* gdbarch.sh: Delete dwarf_reg_to_regnum.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
6aba47ca 3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
9b254dd1 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
a7aad9aa 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
a9762ec7 14 the Free Software Foundation; either version 3 of the License, or
c5aa993b 15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b 22 You should have received a copy of the GNU General Public License
a9762ec7 23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
24
25#include "defs.h"
c906108c
SS
26#include "bfd.h"
27#include "inferior.h"
4e052eda 28#include "regcache.h"
e5d66720 29#include "completer.h"
59623e27 30#include "osabi.h"
a7ff40e7 31#include "gdb_assert.h"
e7b17823 32#include "gdb_stdint.h"
343af405 33#include "arch-utils.h"
c906108c
SS
34/* For argument passing to the inferior */
35#include "symtab.h"
fde2cceb 36#include "dis-asm.h"
26d08f08
AC
37#include "trad-frame.h"
38#include "frame-unwind.h"
39#include "frame-base.h"
c906108c 40
c906108c
SS
41#include "gdbcore.h"
42#include "gdbcmd.h"
e6bb342a 43#include "gdbtypes.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
c906108c
SS
71/* Routines to extract various sized constants out of hppa
72 instructions. */
73
74/* This assumes that no garbage lies outside of the lower bits of
75 value. */
76
abc485a1
RC
77int
78hppa_sign_extend (unsigned val, unsigned bits)
c906108c 79{
c5aa993b 80 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
81}
82
83/* For many immediate values the sign bit is the low bit! */
84
abc485a1
RC
85int
86hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 87{
c5aa993b 88 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
89}
90
e2ac8128
JB
91/* Extract the bits at positions between FROM and TO, using HP's numbering
92 (MSB = 0). */
93
abc485a1
RC
94int
95hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
96{
97 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
98}
99
c906108c
SS
100/* extract the immediate field from a ld{bhw}s instruction */
101
abc485a1
RC
102int
103hppa_extract_5_load (unsigned word)
c906108c 104{
abc485a1 105 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
106}
107
c906108c
SS
108/* extract the immediate field from a break instruction */
109
abc485a1
RC
110unsigned
111hppa_extract_5r_store (unsigned word)
c906108c
SS
112{
113 return (word & MASK_5);
114}
115
116/* extract the immediate field from a {sr}sm instruction */
117
abc485a1
RC
118unsigned
119hppa_extract_5R_store (unsigned word)
c906108c
SS
120{
121 return (word >> 16 & MASK_5);
122}
123
c906108c
SS
124/* extract a 14 bit immediate field */
125
abc485a1
RC
126int
127hppa_extract_14 (unsigned word)
c906108c 128{
abc485a1 129 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
130}
131
c906108c
SS
132/* extract a 21 bit constant */
133
abc485a1
RC
134int
135hppa_extract_21 (unsigned word)
c906108c
SS
136{
137 int val;
138
139 word &= MASK_21;
140 word <<= 11;
abc485a1 141 val = hppa_get_field (word, 20, 20);
c906108c 142 val <<= 11;
abc485a1 143 val |= hppa_get_field (word, 9, 19);
c906108c 144 val <<= 2;
abc485a1 145 val |= hppa_get_field (word, 5, 6);
c906108c 146 val <<= 5;
abc485a1 147 val |= hppa_get_field (word, 0, 4);
c906108c 148 val <<= 2;
abc485a1
RC
149 val |= hppa_get_field (word, 7, 8);
150 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
151}
152
c906108c
SS
153/* extract a 17 bit constant from branch instructions, returning the
154 19 bit signed value. */
155
abc485a1
RC
156int
157hppa_extract_17 (unsigned word)
c906108c 158{
abc485a1
RC
159 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
160 hppa_get_field (word, 29, 29) << 10 |
161 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
162 (word & 0x1) << 16, 17) << 2;
163}
3388d7ff
RC
164
165CORE_ADDR
166hppa_symbol_address(const char *sym)
167{
168 struct minimal_symbol *minsym;
169
170 minsym = lookup_minimal_symbol (sym, NULL, NULL);
171 if (minsym)
172 return SYMBOL_VALUE_ADDRESS (minsym);
173 else
174 return (CORE_ADDR)-1;
175}
77d18ded
RC
176
177struct hppa_objfile_private *
178hppa_init_objfile_priv_data (struct objfile *objfile)
179{
180 struct hppa_objfile_private *priv;
181
182 priv = (struct hppa_objfile_private *)
183 obstack_alloc (&objfile->objfile_obstack,
184 sizeof (struct hppa_objfile_private));
185 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
186 memset (priv, 0, sizeof (*priv));
187
188 return priv;
189}
c906108c
SS
190\f
191
192/* Compare the start address for two unwind entries returning 1 if
193 the first address is larger than the second, -1 if the second is
194 larger than the first, and zero if they are equal. */
195
196static int
fba45db2 197compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
198{
199 const struct unwind_table_entry *a = arg1;
200 const struct unwind_table_entry *b = arg2;
201
202 if (a->region_start > b->region_start)
203 return 1;
204 else if (a->region_start < b->region_start)
205 return -1;
206 else
207 return 0;
208}
209
53a5351d 210static void
fdd72f95 211record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 212{
fdd72f95 213 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 214 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
215 {
216 bfd_vma value = section->vma - section->filepos;
217 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
218
219 if (value < *low_text_segment_address)
220 *low_text_segment_address = value;
221 }
53a5351d
JM
222}
223
c906108c 224static void
fba45db2
KB
225internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
226 asection *section, unsigned int entries, unsigned int size,
227 CORE_ADDR text_offset)
c906108c
SS
228{
229 /* We will read the unwind entries into temporary memory, then
230 fill in the actual unwind table. */
fdd72f95 231
c906108c
SS
232 if (size > 0)
233 {
234 unsigned long tmp;
235 unsigned i;
236 char *buf = alloca (size);
fdd72f95 237 CORE_ADDR low_text_segment_address;
c906108c 238
fdd72f95 239 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
240 be segment relative offsets instead of absolute addresses.
241
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
244 passed in. */
fdd72f95 245 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 246 {
fdd72f95
RC
247 low_text_segment_address = -1;
248
53a5351d 249 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
53a5351d 252
fdd72f95 253 text_offset = low_text_segment_address;
53a5351d 254 }
acf86d54
RC
255 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
256 {
257 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
258 }
53a5351d 259
c906108c
SS
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
261
262 /* Now internalize the information being careful to handle host/target
c5aa993b 263 endian issues. */
c906108c
SS
264 for (i = 0; i < entries; i++)
265 {
266 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 267 (bfd_byte *) buf);
c906108c
SS
268 table[i].region_start += text_offset;
269 buf += 4;
c5aa993b 270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
271 table[i].region_end += text_offset;
272 buf += 4;
c5aa993b 273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
274 buf += 4;
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 279 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 289 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 293 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 297 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 298 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
300 buf += 4;
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
306 table[i].Total_frame_size = tmp & 0x7ffffff;
307
c5aa993b 308 /* Stub unwinds are handled elsewhere. */
c906108c
SS
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
311 }
312 }
313}
314
315/* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
320
321static void
fba45db2 322read_unwind_info (struct objfile *objfile)
c906108c 323{
d4f3574e
SS
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
c906108c
SS
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
7c46b9fb
RC
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
c906108c
SS
331
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
c906108c
SS
335
336 ui->table = NULL;
337 ui->cache = NULL;
338 ui->last = -1;
339
d4f3574e
SS
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
c906108c 344
d4f3574e
SS
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
347 total_entries = 0;
348 for (unwind_sec = objfile->obfd->sections;
349 unwind_sec;
350 unwind_sec = unwind_sec->next)
c906108c 351 {
d4f3574e
SS
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
354 {
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 357
d4f3574e
SS
358 total_entries += unwind_entries;
359 }
c906108c
SS
360 }
361
d4f3574e 362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 363 use stub unwinds at the current time. */
d4f3574e
SS
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365
c906108c
SS
366 if (stub_unwind_sec)
367 {
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 stub_unwind_size = 0;
374 stub_entries = 0;
375 }
376
377 /* Compute total number of unwind entries and their total size. */
d4f3574e 378 total_entries += stub_entries;
c906108c
SS
379 total_size = total_entries * sizeof (struct unwind_table_entry);
380
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
8b92e4d5 383 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 384 ui->last = total_entries - 1;
c906108c 385
d4f3574e
SS
386 /* Now read in each unwind section and internalize the standard unwind
387 entries. */
c906108c 388 index = 0;
d4f3574e
SS
389 for (unwind_sec = objfile->obfd->sections;
390 unwind_sec;
391 unwind_sec = unwind_sec->next)
392 {
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
402 }
403 }
404
405 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
406 if (stub_unwind_size > 0)
407 {
408 unsigned int i;
409 char *buf = alloca (stub_unwind_size);
410
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
414
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
417 {
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
420
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
424 (bfd_byte *) buf);
425 ui->table[index].region_start += text_offset;
426 buf += 4;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 428 (bfd_byte *) buf);
c906108c
SS
429 buf += 2;
430 ui->table[index].region_end
c5aa993b
JM
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
433 buf += 2;
434 }
435
436 }
437
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
441
442 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
77d18ded
RC
446 obj_private = hppa_init_objfile_priv_data (objfile);
447
c906108c
SS
448 obj_private->unwind_info = ui;
449}
450
451/* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
455
456struct unwind_table_entry *
fba45db2 457find_unwind_entry (CORE_ADDR pc)
c906108c
SS
458{
459 int first, middle, last;
460 struct objfile *objfile;
7c46b9fb 461 struct hppa_objfile_private *priv;
c906108c 462
369aa520
RC
463 if (hppa_debug)
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
465 paddr_nz (pc));
466
c906108c
SS
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
369aa520
RC
469 {
470 if (hppa_debug)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
472 return NULL;
473 }
c906108c
SS
474
475 ALL_OBJFILES (objfile)
c5aa993b 476 {
7c46b9fb 477 struct hppa_unwind_info *ui;
c5aa993b 478 ui = NULL;
7c46b9fb
RC
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
480 if (priv)
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 482
c5aa993b
JM
483 if (!ui)
484 {
485 read_unwind_info (objfile);
7c46b9fb
RC
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
487 if (priv == NULL)
8a3fe4f8 488 error (_("Internal error reading unwind information."));
7c46b9fb 489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 490 }
c906108c 491
c5aa993b 492 /* First, check the cache */
c906108c 493
c5aa993b
JM
494 if (ui->cache
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
369aa520
RC
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
e7b17823 500 paddr_nz ((uintptr_t) ui->cache));
369aa520
RC
501 return ui->cache;
502 }
c906108c 503
c5aa993b 504 /* Not in the cache, do a binary search */
c906108c 505
c5aa993b
JM
506 first = 0;
507 last = ui->last;
c906108c 508
c5aa993b
JM
509 while (first <= last)
510 {
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
514 {
515 ui->cache = &ui->table[middle];
369aa520
RC
516 if (hppa_debug)
517 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
e7b17823 518 paddr_nz ((uintptr_t) ui->cache));
c5aa993b
JM
519 return &ui->table[middle];
520 }
c906108c 521
c5aa993b
JM
522 if (pc < ui->table[middle].region_start)
523 last = middle - 1;
524 else
525 first = middle + 1;
526 }
527 } /* ALL_OBJFILES() */
369aa520
RC
528
529 if (hppa_debug)
