Use enum for return method for dummy calls
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
a7aad9aa 1/* Target-dependent code for the HP PA-RISC architecture.
cda5a58a 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "bfd.h"
25#include "inferior.h"
4e052eda 26#include "regcache.h"
e5d66720 27#include "completer.h"
59623e27 28#include "osabi.h"
343af405 29#include "arch-utils.h"
1777feb0 30/* For argument passing to the inferior. */
c906108c 31#include "symtab.h"
fde2cceb 32#include "dis-asm.h"
26d08f08
AC
33#include "trad-frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
c906108c 36
c906108c
SS
37#include "gdbcore.h"
38#include "gdbcmd.h"
e6bb342a 39#include "gdbtypes.h"
c906108c 40#include "objfiles.h"
3ff7cf9e 41#include "hppa-tdep.h"
325fac50 42#include <algorithm>
c906108c 43
369aa520
RC
44static int hppa_debug = 0;
45
60383d10 46/* Some local constants. */
3ff7cf9e
JB
47static const int hppa32_num_regs = 128;
48static const int hppa64_num_regs = 96;
49
61a12cfa
JK
50/* We use the objfile->obj_private pointer for two things:
51 * 1. An unwind table;
52 *
53 * 2. A pointer to any associated shared library object.
54 *
55 * #defines are used to help refer to these objects.
56 */
57
58/* Info about the unwind table associated with an object file.
59 * This is hung off of the "objfile->obj_private" pointer, and
60 * is allocated in the objfile's psymbol obstack. This allows
61 * us to have unique unwind info for each executable and shared
62 * library that we are debugging.
63 */
64struct hppa_unwind_info
65 {
66 struct unwind_table_entry *table; /* Pointer to unwind info */
67 struct unwind_table_entry *cache; /* Pointer to last entry we found */
68 int last; /* Index of last entry */
69 };
70
71struct hppa_objfile_private
72 {
73 struct hppa_unwind_info *unwind_info; /* a pointer */
74 struct so_list *so_info; /* a pointer */
75 CORE_ADDR dp;
76
77 int dummy_call_sequence_reg;
78 CORE_ADDR dummy_call_sequence_addr;
79 };
80
7c46b9fb
RC
81/* hppa-specific object data -- unwind and solib info.
82 TODO/maybe: think about splitting this into two parts; the unwind data is
83 common to all hppa targets, but is only used in this file; we can register
84 that separately and make this static. The solib data is probably hpux-
85 specific, so we can create a separate extern objfile_data that is registered
86 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61a12cfa 87static const struct objfile_data *hppa_objfile_priv_data = NULL;
7c46b9fb 88
1777feb0 89/* Get at various relevent fields of an instruction word. */
e2ac8128
JB
90#define MASK_5 0x1f
91#define MASK_11 0x7ff
92#define MASK_14 0x3fff
93#define MASK_21 0x1fffff
94
e2ac8128
JB
95/* Sizes (in bytes) of the native unwind entries. */
96#define UNWIND_ENTRY_SIZE 16
97#define STUB_UNWIND_ENTRY_SIZE 8
98
c906108c 99/* Routines to extract various sized constants out of hppa
1777feb0 100 instructions. */
c906108c
SS
101
102/* This assumes that no garbage lies outside of the lower bits of
1777feb0 103 value. */
c906108c 104
63807e1d 105static int
abc485a1 106hppa_sign_extend (unsigned val, unsigned bits)
c906108c 107{
66c6502d 108 return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
c906108c
SS
109}
110
1777feb0 111/* For many immediate values the sign bit is the low bit! */
c906108c 112
63807e1d 113static int
abc485a1 114hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 115{
66c6502d 116 return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
c906108c
SS
117}
118
e2ac8128 119/* Extract the bits at positions between FROM and TO, using HP's numbering
1777feb0 120 (MSB = 0). */
e2ac8128 121
abc485a1
RC
122int
123hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
124{
125 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
126}
127
1777feb0 128/* Extract the immediate field from a ld{bhw}s instruction. */
c906108c 129
abc485a1
RC
130int
131hppa_extract_5_load (unsigned word)
c906108c 132{
abc485a1 133 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
134}
135
1777feb0 136/* Extract the immediate field from a break instruction. */
c906108c 137
abc485a1
RC
138unsigned
139hppa_extract_5r_store (unsigned word)
c906108c
SS
140{
141 return (word & MASK_5);
142}
143
1777feb0 144/* Extract the immediate field from a {sr}sm instruction. */
c906108c 145
abc485a1
RC
146unsigned
147hppa_extract_5R_store (unsigned word)
c906108c
SS
148{
149 return (word >> 16 & MASK_5);
150}
151
1777feb0 152/* Extract a 14 bit immediate field. */
c906108c 153
abc485a1
RC
154int
155hppa_extract_14 (unsigned word)
c906108c 156{
abc485a1 157 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
158}
159
1777feb0 160/* Extract a 21 bit constant. */
c906108c 161
abc485a1
RC
162int
163hppa_extract_21 (unsigned word)
c906108c
SS
164{
165 int val;
166
167 word &= MASK_21;
168 word <<= 11;
abc485a1 169 val = hppa_get_field (word, 20, 20);
c906108c 170 val <<= 11;
abc485a1 171 val |= hppa_get_field (word, 9, 19);
c906108c 172 val <<= 2;
abc485a1 173 val |= hppa_get_field (word, 5, 6);
c906108c 174 val <<= 5;
abc485a1 175 val |= hppa_get_field (word, 0, 4);
c906108c 176 val <<= 2;
abc485a1
RC
177 val |= hppa_get_field (word, 7, 8);
178 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
179}
180
c906108c 181/* extract a 17 bit constant from branch instructions, returning the
1777feb0 182 19 bit signed value. */
c906108c 183
abc485a1
RC
184int
185hppa_extract_17 (unsigned word)
c906108c 186{
abc485a1
RC
187 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
188 hppa_get_field (word, 29, 29) << 10 |
189 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
190 (word & 0x1) << 16, 17) << 2;
191}
3388d7ff
RC
192
193CORE_ADDR
194hppa_symbol_address(const char *sym)
195{
3b7344d5 196 struct bound_minimal_symbol minsym;
3388d7ff
RC
197
198 minsym = lookup_minimal_symbol (sym, NULL, NULL);
3b7344d5 199 if (minsym.minsym)
77e371c0 200 return BMSYMBOL_VALUE_ADDRESS (minsym);
3388d7ff
RC
201 else
202 return (CORE_ADDR)-1;
203}
77d18ded 204
61a12cfa 205static struct hppa_objfile_private *
77d18ded
RC
206hppa_init_objfile_priv_data (struct objfile *objfile)
207{
e39db4db
SM
208 hppa_objfile_private *priv
209 = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private);
77d18ded 210
77d18ded 211 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
77d18ded
RC
212
213 return priv;
214}
c906108c
SS
215\f
216
217/* Compare the start address for two unwind entries returning 1 if
218 the first address is larger than the second, -1 if the second is
219 larger than the first, and zero if they are equal. */
220
221static int
fba45db2 222compare_unwind_entries (const void *arg1, const void *arg2)
c906108c 223{
9a3c8263
SM
224 const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
225 const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;
c906108c
SS
226
227 if (a->region_start > b->region_start)
228 return 1;
229 else if (a->region_start < b->region_start)
230 return -1;
231 else
232 return 0;
233}
234
53a5351d 235static void
fdd72f95 236record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 237{
fdd72f95 238 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 239 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
240 {
241 bfd_vma value = section->vma - section->filepos;
242 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
243
244 if (value < *low_text_segment_address)
245 *low_text_segment_address = value;
246 }
53a5351d
JM
247}
248
c906108c 249static void
fba45db2 250internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
1777feb0 251 asection *section, unsigned int entries,
241fd515 252 size_t size, CORE_ADDR text_offset)
c906108c
SS
253{
254 /* We will read the unwind entries into temporary memory, then
255 fill in the actual unwind table. */
fdd72f95 256
c906108c
SS
257 if (size > 0)
258 {
5db8bbe5 259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
260 unsigned long tmp;
261 unsigned i;
224c3ddb 262 char *buf = (char *) alloca (size);
fdd72f95 263 CORE_ADDR low_text_segment_address;
c906108c 264
fdd72f95 265 /* For ELF targets, then unwinds are supposed to
1777feb0 266 be segment relative offsets instead of absolute addresses.
c2c6d25f
JM
267
268 Note that when loading a shared library (text_offset != 0) the
269 unwinds are already relative to the text_offset that will be
270 passed in. */
5db8bbe5 271 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
53a5351d 272 {
fdd72f95
RC
273 low_text_segment_address = -1;
274
53a5351d 275 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
276 record_text_segment_lowaddr,
277 &low_text_segment_address);
53a5351d 278
fdd72f95 279 text_offset = low_text_segment_address;
53a5351d 280 }
5db8bbe5 281 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
acf86d54 282 {
5db8bbe5 283 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
acf86d54 284 }
53a5351d 285
c906108c
SS
286 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
287
288 /* Now internalize the information being careful to handle host/target
c5aa993b 289 endian issues. */
c906108c
SS
290 for (i = 0; i < entries; i++)
291 {
292 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 293 (bfd_byte *) buf);
c906108c
SS
294 table[i].region_start += text_offset;
295 buf += 4;
c5aa993b 296 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
297 table[i].region_end += text_offset;
298 buf += 4;
c5aa993b 299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
300 buf += 4;
301 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
302 table[i].Millicode = (tmp >> 30) & 0x1;
303 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
304 table[i].Region_description = (tmp >> 27) & 0x3;
6fcecea0 305 table[i].reserved = (tmp >> 26) & 0x1;
c906108c
SS
306 table[i].Entry_SR = (tmp >> 25) & 0x1;
307 table[i].Entry_FR = (tmp >> 21) & 0xf;
308 table[i].Entry_GR = (tmp >> 16) & 0x1f;
309 table[i].Args_stored = (tmp >> 15) & 0x1;
310 table[i].Variable_Frame = (tmp >> 14) & 0x1;
311 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
312 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
313 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
314 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
6fcecea0 315 table[i].sr4export = (tmp >> 9) & 0x1;
c906108c
SS
316 table[i].cxx_info = (tmp >> 8) & 0x1;
317 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
318 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
6fcecea0 319 table[i].reserved1 = (tmp >> 5) & 0x1;
c906108c
SS
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
6fcecea0 323 table[i].save_r19 = (tmp >> 1) & 0x1;
c906108c 324 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
6fcecea0
RC
330 table[i].alloca_frame = (tmp >> 28) & 0x1;
331 table[i].reserved2 = (tmp >> 27) & 0x1;
c906108c
SS
332 table[i].Total_frame_size = tmp & 0x7ffffff;
333
1777feb0 334 /* Stub unwinds are handled elsewhere. */
c906108c
SS
335 table[i].stub_unwind.stub_type = 0;
336 table[i].stub_unwind.padding = 0;
337 }
338 }
339}
340
341/* Read in the backtrace information stored in the `$UNWIND_START$' section of
342 the object file. This info is used mainly by find_unwind_entry() to find
343 out the stack frame size and frame pointer used by procedures. We put
344 everything on the psymbol obstack in the objfile so that it automatically
345 gets freed when the objfile is destroyed. */
346
347static void
fba45db2 348read_unwind_info (struct objfile *objfile)
c906108c 349{
d4f3574e 350 asection *unwind_sec, *stub_unwind_sec;
241fd515 351 size_t unwind_size, stub_unwind_size, total_size;
d4f3574e 352 unsigned index, unwind_entries;
c906108c
SS
353 unsigned stub_entries, total_entries;
354 CORE_ADDR text_offset;
7c46b9fb
RC
355 struct hppa_unwind_info *ui;
356 struct hppa_objfile_private *obj_private;
c906108c 357
a99dad3d 358 text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7c46b9fb
RC
359 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
360 sizeof (struct hppa_unwind_info));
c906108c
SS
361
362 ui->table = NULL;
363 ui->cache = NULL;
364 ui->last = -1;
365
d4f3574e
SS
366 /* For reasons unknown the HP PA64 tools generate multiple unwinder
367 sections in a single executable. So we just iterate over every
368 section in the BFD looking for unwinder sections intead of trying
1777feb0 369 to do a lookup with bfd_get_section_by_name.
c906108c 370
d4f3574e
SS
371 First determine the total size of the unwind tables so that we
372 can allocate memory in a nice big hunk. */
373 total_entries = 0;
374 for (unwind_sec = objfile->obfd->sections;
375 unwind_sec;
376 unwind_sec = unwind_sec->next)
c906108c 377 {
d4f3574e
SS
378 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
379 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
380 {
381 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 383
d4f3574e
SS
384 total_entries += unwind_entries;
385 }
c906108c
SS
386 }
387
d4f3574e 388 /* Now compute the size of the stub unwinds. Note the ELF tools do not
043f5962 389 use stub unwinds at the current time. */
d4f3574e
SS
390 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
391
c906108c
SS
392 if (stub_unwind_sec)
393 {
394 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
395 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
396 }
397 else
398 {
399 stub_unwind_size = 0;
400 stub_entries = 0;
401 }
402
403 /* Compute total number of unwind entries and their total size. */
d4f3574e 404 total_entries += stub_entries;
c906108c
SS
405 total_size = total_entries * sizeof (struct unwind_table_entry);
406
407 /* Allocate memory for the unwind table. */
408 ui->table = (struct unwind_table_entry *)
8b92e4d5 409 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 410 ui->last = total_entries - 1;
c906108c 411
d4f3574e
SS
412 /* Now read in each unwind section and internalize the standard unwind
413 entries. */
c906108c 414 index = 0;
d4f3574e
SS
415 for (unwind_sec = objfile->obfd->sections;
416 unwind_sec;
417 unwind_sec = unwind_sec->next)
418 {
419 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
420 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
421 {
422 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
423 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
424
425 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
426 unwind_entries, unwind_size, text_offset);
427 index += unwind_entries;
428 }
429 }
430
431 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
432 if (stub_unwind_size > 0)
433 {
434 unsigned int i;
224c3ddb 435 char *buf = (char *) alloca (stub_unwind_size);
c906108c
SS
436
437 /* Read in the stub unwind entries. */
438 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
439 0, stub_unwind_size);
440
441 /* Now convert them into regular unwind entries. */
442 for (i = 0; i < stub_entries; i++, index++)
443 {
444 /* Clear out the next unwind entry. */
445 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
446
1777feb0 447 /* Convert offset & size into region_start and region_end.
