2004-07-20 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
CommitLineData
871fbe6a 1/* Target-dependent code for GNU/Linux i386.
ca557f44 2
871fbe6a 3 Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
e7ee86a9
JB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#include "defs.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "value.h"
4e052eda 26#include "regcache.h"
6441c4a0 27#include "inferior.h"
0670c0aa 28#include "osabi.h"
38c968cf 29#include "reggroups.h"
e7ee86a9 30
0670c0aa 31#include "gdb_string.h"
4be87837 32
8201327c
MK
33#include "i386-tdep.h"
34#include "i386-linux-tdep.h"
0670c0aa 35#include "glibc-tdep.h"
871fbe6a 36#include "solib-svr4.h"
8201327c 37
6441c4a0
MK
38/* Return the name of register REG. */
39
16775908 40static const char *
6441c4a0
MK
41i386_linux_register_name (int reg)
42{
43 /* Deal with the extra "orig_eax" pseudo register. */
44 if (reg == I386_LINUX_ORIG_EAX_REGNUM)
45 return "orig_eax";
46
47 return i386_register_name (reg);
48}
38c968cf
AC
49
50/* Return non-zero, when the register is in the corresponding register
51 group. Put the LINUX_ORIG_EAX register in the system group. */
52static int
53i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
54 struct reggroup *group)
55{
56 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
57 return (group == system_reggroup
58 || group == save_reggroup
59 || group == restore_reggroup);
60 return i386_register_reggroup_p (gdbarch, regnum, group);
61}
62
e7ee86a9
JB
63\f
64/* Recognizing signal handler frames. */
65
ca557f44 66/* GNU/Linux has two flavors of signals. Normal signal handlers, and
e7ee86a9
JB
67 "realtime" (RT) signals. The RT signals can provide additional
68 information to the signal handler if the SA_SIGINFO flag is set
69 when establishing a signal handler using `sigaction'. It is not
ca557f44
AC
70 unlikely that future versions of GNU/Linux will support SA_SIGINFO
71 for normal signals too. */
e7ee86a9
JB
72
73/* When the i386 Linux kernel calls a signal handler and the
74 SA_RESTORER flag isn't set, the return address points to a bit of
75 code on the stack. This function returns whether the PC appears to
76 be within this bit of code.
77
78 The instruction sequence for normal signals is
79 pop %eax
acd5c798 80 mov $0x77, %eax
e7ee86a9
JB
81 int $0x80
82 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
83
84 Checking for the code sequence should be somewhat reliable, because
85 the effect is to call the system call sigreturn. This is unlikely
911bc6ee 86 to occur anywhere other than in a signal trampoline.
e7ee86a9
JB
87
88 It kind of sucks that we have to read memory from the process in
89 order to identify a signal trampoline, but there doesn't seem to be
911bc6ee
MK
90 any other way. Therefore we only do the memory reads if no
91 function name could be identified, which should be the case since
92 the code is on the stack.
e7ee86a9
JB
93
94 Detection of signal trampolines for handlers that set the
95 SA_RESTORER flag is in general not possible. Unfortunately this is
96 what the GNU C Library has been doing for quite some time now.
97 However, as of version 2.1.2, the GNU C Library uses signal
98 trampolines (named __restore and __restore_rt) that are identical
99 to the ones used by the kernel. Therefore, these trampolines are
100 supported too. */
101
acd5c798
MK
102#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
103#define LINUX_SIGTRAMP_OFFSET0 0
104#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
105#define LINUX_SIGTRAMP_OFFSET1 1
106#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
107#define LINUX_SIGTRAMP_OFFSET2 6
e7ee86a9
JB
108
109static const unsigned char linux_sigtramp_code[] =
110{
111 LINUX_SIGTRAMP_INSN0, /* pop %eax */
acd5c798 112 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
e7ee86a9
JB
113 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
114};
115
116#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
117
118/* If PC is in a sigtramp routine, return the address of the start of
119 the routine. Otherwise, return 0. */
120
121static CORE_ADDR
122i386_linux_sigtramp_start (CORE_ADDR pc)
123{
124 unsigned char buf[LINUX_SIGTRAMP_LEN];
125
126 /* We only recognize a signal trampoline if PC is at the start of
127 one of the three instructions. We optimize for finding the PC at
128 the start, as will be the case when the trampoline is not the
129 first frame on the stack. We assume that in the case where the
130 PC is not at the start of the instruction sequence, there will be
131 a few trailing readable bytes on the stack. */
132
1f602b35 133 if (deprecated_read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
e7ee86a9
JB
134 return 0;
135
136 if (buf[0] != LINUX_SIGTRAMP_INSN0)
137 {
138 int adjust;
139
140 switch (buf[0])
141 {
142 case LINUX_SIGTRAMP_INSN1:
143 adjust = LINUX_SIGTRAMP_OFFSET1;
144 break;
145 case LINUX_SIGTRAMP_INSN2:
146 adjust = LINUX_SIGTRAMP_OFFSET2;
147 break;
148 default:
149 return 0;
150 }
151
152 pc -= adjust;
153
1f602b35 154 if (deprecated_read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
e7ee86a9
JB
155 return 0;
156 }
157
158 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
159 return 0;
160
161 return pc;
162}
163
164/* This function does the same for RT signals. Here the instruction