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
531
c906108c
SS
532 return NULL;
533}
534
1fb24930
RC
535/* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
537
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
540static int
541hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
542{
543 unsigned long status;
544 unsigned int inst;
545 char buf[4];
546 int off;
547
8defab1a 548 status = target_read_memory (pc, buf, 4);
1fb24930
RC
549 if (status != 0)
550 return 0;
551
552 inst = extract_unsigned_integer (buf, 4);
553
554 /* The most common way to perform a stack adjustment ldo X(sp),sp
555 We are destroying a stack frame if the offset is negative. */
556 if ((inst & 0xffffc000) == 0x37de0000
557 && hppa_extract_14 (inst) < 0)
558 return 1;
559
560 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
561 if (((inst & 0x0fc010e0) == 0x0fc010e0
562 || (inst & 0x0fc010e0) == 0x0fc010e0)
563 && hppa_extract_14 (inst) < 0)
564 return 1;
565
566 /* bv %r0(%rp) or bv,n %r0(%rp) */
567 if (inst == 0xe840c000 || inst == 0xe840c002)
568 return 1;
569
570 return 0;
571}
572
85f4f2d8 573static const unsigned char *
67d57894 574hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
aaab4dba 575{
56132691 576 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
577 (*len) = sizeof (breakpoint);
578 return breakpoint;
579}
580
e23457df
AC
581/* Return the name of a register. */
582
4a302917 583static const char *
d93859e2 584hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
585{
586 static char *names[] = {
587 "flags", "r1", "rp", "r3",
588 "r4", "r5", "r6", "r7",
589 "r8", "r9", "r10", "r11",
590 "r12", "r13", "r14", "r15",
591 "r16", "r17", "r18", "r19",
592 "r20", "r21", "r22", "r23",
593 "r24", "r25", "r26", "dp",
594 "ret0", "ret1", "sp", "r31",
595 "sar", "pcoqh", "pcsqh", "pcoqt",
596 "pcsqt", "eiem", "iir", "isr",
597 "ior", "ipsw", "goto", "sr4",
598 "sr0", "sr1", "sr2", "sr3",
599 "sr5", "sr6", "sr7", "cr0",
600 "cr8", "cr9", "ccr", "cr12",
601 "cr13", "cr24", "cr25", "cr26",
602 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
603 "fpsr", "fpe1", "fpe2", "fpe3",
604 "fpe4", "fpe5", "fpe6", "fpe7",
605 "fr4", "fr4R", "fr5", "fr5R",
606 "fr6", "fr6R", "fr7", "fr7R",
607 "fr8", "fr8R", "fr9", "fr9R",
608 "fr10", "fr10R", "fr11", "fr11R",
609 "fr12", "fr12R", "fr13", "fr13R",
610 "fr14", "fr14R", "fr15", "fr15R",
611 "fr16", "fr16R", "fr17", "fr17R",
612 "fr18", "fr18R", "fr19", "fr19R",
613 "fr20", "fr20R", "fr21", "fr21R",
614 "fr22", "fr22R", "fr23", "fr23R",
615 "fr24", "fr24R", "fr25", "fr25R",
616 "fr26", "fr26R", "fr27", "fr27R",
617 "fr28", "fr28R", "fr29", "fr29R",
618 "fr30", "fr30R", "fr31", "fr31R"
619 };
620 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
621 return NULL;
622 else
623 return names[i];
624}
625
4a302917 626static const char *
d93859e2 627hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df
AC
628{
629 static char *names[] = {
630 "flags", "r1", "rp", "r3",
631 "r4", "r5", "r6", "r7",
632 "r8", "r9", "r10", "r11",
633 "r12", "r13", "r14", "r15",
634 "r16", "r17", "r18", "r19",
635 "r20", "r21", "r22", "r23",
636 "r24", "r25", "r26", "dp",
637 "ret0", "ret1", "sp", "r31",
638 "sar", "pcoqh", "pcsqh", "pcoqt",
639 "pcsqt", "eiem", "iir", "isr",
640 "ior", "ipsw", "goto", "sr4",
641 "sr0", "sr1", "sr2", "sr3",
642 "sr5", "sr6", "sr7", "cr0",
643 "cr8", "cr9", "ccr", "cr12",
644 "cr13", "cr24", "cr25", "cr26",
645 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
646 "fpsr", "fpe1", "fpe2", "fpe3",
647 "fr4", "fr5", "fr6", "fr7",
648 "fr8", "fr9", "fr10", "fr11",
649 "fr12", "fr13", "fr14", "fr15",
650 "fr16", "fr17", "fr18", "fr19",
651 "fr20", "fr21", "fr22", "fr23",
652 "fr24", "fr25", "fr26", "fr27",
653 "fr28", "fr29", "fr30", "fr31"
654 };
655 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
656 return NULL;
657 else
658 return names[i];
659}
660
1ef7fcb5 661static int
d3f73121 662hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5
RC
663{
664 /* r0-r31 and sar map one-to-one. */
665 if (reg <= 32)
666 return reg;
667
668 /* fr4-fr31 are mapped from 72 in steps of 2. */
669 if (reg >= 72 || reg < 72 + 28 * 2)
670 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
671
672 error ("Invalid DWARF register num %d.", reg);
673 return -1;
674}
675
79508e1e
AC
676/* This function pushes a stack frame with arguments as part of the
677 inferior function calling mechanism.
678
679 This is the version of the function for the 32-bit PA machines, in
680 which later arguments appear at lower addresses. (The stack always
681 grows towards higher addresses.)
682
683 We simply allocate the appropriate amount of stack space and put
684 arguments into their proper slots. */
685
4a302917 686static CORE_ADDR
7d9b040b 687hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
688 struct regcache *regcache, CORE_ADDR bp_addr,
689 int nargs, struct value **args, CORE_ADDR sp,
690 int struct_return, CORE_ADDR struct_addr)
691{
79508e1e
AC
692 /* Stack base address at which any pass-by-reference parameters are
693 stored. */
694 CORE_ADDR struct_end = 0;
695 /* Stack base address at which the first parameter is stored. */
696 CORE_ADDR param_end = 0;
697
698 /* The inner most end of the stack after all the parameters have
699 been pushed. */
700 CORE_ADDR new_sp = 0;
701
702 /* Two passes. First pass computes the location of everything,
703 second pass writes the bytes out. */
704 int write_pass;
d49771ef
RC
705
706 /* Global pointer (r19) of the function we are trying to call. */
707 CORE_ADDR gp;
708
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
710
79508e1e
AC
711 for (write_pass = 0; write_pass < 2; write_pass++)
712 {
1797a8f6 713 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
714 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
715 struct_ptr is adjusted for each argument below, so the first
716 argument will end up at sp-36. */
717 CORE_ADDR param_ptr = 32;
79508e1e 718 int i;
2a6228ef
RC
719 int small_struct = 0;
720
79508e1e
AC
721 for (i = 0; i < nargs; i++)
722 {
723 struct value *arg = args[i];
4991999e 724 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
725 /* The corresponding parameter that is pushed onto the
726 stack, and [possibly] passed in a register. */
727 char param_val[8];
728 int param_len;
729 memset (param_val, 0, sizeof param_val);
730 if (TYPE_LENGTH (type) > 8)
731 {
732 /* Large parameter, pass by reference. Store the value
733 in "struct" area and then pass its address. */
734 param_len = 4;
1797a8f6 735 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 736 if (write_pass)
0fd88904 737 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 738 TYPE_LENGTH (type));
1797a8f6 739 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
740 }
741 else if (TYPE_CODE (type) == TYPE_CODE_INT
742 || TYPE_CODE (type) == TYPE_CODE_ENUM)
743 {
744 /* Integer value store, right aligned. "unpack_long"
745 takes care of any sign-extension problems. */
746 param_len = align_up (TYPE_LENGTH (type), 4);
747 store_unsigned_integer (param_val, param_len,
748 unpack_long (type,
0fd88904 749 value_contents (arg)));
79508e1e 750 }
2a6228ef
RC
751 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
752 {
753 /* Floating point value store, right aligned. */
754 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 755 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 756 }
79508e1e
AC
757 else
758 {
79508e1e 759 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
760
761 /* Small struct value are stored right-aligned. */
79508e1e 762 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 763 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
764
765 /* Structures of size 5, 6 and 7 bytes are special in that
766 the higher-ordered word is stored in the lower-ordered
767 argument, and even though it is a 8-byte quantity the
768 registers need not be 8-byte aligned. */
1b07b470 769 if (param_len > 4 && param_len < 8)
2a6228ef 770 small_struct = 1;
79508e1e 771 }
2a6228ef 772
1797a8f6 773 param_ptr += param_len;
2a6228ef
RC
774 if (param_len == 8 && !small_struct)
775 param_ptr = align_up (param_ptr, 8);
776
777 /* First 4 non-FP arguments are passed in gr26-gr23.
778 First 4 32-bit FP arguments are passed in fr4L-fr7L.
779 First 2 64-bit FP arguments are passed in fr5 and fr7.
780
781 The rest go on the stack, starting at sp-36, towards lower
782 addresses. 8-byte arguments must be aligned to a 8-byte
783 stack boundary. */
79508e1e
AC
784 if (write_pass)
785 {
1797a8f6 786 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
787
788 /* There are some cases when we don't know the type
789 expected by the callee (e.g. for variadic functions), so
790 pass the parameters in both general and fp regs. */
791 if (param_ptr <= 48)
79508e1e 792 {
2a6228ef
RC
793 int grreg = 26 - (param_ptr - 36) / 4;
794 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
795 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
796
797 regcache_cooked_write (regcache, grreg, param_val);
798 regcache_cooked_write (regcache, fpLreg, param_val);
799
79508e1e 800 if (param_len > 4)
2a6228ef
RC
801 {
802 regcache_cooked_write (regcache, grreg + 1,
803 param_val + 4);
804
805 regcache_cooked_write (regcache, fpreg, param_val);
806 regcache_cooked_write (regcache, fpreg + 1,
807 param_val + 4);
808 }
79508e1e
AC
809 }
810 }
811 }
812
813 /* Update the various stack pointers. */
814 if (!write_pass)
815 {
2a6228ef 816 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
817 /* PARAM_PTR already accounts for all the arguments passed
818 by the user. However, the ABI mandates minimum stack
819 space allocations for outgoing arguments. The ABI also
820 mandates minimum stack alignments which we must
821 preserve. */
2a6228ef 822 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
823 }
824 }
825
826 /* If a structure has to be returned, set up register 28 to hold its
827 address */
828 if (struct_return)
9c9acae0 829 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 830
e38c262f 831 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
832
833 if (gp != 0)
9c9acae0 834 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 835
79508e1e 836 /* Set the return address. */
77d18ded
RC
837 if (!gdbarch_push_dummy_code_p (gdbarch))
838 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 839
c4557624 840 /* Update the Stack Pointer. */
34f75cc1 841 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 842
2a6228ef 843 return param_end;
79508e1e
AC
844}
845
38ca4e0c
MK
846/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
847 Runtime Architecture for PA-RISC 2.0", which is distributed as part
848 as of the HP-UX Software Transition Kit (STK). This implementation
849 is based on version 3.3, dated October 6, 1997. */
2f690297 850
38ca4e0c 851/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 852
38ca4e0c
MK
853static int
854hppa64_integral_or_pointer_p (const struct type *type)
855{
856 switch (TYPE_CODE (type))
857 {
858 case TYPE_CODE_INT:
859 case TYPE_CODE_BOOL:
860 case TYPE_CODE_CHAR:
861 case TYPE_CODE_ENUM:
862 case TYPE_CODE_RANGE:
863 {
864 int len = TYPE_LENGTH (type);
865 return (len == 1 || len == 2 || len == 4 || len == 8);
866 }
867 case TYPE_CODE_PTR:
868 case TYPE_CODE_REF:
869 return (TYPE_LENGTH (type) == 8);
870 default:
871 break;
872 }
873
874 return 0;
875}
876
877/* Check whether TYPE is a "Floating Scalar Type". */
878
879static int
880hppa64_floating_p (const struct type *type)
881{
882 switch (TYPE_CODE (type))
883 {
884 case TYPE_CODE_FLT:
885 {
886 int len = TYPE_LENGTH (type);
887 return (len == 4 || len == 8 || len == 16);
888 }
889 default:
890 break;
891 }
892
893 return 0;
894}
2f690297 895
1218e655
RC
896/* If CODE points to a function entry address, try to look up the corresponding
897 function descriptor and return its address instead. If CODE is not a
898 function entry address, then just return it unchanged. */
899static CORE_ADDR
900hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
901{
902 struct obj_section *sec, *opd;
903
904 sec = find_pc_section (code);
905
906 if (!sec)
907 return code;
908
909 /* If CODE is in a data section, assume it's already a fptr. */
910 if (!(sec->the_bfd_section->flags & SEC_CODE))
911 return code;
912
913 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
914 {
915 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
916 break;
917 }
918
919 if (opd < sec->objfile->sections_end)
920 {
921 CORE_ADDR addr;
922
923 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
924 {
925 ULONGEST opdaddr;
926 char tmp[8];
927
928 if (target_read_memory (addr, tmp, sizeof (tmp)))
929 break;
930 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
931
932 if (opdaddr == code)
933 return addr - 16;
934 }
935 }
936
937 return code;
938}
939
4a302917 940static CORE_ADDR