c906108c
SS
448 Stuff away the stub type into "reserved" fields. */
449 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
450 (bfd_byte *) buf);
451 ui->table[index].region_start += text_offset;
452 buf += 4;
453 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 454 (bfd_byte *) buf);
c906108c
SS
455 buf += 2;
456 ui->table[index].region_end
c5aa993b
JM
457 = ui->table[index].region_start + 4 *
458 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
459 buf += 2;
460 }
461
462 }
463
464 /* Unwind table needs to be kept sorted. */
465 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
466 compare_unwind_entries);
467
468 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
469 obj_private = (struct hppa_objfile_private *)
470 objfile_data (objfile, hppa_objfile_priv_data);
471 if (obj_private == NULL)
77d18ded
RC
472 obj_private = hppa_init_objfile_priv_data (objfile);
473
c906108c
SS
474 obj_private->unwind_info = ui;
475}
476
477/* Lookup the unwind (stack backtrace) info for the given PC. We search all
478 of the objfiles seeking the unwind table entry for this PC. Each objfile
479 contains a sorted list of struct unwind_table_entry. Since we do a binary
480 search of the unwind tables, we depend upon them to be sorted. */
481
482struct unwind_table_entry *
fba45db2 483find_unwind_entry (CORE_ADDR pc)
c906108c
SS
484{
485 int first, middle, last;
486 struct objfile *objfile;
7c46b9fb 487 struct hppa_objfile_private *priv;
c906108c 488
369aa520 489 if (hppa_debug)
5af949e3
UW
490 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
491 hex_string (pc));
369aa520 492
1777feb0 493 /* A function at address 0? Not in HP-UX! */
c906108c 494 if (pc == (CORE_ADDR) 0)
369aa520
RC
495 {
496 if (hppa_debug)
497 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
498 return NULL;
499 }
c906108c
SS
500
501 ALL_OBJFILES (objfile)
c5aa993b 502 {
7c46b9fb 503 struct hppa_unwind_info *ui;
c5aa993b 504 ui = NULL;
9a3c8263
SM
505 priv = ((struct hppa_objfile_private *)
506 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb
RC
507 if (priv)
508 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 509
c5aa993b
JM
510 if (!ui)
511 {
512 read_unwind_info (objfile);
9a3c8263
SM
513 priv = ((struct hppa_objfile_private *)
514 objfile_data (objfile, hppa_objfile_priv_data));
7c46b9fb 515 if (priv == NULL)
8a3fe4f8 516 error (_("Internal error reading unwind information."));
7c46b9fb 517 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 518 }
c906108c 519
1777feb0 520 /* First, check the cache. */
c906108c 521
c5aa993b
JM
522 if (ui->cache
523 && pc >= ui->cache->region_start
524 && pc <= ui->cache->region_end)
369aa520
RC
525 {
526 if (hppa_debug)
5af949e3
UW
527 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
528 hex_string ((uintptr_t) ui->cache));
369aa520
RC
529 return ui->cache;
530 }
c906108c 531
1777feb0 532 /* Not in the cache, do a binary search. */
c906108c 533
c5aa993b
JM
534 first = 0;
535 last = ui->last;
c906108c 536
c5aa993b
JM
537 while (first <= last)
538 {
539 middle = (first + last) / 2;
540 if (pc >= ui->table[middle].region_start
541 && pc <= ui->table[middle].region_end)
542 {
543 ui->cache = &ui->table[middle];
369aa520 544 if (hppa_debug)
5af949e3
UW
545 fprintf_unfiltered (gdb_stdlog, "%s }\n",
546 hex_string ((uintptr_t) ui->cache));
c5aa993b
JM
547 return &ui->table[middle];
548 }
c906108c 549
c5aa993b
JM
550 if (pc < ui->table[middle].region_start)
551 last = middle - 1;
552 else
553 first = middle + 1;
554 }
555 } /* ALL_OBJFILES() */
369aa520
RC
556
557 if (hppa_debug)
558 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
559
c906108c
SS
560 return NULL;
561}
562
c9cf6e20
MG
563/* Implement the stack_frame_destroyed_p gdbarch method.
564
565 The epilogue is defined here as the area either on the `bv' instruction
1777feb0 566 itself or an instruction which destroys the function's stack frame.
1fb24930
RC
567
568 We do not assume that the epilogue is at the end of a function as we can
569 also have return sequences in the middle of a function. */
c9cf6e20 570
1fb24930 571static int
c9cf6e20 572hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1fb24930 573{
e17a4113 574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1fb24930
RC
575 unsigned long status;
576 unsigned int inst;
e362b510 577 gdb_byte buf[4];
1fb24930 578
8defab1a 579 status = target_read_memory (pc, buf, 4);
1fb24930
RC
580 if (status != 0)
581 return 0;
582
e17a4113 583 inst = extract_unsigned_integer (buf, 4, byte_order);
1fb24930
RC
584
585 /* The most common way to perform a stack adjustment ldo X(sp),sp
586 We are destroying a stack frame if the offset is negative. */
587 if ((inst & 0xffffc000) == 0x37de0000
588 && hppa_extract_14 (inst) < 0)
589 return 1;
590
591 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
592 if (((inst & 0x0fc010e0) == 0x0fc010e0
593 || (inst & 0x0fc010e0) == 0x0fc010e0)
594 && hppa_extract_14 (inst) < 0)
595 return 1;
596
597 /* bv %r0(%rp) or bv,n %r0(%rp) */
598 if (inst == 0xe840c000 || inst == 0xe840c002)
599 return 1;
600
601 return 0;
602}
603
04180708 604constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};
598cc9dc 605
04180708 606typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;
aaab4dba 607
e23457df
AC
608/* Return the name of a register. */
609
4a302917 610static const char *
d93859e2 611hppa32_register_name (struct gdbarch *gdbarch, int i)
e23457df 612{
a121b7c1 613 static const char *names[] = {
e23457df
AC
614 "flags", "r1", "rp", "r3",
615 "r4", "r5", "r6", "r7",
616 "r8", "r9", "r10", "r11",
617 "r12", "r13", "r14", "r15",
618 "r16", "r17", "r18", "r19",
619 "r20", "r21", "r22", "r23",
620 "r24", "r25", "r26", "dp",
621 "ret0", "ret1", "sp", "r31",
622 "sar", "pcoqh", "pcsqh", "pcoqt",
623 "pcsqt", "eiem", "iir", "isr",
624 "ior", "ipsw", "goto", "sr4",
625 "sr0", "sr1", "sr2", "sr3",
626 "sr5", "sr6", "sr7", "cr0",
627 "cr8", "cr9", "ccr", "cr12",
628 "cr13", "cr24", "cr25", "cr26",
629 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
630 "fpsr", "fpe1", "fpe2", "fpe3",
631 "fpe4", "fpe5", "fpe6", "fpe7",
632 "fr4", "fr4R", "fr5", "fr5R",
633 "fr6", "fr6R", "fr7", "fr7R",
634 "fr8", "fr8R", "fr9", "fr9R",
635 "fr10", "fr10R", "fr11", "fr11R",
636 "fr12", "fr12R", "fr13", "fr13R",
637 "fr14", "fr14R", "fr15", "fr15R",
638 "fr16", "fr16R", "fr17", "fr17R",
639 "fr18", "fr18R", "fr19", "fr19R",
640 "fr20", "fr20R", "fr21", "fr21R",
641 "fr22", "fr22R", "fr23", "fr23R",
642 "fr24", "fr24R", "fr25", "fr25R",
643 "fr26", "fr26R", "fr27", "fr27R",
644 "fr28", "fr28R", "fr29", "fr29R",
645 "fr30", "fr30R", "fr31", "fr31R"
646 };
647 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
648 return NULL;
649 else
650 return names[i];
651}
652
4a302917 653static const char *
d93859e2 654hppa64_register_name (struct gdbarch *gdbarch, int i)
e23457df 655{
a121b7c1 656 static const char *names[] = {
e23457df
AC
657 "flags", "r1", "rp", "r3",
658 "r4", "r5", "r6", "r7",
659 "r8", "r9", "r10", "r11",
660 "r12", "r13", "r14", "r15",
661 "r16", "r17", "r18", "r19",
662 "r20", "r21", "r22", "r23",
663 "r24", "r25", "r26", "dp",
664 "ret0", "ret1", "sp", "r31",
665 "sar", "pcoqh", "pcsqh", "pcoqt",
666 "pcsqt", "eiem", "iir", "isr",
667 "ior", "ipsw", "goto", "sr4",
668 "sr0", "sr1", "sr2", "sr3",
669 "sr5", "sr6", "sr7", "cr0",
670 "cr8", "cr9", "ccr", "cr12",
671 "cr13", "cr24", "cr25", "cr26",
672 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
673 "fpsr", "fpe1", "fpe2", "fpe3",
674 "fr4", "fr5", "fr6", "fr7",
675 "fr8", "fr9", "fr10", "fr11",
676 "fr12", "fr13", "fr14", "fr15",
677 "fr16", "fr17", "fr18", "fr19",
678 "fr20", "fr21", "fr22", "fr23",
679 "fr24", "fr25", "fr26", "fr27",
680 "fr28", "fr29", "fr30", "fr31"
681 };
682 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
683 return NULL;
684 else
685 return names[i];
686}
687
85c83e99 688/* Map dwarf DBX register numbers to GDB register numbers. */
1ef7fcb5 689static int
d3f73121 690hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1ef7fcb5 691{
85c83e99 692 /* The general registers and the sar are the same in both sets. */
0fde2c53 693 if (reg >= 0 && reg <= 32)
1ef7fcb5
RC
694 return reg;
695
696 /* fr4-fr31 are mapped from 72 in steps of 2. */
85c83e99 697 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
1ef7fcb5
RC
698 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
699
1ef7fcb5
RC
700 return -1;
701}
702
79508e1e
AC
703/* This function pushes a stack frame with arguments as part of the
704 inferior function calling mechanism.
705
706 This is the version of the function for the 32-bit PA machines, in
707 which later arguments appear at lower addresses. (The stack always
708 grows towards higher addresses.)
709
710 We simply allocate the appropriate amount of stack space and put
711 arguments into their proper slots. */
712
4a302917 713static CORE_ADDR
7d9b040b 714hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
715 struct regcache *regcache, CORE_ADDR bp_addr,
716 int nargs, struct value **args, CORE_ADDR sp,
717 int struct_return, CORE_ADDR struct_addr)
718{
e17a4113
UW
719 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
720
79508e1e
AC
721 /* Stack base address at which any pass-by-reference parameters are
722 stored. */
723 CORE_ADDR struct_end = 0;
724 /* Stack base address at which the first parameter is stored. */
725 CORE_ADDR param_end = 0;
726
79508e1e
AC
727 /* Two passes. First pass computes the location of everything,
728 second pass writes the bytes out. */
729 int write_pass;
d49771ef
RC
730
731 /* Global pointer (r19) of the function we are trying to call. */
732 CORE_ADDR gp;
733
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735
79508e1e
AC
736 for (write_pass = 0; write_pass < 2; write_pass++)
737 {
1797a8f6 738 CORE_ADDR struct_ptr = 0;
1777feb0 739 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
2a6228ef
RC
740 struct_ptr is adjusted for each argument below, so the first
741 argument will end up at sp-36. */
742 CORE_ADDR param_ptr = 32;
79508e1e 743 int i;
2a6228ef
RC
744 int small_struct = 0;
745
79508e1e
AC
746 for (i = 0; i < nargs; i++)
747 {
748 struct value *arg = args[i];
4991999e 749 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
750 /* The corresponding parameter that is pushed onto the
751 stack, and [possibly] passed in a register. */
948f8e3d 752 gdb_byte param_val[8];
79508e1e
AC
753 int param_len;
754 memset (param_val, 0, sizeof param_val);
755 if (TYPE_LENGTH (type) > 8)
756 {
757 /* Large parameter, pass by reference. Store the value
758 in "struct" area and then pass its address. */
759 param_len = 4;
1797a8f6 760 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 761 if (write_pass)
0fd88904 762 write_memory (struct_end - struct_ptr, value_contents (arg),
79508e1e 763 TYPE_LENGTH (type));
e17a4113
UW
764 store_unsigned_integer (param_val, 4, byte_order,
765 struct_end - struct_ptr);
79508e1e
AC
766 }
767 else if (TYPE_CODE (type) == TYPE_CODE_INT
768 || TYPE_CODE (type) == TYPE_CODE_ENUM)
769 {
770 /* Integer value store, right aligned. "unpack_long"
771 takes care of any sign-extension problems. */
772 param_len = align_up (TYPE_LENGTH (type), 4);
e17a4113 773 store_unsigned_integer (param_val, param_len, byte_order,
79508e1e 774 unpack_long (type,
0fd88904 775 value_contents (arg)));
79508e1e 776 }
2a6228ef
RC
777 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
778 {
779 /* Floating point value store, right aligned. */
780 param_len = align_up (TYPE_LENGTH (type), 4);
0fd88904 781 memcpy (param_val, value_contents (arg), param_len);
2a6228ef 782 }
79508e1e
AC
783 else
784 {
79508e1e 785 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
786
787 /* Small struct value are stored right-aligned. */
79508e1e 788 memcpy (param_val + param_len - TYPE_LENGTH (type),
0fd88904 789 value_contents (arg), TYPE_LENGTH (type));
2a6228ef
RC
790
791 /* Structures of size 5, 6 and 7 bytes are special in that
792 the higher-ordered word is stored in the lower-ordered
793 argument, and even though it is a 8-byte quantity the
794 registers need not be 8-byte aligned. */
1b07b470 795 if (param_len > 4 && param_len < 8)
2a6228ef 796 small_struct = 1;
79508e1e 797 }
2a6228ef 798
1797a8f6 799 param_ptr += param_len;
2a6228ef
RC
800 if (param_len == 8 && !small_struct)
801 param_ptr = align_up (param_ptr, 8);
802
803 /* First 4 non-FP arguments are passed in gr26-gr23.
