pc);
1491 if (!u)
1492 return pc;
1493
c5aa993b 1494 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1495 if ((pc & ~0x3) != u->region_start)
1496 return pc;
1497
1498 /* This is how much of a frame adjustment we need to account for. */
1499 stack_remaining = u->Total_frame_size << 3;
1500
1501 /* Magic register saves we want to know about. */
1502 save_rp = u->Save_RP;
1503 save_sp = u->Save_SP;
1504
1505 /* An indication that args may be stored into the stack. Unfortunately
1506 the HPUX compilers tend to set this in cases where no args were
1507 stored too!. */
1508 args_stored = 1;
1509
1510 /* Turn the Entry_GR field into a bitmask. */
1511 save_gr = 0;
1512 for (i = 3; i < u->Entry_GR + 3; i++)
1513 {
1514 /* Frame pointer gets saved into a special location. */
eded0a31 1515 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1516 continue;
1517
1518 save_gr |= (1 << i);
1519 }
1520 save_gr &= ~restart_gr;
1521
1522 /* Turn the Entry_FR field into a bitmask too. */
1523 save_fr = 0;
1524 for (i = 12; i < u->Entry_FR + 12; i++)
1525 save_fr |= (1 << i);
1526 save_fr &= ~restart_fr;
1527
a71f8c30
RC
1528 final_iteration = 0;
1529
c906108c
SS
1530 /* Loop until we find everything of interest or hit a branch.
1531
1532 For unoptimized GCC code and for any HP CC code this will never ever
1533 examine any user instructions.
1534
1535 For optimzied GCC code we're faced with problems. GCC will schedule
1536 its prologue and make prologue instructions available for delay slot
1537 filling. The end result is user code gets mixed in with the prologue
1538 and a prologue instruction may be in the delay slot of the first branch
1539 or call.
1540
1541 Some unexpected things are expected with debugging optimized code, so
1542 we allow this routine to walk past user instructions in optimized
1543 GCC code. */
1544 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1545 || args_stored)
1546 {
1547 unsigned int reg_num;
1548 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1549 unsigned long old_save_rp, old_save_sp, next_inst;
1550
1551 /* Save copies of all the triggers so we can compare them later
c5aa993b 1552 (only for HPC). */
c906108c
SS
1553 old_save_gr = save_gr;
1554 old_save_fr = save_fr;
1555 old_save_rp = save_rp;
1556 old_save_sp = save_sp;
1557 old_stack_remaining = stack_remaining;
1558
359a9262 1559 status = read_memory_nobpt (pc, buf, 4);
c906108c 1560 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1561
c906108c
SS
1562 /* Yow! */
1563 if (status != 0)
1564 return pc;
1565
1566 /* Note the interesting effects of this instruction. */
1567 stack_remaining -= prologue_inst_adjust_sp (inst);
1568
7be570e7
JM
1569 /* There are limited ways to store the return pointer into the
1570 stack. */
c4c79048 1571 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1572 save_rp = 0;
1573
104c1213 1574 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1575 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1576 if ((inst & 0xffffc000) == 0x6fc10000
1577 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1578 save_sp = 0;
1579
6426a772
JM
1580 /* Are we loading some register with an offset from the argument
1581 pointer? */
1582 if ((inst & 0xffe00000) == 0x37a00000
1583 || (inst & 0xffffffe0) == 0x081d0240)
1584 {
1585 pc += 4;
1586 continue;
1587 }
1588
c906108c
SS
1589 /* Account for general and floating-point register saves. */
1590 reg_num = inst_saves_gr (inst);
1591 save_gr &= ~(1 << reg_num);
1592
1593 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1594 Unfortunately args_stored only tells us that some arguments
1595 where stored into the stack. Not how many or what kind!
c906108c 1596
c5aa993b
JM
1597 This is a kludge as on the HP compiler sets this bit and it
1598 never does prologue scheduling. So once we see one, skip past
1599 all of them. We have similar code for the fp arg stores below.
c906108c 1600
c5aa993b
JM
1601 FIXME. Can still die if we have a mix of GR and FR argument
1602 stores! */
6426a772 1603 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1604 {
6426a772 1605 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1606 {
1607 pc += 4;
359a9262 1608 status = read_memory_nobpt (pc, buf, 4);
c906108c
SS
1609 inst = extract_unsigned_integer (buf, 4);
1610 if (status != 0)
1611 return pc;
1612 reg_num = inst_saves_gr (inst);
1613 }
1614 args_stored = 0;
1615 continue;
1616 }
1617
1618 reg_num = inst_saves_fr (inst);
1619 save_fr &= ~(1 << reg_num);
1620
359a9262 1621 status = read_memory_nobpt (pc + 4, buf, 4);
c906108c 1622 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1623
c906108c
SS
1624 /* Yow! */
1625 if (status != 0)
1626 return pc;
1627
1628 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1629 save. */
c906108c
SS
1630 if ((inst & 0xfc000000) == 0x34000000
1631 && inst_saves_fr (next_inst) >= 4
6426a772 1632 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1633 {
1634 /* So we drop into the code below in a reasonable state. */
1635 reg_num = inst_saves_fr (next_inst);
1636 pc -= 4;
1637 }
1638
1639 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1640 This is a kludge as on the HP compiler sets this bit and it
1641 never does prologue scheduling. So once we see one, skip past
1642 all of them. */
6426a772 1643 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1644 {
6426a772 1645 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1646 {
1647 pc += 8;
359a9262 1648 status = read_memory_nobpt (pc, buf, 4);
c906108c
SS
1649 inst = extract_unsigned_integer (buf, 4);
1650 if (status != 0)
1651 return pc;
1652 if ((inst & 0xfc000000) != 0x34000000)
1653 break;
359a9262 1654 status = read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1655 next_inst = extract_unsigned_integer (buf, 4);
1656 if (status != 0)
1657 return pc;
1658 reg_num = inst_saves_fr (next_inst);
1659 }
1660 args_stored = 0;
1661 continue;
1662 }
1663
1664 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1665 instruction is in the delay slot of the first call/branch. */
a71f8c30 1666 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1667 break;
1668
1669 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1670 arguments were stored into the stack (boo hiss). This could
1671 cause this code to then skip a bunch of user insns (up to the
1672 first branch).
1673
1674 To combat this we try to identify when args_stored was bogusly
1675 set and clear it. We only do this when args_stored is nonzero,
1676 all other resources are accounted for, and nothing changed on
1677 this pass. */
c906108c 1678 if (args_stored
c5aa993b 1679 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1680 && old_save_gr == save_gr && old_save_fr == save_fr
1681 && old_save_rp == save_rp && old_save_sp == save_sp
1682 && old_stack_remaining == stack_remaining)
1683 break;
c5aa993b 1684
c906108c
SS
1685 /* Bump the PC. */
1686 pc += 4;
a71f8c30
RC
1687
1688 /* !stop_before_branch, so also look at the insn in the delay slot
1689 of the branch. */
1690 if (final_iteration)
1691 break;
1692 if (is_branch (inst))
1693 final_iteration = 1;
c906108c
SS
1694 }
1695
1696 /* We've got a tenative location for the end of the prologue. However
1697 because of limitations in the unwind descriptor mechanism we may
1698 have went too far into user code looking for the save of a register
1699 that does not exist. So, if there registers we expected to be saved
1700 but never were, mask them out and restart.