165 sequence is
acd5c798 166 mov $0xad, %eax
e7ee86a9
JB
167 int $0x80
168 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
169
170 The effect is to call the system call rt_sigreturn. */
171
acd5c798
MK
172#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
173#define LINUX_RT_SIGTRAMP_OFFSET0 0
174#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
175#define LINUX_RT_SIGTRAMP_OFFSET1 5
e7ee86a9
JB
176
177static const unsigned char linux_rt_sigtramp_code[] =
178{
acd5c798 179 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
e7ee86a9
JB
180 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
181};
182
183#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
184
185/* If PC is in a RT sigtramp routine, return the address of the start
186 of the routine. Otherwise, return 0. */
187
188static CORE_ADDR
189i386_linux_rt_sigtramp_start (CORE_ADDR pc)
190{
191 unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
192
193 /* We only recognize a signal trampoline if PC is at the start of
194 one of the two instructions. We optimize for finding the PC at
195 the start, as will be the case when the trampoline is not the
196 first frame on the stack. We assume that in the case where the
197 PC is not at the start of the instruction sequence, there will be
198 a few trailing readable bytes on the stack. */
199
1f602b35 200 if (deprecated_read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
e7ee86a9
JB
201 return 0;
202
203 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
204 {
205 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
206 return 0;
207
208 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
209
1f602b35 210 if (deprecated_read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
e7ee86a9
JB
211 return 0;
212 }
213
214 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
215 return 0;
216
217 return pc;
218}
219
377d9ebd 220/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 221 GNU/Linux sigtramp routine. */
e7ee86a9 222
8201327c 223static int
911bc6ee 224i386_linux_sigtramp_p (struct frame_info *next_frame)
e7ee86a9 225{
911bc6ee
MK
226 CORE_ADDR pc = frame_pc_unwind (next_frame);
227 char *name;
228
229 find_pc_partial_function (pc, &name, NULL, NULL);
230
ef17e74b
DJ
231 /* If we have NAME, we can optimize the search. The trampolines are
232 named __restore and __restore_rt. However, they aren't dynamically
233 exported from the shared C library, so the trampoline may appear to
234 be part of the preceding function. This should always be sigaction,
235 __sigaction, or __libc_sigaction (all aliases to the same function). */
236 if (name == NULL || strstr (name, "sigaction") != NULL)
237 return (i386_linux_sigtramp_start (pc) != 0
238 || i386_linux_rt_sigtramp_start (pc) != 0);
239
240 return (strcmp ("__restore", name) == 0
241 || strcmp ("__restore_rt", name) == 0);
e7ee86a9
JB
242}
243
acd5c798
MK
244/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
245#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
246
247/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
248 routine, return the address of the associated sigcontext structure. */
e7ee86a9 249
b7d15bf7 250static CORE_ADDR
acd5c798 251i386_linux_sigcontext_addr (struct frame_info *next_frame)
e7ee86a9
JB
252{
253 CORE_ADDR pc;
acd5c798
MK
254 CORE_ADDR sp;
255 char buf[4];
256
c7f16359 257 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
acd5c798 258 sp = extract_unsigned_integer (buf, 4);
e7ee86a9 259
acd5c798 260 pc = i386_linux_sigtramp_start (frame_pc_unwind (next_frame));
e7ee86a9
JB
261 if (pc)
262 {
acd5c798
MK
263 /* The sigcontext structure lives on the stack, right after
264 the signum argument. We determine the address of the
265 sigcontext structure by looking at the frame's stack
266 pointer. Keep in mind that the first instruction of the
267 sigtramp code is "pop %eax". If the PC is after this
268 instruction, adjust the returned value accordingly. */
269 if (pc == frame_pc_unwind (next_frame))
e7ee86a9
JB
270 return sp + 4;
271 return sp;
272 }
273
acd5c798 274 pc = i386_linux_rt_sigtramp_start (frame_pc_unwind (next_frame));
e7ee86a9
JB
275 if (pc)
276 {
acd5c798
MK
277 CORE_ADDR ucontext_addr;
278
279 /* The sigcontext structure is part of the user context. A
280 pointer to the user context is passed as the third argument
281 to the signal handler. */
282 read_memory (sp + 8, buf, 4);
9fbfb822 283 ucontext_addr = extract_unsigned_integer (buf, 4);
acd5c798 284 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
e7ee86a9
JB
285 }
286
287 error ("Couldn't recognize signal trampoline.");
288 return 0;
289}
290
6441c4a0
MK
291/* Set the program counter for process PTID to PC. */
292
8201327c 293static void
6441c4a0
MK
294i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
295{
c7f16359 296 write_register_pid (I386_EIP_REGNUM, pc, ptid);
6441c4a0
MK
297
298 /* We must be careful with modifying the program counter. If we
299 just interrupted a system call, the kernel might try to restart
300 it when we resume the inferior. On restarting the system call,
301 the kernel will try backing up the program counter even though it
302 no longer points at the system call. This typically results in a
303 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
304 "orig_eax" pseudo-register.