804 First 4 32-bit FP arguments are passed in fr4L-fr7L.
805 First 2 64-bit FP arguments are passed in fr5 and fr7.
806
807 The rest go on the stack, starting at sp-36, towards lower
808 addresses. 8-byte arguments must be aligned to a 8-byte
809 stack boundary. */
79508e1e
AC
810 if (write_pass)
811 {
1797a8f6 812 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
813
814 /* There are some cases when we don't know the type
815 expected by the callee (e.g. for variadic functions), so
816 pass the parameters in both general and fp regs. */
817 if (param_ptr <= 48)
79508e1e 818 {
2a6228ef
RC
819 int grreg = 26 - (param_ptr - 36) / 4;
820 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
821 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
822
b66f5587
SM
823 regcache->cooked_write (grreg, param_val);
824 regcache->cooked_write (fpLreg, param_val);
2a6228ef 825
79508e1e 826 if (param_len > 4)
2a6228ef 827 {
b66f5587 828 regcache->cooked_write (grreg + 1, param_val + 4);
2a6228ef 829
b66f5587
SM
830 regcache->cooked_write (fpreg, param_val);
831 regcache->cooked_write (fpreg + 1, param_val + 4);
2a6228ef 832 }
79508e1e
AC
833 }
834 }
835 }
836
837 /* Update the various stack pointers. */
838 if (!write_pass)
839 {
2a6228ef 840 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
841 /* PARAM_PTR already accounts for all the arguments passed
842 by the user. However, the ABI mandates minimum stack
843 space allocations for outgoing arguments. The ABI also
844 mandates minimum stack alignments which we must
845 preserve. */
2a6228ef 846 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
847 }
848 }
849
850 /* If a structure has to be returned, set up register 28 to hold its
1777feb0 851 address. */
79508e1e 852 if (struct_return)
9c9acae0 853 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
79508e1e 854
e38c262f 855 gp = tdep->find_global_pointer (gdbarch, function);
d49771ef
RC
856
857 if (gp != 0)
9c9acae0 858 regcache_cooked_write_unsigned (regcache, 19, gp);
d49771ef 859
79508e1e 860 /* Set the return address. */
77d18ded
RC
861 if (!gdbarch_push_dummy_code_p (gdbarch))
862 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 863
c4557624 864 /* Update the Stack Pointer. */
34f75cc1 865 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 866
2a6228ef 867 return param_end;
79508e1e
AC
868}
869
38ca4e0c
MK
870/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
871 Runtime Architecture for PA-RISC 2.0", which is distributed as part
872 as of the HP-UX Software Transition Kit (STK). This implementation
873 is based on version 3.3, dated October 6, 1997. */
2f690297 874
38ca4e0c 875/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
2f690297 876
38ca4e0c
MK
877static int
878hppa64_integral_or_pointer_p (const struct type *type)
879{
880 switch (TYPE_CODE (type))
881 {
882 case TYPE_CODE_INT:
883 case TYPE_CODE_BOOL:
884 case TYPE_CODE_CHAR:
885 case TYPE_CODE_ENUM:
886 case TYPE_CODE_RANGE:
887 {
888 int len = TYPE_LENGTH (type);
889 return (len == 1 || len == 2 || len == 4 || len == 8);
890 }
891 case TYPE_CODE_PTR:
892 case TYPE_CODE_REF:
aa006118 893 case TYPE_CODE_RVALUE_REF:
38ca4e0c
MK
894 return (TYPE_LENGTH (type) == 8);
895 default:
896 break;
897 }
898
899 return 0;
900}
901
902/* Check whether TYPE is a "Floating Scalar Type". */
903
904static int
905hppa64_floating_p (const struct type *type)
906{
907 switch (TYPE_CODE (type))
908 {
909 case TYPE_CODE_FLT:
910 {
911 int len = TYPE_LENGTH (type);
912 return (len == 4 || len == 8 || len == 16);
913 }
914 default:
915 break;
916 }
917
918 return 0;
919}
2f690297 920
1218e655
RC
921/* If CODE points to a function entry address, try to look up the corresponding
922 function descriptor and return its address instead. If CODE is not a
923 function entry address, then just return it unchanged. */
924static CORE_ADDR
e17a4113 925hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
1218e655 926{
e17a4113 927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1218e655
RC
928 struct obj_section *sec, *opd;
929
930 sec = find_pc_section (code);
931
932 if (!sec)
933 return code;
934
935 /* If CODE is in a data section, assume it's already a fptr. */
936 if (!(sec->the_bfd_section->flags & SEC_CODE))
937 return code;
938
939 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
940 {
941 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
aded6f54 942 break;
1218e655
RC
943 }
944
945 if (opd < sec->objfile->sections_end)
946 {
947 CORE_ADDR addr;
948
aded6f54
PA
949 for (addr = obj_section_addr (opd);
950 addr < obj_section_endaddr (opd);
951 addr += 2 * 8)
952 {
1218e655 953 ULONGEST opdaddr;
948f8e3d 954 gdb_byte tmp[8];
1218e655
RC
955
956 if (target_read_memory (addr, tmp, sizeof (tmp)))
957 break;
e17a4113 958 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);
1218e655 959
aded6f54 960 if (opdaddr == code)
1218e655
RC
961 return addr - 16;
962 }
963 }
964
965 return code;
966}
967
4a302917 968static CORE_ADDR
7d9b040b 969hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
970 struct regcache *regcache, CORE_ADDR bp_addr,
971 int nargs, struct value **args, CORE_ADDR sp,
972 int struct_return, CORE_ADDR struct_addr)
973{
38ca4e0c 974 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
38ca4e0c
MK
976 int i, offset = 0;
977 CORE_ADDR gp;
2f690297 978
38ca4e0c
MK
979 /* "The outgoing parameter area [...] must be aligned at a 16-byte
980 boundary." */
981 sp = align_up (sp, 16);
2f690297 982
38ca4e0c
MK
983 for (i = 0; i < nargs; i++)
984 {
985 struct value *arg = args[i];
986 struct type *type = value_type (arg);
987 int len = TYPE_LENGTH (type);
0fd88904 988 const bfd_byte *valbuf;
1218e655 989 bfd_byte fptrbuf[8];
38ca4e0c 990 int regnum;
2f690297 991
38ca4e0c
MK
992 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
993 offset = align_up (offset, 8);
77d18ded 994
38ca4e0c 995 if (hppa64_integral_or_pointer_p (type))
2f690297 996 {
38ca4e0c
MK
997 /* "Integral scalar parameters smaller than 64 bits are
998 padded on the left (i.e., the value is in the
999 least-significant bits of the 64-bit storage unit, and
1000 the high-order bits are undefined)." Therefore we can
1001 safely sign-extend them. */
1002 if (len < 8)
449e1137 1003 {
df4df182 1004 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
38ca4e0c
MK
1005 len = 8;
1006 }
1007 }
1008 else if (hppa64_floating_p (type))
1009 {
1010 if (len > 8)
1011 {
1012 /* "Quad-precision (128-bit) floating-point scalar
1013 parameters are aligned on a 16-byte boundary." */
1014 offset = align_up (offset, 16);
1015
1016 /* "Double-extended- and quad-precision floating-point
1017 parameters within the first 64 bytes of the parameter
1018 list are always passed in general registers." */
449e1137
AC
1019 }
1020 else
1021 {
38ca4e0c 1022 if (len == 4)
449e1137 1023 {
38ca4e0c
MK
1024 /* "Single-precision (32-bit) floating-point scalar
1025 parameters are padded on the left with 32 bits of
1026 garbage (i.e., the floating-point value is in the
1027 least-significant 32 bits of a 64-bit storage
1028 unit)." */
1029 offset += 4;
449e1137 1030 }
38ca4e0c
MK
1031
1032 /* "Single- and double-precision floating-point
1033 parameters in this area are passed according to the
1034 available formal parameter information in a function
1035 prototype. [...] If no prototype is in scope,
1036 floating-point parameters must be passed both in the
1037 corresponding general registers and in the
1038 corresponding floating-point registers." */
1039 regnum = HPPA64_FP4_REGNUM + offset / 8;
1040
1041 if (regnum < HPPA64_FP4_REGNUM + 8)
449e1137 1042 {
38ca4e0c
MK
1043 /* "Single-precision floating-point parameters, when
1044 passed in floating-point registers, are passed in
1045 the right halves of the floating point registers;
1046 the left halves are unused." */
e4c4a59b
SM
1047 regcache->cooked_write_part (regnum, offset % 8, len,
1048 value_contents (arg));
449e1137
AC
1049 }
1050 }
2f690297 1051 }
38ca4e0c 1052 else
2f690297 1053 {
38ca4e0c
MK
1054 if (len > 8)
1055 {
1056 /* "Aggregates larger than 8 bytes are aligned on a
1057 16-byte boundary, possibly leaving an unused argument
1777feb0 1058 slot, which is filled with garbage. If necessary,
38ca4e0c
MK
1059 they are padded on the right (with garbage), to a
1060 multiple of 8 bytes." */
1061 offset = align_up (offset, 16);
1062 }
1063 }
1064
1218e655
RC
1065 /* If we are passing a function pointer, make sure we pass a function
1066 descriptor instead of the function entry address. */
1067 if (TYPE_CODE (type) == TYPE_CODE_PTR
1068 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1069 {
1070 ULONGEST codeptr, fptr;
1071
1072 codeptr = unpack_long (type, value_contents (arg));
e17a4113
UW
1073 fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
1074 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
1075 fptr);
1218e655
RC
1076 valbuf = fptrbuf;
1077 }
1078 else
1079 {
1080 valbuf = value_contents (arg);
1081 }
1082
38ca4e0c 1083 /* Always store the argument in memory. */
1218e655 1084 write_memory (sp + offset, valbuf, len);
38ca4e0c 1085
38ca4e0c
MK
1086 regnum = HPPA_ARG0_REGNUM - offset / 8;
1087 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1088 {
e4c4a59b
SM
1089 regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8),
1090 valbuf);
325fac50
PA
1091 offset += std::min (len, 8);
1092 valbuf += std::min (len, 8);
1093 len -= std::min (len, 8);
38ca4e0c 1094 regnum--;
2f690297 1095 }
38ca4e0c
MK
1096
1097 offset += len;
2f690297
AC
1098 }
1099
38ca4e0c
MK
1100 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1101 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1102
1103 /* Allocate the outgoing parameter area. Make sure the outgoing
1104 parameter area is multiple of 16 bytes in length. */
325fac50 1105 sp += std::max (align_up (offset, 16), (ULONGEST) 64);
38ca4e0c
MK
1106
1107 /* Allocate 32-bytes of scratch space. The documentation doesn't
1108 mention this, but it seems to be needed. */
1109 sp += 32;
1110
1111 /* Allocate the frame marker area. */
1112 sp += 16;
1113
1114 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1115 its address. */
2f690297 1116 if (struct_return)
38ca4e0c 1117 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
2f690297 1118
38ca4e0c 1119 /* Set up GR27 (%dp) to hold the global pointer (gp). */
e38c262f 1120 gp = tdep->find_global_pointer (gdbarch, function);
77d18ded 1121 if (gp != 0)
38ca4e0c 1122 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
77d18ded 1123
38ca4e0c 1124 /* Set up GR2 (%rp) to hold the return pointer (rp). */
77d18ded
RC
1125 if (!gdbarch_push_dummy_code_p (gdbarch))
1126 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 1127
38ca4e0c
MK
1128 /* Set up GR30 to hold the stack pointer (sp). */
1129 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
c4557624 1130
38ca4e0c 1131 return sp;
2f690297 1132}
38ca4e0c 1133\f
2f690297 1134
08a27113
MK
1135/* Handle 32/64-bit struct return conventions. */
1136
1137static enum return_value_convention
6a3a010b 1138hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1139 struct type *type, struct regcache *regcache,
e127f0db 1140 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1141{
1142 if (TYPE_LENGTH (type) <= 2 * 4)
1143 {
1144 /* The value always lives in the right hand end of the register
1145 (or register pair)? */
1146 int b;
1147 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1148 int part = TYPE_LENGTH (type) % 4;
1149 /* The left hand register contains only part of the value,
1150 transfer that first so that the rest can be xfered as entire
1151 4-byte registers. */
1152 if (part > 0)
1153 {
1154 if (readbuf != NULL)
73bb0000 1155 regcache->cooked_read_part (reg, 4 - part, part, readbuf);
08a27113 1156 if (writebuf != NULL)
e4c4a59b 1157 regcache->cooked_write_part (reg, 4 - part, part, writebuf);
08a27113
MK
1158 reg++;
1159 }
1160 /* Now transfer the remaining register values. */
1161 for (b = part; b < TYPE_LENGTH (type); b += 4)
1162 {
1163 if (readbuf != NULL)
dca08e1f 1164 regcache->cooked_read (reg, readbuf + b);
08a27113 1165 if (writebuf != NULL)
b66f5587 1166 regcache->cooked_write (reg, writebuf + b);
08a27113
MK
1167 reg++;
1168 }
1169 return RETURN_VALUE_REGISTER_CONVENTION;
1170 }
1171 else
1172 return RETURN_VALUE_STRUCT_CONVENTION;
1173}
1174
1175static enum return_value_convention
6a3a010b 1176hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
08a27113 1177 struct type *type, struct regcache *regcache,
e127f0db 1178 gdb_byte *readbuf, const gdb_byte *writebuf)
08a27113
MK
1179{
1180 int len = TYPE_LENGTH (type);
1181 int regnum, offset;
1182
bad43aa5 1183 if (len > 16)
08a27113
MK
1184 {
1185 /* All return values larget than 128 bits must be aggregate
1186 return values. */
9738b034
MK
1187 gdb_assert (!hppa64_integral_or_pointer_p (type));
1188 gdb_assert (!hppa64_floating_p (type));
08a27113
MK
1189
1190 /* "Aggregate return values larger than 128 bits are returned in
1191 a buffer allocated by the caller. The address of the buffer
1192 must be passed in GR 28." */
1193 return RETURN_VALUE_STRUCT_CONVENTION;
1194 }
1195
1196 if (hppa64_integral_or_pointer_p (type))
1197 {
1198 /* "Integral return values are returned in GR 28. Values
1199 smaller than 64 bits are padded on the left (with garbage)." */
1200 regnum = HPPA_RET0_REGNUM;
1201 offset = 8 - len;
1202 }
1203 else if (hppa64_floating_p (type))
1204 {
1205 if (len > 8)
1206 {
1207 /* "Double-extended- and quad-precision floating-point
1208 values are returned in GRs 28 and 29. The sign,
1209 exponent, and most-significant bits of the mantissa are
1210 returned in GR 28; the least-significant bits of the
1211 mantissa are passed in GR 29. For double-extended
1212 precision values, GR 29 is padded on the right with 48
1213 bits of garbage." */
1214 regnum = HPPA_RET0_REGNUM;
1215 offset = 0;
1216 }
1217 else
1218 {
1219 /* "Single-precision and double-precision floating-point
1220 return values are returned in FR 4R (single precision) or
1221 FR 4 (double-precision)." */
1222 regnum = HPPA64_FP4_REGNUM;
1223 offset = 8 - len;
1224 }
1225 }
1226 else
1227 {
1228 /* "Aggregate return values up to 64 bits in size are returned
1229 in GR 28. Aggregates smaller than 64 bits are left aligned
1230 in the register; the pad bits on the right are undefined."
