* symfile.c (add_psymbol_to_bcache): Return a const pointer. Use
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
9b254dd1 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
acd5c798
MK
23#include "arch-utils.h"
24#include "command.h"
25#include "dummy-frame.h"
6405b0a6 26#include "dwarf2-frame.h"
acd5c798 27#include "doublest.h"
c906108c 28#include "frame.h"
acd5c798
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
c906108c 31#include "inferior.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
acd5c798 45
3d261580 46#include "gdb_assert.h"
acd5c798 47#include "gdb_string.h"
3d261580 48
d2a7c97a 49#include "i386-tdep.h"
61113f8b 50#include "i387-tdep.h"
d2a7c97a 51
c4fc7f1b 52/* Register names. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
1cb97e17 69static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 70
c4fc7f1b 71/* Register names for MMX pseudo-registers. */
28fc6740
AC
72
73static char *i386_mmx_names[] =
74{
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77};
c40e1eab 78
1cb97e17 79static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 80
28fc6740 81static int
5716833c 82i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 83{
5716833c
MK
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
90}
91
5716833c 92/* SSE register? */
23a34459 93
5716833c
MK
94static int
95i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 96{
5716833c
MK
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
20a6ec49 99 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
100 return 0;
101
20a6ec49
MD
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
23a34459
AC
104}
105
5716833c
MK
106static int
107i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 108{
5716833c
MK
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
20a6ec49 111 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
112 return 0;
113
20a6ec49 114 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
115}
116
5716833c 117/* FP register? */
23a34459
AC
118
119int
20a6ec49 120i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 121{
20a6ec49
MD
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
125 return 0;
126
20a6ec49
MD
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
129}
130
131int
20a6ec49 132i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 133{
20a6ec49
MD
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
137 return 0;
138
20a6ec49
MD
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
141}
142
30b0e2d8 143/* Return the name of register REGNUM. */
fc633446 144
fa88f677 145const char *
d93859e2 146i386_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 147{
d93859e2 148 if (i386_mmx_regnum_p (gdbarch, regnum))
20a6ec49 149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
fc633446 150
30b0e2d8
MK
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
70913449 153
c40e1eab 154 return NULL;
fc633446
MK
155}
156
c4fc7f1b 157/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
158 number used by GDB. */
159
8201327c 160static int
d3f73121 161i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 162{
20a6ec49
MD
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
c4fc7f1b
MK
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
85540d8c
MK
168 if (reg >= 0 && reg <= 7)
169 {
9872ad24
JB
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
85540d8c
MK
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
20a6ec49 181 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
20a6ec49 186 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
20a6ec49 191 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
192 }
193
194 /* This will hopefully provoke a warning. */
d3f73121 195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
196}
197
c4fc7f1b
MK
198/* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
85540d8c 200
8201327c 201static int
d3f73121 202i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 203{
20a6ec49
MD
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
c4fc7f1b
MK
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
acd5c798 213 /* General-purpose registers. */
85540d8c
MK
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
20a6ec49 219 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 220 }
c6f4c129 221 else if (reg >= 21 && reg <= 36)
85540d8c 222 {
c4fc7f1b 223 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 224 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
225 }
226
c6f4c129
JB
227 switch (reg)
228 {
20a6ec49
MD
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
85540d8c 240 /* This will hopefully provoke a warning. */
d3f73121 241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 242}
5716833c 243
fc338970 244\f
917317f4 245
fc338970
MK
246/* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
53904c9e
AC
248static const char att_flavor[] = "att";
249static const char intel_flavor[] = "intel";
250static const char *valid_flavors[] =
c5aa993b 251{
c906108c
SS
252 att_flavor,
253 intel_flavor,
254 NULL
255};
53904c9e 256static const char *disassembly_flavor = att_flavor;
acd5c798 257\f
c906108c 258
acd5c798
MK
259/* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
c906108c 264
acd5c798
MK
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
c906108c 267
acd5c798 268 This function is 64-bit safe. */
63c0089f
MK
269
270static const gdb_byte *
67d57894 271i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 272{
63c0089f
MK
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
acd5c798
MK
275 *len = sizeof (break_insn);
276 return break_insn;
c906108c 277}
237fc4c9
PA
278\f
279/* Displaced instruction handling. */
280
281
282static int
283i386_absolute_jmp_p (gdb_byte *insn)
284{
285 /* jmp far (absolute address in operand) */
286 if (insn[0] == 0xea)
287 return 1;
288
289 if (insn[0] == 0xff)
290 {
291 /* jump near, absolute indirect (/4) */
292 if ((insn[1] & 0x38) == 0x20)
293 return 1;
294
295 /* jump far, absolute indirect (/5) */
296 if ((insn[1] & 0x38) == 0x28)
297 return 1;
298 }
299
300 return 0;
301}
302
303static int
304i386_absolute_call_p (gdb_byte *insn)
305{
306 /* call far, absolute */
307 if (insn[0] == 0x9a)
308 return 1;
309
310 if (insn[0] == 0xff)
311 {
312 /* Call near, absolute indirect (/2) */
313 if ((insn[1] & 0x38) == 0x10)
314 return 1;
315
316 /* Call far, absolute indirect (/3) */
317 if ((insn[1] & 0x38) == 0x18)
318 return 1;
319 }
320
321 return 0;
322}
323
324static int
325i386_ret_p (gdb_byte *insn)
326{
327 switch (insn[0])
328 {
329 case 0xc2: /* ret near, pop N bytes */
330 case 0xc3: /* ret near */
331 case 0xca: /* ret far, pop N bytes */
332 case 0xcb: /* ret far */
333 case 0xcf: /* iret */
334 return 1;
335
336 default:
337 return 0;
338 }
339}
340
341static int
342i386_call_p (gdb_byte *insn)
343{
344 if (i386_absolute_call_p (insn))
345 return 1;
346
347 /* call near, relative */
348 if (insn[0] == 0xe8)
349 return 1;
350
351 return 0;
352}
353
354static int
355i386_breakpoint_p (gdb_byte *insn)
356{
357 return insn[0] == 0xcc; /* int 3 */
358}
359
360/* Return non-zero if INSN is a system call, and set *LENGTHP to its
361 length in bytes. Otherwise, return zero. */
362static int
363i386_syscall_p (gdb_byte *insn, ULONGEST *lengthp)
364{
365 if (insn[0] == 0xcd)
366 {
367 *lengthp = 2;
368 return 1;
369 }
370
371 return 0;
372}
373
374/* Fix up the state of registers and memory after having single-stepped
375 a displaced instruction. */
376void
377i386_displaced_step_fixup (struct gdbarch *gdbarch,
378 struct displaced_step_closure *closure,
379 CORE_ADDR from, CORE_ADDR to,
380 struct regcache *regs)
381{
382 /* The offset we applied to the instruction's address.
383 This could well be negative (when viewed as a signed 32-bit
384 value), but ULONGEST won't reflect that, so take care when
385 applying it. */
386 ULONGEST insn_offset = to - from;
387
388 /* Since we use simple_displaced_step_copy_insn, our closure is a
389 copy of the instruction. */
390 gdb_byte *insn = (gdb_byte *) closure;
391
392 if (debug_displaced)
393 fprintf_unfiltered (gdb_stdlog,
394 "displaced: fixup (0x%s, 0x%s), "
395 "insn = 0x%02x 0x%02x ...\n",
396 paddr_nz (from), paddr_nz (to), insn[0], insn[1]);
397
398 /* The list of issues to contend with here is taken from
399 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
400 Yay for Free Software! */
401
402 /* Relocate the %eip, if necessary. */
403
404 /* Except in the case of absolute or indirect jump or call
405 instructions, or a return instruction, the new eip is relative to
406 the displaced instruction; make it relative. Well, signal
407 handler returns don't need relocation either, but we use the
408 value of %eip to recognize those; see below. */
409 if (! i386_absolute_jmp_p (insn)
410 && ! i386_absolute_call_p (insn)
411 && ! i386_ret_p (insn))
412 {
413 ULONGEST orig_eip;
414 ULONGEST insn_len;
415
416 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
417
418 /* A signal trampoline system call changes the %eip, resuming
419 execution of the main program after the signal handler has
420 returned. That makes them like 'return' instructions; we
421 shouldn't relocate %eip.
422
423 But most system calls don't, and we do need to relocate %eip.
424
425 Our heuristic for distinguishing these cases: if stepping
426 over the system call instruction left control directly after
427 the instruction, the we relocate --- control almost certainly
428 doesn't belong in the displaced copy. Otherwise, we assume
429 the instruction has put control where it belongs, and leave
430 it unrelocated. Goodness help us if there are PC-relative
431 system calls. */
432 if (i386_syscall_p (insn, &insn_len)
433 && orig_eip != to + insn_len)
434 {
435 if (debug_displaced)
436 fprintf_unfiltered (gdb_stdlog,
437 "displaced: syscall changed %%eip; "
438 "not relocating\n");
439 }
440 else
441 {
442 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
443
444 /* If we have stepped over a breakpoint, set the %eip to
445 point at the breakpoint instruction itself.
446
447 (gdbarch_decr_pc_after_break was never something the core
448 of GDB should have been concerned with; arch-specific
449 code should be making PC values consistent before
450 presenting them to GDB.) */
451 if (i386_breakpoint_p (insn))
452 {
caac8896
PA
453 if (debug_displaced)
454 fprintf_unfiltered (gdb_stdlog,
455 "displaced: stepped breakpoint\n");
237fc4c9
PA
456 eip--;
457 }
458
459 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
460
461 if (debug_displaced)
462 fprintf_unfiltered (gdb_stdlog,
463 "displaced: "
464 "relocated %%eip from 0x%s to 0x%s\n",
465 paddr_nz (orig_eip), paddr_nz (eip));
466 }
467 }
468
469 /* If the instruction was PUSHFL, then the TF bit will be set in the
470 pushed value, and should be cleared. We'll leave this for later,
471 since GDB already messes up the TF flag when stepping over a
472 pushfl. */
473
474 /* If the instruction was a call, the return address now atop the
475 stack is the address following the copied instruction. We need
476 to make it the address following the original instruction. */
477 if (i386_call_p (insn))
478 {
479 ULONGEST esp;
480 ULONGEST retaddr;
481 const ULONGEST retaddr_len = 4;
482
483 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
484 retaddr = read_memory_unsigned_integer (esp, retaddr_len);
485 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
486 write_memory_unsigned_integer (esp, retaddr_len, retaddr);
487
488 if (debug_displaced)
489 fprintf_unfiltered (gdb_stdlog,
490 "displaced: relocated return addr at 0x%s "
491 "to 0x%s\n",
492 paddr_nz (esp),
493 paddr_nz (retaddr));
494 }
495}
496
497
fc338970 498\f
acd5c798
MK
499#ifdef I386_REGNO_TO_SYMMETRY
500#error "The Sequent Symmetry is no longer supported."