1701
1702 This should only happen in optimized code, and should be very rare. */
c5aa993b 1703 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1704 {
1705 pc = orig_pc;
1706 restart_gr = save_gr;
1707 restart_fr = save_fr;
1708 goto restart;
1709 }
1710
1711 return pc;
1712}
1713
1714
7be570e7
JM
1715/* Return the address of the PC after the last prologue instruction if
1716 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1717
1718static CORE_ADDR
fba45db2 1719after_prologue (CORE_ADDR pc)
c906108c
SS
1720{
1721 struct symtab_and_line sal;
1722 CORE_ADDR func_addr, func_end;
1723 struct symbol *f;
1724
7be570e7
JM
1725 /* If we can not find the symbol in the partial symbol table, then
1726 there is no hope we can determine the function's start address
1727 with this code. */
c906108c 1728 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1729 return 0;
c906108c 1730
7be570e7 1731 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1732 sal = find_pc_line (func_addr, 0);
1733
7be570e7
JM
1734 /* There are only two cases to consider. First, the end of the source line
1735 is within the function bounds. In that case we return the end of the
1736 source line. Second is the end of the source line extends beyond the
1737 bounds of the current function. We need to use the slow code to
1738 examine instructions in that case.
c906108c 1739
7be570e7
JM
1740 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1741 the wrong thing to do. In fact, it should be entirely possible for this
1742 function to always return zero since the slow instruction scanning code
1743 is supposed to *always* work. If it does not, then it is a bug. */
1744 if (sal.end < func_end)
1745 return sal.end;
c5aa993b 1746 else
7be570e7 1747 return 0;
c906108c
SS
1748}
1749
1750/* To skip prologues, I use this predicate. Returns either PC itself
1751 if the code at PC does not look like a function prologue; otherwise
a71f8c30
RC
1752 returns an address that (if we're lucky) follows the prologue.
1753
1754 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1755 It doesn't necessarily skips all the insns in the prologue. In fact
1756 we might not want to skip all the insns because a prologue insn may
1757 appear in the delay slot of the first branch, and we don't want to
1758 skip over the branch in that case. */
c906108c 1759
8d153463 1760static CORE_ADDR
fba45db2 1761hppa_skip_prologue (CORE_ADDR pc)
c906108c 1762{
c5aa993b
JM
1763 unsigned long inst;
1764 int offset;
1765 CORE_ADDR post_prologue_pc;
1766 char buf[4];
c906108c 1767
c5aa993b
JM
1768 /* See if we can determine the end of the prologue via the symbol table.
1769 If so, then return either PC, or the PC after the prologue, whichever
1770 is greater. */
c906108c 1771
c5aa993b 1772 post_prologue_pc = after_prologue (pc);
c906108c 1773
7be570e7
JM
1774 /* If after_prologue returned a useful address, then use it. Else
1775 fall back on the instruction skipping code.
1776
1777 Some folks have claimed this causes problems because the breakpoint
1778 may be the first instruction of the prologue. If that happens, then
1779 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1780 if (post_prologue_pc != 0)
1781 return max (pc, post_prologue_pc);
c5aa993b 1782 else
a71f8c30 1783 return (skip_prologue_hard_way (pc, 1));
c906108c
SS
1784}
1785
29d375ac
RC
1786/* Return an unwind entry that falls within the frame's code block. */
1787static struct unwind_table_entry *
1788hppa_find_unwind_entry_in_block (struct frame_info *f)
1789{
93d42b30
DJ
1790 CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
1791
1792 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1793 result of frame_unwind_address_in_block implies a problem.
1794 The bits should have been removed earlier, before the return
1795 value of frame_pc_unwind. That might be happening already;
1796 if it isn't, it should be fixed. Then this call can be
1797 removed. */
29d375ac
RC
1798 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1799 return find_unwind_entry (pc);
1800}
1801
26d08f08
AC
1802struct hppa_frame_cache
1803{
1804 CORE_ADDR base;
1805 struct trad_frame_saved_reg *saved_regs;
1806};
1807
1808static struct hppa_frame_cache *
1809hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1810{
1811 struct hppa_frame_cache *cache;
1812 long saved_gr_mask;
1813 long saved_fr_mask;
1814 CORE_ADDR this_sp;
1815 long frame_size;
1816 struct unwind_table_entry *u;
9f7194c3 1817 CORE_ADDR prologue_end;
50b2f48a 1818 int fp_in_r1 = 0;
26d08f08
AC
1819 int i;
1820
369aa520
RC
1821 if (hppa_debug)
1822 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1823 frame_relative_level(next_frame));
1824
26d08f08 1825 if ((*this_cache) != NULL)
369aa520
RC
1826 {
1827 if (hppa_debug)
1828 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1829 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1830 return (*this_cache);
1831 }
26d08f08
AC
1832 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1833 (*this_cache) = cache;
1834 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1835
1836 /* Yow! */
29d375ac 1837 u = hppa_find_unwind_entry_in_block (next_frame);
26d08f08 1838 if (!u)
369aa520
RC
1839 {
1840 if (hppa_debug)
1841 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1842 return (*this_cache);
1843 }
26d08f08
AC
1844
1845 /* Turn the Entry_GR field into a bitmask. */
1846 saved_gr_mask = 0;
1847 for (i = 3; i < u->Entry_GR + 3; i++)
1848 {
1849 /* Frame pointer gets saved into a special location. */
eded0a31 1850 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1851 continue;
1852
1853 saved_gr_mask |= (1 << i);
1854 }
1855
1856 /* Turn the Entry_FR field into a bitmask too. */
1857 saved_fr_mask = 0;
1858 for (i = 12; i < u->Entry_FR + 12; i++)
1859 saved_fr_mask |= (1 << i);
1860
1861 /* Loop until we find everything of interest or hit a branch.
1862
1863 For unoptimized GCC code and for any HP CC code this will never ever
1864 examine any user instructions.
1865
1866 For optimized GCC code we're faced with problems. GCC will schedule
1867 its prologue and make prologue instructions available for delay slot
1868 filling. The end result is user code gets mixed in with the prologue
1869 and a prologue instruction may be in the delay slot of the first branch
1870 or call.
1871
1872 Some unexpected things are expected with debugging optimized code, so
1873 we allow this routine to walk past user instructions in optimized
1874 GCC code. */
1875 {
1876 int final_iteration = 0;
46acf081 1877 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1878 int looking_for_sp = u->Save_SP;
1879 int looking_for_rp = u->Save_RP;
1880 int fp_loc = -1;
9f7194c3 1881
a71f8c30 1882 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1883 skip_prologue_using_sal, in case we stepped into a function without
1884 symbol information. hppa_skip_prologue also bounds the returned
1885 pc by the passed in pc, so it will not return a pc in the next
a71f8c30
RC
1886 function.