7d9b040b 941hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
942 struct regcache *regcache, CORE_ADDR bp_addr,
943 int nargs, struct value **args, CORE_ADDR sp,
944 int struct_return, CORE_ADDR struct_addr)
945{
38ca4e0c
MK
946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
947 int i, offset = 0;
948 CORE_ADDR gp;
2f690297 949
38ca4e0c
MK
950 /* "The outgoing parameter area [...] must be aligned at a 16-byte
951 boundary." */
952 sp = align_up (sp, 16);
2f690297 953
38ca4e0c
MK
954 for (i = 0; i < nargs; i++)
955 {
956 struct value *arg = args[i];
957 struct type *type = value_type (arg);
958 int len = TYPE_LENGTH (type);
0fd88904 959 const bfd_byte *valbuf;
1218e655 960 bfd_byte fptrbuf[8];
38ca4e0c 961 int regnum;
2f690297 962
38ca4e0c
MK
963 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
964 offset = align_up (offset, 8);
77d18ded 965
38ca4e0c 966 if (hppa64_integral_or_pointer_p (type))
2f690297 967 {
38ca4e0c
MK
968 /* "Integral scalar parameters smaller than 64 bits are
969 padded on the left (i.e., the value is in the
970 least-significant bits of the 64-bit storage unit, and
971 the high-order bits are undefined)." Therefore we can
972 safely sign-extend them. */
973 if (len < 8)
449e1137 974 {
38ca4e0c
MK
975 arg = value_cast (builtin_type_int64, arg);
976 len = 8;
977 }
978 }
979 else if (hppa64_floating_p (type))
980 {
981 if (len > 8)
982 {
983 /* "Quad-precision (128-bit) floating-point scalar
984 parameters are aligned on a 16-byte boundary." */
985 offset = align_up (offset, 16);
986
987 /* "Double-extended- and quad-precision floating-point
988 parameters within the first 64 bytes of the parameter
989 list are always passed in general registers." */
449e1137
AC
990 }
991 else
992 {
38ca4e0c 993 if (len == 4)
449e1137 994 {
38ca4e0c
MK
995 /* "Single-precision (32-bit) floating-point scalar
996 parameters are padded on the left with 32 bits of
997 garbage (i.e., the floating-point value is in the
998 least-significant 32 bits of a 64-bit storage
999 unit)." */
1000 offset += 4;
449e1137 1001 }
38ca4e0c
MK
1002
1003 /* "Single- and double-precision floating-point
1004 parameters in this area are passed according to the
1005 available formal parameter information in a function
1006 prototype. [...] If no prototype is in scope,
1007 floating-point parameters must be passed both in the
1008 corresponding general registers and in the
1009 corresponding floating-point registers." */
1010 regnum = HPPA64_FP4_REGNUM + offset / 8;
1011
1012 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1013 {
38ca4e0c
MK
1014 /* "Single-precision floating-point parameters, when
1015 passed in floating-point registers, are passed in
1016 the right halves of the floating point registers;
1017 the left halves are unused." */
1018 regcache_cooked_write_part (regcache, regnum, offset % 8,
0fd88904 1019 len, value_contents (arg));
449e1137
AC
1020 }
1021 }
2f690297 1022 }
38ca4e0c 1023 else
2f690297 1024 {
38ca4e0c
MK
1025 if (len > 8)
1026 {
1027 /* "Aggregates larger than 8 bytes are aligned on a
1028 16-byte boundary, possibly leaving an unused argument
1029 slot, which is filled with garbage. If necessary,
1030 they are padded on the right (with garbage), to a
1031 multiple of 8 bytes." */
1032 offset = align_up (offset, 16);
1033 }
1034 }
1035
1218e655
RC
1036 /* If we are passing a function pointer, make sure we pass a function
1037 descriptor instead of the function entry address. */
1038 if (TYPE_CODE (type) == TYPE_CODE_PTR
1039 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1040 {
1041 ULONGEST codeptr, fptr;
1042
1043 codeptr = unpack_long (type, value_contents (arg));
1044 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1045 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1046 valbuf = fptrbuf;
1047 }
1048 else
1049 {
1050 valbuf = value_contents (arg);
1051 }
1052
38ca4e0c 1053 /* Always store the argument in memory. */
1218e655 1054 write_memory (sp + offset, valbuf, len);
38ca4e0c 1055
38ca4e0c
MK
1056 regnum = HPPA_ARG0_REGNUM - offset / 8;
1057 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1058 {
1059 regcache_cooked_write_part (regcache, regnum,
1060 offset % 8, min (len, 8), valbuf);
1061 offset += min (len, 8);
1062 valbuf += min (len, 8);
1063 len -= min (len, 8);
1064 regnum--;
2f690297 1065 }
38ca4e0c
MK
1066
1067 offset += len;
2f690297
AC
1068 }
1069
38ca4e0c
MK
1070 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1071 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1072
1073 /* Allocate the outgoing parameter area. Make sure the outgoing
1074 parameter area is multiple of 16 bytes in length. */
1075 sp += max (align_up (offset, 16), 64);
1076
1077 /* Allocate 32-bytes of scratch space. The documentation doesn't
1078 mention this, but it seems to be needed. */
1079 sp += 32;
1080
1081 /* Allocate the frame marker area. */
1082 sp += 16;
1083
1084 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1085 its address. */
2f690297 1086 if (struct_return)
38ca4e0c 1087 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1088
38ca4e0c 1089 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1090 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1091 if (gp != 0)
38ca4e0c 1092 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1093
38ca4e0c 1094 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1095 if (!gdbarch_push_dummy_code_p (gdbarch))
1096 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1097
38ca4e0c
MK
1098 /* Set up GR30 to hold the stack pointer (sp). */
1099 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1100
38ca4e0c 1101 return sp;
2f690297 1102}
38ca4e0c 1103\f
2f690297 1104
08a27113
MK
1105/* Handle 32/64-bit struct return conventions. */
1106
1107static enum return_value_convention
c055b101 1108hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type,
08a27113 1109 struct type *type, struct regcache *regcache,
e127f0db 1110 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1111{
1112 if (TYPE_LENGTH (type) <= 2 * 4)
1113 {
1114 /* The value always lives in the right hand end of the register
1115 (or register pair)? */
1116 int b;
1117 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1118 int part = TYPE_LENGTH (type) % 4;
1119 /* The left hand register contains only part of the value,
1120 transfer that first so that the rest can be xfered as entire
1121 4-byte registers. */
1122 if (part > 0)
1123 {
1124 if (readbuf != NULL)
1125 regcache_cooked_read_part (regcache, reg, 4 - part,
1126 part, readbuf);
1127 if (writebuf != NULL)
1128 regcache_cooked_write_part (regcache, reg, 4 - part,
1129 part, writebuf);
1130 reg++;
1131 }
1132 /* Now transfer the remaining register values. */
1133 for (b = part; b < TYPE_LENGTH (type); b += 4)
1134 {
1135 if (readbuf != NULL)
e127f0db 1136 regcache_cooked_read (regcache, reg, readbuf + b);
08a27113 1137 if (writebuf != NULL)
e127f0db 1138 regcache_cooked_write (regcache, reg, writebuf + b);
08a27113
MK
1139 reg++;
1140 }
1141 return RETURN_VALUE_REGISTER_CONVENTION;
1142 }
1143 else
1144 return RETURN_VALUE_STRUCT_CONVENTION;
1145}
1146
1147static enum return_value_convention
c055b101 1148hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type,
08a27113 1149 struct type *type, struct regcache *regcache,
e127f0db 1150 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1151{
1152 int len = TYPE_LENGTH (type);
1153 int regnum, offset;
1154
1155 if (len > 16)
1156 {
1157 /* All return values larget than 128 bits must be aggregate
1158 return values. */
9738b034
MK
1159 gdb_assert (!hppa64_integral_or_pointer_p (type));
1160 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1161
1162 /* "Aggregate return values larger than 128 bits are returned in
1163 a buffer allocated by the caller. The address of the buffer
1164 must be passed in GR 28." */
1165 return RETURN_VALUE_STRUCT_CONVENTION;
1166 }
1167
1168 if (hppa64_integral_or_pointer_p (type))
1169 {
1170 /* "Integral return values are returned in GR 28. Values
1171 smaller than 64 bits are padded on the left (with garbage)." */
1172 regnum = HPPA_RET0_REGNUM;
1173 offset = 8 - len;
1174 }
1175 else if (hppa64_floating_p (type))
1176 {
1177 if (len > 8)
1178 {
1179 /* "Double-extended- and quad-precision floating-point
1180 values are returned in GRs 28 and 29. The sign,
1181 exponent, and most-significant bits of the mantissa are
1182 returned in GR 28; the least-significant bits of the
1183 mantissa are passed in GR 29. For double-extended
1184 precision values, GR 29 is padded on the right with 48
1185 bits of garbage." */
1186 regnum = HPPA_RET0_REGNUM;
1187 offset = 0;
1188 }
1189 else
1190 {
1191 /* "Single-precision and double-precision floating-point
1192 return values are returned in FR 4R (single precision) or
1193 FR 4 (double-precision)." */
1194 regnum = HPPA64_FP4_REGNUM;
1195 offset = 8 - len;
1196 }
1197 }
1198 else
1199 {
1200 /* "Aggregate return values up to 64 bits in size are returned
1201 in GR 28. Aggregates smaller than 64 bits are left aligned
1202 in the register; the pad bits on the right are undefined."
1203
1204 "Aggregate return values between 65 and 128 bits are returned
1205 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1206 the remaining bits are placed, left aligned, in GR 29. The
1207 pad bits on the right of GR 29 (if any) are undefined." */
1208 regnum = HPPA_RET0_REGNUM;
1209 offset = 0;
1210 }
1211
1212 if (readbuf)
1213 {
08a27113
MK
1214 while (len > 0)
1215 {
1216 regcache_cooked_read_part (regcache, regnum, offset,
e127f0db
MK
1217 min (len, 8), readbuf);
1218 readbuf += min (len, 8);
08a27113
MK
1219 len -= min (len, 8);
1220 regnum++;
1221 }
1222 }
1223
1224 if (writebuf)
1225 {
08a27113
MK
1226 while (len > 0)
1227 {
1228 regcache_cooked_write_part (regcache, regnum, offset,
e127f0db
MK
1229 min (len, 8), writebuf);
1230 writebuf += min (len, 8);
08a27113
MK
1231 len -= min (len, 8);
1232 regnum++;
1233 }
1234 }
1235
1236 return RETURN_VALUE_REGISTER_CONVENTION;
1237}
1238\f
1239
d49771ef 1240static CORE_ADDR
a7aad9aa 1241hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1242 struct target_ops *targ)
1243{
1244 if (addr & 2)
1245 {
a7aad9aa
MK
1246 CORE_ADDR plabel = addr & ~3;
1247 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
d49771ef
RC
1248 }
1249
1250 return addr;
1251}
1252
1797a8f6
AC
1253static CORE_ADDR
1254hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1255{
1256 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1257 and not _bit_)! */
1258 return align_up (addr, 64);
1259}
1260
2f690297
AC
1261/* Force all frames to 16-byte alignment. Better safe than sorry. */
1262
1263static CORE_ADDR
1797a8f6 1264hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1265{
1266 /* Just always 16-byte align. */
1267 return align_up (addr, 16);
1268}
1269
cc72850f 1270CORE_ADDR
61a1198a 1271hppa_read_pc (struct regcache *regcache)
c906108c 1272{
cc72850f 1273 ULONGEST ipsw;
61a1198a 1274 ULONGEST pc;
c906108c 1275
61a1198a
UW
1276 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1277 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1278
1279 /* If the current instruction is nullified, then we are effectively
1280 still executing the previous instruction. Pretend we are still
cc72850f
MK
1281 there. This is needed when single stepping; if the nullified
1282 instruction is on a different line, we don't want GDB to think
1283 we've stepped onto that line. */
fe46cd3a
RC
1284 if (ipsw & 0x00200000)
1285 pc -= 4;
1286
cc72850f 1287 return pc & ~0x3;
c906108c
SS
1288}
1289
cc72850f 1290void
61a1198a 1291hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1292{
61a1198a
UW
1293 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1294 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1295}
1296
1297/* return the alignment of a type in bytes. Structures have the maximum
1298 alignment required by their fields. */
1299
1300static int
fba45db2 1301hppa_alignof (struct type *type)
c906108c
SS
1302{
1303 int max_align, align, i;
1304 CHECK_TYPEDEF (type);
1305 switch (TYPE_CODE (type))
1306 {
1307 case TYPE_CODE_PTR:
1308 case TYPE_CODE_INT:
1309 case TYPE_CODE_FLT:
1310 return TYPE_LENGTH (type);
1311 case TYPE_CODE_ARRAY:
1312 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1313 case TYPE_CODE_STRUCT:
1314 case TYPE_CODE_UNION:
1315 max_align = 1;
1316 for (i = 0; i < TYPE_NFIELDS (type); i++)
1317 {
1318 /* Bit fields have no real alignment. */
1319 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1320 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1321 {
1322 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1323 max_align = max (max_align, align);
1324 }
1325 }
1326 return max_align;
1327 default:
1328 return 4;
1329 }
1330}
1331
c906108c
SS
1332/* For the given instruction (INST), return any adjustment it makes
1333 to the stack pointer or zero for no adjustment.