501#endif
c906108c 502
acd5c798
MK
503/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
504 and %esp "belong" to the calling function. Therefore these
505 registers should be saved if they're going to be modified. */
c906108c 506
acd5c798
MK
507/* The maximum number of saved registers. This should include all
508 registers mentioned above, and %eip. */
a3386186 509#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
510
511struct i386_frame_cache
c906108c 512{
acd5c798
MK
513 /* Base address. */
514 CORE_ADDR base;
772562f8 515 LONGEST sp_offset;
acd5c798
MK
516 CORE_ADDR pc;
517
fd13a04a
AC
518 /* Saved registers. */
519 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 520 CORE_ADDR saved_sp;
92dd43fa 521 int stack_align;
acd5c798
MK
522 int pc_in_eax;
523
524 /* Stack space reserved for local variables. */
525 long locals;
526};
527
528/* Allocate and initialize a frame cache. */
529
530static struct i386_frame_cache *
fd13a04a 531i386_alloc_frame_cache (void)
acd5c798
MK
532{
533 struct i386_frame_cache *cache;
534 int i;
535
536 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
537
538 /* Base address. */
539 cache->base = 0;
540 cache->sp_offset = -4;
541 cache->pc = 0;
542
fd13a04a
AC
543 /* Saved registers. We initialize these to -1 since zero is a valid
544 offset (that's where %ebp is supposed to be stored). */
545 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
546 cache->saved_regs[i] = -1;
acd5c798 547 cache->saved_sp = 0;
92dd43fa 548 cache->stack_align = 0;
acd5c798
MK
549 cache->pc_in_eax = 0;
550
551 /* Frameless until proven otherwise. */
552 cache->locals = -1;
553
554 return cache;
555}
c906108c 556
acd5c798
MK
557/* If the instruction at PC is a jump, return the address of its
558 target. Otherwise, return PC. */
c906108c 559
acd5c798
MK
560static CORE_ADDR
561i386_follow_jump (CORE_ADDR pc)
562{
63c0089f 563 gdb_byte op;
acd5c798
MK
564 long delta = 0;
565 int data16 = 0;
c906108c 566
8defab1a 567 target_read_memory (pc, &op, 1);
acd5c798 568 if (op == 0x66)
c906108c 569 {
c906108c 570 data16 = 1;
acd5c798 571 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
572 }
573
acd5c798 574 switch (op)
c906108c
SS
575 {
576 case 0xe9:
fc338970 577 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
578 if (data16)
579 {
acd5c798 580 delta = read_memory_integer (pc + 2, 2);
c906108c 581
fc338970
MK
582 /* Include the size of the jmp instruction (including the
583 0x66 prefix). */
acd5c798 584 delta += 4;
c906108c
SS
585 }
586 else
587 {
acd5c798 588 delta = read_memory_integer (pc + 1, 4);
c906108c 589
acd5c798
MK
590 /* Include the size of the jmp instruction. */
591 delta += 5;
c906108c
SS
592 }
593 break;
594 case 0xeb:
fc338970 595 /* Relative jump, disp8 (ignore data16). */
acd5c798 596 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 597
acd5c798 598 delta += data16 + 2;
c906108c
SS
599 break;
600 }
c906108c 601
acd5c798
MK
602 return pc + delta;
603}
fc338970 604
acd5c798
MK
605/* Check whether PC points at a prologue for a function returning a
606 structure or union. If so, it updates CACHE and returns the
607 address of the first instruction after the code sequence that
608 removes the "hidden" argument from the stack or CURRENT_PC,
609 whichever is smaller. Otherwise, return PC. */
c906108c 610
acd5c798
MK
611static CORE_ADDR
612i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
613 struct i386_frame_cache *cache)
c906108c 614{
acd5c798
MK
615 /* Functions that return a structure or union start with:
616
617 popl %eax 0x58
618 xchgl %eax, (%esp) 0x87 0x04 0x24
619 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
620
621 (the System V compiler puts out the second `xchg' instruction,
622 and the assembler doesn't try to optimize it, so the 'sib' form
623 gets generated). This sequence is used to get the address of the
624 return buffer for a function that returns a structure. */
63c0089f
MK
625 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
626 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
627 gdb_byte buf[4];
628 gdb_byte op;
c906108c 629
acd5c798
MK
630 if (current_pc <= pc)
631 return pc;
632
8defab1a 633 target_read_memory (pc, &op, 1);
c906108c 634
acd5c798
MK
635 if (op != 0x58) /* popl %eax */
636 return pc;
c906108c 637
8defab1a 638 target_read_memory (pc + 1, buf, 4);
acd5c798
MK
639 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
640 return pc;
c906108c 641
acd5c798 642 if (current_pc == pc)
c906108c 643 {
acd5c798
MK
644 cache->sp_offset += 4;
645 return current_pc;
c906108c
SS
646 }
647
acd5c798 648 if (current_pc == pc + 1)
c906108c 649 {
acd5c798
MK
650 cache->pc_in_eax = 1;
651 return current_pc;
652 }
653
654 if (buf[1] == proto1[1])
655 return pc + 4;
656 else
657 return pc + 5;
658}
659
660static CORE_ADDR
661i386_skip_probe (CORE_ADDR pc)
662{
663 /* A function may start with
fc338970 664
acd5c798
MK
665 pushl constant
666 call _probe
667 addl $4, %esp
fc338970 668
acd5c798
MK
669 followed by
670
671 pushl %ebp
fc338970 672
acd5c798 673 etc. */
63c0089f
MK
674 gdb_byte buf[8];
675 gdb_byte op;
fc338970 676
8defab1a 677 target_read_memory (pc, &op, 1);
acd5c798
MK
678
679 if (op == 0x68 || op == 0x6a)
680 {
681 int delta;
c906108c 682
acd5c798
MK
683 /* Skip past the `pushl' instruction; it has either a one-byte or a
684 four-byte operand, depending on the opcode. */
c906108c 685 if (op == 0x68)
acd5c798 686 delta = 5;
c906108c 687 else
acd5c798 688 delta = 2;
c906108c 689
acd5c798
MK
690 /* Read the following 8 bytes, which should be `call _probe' (6
691 bytes) followed by `addl $4,%esp' (2 bytes). */
692 read_memory (pc + delta, buf, sizeof (buf));
c906108c 693 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 694 pc += delta + sizeof (buf);
c906108c
SS
695 }
696
acd5c798
MK
697 return pc;
698}
699
92dd43fa
MK
700/* GCC 4.1 and later, can put code in the prologue to realign the
701 stack pointer. Check whether PC points to such code, and update
702 CACHE accordingly. Return the first instruction after the code
703 sequence or CURRENT_PC, whichever is smaller. If we don't
704 recognize the code, return PC. */
705
706static CORE_ADDR
707i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
709{
92a56b20
JB
710 /* The register used by the compiler to perform the stack re-alignment
711 is, in order of preference, either %ecx, %edx, or %eax. GCC should
712 never use %ebx as it always treats it as callee-saved, whereas
713 the compiler can only use caller-saved registers. */
ade52156 714 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
715 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
716 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
717 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
718 };
ade52156
JB
719 static const gdb_byte insns_edx[10] = {
720 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
721 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
722 0xff, 0x72, 0xfc /* pushl -4(%edx) */
723 };
724 static const gdb_byte insns_eax[10] = {
725 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
726 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
727 0xff, 0x70, 0xfc /* pushl -4(%eax) */
728 };
92dd43fa
MK
729 gdb_byte buf[10];
730
731 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
732 || (memcmp (buf, insns_ecx, sizeof buf) != 0
733 && memcmp (buf, insns_edx, sizeof buf) != 0
734 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
735 return pc;
736
737 if (current_pc > pc + 4)
738 cache->stack_align = 1;
739
740 return min (pc + 10, current_pc);
741}
742
37bdc87e 743/* Maximum instruction length we need to handle. */
237fc4c9 744#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
745
746/* Instruction description. */
747struct i386_insn
748{
749 size_t len;
237fc4c9
PA
750 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
751 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
752};
753
754/* Search for the instruction at PC in the list SKIP_INSNS. Return
755 the first instruction description that matches. Otherwise, return
756 NULL. */
757
758static struct i386_insn *
759i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
760{
761 struct i386_insn *insn;
63c0089f 762 gdb_byte op;
37bdc87e 763
8defab1a 764 target_read_memory (pc, &op, 1);
37bdc87e
MK
765
766 for (insn = skip_insns; insn->len > 0; insn++)
767 {
768 if ((op & insn->mask[0]) == insn->insn[0])
769 {
237fc4c9 770 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 771 int insn_matched = 1;
37bdc87e
MK
772 size_t i;
773
774 gdb_assert (insn->len > 1);
237fc4c9 775 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 776
8defab1a 777 target_read_memory (pc + 1, buf, insn->len - 1);
37bdc87e
MK
778 for (i = 1; i < insn->len; i++)
779 {
780 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 781 insn_matched = 0;
37bdc87e 782 }
613e8135
MK
783
784 if (insn_matched)
785 return insn;
37bdc87e
MK
786 }
787 }
788
789 return NULL;
790}
791
792/* Some special instructions that might be migrated by GCC into the
793 part of the prologue that sets up the new stack frame. Because the
794 stack frame hasn't been setup yet, no registers have been saved
795 yet, and only the scratch registers %eax, %ecx and %edx can be
796 touched. */
797
798struct i386_insn i386_frame_setup_skip_insns[] =
799{
800 /* Check for `movb imm8, r' and `movl imm32, r'.