305
306 Note that "orig_eax" is saved when setting up a dummy call frame.
307 This means that it is properly restored when that frame is
308 popped, and that the interrupted system call will be restarted
309 when we resume the inferior on return from a function call from
310 within GDB. In all other cases the system call will not be
311 restarted. */
312 write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
313}
314\f
8201327c 315
e9f1aad5
MK
316/* The register sets used in GNU/Linux ELF core-dumps are identical to
317 the register sets in `struct user' that are used for a.out
318 core-dumps. These are also used by ptrace(2). The corresponding
319 types are `elf_gregset_t' for the general-purpose registers (with
320 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
321 for the floating-point registers.
322
323 Those types used to be available under the names `gregset_t' and
324 `fpregset_t' too, and GDB used those names in the past. But those
325 names are now used for the register sets used in the `mcontext_t'
326 type, which have a different size and layout. */
327
328/* Mapping between the general-purpose registers in `struct user'
329 format and GDB's register cache layout. */
330
331/* From <sys/reg.h>. */
332static int i386_linux_gregset_reg_offset[] =
333{
334 6 * 4, /* %eax */
335 1 * 4, /* %ecx */
336 2 * 4, /* %edx */
337 0 * 4, /* %ebx */
338 15 * 4, /* %esp */
339 5 * 4, /* %ebp */
340 3 * 4, /* %esi */
341 4 * 4, /* %edi */
342 12 * 4, /* %eip */
343 14 * 4, /* %eflags */
344 13 * 4, /* %cs */
345 16 * 4, /* %ss */
346 7 * 4, /* %ds */
347 8 * 4, /* %es */
348 9 * 4, /* %fs */
349 10 * 4, /* %gs */
350 -1, -1, -1, -1, -1, -1, -1, -1,
351 -1, -1, -1, -1, -1, -1, -1, -1,
352 -1, -1, -1, -1, -1, -1, -1, -1,
353 -1,
354 11 * 4 /* "orig_eax" */
355};
356
357/* Mapping between the general-purpose registers in `struct
358 sigcontext' format and GDB's register cache layout. */
359
a3386186 360/* From <asm/sigcontext.h>. */
bb489b3c 361static int i386_linux_sc_reg_offset[] =
a3386186
MK
362{
363 11 * 4, /* %eax */
364 10 * 4, /* %ecx */
365 9 * 4, /* %edx */
366 8 * 4, /* %ebx */
367 7 * 4, /* %esp */
368 6 * 4, /* %ebp */
369 5 * 4, /* %esi */
370 4 * 4, /* %edi */
371 14 * 4, /* %eip */
372 16 * 4, /* %eflags */
373 15 * 4, /* %cs */
374 18 * 4, /* %ss */
375 3 * 4, /* %ds */
376 2 * 4, /* %es */
377 1 * 4, /* %fs */
378 0 * 4 /* %gs */
379};
380
8201327c
MK
381static void
382i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
383{
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 /* GNU/Linux uses ELF. */
387 i386_elf_init_abi (info, gdbarch);
388
8201327c
MK
389 /* Since we have the extra "orig_eax" register on GNU/Linux, we have
390 to adjust a few things. */
391
392 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
bb489b3c 393 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
8201327c 394 set_gdbarch_register_name (gdbarch, i386_linux_register_name);
38c968cf 395 set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
8201327c 396
e9f1aad5
MK
397 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
398 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
399 tdep->sizeof_gregset = 17 * 4;
400
8201327c
MK
401 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
402
911bc6ee 403 tdep->sigtramp_p = i386_linux_sigtramp_p;
b7d15bf7 404 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
a3386186 405 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
bb489b3c 406 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
8201327c 407
871fbe6a
MK
408 /* GNU/Linux uses SVR4-style shared libraries. */
409 set_solib_svr4_fetch_link_map_offsets
410 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
411
412 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
bb41a796 413 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
8201327c
MK
414}
415
416/* Provide a prototype to silence -Wmissing-prototypes. */
417extern void _initialize_i386_linux_tdep (void);
418
419void
420_initialize_i386_linux_tdep (void)
421{
05816f70 422 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
8201327c
MK
423 i386_linux_init_abi);
424}
This page took 0.439405 seconds and 4 git commands to generate.