1334
1335 This only handles instructions commonly found in prologues. */
1336
1337static int
fba45db2 1338prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1339{
1340 /* This must persist across calls. */
1341 static int save_high21;
1342
1343 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1344 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1345 return hppa_extract_14 (inst);
c906108c
SS
1346
1347 /* stwm X,D(sp) */
1348 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1349 return hppa_extract_14 (inst);
c906108c 1350
104c1213
JM
1351 /* std,ma X,D(sp) */
1352 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1353 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1354
e22b26cb 1355 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1356 save high bits in save_high21 for later use. */
e22b26cb 1357 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1358 {
abc485a1 1359 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1360 return 0;
1361 }
1362
1363 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1364 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1365
1366 /* fstws as used by the HP compilers. */
1367 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1368 return hppa_extract_5_load (inst);
c906108c
SS
1369
1370 /* No adjustment. */
1371 return 0;
1372}
1373
1374/* Return nonzero if INST is a branch of some kind, else return zero. */
1375
1376static int
fba45db2 1377is_branch (unsigned long inst)
c906108c
SS
1378{
1379 switch (inst >> 26)
1380 {
1381 case 0x20:
1382 case 0x21:
1383 case 0x22:
1384 case 0x23:
7be570e7 1385 case 0x27:
c906108c
SS
1386 case 0x28:
1387 case 0x29:
1388 case 0x2a:
1389 case 0x2b:
7be570e7 1390 case 0x2f:
c906108c
SS
1391 case 0x30:
1392 case 0x31:
1393 case 0x32:
1394 case 0x33:
1395 case 0x38:
1396 case 0x39:
1397 case 0x3a:
7be570e7 1398 case 0x3b:
c906108c
SS
1399 return 1;
1400
1401 default:
1402 return 0;
1403 }
1404}
1405
1406/* Return the register number for a GR which is saved by INST or
1407 zero it INST does not save a GR. */
1408
1409static int
fba45db2 1410inst_saves_gr (unsigned long inst)
c906108c
SS
1411{
1412 /* Does it look like a stw? */
7be570e7
JM
1413 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1414 || (inst >> 26) == 0x1f
1415 || ((inst >> 26) == 0x1f
1416 && ((inst >> 6) == 0xa)))
abc485a1 1417 return hppa_extract_5R_store (inst);
7be570e7
JM
1418
1419 /* Does it look like a std? */
1420 if ((inst >> 26) == 0x1c
1421 || ((inst >> 26) == 0x03
1422 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1423 return hppa_extract_5R_store (inst);
c906108c
SS
1424
1425 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1426 if ((inst >> 26) == 0x1b)
abc485a1 1427 return hppa_extract_5R_store (inst);
c906108c
SS
1428
1429 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1430 too. */
7be570e7
JM
1431 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1432 || ((inst >> 26) == 0x3
1433 && (((inst >> 6) & 0xf) == 0x8
1434 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1435 return hppa_extract_5R_store (inst);
c5aa993b 1436
c906108c
SS
1437 return 0;
1438}
1439
1440/* Return the register number for a FR which is saved by INST or
1441 zero it INST does not save a FR.
1442
1443 Note we only care about full 64bit register stores (that's the only
1444 kind of stores the prologue will use).
1445
1446 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1447
1448static int
fba45db2 1449inst_saves_fr (unsigned long inst)
c906108c 1450{
7be570e7 1451 /* is this an FSTD ? */
c906108c 1452 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1453 return hppa_extract_5r_store (inst);
7be570e7 1454 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1455 return hppa_extract_5R_store (inst);
7be570e7 1456 /* is this an FSTW ? */
c906108c 1457 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1458 return hppa_extract_5r_store (inst);
7be570e7 1459 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1460 return hppa_extract_5R_store (inst);
c906108c
SS
1461 return 0;
1462}
1463
1464/* Advance PC across any function entry prologue instructions
1465 to reach some "real" code.
1466
1467 Use information in the unwind table to determine what exactly should
1468 be in the prologue. */
1469
1470
a71f8c30 1471static CORE_ADDR
be8626e0
MD
1472skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1473 int stop_before_branch)
c906108c
SS
1474{
1475 char buf[4];
1476 CORE_ADDR orig_pc = pc;
1477 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1478 unsigned long args_stored, status, i, restart_gr, restart_fr;
1479 struct unwind_table_entry *u;
a71f8c30 1480 int final_iteration;
c906108c
SS
1481
1482 restart_gr = 0;
1483 restart_fr = 0;
1484
1485restart:
1486 u = find_unwind_entry (pc);
1487 if (!u)
1488 return pc;
1489
c5aa993b 1490 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1491 if ((pc & ~0x3) != u->region_start)
1492 return pc;
1493
1494 /* This is how much of a frame adjustment we need to account for. */
1495 stack_remaining = u->Total_frame_size << 3;
1496
1497 /* Magic register saves we want to know about. */
1498 save_rp = u->Save_RP;
1499 save_sp = u->Save_SP;
1500
1501 /* An indication that args may be stored into the stack. Unfortunately
1502 the HPUX compilers tend to set this in cases where no args were
1503 stored too!. */
1504 args_stored = 1;
1505
1506 /* Turn the Entry_GR field into a bitmask. */
1507 save_gr = 0;
1508 for (i = 3; i < u->Entry_GR + 3; i++)
1509 {
1510 /* Frame pointer gets saved into a special location. */
eded0a31 1511 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1512 continue;
1513
1514 save_gr |= (1 << i);
1515 }
1516 save_gr &= ~restart_gr;
1517
1518 /* Turn the Entry_FR field into a bitmask too. */
1519 save_fr = 0;
1520 for (i = 12; i < u->Entry_FR + 12; i++)
1521 save_fr |= (1 << i);
1522 save_fr &= ~restart_fr;
1523
a71f8c30
RC
1524 final_iteration = 0;
1525
c906108c
SS
1526 /* Loop until we find everything of interest or hit a branch.
1527
1528 For unoptimized GCC code and for any HP CC code this will never ever
1529 examine any user instructions.
1530
1531 For optimzied GCC code we're faced with problems. GCC will schedule
1532 its prologue and make prologue instructions available for delay slot
1533 filling. The end result is user code gets mixed in with the prologue
1534 and a prologue instruction may be in the delay slot of the first branch
1535 or call.
1536
1537 Some unexpected things are expected with debugging optimized code, so
1538 we allow this routine to walk past user instructions in optimized
1539 GCC code. */
1540 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1541 || args_stored)
1542 {
1543 unsigned int reg_num;
1544 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1545 unsigned long old_save_rp, old_save_sp, next_inst;
1546
1547 /* Save copies of all the triggers so we can compare them later
c5aa993b 1548 (only for HPC). */
c906108c
SS
1549 old_save_gr = save_gr;
1550 old_save_fr = save_fr;
1551 old_save_rp = save_rp;
1552 old_save_sp = save_sp;
1553 old_stack_remaining = stack_remaining;
1554
8defab1a 1555 status = target_read_memory (pc, buf, 4);
c906108c 1556 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1557
c906108c
SS
1558 /* Yow! */
1559 if (status != 0)
1560 return pc;
1561
1562 /* Note the interesting effects of this instruction. */
1563 stack_remaining -= prologue_inst_adjust_sp (inst);
1564
7be570e7
JM
1565 /* There are limited ways to store the return pointer into the
1566 stack. */
c4c79048 1567 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1568 save_rp = 0;
1569
104c1213 1570 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1571 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1572 if ((inst & 0xffffc000) == 0x6fc10000
1573 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1574 save_sp = 0;
1575
6426a772
JM
1576 /* Are we loading some register with an offset from the argument
1577 pointer? */
1578 if ((inst & 0xffe00000) == 0x37a00000
1579 || (inst & 0xffffffe0) == 0x081d0240)
1580 {
1581 pc += 4;
1582 continue;
1583 }
1584
c906108c
SS
1585 /* Account for general and floating-point register saves. */
1586 reg_num = inst_saves_gr (inst);
1587 save_gr &= ~(1 << reg_num);
1588
1589 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1590 Unfortunately args_stored only tells us that some arguments
1591 where stored into the stack. Not how many or what kind!
c906108c 1592
c5aa993b
JM
1593 This is a kludge as on the HP compiler sets this bit and it
1594 never does prologue scheduling. So once we see one, skip past
1595 all of them. We have similar code for the fp arg stores below.
c906108c 1596
c5aa993b
JM
1597 FIXME. Can still die if we have a mix of GR and FR argument
1598 stores! */
be8626e0 1599 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1600 && reg_num <= 26)
c906108c 1601 {
be8626e0 1602 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1603 && reg_num <= 26)
c906108c
SS
1604 {
1605 pc += 4;
8defab1a 1606 status = target_read_memory (pc, buf, 4);
c906108c
SS
1607 inst = extract_unsigned_integer (buf, 4);
1608 if (status != 0)
1609 return pc;
1610 reg_num = inst_saves_gr (inst);
1611 }
1612 args_stored = 0;
1613 continue;
1614 }
1615
1616 reg_num = inst_saves_fr (inst);
1617 save_fr &= ~(1 << reg_num);
1618
8defab1a 1619 status = target_read_memory (pc + 4, buf, 4);
c906108c 1620 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1621
c906108c
SS
1622 /* Yow! */
1623 if (status != 0)
1624 return pc;
1625
1626 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1627 save. */
c906108c
SS
1628 if ((inst & 0xfc000000) == 0x34000000
1629 && inst_saves_fr (next_inst) >= 4
819844ad 1630 && inst_saves_fr (next_inst)
be8626e0 1631 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1632 {
1633 /* So we drop into the code below in a reasonable state. */
1634 reg_num = inst_saves_fr (next_inst);
1635 pc -= 4;
1636 }
1637
1638 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1639 This is a kludge as on the HP compiler sets this bit and it
1640 never does prologue scheduling. So once we see one, skip past
1641 all of them. */
819844ad 1642 if (reg_num >= 4
be8626e0 1643 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1644 {
819844ad
UW
1645 while (reg_num >= 4
1646 && reg_num
be8626e0 1647 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1648 {
1649 pc += 8;
8defab1a 1650 status = target_read_memory (pc, buf, 4);
c906108c
SS
1651 inst = extract_unsigned_integer (buf, 4);
1652 if (status != 0)
1653 return pc;
1654 if ((inst & 0xfc000000) != 0x34000000)
1655 break;
8defab1a 1656 status = target_read_memory (pc + 4, buf, 4);
c906108c
SS
1657 next_inst = extract_unsigned_integer (buf, 4);
1658 if (status != 0)
1659 return pc;
1660 reg_num = inst_saves_fr (next_inst);
1661 }
1662 args_stored = 0;
1663 continue;
1664 }
1665
1666 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1667 instruction is in the delay slot of the first call/branch. */
a71f8c30 1668 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1669 break;
1670
1671 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1672 arguments were stored into the stack (boo hiss). This could
1673 cause this code to then skip a bunch of user insns (up to the
1674 first branch).