801
802 ??? Should we handle 16-bit operand-sizes here? */
803
804 /* `movb imm8, %al' and `movb imm8, %ah' */
805 /* `movb imm8, %cl' and `movb imm8, %ch' */
806 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
807 /* `movb imm8, %dl' and `movb imm8, %dh' */
808 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
809 /* `movl imm32, %eax' and `movl imm32, %ecx' */
810 { 5, { 0xb8 }, { 0xfe } },
811 /* `movl imm32, %edx' */
812 { 5, { 0xba }, { 0xff } },
813
814 /* Check for `mov imm32, r32'. Note that there is an alternative
815 encoding for `mov m32, %eax'.
816
817 ??? Should we handle SIB adressing here?
818 ??? Should we handle 16-bit operand-sizes here? */
819
820 /* `movl m32, %eax' */
821 { 5, { 0xa1 }, { 0xff } },
822 /* `movl m32, %eax' and `mov; m32, %ecx' */
823 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
824 /* `movl m32, %edx' */
825 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
826
827 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
828 Because of the symmetry, there are actually two ways to encode
829 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
830 opcode bytes 0x31 and 0x33 for `xorl'. */
831
832 /* `subl %eax, %eax' */
833 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
834 /* `subl %ecx, %ecx' */
835 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
836 /* `subl %edx, %edx' */
837 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
838 /* `xorl %eax, %eax' */
839 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
840 /* `xorl %ecx, %ecx' */
841 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
842 /* `xorl %edx, %edx' */
843 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
844 { 0 }
845};
846
e11481da
PM
847
848/* Check whether PC points to a no-op instruction. */
849static CORE_ADDR
850i386_skip_noop (CORE_ADDR pc)
851{
852 gdb_byte op;
853 int check = 1;
854
8defab1a 855 target_read_memory (pc, &op, 1);
e11481da
PM
856
857 while (check)
858 {
859 check = 0;
860 /* Ignore `nop' instruction. */
861 if (op == 0x90)
862 {
863 pc += 1;
8defab1a 864 target_read_memory (pc, &op, 1);
e11481da
PM
865 check = 1;
866 }
867 /* Ignore no-op instruction `mov %edi, %edi'.
868 Microsoft system dlls often start with
869 a `mov %edi,%edi' instruction.
870 The 5 bytes before the function start are
871 filled with `nop' instructions.
872 This pattern can be used for hot-patching:
873 The `mov %edi, %edi' instruction can be replaced by a
874 near jump to the location of the 5 `nop' instructions
875 which can be replaced by a 32-bit jump to anywhere
876 in the 32-bit address space. */
877
878 else if (op == 0x8b)
879 {
8defab1a 880 target_read_memory (pc + 1, &op, 1);
e11481da
PM
881 if (op == 0xff)
882 {
883 pc += 2;
8defab1a 884 target_read_memory (pc, &op, 1);
e11481da
PM
885 check = 1;
886 }
887 }
888 }
889 return pc;
890}
891
acd5c798
MK
892/* Check whether PC points at a code that sets up a new stack frame.
893 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
894 instruction after the sequence that sets up the frame or LIMIT,
895 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
896
897static CORE_ADDR
37bdc87e 898i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
899 struct i386_frame_cache *cache)
900{
37bdc87e 901 struct i386_insn *insn;
63c0089f 902 gdb_byte op;
26604a34 903 int skip = 0;
acd5c798 904
37bdc87e
MK
905 if (limit <= pc)
906 return limit;
acd5c798 907
8defab1a 908 target_read_memory (pc, &op, 1);
acd5c798 909
c906108c 910 if (op == 0x55) /* pushl %ebp */
c5aa993b 911 {
acd5c798
MK
912 /* Take into account that we've executed the `pushl %ebp' that
913 starts this instruction sequence. */
fd13a04a 914 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 915 cache->sp_offset += 4;
37bdc87e 916 pc++;
acd5c798
MK
917
918 /* If that's all, return now. */
37bdc87e
MK
919 if (limit <= pc)
920 return limit;
26604a34 921
b4632131 922 /* Check for some special instructions that might be migrated by
37bdc87e
MK
923 GCC into the prologue and skip them. At this point in the
924 prologue, code should only touch the scratch registers %eax,
925 %ecx and %edx, so while the number of posibilities is sheer,
926 it is limited.
5daa5b4e 927
26604a34
MK
928 Make sure we only skip these instructions if we later see the
929 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 930 while (pc + skip < limit)
26604a34 931 {
37bdc87e
MK
932 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
933 if (insn == NULL)
934 break;
b4632131 935
37bdc87e 936 skip += insn->len;
26604a34
MK
937 }
938
37bdc87e
MK
939 /* If that's all, return now. */
940 if (limit <= pc + skip)
941 return limit;
942
8defab1a 943 target_read_memory (pc + skip, &op, 1);
37bdc87e 944
26604a34 945 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 946 switch (op)
c906108c
SS
947 {
948 case 0x8b:
37bdc87e
MK
949 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
950 return pc;
c906108c
SS
951 break;
952 case 0x89:
37bdc87e
MK
953 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
954 return pc;
c906108c
SS
955 break;
956 default:
37bdc87e 957 return pc;
c906108c 958 }
acd5c798 959
26604a34
MK
960 /* OK, we actually have a frame. We just don't know how large
961 it is yet. Set its size to zero. We'll adjust it if
962 necessary. We also now commit to skipping the special
963 instructions mentioned before. */
acd5c798 964 cache->locals = 0;
37bdc87e 965 pc += (skip + 2);
acd5c798
MK
966
967 /* If that's all, return now. */
37bdc87e
MK
968 if (limit <= pc)
969 return limit;
acd5c798 970
fc338970
MK
971 /* Check for stack adjustment
972
acd5c798 973 subl $XXX, %esp
fc338970 974
fd35795f 975 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 976 reg, so we don't have to worry about a data16 prefix. */
8defab1a 977 target_read_memory (pc, &op, 1);
c906108c
SS
978 if (op == 0x83)
979 {
fd35795f 980 /* `subl' with 8-bit immediate. */
37bdc87e 981 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 982 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 983 return pc;
acd5c798 984
37bdc87e
MK
985 /* `subl' with signed 8-bit immediate (though it wouldn't
986 make sense to be negative). */
987 cache->locals = read_memory_integer (pc + 2, 1);
988 return pc + 3;
c906108c
SS
989 }
990 else if (op == 0x81)
991 {
fd35795f 992 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 993 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 994 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 995 return pc;
acd5c798 996
fd35795f 997 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
998 cache->locals = read_memory_integer (pc + 2, 4);
999 return pc + 6;
c906108c
SS
1000 }
1001 else
1002 {
acd5c798 1003 /* Some instruction other than `subl'. */
37bdc87e 1004 return pc;
c906108c
SS
1005 }
1006 }
37bdc87e 1007 else if (op == 0xc8) /* enter */
c906108c 1008 {
acd5c798
MK
1009 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
1010 return pc + 4;
c906108c 1011 }
21d0e8a4 1012
acd5c798 1013 return pc;
21d0e8a4
MK
1014}
1015
acd5c798
MK
1016/* Check whether PC points at code that saves registers on the stack.
1017 If so, it updates CACHE and returns the address of the first
1018 instruction after the register saves or CURRENT_PC, whichever is
1019 smaller. Otherwise, return PC. */
6bff26de
MK
1020
1021static CORE_ADDR
acd5c798
MK
1022i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1023 struct i386_frame_cache *cache)
6bff26de 1024{
99ab4326 1025 CORE_ADDR offset = 0;
63c0089f 1026 gdb_byte op;
99ab4326 1027 int i;
c0d1d883 1028
99ab4326
MK
1029 if (cache->locals > 0)
1030 offset -= cache->locals;
1031 for (i = 0; i < 8 && pc < current_pc; i++)
1032 {
8defab1a 1033 target_read_memory (pc, &op, 1);
99ab4326
MK
1034 if (op < 0x50 || op > 0x57)
1035 break;
0d17c81d 1036
99ab4326
MK
1037 offset -= 4;
1038 cache->saved_regs[op - 0x50] = offset;
1039 cache->sp_offset += 4;
1040 pc++;
6bff26de
MK
1041 }
1042
acd5c798 1043 return pc;
22797942
AC
1044}
1045
acd5c798
MK
1046/* Do a full analysis of the prologue at PC and update CACHE
1047 accordingly. Bail out early if CURRENT_PC is reached. Return the
1048 address where the analysis stopped.
ed84f6c1 1049
fc338970
MK
1050 We handle these cases:
1051
1052 The startup sequence can be at the start of the function, or the
1053 function can start with a branch to startup code at the end.
1054
1055 %ebp can be set up with either the 'enter' instruction, or "pushl
1056 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1057 once used in the System V compiler).
1058
1059 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1060 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1061 16-bit unsigned argument for space to allocate, and the 'addl'
1062 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1063
1064 Next, the registers used by this function are pushed. With the
1065 System V compiler they will always be in the order: %edi, %esi,
1066 %ebx (and sometimes a harmless bug causes it to also save but not
1067 restore %eax); however, the code below is willing to see the pushes
1068 in any order, and will handle up to 8 of them.