1887
1888 We used to call hppa_skip_prologue to find the end of the prologue,
1889 but if some non-prologue instructions get scheduled into the prologue,
1890 and the program is compiled with debug information, the "easy" way
1891 in hppa_skip_prologue will return a prologue end that is too early
1892 for us to notice any potential frame adjustments. */
d5c27f81
RC
1893
1894 /* We used to use frame_func_unwind () to locate the beginning of the
1895 function to pass to skip_prologue (). However, when objects are
1896 compiled without debug symbols, frame_func_unwind can return the wrong
46acf081
RC
1897 function (or 0). We can do better than that by using unwind records.
1898 This only works if the Region_description of the unwind record
1899 indicates that it includes the entry point of the function.
1900 HP compilers sometimes generate unwind records for regions that
1901 do not include the entry or exit point of a function. GNU tools
1902 do not do this. */
1903
1904 if ((u->Region_description & 0x2) == 0)
1905 start_pc = u->region_start;
1906 else
93d42b30 1907 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
d5c27f81 1908
46acf081 1909 prologue_end = skip_prologue_hard_way (start_pc, 0);
9f7194c3
RC
1910 end_pc = frame_pc_unwind (next_frame);
1911
1912 if (prologue_end != 0 && end_pc > prologue_end)
1913 end_pc = prologue_end;
1914
26d08f08 1915 frame_size = 0;
9f7194c3 1916
46acf081 1917 for (pc = start_pc;
26d08f08
AC
1918 ((saved_gr_mask || saved_fr_mask
1919 || looking_for_sp || looking_for_rp
1920 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1921 && pc < end_pc);
26d08f08
AC
1922 pc += 4)
1923 {
1924 int reg;
1925 char buf4[4];
4a302917
RC
1926 long inst;
1927
1928 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1929 sizeof buf4))
1930 {
8a3fe4f8 1931 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
4a302917
RC
1932 return (*this_cache);
1933 }
1934
1935 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1936
26d08f08
AC
1937 /* Note the interesting effects of this instruction. */
1938 frame_size += prologue_inst_adjust_sp (inst);
1939
1940 /* There are limited ways to store the return pointer into the
1941 stack. */
1942 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1943 {
1944 looking_for_rp = 0;
34f75cc1 1945 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1946 }
dfaf8edb
MK
1947 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1948 {
1949 looking_for_rp = 0;
1950 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1951 }
c4c79048
RC
1952 else if (inst == 0x0fc212c1
1953 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
1954 {
1955 looking_for_rp = 0;
34f75cc1 1956 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1957 }
1958
1959 /* Check to see if we saved SP into the stack. This also
1960 happens to indicate the location of the saved frame
1961 pointer. */
1962 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1963 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1964 {
1965 looking_for_sp = 0;
eded0a31 1966 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1967 }
50b2f48a
RC
1968 else if (inst == 0x08030241) /* copy %r3, %r1 */
1969 {
1970 fp_in_r1 = 1;
1971 }
26d08f08
AC
1972
1973 /* Account for general and floating-point register saves. */
1974 reg = inst_saves_gr (inst);
1975 if (reg >= 3 && reg <= 18
eded0a31 1976 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1977 {
1978 saved_gr_mask &= ~(1 << reg);
abc485a1 1979 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1980 /* stwm with a positive displacement is a _post_
1981 _modify_. */
1982 cache->saved_regs[reg].addr = 0;
1983 else if ((inst & 0xfc00000c) == 0x70000008)
1984 /* A std has explicit post_modify forms. */
1985 cache->saved_regs[reg].addr = 0;
1986 else
1987 {
1988 CORE_ADDR offset;
1989
1990 if ((inst >> 26) == 0x1c)
1991 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1992 else if ((inst >> 26) == 0x03)
abc485a1 1993 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1994 else
abc485a1 1995 offset = hppa_extract_14 (inst);
26d08f08
AC
1996
1997 /* Handle code with and without frame pointers. */
1998 if (u->Save_SP)
1999 cache->saved_regs[reg].addr = offset;
2000 else
2001 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2002 }
2003 }
2004
2005 /* GCC handles callee saved FP regs a little differently.
2006
2007 It emits an instruction to put the value of the start of
2008 the FP store area into %r1. It then uses fstds,ma with a
2009 basereg of %r1 for the stores.
2010
2011 HP CC emits them at the current stack pointer modifying the
2012 stack pointer as it stores each register. */
2013
2014 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2015 if ((inst & 0xffffc000) == 0x34610000
2016 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2017 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2018
2019 reg = inst_saves_fr (inst);
2020 if (reg >= 12 && reg <= 21)
2021 {
2022 /* Note +4 braindamage below is necessary because the FP
2023 status registers are internally 8 registers rather than
2024 the expected 4 registers. */
2025 saved_fr_mask &= ~(1 << reg);
2026 if (fp_loc == -1)
2027 {
2028 /* 1st HP CC FP register store. After this
2029 instruction we've set enough state that the GCC and
2030 HPCC code are both handled in the same manner. */
34f75cc1 2031 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2032 fp_loc = 8;
2033 }
2034 else
2035 {
eded0a31 2036 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2037 fp_loc += 8;
2038 }
2039 }
2040
2041 /* Quit if we hit any kind of branch the previous iteration. */
2042 if (final_iteration)
2043 break;
2044 /* We want to look precisely one instruction beyond the branch
2045 if we have not found everything yet. */
2046 if (is_branch (inst))
2047 final_iteration = 1;
2048 }
2049 }
2050
2051 {
2052 /* The frame base always represents the value of %sp at entry to
2053 the current function (and is thus equivalent to the "saved"
2054 stack pointer. */
eded0a31 2055 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 2056 CORE_ADDR fp;
9f7194c3
RC
2057
2058 if (hppa_debug)
2059 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2060 "prologue_end=0x%s) ",
2061 paddr_nz (this_sp),
2062 paddr_nz (frame_pc_unwind (next_frame)),
2063 paddr_nz (prologue_end));
2064
ed70ba00
RC
2065 /* Check to see if a frame pointer is available, and use it for
2066 frame unwinding if it is.
2067
2068 There are some situations where we need to rely on the frame
2069 pointer to do stack unwinding. For example, if a function calls
2070 alloca (), the stack pointer can get adjusted inside the body of
2071 the function. In this case, the ABI requires that the compiler
2072 maintain a frame pointer for the function.
2073
2074 The unwind record has a flag (alloca_frame) that indicates that
2075 a function has a variable frame; unfortunately, gcc/binutils
2076 does not set this flag. Instead, whenever a frame pointer is used
2077 and saved on the stack, the Save_SP flag is set. We use this to
2078 decide whether to use the frame pointer for unwinding.