1675
1676 To combat this we try to identify when args_stored was bogusly
1677 set and clear it. We only do this when args_stored is nonzero,
1678 all other resources are accounted for, and nothing changed on
1679 this pass. */
c906108c 1680 if (args_stored
c5aa993b 1681 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1682 && old_save_gr == save_gr && old_save_fr == save_fr
1683 && old_save_rp == save_rp && old_save_sp == save_sp
1684 && old_stack_remaining == stack_remaining)
1685 break;
c5aa993b 1686
c906108c
SS
1687 /* Bump the PC. */
1688 pc += 4;
a71f8c30
RC
1689
1690 /* !stop_before_branch, so also look at the insn in the delay slot
1691 of the branch. */
1692 if (final_iteration)
1693 break;
1694 if (is_branch (inst))
1695 final_iteration = 1;
c906108c
SS
1696 }
1697
1698 /* We've got a tenative location for the end of the prologue. However
1699 because of limitations in the unwind descriptor mechanism we may
1700 have went too far into user code looking for the save of a register
1701 that does not exist. So, if there registers we expected to be saved
1702 but never were, mask them out and restart.
1703
1704 This should only happen in optimized code, and should be very rare. */
c5aa993b 1705 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1706 {
1707 pc = orig_pc;
1708 restart_gr = save_gr;
1709 restart_fr = save_fr;
1710 goto restart;
1711 }
1712
1713 return pc;
1714}
1715
1716
7be570e7
JM
1717/* Return the address of the PC after the last prologue instruction if
1718 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1719
1720static CORE_ADDR
fba45db2 1721after_prologue (CORE_ADDR pc)
c906108c
SS
1722{
1723 struct symtab_and_line sal;
1724 CORE_ADDR func_addr, func_end;
1725 struct symbol *f;
1726
7be570e7
JM
1727 /* If we can not find the symbol in the partial symbol table, then
1728 there is no hope we can determine the function's start address
1729 with this code. */
c906108c 1730 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1731 return 0;
c906108c 1732
7be570e7 1733 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1734 sal = find_pc_line (func_addr, 0);
1735
7be570e7
JM
1736 /* There are only two cases to consider. First, the end of the source line
1737 is within the function bounds. In that case we return the end of the
1738 source line. Second is the end of the source line extends beyond the
1739 bounds of the current function. We need to use the slow code to
1740 examine instructions in that case.
c906108c 1741
7be570e7
JM
1742 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1743 the wrong thing to do. In fact, it should be entirely possible for this
1744 function to always return zero since the slow instruction scanning code
1745 is supposed to *always* work. If it does not, then it is a bug. */
1746 if (sal.end < func_end)
1747 return sal.end;
c5aa993b 1748 else
7be570e7 1749 return 0;
c906108c
SS
1750}
1751
1752/* To skip prologues, I use this predicate. Returns either PC itself
1753 if the code at PC does not look like a function prologue; otherwise
a71f8c30
RC
1754 returns an address that (if we're lucky) follows the prologue.
1755
1756 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1757 It doesn't necessarily skips all the insns in the prologue. In fact
1758 we might not want to skip all the insns because a prologue insn may
1759 appear in the delay slot of the first branch, and we don't want to
1760 skip over the branch in that case. */
c906108c 1761
8d153463 1762static CORE_ADDR
6093d2eb 1763hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1764{
c5aa993b
JM
1765 unsigned long inst;
1766 int offset;
1767 CORE_ADDR post_prologue_pc;
1768 char buf[4];
c906108c 1769
c5aa993b
JM
1770 /* See if we can determine the end of the prologue via the symbol table.
1771 If so, then return either PC, or the PC after the prologue, whichever
1772 is greater. */
c906108c 1773
c5aa993b 1774 post_prologue_pc = after_prologue (pc);
c906108c 1775
7be570e7
JM
1776 /* If after_prologue returned a useful address, then use it. Else
1777 fall back on the instruction skipping code.
1778
1779 Some folks have claimed this causes problems because the breakpoint
1780 may be the first instruction of the prologue. If that happens, then
1781 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1782 if (post_prologue_pc != 0)
1783 return max (pc, post_prologue_pc);
c5aa993b 1784 else
be8626e0 1785 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1786}
1787
29d375ac 1788/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1789
29d375ac 1790static struct unwind_table_entry *
227e86ad 1791hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1792{
227e86ad 1793 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1794
1795 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1796 result of frame_unwind_address_in_block implies a problem.
1797 The bits should have been removed earlier, before the return
1798 value of frame_pc_unwind. That might be happening already;
1799 if it isn't, it should be fixed. Then this call can be
1800 removed. */
227e86ad 1801 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1802 return find_unwind_entry (pc);
1803}
1804
26d08f08
AC
1805struct hppa_frame_cache
1806{
1807 CORE_ADDR base;
1808 struct trad_frame_saved_reg *saved_regs;
1809};
1810
1811static struct hppa_frame_cache *
227e86ad 1812hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1813{
227e86ad 1814 struct gdbarch *gdbarch = get_frame_arch (this_frame);
26d08f08
AC
1815 struct hppa_frame_cache *cache;
1816 long saved_gr_mask;
1817 long saved_fr_mask;
1818 CORE_ADDR this_sp;
1819 long frame_size;
1820 struct unwind_table_entry *u;
9f7194c3 1821 CORE_ADDR prologue_end;
50b2f48a 1822 int fp_in_r1 = 0;
26d08f08
AC
1823 int i;
1824
369aa520
RC
1825 if (hppa_debug)
1826 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1827 frame_relative_level(this_frame));
369aa520 1828
26d08f08 1829 if ((*this_cache) != NULL)
369aa520
RC
1830 {
1831 if (hppa_debug)
1832 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1833 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1834 return (*this_cache);
1835 }
26d08f08
AC
1836 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1837 (*this_cache) = cache;
227e86ad 1838 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1839
1840 /* Yow! */
227e86ad 1841 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1842 if (!u)
369aa520
RC
1843 {
1844 if (hppa_debug)
1845 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1846 return (*this_cache);
1847 }
26d08f08
AC
1848
1849 /* Turn the Entry_GR field into a bitmask. */
1850 saved_gr_mask = 0;
1851 for (i = 3; i < u->Entry_GR + 3; i++)
1852 {
1853 /* Frame pointer gets saved into a special location. */
eded0a31 1854 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1855 continue;
1856
1857 saved_gr_mask |= (1 << i);
1858 }
1859
1860 /* Turn the Entry_FR field into a bitmask too. */
1861 saved_fr_mask = 0;
1862 for (i = 12; i < u->Entry_FR + 12; i++)
1863 saved_fr_mask |= (1 << i);
1864
1865 /* Loop until we find everything of interest or hit a branch.
1866
1867 For unoptimized GCC code and for any HP CC code this will never ever
1868 examine any user instructions.
1869
1870 For optimized GCC code we're faced with problems. GCC will schedule
1871 its prologue and make prologue instructions available for delay slot
1872 filling. The end result is user code gets mixed in with the prologue
1873 and a prologue instruction may be in the delay slot of the first branch
1874 or call.
1875
1876 Some unexpected things are expected with debugging optimized code, so
1877 we allow this routine to walk past user instructions in optimized
1878 GCC code. */
1879 {
1880 int final_iteration = 0;
46acf081 1881 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1882 int looking_for_sp = u->Save_SP;
1883 int looking_for_rp = u->Save_RP;
1884 int fp_loc = -1;
9f7194c3 1885
a71f8c30 1886 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1887 skip_prologue_using_sal, in case we stepped into a function without
1888 symbol information. hppa_skip_prologue also bounds the returned
1889 pc by the passed in pc, so it will not return a pc in the next
a71f8c30
RC
1890 function.
1891
1892 We used to call hppa_skip_prologue to find the end of the prologue,
1893 but if some non-prologue instructions get scheduled into the prologue,
1894 and the program is compiled with debug information, the "easy" way
1895 in hppa_skip_prologue will return a prologue end that is too early
1896 for us to notice any potential frame adjustments. */
d5c27f81
RC
1897
1898 /* We used to use frame_func_unwind () to locate the beginning of the
1899 function to pass to skip_prologue (). However, when objects are
1900 compiled without debug symbols, frame_func_unwind can return the wrong
46acf081
RC
1901 function (or 0). We can do better than that by using unwind records.
1902 This only works if the Region_description of the unwind record
1903 indicates that it includes the entry point of the function.
1904 HP compilers sometimes generate unwind records for regions that
1905 do not include the entry or exit point of a function. GNU tools
1906 do not do this. */
1907
1908 if ((u->Region_description & 0x2) == 0)
1909 start_pc = u->region_start;
1910 else
227e86ad 1911 start_pc = get_frame_func (this_frame);
d5c27f81 1912
be8626e0 1913 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1914 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1915
1916 if (prologue_end != 0 && end_pc > prologue_end)
1917 end_pc = prologue_end;
1918
26d08f08 1919 frame_size = 0;
9f7194c3 1920
46acf081 1921 for (pc = start_pc;
26d08f08
AC
1922 ((saved_gr_mask || saved_fr_mask
1923 || looking_for_sp || looking_for_rp
1924 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1925 && pc < end_pc);
26d08f08
AC
1926 pc += 4)
1927 {
1928 int reg;
1929 char buf4[4];
4a302917
RC
1930 long inst;
1931
227e86ad 1932 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 1933 {
8a3fe4f8 1934 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
4a302917
RC
1935 return (*this_cache);
1936 }
1937
1938 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1939
26d08f08
AC
1940 /* Note the interesting effects of this instruction. */
1941 frame_size += prologue_inst_adjust_sp (inst);
1942
1943 /* There are limited ways to store the return pointer into the
1944 stack. */
1945 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1946 {
1947 looking_for_rp = 0;
34f75cc1 1948 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1949 }
dfaf8edb
MK
1950 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1951 {
1952 looking_for_rp = 0;
1953 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1954 }
c4c79048
RC
1955 else if (inst == 0x0fc212c1
1956 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
1957 {
1958 looking_for_rp = 0;
34f75cc1 1959 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1960 }
1961
1962 /* Check to see if we saved SP into the stack. This also
1963 happens to indicate the location of the saved frame
1964 pointer. */
1965 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1966 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1967 {
1968 looking_for_sp = 0;
eded0a31 1969 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1970 }
50b2f48a
RC
1971 else if (inst == 0x08030241) /* copy %r3, %r1 */
1972 {
1973 fp_in_r1 = 1;
1974 }
26d08f08
AC
1975
1976 /* Account for general and floating-point register saves. */
1977 reg = inst_saves_gr (inst);
1978 if (reg >= 3 && reg <= 18
eded0a31 1979 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1980 {
1981 saved_gr_mask &= ~(1 << reg);
abc485a1 1982 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1983 /* stwm with a positive displacement is a _post_
1984 _modify_. */
1985 cache->saved_regs[reg].addr = 0;
1986 else if ((inst & 0xfc00000c) == 0x70000008)
1987 /* A std has explicit post_modify forms. */
1988 cache->saved_regs[reg].addr = 0;
1989 else
1990 {
1991 CORE_ADDR offset;
1992
1993 if ((inst >> 26) == 0x1c)
1994 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1995 else if ((inst >> 26) == 0x03)
abc485a1 1996 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1997 else
abc485a1 1998 offset = hppa_extract_14 (inst);
26d08f08
AC
1999
2000 /* Handle code with and without frame pointers. */
2001 if (u->Save_SP)
2002 cache->saved_regs[reg].addr = offset;
2003 else
2004 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2005 }
2006 }
2007
2008 /* GCC handles callee saved FP regs a little differently.