1069
1070 If the setup sequence is at the end of the function, then the next
1071 instruction will be a branch back to the start. */
c906108c 1072
acd5c798
MK
1073static CORE_ADDR
1074i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
1075 struct i386_frame_cache *cache)
c906108c 1076{
e11481da 1077 pc = i386_skip_noop (pc);
acd5c798
MK
1078 pc = i386_follow_jump (pc);
1079 pc = i386_analyze_struct_return (pc, current_pc, cache);
1080 pc = i386_skip_probe (pc);
92dd43fa 1081 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
1082 pc = i386_analyze_frame_setup (pc, current_pc, cache);
1083 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1084}
1085
fc338970 1086/* Return PC of first real instruction. */
c906108c 1087
3a1e71e3 1088static CORE_ADDR
6093d2eb 1089i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1090{
63c0089f 1091 static gdb_byte pic_pat[6] =
acd5c798
MK
1092 {
1093 0xe8, 0, 0, 0, 0, /* call 0x0 */
1094 0x5b, /* popl %ebx */
c5aa993b 1095 };
acd5c798
MK
1096 struct i386_frame_cache cache;
1097 CORE_ADDR pc;
63c0089f 1098 gdb_byte op;
acd5c798 1099 int i;
c5aa993b 1100
acd5c798
MK
1101 cache.locals = -1;
1102 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
1103 if (cache.locals < 0)
1104 return start_pc;
c5aa993b 1105
acd5c798 1106 /* Found valid frame setup. */
c906108c 1107
fc338970
MK
1108 /* The native cc on SVR4 in -K PIC mode inserts the following code
1109 to get the address of the global offset table (GOT) into register
acd5c798
MK
1110 %ebx:
1111
fc338970
MK
1112 call 0x0
1113 popl %ebx
1114 movl %ebx,x(%ebp) (optional)
1115 addl y,%ebx
1116
c906108c
SS
1117 This code is with the rest of the prologue (at the end of the
1118 function), so we have to skip it to get to the first real
1119 instruction at the start of the function. */
c5aa993b 1120
c906108c
SS
1121 for (i = 0; i < 6; i++)
1122 {
8defab1a 1123 target_read_memory (pc + i, &op, 1);
c5aa993b 1124 if (pic_pat[i] != op)
c906108c
SS
1125 break;
1126 }
1127 if (i == 6)
1128 {
acd5c798
MK
1129 int delta = 6;
1130
8defab1a 1131 target_read_memory (pc + delta, &op, 1);
c906108c 1132
c5aa993b 1133 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1134 {
acd5c798
MK
1135 op = read_memory_unsigned_integer (pc + delta + 1, 1);
1136
fc338970 1137 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1138 delta += 3;
fc338970 1139 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1140 delta += 6;
fc338970 1141 else /* Unexpected instruction. */
acd5c798
MK
1142 delta = 0;
1143
8defab1a 1144 target_read_memory (pc + delta, &op, 1);
c906108c 1145 }
acd5c798 1146
c5aa993b 1147 /* addl y,%ebx */
acd5c798 1148 if (delta > 0 && op == 0x81
d5d6fca5 1149 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 1150 {
acd5c798 1151 pc += delta + 6;
c906108c
SS
1152 }
1153 }
c5aa993b 1154
e63bbc88
MK
1155 /* If the function starts with a branch (to startup code at the end)
1156 the last instruction should bring us back to the first
1157 instruction of the real code. */
1158 if (i386_follow_jump (start_pc) != start_pc)
1159 pc = i386_follow_jump (pc);
1160
1161 return pc;
c906108c
SS
1162}
1163
4309257c
PM
1164/* Check that the code pointed to by PC corresponds to a call to
1165 __main, skip it if so. Return PC otherwise. */
1166
1167CORE_ADDR
1168i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1169{
1170 gdb_byte op;
1171
1172 target_read_memory (pc, &op, 1);
1173 if (op == 0xe8)
1174 {
1175 gdb_byte buf[4];
1176
1177 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1178 {
1179 /* Make sure address is computed correctly as a 32bit
1180 integer even if CORE_ADDR is 64 bit wide. */
1181 struct minimal_symbol *s;
1182 CORE_ADDR call_dest = pc + 5 + extract_signed_integer (buf, 4);
1183
1184 call_dest = call_dest & 0xffffffffU;
1185 s = lookup_minimal_symbol_by_pc (call_dest);
1186 if (s != NULL
1187 && SYMBOL_LINKAGE_NAME (s) != NULL
1188 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1189 pc += 5;
1190 }
1191 }
1192
1193 return pc;
1194}
1195
acd5c798 1196/* This function is 64-bit safe. */
93924b6b 1197
acd5c798
MK
1198static CORE_ADDR
1199i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1200{
63c0089f 1201 gdb_byte buf[8];
acd5c798 1202
875f8d0e 1203 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
acd5c798 1204 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 1205}
acd5c798 1206\f
93924b6b 1207
acd5c798 1208/* Normal frames. */
c5aa993b 1209
acd5c798 1210static struct i386_frame_cache *
10458914 1211i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 1212{
acd5c798 1213 struct i386_frame_cache *cache;
63c0089f 1214 gdb_byte buf[4];
acd5c798
MK
1215 int i;
1216
1217 if (*this_cache)
1218 return *this_cache;
1219
fd13a04a 1220 cache = i386_alloc_frame_cache ();
acd5c798
MK
1221 *this_cache = cache;
1222
1223 /* In principle, for normal frames, %ebp holds the frame pointer,
1224 which holds the base address for the current stack frame.
1225 However, for functions that don't need it, the frame pointer is
1226 optional. For these "frameless" functions the frame pointer is
1227 actually the frame pointer of the calling frame. Signal
1228 trampolines are just a special case of a "frameless" function.
1229 They (usually) share their frame pointer with the frame that was
1230 in progress when the signal occurred. */
1231
10458914 1232 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
acd5c798
MK
1233 cache->base = extract_unsigned_integer (buf, 4);
1234 if (cache->base == 0)
1235 return cache;
1236
1237 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1238 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1239
10458914 1240 cache->pc = get_frame_func (this_frame);
acd5c798 1241 if (cache->pc != 0)
10458914 1242 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
acd5c798 1243
92dd43fa
MK
1244 if (cache->stack_align)
1245 {
1246 /* Saved stack pointer has been saved in %ecx. */
10458914 1247 get_frame_register (this_frame, I386_ECX_REGNUM, buf);
92dd43fa
MK
1248 cache->saved_sp = extract_unsigned_integer(buf, 4);
1249 }
1250
acd5c798
MK
1251 if (cache->locals < 0)
1252 {
1253 /* We didn't find a valid frame, which means that CACHE->base
1254 currently holds the frame pointer for our calling frame. If
1255 we're at the start of a function, or somewhere half-way its
1256 prologue, the function's frame probably hasn't been fully
1257 setup yet. Try to reconstruct the base address for the stack
1258 frame by looking at the stack pointer. For truly "frameless"
1259 functions this might work too. */
1260
92dd43fa
MK
1261 if (cache->stack_align)
1262 {
1263 /* We're halfway aligning the stack. */
1264 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1265 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1266
1267 /* This will be added back below. */
1268 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1269 }
1270 else
1271 {
10458914 1272 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
92dd43fa
MK
1273 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1274 }
acd5c798
MK
1275 }
1276
1277 /* Now that we have the base address for the stack frame we can
1278 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1279 if (cache->saved_sp == 0)
1280 cache->saved_sp = cache->base + 8;
a7769679 1281
acd5c798
MK
1282 /* Adjust all the saved registers such that they contain addresses
1283 instead of offsets. */
1284 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1285 if (cache->saved_regs[i] != -1)
1286 cache->saved_regs[i] += cache->base;
acd5c798
MK
1287
1288 return cache;
a7769679
MK
1289}
1290
3a1e71e3 1291static void
10458914 1292i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1293 struct frame_id *this_id)
c906108c 1294{
10458914 1295 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1296
1297 /* This marks the outermost frame. */
1298 if (cache->base == 0)
1299 return;
1300
3e210248 1301 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1302 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1303}
1304
10458914
DJ
1305static struct value *
1306i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1307 int regnum)
acd5c798 1308{
10458914 1309 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1310
1311 gdb_assert (regnum >= 0);
1312
1313 /* The System V ABI says that:
1314
1315 "The flags register contains the system flags, such as the
1316 direction flag and the carry flag. The direction flag must be
1317 set to the forward (that is, zero) direction before entry and
1318 upon exit from a function. Other user flags have no specified
1319 role in the standard calling sequence and are not preserved."
1320
1321 To guarantee the "upon exit" part of that statement we fake a
1322 saved flags register that has its direction flag cleared.
1323
1324 Note that GCC doesn't seem to rely on the fact that the direction
1325 flag is cleared after a function return; it always explicitly
1326 clears the flag before operations where it matters.
1327
1328 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1329 right thing to do. The way we fake the flags register here makes
1330 it impossible to change it. */
1331
1332 if (regnum == I386_EFLAGS_REGNUM)
1333 {
10458914 1334 ULONGEST val;
c5aa993b 1335
10458914
DJ
1336 val = get_frame_register_unsigned (this_frame, regnum);
1337 val &= ~(1 << 10);
1338 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1339 }
1211c4e4 1340
acd5c798 1341 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1342 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1343
1344 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1345 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1346
fd13a04a 1347 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1348 return frame_unwind_got_memory (this_frame, regnum,
1349 cache->saved_regs[regnum]);
fd13a04a 1350
10458914 1351 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1352}
1353
1354static const struct frame_unwind i386_frame_unwind =
1355{
1356 NORMAL_FRAME,
1357 i386_frame_this_id,
10458914
DJ
1358 i386_frame_prev_register,
1359 NULL,
1360 default_frame_sniffer
acd5c798 1361};
acd5c798
MK
1362\f
1363
1364/* Signal trampolines. */
1365
1366static struct i386_frame_cache *
10458914 1367i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798
MK
1368{
1369 struct i386_frame_cache *cache;
10458914 1370 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1371 CORE_ADDR addr;
63c0089f 1372 gdb_byte buf[4];
acd5c798
MK
1373
1374 if (*this_cache)
1375 return *this_cache;
1376
fd13a04a 1377 cache = i386_alloc_frame_cache ();
acd5c798 1378
10458914 1379 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
acd5c798
MK
1380 cache->base = extract_unsigned_integer (buf, 4) - 4;
1381
10458914 1382 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1383 if (tdep->sc_reg_offset)
1384 {
1385 int i;
1386
1387 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1388
1389 for (i = 0; i < tdep->sc_num_regs; i++)
1390 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1391 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1392 }
1393 else
1394 {
fd13a04a
AC
1395 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1396 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1397 }
acd5c798
MK
1398
1399 *this_cache = cache;
1400 return cache;
1401}
1402
1403static void
10458914 1404i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1405 struct frame_id *this_id)
1406{
1407 struct i386_frame_cache *cache =
10458914 1408 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1409
3e210248 1410 /* See the end of i386_push_dummy_call. */
10458914 1411 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1412}
1413
10458914
DJ
1414static struct value *
1415i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1416 void **this_cache, int regnum)
acd5c798
MK
1417{
1418 /* Make sure we've initialized the cache. */
10458914 1419 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1420
10458914 1421 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1422}
c0d1d883 1423
10458914
DJ
1424static int
1425i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1426 struct frame_info *this_frame,
1427 void **this_prologue_cache)
acd5c798 1428{
10458914 1429 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1430
911bc6ee
MK
1431 /* We shouldn't even bother if we don't have a sigcontext_addr
1432 handler. */
1433 if (tdep->sigcontext_addr == NULL)
10458914 1434 return 0;
1c3545ae 1435
911bc6ee
MK
1436 if (tdep->sigtramp_p != NULL)
1437 {
10458914
DJ
1438 if (tdep->sigtramp_p (this_frame))
1439 return 1;
911bc6ee
MK
1440 }
1441
1442 if (tdep->sigtramp_start != 0)
1443 {
10458914 1444 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1445
1446 gdb_assert (tdep->sigtramp_end != 0);
1447 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1448 return 1;
911bc6ee 1449 }
acd5c798 1450
10458914 1451 return 0;
acd5c798 1452}
10458914
DJ
1453
1454static const struct frame_unwind i386_sigtramp_frame_unwind =
1455{
1456 SIGTRAMP_FRAME,
1457 i386_sigtramp_frame_this_id,
1458 i386_sigtramp_frame_prev_register,
1459 NULL,
1460 i386_sigtramp_frame_sniffer
1461};
acd5c798
MK
1462\f
1463
1464static CORE_ADDR
10458914 1465i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1466{
10458914 1467 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1468
1469 return cache->base;
1470}
1471
1472static const struct frame_base i386_frame_base =
1473{
1474 &i386_frame_unwind,
1475 i386_frame_base_address,
1476 i386_frame_base_address,
1477 i386_frame_base_address
1478};
1479
acd5c798 1480static struct frame_id
10458914 1481i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1482{
acd5c798
MK
1483 CORE_ADDR fp;
1484
10458914 1485 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1486
3e210248 1487 /* See the end of i386_push_dummy_call. */
10458914 1488 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1489}
fc338970 1490\f
c906108c 1491
fc338970
MK
1492/* Figure out where the longjmp will land. Slurp the args out of the
1493 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1494 structure from which we extract the address that we will land at.