1231
1232 "Aggregate return values between 65 and 128 bits are returned
1233 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1234 the remaining bits are placed, left aligned, in GR 29. The
1235 pad bits on the right of GR 29 (if any) are undefined." */
1236 regnum = HPPA_RET0_REGNUM;
1237 offset = 0;
1238 }
1239
1240 if (readbuf)
1241 {
08a27113
MK
1242 while (len > 0)
1243 {
73bb0000
SM
1244 regcache->cooked_read_part (regnum, offset, std::min (len, 8),
1245 readbuf);
325fac50
PA
1246 readbuf += std::min (len, 8);
1247 len -= std::min (len, 8);
08a27113
MK
1248 regnum++;
1249 }
1250 }
1251
1252 if (writebuf)
1253 {
08a27113
MK
1254 while (len > 0)
1255 {
e4c4a59b
SM
1256 regcache->cooked_write_part (regnum, offset, std::min (len, 8),
1257 writebuf);
325fac50
PA
1258 writebuf += std::min (len, 8);
1259 len -= std::min (len, 8);
08a27113
MK
1260 regnum++;
1261 }
1262 }
1263
1264 return RETURN_VALUE_REGISTER_CONVENTION;
1265}
1266\f
1267
d49771ef 1268static CORE_ADDR
a7aad9aa 1269hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
d49771ef
RC
1270 struct target_ops *targ)
1271{
1272 if (addr & 2)
1273 {
0dfff4cb 1274 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
a7aad9aa 1275 CORE_ADDR plabel = addr & ~3;
0dfff4cb 1276 return read_memory_typed_address (plabel, func_ptr_type);
d49771ef
RC
1277 }
1278
1279 return addr;
1280}
1281
1797a8f6
AC
1282static CORE_ADDR
1283hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1284{
1285 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1286 and not _bit_)! */
1287 return align_up (addr, 64);
1288}
1289
2f690297
AC
1290/* Force all frames to 16-byte alignment. Better safe than sorry. */
1291
1292static CORE_ADDR
1797a8f6 1293hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1294{
1295 /* Just always 16-byte align. */
1296 return align_up (addr, 16);
1297}
1298
cc72850f 1299CORE_ADDR
c113ed0c 1300hppa_read_pc (readable_regcache *regcache)
c906108c 1301{
cc72850f 1302 ULONGEST ipsw;
61a1198a 1303 ULONGEST pc;
c906108c 1304
c113ed0c
YQ
1305 regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
1306 regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);
fe46cd3a
RC
1307
1308 /* If the current instruction is nullified, then we are effectively
1309 still executing the previous instruction. Pretend we are still
cc72850f
MK
1310 there. This is needed when single stepping; if the nullified
1311 instruction is on a different line, we don't want GDB to think
1312 we've stepped onto that line. */
fe46cd3a
RC
1313 if (ipsw & 0x00200000)
1314 pc -= 4;
1315
cc72850f 1316 return pc & ~0x3;
c906108c
SS
1317}
1318
cc72850f 1319void
61a1198a 1320hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 1321{
61a1198a
UW
1322 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1323 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1324}
1325
c906108c 1326/* For the given instruction (INST), return any adjustment it makes
1777feb0 1327 to the stack pointer or zero for no adjustment.
c906108c
SS
1328
1329 This only handles instructions commonly found in prologues. */
1330
1331static int
fba45db2 1332prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1333{
1334 /* This must persist across calls. */
1335 static int save_high21;
1336
1337 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1338 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1339 return hppa_extract_14 (inst);
c906108c
SS
1340
1341 /* stwm X,D(sp) */
1342 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1343 return hppa_extract_14 (inst);
c906108c 1344
104c1213
JM
1345 /* std,ma X,D(sp) */
1346 if ((inst & 0xffe00008) == 0x73c00008)
66c6502d 1347 return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1348
e22b26cb 1349 /* addil high21,%r30; ldo low11,(%r1),%r30)
c906108c 1350 save high bits in save_high21 for later use. */
e22b26cb 1351 if ((inst & 0xffe00000) == 0x2bc00000)
c906108c 1352 {
abc485a1 1353 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1354 return 0;
1355 }
1356
1357 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1358 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1359
1360 /* fstws as used by the HP compilers. */
1361 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1362 return hppa_extract_5_load (inst);
c906108c
SS
1363
1364 /* No adjustment. */
1365 return 0;
1366}
1367
1368/* Return nonzero if INST is a branch of some kind, else return zero. */
1369
1370static int
fba45db2 1371is_branch (unsigned long inst)
c906108c
SS
1372{
1373 switch (inst >> 26)
1374 {
1375 case 0x20:
1376 case 0x21:
1377 case 0x22:
1378 case 0x23:
7be570e7 1379 case 0x27:
c906108c
SS
1380 case 0x28:
1381 case 0x29:
1382 case 0x2a:
1383 case 0x2b:
7be570e7 1384 case 0x2f:
c906108c
SS
1385 case 0x30:
1386 case 0x31:
1387 case 0x32:
1388 case 0x33:
1389 case 0x38:
1390 case 0x39:
1391 case 0x3a:
7be570e7 1392 case 0x3b:
c906108c
SS
1393 return 1;
1394
1395 default:
1396 return 0;
1397 }
1398}
1399
1400/* Return the register number for a GR which is saved by INST or
b35018fd 1401 zero if INST does not save a GR.
c906108c 1402
b35018fd 1403 Referenced from:
7be570e7 1404
b35018fd
CG
1405 parisc 1.1:
1406 https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
c906108c 1407
b35018fd
CG
1408 parisc 2.0:
1409 https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf
c906108c 1410
b35018fd
CG
1411 According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
1412 on page 106 in parisc 2.0, all instructions for storing values from
1413 the general registers are:
c5aa993b 1414
b35018fd
CG
1415 Store: stb, sth, stw, std (according to Chapter 7, they
1416 are only in both "inst >> 26" and "inst >> 6".
1417 Store Absolute: stwa, stda (according to Chapter 7, they are only
1418 in "inst >> 6".
1419 Store Bytes: stby, stdby (according to Chapter 7, they are
1420 only in "inst >> 6").
1421
1422 For (inst >> 26), according to Chapter 7:
1423
1424 The effective memory reference address is formed by the addition
1425 of an immediate displacement to a base value.
1426
1427 - stb: 0x18, store a byte from a general register.
1428
1429 - sth: 0x19, store a halfword from a general register.
1430
1431 - stw: 0x1a, store a word from a general register.
1432
1433 - stwm: 0x1b, store a word from a general register and perform base
1434 register modification (2.0 will still treate it as stw).
1435
1436 - std: 0x1c, store a doubleword from a general register (2.0 only).
1437
1438 - stw: 0x1f, store a word from a general register (2.0 only).
1439
1440 For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:
1441
1442 The effective memory reference address is formed by the addition
1443 of an index value to a base value specified in the instruction.
1444
1445 - stb: 0x08, store a byte from a general register (1.1 calls stbs).
1446
1447 - sth: 0x09, store a halfword from a general register (1.1 calls
1448 sths).
1449
1450 - stw: 0x0a, store a word from a general register (1.1 calls stws).
1451
1452 - std: 0x0b: store a doubleword from a general register (2.0 only)
1453
1454 Implement fast byte moves (stores) to unaligned word or doubleword
1455 destination.
1456
1457 - stby: 0x0c, for unaligned word (1.1 calls stbys).
1458
1459 - stdby: 0x0d for unaligned doubleword (2.0 only).
1460
1461 Store a word or doubleword using an absolute memory address formed
1462 using short or long displacement or indexed
1463
1464 - stwa: 0x0e, store a word from a general register to an absolute
1465 address (1.0 calls stwas).
1466
1467 - stda: 0x0f, store a doubleword from a general register to an
1468 absolute address (2.0 only). */
1469
1470static int
1471inst_saves_gr (unsigned long inst)
1472{
1473 switch ((inst >> 26) & 0x0f)
1474 {
1475 case 0x03:
1476 switch ((inst >> 6) & 0x0f)
1477 {
1478 case 0x08:
1479 case 0x09:
1480 case 0x0a:
1481 case 0x0b:
1482 case 0x0c:
1483 case 0x0d:
1484 case 0x0e:
1485 case 0x0f:
1486 return hppa_extract_5R_store (inst);
1487 default:
1488 return 0;
1489 }
1490 case 0x18:
1491 case 0x19:
1492 case 0x1a:
1493 case 0x1b:
1494 case 0x1c:
1495 /* no 0x1d or 0x1e -- according to parisc 2.0 document */
1496 case 0x1f:
1497 return hppa_extract_5R_store (inst);
1498 default:
1499 return 0;
1500 }
c906108c
SS
1501}
1502
1503/* Return the register number for a FR which is saved by INST or
1504 zero it INST does not save a FR.
1505
1506 Note we only care about full 64bit register stores (that's the only
1507 kind of stores the prologue will use).
1508
1509 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1510
1511static int
fba45db2 1512inst_saves_fr (unsigned long inst)
c906108c 1513{
1777feb0 1514 /* Is this an FSTD? */
c906108c 1515 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1516 return hppa_extract_5r_store (inst);
7be570e7 1517 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1518 return hppa_extract_5R_store (inst);
1777feb0 1519 /* Is this an FSTW? */
c906108c 1520 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1521 return hppa_extract_5r_store (inst);
7be570e7 1522 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1523 return hppa_extract_5R_store (inst);
c906108c
SS
1524 return 0;
1525}
1526
1527/* Advance PC across any function entry prologue instructions
1777feb0 1528 to reach some "real" code.
c906108c
SS
1529
1530 Use information in the unwind table to determine what exactly should
1531 be in the prologue. */
1532
1533
a71f8c30 1534static CORE_ADDR
be8626e0
MD
1535skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1536 int stop_before_branch)
c906108c 1537{
e17a4113 1538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 1539 gdb_byte buf[4];
c906108c
SS
1540 CORE_ADDR orig_pc = pc;
1541 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1542 unsigned long args_stored, status, i, restart_gr, restart_fr;
1543 struct unwind_table_entry *u;
a71f8c30 1544 int final_iteration;
c906108c
SS
1545
1546 restart_gr = 0;
1547 restart_fr = 0;
1548
1549restart:
1550 u = find_unwind_entry (pc);
1551 if (!u)
1552 return pc;
1553
1777feb0 1554 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1555 if ((pc & ~0x3) != u->region_start)
1556 return pc;
1557
1558 /* This is how much of a frame adjustment we need to account for. */
1559 stack_remaining = u->Total_frame_size << 3;
1560
1561 /* Magic register saves we want to know about. */
1562 save_rp = u->Save_RP;
1563 save_sp = u->Save_SP;
1564
1565 /* An indication that args may be stored into the stack. Unfortunately
1566 the HPUX compilers tend to set this in cases where no args were
1567 stored too!. */
1568 args_stored = 1;
1569
1570 /* Turn the Entry_GR field into a bitmask. */
1571 save_gr = 0;
1572 for (i = 3; i < u->Entry_GR + 3; i++)
1573 {
1574 /* Frame pointer gets saved into a special location. */
eded0a31 1575 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1576 continue;
1577
1578 save_gr |= (1 << i);
1579 }
1580 save_gr &= ~restart_gr;
1581
1582 /* Turn the Entry_FR field into a bitmask too. */
1583 save_fr = 0;
1584 for (i = 12; i < u->Entry_FR + 12; i++)
1585 save_fr |= (1 << i);
1586 save_fr &= ~restart_fr;
1587
a71f8c30
RC
1588 final_iteration = 0;
1589
c906108c
SS
1590 /* Loop until we find everything of interest or hit a branch.
1591
1592 For unoptimized GCC code and for any HP CC code this will never ever
1593 examine any user instructions.
1594
1595 For optimzied GCC code we're faced with problems. GCC will schedule
1596 its prologue and make prologue instructions available for delay slot
1597 filling. The end result is user code gets mixed in with the prologue
1598 and a prologue instruction may be in the delay slot of the first branch
1599 or call.