2009
2010 It emits an instruction to put the value of the start of
2011 the FP store area into %r1. It then uses fstds,ma with a
2012 basereg of %r1 for the stores.
2013
2014 HP CC emits them at the current stack pointer modifying the
2015 stack pointer as it stores each register. */
2016
2017 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2018 if ((inst & 0xffffc000) == 0x34610000
2019 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2020 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2021
2022 reg = inst_saves_fr (inst);
2023 if (reg >= 12 && reg <= 21)
2024 {
2025 /* Note +4 braindamage below is necessary because the FP
2026 status registers are internally 8 registers rather than
2027 the expected 4 registers. */
2028 saved_fr_mask &= ~(1 << reg);
2029 if (fp_loc == -1)
2030 {
2031 /* 1st HP CC FP register store. After this
2032 instruction we've set enough state that the GCC and
2033 HPCC code are both handled in the same manner. */
34f75cc1 2034 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2035 fp_loc = 8;
2036 }
2037 else
2038 {
eded0a31 2039 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2040 fp_loc += 8;
2041 }
2042 }
2043
2044 /* Quit if we hit any kind of branch the previous iteration. */
2045 if (final_iteration)
2046 break;
2047 /* We want to look precisely one instruction beyond the branch
2048 if we have not found everything yet. */
2049 if (is_branch (inst))
2050 final_iteration = 1;
2051 }
2052 }
2053
2054 {
2055 /* The frame base always represents the value of %sp at entry to
2056 the current function (and is thus equivalent to the "saved"
2057 stack pointer. */
227e86ad
JB
2058 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2059 HPPA_SP_REGNUM);
ed70ba00 2060 CORE_ADDR fp;
9f7194c3
RC
2061
2062 if (hppa_debug)
2063 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2064 "prologue_end=0x%s) ",
2065 paddr_nz (this_sp),
227e86ad 2066 paddr_nz (get_frame_pc (this_frame)),
9f7194c3
RC
2067 paddr_nz (prologue_end));
2068
ed70ba00
RC
2069 /* Check to see if a frame pointer is available, and use it for
2070 frame unwinding if it is.
2071
2072 There are some situations where we need to rely on the frame
2073 pointer to do stack unwinding. For example, if a function calls
2074 alloca (), the stack pointer can get adjusted inside the body of
2075 the function. In this case, the ABI requires that the compiler
2076 maintain a frame pointer for the function.
2077
2078 The unwind record has a flag (alloca_frame) that indicates that
2079 a function has a variable frame; unfortunately, gcc/binutils
2080 does not set this flag. Instead, whenever a frame pointer is used
2081 and saved on the stack, the Save_SP flag is set. We use this to
2082 decide whether to use the frame pointer for unwinding.
2083
ed70ba00
RC
2084 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2085 instead of Save_SP. */
2086
227e86ad 2087 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2088
6fcecea0 2089 if (u->alloca_frame)
46acf081 2090 fp -= u->Total_frame_size << 3;
ed70ba00 2091
227e86ad 2092 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2093 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2094 {
2095 cache->base = fp;
2096
2097 if (hppa_debug)
9ed5ba24 2098 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
ed70ba00
RC
2099 paddr_nz (cache->base));
2100 }
1658da49
RC
2101 else if (u->Save_SP
2102 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2103 {
9f7194c3
RC
2104 /* Both we're expecting the SP to be saved and the SP has been
2105 saved. The entry SP value is saved at this frame's SP
2106 address. */
819844ad 2107 cache->base = read_memory_integer
65c5db89 2108 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
9f7194c3
RC
2109
2110 if (hppa_debug)
9ed5ba24 2111 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
9f7194c3 2112 paddr_nz (cache->base));
9f7194c3 2113 }
26d08f08 2114 else
9f7194c3 2115 {
1658da49
RC
2116 /* The prologue has been slowly allocating stack space. Adjust
2117 the SP back. */
2118 cache->base = this_sp - frame_size;
9f7194c3 2119 if (hppa_debug)
9ed5ba24 2120 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
9f7194c3
RC
2121 paddr_nz (cache->base));
2122
2123 }
eded0a31 2124 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2125 }
2126
412275d5
AC
2127 /* The PC is found in the "return register", "Millicode" uses "r31"
2128 as the return register while normal code uses "rp". */
26d08f08 2129 if (u->Millicode)
9f7194c3 2130 {
5859efe5 2131 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2132 {
2133 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2134 if (hppa_debug)
2135 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2136 }
9f7194c3
RC
2137 else
2138 {
227e86ad 2139 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2140 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2141 if (hppa_debug)
2142 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2143 }
2144 }
26d08f08 2145 else
9f7194c3 2146 {
34f75cc1 2147 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2148 {
2149 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2150 cache->saved_regs[HPPA_RP_REGNUM];
2151 if (hppa_debug)
2152 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2153 }
9f7194c3
RC
2154 else
2155 {
227e86ad
JB
2156 ULONGEST rp = get_frame_register_unsigned (this_frame,
2157 HPPA_RP_REGNUM);
34f75cc1 2158 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2159 if (hppa_debug)
2160 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2161 }
2162 }
26d08f08 2163
50b2f48a
RC
2164 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2165 frame. However, there is a one-insn window where we haven't saved it
2166 yet, but we've already clobbered it. Detect this case and fix it up.
2167
2168 The prologue sequence for frame-pointer functions is:
2169 0: stw %rp, -20(%sp)
2170 4: copy %r3, %r1
2171 8: copy %sp, %r3
2172 c: stw,ma %r1, XX(%sp)
2173
2174 So if we are at offset c, the r3 value that we want is not yet saved
2175 on the stack, but it's been overwritten. The prologue analyzer will
2176 set fp_in_r1 when it sees the copy insn so we know to get the value
2177 from r1 instead. */
2178 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2179 && fp_in_r1)
2180 {
227e86ad 2181 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2182 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2183 }
1658da49 2184
26d08f08
AC
2185 {
2186 /* Convert all the offsets into addresses. */
2187 int reg;
65c5db89 2188 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2189 {
2190 if (trad_frame_addr_p (cache->saved_regs, reg))
2191 cache->saved_regs[reg].addr += cache->base;
2192 }
2193 }
2194
f77a2124 2195 {
f77a2124
RC
2196 struct gdbarch_tdep *tdep;
2197
f77a2124
RC
2198 tdep = gdbarch_tdep (gdbarch);
2199
2200 if (tdep->unwind_adjust_stub)
227e86ad 2201 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2202 }
2203
369aa520
RC
2204 if (hppa_debug)
2205 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2206 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
2207 return (*this_cache);
2208}
2209
2210static void
227e86ad
JB
2211hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2212 struct frame_id *this_id)
26d08f08 2213{
d5c27f81 2214 struct hppa_frame_cache *info;
227e86ad 2215 CORE_ADDR pc = get_frame_pc (this_frame);
d5c27f81
RC
2216 struct unwind_table_entry *u;
2217
227e86ad
JB
2218 info = hppa_frame_cache (this_frame, this_cache);
2219 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2220
2221 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2222}
2223
227e86ad
JB
2224static struct value *
2225hppa_frame_prev_register (struct frame_info *this_frame,
2226 void **this_cache, int regnum)
26d08f08 2227{
227e86ad
JB
2228 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2229
2230 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2231}
2232
2233static int
2234hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2235 struct frame_info *this_frame, void **this_cache)
2236{
2237 if (hppa_find_unwind_entry_in_block (this_frame))
2238 return 1;
2239
2240 return 0;
0da28f8a
RC
2241}
2242
2243static const struct frame_unwind hppa_frame_unwind =
2244{
2245 NORMAL_FRAME,
2246 hppa_frame_this_id,
227e86ad
JB
2247 hppa_frame_prev_register,
2248 NULL,
2249 hppa_frame_unwind_sniffer
0da28f8a
RC
2250};
2251
0da28f8a
RC
2252/* This is a generic fallback frame unwinder that kicks in if we fail all
2253 the other ones. Normally we would expect the stub and regular unwinder
2254 to work, but in some cases we might hit a function that just doesn't
2255 have any unwind information available. In this case we try to do
2256 unwinding solely based on code reading. This is obviously going to be
2257 slow, so only use this as a last resort. Currently this will only
2258 identify the stack and pc for the frame. */
2259
2260static struct hppa_frame_cache *
227e86ad 2261hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a
RC
2262{
2263 struct hppa_frame_cache *cache;
4ba6a975
MK
2264 unsigned int frame_size = 0;
2265 int found_rp = 0;
2266 CORE_ADDR start_pc;
0da28f8a 2267
d5c27f81 2268 if (hppa_debug)
4ba6a975
MK
2269 fprintf_unfiltered (gdb_stdlog,
2270 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2271 frame_relative_level (this_frame));
d5c27f81 2272
0da28f8a
RC
2273 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2274 (*this_cache) = cache;
227e86ad 2275 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2276
227e86ad 2277 start_pc = get_frame_func (this_frame);
4ba6a975 2278 if (start_pc)
0da28f8a 2279 {
227e86ad 2280 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2281 CORE_ADDR pc;
0da28f8a 2282
4ba6a975
MK
2283 for (pc = start_pc; pc < cur_pc; pc += 4)
2284 {
2285 unsigned int insn;
0da28f8a 2286
4ba6a975
MK
2287 insn = read_memory_unsigned_integer (pc, 4);
2288 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2289
4ba6a975
MK
2290 /* There are limited ways to store the return pointer into the
2291 stack. */
2292 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2293 {
2294 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2295 found_rp = 1;
2296 }
c4c79048
RC
2297 else if (insn == 0x0fc212c1
2298 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2299 {
2300 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2301 found_rp = 1;
2302 }
2303 }
412275d5 2304 }
0da28f8a 2305
d5c27f81 2306 if (hppa_debug)
4ba6a975
MK
2307 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2308 frame_size, found_rp);
d5c27f81 2309
227e86ad 2310 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2311 cache->base -= frame_size;
6d1be3f1 2312 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2313
2314 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2315 {
2316 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2317 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2318 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2319 }
412275d5
AC
2320 else
2321 {
4ba6a975 2322 ULONGEST rp;
227e86ad 2323 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2324 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2325 }
0da28f8a
RC
2326
2327 return cache;
26d08f08
AC
2328}
2329
0da28f8a 2330static void
227e86ad 2331hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2332 struct frame_id *this_id)
2333{
2334 struct hppa_frame_cache *info =
227e86ad
JB
2335 hppa_fallback_frame_cache (this_frame, this_cache);
2336
2337 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2338}
2339
227e86ad
JB
2340static struct value *
2341hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2342 void **this_cache, int regnum)
0da28f8a
RC
2343{
2344 struct hppa_frame_cache *info =
227e86ad
JB
2345 hppa_fallback_frame_cache (this_frame, this_cache);
2346
2347 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