28bcfd30 1495 This address is copied into PC. This routine returns non-zero on
436675d3 1496 success. */
c906108c 1497
8201327c 1498static int
60ade65d 1499i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1500{
436675d3 1501 gdb_byte buf[4];
c906108c 1502 CORE_ADDR sp, jb_addr;
20a6ec49
MD
1503 struct gdbarch *gdbarch = get_frame_arch (frame);
1504 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 1505
8201327c
MK
1506 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1507 longjmp will land. */
1508 if (jb_pc_offset == -1)
c906108c
SS
1509 return 0;
1510
436675d3
PA
1511 get_frame_register (frame, I386_ESP_REGNUM, buf);
1512 sp = extract_unsigned_integer (buf, 4);
1513 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
1514 return 0;
1515
436675d3
PA
1516 jb_addr = extract_unsigned_integer (buf, 4);
1517 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 1518 return 0;
c906108c 1519
436675d3 1520 *pc = extract_unsigned_integer (buf, 4);
c906108c
SS
1521 return 1;
1522}
fc338970 1523\f
c906108c 1524
7ccc1c74
JM
1525/* Check whether TYPE must be 16-byte-aligned when passed as a
1526 function argument. 16-byte vectors, _Decimal128 and structures or
1527 unions containing such types must be 16-byte-aligned; other
1528 arguments are 4-byte-aligned. */
1529
1530static int
1531i386_16_byte_align_p (struct type *type)
1532{
1533 type = check_typedef (type);
1534 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1535 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1536 && TYPE_LENGTH (type) == 16)
1537 return 1;
1538 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1539 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1540 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1541 || TYPE_CODE (type) == TYPE_CODE_UNION)
1542 {
1543 int i;
1544 for (i = 0; i < TYPE_NFIELDS (type); i++)
1545 {
1546 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1547 return 1;
1548 }
1549 }
1550 return 0;
1551}
1552
3a1e71e3 1553static CORE_ADDR
7d9b040b 1554i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1555 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1556 struct value **args, CORE_ADDR sp, int struct_return,
1557 CORE_ADDR struct_addr)
22f8ba57 1558{
63c0089f 1559 gdb_byte buf[4];
acd5c798 1560 int i;
7ccc1c74
JM
1561 int write_pass;
1562 int args_space = 0;
acd5c798 1563
7ccc1c74
JM
1564 /* Determine the total space required for arguments and struct
1565 return address in a first pass (allowing for 16-byte-aligned
1566 arguments), then push arguments in a second pass. */
1567
1568 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 1569 {
7ccc1c74
JM
1570 int args_space_used = 0;
1571 int have_16_byte_aligned_arg = 0;
1572
1573 if (struct_return)
1574 {
1575 if (write_pass)
1576 {
1577 /* Push value address. */
1578 store_unsigned_integer (buf, 4, struct_addr);
1579 write_memory (sp, buf, 4);
1580 args_space_used += 4;
1581 }
1582 else
1583 args_space += 4;
1584 }
1585
1586 for (i = 0; i < nargs; i++)
1587 {
1588 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 1589
7ccc1c74
JM
1590 if (write_pass)
1591 {
1592 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1593 args_space_used = align_up (args_space_used, 16);
acd5c798 1594
7ccc1c74
JM
1595 write_memory (sp + args_space_used,
1596 value_contents_all (args[i]), len);
1597 /* The System V ABI says that:
acd5c798 1598
7ccc1c74
JM
1599 "An argument's size is increased, if necessary, to make it a
1600 multiple of [32-bit] words. This may require tail padding,
1601 depending on the size of the argument."
22f8ba57 1602
7ccc1c74
JM
1603 This makes sure the stack stays word-aligned. */
1604 args_space_used += align_up (len, 4);
1605 }
1606 else
1607 {
1608 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1609 {
1610 args_space = align_up (args_space, 16);
1611 have_16_byte_aligned_arg = 1;
1612 }
1613 args_space += align_up (len, 4);
1614 }
1615 }
1616
1617 if (!write_pass)
1618 {
1619 if (have_16_byte_aligned_arg)
1620 args_space = align_up (args_space, 16);
1621 sp -= args_space;
1622 }
22f8ba57
MK
1623 }
1624
acd5c798
MK
1625 /* Store return address. */
1626 sp -= 4;
6a65450a 1627 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1628 write_memory (sp, buf, 4);
1629
1630 /* Finally, update the stack pointer... */
1631 store_unsigned_integer (buf, 4, sp);
1632 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1633
1634 /* ...and fake a frame pointer. */
1635 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1636
3e210248
AC
1637 /* MarkK wrote: This "+ 8" is all over the place:
1638 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 1639 i386_dummy_id). It's there, since all frame unwinders for
3e210248 1640 a given target have to agree (within a certain margin) on the
fd35795f 1641 definition of the stack address of a frame. Otherwise
3e210248
AC
1642 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1643 stack address *before* the function call as a frame's CFA. On
1644 the i386, when %ebp is used as a frame pointer, the offset
1645 between the contents %ebp and the CFA as defined by GCC. */
1646 return sp + 8;
22f8ba57
MK
1647}
1648
1a309862
MK
1649/* These registers are used for returning integers (and on some
1650 targets also for returning `struct' and `union' values when their
ef9dff19 1651 size and alignment match an integer type). */
acd5c798
MK
1652#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1653#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1654
c5e656c1
MK
1655/* Read, for architecture GDBARCH, a function return value of TYPE
1656 from REGCACHE, and copy that into VALBUF. */
1a309862 1657
3a1e71e3 1658static void
c5e656c1 1659i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1660 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1661{
c5e656c1 1662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1663 int len = TYPE_LENGTH (type);
63c0089f 1664 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1665
1e8d0a7b 1666 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1667 {
5716833c 1668 if (tdep->st0_regnum < 0)
1a309862 1669 {
8a3fe4f8 1670 warning (_("Cannot find floating-point return value."));
1a309862 1671 memset (valbuf, 0, len);
ef9dff19 1672 return;
1a309862
MK
1673 }
1674
c6ba6f0d
MK
1675 /* Floating-point return values can be found in %st(0). Convert
1676 its contents to the desired type. This is probably not
1677 exactly how it would happen on the target itself, but it is
1678 the best we can do. */
acd5c798 1679 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1680 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1681 }
1682 else
c5aa993b 1683 {
875f8d0e
UW
1684 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1685 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1686
1687 if (len <= low_size)
00f8375e 1688 {
0818c12a 1689 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1690 memcpy (valbuf, buf, len);
1691 }
d4f3574e
SS
1692 else if (len <= (low_size + high_size))
1693 {
0818c12a 1694 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1695 memcpy (valbuf, buf, low_size);
0818c12a 1696 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1697 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1698 }
1699 else
8e65ff28 1700 internal_error (__FILE__, __LINE__,
e2e0b3e5 1701 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1702 }
1703}
1704
c5e656c1
MK
1705/* Write, for architecture GDBARCH, a function return value of TYPE
1706 from VALBUF into REGCACHE. */
ef9dff19 1707
3a1e71e3 1708static void
c5e656c1 1709i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1710 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1711{
c5e656c1 1712 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1713 int len = TYPE_LENGTH (type);
1714
1e8d0a7b 1715 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1716 {
3d7f4f49 1717 ULONGEST fstat;
63c0089f 1718 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1719
5716833c 1720 if (tdep->st0_regnum < 0)
ef9dff19 1721 {
8a3fe4f8 1722 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1723 return;
1724 }
1725
635b0cc1
MK
1726 /* Returning floating-point values is a bit tricky. Apart from
1727 storing the return value in %st(0), we have to simulate the
1728 state of the FPU at function return point. */
1729
c6ba6f0d
MK
1730 /* Convert the value found in VALBUF to the extended
1731 floating-point format used by the FPU. This is probably
1732 not exactly how it would happen on the target itself, but
1733 it is the best we can do. */
1734 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1735 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1736
635b0cc1
MK
1737 /* Set the top of the floating-point register stack to 7. The
1738 actual value doesn't really matter, but 7 is what a normal
1739 function return would end up with if the program started out
1740 with a freshly initialized FPU. */
20a6ec49 1741 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 1742 fstat |= (7 << 11);
20a6ec49 1743 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 1744
635b0cc1
MK
1745 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1746 the floating-point register stack to 7, the appropriate value
1747 for the tag word is 0x3fff. */
20a6ec49 1748 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
1749 }
1750 else
1751 {
875f8d0e
UW
1752 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1753 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1754
1755 if (len <= low_size)
3d7f4f49 1756 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1757 else if (len <= (low_size + high_size))
1758 {
3d7f4f49
MK
1759 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1760 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1761 len - low_size, valbuf + low_size);
ef9dff19
MK
1762 }
1763 else
8e65ff28 1764 internal_error (__FILE__, __LINE__,
e2e0b3e5 1765 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
1766 }
1767}
fc338970 1768\f
ef9dff19 1769
8201327c
MK
1770/* This is the variable that is set with "set struct-convention", and
1771 its legitimate values. */
1772static const char default_struct_convention[] = "default";
1773static const char pcc_struct_convention[] = "pcc";
1774static const char reg_struct_convention[] = "reg";
1775static const char *valid_conventions[] =