2079
ed70ba00
RC
2080 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2081 instead of Save_SP. */
2082
2083 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
46acf081 2084
6fcecea0 2085 if (u->alloca_frame)
46acf081 2086 fp -= u->Total_frame_size << 3;
ed70ba00
RC
2087
2088 if (frame_pc_unwind (next_frame) >= prologue_end
6fcecea0 2089 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2090 {
2091 cache->base = fp;
2092
2093 if (hppa_debug)
9ed5ba24 2094 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
ed70ba00
RC
2095 paddr_nz (cache->base));
2096 }
1658da49
RC
2097 else if (u->Save_SP
2098 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2099 {
9f7194c3
RC
2100 /* Both we're expecting the SP to be saved and the SP has been
2101 saved. The entry SP value is saved at this frame's SP
2102 address. */
2103 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2104
2105 if (hppa_debug)
9ed5ba24 2106 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
9f7194c3 2107 paddr_nz (cache->base));
9f7194c3 2108 }
26d08f08 2109 else
9f7194c3 2110 {
1658da49
RC
2111 /* The prologue has been slowly allocating stack space. Adjust
2112 the SP back. */
2113 cache->base = this_sp - frame_size;
9f7194c3 2114 if (hppa_debug)
9ed5ba24 2115 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
9f7194c3
RC
2116 paddr_nz (cache->base));
2117
2118 }
eded0a31 2119 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2120 }
2121
412275d5
AC
2122 /* The PC is found in the "return register", "Millicode" uses "r31"
2123 as the return register while normal code uses "rp". */
26d08f08 2124 if (u->Millicode)
9f7194c3 2125 {
5859efe5 2126 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2127 {
2128 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2129 if (hppa_debug)
2130 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2131 }
9f7194c3
RC
2132 else
2133 {
2134 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 2135 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2136 if (hppa_debug)
2137 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2138 }
2139 }
26d08f08 2140 else
9f7194c3 2141 {
34f75cc1 2142 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2143 {
2144 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2145 cache->saved_regs[HPPA_RP_REGNUM];
2146 if (hppa_debug)
2147 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2148 }
9f7194c3
RC
2149 else
2150 {
34f75cc1
RC
2151 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2152 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2153 if (hppa_debug)
2154 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2155 }
2156 }
26d08f08 2157
50b2f48a
RC
2158 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2159 frame. However, there is a one-insn window where we haven't saved it
2160 yet, but we've already clobbered it. Detect this case and fix it up.
2161
2162 The prologue sequence for frame-pointer functions is:
2163 0: stw %rp, -20(%sp)
2164 4: copy %r3, %r1
2165 8: copy %sp, %r3
2166 c: stw,ma %r1, XX(%sp)
2167
2168 So if we are at offset c, the r3 value that we want is not yet saved
2169 on the stack, but it's been overwritten. The prologue analyzer will
2170 set fp_in_r1 when it sees the copy insn so we know to get the value
2171 from r1 instead. */
2172 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2173 && fp_in_r1)
2174 {
2175 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2176 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2177 }
1658da49 2178
26d08f08
AC
2179 {
2180 /* Convert all the offsets into addresses. */
2181 int reg;
2182 for (reg = 0; reg < NUM_REGS; reg++)
2183 {
2184 if (trad_frame_addr_p (cache->saved_regs, reg))
2185 cache->saved_regs[reg].addr += cache->base;
2186 }
2187 }
2188
f77a2124
RC
2189 {
2190 struct gdbarch *gdbarch;
2191 struct gdbarch_tdep *tdep;
2192
2193 gdbarch = get_frame_arch (next_frame);
2194 tdep = gdbarch_tdep (gdbarch);
2195
2196 if (tdep->unwind_adjust_stub)
2197 {
2198 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2199 }
2200 }
2201
369aa520
RC
2202 if (hppa_debug)
2203 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2204 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
2205 return (*this_cache);
2206}
2207
2208static void
2209hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2210 struct frame_id *this_id)
2211{
d5c27f81
RC
2212 struct hppa_frame_cache *info;
2213 CORE_ADDR pc = frame_pc_unwind (next_frame);
2214 struct unwind_table_entry *u;
2215
2216 info = hppa_frame_cache (next_frame, this_cache);
29d375ac 2217 u = hppa_find_unwind_entry_in_block (next_frame);
d5c27f81
RC
2218
2219 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2220}
2221
2222static void
2223hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
2224 void **this_cache,
2225 int regnum, int *optimizedp,
2226 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2227 int *realnump, gdb_byte *valuep)
26d08f08
AC
2228{
2229 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
2230 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2231 optimizedp, lvalp, addrp, realnump, valuep);
2232}
2233
2234static const struct frame_unwind hppa_frame_unwind =
2235{
2236 NORMAL_FRAME,
2237 hppa_frame_this_id,
2238 hppa_frame_prev_register
2239};
2240
2241static const struct frame_unwind *
2242hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2243{
29d375ac 2244 if (hppa_find_unwind_entry_in_block (next_frame))
0da28f8a
RC
2245 return &hppa_frame_unwind;
2246
2247 return NULL;
2248}
2249
2250/* This is a generic fallback frame unwinder that kicks in if we fail all
2251 the other ones. Normally we would expect the stub and regular unwinder
2252 to work, but in some cases we might hit a function that just doesn't
2253 have any unwind information available. In this case we try to do
2254 unwinding solely based on code reading. This is obviously going to be
2255 slow, so only use this as a last resort. Currently this will only
2256 identify the stack and pc for the frame. */
2257
2258static struct hppa_frame_cache *
2259hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2260{
2261 struct hppa_frame_cache *cache;
4ba6a975
MK
2262 unsigned int frame_size = 0;
2263 int found_rp = 0;
2264 CORE_ADDR start_pc;
0da28f8a 2265
d5c27f81 2266 if (hppa_debug)
4ba6a975
MK
2267 fprintf_unfiltered (gdb_stdlog,
2268 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2269 frame_relative_level (next_frame));
d5c27f81 2270
0da28f8a
RC
2271 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2272 (*this_cache) = cache;
2273 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2274
93d42b30 2275 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
4ba6a975 2276 if (start_pc)
0da28f8a 2277 {
4ba6a975
MK
2278 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2279 CORE_ADDR pc;
0da28f8a 2280
4ba6a975
MK
2281 for (pc = start_pc; pc < cur_pc; pc += 4)
2282 {
2283 unsigned int insn;
0da28f8a 2284
4ba6a975
MK
2285 insn = read_memory_unsigned_integer (pc, 4);
2286 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2287
4ba6a975
MK
2288 /* There are limited ways to store the return pointer into the
2289 stack. */
2290 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2291 {
2292 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2293 found_rp = 1;
2294 }
c4c79048
RC
2295 else if (insn == 0x0fc212c1