0da28f8a
RC
2348}
2349
2350static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2351{
2352 NORMAL_FRAME,
0da28f8a 2353 hppa_fallback_frame_this_id,
227e86ad
JB
2354 hppa_fallback_frame_prev_register,
2355 NULL,
2356 default_frame_sniffer
26d08f08
AC
2357};
2358
7f07c5b6
RC
2359/* Stub frames, used for all kinds of call stubs. */
2360struct hppa_stub_unwind_cache
2361{
2362 CORE_ADDR base;
2363 struct trad_frame_saved_reg *saved_regs;
2364};
2365
2366static struct hppa_stub_unwind_cache *
227e86ad 2367hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2368 void **this_cache)
2369{
227e86ad 2370 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7f07c5b6 2371 struct hppa_stub_unwind_cache *info;
22b0923d 2372 struct unwind_table_entry *u;
7f07c5b6
RC
2373
2374 if (*this_cache)
2375 return *this_cache;
2376
2377 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2378 *this_cache = info;
227e86ad 2379 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2380
227e86ad 2381 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2382
090ccbb7 2383 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2384 {
2385 /* HPUX uses export stubs in function calls; the export stub clobbers
2386 the return value of the caller, and, later restores it from the
2387 stack. */
227e86ad 2388 u = find_unwind_entry (get_frame_pc (this_frame));
22b0923d
RC
2389
2390 if (u && u->stub_unwind.stub_type == EXPORT)
2391 {
2392 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2393
2394 return info;
2395 }
2396 }
2397
2398 /* By default we assume that stubs do not change the rp. */
2399 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2400
7f07c5b6
RC
2401 return info;
2402}
2403
2404static void
227e86ad 2405hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2406 void **this_prologue_cache,
2407 struct frame_id *this_id)
2408{
2409 struct hppa_stub_unwind_cache *info
227e86ad 2410 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2411
2412 if (info)
227e86ad 2413 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
f1b38a57
RC
2414 else
2415 *this_id = null_frame_id;
7f07c5b6
RC
2416}
2417
227e86ad
JB
2418static struct value *
2419hppa_stub_frame_prev_register (struct frame_info *this_frame,
2420 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2421{
2422 struct hppa_stub_unwind_cache *info
227e86ad 2423 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2424
227e86ad 2425 if (info == NULL)
8a3fe4f8 2426 error (_("Requesting registers from null frame."));
7f07c5b6 2427
227e86ad
JB
2428 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2429}
7f07c5b6 2430
227e86ad
JB
2431static int
2432hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2433 struct frame_info *this_frame,
2434 void **this_cache)
7f07c5b6 2435{
227e86ad
JB
2436 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2437 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2439
6d1be3f1 2440 if (pc == 0
84674fe1
AC
2441 || (tdep->in_solib_call_trampoline != NULL
2442 && tdep->in_solib_call_trampoline (pc, NULL))
464963c9 2443 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2444 return 1;
2445 return 0;
7f07c5b6
RC
2446}
2447
227e86ad
JB
2448static const struct frame_unwind hppa_stub_frame_unwind = {
2449 NORMAL_FRAME,
2450 hppa_stub_frame_this_id,
2451 hppa_stub_frame_prev_register,
2452 NULL,
2453 hppa_stub_unwind_sniffer
2454};
2455
26d08f08 2456static struct frame_id
227e86ad 2457hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2458{
227e86ad
JB
2459 return frame_id_build (get_frame_register_unsigned (this_frame,
2460 HPPA_SP_REGNUM),
2461 get_frame_pc (this_frame));
26d08f08
AC
2462}
2463
cc72850f 2464CORE_ADDR
26d08f08
AC
2465hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2466{
fe46cd3a
RC
2467 ULONGEST ipsw;
2468 CORE_ADDR pc;
2469
cc72850f
MK
2470 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2471 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2472
2473 /* If the current instruction is nullified, then we are effectively
2474 still executing the previous instruction. Pretend we are still
cc72850f
MK
2475 there. This is needed when single stepping; if the nullified
2476 instruction is on a different line, we don't want GDB to think
2477 we've stepped onto that line. */
fe46cd3a
RC
2478 if (ipsw & 0x00200000)
2479 pc -= 4;
2480
cc72850f 2481 return pc & ~0x3;
26d08f08
AC
2482}
2483
ff644745
JB
2484/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2485 Return NULL if no such symbol was found. */
2486
2487struct minimal_symbol *
2488hppa_lookup_stub_minimal_symbol (const char *name,
2489 enum unwind_stub_types stub_type)
2490{
2491 struct objfile *objfile;
2492 struct minimal_symbol *msym;
2493
2494 ALL_MSYMBOLS (objfile, msym)
2495 {
2496 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2497 {
2498 struct unwind_table_entry *u;
2499
2500 u = find_unwind_entry (SYMBOL_VALUE (msym));
2501 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2502 return msym;
2503 }
2504 }
2505
2506 return NULL;
2507}
2508
c906108c 2509static void
fba45db2 2510unwind_command (char *exp, int from_tty)
c906108c
SS
2511{
2512 CORE_ADDR address;
2513 struct unwind_table_entry *u;
2514
2515 /* If we have an expression, evaluate it and use it as the address. */
2516
2517 if (exp != 0 && *exp != 0)
2518 address = parse_and_eval_address (exp);
2519 else
2520 return;
2521
2522 u = find_unwind_entry (address);
2523
2524 if (!u)
2525 {
2526 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2527 return;
2528 }
2529
99d64d77 2530 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
c906108c
SS
2531
2532 printf_unfiltered ("\tregion_start = ");
2533 print_address (u->region_start, gdb_stdout);
d5c27f81 2534 gdb_flush (gdb_stdout);
c906108c
SS
2535
2536 printf_unfiltered ("\n\tregion_end = ");
2537 print_address (u->region_end, gdb_stdout);
d5c27f81 2538 gdb_flush (gdb_stdout);
c906108c 2539
c906108c 2540#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2541
2542 printf_unfiltered ("\n\tflags =");
2543 pif (Cannot_unwind);
2544 pif (Millicode);
2545 pif (Millicode_save_sr0);
2546 pif (Entry_SR);
2547 pif (Args_stored);
2548 pif (Variable_Frame);
2549 pif (Separate_Package_Body);
2550 pif (Frame_Extension_Millicode);
2551 pif (Stack_Overflow_Check);
2552 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2553 pif (sr4export);
2554 pif (cxx_info);
2555 pif (cxx_try_catch);
2556 pif (sched_entry_seq);
c906108c
SS
2557 pif (Save_SP);
2558 pif (Save_RP);
2559 pif (Save_MRP_in_frame);
6fcecea0 2560 pif (save_r19);
c906108c
SS
2561 pif (Cleanup_defined);
2562 pif (MPE_XL_interrupt_marker);
2563 pif (HP_UX_interrupt_marker);
2564 pif (Large_frame);
6fcecea0 2565 pif (alloca_frame);
c906108c
SS
2566
2567 putchar_unfiltered ('\n');
2568
c906108c 2569#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2570
2571 pin (Region_description);
2572 pin (Entry_FR);
2573 pin (Entry_GR);
2574 pin (Total_frame_size);
57dac9e1
RC
2575
2576 if (u->stub_unwind.stub_type)
2577 {
2578 printf_unfiltered ("\tstub type = ");
2579 switch (u->stub_unwind.stub_type)
2580 {
2581 case LONG_BRANCH:
2582 printf_unfiltered ("long branch\n");
2583 break;
2584 case PARAMETER_RELOCATION:
2585 printf_unfiltered ("parameter relocation\n");
2586 break;
2587 case EXPORT:
2588 printf_unfiltered ("export\n");
2589 break;
2590 case IMPORT:
2591 printf_unfiltered ("import\n");
2592 break;
2593 case IMPORT_SHLIB:
2594 printf_unfiltered ("import shlib\n");
2595 break;
2596 default:
2597 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2598 }
2599 }
c906108c 2600}
c906108c 2601
38ca4e0c
MK
2602/* Return the GDB type object for the "standard" data type of data in
2603 register REGNUM. */
d709c020 2604
eded0a31 2605static struct type *
38ca4e0c 2606hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2607{
38ca4e0c 2608 if (regnum < HPPA_FP4_REGNUM)
eded0a31 2609 return builtin_type_uint32;
d709c020 2610 else
8da61cc4 2611 return builtin_type_ieee_single;
d709c020
JB
2612}
2613
eded0a31 2614static struct type *
38ca4e0c 2615hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2616{
38ca4e0c 2617 if (regnum < HPPA64_FP4_REGNUM)
eded0a31 2618 return builtin_type_uint64;
3ff7cf9e 2619 else
8da61cc4 2620 return builtin_type_ieee_double;
3ff7cf9e
JB
2621}
2622
38ca4e0c
MK
2623/* Return non-zero if REGNUM is not a register available to the user
2624 through ptrace/ttrace. */
d709c020 2625
8d153463 2626static int
64a3914f 2627hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2628{
2629 return (regnum == 0
34f75cc1
RC
2630 || regnum == HPPA_PCSQ_HEAD_REGNUM
2631 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2632 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2633}
d709c020 2634
d037d088 2635static int
64a3914f 2636hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2637{
2638 /* cr26 and cr27 are readable (but not writable) from userspace. */
2639 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2640 return 0;
2641 else
64a3914f 2642 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2643}
2644
38ca4e0c 2645static int
64a3914f 2646hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2647{
2648 return (regnum == 0
2649 || regnum == HPPA_PCSQ_HEAD_REGNUM
2650 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2651 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2652}
2653
d037d088 2654static int
64a3914f 2655hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2656{
2657 /* cr26 and cr27 are readable (but not writable) from userspace. */
2658 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2659 return 0;
2660 else
64a3914f 2661 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2662}
2663
8d153463 2664static CORE_ADDR
d709c020
JB
2665hppa_smash_text_address (CORE_ADDR addr)
2666{
2667 /* The low two bits of the PC on the PA contain the privilege level.
2668 Some genius implementing a (non-GCC) compiler apparently decided
2669 this means that "addresses" in a text section therefore include a
2670 privilege level, and thus symbol tables should contain these bits.
2671 This seems like a bonehead thing to do--anyway, it seems to work
2672 for our purposes to just ignore those bits. */
2673
2674 return (addr &= ~0x3);
2675}
2676
e127f0db
MK
2677/* Get the ARGIth function argument for the current function. */
2678
4a302917 2679static CORE_ADDR
143985b7
AF
2680hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2681 struct type *type)
2682{
e127f0db 2683 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2684}
2685
0f8d9d59
RC
2686static void
2687hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e127f0db 2688 int regnum, gdb_byte *buf)
0f8d9d59
RC
2689{
2690 ULONGEST tmp;
2691
2692 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2693 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59 2694 tmp &= ~0x3;
e127f0db 2695 store_unsigned_integer (buf, sizeof tmp, tmp);
0f8d9d59
RC
2696}
2697
d49771ef 2698static CORE_ADDR
e38c262f 2699hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2700{
2701 return 0;
2702}
2703
227e86ad
JB
2704struct value *
2705hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2706 struct trad_frame_saved_reg saved_regs[],
227e86ad 2707 int regnum)
0da28f8a 2708{
227e86ad 2709 struct gdbarch *arch = get_frame_arch (this_frame);
8f4e467c 2710
8693c419
MK
2711 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2712 {
227e86ad
JB
2713 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2714 CORE_ADDR pc;
2715 struct value *pcoq_val =
2716 trad_frame_get_prev_register (this_frame, saved_regs,
2717 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2718
227e86ad
JB
2719 pc = extract_unsigned_integer (value_contents_all (pcoq_val), size);
2720 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2721 }
0da28f8a 2722
cc72850f
MK
2723 /* Make sure the "flags" register is zero in all unwound frames.