1776{
1777 default_struct_convention,
1778 pcc_struct_convention,
1779 reg_struct_convention,
1780 NULL
1781};
1782static const char *struct_convention = default_struct_convention;
1783
0e4377e1
JB
1784/* Return non-zero if TYPE, which is assumed to be a structure,
1785 a union type, or an array type, should be returned in registers
1786 for architecture GDBARCH. */
c5e656c1 1787
8201327c 1788static int
c5e656c1 1789i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1790{
c5e656c1
MK
1791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1792 enum type_code code = TYPE_CODE (type);
1793 int len = TYPE_LENGTH (type);
8201327c 1794
0e4377e1
JB
1795 gdb_assert (code == TYPE_CODE_STRUCT
1796 || code == TYPE_CODE_UNION
1797 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1798
1799 if (struct_convention == pcc_struct_convention
1800 || (struct_convention == default_struct_convention
1801 && tdep->struct_return == pcc_struct_return))
1802 return 0;
1803
9edde48e
MK
1804 /* Structures consisting of a single `float', `double' or 'long
1805 double' member are returned in %st(0). */
1806 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1807 {
1808 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1809 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1810 return (len == 4 || len == 8 || len == 12);
1811 }
1812
c5e656c1
MK
1813 return (len == 1 || len == 2 || len == 4 || len == 8);
1814}
1815
1816/* Determine, for architecture GDBARCH, how a return value of TYPE
1817 should be returned. If it is supposed to be returned in registers,
1818 and READBUF is non-zero, read the appropriate value from REGCACHE,
1819 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1820 from WRITEBUF into REGCACHE. */
1821
1822static enum return_value_convention
c055b101
CV
1823i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1824 struct type *type, struct regcache *regcache,
1825 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
1826{
1827 enum type_code code = TYPE_CODE (type);
1828
5daa78cc
TJB
1829 if (((code == TYPE_CODE_STRUCT
1830 || code == TYPE_CODE_UNION
1831 || code == TYPE_CODE_ARRAY)
1832 && !i386_reg_struct_return_p (gdbarch, type))
1833 /* 128-bit decimal float uses the struct return convention. */
1834 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
1835 {
1836 /* The System V ABI says that:
1837
1838 "A function that returns a structure or union also sets %eax
1839 to the value of the original address of the caller's area
1840 before it returns. Thus when the caller receives control
1841 again, the address of the returned object resides in register
1842 %eax and can be used to access the object."
1843
1844 So the ABI guarantees that we can always find the return
1845 value just after the function has returned. */
1846
0e4377e1
JB
1847 /* Note that the ABI doesn't mention functions returning arrays,
1848 which is something possible in certain languages such as Ada.
1849 In this case, the value is returned as if it was wrapped in
1850 a record, so the convention applied to records also applies
1851 to arrays. */
1852
31db7b6c
MK
1853 if (readbuf)
1854 {
1855 ULONGEST addr;
1856
1857 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1858 read_memory (addr, readbuf, TYPE_LENGTH (type));
1859 }
1860
1861 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1862 }
c5e656c1
MK
1863
1864 /* This special case is for structures consisting of a single
9edde48e
MK
1865 `float', `double' or 'long double' member. These structures are
1866 returned in %st(0). For these structures, we call ourselves
1867 recursively, changing TYPE into the type of the first member of
1868 the structure. Since that should work for all structures that
1869 have only one member, we don't bother to check the member's type
1870 here. */
c5e656c1
MK
1871 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1872 {
1873 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
1874 return i386_return_value (gdbarch, func_type, type, regcache,
1875 readbuf, writebuf);
c5e656c1
MK
1876 }
1877
1878 if (readbuf)
1879 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1880 if (writebuf)
1881 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1882
c5e656c1 1883 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1884}
1885\f
1886
5ae96ec1
MK
1887/* Type for %eflags. */
1888struct type *i386_eflags_type;
1889
794ac428 1890/* Type for %mxcsr. */
878d9193 1891struct type *i386_mxcsr_type;
5ae96ec1
MK
1892
1893/* Construct types for ISA-specific registers. */
1894static void
1895i386_init_types (void)
1896{
1897 struct type *type;
1898
1899 type = init_flags_type ("builtin_type_i386_eflags", 4);
1900 append_flags_type_flag (type, 0, "CF");
1901 append_flags_type_flag (type, 1, NULL);
1902 append_flags_type_flag (type, 2, "PF");
1903 append_flags_type_flag (type, 4, "AF");
1904 append_flags_type_flag (type, 6, "ZF");
1905 append_flags_type_flag (type, 7, "SF");
1906 append_flags_type_flag (type, 8, "TF");
1907 append_flags_type_flag (type, 9, "IF");
1908 append_flags_type_flag (type, 10, "DF");
1909 append_flags_type_flag (type, 11, "OF");
1910 append_flags_type_flag (type, 14, "NT");
1911 append_flags_type_flag (type, 16, "RF");
1912 append_flags_type_flag (type, 17, "VM");
1913 append_flags_type_flag (type, 18, "AC");
1914 append_flags_type_flag (type, 19, "VIF");
1915 append_flags_type_flag (type, 20, "VIP");
1916 append_flags_type_flag (type, 21, "ID");
1917 i386_eflags_type = type;
21b4b2f2 1918
878d9193
MK
1919 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1920 append_flags_type_flag (type, 0, "IE");
1921 append_flags_type_flag (type, 1, "DE");
1922 append_flags_type_flag (type, 2, "ZE");
1923 append_flags_type_flag (type, 3, "OE");
1924 append_flags_type_flag (type, 4, "UE");
1925 append_flags_type_flag (type, 5, "PE");
1926 append_flags_type_flag (type, 6, "DAZ");
1927 append_flags_type_flag (type, 7, "IM");
1928 append_flags_type_flag (type, 8, "DM");
1929 append_flags_type_flag (type, 9, "ZM");
1930 append_flags_type_flag (type, 10, "OM");
1931 append_flags_type_flag (type, 11, "UM");
1932 append_flags_type_flag (type, 12, "PM");
1933 append_flags_type_flag (type, 15, "FZ");
1934 i386_mxcsr_type = type;
21b4b2f2
JB
1935}
1936
794ac428
UW
1937/* Construct vector type for MMX registers. */
1938struct type *
1939i386_mmx_type (struct gdbarch *gdbarch)
1940{
1941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1942
1943 if (!tdep->i386_mmx_type)
1944 {
1945 /* The type we're building is this: */
1946#if 0
1947 union __gdb_builtin_type_vec64i
1948 {
1949 int64_t uint64;
1950 int32_t v2_int32[2];
1951 int16_t v4_int16[4];
1952 int8_t v8_int8[8];
1953 };
1954#endif
1955
1956 struct type *t;
1957
1958 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1959 append_composite_type_field (t, "uint64", builtin_type_int64);
1960 append_composite_type_field (t, "v2_int32",
1961 init_vector_type (builtin_type_int32, 2));
1962 append_composite_type_field (t, "v4_int16",
1963 init_vector_type (builtin_type_int16, 4));
1964 append_composite_type_field (t, "v8_int8",
1965 init_vector_type (builtin_type_int8, 8));
1966
1967 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1968 TYPE_NAME (t) = "builtin_type_vec64i";
1969 tdep->i386_mmx_type = t;
1970 }
1971
1972 return tdep->i386_mmx_type;
1973}
1974
1975struct type *
1976i386_sse_type (struct gdbarch *gdbarch)
1977{
1978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1979
1980 if (!tdep->i386_sse_type)
1981 {
1982 /* The type we're building is this: */
1983#if 0
1984 union __gdb_builtin_type_vec128i
1985 {
1986 int128_t uint128;
1987 int64_t v2_int64[2];
1988 int32_t v4_int32[4];
1989 int16_t v8_int16[8];
1990 int8_t v16_int8[16];
1991 double v2_double[2];
1992 float v4_float[4];
1993 };
1994#endif
1995
1996 struct type *t;
1997
1998 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1999 append_composite_type_field (t, "v4_float",
2000 init_vector_type (builtin_type_float, 4));
2001 append_composite_type_field (t, "v2_double",
2002 init_vector_type (builtin_type_double, 2));
2003 append_composite_type_field (t, "v16_int8",
2004 init_vector_type (builtin_type_int8, 16));
2005 append_composite_type_field (t, "v8_int16",
2006 init_vector_type (builtin_type_int16, 8));
2007 append_composite_type_field (t, "v4_int32",
2008 init_vector_type (builtin_type_int32, 4));
2009 append_composite_type_field (t, "v2_int64",
2010 init_vector_type (builtin_type_int64, 2));
2011 append_composite_type_field (t, "uint128", builtin_type_int128);
2012
2013 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2014 TYPE_NAME (t) = "builtin_type_vec128i";
2015 tdep->i386_sse_type = t;
2016 }
2017
2018 return tdep->i386_sse_type;
2019}
2020
d7a0d72c
MK
2021/* Return the GDB type object for the "standard" data type of data in
2022 register REGNUM. Perhaps %esi and %edi should go here, but
2023 potentially they could be used for things other than address. */
2024
3a1e71e3 2025static struct type *
4e259f09 2026i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2027{
ab533587
MK
2028 if (regnum == I386_EIP_REGNUM)
2029 return builtin_type_void_func_ptr;
2030
5ae96ec1
MK
2031 if (regnum == I386_EFLAGS_REGNUM)
2032 return i386_eflags_type;
2033
ab533587
MK
2034 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
2035 return builtin_type_void_data_ptr;
d7a0d72c 2036
20a6ec49 2037 if (i386_fp_regnum_p (gdbarch, regnum))
c6ba6f0d 2038 return builtin_type_i387_ext;
d7a0d72c 2039
878d9193 2040 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 2041 return i386_mmx_type (gdbarch);
878d9193 2042
5716833c 2043 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 2044 return i386_sse_type (gdbarch);
d7a0d72c 2045
20a6ec49 2046 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
878d9193
MK
2047 return i386_mxcsr_type;
2048
d7a0d72c
MK
2049 return builtin_type_int;
2050}
2051
28fc6740 2052/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2053 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2054
2055static int
c86c27af 2056i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2057{
5716833c
MK
2058 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2059 int mmxreg, fpreg;
28fc6740
AC
2060 ULONGEST fstat;
2061 int tos;
c86c27af 2062