2296 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2297 {
2298 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2299 found_rp = 1;
2300 }
2301 }
412275d5 2302 }
0da28f8a 2303
d5c27f81 2304 if (hppa_debug)
4ba6a975
MK
2305 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2306 frame_size, found_rp);
d5c27f81 2307
4ba6a975
MK
2308 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2309 cache->base -= frame_size;
6d1be3f1 2310 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2311
2312 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2313 {
2314 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2315 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2316 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2317 }
412275d5
AC
2318 else
2319 {
4ba6a975
MK
2320 ULONGEST rp;
2321 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
0da28f8a 2322 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2323 }
0da28f8a
RC
2324
2325 return cache;
26d08f08
AC
2326}
2327
0da28f8a
RC
2328static void
2329hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2330 struct frame_id *this_id)
2331{
2332 struct hppa_frame_cache *info =
2333 hppa_fallback_frame_cache (next_frame, this_cache);
93d42b30
DJ
2334 (*this_id) = frame_id_build (info->base,
2335 frame_func_unwind (next_frame, NORMAL_FRAME));
0da28f8a
RC
2336}
2337
2338static void
2339hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2340 void **this_cache,
2341 int regnum, int *optimizedp,
2342 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2343 int *realnump, gdb_byte *valuep)
0da28f8a
RC
2344{
2345 struct hppa_frame_cache *info =
2346 hppa_fallback_frame_cache (next_frame, this_cache);
2347 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2348 optimizedp, lvalp, addrp, realnump, valuep);
2349}
2350
2351static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2352{
2353 NORMAL_FRAME,
0da28f8a
RC
2354 hppa_fallback_frame_this_id,
2355 hppa_fallback_frame_prev_register
26d08f08
AC
2356};
2357
2358static const struct frame_unwind *
0da28f8a 2359hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2360{
0da28f8a 2361 return &hppa_fallback_frame_unwind;
26d08f08
AC
2362}
2363
7f07c5b6
RC
2364/* Stub frames, used for all kinds of call stubs. */
2365struct hppa_stub_unwind_cache
2366{
2367 CORE_ADDR base;
2368 struct trad_frame_saved_reg *saved_regs;
2369};
2370
2371static struct hppa_stub_unwind_cache *
2372hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2373 void **this_cache)
2374{
2375 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2376 struct hppa_stub_unwind_cache *info;
22b0923d 2377 struct unwind_table_entry *u;
7f07c5b6
RC
2378
2379 if (*this_cache)
2380 return *this_cache;
2381
2382 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2383 *this_cache = info;
2384 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2385
7f07c5b6
RC
2386 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2387
090ccbb7 2388 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2389 {
2390 /* HPUX uses export stubs in function calls; the export stub clobbers
2391 the return value of the caller, and, later restores it from the
2392 stack. */
2393 u = find_unwind_entry (frame_pc_unwind (next_frame));
2394
2395 if (u && u->stub_unwind.stub_type == EXPORT)
2396 {
2397 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2398
2399 return info;
2400 }
2401 }
2402
2403 /* By default we assume that stubs do not change the rp. */
2404 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2405
7f07c5b6
RC
2406 return info;
2407}
2408
2409static void
2410hppa_stub_frame_this_id (struct frame_info *next_frame,
2411 void **this_prologue_cache,
2412 struct frame_id *this_id)
2413{
2414 struct hppa_stub_unwind_cache *info
2415 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2416
2417 if (info)
93d42b30
DJ
2418 *this_id = frame_id_build (info->base,
2419 frame_func_unwind (next_frame, NORMAL_FRAME));
f1b38a57
RC
2420 else
2421 *this_id = null_frame_id;
7f07c5b6
RC
2422}
2423
2424static void
2425hppa_stub_frame_prev_register (struct frame_info *next_frame,
2426 void **this_prologue_cache,
2427 int regnum, int *optimizedp,
2428 enum lval_type *lvalp, CORE_ADDR *addrp,
e127f0db 2429 int *realnump, gdb_byte *valuep)
7f07c5b6
RC
2430{
2431 struct hppa_stub_unwind_cache *info
2432 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2433
2434 if (info)
2435 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2436 optimizedp, lvalp, addrp, realnump,
2437 valuep);
2438 else
8a3fe4f8 2439 error (_("Requesting registers from null frame."));
7f07c5b6
RC
2440}
2441
2442static const struct frame_unwind hppa_stub_frame_unwind = {
2443 NORMAL_FRAME,
2444 hppa_stub_frame_this_id,
2445 hppa_stub_frame_prev_register
2446};
2447
2448static const struct frame_unwind *
2449hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2450{
93d42b30 2451 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
84674fe1
AC
2452 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2453 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2454
6d1be3f1 2455 if (pc == 0
84674fe1
AC
2456 || (tdep->in_solib_call_trampoline != NULL
2457 && tdep->in_solib_call_trampoline (pc, NULL))
7f07c5b6
RC
2458 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2459 return &hppa_stub_frame_unwind;
2460 return NULL;
2461}
2462
26d08f08
AC
2463static struct frame_id
2464hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2465{
2466 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2467 HPPA_SP_REGNUM),
26d08f08
AC
2468 frame_pc_unwind (next_frame));
2469}
2470
cc72850f 2471CORE_ADDR
26d08f08
AC
2472hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2473{
fe46cd3a
RC
2474 ULONGEST ipsw;
2475 CORE_ADDR pc;
2476
cc72850f
MK
2477 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2478 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2479
2480 /* If the current instruction is nullified, then we are effectively
2481 still executing the previous instruction. Pretend we are still
cc72850f
MK
2482 there. This is needed when single stepping; if the nullified
2483 instruction is on a different line, we don't want GDB to think
2484 we've stepped onto that line. */
fe46cd3a
RC
2485 if (ipsw & 0x00200000)
2486 pc -= 4;
2487
cc72850f 2488 return pc & ~0x3;
26d08f08
AC
2489}
2490
ff644745
JB
2491/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2492 Return NULL if no such symbol was found. */
2493
2494struct minimal_symbol *
2495hppa_lookup_stub_minimal_symbol (const char *name,
2496 enum unwind_stub_types stub_type)
2497{
2498 struct objfile *objfile;
2499 struct minimal_symbol *msym;
2500
2501 ALL_MSYMBOLS (objfile, msym)
2502 {
2503 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2504 {
2505 struct unwind_table_entry *u;
2506
2507 u = find_unwind_entry (SYMBOL_VALUE (msym));
2508 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2509 return msym;
2510 }
2511 }
2512
2513 return NULL;
2514}
2515
c906108c 2516static void
fba45db2 2517unwind_command (char *exp, int from_tty)
c906108c
SS
2518{
2519 CORE_ADDR address;
2520 struct unwind_table_entry *u;
2521
2522 /* If we have an expression, evaluate it and use it as the address. */
2523
2524 if (exp != 0 && *exp != 0)
2525 address = parse_and_eval_address (exp);
2526 else
2527 return;
2528
2529 u = find_unwind_entry (address);
2530
2531 if (!u)
2532 {