1600
1601 Some unexpected things are expected with debugging optimized code, so
1602 we allow this routine to walk past user instructions in optimized
1603 GCC code. */
1604 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1605 || args_stored)
1606 {
1607 unsigned int reg_num;
1608 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1609 unsigned long old_save_rp, old_save_sp, next_inst;
1610
1611 /* Save copies of all the triggers so we can compare them later
c5aa993b 1612 (only for HPC). */
c906108c
SS
1613 old_save_gr = save_gr;
1614 old_save_fr = save_fr;
1615 old_save_rp = save_rp;
1616 old_save_sp = save_sp;
1617 old_stack_remaining = stack_remaining;
1618
8defab1a 1619 status = target_read_memory (pc, buf, 4);
e17a4113 1620 inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1621
c906108c
SS
1622 /* Yow! */
1623 if (status != 0)
1624 return pc;
1625
1626 /* Note the interesting effects of this instruction. */
1627 stack_remaining -= prologue_inst_adjust_sp (inst);
1628
7be570e7
JM
1629 /* There are limited ways to store the return pointer into the
1630 stack. */
c4c79048 1631 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
c906108c
SS
1632 save_rp = 0;
1633
104c1213 1634 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1635 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1636 if ((inst & 0xffffc000) == 0x6fc10000
1637 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1638 save_sp = 0;
1639
6426a772
JM
1640 /* Are we loading some register with an offset from the argument
1641 pointer? */
1642 if ((inst & 0xffe00000) == 0x37a00000
1643 || (inst & 0xffffffe0) == 0x081d0240)
1644 {
1645 pc += 4;
1646 continue;
1647 }
1648
c906108c
SS
1649 /* Account for general and floating-point register saves. */
1650 reg_num = inst_saves_gr (inst);
1651 save_gr &= ~(1 << reg_num);
1652
1653 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1654 Unfortunately args_stored only tells us that some arguments
1655 where stored into the stack. Not how many or what kind!
c906108c 1656
c5aa993b
JM
1657 This is a kludge as on the HP compiler sets this bit and it
1658 never does prologue scheduling. So once we see one, skip past
1659 all of them. We have similar code for the fp arg stores below.
c906108c 1660
c5aa993b
JM
1661 FIXME. Can still die if we have a mix of GR and FR argument
1662 stores! */
be8626e0 1663 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1664 && reg_num <= 26)
c906108c 1665 {
be8626e0 1666 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
819844ad 1667 && reg_num <= 26)
c906108c
SS
1668 {
1669 pc += 4;
8defab1a 1670 status = target_read_memory (pc, buf, 4);
e17a4113 1671 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1672 if (status != 0)
1673 return pc;
1674 reg_num = inst_saves_gr (inst);
1675 }
1676 args_stored = 0;
1677 continue;
1678 }
1679
1680 reg_num = inst_saves_fr (inst);
1681 save_fr &= ~(1 << reg_num);
1682
8defab1a 1683 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1684 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c5aa993b 1685
c906108c
SS
1686 /* Yow! */
1687 if (status != 0)
1688 return pc;
1689
1690 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1691 save. */
c906108c
SS
1692 if ((inst & 0xfc000000) == 0x34000000
1693 && inst_saves_fr (next_inst) >= 4
819844ad 1694 && inst_saves_fr (next_inst)
be8626e0 1695 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1696 {
1697 /* So we drop into the code below in a reasonable state. */
1698 reg_num = inst_saves_fr (next_inst);
1699 pc -= 4;
1700 }
1701
1702 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1703 This is a kludge as on the HP compiler sets this bit and it
1704 never does prologue scheduling. So once we see one, skip past
1705 all of them. */
819844ad 1706 if (reg_num >= 4
be8626e0 1707 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c 1708 {
819844ad
UW
1709 while (reg_num >= 4
1710 && reg_num
be8626e0 1711 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
c906108c
SS
1712 {
1713 pc += 8;
8defab1a 1714 status = target_read_memory (pc, buf, 4);
e17a4113 1715 inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1716 if (status != 0)
1717 return pc;
1718 if ((inst & 0xfc000000) != 0x34000000)
1719 break;
8defab1a 1720 status = target_read_memory (pc + 4, buf, 4);
e17a4113 1721 next_inst = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
1722 if (status != 0)
1723 return pc;
1724 reg_num = inst_saves_fr (next_inst);
1725 }
1726 args_stored = 0;
1727 continue;
1728 }
1729
1730 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1731 instruction is in the delay slot of the first call/branch. */
a71f8c30 1732 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1733 break;
1734
1735 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1736 arguments were stored into the stack (boo hiss). This could
1737 cause this code to then skip a bunch of user insns (up to the
1738 first branch).
1739
1740 To combat this we try to identify when args_stored was bogusly
1741 set and clear it. We only do this when args_stored is nonzero,
1742 all other resources are accounted for, and nothing changed on
1743 this pass. */
c906108c 1744 if (args_stored
c5aa993b 1745 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1746 && old_save_gr == save_gr && old_save_fr == save_fr
1747 && old_save_rp == save_rp && old_save_sp == save_sp
1748 && old_stack_remaining == stack_remaining)
1749 break;
c5aa993b 1750
c906108c
SS
1751 /* Bump the PC. */
1752 pc += 4;
a71f8c30
RC
1753
1754 /* !stop_before_branch, so also look at the insn in the delay slot
1755 of the branch. */
1756 if (final_iteration)
1757 break;
1758 if (is_branch (inst))
1759 final_iteration = 1;
c906108c
SS
1760 }
1761
1762 /* We've got a tenative location for the end of the prologue. However
1763 because of limitations in the unwind descriptor mechanism we may
1764 have went too far into user code looking for the save of a register
1765 that does not exist. So, if there registers we expected to be saved
1766 but never were, mask them out and restart.
1767
1768 This should only happen in optimized code, and should be very rare. */
c5aa993b 1769 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1770 {
1771 pc = orig_pc;
1772 restart_gr = save_gr;
1773 restart_fr = save_fr;
1774 goto restart;
1775 }
1776
1777 return pc;
1778}
1779
1780
7be570e7
JM
1781/* Return the address of the PC after the last prologue instruction if
1782 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1783
1784static CORE_ADDR
fba45db2 1785after_prologue (CORE_ADDR pc)
c906108c
SS
1786{
1787 struct symtab_and_line sal;
1788 CORE_ADDR func_addr, func_end;
c906108c 1789
7be570e7
JM
1790 /* If we can not find the symbol in the partial symbol table, then
1791 there is no hope we can determine the function's start address
1792 with this code. */
c906108c 1793 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1794 return 0;
c906108c 1795
7be570e7 1796 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1797 sal = find_pc_line (func_addr, 0);
1798
7be570e7
JM
1799 /* There are only two cases to consider. First, the end of the source line
1800 is within the function bounds. In that case we return the end of the
1801 source line. Second is the end of the source line extends beyond the
1802 bounds of the current function. We need to use the slow code to
1777feb0 1803 examine instructions in that case.
c906108c 1804
7be570e7
JM
1805 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1806 the wrong thing to do. In fact, it should be entirely possible for this
1807 function to always return zero since the slow instruction scanning code
1808 is supposed to *always* work. If it does not, then it is a bug. */
1809 if (sal.end < func_end)
1810 return sal.end;
c5aa993b 1811 else
7be570e7 1812 return 0;
c906108c
SS
1813}
1814
1815/* To skip prologues, I use this predicate. Returns either PC itself
1816 if the code at PC does not look like a function prologue; otherwise
1777feb0 1817 returns an address that (if we're lucky) follows the prologue.
a71f8c30
RC
1818
1819 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1777feb0 1820 It doesn't necessarily skips all the insns in the prologue. In fact
a71f8c30
RC
1821 we might not want to skip all the insns because a prologue insn may
1822 appear in the delay slot of the first branch, and we don't want to
1823 skip over the branch in that case. */
c906108c 1824
8d153463 1825static CORE_ADDR
6093d2eb 1826hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1827{
c5aa993b 1828 CORE_ADDR post_prologue_pc;
c906108c 1829
c5aa993b
JM
1830 /* See if we can determine the end of the prologue via the symbol table.
1831 If so, then return either PC, or the PC after the prologue, whichever
1832 is greater. */
c906108c 1833
c5aa993b 1834 post_prologue_pc = after_prologue (pc);
c906108c 1835
7be570e7
JM
1836 /* If after_prologue returned a useful address, then use it. Else
1837 fall back on the instruction skipping code.
1838
1839 Some folks have claimed this causes problems because the breakpoint
1840 may be the first instruction of the prologue. If that happens, then
1841 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b 1842 if (post_prologue_pc != 0)
325fac50 1843 return std::max (pc, post_prologue_pc);
c5aa993b 1844 else
be8626e0 1845 return (skip_prologue_hard_way (gdbarch, pc, 1));
c906108c
SS
1846}
1847
29d375ac 1848/* Return an unwind entry that falls within the frame's code block. */
227e86ad 1849
29d375ac 1850static struct unwind_table_entry *
227e86ad 1851hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
29d375ac 1852{
227e86ad 1853 CORE_ADDR pc = get_frame_address_in_block (this_frame);
93d42b30
DJ
1854
1855 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
ad1193e7 1856 result of get_frame_address_in_block implies a problem.
93d42b30 1857 The bits should have been removed earlier, before the return
c7ce8faa 1858 value of gdbarch_unwind_pc. That might be happening already;
93d42b30
DJ
1859 if it isn't, it should be fixed. Then this call can be
1860 removed. */
227e86ad 1861 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
29d375ac
RC
1862 return find_unwind_entry (pc);
1863}
1864
26d08f08
AC
1865struct hppa_frame_cache
1866{
1867 CORE_ADDR base;
1868 struct trad_frame_saved_reg *saved_regs;
1869};
1870
1871static struct hppa_frame_cache *
227e86ad 1872hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
26d08f08 1873{
227e86ad 1874 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1876 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
26d08f08
AC
1877 struct hppa_frame_cache *cache;
1878 long saved_gr_mask;
1879 long saved_fr_mask;
26d08f08
AC
1880 long frame_size;
1881 struct unwind_table_entry *u;
9f7194c3 1882 CORE_ADDR prologue_end;
50b2f48a 1883 int fp_in_r1 = 0;
26d08f08
AC
1884 int i;
1885
369aa520
RC
1886 if (hppa_debug)
1887 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
227e86ad 1888 frame_relative_level(this_frame));
369aa520 1889
26d08f08 1890 if ((*this_cache) != NULL)
369aa520
RC
1891 {
1892 if (hppa_debug)
5af949e3
UW
1893 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1894 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 1895 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1896 }
26d08f08
AC
1897 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1898 (*this_cache) = cache;
227e86ad 1899 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
26d08f08
AC
1900
1901 /* Yow! */
227e86ad 1902 u = hppa_find_unwind_entry_in_block (this_frame);
26d08f08 1903 if (!u)
369aa520
RC
1904 {
1905 if (hppa_debug)
1906 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
9a3c8263 1907 return (struct hppa_frame_cache *) (*this_cache);
369aa520 1908 }
26d08f08
AC
1909
1910 /* Turn the Entry_GR field into a bitmask. */
1911 saved_gr_mask = 0;
1912 for (i = 3; i < u->Entry_GR + 3; i++)
1913 {
1914 /* Frame pointer gets saved into a special location. */
eded0a31 1915 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1916 continue;
1917
1918 saved_gr_mask |= (1 << i);
1919 }
1920
1921 /* Turn the Entry_FR field into a bitmask too. */
1922 saved_fr_mask = 0;
1923 for (i = 12; i < u->Entry_FR + 12; i++)
1924 saved_fr_mask |= (1 << i);
1925
1926 /* Loop until we find everything of interest or hit a branch.
1927
1928 For unoptimized GCC code and for any HP CC code this will never ever
1929 examine any user instructions.
1930
1931 For optimized GCC code we're faced with problems. GCC will schedule
1932 its prologue and make prologue instructions available for delay slot
1933 filling. The end result is user code gets mixed in with the prologue
1934 and a prologue instruction may be in the delay slot of the first branch
1935 or call.
1936
1937 Some unexpected things are expected with debugging optimized code, so
1938 we allow this routine to walk past user instructions in optimized
1939 GCC code. */
1940 {
1941 int final_iteration = 0;
46acf081 1942 CORE_ADDR pc, start_pc, end_pc;
26d08f08
AC
1943 int looking_for_sp = u->Save_SP;
1944 int looking_for_rp = u->Save_RP;
1945 int fp_loc = -1;
9f7194c3 1946
a71f8c30 1947 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1948 skip_prologue_using_sal, in case we stepped into a function without
1949 symbol information. hppa_skip_prologue also bounds the returned
1950 pc by the passed in pc, so it will not return a pc in the next
1777feb0 1951 function.
a71f8c30
RC
1952
1953 We used to call hppa_skip_prologue to find the end of the prologue,
1954 but if some non-prologue instructions get scheduled into the prologue,
1955 and the program is compiled with debug information, the "easy" way
1956 in hppa_skip_prologue will return a prologue end that is too early
1957 for us to notice any potential frame adjustments. */
d5c27f81 1958
ef02daa9
DJ
1959 /* We used to use get_frame_func to locate the beginning of the
1960 function to pass to skip_prologue. However, when objects are
1961 compiled without debug symbols, get_frame_func can return the wrong
1777feb0 1962 function (or 0). We can do better than that by using unwind records.
46acf081 1963 This only works if the Region_description of the unwind record
1777feb0 1964 indicates that it includes the entry point of the function.