5716833c 2063 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2064 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2065 tos = (fstat >> 11) & 0x7;
5716833c
MK
2066 fpreg = (mmxreg + tos) % 8;
2067
20a6ec49 2068 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2069}
2070
2071static void
2072i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2073 int regnum, gdb_byte *buf)
28fc6740 2074{
5716833c 2075 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2076 {
63c0089f 2077 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
2078 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2079
28fc6740 2080 /* Extract (always little endian). */
c86c27af 2081 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 2082 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
2083 }
2084 else
2085 regcache_raw_read (regcache, regnum, buf);
2086}
2087
2088static void
2089i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2090 int regnum, const gdb_byte *buf)
28fc6740 2091{
5716833c 2092 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2093 {
63c0089f 2094 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
2095 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2096
28fc6740
AC
2097 /* Read ... */
2098 regcache_raw_read (regcache, fpnum, mmx_buf);
2099 /* ... Modify ... (always little endian). */
f837910f 2100 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
2101 /* ... Write. */
2102 regcache_raw_write (regcache, fpnum, mmx_buf);
2103 }
2104 else
2105 regcache_raw_write (regcache, regnum, buf);
2106}
ff2e87ac
AC
2107\f
2108
ff2e87ac
AC
2109/* Return the register number of the register allocated by GCC after
2110 REGNUM, or -1 if there is no such register. */
2111
2112static int
2113i386_next_regnum (int regnum)
2114{
2115 /* GCC allocates the registers in the order:
2116
2117 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2118
2119 Since storing a variable in %esp doesn't make any sense we return
2120 -1 for %ebp and for %esp itself. */
2121 static int next_regnum[] =
2122 {
2123 I386_EDX_REGNUM, /* Slot for %eax. */
2124 I386_EBX_REGNUM, /* Slot for %ecx. */
2125 I386_ECX_REGNUM, /* Slot for %edx. */
2126 I386_ESI_REGNUM, /* Slot for %ebx. */
2127 -1, -1, /* Slots for %esp and %ebp. */
2128 I386_EDI_REGNUM, /* Slot for %esi. */
2129 I386_EBP_REGNUM /* Slot for %edi. */
2130 };
2131
de5b9bb9 2132 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2133 return next_regnum[regnum];
28fc6740 2134
ff2e87ac
AC
2135 return -1;
2136}
2137
2138/* Return nonzero if a value of type TYPE stored in register REGNUM
2139 needs any special handling. */
d7a0d72c 2140
3a1e71e3 2141static int
0abe36f5 2142i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 2143{
de5b9bb9
MK
2144 int len = TYPE_LENGTH (type);
2145
ff2e87ac
AC
2146 /* Values may be spread across multiple registers. Most debugging
2147 formats aren't expressive enough to specify the locations, so
2148 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2149 have a length that is a multiple of the word size, since GCC
2150 doesn't seem to put any other types into registers. */
2151 if (len > 4 && len % 4 == 0)
2152 {
2153 int last_regnum = regnum;
2154
2155 while (len > 4)
2156 {
2157 last_regnum = i386_next_regnum (last_regnum);
2158 len -= 4;
2159 }
2160
2161 if (last_regnum != -1)
2162 return 1;
2163 }
ff2e87ac 2164
0abe36f5 2165 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2166}
2167
ff2e87ac
AC
2168/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2169 return its contents in TO. */
ac27f131 2170
3a1e71e3 2171static void
ff2e87ac 2172i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 2173 struct type *type, gdb_byte *to)
ac27f131 2174{
20a6ec49 2175 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2176 int len = TYPE_LENGTH (type);
de5b9bb9 2177
ff2e87ac
AC
2178 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2179 available in FRAME (i.e. if it wasn't saved)? */
3d261580 2180
20a6ec49 2181 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 2182 {
d532c08f
MK
2183 i387_register_to_value (frame, regnum, type, to);
2184 return;
8d7f6b4a 2185 }
ff2e87ac 2186
fd35795f 2187 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2188
2189 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2190
de5b9bb9
MK
2191 while (len > 0)
2192 {
2193 gdb_assert (regnum != -1);
20a6ec49 2194 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2195
42835c2b 2196 get_frame_register (frame, regnum, to);
de5b9bb9
MK
2197 regnum = i386_next_regnum (regnum);
2198 len -= 4;
42835c2b 2199 to += 4;
de5b9bb9 2200 }
ac27f131
MK
2201}
2202
ff2e87ac
AC
2203/* Write the contents FROM of a value of type TYPE into register
2204 REGNUM in frame FRAME. */
ac27f131 2205
3a1e71e3 2206static void
ff2e87ac 2207i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2208 struct type *type, const gdb_byte *from)
ac27f131 2209{
de5b9bb9 2210 int len = TYPE_LENGTH (type);
de5b9bb9 2211
20a6ec49 2212 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2213 {
d532c08f
MK
2214 i387_value_to_register (frame, regnum, type, from);
2215 return;
2216 }
3d261580 2217
fd35795f 2218 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2219
2220 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2221
de5b9bb9
MK
2222 while (len > 0)
2223 {
2224 gdb_assert (regnum != -1);
875f8d0e 2225 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2226
42835c2b 2227 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2228 regnum = i386_next_regnum (regnum);
2229 len -= 4;
42835c2b 2230 from += 4;
de5b9bb9 2231 }
ac27f131 2232}
ff2e87ac 2233\f
7fdafb5a
MK
2234/* Supply register REGNUM from the buffer specified by GREGS and LEN
2235 in the general-purpose register set REGSET to register cache
2236 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2237
20187ed5 2238void
473f17b0
MK
2239i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2240 int regnum, const void *gregs, size_t len)
2241{
9ea75c57 2242 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2243 const gdb_byte *regs = gregs;
473f17b0
MK
2244 int i;
2245
2246 gdb_assert (len == tdep->sizeof_gregset);
2247
2248 for (i = 0; i < tdep->gregset_num_regs; i++)
2249 {
2250 if ((regnum == i || regnum == -1)
2251 && tdep->gregset_reg_offset[i] != -1)
2252 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2253 }
2254}
2255
7fdafb5a
MK
2256/* Collect register REGNUM from the register cache REGCACHE and store
2257 it in the buffer specified by GREGS and LEN as described by the
2258 general-purpose register set REGSET. If REGNUM is -1, do this for
2259 all registers in REGSET. */
2260
2261void
2262i386_collect_gregset (const struct regset *regset,
2263 const struct regcache *regcache,
2264 int regnum, void *gregs, size_t len)
2265{
2266 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2267 gdb_byte *regs = gregs;
7fdafb5a
MK
2268 int i;
2269
2270 gdb_assert (len == tdep->sizeof_gregset);
2271
2272 for (i = 0; i < tdep->gregset_num_regs; i++)
2273 {
2274 if ((regnum == i || regnum == -1)
2275 && tdep->gregset_reg_offset[i] != -1)
2276 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2277 }
2278}
2279
2280/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2281 in the floating-point register set REGSET to register cache
2282 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2283
2284static void
2285i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2286 int regnum, const void *fpregs, size_t len)
2287{
9ea75c57 2288 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2289
66a72d25
MK
2290 if (len == I387_SIZEOF_FXSAVE)
2291 {
2292 i387_supply_fxsave (regcache, regnum, fpregs);
2293 return;
2294 }
2295
473f17b0
MK
2296 gdb_assert (len == tdep->sizeof_fpregset);
2297 i387_supply_fsave (regcache, regnum, fpregs);
2298}
8446b36a 2299
2f305df1
MK
2300/* Collect register REGNUM from the register cache REGCACHE and store
2301 it in the buffer specified by FPREGS and LEN as described by the
2302 floating-point register set REGSET. If REGNUM is -1, do this for
2303 all registers in REGSET. */
7fdafb5a
MK
2304
2305static void
2306i386_collect_fpregset (const struct regset *regset,
2307 const struct regcache *regcache,
2308 int regnum, void *fpregs, size_t len)
2309{
2310 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2311
2312 if (len == I387_SIZEOF_FXSAVE)
2313 {
2314 i387_collect_fxsave (regcache, regnum, fpregs);
2315 return;
2316 }
2317
2318 gdb_assert (len == tdep->sizeof_fpregset);
2319 i387_collect_fsave (regcache, regnum, fpregs);
2320}
2321
8446b36a
MK
2322/* Return the appropriate register set for the core section identified
2323 by SECT_NAME and SECT_SIZE. */
2324
2325const struct regset *
2326i386_regset_from_core_section (struct gdbarch *gdbarch,
2327 const char *sect_name, size_t sect_size)
2328{
2329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2330
2331 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2332 {
2333 if (tdep->gregset == NULL)
7fdafb5a
MK
2334 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2335 i386_collect_gregset);
8446b36a
MK
2336 return tdep->gregset;
2337 }
2338
66a72d25
MK
2339 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2340 || (strcmp (sect_name, ".reg-xfp") == 0
2341 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2342 {
2343 if (tdep->fpregset == NULL)
7fdafb5a
MK
2344 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2345 i386_collect_fpregset);
8446b36a
MK
2346 return tdep->fpregset;
2347 }
2348
2349 return NULL;
2350}
473f17b0 2351\f
fc338970 2352
fc338970 2353/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2354
2355CORE_ADDR
1cce71eb 2356i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2357{
fc338970 2358 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2359 {
c5aa993b 2360 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2361 struct minimal_symbol *indsym =
fc338970 2362 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2363 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2364
c5aa993b 2365 if (symname)
c906108c 2366 {
c5aa993b
JM
2367 if (strncmp (symname, "__imp_", 6) == 0
2368 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2369 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2370 }
2371 }
fc338970 2372 return 0; /* Not a trampoline. */
c906108c 2373}
fc338970
MK
2374\f
2375
10458914
DJ