2533 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2534 return;
2535 }
2536
99d64d77 2537 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
c906108c
SS
2538
2539 printf_unfiltered ("\tregion_start = ");
2540 print_address (u->region_start, gdb_stdout);
d5c27f81 2541 gdb_flush (gdb_stdout);
c906108c
SS
2542
2543 printf_unfiltered ("\n\tregion_end = ");
2544 print_address (u->region_end, gdb_stdout);
d5c27f81 2545 gdb_flush (gdb_stdout);
c906108c 2546
c906108c 2547#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2548
2549 printf_unfiltered ("\n\tflags =");
2550 pif (Cannot_unwind);
2551 pif (Millicode);
2552 pif (Millicode_save_sr0);
2553 pif (Entry_SR);
2554 pif (Args_stored);
2555 pif (Variable_Frame);
2556 pif (Separate_Package_Body);
2557 pif (Frame_Extension_Millicode);
2558 pif (Stack_Overflow_Check);
2559 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2560 pif (sr4export);
2561 pif (cxx_info);
2562 pif (cxx_try_catch);
2563 pif (sched_entry_seq);
c906108c
SS
2564 pif (Save_SP);
2565 pif (Save_RP);
2566 pif (Save_MRP_in_frame);
6fcecea0 2567 pif (save_r19);
c906108c
SS
2568 pif (Cleanup_defined);
2569 pif (MPE_XL_interrupt_marker);
2570 pif (HP_UX_interrupt_marker);
2571 pif (Large_frame);
6fcecea0 2572 pif (alloca_frame);
c906108c
SS
2573
2574 putchar_unfiltered ('\n');
2575
c906108c 2576#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2577
2578 pin (Region_description);
2579 pin (Entry_FR);
2580 pin (Entry_GR);
2581 pin (Total_frame_size);
57dac9e1
RC
2582
2583 if (u->stub_unwind.stub_type)
2584 {
2585 printf_unfiltered ("\tstub type = ");
2586 switch (u->stub_unwind.stub_type)
2587 {
2588 case LONG_BRANCH:
2589 printf_unfiltered ("long branch\n");
2590 break;
2591 case PARAMETER_RELOCATION:
2592 printf_unfiltered ("parameter relocation\n");
2593 break;
2594 case EXPORT:
2595 printf_unfiltered ("export\n");
2596 break;
2597 case IMPORT:
2598 printf_unfiltered ("import\n");
2599 break;
2600 case IMPORT_SHLIB:
2601 printf_unfiltered ("import shlib\n");
2602 break;
2603 default:
2604 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2605 }
2606 }
c906108c 2607}
c906108c 2608
d709c020
JB
2609int
2610hppa_pc_requires_run_before_use (CORE_ADDR pc)
2611{
2612 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2613
2614 An example of this occurs when an a.out is linked against a foo.sl.
2615 The foo.sl defines a global bar(), and the a.out declares a signature
2616 for bar(). However, the a.out doesn't directly call bar(), but passes
2617 its address in another call.
2618
2619 If you have this scenario and attempt to "break bar" before running,
2620 gdb will find a minimal symbol for bar() in the a.out. But that
2621 symbol's address will be negative. What this appears to denote is
2622 an index backwards from the base of the procedure linkage table (PLT)
2623 into the data linkage table (DLT), the end of which is contiguous
2624 with the start of the PLT. This is clearly not a valid address for
2625 us to set a breakpoint on.
2626
2627 Note that one must be careful in how one checks for a negative address.
2628 0xc0000000 is a legitimate address of something in a shared text
2629 segment, for example. Since I don't know what the possible range
2630 is of these "really, truly negative" addresses that come from the
2631 minimal symbols, I'm resorting to the gross hack of checking the
2632 top byte of the address for all 1's. Sigh. */
2633
7b5c6b52 2634 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
d709c020
JB
2635}
2636
38ca4e0c
MK
2637/* Return the GDB type object for the "standard" data type of data in
2638 register REGNUM. */
d709c020 2639
eded0a31 2640static struct type *
38ca4e0c 2641hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2642{
38ca4e0c 2643 if (regnum < HPPA_FP4_REGNUM)
eded0a31 2644 return builtin_type_uint32;
d709c020 2645 else
8da61cc4 2646 return builtin_type_ieee_single;
d709c020
JB
2647}
2648
eded0a31 2649static struct type *
38ca4e0c 2650hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2651{
38ca4e0c 2652 if (regnum < HPPA64_FP4_REGNUM)
eded0a31 2653 return builtin_type_uint64;
3ff7cf9e 2654 else
8da61cc4 2655 return builtin_type_ieee_double;
3ff7cf9e
JB
2656}
2657
38ca4e0c
MK
2658/* Return non-zero if REGNUM is not a register available to the user
2659 through ptrace/ttrace. */
d709c020 2660
8d153463 2661static int
38ca4e0c 2662hppa32_cannot_store_register (int regnum)
d709c020
JB
2663{
2664 return (regnum == 0
34f75cc1
RC
2665 || regnum == HPPA_PCSQ_HEAD_REGNUM
2666 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2667 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2668}
d709c020 2669
38ca4e0c
MK
2670static int
2671hppa64_cannot_store_register (int regnum)
2672{
2673 return (regnum == 0
2674 || regnum == HPPA_PCSQ_HEAD_REGNUM
2675 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2676 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2677}
2678
8d153463 2679static CORE_ADDR
d709c020
JB
2680hppa_smash_text_address (CORE_ADDR addr)
2681{
2682 /* The low two bits of the PC on the PA contain the privilege level.
2683 Some genius implementing a (non-GCC) compiler apparently decided
2684 this means that "addresses" in a text section therefore include a
2685 privilege level, and thus symbol tables should contain these bits.
2686 This seems like a bonehead thing to do--anyway, it seems to work
2687 for our purposes to just ignore those bits. */
2688
2689 return (addr &= ~0x3);
2690}
2691
e127f0db
MK
2692/* Get the ARGIth function argument for the current function. */
2693
4a302917 2694static CORE_ADDR
143985b7
AF
2695hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2696 struct type *type)
2697{
e127f0db 2698 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2699}
2700
0f8d9d59
RC
2701static void
2702hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2703 int regnum, gdb_byte *buf)
0f8d9d59
RC
2704{
2705 ULONGEST tmp;
2706
2707 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2708 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59 2709 tmp &= ~0x3;
e127f0db 2710 store_unsigned_integer (buf, sizeof tmp, tmp);
0f8d9d59
RC
2711}
2712
d49771ef
RC
2713static CORE_ADDR
2714hppa_find_global_pointer (struct value *function)
2715{
2716 return 0;
2717}
2718
0da28f8a
RC
2719void
2720hppa_frame_prev_register_helper (struct frame_info *next_frame,
2721 struct trad_frame_saved_reg saved_regs[],
2722 int regnum, int *optimizedp,
2723 enum lval_type *lvalp, CORE_ADDR *addrp,
a7aad9aa 2724 int *realnump, gdb_byte *valuep)
0da28f8a 2725{
8f4e467c
MK
2726 struct gdbarch *arch = get_frame_arch (next_frame);
2727
8693c419
MK
2728 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2729 {
2730 if (valuep)
2731 {
8f4e467c 2732 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
8693c419 2733 CORE_ADDR pc;
0da28f8a 2734
1f67027d
AC
2735 trad_frame_get_prev_register (next_frame, saved_regs,
2736 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2737 lvalp, addrp, realnump, valuep);
8693c419 2738
8f4e467c
MK
2739 pc = extract_unsigned_integer (valuep, size);
2740 store_unsigned_integer (valuep, size, pc + 4);
8693c419
MK
2741 }
2742
2743 /* It's a computed value. */
2744 *optimizedp = 0;
2745 *lvalp = not_lval;
2746 *addrp = 0;
2747 *realnump = -1;
2748 return;
2749 }
0da28f8a 2750
cc72850f
MK
2751 /* Make sure the "flags" register is zero in all unwound frames.