46acf081
RC
1965 HP compilers sometimes generate unwind records for regions that
1966 do not include the entry or exit point of a function. GNU tools
1967 do not do this. */
1968
1969 if ((u->Region_description & 0x2) == 0)
1970 start_pc = u->region_start;
1971 else
227e86ad 1972 start_pc = get_frame_func (this_frame);
d5c27f81 1973
be8626e0 1974 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
227e86ad 1975 end_pc = get_frame_pc (this_frame);
9f7194c3
RC
1976
1977 if (prologue_end != 0 && end_pc > prologue_end)
1978 end_pc = prologue_end;
1979
26d08f08 1980 frame_size = 0;
9f7194c3 1981
46acf081 1982 for (pc = start_pc;
26d08f08
AC
1983 ((saved_gr_mask || saved_fr_mask
1984 || looking_for_sp || looking_for_rp
1985 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1986 && pc < end_pc);
26d08f08
AC
1987 pc += 4)
1988 {
1989 int reg;
e362b510 1990 gdb_byte buf4[4];
4a302917
RC
1991 long inst;
1992
227e86ad 1993 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
4a302917 1994 {
5af949e3
UW
1995 error (_("Cannot read instruction at %s."),
1996 paddress (gdbarch, pc));
9a3c8263 1997 return (struct hppa_frame_cache *) (*this_cache);
4a302917
RC
1998 }
1999
e17a4113 2000 inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);
9f7194c3 2001
26d08f08
AC
2002 /* Note the interesting effects of this instruction. */
2003 frame_size += prologue_inst_adjust_sp (inst);
2004
2005 /* There are limited ways to store the return pointer into the
2006 stack. */
2007 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2008 {
2009 looking_for_rp = 0;
34f75cc1 2010 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 2011 }
dfaf8edb
MK
2012 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
2013 {
2014 looking_for_rp = 0;
2015 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
2016 }
c4c79048
RC
2017 else if (inst == 0x0fc212c1
2018 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
26d08f08
AC
2019 {
2020 looking_for_rp = 0;
34f75cc1 2021 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
2022 }
2023
2024 /* Check to see if we saved SP into the stack. This also
2025 happens to indicate the location of the saved frame
2026 pointer. */
2027 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
2028 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
2029 {
2030 looking_for_sp = 0;
eded0a31 2031 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 2032 }
50b2f48a
RC
2033 else if (inst == 0x08030241) /* copy %r3, %r1 */
2034 {
2035 fp_in_r1 = 1;
2036 }
26d08f08
AC
2037
2038 /* Account for general and floating-point register saves. */
2039 reg = inst_saves_gr (inst);
2040 if (reg >= 3 && reg <= 18
eded0a31 2041 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
2042 {
2043 saved_gr_mask &= ~(1 << reg);
abc485a1 2044 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
2045 /* stwm with a positive displacement is a _post_
2046 _modify_. */
2047 cache->saved_regs[reg].addr = 0;
2048 else if ((inst & 0xfc00000c) == 0x70000008)
2049 /* A std has explicit post_modify forms. */
2050 cache->saved_regs[reg].addr = 0;
2051 else
2052 {
2053 CORE_ADDR offset;
2054
2055 if ((inst >> 26) == 0x1c)
66c6502d 2056 offset = (inst & 0x1 ? -(1 << 13) : 0)
1777feb0 2057 | (((inst >> 4) & 0x3ff) << 3);
26d08f08 2058 else if ((inst >> 26) == 0x03)
abc485a1 2059 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 2060 else
abc485a1 2061 offset = hppa_extract_14 (inst);
26d08f08
AC
2062
2063 /* Handle code with and without frame pointers. */
2064 if (u->Save_SP)
2065 cache->saved_regs[reg].addr = offset;
2066 else
1777feb0
MS
2067 cache->saved_regs[reg].addr
2068 = (u->Total_frame_size << 3) + offset;
26d08f08
AC
2069 }
2070 }
2071
2072 /* GCC handles callee saved FP regs a little differently.
2073
2074 It emits an instruction to put the value of the start of
2075 the FP store area into %r1. It then uses fstds,ma with a
2076 basereg of %r1 for the stores.
2077
2078 HP CC emits them at the current stack pointer modifying the
2079 stack pointer as it stores each register. */
2080
2081 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2082 if ((inst & 0xffffc000) == 0x34610000
2083 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 2084 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
2085
2086 reg = inst_saves_fr (inst);
2087 if (reg >= 12 && reg <= 21)
2088 {
2089 /* Note +4 braindamage below is necessary because the FP
2090 status registers are internally 8 registers rather than
2091 the expected 4 registers. */
2092 saved_fr_mask &= ~(1 << reg);
2093 if (fp_loc == -1)
2094 {
2095 /* 1st HP CC FP register store. After this
2096 instruction we've set enough state that the GCC and
2097 HPCC code are both handled in the same manner. */
34f75cc1 2098 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
2099 fp_loc = 8;
2100 }
2101 else
2102 {
eded0a31 2103 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
2104 fp_loc += 8;
2105 }
2106 }
2107
1777feb0 2108 /* Quit if we hit any kind of branch the previous iteration. */
26d08f08
AC
2109 if (final_iteration)
2110 break;
2111 /* We want to look precisely one instruction beyond the branch
2112 if we have not found everything yet. */
2113 if (is_branch (inst))
2114 final_iteration = 1;
2115 }
2116 }
2117
2118 {
2119 /* The frame base always represents the value of %sp at entry to
2120 the current function (and is thus equivalent to the "saved"
2121 stack pointer. */
227e86ad
JB
2122 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2123 HPPA_SP_REGNUM);
ed70ba00 2124 CORE_ADDR fp;
9f7194c3
RC
2125
2126 if (hppa_debug)
5af949e3
UW
2127 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2128 "prologue_end=%s) ",
2129 paddress (gdbarch, this_sp),
2130 paddress (gdbarch, get_frame_pc (this_frame)),
2131 paddress (gdbarch, prologue_end));
9f7194c3 2132
ed70ba00
RC
2133 /* Check to see if a frame pointer is available, and use it for
2134 frame unwinding if it is.
2135
2136 There are some situations where we need to rely on the frame
2137 pointer to do stack unwinding. For example, if a function calls
2138 alloca (), the stack pointer can get adjusted inside the body of
2139 the function. In this case, the ABI requires that the compiler
2140 maintain a frame pointer for the function.
2141
2142 The unwind record has a flag (alloca_frame) that indicates that
2143 a function has a variable frame; unfortunately, gcc/binutils
2144 does not set this flag. Instead, whenever a frame pointer is used
2145 and saved on the stack, the Save_SP flag is set. We use this to
2146 decide whether to use the frame pointer for unwinding.
2147
ed70ba00
RC
2148 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2149 instead of Save_SP. */
2150
227e86ad 2151 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
46acf081 2152
6fcecea0 2153 if (u->alloca_frame)
46acf081 2154 fp -= u->Total_frame_size << 3;
ed70ba00 2155
227e86ad 2156 if (get_frame_pc (this_frame) >= prologue_end
6fcecea0 2157 && (u->Save_SP || u->alloca_frame) && fp != 0)
ed70ba00
RC
2158 {
2159 cache->base = fp;
2160
2161 if (hppa_debug)
5af949e3
UW
2162 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2163 paddress (gdbarch, cache->base));
ed70ba00 2164 }
1658da49
RC
2165 else if (u->Save_SP
2166 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 2167 {
9f7194c3
RC
2168 /* Both we're expecting the SP to be saved and the SP has been
2169 saved. The entry SP value is saved at this frame's SP
2170 address. */
e17a4113 2171 cache->base = read_memory_integer (this_sp, word_size, byte_order);
9f7194c3
RC
2172
2173 if (hppa_debug)
5af949e3
UW
2174 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2175 paddress (gdbarch, cache->base));
9f7194c3 2176 }
26d08f08 2177 else
9f7194c3 2178 {
1658da49
RC
2179 /* The prologue has been slowly allocating stack space. Adjust
2180 the SP back. */
2181 cache->base = this_sp - frame_size;
9f7194c3 2182 if (hppa_debug)
5af949e3
UW
2183 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2184 paddress (gdbarch, cache->base));
9f7194c3
RC
2185
2186 }
eded0a31 2187 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
2188 }
2189
412275d5
AC
2190 /* The PC is found in the "return register", "Millicode" uses "r31"
2191 as the return register while normal code uses "rp". */
26d08f08 2192 if (u->Millicode)
9f7194c3 2193 {
5859efe5 2194 if (trad_frame_addr_p (cache->saved_regs, 31))
9ed5ba24
RC
2195 {
2196 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2197 if (hppa_debug)
2198 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2199 }
9f7194c3
RC
2200 else
2201 {
227e86ad 2202 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
34f75cc1 2203 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9ed5ba24
RC
2204 if (hppa_debug)
2205 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
9f7194c3
RC
2206 }
2207 }
26d08f08 2208 else
9f7194c3 2209 {
34f75cc1 2210 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
9ed5ba24
RC
2211 {
2212 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2213 cache->saved_regs[HPPA_RP_REGNUM];
2214 if (hppa_debug)
2215 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2216 }
9f7194c3
RC
2217 else
2218 {
227e86ad
JB
2219 ULONGEST rp = get_frame_register_unsigned (this_frame,
2220 HPPA_RP_REGNUM);
34f75cc1 2221 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9ed5ba24
RC
2222 if (hppa_debug)
2223 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
9f7194c3
RC
2224 }
2225 }
26d08f08 2226
50b2f48a
RC
2227 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2228 frame. However, there is a one-insn window where we haven't saved it
2229 yet, but we've already clobbered it. Detect this case and fix it up.
2230
2231 The prologue sequence for frame-pointer functions is:
2232 0: stw %rp, -20(%sp)
2233 4: copy %r3, %r1
2234 8: copy %sp, %r3
2235 c: stw,ma %r1, XX(%sp)
2236
2237 So if we are at offset c, the r3 value that we want is not yet saved
2238 on the stack, but it's been overwritten. The prologue analyzer will
2239 set fp_in_r1 when it sees the copy insn so we know to get the value
2240 from r1 instead. */
2241 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2242 && fp_in_r1)
2243 {
227e86ad 2244 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
50b2f48a
RC
2245 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2246 }
1658da49 2247
26d08f08
AC
2248 {
2249 /* Convert all the offsets into addresses. */
2250 int reg;
65c5db89 2251 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
26d08f08
AC
2252 {
2253 if (trad_frame_addr_p (cache->saved_regs, reg))
2254 cache->saved_regs[reg].addr += cache->base;
2255 }
2256 }
2257
f77a2124 2258 {
f77a2124
RC
2259 struct gdbarch_tdep *tdep;
2260
f77a2124
RC
2261 tdep = gdbarch_tdep (gdbarch);
2262
2263 if (tdep->unwind_adjust_stub)
227e86ad 2264 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
f77a2124
RC
2265 }
2266
369aa520 2267 if (hppa_debug)
5af949e3
UW
2268 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2269 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
9a3c8263 2270 return (struct hppa_frame_cache *) (*this_cache);
26d08f08
AC
2271}
2272
2273static void
227e86ad
JB
2274hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2275 struct frame_id *this_id)
26d08f08 2276{
d5c27f81 2277 struct hppa_frame_cache *info;
d5c27f81
RC
2278 struct unwind_table_entry *u;
2279
227e86ad
JB
2280 info = hppa_frame_cache (this_frame, this_cache);
2281 u = hppa_find_unwind_entry_in_block (this_frame);
d5c27f81
RC
2282
2283 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
2284}
2285
227e86ad
JB
2286static struct value *
2287hppa_frame_prev_register (struct frame_info *this_frame,
2288 void **this_cache, int regnum)
26d08f08 2289{
227e86ad
JB
2290 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2291
1777feb0
MS
2292 return hppa_frame_prev_register_helper (this_frame,
2293 info->saved_regs, regnum);
227e86ad
JB
2294}
2295
2296static int
2297hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2298 struct frame_info *this_frame, void **this_cache)
2299{
2300 if (hppa_find_unwind_entry_in_block (this_frame))
2301 return 1;
2302
2303 return 0;
0da28f8a
RC
2304}
2305
2306static const struct frame_unwind hppa_frame_unwind =
2307{
2308 NORMAL_FRAME,
8fbca658 2309 default_frame_unwind_stop_reason,
0da28f8a 2310 hppa_frame_this_id,
227e86ad
JB
2311 hppa_frame_prev_register,
2312 NULL,
2313 hppa_frame_unwind_sniffer
0da28f8a
RC
2314};
2315
0da28f8a
RC
2316/* This is a generic fallback frame unwinder that kicks in if we fail all
2317 the other ones. Normally we would expect the stub and regular unwinder
2318 to work, but in some cases we might hit a function that just doesn't
2319 have any unwind information available. In this case we try to do
2320 unwinding solely based on code reading. This is obviously going to be
2321 slow, so only use this as a last resort. Currently this will only
2322 identify the stack and pc for the frame. */
2323
2324static struct hppa_frame_cache *
227e86ad 2325hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
0da28f8a 2326{
e17a4113
UW
2327 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0da28f8a 2329 struct hppa_frame_cache *cache;