2724 The "flags" registers is a HP-UX specific wart, and only the code
2725 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2726 with it here. This shouldn't affect other systems since those
2727 should provide zero for the "flags" register anyway. */
2728 if (regnum == HPPA_FLAGS_REGNUM)
227e86ad 2729 return frame_unwind_got_constant (this_frame, regnum, 0);
cc72850f 2730
227e86ad 2731 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2732}
8693c419 2733\f
0da28f8a 2734
34f55018
MK
2735/* An instruction to match. */
2736struct insn_pattern
2737{
2738 unsigned int data; /* See if it matches this.... */
2739 unsigned int mask; /* ... with this mask. */
2740};
2741
2742/* See bfd/elf32-hppa.c */
2743static struct insn_pattern hppa_long_branch_stub[] = {
2744 /* ldil LR'xxx,%r1 */
2745 { 0x20200000, 0xffe00000 },
2746 /* be,n RR'xxx(%sr4,%r1) */
2747 { 0xe0202002, 0xffe02002 },
2748 { 0, 0 }
2749};
2750
2751static struct insn_pattern hppa_long_branch_pic_stub[] = {
2752 /* b,l .+8, %r1 */
2753 { 0xe8200000, 0xffe00000 },
2754 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2755 { 0x28200000, 0xffe00000 },
2756 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2757 { 0xe0202002, 0xffe02002 },
2758 { 0, 0 }
2759};
2760
2761static struct insn_pattern hppa_import_stub[] = {
2762 /* addil LR'xxx, %dp */
2763 { 0x2b600000, 0xffe00000 },
2764 /* ldw RR'xxx(%r1), %r21 */
2765 { 0x48350000, 0xffffb000 },
2766 /* bv %r0(%r21) */
2767 { 0xeaa0c000, 0xffffffff },
2768 /* ldw RR'xxx+4(%r1), %r19 */
2769 { 0x48330000, 0xffffb000 },
2770 { 0, 0 }
2771};
2772
2773static struct insn_pattern hppa_import_pic_stub[] = {
2774 /* addil LR'xxx,%r19 */
2775 { 0x2a600000, 0xffe00000 },
2776 /* ldw RR'xxx(%r1),%r21 */
2777 { 0x48350000, 0xffffb000 },
2778 /* bv %r0(%r21) */
2779 { 0xeaa0c000, 0xffffffff },
2780 /* ldw RR'xxx+4(%r1),%r19 */
2781 { 0x48330000, 0xffffb000 },
2782 { 0, 0 },
2783};
2784
2785static struct insn_pattern hppa_plt_stub[] = {
2786 /* b,l 1b, %r20 - 1b is 3 insns before here */
2787 { 0xea9f1fdd, 0xffffffff },
2788 /* depi 0,31,2,%r20 */
2789 { 0xd6801c1e, 0xffffffff },
2790 { 0, 0 }
2791};
2792
2793static struct insn_pattern hppa_sigtramp[] = {
2794 /* ldi 0, %r25 or ldi 1, %r25 */
2795 { 0x34190000, 0xfffffffd },
2796 /* ldi __NR_rt_sigreturn, %r20 */
2797 { 0x3414015a, 0xffffffff },
2798 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2799 { 0xe4008200, 0xffffffff },
2800 /* nop */
2801 { 0x08000240, 0xffffffff },
2802 { 0, 0 }
2803};
2804
2805/* Maximum number of instructions on the patterns above. */
2806#define HPPA_MAX_INSN_PATTERN_LEN 4
2807
2808/* Return non-zero if the instructions at PC match the series
2809 described in PATTERN, or zero otherwise. PATTERN is an array of
2810 'struct insn_pattern' objects, terminated by an entry whose mask is
2811 zero.
2812
2813 When the match is successful, fill INSN[i] with what PATTERN[i]
2814 matched. */
2815
2816static int
2817hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2818 unsigned int *insn)
2819{
2820 CORE_ADDR npc = pc;
2821 int i;
2822
2823 for (i = 0; pattern[i].mask; i++)
2824 {
2825 gdb_byte buf[HPPA_INSN_SIZE];
2826
8defab1a 2827 target_read_memory (npc, buf, HPPA_INSN_SIZE);
34f55018
MK
2828 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2829 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2830 npc += 4;
2831 else
2832 return 0;
2833 }
2834
2835 return 1;
2836}
2837
2838/* This relaxed version of the insstruction matcher allows us to match
2839 from somewhere inside the pattern, by looking backwards in the
2840 instruction scheme. */
2841
2842static int
2843hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2844 unsigned int *insn)
2845{
2846 int offset, len = 0;
2847
2848 while (pattern[len].mask)
2849 len++;
2850
2851 for (offset = 0; offset < len; offset++)
2852 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2853 return 1;
2854
2855 return 0;
2856}
2857
2858static int
2859hppa_in_dyncall (CORE_ADDR pc)
2860{
2861 struct unwind_table_entry *u;
2862
2863 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2864 if (!u)
2865 return 0;
2866
2867 return (pc >= u->region_start && pc <= u->region_end);
2868}
2869
2870int
2871hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2872{
2873 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2874 struct unwind_table_entry *u;
2875
2876 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2877 return 1;
2878
2879 /* The GNU toolchain produces linker stubs without unwind
2880 information. Since the pattern matching for linker stubs can be
2881 quite slow, so bail out if we do have an unwind entry. */
2882
2883 u = find_unwind_entry (pc);
806e23c0 2884 if (u != NULL)
34f55018
MK
2885 return 0;
2886
2887 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2888 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2889 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2890 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2891}
2892
2893/* This code skips several kind of "trampolines" used on PA-RISC
2894 systems: $$dyncall, import stubs and PLT stubs. */
2895
2896CORE_ADDR
52f729a7 2897hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018
MK
2898{
2899 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2900 int dp_rel;
2901
2902 /* $$dyncall handles both PLABELs and direct addresses. */
2903 if (hppa_in_dyncall (pc))
2904 {
52f729a7 2905 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2906
2907 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2908 if (pc & 0x2)
2909 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2910
2911 return pc;
2912 }
2913
2914 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2915 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2916 {
2917 /* Extract the target address from the addil/ldw sequence. */
2918 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2919
2920 if (dp_rel)
52f729a7 2921 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 2922 else
52f729a7 2923 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
2924
2925 /* fallthrough */
2926 }
2927
2928 if (in_plt_section (pc, NULL))
2929 {
2930 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2931
2932 /* If the PLT slot has not yet been resolved, the target will be
2933 the PLT stub. */
2934 if (in_plt_section (pc, NULL))
2935 {
2936 /* Sanity check: are we pointing to the PLT stub? */
2937 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2938 {
2939 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2940 return 0;
2941 }
2942
2943 /* This should point to the fixup routine. */
2944 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2945 }
2946 }
2947
2948 return pc;
2949}
2950\f
2951
8e8b2dba
MC
2952/* Here is a table of C type sizes on hppa with various compiles
2953 and options. I measured this on PA 9000/800 with HP-UX 11.11
2954 and these compilers:
2955
2956 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2957 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2958 /opt/aCC/bin/aCC B3910B A.03.45
2959 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2960
2961 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2962 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2963 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2964 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2965 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2966 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2967 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2968 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2969
2970 Each line is:
2971
2972 compiler and options
2973 char, short, int, long, long long
2974 float, double, long double
2975 char *, void (*)()
2976
2977 So all these compilers use either ILP32 or LP64 model.
2978 TODO: gcc has more options so it needs more investigation.
2979
a2379359
MC
2980 For floating point types, see:
2981
2982 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2983 HP-UX floating-point guide, hpux 11.00
2984
8e8b2dba
MC
2985 -- chastain 2003-12-18 */
2986
e6e68f1f
JB
2987static struct gdbarch *
2988hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2989{
3ff7cf9e 2990 struct gdbarch_tdep *tdep;
e6e68f1f 2991 struct gdbarch *gdbarch;
59623e27
JB
2992
2993 /* Try to determine the ABI of the object we are loading. */
4be87837 2994 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2995 {
4be87837
DJ
2996 /* If it's a SOM file, assume it's HP/UX SOM. */
2997 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2998 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2999 }
e6e68f1f
JB
3000
3001 /* find a candidate among the list of pre-declared architectures. */
3002 arches = gdbarch_list_lookup_by_info (arches, &info);
3003 if (arches != NULL)
3004 return (arches->gdbarch);
3005
3006 /* If none found, then allocate and initialize one. */
fdd72f95 3007 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
3008 gdbarch = gdbarch_alloc (&info, tdep);
3009
3010 /* Determine from the bfd_arch_info structure if we are dealing with
3011 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3012 then default to a 32bit machine. */
3013 if (info.bfd_arch_info != NULL)
3014 tdep->bytes_per_address =
3015 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3016 else
3017 tdep->bytes_per_address = 4;
3018
d49771ef
RC
3019 tdep->find_global_pointer = hppa_find_global_pointer;
3020
3ff7cf9e
JB
3021 /* Some parts of the gdbarch vector depend on whether we are running
3022 on a 32 bits or 64 bits target. */
3023 switch (tdep->bytes_per_address)
3024 {
3025 case 4:
3026 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3027 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3028 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3029 set_gdbarch_cannot_store_register (gdbarch,
3030 hppa32_cannot_store_register);
3031 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3032 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3033 break;
3034 case 8:
3035 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3036 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3037 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3038 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3039 set_gdbarch_cannot_store_register (gdbarch,
3040 hppa64_cannot_store_register);
3041 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3042 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3043 break;
3044 default:
e2e0b3e5 3045 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3046 tdep->bytes_per_address);
3047 }
3048
3ff7cf9e 3049 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3050 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3051
8e8b2dba
MC
3052 /* The following gdbarch vector elements are the same in both ILP32
3053 and LP64, but might show differences some day. */
3054 set_gdbarch_long_long_bit (gdbarch, 64);
3055 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3056 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3057
3ff7cf9e
JB
3058 /* The following gdbarch vector elements do not depend on the address
3059 size, or in any other gdbarch element previously set. */
60383d10 3060 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
1fb24930
RC
3061 set_gdbarch_in_function_epilogue_p (gdbarch,
3062 hppa_in_function_epilogue_p);
a2a84a72 3063 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3064 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3065 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
b6fbdd1d 3066 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
3067 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3068 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3069 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3070 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3071
143985b7
AF
3072 /* Helper for function argument information. */
3073 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3074
36482093
AC
3075 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3076
3a3bc038
AC
3077 /* When a hardware watchpoint triggers, we'll move the inferior past
3078 it by removing all eventpoints; stepping past the instruction
3079 that caused the trigger; reinserting eventpoints; and checking
3080 whether any watched location changed. */
3081 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3082
5979bc46 3083 /* Inferior function call methods. */
fca7aa43 3084 switch (tdep->bytes_per_address)
5979bc46 3085 {
fca7aa43
AC
3086 case 4:
3087 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3088 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3089 set_gdbarch_convert_from_func_ptr_addr
3090 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3091 break;
3092 case 8:
782eae8b
AC
3093 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3094 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3095 break;
782eae8b 3096 default:
e2e0b3e5 3097 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3098 }
3099
3100 /* Struct return methods. */
fca7aa43 3101 switch (tdep->bytes_per_address)
fad850b2 3102 {
fca7aa43
AC
3103 case 4:
3104 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3105 break;
3106 case 8:
782eae8b 3107 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3108 break;
fca7aa43 3109 default:
e2e0b3e5 3110 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3111 }
7f07c5b6 3112
85f4f2d8 3113 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 3114 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3115
5979bc46 3116 /* Frame unwind methods. */
227e86ad 3117 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3118 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3119
50306a9d
RC
3120 /* Hook in ABI-specific overrides, if they have been registered. */
3121 gdbarch_init_osabi (info, gdbarch);
3122
7f07c5b6 3123 /* Hook in the default unwinders. */
227e86ad
JB
3124 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3125 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3126 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3127
e6e68f1f
JB
3128 return gdbarch;
3129}
3130
3131static void
464963c9 3132hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3133{
464963c9 3134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3135
3136 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3137 tdep->bytes_per_address);
3138 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3139}
3140
4facf7e8
JB
3141void
3142_initialize_hppa_tdep (void)
3143{
3144 struct cmd_list_element *c;
4facf7e8 3145
e6e68f1f 3146 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3147
7c46b9fb
RC
3148 hppa_objfile_priv_data = register_objfile_data ();
3149
4facf7e8 3150 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3151 _("Print unwind table entry at given address."),
4facf7e8
JB
3152 &maintenanceprintlist);
3153
369aa520 3154 /* Debug this files internals. */
7915a72c
AC
3155 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3156Set whether hppa target specific debugging information should be displayed."),
3157 _("\
3158Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3159This flag controls whether hppa target specific debugging information is\n\
3160displayed. This information is particularly useful for debugging frame\n\
7915a72c 3161unwinding problems."),
2c5b56ce 3162 NULL,
7915a72c 3163 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3164 &setdebuglist, &showdebuglist);
4facf7e8 3165}
This page took 0.859831 seconds and 4 git commands to generate.