2752 The "flags" registers is a HP-UX specific wart, and only the code
2753 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2754 with it here. This shouldn't affect other systems since those
2755 should provide zero for the "flags" register anyway. */
2756 if (regnum == HPPA_FLAGS_REGNUM)
2757 {
2758 if (valuep)
8f4e467c 2759 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
cc72850f
MK
2760
2761 /* It's a computed value. */
2762 *optimizedp = 0;
2763 *lvalp = not_lval;
2764 *addrp = 0;
2765 *realnump = -1;
2766 return;
2767 }
2768
1f67027d
AC
2769 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2770 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2771}
8693c419 2772\f
0da28f8a 2773
34f55018
MK
2774/* An instruction to match. */
2775struct insn_pattern
2776{
2777 unsigned int data; /* See if it matches this.... */
2778 unsigned int mask; /* ... with this mask. */
2779};
2780
2781/* See bfd/elf32-hppa.c */
2782static struct insn_pattern hppa_long_branch_stub[] = {
2783 /* ldil LR'xxx,%r1 */
2784 { 0x20200000, 0xffe00000 },
2785 /* be,n RR'xxx(%sr4,%r1) */
2786 { 0xe0202002, 0xffe02002 },
2787 { 0, 0 }
2788};
2789
2790static struct insn_pattern hppa_long_branch_pic_stub[] = {
2791 /* b,l .+8, %r1 */
2792 { 0xe8200000, 0xffe00000 },
2793 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2794 { 0x28200000, 0xffe00000 },
2795 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2796 { 0xe0202002, 0xffe02002 },
2797 { 0, 0 }
2798};
2799
2800static struct insn_pattern hppa_import_stub[] = {
2801 /* addil LR'xxx, %dp */
2802 { 0x2b600000, 0xffe00000 },
2803 /* ldw RR'xxx(%r1), %r21 */
2804 { 0x48350000, 0xffffb000 },
2805 /* bv %r0(%r21) */
2806 { 0xeaa0c000, 0xffffffff },
2807 /* ldw RR'xxx+4(%r1), %r19 */
2808 { 0x48330000, 0xffffb000 },
2809 { 0, 0 }
2810};
2811
2812static struct insn_pattern hppa_import_pic_stub[] = {
2813 /* addil LR'xxx,%r19 */
2814 { 0x2a600000, 0xffe00000 },
2815 /* ldw RR'xxx(%r1),%r21 */
2816 { 0x48350000, 0xffffb000 },
2817 /* bv %r0(%r21) */
2818 { 0xeaa0c000, 0xffffffff },
2819 /* ldw RR'xxx+4(%r1),%r19 */
2820 { 0x48330000, 0xffffb000 },
2821 { 0, 0 },
2822};
2823
2824static struct insn_pattern hppa_plt_stub[] = {
2825 /* b,l 1b, %r20 - 1b is 3 insns before here */
2826 { 0xea9f1fdd, 0xffffffff },
2827 /* depi 0,31,2,%r20 */
2828 { 0xd6801c1e, 0xffffffff },
2829 { 0, 0 }
2830};
2831
2832static struct insn_pattern hppa_sigtramp[] = {
2833 /* ldi 0, %r25 or ldi 1, %r25 */
2834 { 0x34190000, 0xfffffffd },
2835 /* ldi __NR_rt_sigreturn, %r20 */
2836 { 0x3414015a, 0xffffffff },
2837 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2838 { 0xe4008200, 0xffffffff },
2839 /* nop */
2840 { 0x08000240, 0xffffffff },
2841 { 0, 0 }
2842};
2843
2844/* Maximum number of instructions on the patterns above. */
2845#define HPPA_MAX_INSN_PATTERN_LEN 4
2846
2847/* Return non-zero if the instructions at PC match the series
2848 described in PATTERN, or zero otherwise. PATTERN is an array of
2849 'struct insn_pattern' objects, terminated by an entry whose mask is
2850 zero.
2851
2852 When the match is successful, fill INSN[i] with what PATTERN[i]
2853 matched. */
2854
2855static int
2856hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2857 unsigned int *insn)
2858{
2859 CORE_ADDR npc = pc;
2860 int i;
2861
2862 for (i = 0; pattern[i].mask; i++)
2863 {
2864 gdb_byte buf[HPPA_INSN_SIZE];
2865
359a9262 2866 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
34f55018
MK
2867 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2868 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2869 npc += 4;
2870 else
2871 return 0;
2872 }
2873
2874 return 1;
2875}
2876
2877/* This relaxed version of the insstruction matcher allows us to match
2878 from somewhere inside the pattern, by looking backwards in the
2879 instruction scheme. */
2880
2881static int
2882hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2883 unsigned int *insn)
2884{
2885 int offset, len = 0;
2886
2887 while (pattern[len].mask)
2888 len++;
2889
2890 for (offset = 0; offset < len; offset++)
2891 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2892 return 1;
2893
2894 return 0;
2895}
2896
2897static int
2898hppa_in_dyncall (CORE_ADDR pc)
2899{
2900 struct unwind_table_entry *u;
2901
2902 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2903 if (!u)
2904 return 0;
2905
2906 return (pc >= u->region_start && pc <= u->region_end);
2907}
2908
2909int
2910hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2911{
2912 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2913 struct unwind_table_entry *u;
2914
2915 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2916 return 1;
2917
2918 /* The GNU toolchain produces linker stubs without unwind
2919 information. Since the pattern matching for linker stubs can be
2920 quite slow, so bail out if we do have an unwind entry. */
2921
2922 u = find_unwind_entry (pc);
806e23c0 2923 if (u != NULL)
34f55018
MK
2924 return 0;
2925
2926 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2927 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2928 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2929 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2930}
2931
2932/* This code skips several kind of "trampolines" used on PA-RISC
2933 systems: $$dyncall, import stubs and PLT stubs. */
2934
2935CORE_ADDR
2936hppa_skip_trampoline_code (CORE_ADDR pc)
2937{
2938 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2939 int dp_rel;
2940
2941 /* $$dyncall handles both PLABELs and direct addresses. */
2942 if (hppa_in_dyncall (pc))
2943 {
2944 pc = read_register (HPPA_R0_REGNUM + 22);
2945
2946 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2947 if (pc & 0x2)
2948 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2949
2950 return pc;
2951 }
2952
2953 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2954 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2955 {
2956 /* Extract the target address from the addil/ldw sequence. */
2957 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2958
2959 if (dp_rel)
2960 pc += read_register (HPPA_DP_REGNUM);
2961 else
2962 pc += read_register (HPPA_R0_REGNUM + 19);
2963
2964 /* fallthrough */
2965 }
2966
2967 if (in_plt_section (pc, NULL))
2968 {
2969 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2970
2971 /* If the PLT slot has not yet been resolved, the target will be
2972 the PLT stub. */
2973 if (in_plt_section (pc, NULL))
2974 {
2975 /* Sanity check: are we pointing to the PLT stub? */
2976 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2977 {
2978 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2979 return 0;
2980 }
2981
2982 /* This should point to the fixup routine. */
2983 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2984 }
2985 }
2986
2987 return pc;
2988}
2989\f
2990
8e8b2dba
MC
2991/* Here is a table of C type sizes on hppa with various compiles
2992 and options. I measured this on PA 9000/800 with HP-UX 11.11
2993 and these compilers:
2994
2995 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2996 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2997 /opt/aCC/bin/aCC B3910B A.03.45
2998 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2999
3000 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3001 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3002 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3003 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3004 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3005 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3006 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3007 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3008
3009 Each line is:
3010
3011 compiler and options
3012 char, short, int, long, long long
3013 float, double, long double
3014 char *, void (*)()