4ba6a975
MK
2330 unsigned int frame_size = 0;
2331 int found_rp = 0;
2332 CORE_ADDR start_pc;
0da28f8a 2333
d5c27f81 2334 if (hppa_debug)
4ba6a975
MK
2335 fprintf_unfiltered (gdb_stdlog,
2336 "{ hppa_fallback_frame_cache (frame=%d) -> ",
227e86ad 2337 frame_relative_level (this_frame));
d5c27f81 2338
0da28f8a
RC
2339 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2340 (*this_cache) = cache;
227e86ad 2341 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
0da28f8a 2342
227e86ad 2343 start_pc = get_frame_func (this_frame);
4ba6a975 2344 if (start_pc)
0da28f8a 2345 {
227e86ad 2346 CORE_ADDR cur_pc = get_frame_pc (this_frame);
4ba6a975 2347 CORE_ADDR pc;
0da28f8a 2348
4ba6a975
MK
2349 for (pc = start_pc; pc < cur_pc; pc += 4)
2350 {
2351 unsigned int insn;
0da28f8a 2352
e17a4113 2353 insn = read_memory_unsigned_integer (pc, 4, byte_order);
4ba6a975 2354 frame_size += prologue_inst_adjust_sp (insn);
6d1be3f1 2355
4ba6a975
MK
2356 /* There are limited ways to store the return pointer into the
2357 stack. */
2358 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2359 {
2360 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2361 found_rp = 1;
2362 }
c4c79048
RC
2363 else if (insn == 0x0fc212c1
2364 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
4ba6a975
MK
2365 {
2366 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2367 found_rp = 1;
2368 }
2369 }
412275d5 2370 }
0da28f8a 2371
d5c27f81 2372 if (hppa_debug)
4ba6a975
MK
2373 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2374 frame_size, found_rp);
d5c27f81 2375
227e86ad 2376 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
4ba6a975 2377 cache->base -= frame_size;
6d1be3f1 2378 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2379
2380 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2381 {
2382 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
4ba6a975
MK
2383 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2384 cache->saved_regs[HPPA_RP_REGNUM];
0da28f8a 2385 }
412275d5
AC
2386 else
2387 {
4ba6a975 2388 ULONGEST rp;
227e86ad 2389 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
0da28f8a 2390 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2391 }
0da28f8a
RC
2392
2393 return cache;
26d08f08
AC
2394}
2395
0da28f8a 2396static void
227e86ad 2397hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
0da28f8a
RC
2398 struct frame_id *this_id)
2399{
2400 struct hppa_frame_cache *info =
227e86ad
JB
2401 hppa_fallback_frame_cache (this_frame, this_cache);
2402
2403 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
0da28f8a
RC
2404}
2405
227e86ad
JB
2406static struct value *
2407hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2408 void **this_cache, int regnum)
0da28f8a 2409{
1777feb0
MS
2410 struct hppa_frame_cache *info
2411 = hppa_fallback_frame_cache (this_frame, this_cache);
227e86ad 2412
1777feb0
MS
2413 return hppa_frame_prev_register_helper (this_frame,
2414 info->saved_regs, regnum);
0da28f8a
RC
2415}
2416
2417static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2418{
2419 NORMAL_FRAME,
8fbca658 2420 default_frame_unwind_stop_reason,
0da28f8a 2421 hppa_fallback_frame_this_id,
227e86ad
JB
2422 hppa_fallback_frame_prev_register,
2423 NULL,
2424 default_frame_sniffer
26d08f08
AC
2425};
2426
7f07c5b6
RC
2427/* Stub frames, used for all kinds of call stubs. */
2428struct hppa_stub_unwind_cache
2429{
2430 CORE_ADDR base;
2431 struct trad_frame_saved_reg *saved_regs;
2432};
2433
2434static struct hppa_stub_unwind_cache *
227e86ad 2435hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
7f07c5b6
RC
2436 void **this_cache)
2437{
7f07c5b6
RC
2438 struct hppa_stub_unwind_cache *info;
2439
2440 if (*this_cache)
9a3c8263 2441 return (struct hppa_stub_unwind_cache *) *this_cache;
7f07c5b6
RC
2442
2443 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2444 *this_cache = info;
227e86ad 2445 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
7f07c5b6 2446
227e86ad 2447 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
7f07c5b6 2448
22b0923d
RC
2449 /* By default we assume that stubs do not change the rp. */
2450 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2451
7f07c5b6
RC
2452 return info;
2453}
2454
2455static void
227e86ad 2456hppa_stub_frame_this_id (struct frame_info *this_frame,
7f07c5b6
RC
2457 void **this_prologue_cache,
2458 struct frame_id *this_id)
2459{
2460 struct hppa_stub_unwind_cache *info
227e86ad 2461 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57
RC
2462
2463 if (info)
227e86ad 2464 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
7f07c5b6
RC
2465}
2466
227e86ad
JB
2467static struct value *
2468hppa_stub_frame_prev_register (struct frame_info *this_frame,
2469 void **this_prologue_cache, int regnum)
7f07c5b6
RC
2470{
2471 struct hppa_stub_unwind_cache *info
227e86ad 2472 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
f1b38a57 2473
227e86ad 2474 if (info == NULL)
8a3fe4f8 2475 error (_("Requesting registers from null frame."));
7f07c5b6 2476
1777feb0
MS
2477 return hppa_frame_prev_register_helper (this_frame,
2478 info->saved_regs, regnum);
227e86ad 2479}
7f07c5b6 2480
227e86ad
JB
2481static int
2482hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2483 struct frame_info *this_frame,
2484 void **this_cache)
7f07c5b6 2485{
227e86ad
JB
2486 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2487 struct gdbarch *gdbarch = get_frame_arch (this_frame);
84674fe1 2488 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2489
6d1be3f1 2490 if (pc == 0
84674fe1 2491 || (tdep->in_solib_call_trampoline != NULL
3e5d3a5a 2492 && tdep->in_solib_call_trampoline (gdbarch, pc))
464963c9 2493 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
227e86ad
JB
2494 return 1;
2495 return 0;
7f07c5b6
RC
2496}
2497
227e86ad
JB
2498static const struct frame_unwind hppa_stub_frame_unwind = {
2499 NORMAL_FRAME,
8fbca658 2500 default_frame_unwind_stop_reason,
227e86ad
JB
2501 hppa_stub_frame_this_id,
2502 hppa_stub_frame_prev_register,
2503 NULL,
2504 hppa_stub_unwind_sniffer
2505};
2506
26d08f08 2507static struct frame_id
227e86ad 2508hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
26d08f08 2509{
227e86ad
JB
2510 return frame_id_build (get_frame_register_unsigned (this_frame,
2511 HPPA_SP_REGNUM),
2512 get_frame_pc (this_frame));
26d08f08
AC
2513}
2514
cc72850f 2515CORE_ADDR
26d08f08
AC
2516hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2517{
fe46cd3a
RC
2518 ULONGEST ipsw;
2519 CORE_ADDR pc;
2520
cc72850f
MK
2521 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2522 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2523
2524 /* If the current instruction is nullified, then we are effectively
2525 still executing the previous instruction. Pretend we are still
cc72850f
MK
2526 there. This is needed when single stepping; if the nullified
2527 instruction is on a different line, we don't want GDB to think
2528 we've stepped onto that line. */
fe46cd3a
RC
2529 if (ipsw & 0x00200000)
2530 pc -= 4;
2531
cc72850f 2532 return pc & ~0x3;
26d08f08
AC
2533}
2534
ff644745
JB
2535/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2536 Return NULL if no such symbol was found. */
2537
3b7344d5 2538struct bound_minimal_symbol
ff644745
JB
2539hppa_lookup_stub_minimal_symbol (const char *name,
2540 enum unwind_stub_types stub_type)
2541{
2542 struct objfile *objfile;
2543 struct minimal_symbol *msym;
3b7344d5 2544 struct bound_minimal_symbol result = { NULL, NULL };
ff644745
JB
2545
2546 ALL_MSYMBOLS (objfile, msym)
2547 {
efd66ac6 2548 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
ff644745
JB
2549 {
2550 struct unwind_table_entry *u;
2551
efd66ac6 2552 u = find_unwind_entry (MSYMBOL_VALUE (msym));
ff644745 2553 if (u != NULL && u->stub_unwind.stub_type == stub_type)
3b7344d5
TT
2554 {
2555 result.objfile = objfile;
2556 result.minsym = msym;
2557 return result;
2558 }
ff644745
JB
2559 }
2560 }
2561
3b7344d5 2562 return result;
ff644745
JB
2563}
2564
c906108c 2565static void
c482f52c 2566unwind_command (const char *exp, int from_tty)
c906108c
SS
2567{
2568 CORE_ADDR address;
2569 struct unwind_table_entry *u;
2570
2571 /* If we have an expression, evaluate it and use it as the address. */
2572
2573 if (exp != 0 && *exp != 0)
2574 address = parse_and_eval_address (exp);
2575 else
2576 return;
2577
2578 u = find_unwind_entry (address);
2579
2580 if (!u)
2581 {
2582 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2583 return;
2584 }
2585
3329c4b5 2586 printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u));
c906108c 2587
5af949e3 2588 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
d5c27f81 2589 gdb_flush (gdb_stdout);
c906108c 2590
5af949e3 2591 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
d5c27f81 2592 gdb_flush (gdb_stdout);
c906108c 2593
c906108c 2594#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2595
2596 printf_unfiltered ("\n\tflags =");
2597 pif (Cannot_unwind);
2598 pif (Millicode);
2599 pif (Millicode_save_sr0);
2600 pif (Entry_SR);
2601 pif (Args_stored);
2602 pif (Variable_Frame);
2603 pif (Separate_Package_Body);
2604 pif (Frame_Extension_Millicode);
2605 pif (Stack_Overflow_Check);
2606 pif (Two_Instruction_SP_Increment);
6fcecea0
RC
2607 pif (sr4export);
2608 pif (cxx_info);
2609 pif (cxx_try_catch);
2610 pif (sched_entry_seq);
c906108c
SS
2611 pif (Save_SP);
2612 pif (Save_RP);
2613 pif (Save_MRP_in_frame);
6fcecea0 2614 pif (save_r19);
c906108c
SS
2615 pif (Cleanup_defined);
2616 pif (MPE_XL_interrupt_marker);
2617 pif (HP_UX_interrupt_marker);
2618 pif (Large_frame);
6fcecea0 2619 pif (alloca_frame);
c906108c
SS
2620
2621 putchar_unfiltered ('\n');
2622
c906108c 2623#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2624
2625 pin (Region_description);
2626 pin (Entry_FR);
2627 pin (Entry_GR);
2628 pin (Total_frame_size);
57dac9e1
RC
2629
2630 if (u->stub_unwind.stub_type)
2631 {
2632 printf_unfiltered ("\tstub type = ");
2633 switch (u->stub_unwind.stub_type)
2634 {
2635 case LONG_BRANCH:
2636 printf_unfiltered ("long branch\n");
2637 break;
2638 case PARAMETER_RELOCATION:
2639 printf_unfiltered ("parameter relocation\n");
2640 break;
2641 case EXPORT:
2642 printf_unfiltered ("export\n");
2643 break;
2644 case IMPORT:
2645 printf_unfiltered ("import\n");
2646 break;
2647 case IMPORT_SHLIB:
2648 printf_unfiltered ("import shlib\n");
2649 break;
2650 default:
2651 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2652 }
2653 }
c906108c 2654}
c906108c 2655
38ca4e0c
MK
2656/* Return the GDB type object for the "standard" data type of data in
2657 register REGNUM. */
d709c020 2658
eded0a31 2659static struct type *
38ca4e0c 2660hppa32_register_type (struct gdbarch *gdbarch, int regnum)
d709c020 2661{
38ca4e0c 2662 if (regnum < HPPA_FP4_REGNUM)
df4df182 2663 return builtin_type (gdbarch)->builtin_uint32;
d709c020 2664 else
27067745 2665 return builtin_type (gdbarch)->builtin_float;
d709c020
JB
2666}
2667
eded0a31 2668static struct type *
38ca4e0c 2669hppa64_register_type (struct gdbarch *gdbarch, int regnum)
3ff7cf9e 2670{
38ca4e0c 2671 if (regnum < HPPA64_FP4_REGNUM)
df4df182 2672 return builtin_type (gdbarch)->builtin_uint64;
3ff7cf9e 2673 else
27067745 2674 return builtin_type (gdbarch)->builtin_double;
3ff7cf9e
JB
2675}
2676
38ca4e0c
MK
2677/* Return non-zero if REGNUM is not a register available to the user
2678 through ptrace/ttrace. */
d709c020 2679
8d153463 2680static int
64a3914f 2681hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
d709c020
JB
2682{
2683 return (regnum == 0
34f75cc1
RC
2684 || regnum == HPPA_PCSQ_HEAD_REGNUM
2685 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2686 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
38ca4e0c 2687}
d709c020 2688
d037d088 2689static int
64a3914f 2690hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2691{
2692 /* cr26 and cr27 are readable (but not writable) from userspace. */
2693 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2694 return 0;
2695 else
64a3914f 2696 return hppa32_cannot_store_register (gdbarch, regnum);
d037d088
CD
2697}
2698
38ca4e0c 2699static int
64a3914f 2700hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
38ca4e0c
MK
2701{
2702 return (regnum == 0
2703 || regnum == HPPA_PCSQ_HEAD_REGNUM
2704 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2705 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
d709c020
JB
2706}
2707
d037d088 2708static int
64a3914f 2709hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
d037d088
CD
2710{
2711 /* cr26 and cr27 are readable (but not writable) from userspace. */
2712 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2713 return 0;
2714 else
64a3914f 2715 return hppa64_cannot_store_register (gdbarch, regnum);
d037d088
CD
2716}
2717
8d153463 2718static CORE_ADDR
85ddcc70 2719hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
d709c020
JB
2720{
2721 /* The low two bits of the PC on the PA contain the privilege level.
2722 Some genius implementing a (non-GCC) compiler apparently decided
2723 this means that "addresses" in a text section therefore include a
2724 privilege level, and thus symbol tables should contain these bits.