3015
3016 So all these compilers use either ILP32 or LP64 model.
3017 TODO: gcc has more options so it needs more investigation.
3018
a2379359
MC
3019 For floating point types, see:
3020
3021 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3022 HP-UX floating-point guide, hpux 11.00
3023
8e8b2dba
MC
3024 -- chastain 2003-12-18 */
3025
e6e68f1f
JB
3026static struct gdbarch *
3027hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3028{
3ff7cf9e 3029 struct gdbarch_tdep *tdep;
e6e68f1f 3030 struct gdbarch *gdbarch;
59623e27
JB
3031
3032 /* Try to determine the ABI of the object we are loading. */
4be87837 3033 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 3034 {
4be87837
DJ
3035 /* If it's a SOM file, assume it's HP/UX SOM. */
3036 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3037 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 3038 }
e6e68f1f
JB
3039
3040 /* find a candidate among the list of pre-declared architectures. */
3041 arches = gdbarch_list_lookup_by_info (arches, &info);
3042 if (arches != NULL)
3043 return (arches->gdbarch);
3044
3045 /* If none found, then allocate and initialize one. */
fdd72f95 3046 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
3047 gdbarch = gdbarch_alloc (&info, tdep);
3048
3049 /* Determine from the bfd_arch_info structure if we are dealing with
3050 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3051 then default to a 32bit machine. */
3052 if (info.bfd_arch_info != NULL)
3053 tdep->bytes_per_address =
3054 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3055 else
3056 tdep->bytes_per_address = 4;
3057
d49771ef
RC
3058 tdep->find_global_pointer = hppa_find_global_pointer;
3059
3ff7cf9e
JB
3060 /* Some parts of the gdbarch vector depend on whether we are running
3061 on a 32 bits or 64 bits target. */
3062 switch (tdep->bytes_per_address)
3063 {
3064 case 4:
3065 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3066 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3067 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3068 set_gdbarch_cannot_store_register (gdbarch,
3069 hppa32_cannot_store_register);
3070 set_gdbarch_cannot_fetch_register (gdbarch,
3071 hppa32_cannot_store_register);
3ff7cf9e
JB
3072 break;
3073 case 8:
3074 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3075 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3076 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5
RC
3077 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3078 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3079 set_gdbarch_cannot_store_register (gdbarch,
3080 hppa64_cannot_store_register);
3081 set_gdbarch_cannot_fetch_register (gdbarch,
3082 hppa64_cannot_store_register);
3ff7cf9e
JB
3083 break;
3084 default:
e2e0b3e5 3085 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3086 tdep->bytes_per_address);
3087 }
3088
3ff7cf9e 3089 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3090 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3091
8e8b2dba
MC
3092 /* The following gdbarch vector elements are the same in both ILP32
3093 and LP64, but might show differences some day. */
3094 set_gdbarch_long_long_bit (gdbarch, 64);
3095 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3096 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3097
3ff7cf9e
JB
3098 /* The following gdbarch vector elements do not depend on the address
3099 size, or in any other gdbarch element previously set. */
60383d10 3100 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
1fb24930
RC
3101 set_gdbarch_in_function_epilogue_p (gdbarch,
3102 hppa_in_function_epilogue_p);
a2a84a72 3103 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3104 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3105 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
b6fbdd1d 3106 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
3107 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3108 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3109 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3110 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3111
143985b7
AF
3112 /* Helper for function argument information. */
3113 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3114
36482093
AC
3115 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3116
3a3bc038
AC
3117 /* When a hardware watchpoint triggers, we'll move the inferior past
3118 it by removing all eventpoints; stepping past the instruction
3119 that caused the trigger; reinserting eventpoints; and checking
3120 whether any watched location changed. */
3121 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3122
5979bc46 3123 /* Inferior function call methods. */
fca7aa43 3124 switch (tdep->bytes_per_address)
5979bc46 3125 {
fca7aa43
AC
3126 case 4:
3127 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3128 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3129 set_gdbarch_convert_from_func_ptr_addr
3130 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3131 break;
3132 case 8:
782eae8b
AC
3133 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3134 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3135 break;
782eae8b 3136 default:
e2e0b3e5 3137 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3138 }
3139
3140 /* Struct return methods. */
fca7aa43 3141 switch (tdep->bytes_per_address)
fad850b2 3142 {
fca7aa43
AC
3143 case 4:
3144 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3145 break;
3146 case 8:
782eae8b 3147 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3148 break;
fca7aa43 3149 default:
e2e0b3e5 3150 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3151 }
7f07c5b6 3152
85f4f2d8 3153 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 3154 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3155
5979bc46 3156 /* Frame unwind methods. */
782eae8b
AC
3157 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3158 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3159
50306a9d
RC
3160 /* Hook in ABI-specific overrides, if they have been registered. */
3161 gdbarch_init_osabi (info, gdbarch);
3162
7f07c5b6
RC
3163 /* Hook in the default unwinders. */
3164 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 3165 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 3166 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 3167
e6e68f1f
JB
3168 return gdbarch;
3169}
3170
3171static void
3172hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3173{
fdd72f95
RC
3174 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3175
3176 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3177 tdep->bytes_per_address);
3178 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3179}
3180
4facf7e8
JB
3181void
3182_initialize_hppa_tdep (void)
3183{
3184 struct cmd_list_element *c;
4facf7e8 3185
e6e68f1f 3186 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3187
7c46b9fb
RC
3188 hppa_objfile_priv_data = register_objfile_data ();
3189
4facf7e8 3190 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3191 _("Print unwind table entry at given address."),
4facf7e8
JB
3192 &maintenanceprintlist);
3193
369aa520 3194 /* Debug this files internals. */
7915a72c
AC
3195 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3196Set whether hppa target specific debugging information should be displayed."),
3197 _("\
3198Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3199This flag controls whether hppa target specific debugging information is\n\
3200displayed. This information is particularly useful for debugging frame\n\
7915a72c 3201unwinding problems."),
2c5b56ce 3202 NULL,
7915a72c 3203 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3204 &setdebuglist, &showdebuglist);
4facf7e8 3205}
This page took 0.7754 seconds and 4 git commands to generate.