2725 This seems like a bonehead thing to do--anyway, it seems to work
2726 for our purposes to just ignore those bits. */
2727
2728 return (addr &= ~0x3);
2729}
2730
e127f0db
MK
2731/* Get the ARGIth function argument for the current function. */
2732
4a302917 2733static CORE_ADDR
143985b7
AF
2734hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2735 struct type *type)
2736{
e127f0db 2737 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
143985b7
AF
2738}
2739
05d1431c 2740static enum register_status
849d0ba8 2741hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
e127f0db 2742 int regnum, gdb_byte *buf)
0f8d9d59 2743{
05d1431c
PA
2744 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2745 ULONGEST tmp;
2746 enum register_status status;
0f8d9d59 2747
03f50fc8 2748 status = regcache->raw_read (regnum, &tmp);
05d1431c
PA
2749 if (status == REG_VALID)
2750 {
2751 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2752 tmp &= ~0x3;
2753 store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
2754 }
2755 return status;
0f8d9d59
RC
2756}
2757
d49771ef 2758static CORE_ADDR
e38c262f 2759hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
d49771ef
RC
2760{
2761 return 0;
2762}
2763
227e86ad
JB
2764struct value *
2765hppa_frame_prev_register_helper (struct frame_info *this_frame,
0da28f8a 2766 struct trad_frame_saved_reg saved_regs[],
227e86ad 2767 int regnum)
0da28f8a 2768{
227e86ad 2769 struct gdbarch *arch = get_frame_arch (this_frame);
e17a4113 2770 enum bfd_endian byte_order = gdbarch_byte_order (arch);
8f4e467c 2771
8693c419
MK
2772 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2773 {
227e86ad
JB
2774 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2775 CORE_ADDR pc;
2776 struct value *pcoq_val =
2777 trad_frame_get_prev_register (this_frame, saved_regs,
2778 HPPA_PCOQ_HEAD_REGNUM);
8693c419 2779
e17a4113
UW
2780 pc = extract_unsigned_integer (value_contents_all (pcoq_val),
2781 size, byte_order);
227e86ad 2782 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
8693c419 2783 }
0da28f8a 2784
227e86ad 2785 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
0da28f8a 2786}
8693c419 2787\f
0da28f8a 2788
34f55018
MK
2789/* An instruction to match. */
2790struct insn_pattern
2791{
2792 unsigned int data; /* See if it matches this.... */
2793 unsigned int mask; /* ... with this mask. */
2794};
2795
2796/* See bfd/elf32-hppa.c */
2797static struct insn_pattern hppa_long_branch_stub[] = {
2798 /* ldil LR'xxx,%r1 */
2799 { 0x20200000, 0xffe00000 },
2800 /* be,n RR'xxx(%sr4,%r1) */
2801 { 0xe0202002, 0xffe02002 },
2802 { 0, 0 }
2803};
2804
2805static struct insn_pattern hppa_long_branch_pic_stub[] = {
2806 /* b,l .+8, %r1 */
2807 { 0xe8200000, 0xffe00000 },
2808 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2809 { 0x28200000, 0xffe00000 },
2810 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2811 { 0xe0202002, 0xffe02002 },
2812 { 0, 0 }
2813};
2814
2815static struct insn_pattern hppa_import_stub[] = {
2816 /* addil LR'xxx, %dp */
2817 { 0x2b600000, 0xffe00000 },
2818 /* ldw RR'xxx(%r1), %r21 */
2819 { 0x48350000, 0xffffb000 },
2820 /* bv %r0(%r21) */
2821 { 0xeaa0c000, 0xffffffff },
2822 /* ldw RR'xxx+4(%r1), %r19 */
2823 { 0x48330000, 0xffffb000 },
2824 { 0, 0 }
2825};
2826
2827static struct insn_pattern hppa_import_pic_stub[] = {
2828 /* addil LR'xxx,%r19 */
2829 { 0x2a600000, 0xffe00000 },
2830 /* ldw RR'xxx(%r1),%r21 */
2831 { 0x48350000, 0xffffb000 },
2832 /* bv %r0(%r21) */
2833 { 0xeaa0c000, 0xffffffff },
2834 /* ldw RR'xxx+4(%r1),%r19 */
2835 { 0x48330000, 0xffffb000 },
2836 { 0, 0 },
2837};
2838
2839static struct insn_pattern hppa_plt_stub[] = {
2840 /* b,l 1b, %r20 - 1b is 3 insns before here */
2841 { 0xea9f1fdd, 0xffffffff },
2842 /* depi 0,31,2,%r20 */
2843 { 0xd6801c1e, 0xffffffff },
2844 { 0, 0 }
34f55018
MK
2845};
2846
2847/* Maximum number of instructions on the patterns above. */
2848#define HPPA_MAX_INSN_PATTERN_LEN 4
2849
2850/* Return non-zero if the instructions at PC match the series
2851 described in PATTERN, or zero otherwise. PATTERN is an array of
2852 'struct insn_pattern' objects, terminated by an entry whose mask is
2853 zero.
2854
2855 When the match is successful, fill INSN[i] with what PATTERN[i]
2856 matched. */
2857
2858static int
e17a4113
UW
2859hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
2860 struct insn_pattern *pattern, unsigned int *insn)
34f55018 2861{
e17a4113 2862 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
34f55018
MK
2863 CORE_ADDR npc = pc;
2864 int i;
2865
2866 for (i = 0; pattern[i].mask; i++)
2867 {
2868 gdb_byte buf[HPPA_INSN_SIZE];
2869
8defab1a 2870 target_read_memory (npc, buf, HPPA_INSN_SIZE);
e17a4113 2871 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
34f55018
MK
2872 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2873 npc += 4;
2874 else
2875 return 0;
2876 }
2877
2878 return 1;
2879}
2880
2881/* This relaxed version of the insstruction matcher allows us to match
2882 from somewhere inside the pattern, by looking backwards in the
2883 instruction scheme. */
2884
2885static int
e17a4113
UW
2886hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
2887 struct insn_pattern *pattern, unsigned int *insn)
34f55018
MK
2888{
2889 int offset, len = 0;
2890
2891 while (pattern[len].mask)
2892 len++;
2893
2894 for (offset = 0; offset < len; offset++)
e17a4113
UW
2895 if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
2896 pattern, insn))
34f55018
MK
2897 return 1;
2898
2899 return 0;
2900}
2901
2902static int
2903hppa_in_dyncall (CORE_ADDR pc)
2904{
2905 struct unwind_table_entry *u;
2906
2907 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2908 if (!u)
2909 return 0;
2910
2911 return (pc >= u->region_start && pc <= u->region_end);
2912}
2913
2914int
3e5d3a5a 2915hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
34f55018
MK
2916{
2917 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2918 struct unwind_table_entry *u;
2919
3e5d3a5a 2920 if (in_plt_section (pc) || hppa_in_dyncall (pc))
34f55018
MK
2921 return 1;
2922
2923 /* The GNU toolchain produces linker stubs without unwind
2924 information. Since the pattern matching for linker stubs can be
2925 quite slow, so bail out if we do have an unwind entry. */
2926
2927 u = find_unwind_entry (pc);
806e23c0 2928 if (u != NULL)
34f55018
MK
2929 return 0;
2930
e17a4113
UW
2931 return
2932 (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
2933 || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
2934 || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
2935 || hppa_match_insns_relaxed (gdbarch, pc,
2936 hppa_long_branch_pic_stub, insn));
34f55018
MK
2937}
2938
2939/* This code skips several kind of "trampolines" used on PA-RISC
2940 systems: $$dyncall, import stubs and PLT stubs. */
2941
2942CORE_ADDR
52f729a7 2943hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
34f55018 2944{
0dfff4cb
UW
2945 struct gdbarch *gdbarch = get_frame_arch (frame);
2946 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2947
34f55018
MK
2948 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2949 int dp_rel;
2950
2951 /* $$dyncall handles both PLABELs and direct addresses. */
2952 if (hppa_in_dyncall (pc))
2953 {
52f729a7 2954 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
34f55018
MK
2955
2956 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2957 if (pc & 0x2)
0dfff4cb 2958 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
34f55018
MK
2959
2960 return pc;
2961 }
2962
e17a4113
UW
2963 dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
2964 if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
34f55018
MK
2965 {
2966 /* Extract the target address from the addil/ldw sequence. */
2967 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2968
2969 if (dp_rel)
52f729a7 2970 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
34f55018 2971 else
52f729a7 2972 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
34f55018
MK
2973
2974 /* fallthrough */
2975 }
2976
3e5d3a5a 2977 if (in_plt_section (pc))
34f55018 2978 {
0dfff4cb 2979 pc = read_memory_typed_address (pc, func_ptr_type);
34f55018
MK
2980
2981 /* If the PLT slot has not yet been resolved, the target will be
2982 the PLT stub. */
3e5d3a5a 2983 if (in_plt_section (pc))
34f55018
MK
2984 {
2985 /* Sanity check: are we pointing to the PLT stub? */
e17a4113 2986 if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
34f55018 2987 {
5af949e3
UW
2988 warning (_("Cannot resolve PLT stub at %s."),
2989 paddress (gdbarch, pc));
34f55018
MK
2990 return 0;
2991 }
2992
2993 /* This should point to the fixup routine. */
0dfff4cb 2994 pc = read_memory_typed_address (pc + 8, func_ptr_type);
34f55018
MK
2995 }
2996 }
2997
2998 return pc;
2999}
3000\f
3001
8e8b2dba
MC
3002/* Here is a table of C type sizes on hppa with various compiles
3003 and options. I measured this on PA 9000/800 with HP-UX 11.11
3004 and these compilers:
3005
3006 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3007 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3008 /opt/aCC/bin/aCC B3910B A.03.45
3009 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3010
3011 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3012 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3013 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3014 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3015 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3016 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3017 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3018 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3019
3020 Each line is:
3021
3022 compiler and options
3023 char, short, int, long, long long
3024 float, double, long double
3025 char *, void (*)()
3026
3027 So all these compilers use either ILP32 or LP64 model.
3028 TODO: gcc has more options so it needs more investigation.
3029
a2379359
MC
3030 For floating point types, see:
3031
3032 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3033 HP-UX floating-point guide, hpux 11.00
3034
8e8b2dba
MC
3035 -- chastain 2003-12-18 */
3036
e6e68f1f
JB
3037static struct gdbarch *
3038hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3039{
3ff7cf9e 3040 struct gdbarch_tdep *tdep;
e6e68f1f
JB
3041 struct gdbarch *gdbarch;
3042
3043 /* find a candidate among the list of pre-declared architectures. */
3044 arches = gdbarch_list_lookup_by_info (arches, &info);
3045 if (arches != NULL)
3046 return (arches->gdbarch);
3047
3048 /* If none found, then allocate and initialize one. */
41bf6aca 3049 tdep = XCNEW (struct gdbarch_tdep);
3ff7cf9e
JB
3050 gdbarch = gdbarch_alloc (&info, tdep);
3051
3052 /* Determine from the bfd_arch_info structure if we are dealing with
3053 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3054 then default to a 32bit machine. */
3055 if (info.bfd_arch_info != NULL)
3056 tdep->bytes_per_address =
3057 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3058 else
3059 tdep->bytes_per_address = 4;
3060
d49771ef
RC
3061 tdep->find_global_pointer = hppa_find_global_pointer;
3062
3ff7cf9e
JB
3063 /* Some parts of the gdbarch vector depend on whether we are running
3064 on a 32 bits or 64 bits target. */
3065 switch (tdep->bytes_per_address)
3066 {
3067 case 4:
3068 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3069 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 3070 set_gdbarch_register_type (gdbarch, hppa32_register_type);
38ca4e0c
MK
3071 set_gdbarch_cannot_store_register (gdbarch,
3072 hppa32_cannot_store_register);
3073 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3074 hppa32_cannot_fetch_register);
3ff7cf9e
JB
3075 break;
3076 case 8:
3077 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3078 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 3079 set_gdbarch_register_type (gdbarch, hppa64_register_type);
1ef7fcb5 3080 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
38ca4e0c
MK
3081 set_gdbarch_cannot_store_register (gdbarch,
3082 hppa64_cannot_store_register);
3083 set_gdbarch_cannot_fetch_register (gdbarch,
d037d088 3084 hppa64_cannot_fetch_register);
3ff7cf9e
JB
3085 break;
3086 default:
e2e0b3e5 3087 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3ff7cf9e
JB
3088 tdep->bytes_per_address);
3089 }
3090
3ff7cf9e 3091 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 3092 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 3093
8e8b2dba
MC
3094 /* The following gdbarch vector elements are the same in both ILP32
3095 and LP64, but might show differences some day. */
3096 set_gdbarch_long_long_bit (gdbarch, 64);
3097 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 3098 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
8e8b2dba 3099
3ff7cf9e
JB
3100 /* The following gdbarch vector elements do not depend on the address
3101 size, or in any other gdbarch element previously set. */
60383d10 3102 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
c9cf6e20
MG
3103 set_gdbarch_stack_frame_destroyed_p (gdbarch,
3104 hppa_stack_frame_destroyed_p);
a2a84a72 3105 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
3106 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3107 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
85ddcc70 3108 set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
60383d10 3109 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
3110 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3111 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 3112
143985b7
AF
3113 /* Helper for function argument information. */
3114 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3115
3a3bc038
AC
3116 /* When a hardware watchpoint triggers, we'll move the inferior past
3117 it by removing all eventpoints; stepping past the instruction
3118 that caused the trigger; reinserting eventpoints; and checking
3119 whether any watched location changed. */
3120 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3121
5979bc46 3122 /* Inferior function call methods. */
fca7aa43 3123 switch (tdep->bytes_per_address)
5979bc46 3124 {
fca7aa43
AC
3125 case 4:
3126 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3127 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
3128 set_gdbarch_convert_from_func_ptr_addr
3129 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
3130 break;
3131 case 8:
782eae8b
AC
3132 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3133 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 3134 break;
782eae8b 3135 default:
e2e0b3e5 3136 internal_error (__FILE__, __LINE__, _("bad switch"));
fad850b2
AC
3137 }
3138
3139 /* Struct return methods. */
fca7aa43 3140 switch (tdep->bytes_per_address)
fad850b2 3141 {
fca7aa43
AC
3142 case 4:
3143 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3144 break;
3145 case 8:
782eae8b 3146 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 3147 break;
fca7aa43 3148 default:
e2e0b3e5 3149 internal_error (__FILE__, __LINE__, _("bad switch"));
e963316f 3150 }
7f07c5b6 3151
04180708
YQ
3152 set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
3153 set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
7f07c5b6 3154 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 3155
5979bc46 3156 /* Frame unwind methods. */
227e86ad 3157 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
782eae8b 3158 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 3159
50306a9d
RC
3160 /* Hook in ABI-specific overrides, if they have been registered. */
3161 gdbarch_init_osabi (info, gdbarch);
3162
7f07c5b6 3163 /* Hook in the default unwinders. */
227e86ad
JB
3164 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3165 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3166 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
5979bc46 3167
e6e68f1f
JB
3168 return gdbarch;
3169}
3170
3171static void
464963c9 3172hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
e6e68f1f 3173{
464963c9 3174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fdd72f95
RC
3175
3176 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3177 tdep->bytes_per_address);
3178 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
3179}
3180
4facf7e8
JB
3181void
3182_initialize_hppa_tdep (void)
3183{
e6e68f1f 3184 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 3185
7c46b9fb
RC
3186 hppa_objfile_priv_data = register_objfile_data ();
3187
4facf7e8 3188 add_cmd ("unwind", class_maintenance, unwind_command,
1a966eab 3189 _("Print unwind table entry at given address."),
4facf7e8
JB
3190 &maintenanceprintlist);
3191
1777feb0 3192 /* Debug this files internals. */
7915a72c
AC
3193 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3194Set whether hppa target specific debugging information should be displayed."),
3195 _("\
3196Show whether hppa target specific debugging information is displayed."), _("\
4a302917
RC
3197This flag controls whether hppa target specific debugging information is\n\
3198displayed. This information is particularly useful for debugging frame\n\
7915a72c 3199unwinding problems."),
2c5b56ce 3200 NULL,
7915a72c 3201 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2c5b56ce 3202 &setdebuglist, &showdebuglist);
4facf7e8 3203}
This page took 2.195442 seconds and 4 git commands to generate.