2376/* Return whether the THIS_FRAME corresponds to a sigtramp
2377 routine. */
8201327c
MK
2378
2379static int
10458914 2380i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2381{
10458914 2382 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2383 char *name;
2384
2385 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2386 return (name && strcmp ("_sigtramp", name) == 0);
2387}
2388\f
2389
fc338970
MK
2390/* We have two flavours of disassembly. The machinery on this page
2391 deals with switching between those. */
c906108c
SS
2392
2393static int
a89aa300 2394i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2395{
5e3397bb
MK
2396 gdb_assert (disassembly_flavor == att_flavor
2397 || disassembly_flavor == intel_flavor);
2398
2399 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2400 constified, cast to prevent a compiler warning. */
2401 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2402
2403 return print_insn_i386 (pc, info);
7a292a7a 2404}
fc338970 2405\f
3ce1502b 2406
8201327c
MK
2407/* There are a few i386 architecture variants that differ only
2408 slightly from the generic i386 target. For now, we don't give them
2409 their own source file, but include them here. As a consequence,
2410 they'll always be included. */
3ce1502b 2411
8201327c 2412/* System V Release 4 (SVR4). */
3ce1502b 2413
10458914
DJ
2414/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2415 routine. */
911bc6ee 2416
8201327c 2417static int
10458914 2418i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 2419{
10458914 2420 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2421 char *name;
2422
acd5c798
MK
2423 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2424 currently unknown. */
911bc6ee 2425 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2426 return (name && (strcmp ("_sigreturn", name) == 0
2427 || strcmp ("_sigacthandler", name) == 0
2428 || strcmp ("sigvechandler", name) == 0));
2429}
d2a7c97a 2430
10458914
DJ
2431/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2432 address of the associated sigcontext (ucontext) structure. */
3ce1502b 2433
3a1e71e3 2434static CORE_ADDR
10458914 2435i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 2436{
63c0089f 2437 gdb_byte buf[4];
acd5c798 2438 CORE_ADDR sp;
3ce1502b 2439
10458914 2440 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
acd5c798 2441 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2442
acd5c798 2443 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2444}
2445\f
3ce1502b 2446
8201327c 2447/* Generic ELF. */
d2a7c97a 2448
8201327c
MK
2449void
2450i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2451{
c4fc7f1b
MK
2452 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2453 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2454}
3ce1502b 2455
8201327c 2456/* System V Release 4 (SVR4). */
3ce1502b 2457
8201327c
MK
2458void
2459i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2460{
2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2462
8201327c
MK
2463 /* System V Release 4 uses ELF. */
2464 i386_elf_init_abi (info, gdbarch);
3ce1502b 2465
dfe01d39 2466 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2467 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2468
911bc6ee 2469 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2470 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2471 tdep->sc_pc_offset = 36 + 14 * 4;
2472 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2473
8201327c 2474 tdep->jb_pc_offset = 20;
3ce1502b
MK
2475}
2476
8201327c 2477/* DJGPP. */
3ce1502b 2478
3a1e71e3 2479static void
8201327c 2480i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2481{
8201327c 2482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2483
911bc6ee
MK
2484 /* DJGPP doesn't have any special frames for signal handlers. */
2485 tdep->sigtramp_p = NULL;
3ce1502b 2486
8201327c 2487 tdep->jb_pc_offset = 36;
3ce1502b 2488}
8201327c 2489\f
2acceee2 2490
38c968cf
AC
2491/* i386 register groups. In addition to the normal groups, add "mmx"
2492 and "sse". */
2493
2494static struct reggroup *i386_sse_reggroup;
2495static struct reggroup *i386_mmx_reggroup;
2496
2497static void
2498i386_init_reggroups (void)
2499{
2500 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2501 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2502}
2503
2504static void
2505i386_add_reggroups (struct gdbarch *gdbarch)
2506{
2507 reggroup_add (gdbarch, i386_sse_reggroup);
2508 reggroup_add (gdbarch, i386_mmx_reggroup);
2509 reggroup_add (gdbarch, general_reggroup);
2510 reggroup_add (gdbarch, float_reggroup);
2511 reggroup_add (gdbarch, all_reggroup);
2512 reggroup_add (gdbarch, save_reggroup);
2513 reggroup_add (gdbarch, restore_reggroup);
2514 reggroup_add (gdbarch, vector_reggroup);
2515 reggroup_add (gdbarch, system_reggroup);
2516}
2517
2518int
2519i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2520 struct reggroup *group)
2521{
5716833c
MK
2522 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2523 || i386_mxcsr_regnum_p (gdbarch, regnum));
20a6ec49
MD
2524 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2525 || i386_fpc_regnum_p (gdbarch, regnum));
5716833c 2526 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2527
38c968cf
AC
2528 if (group == i386_mmx_reggroup)
2529 return mmx_regnum_p;
2530 if (group == i386_sse_reggroup)
2531 return sse_regnum_p;
2532 if (group == vector_reggroup)
2533 return (mmx_regnum_p || sse_regnum_p);
2534 if (group == float_reggroup)
2535 return fp_regnum_p;
2536 if (group == general_reggroup)
2537 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2538
38c968cf
AC
2539 return default_register_reggroup_p (gdbarch, regnum, group);
2540}
38c968cf 2541\f
acd5c798 2542
f837910f
MK
2543/* Get the ARGIth function argument for the current function. */
2544
42c466d7 2545static CORE_ADDR
143985b7
AF
2546i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2547 struct type *type)
2548{
f837910f
MK
2549 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2550 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2551}
2552
2553\f
3a1e71e3 2554static struct gdbarch *
a62cc96e
AC
2555i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2556{
cd3c07fc 2557 struct gdbarch_tdep *tdep;
a62cc96e
AC
2558 struct gdbarch *gdbarch;
2559
4be87837
DJ
2560 /* If there is already a candidate, use it. */
2561 arches = gdbarch_list_lookup_by_info (arches, &info);
2562 if (arches != NULL)
2563 return arches->gdbarch;
a62cc96e
AC
2564
2565 /* Allocate space for the new architecture. */
794ac428 2566 tdep = XCALLOC (1, struct gdbarch_tdep);
a62cc96e
AC
2567 gdbarch = gdbarch_alloc (&info, tdep);
2568
473f17b0
MK
2569 /* General-purpose registers. */
2570 tdep->gregset = NULL;
2571 tdep->gregset_reg_offset = NULL;
2572 tdep->gregset_num_regs = I386_NUM_GREGS;
2573 tdep->sizeof_gregset = 0;
2574
2575 /* Floating-point registers. */
2576 tdep->fpregset = NULL;
2577 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2578
5716833c 2579 /* The default settings include the FPU registers, the MMX registers
fd35795f 2580 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2581 by adjusting the members `st0_regnum', `mm0_regnum' and
2582 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2583 will show up in the output of "info all-registers". Ideally we
2584 should try to autodetect whether they are available, such that we
2585 can prevent "info all-registers" from displaying registers that
2586 aren't available.
2587
2588 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2589 [the SSE registers] always (even when they don't exist) or never
2590 showing them to the user (even when they do exist), I prefer the
2591 former over the latter. */
2592
2593 tdep->st0_regnum = I386_ST0_REGNUM;
2594
2595 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2596 calculating the register number for %mm0 until we know the number
5716833c
MK
2597 of raw registers. */
2598 tdep->mm0_regnum = 0;
2599
2600 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2601 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2602
8201327c
MK
2603 tdep->jb_pc_offset = -1;
2604 tdep->struct_return = pcc_struct_return;
8201327c
MK
2605 tdep->sigtramp_start = 0;
2606 tdep->sigtramp_end = 0;
911bc6ee 2607 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2608 tdep->sigcontext_addr = NULL;
a3386186 2609 tdep->sc_reg_offset = NULL;
8201327c 2610 tdep->sc_pc_offset = -1;
21d0e8a4 2611 tdep->sc_sp_offset = -1;
8201327c 2612
896fb97d
MK
2613 /* The format used for `long double' on almost all i386 targets is
2614 the i387 extended floating-point format. In fact, of all targets
2615 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2616 on having a `long double' that's not `long' at all. */
8da61cc4 2617 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
21d0e8a4 2618
66da5fd8 2619 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2620 bits, a `long double' actually takes up 96, probably to enforce
2621 alignment. */
2622 set_gdbarch_long_double_bit (gdbarch, 96);
2623
49ed40de
KB
2624 /* The default ABI includes general-purpose registers,
2625 floating-point registers, and the SSE registers. */
2626 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2627 set_gdbarch_register_name (gdbarch, i386_register_name);
2628 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2629
acd5c798
MK
2630 /* Register numbers of various important registers. */
2631 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2632 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2633 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2634 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2635
c4fc7f1b
MK
2636 /* NOTE: kettenis/20040418: GCC does have two possible register
2637 numbering schemes on the i386: dbx and SVR4. These schemes
2638 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2639 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2640 dbx_register_map[] and svr4_dbx_register_map in
2641 gcc/config/i386.c. GCC also defines a third numbering scheme in
2642 gcc/config/i386.c, which it designates as the "default" register
2643 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2644 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2645 amd64-tdep.c.
2646
2647 Currently, each GCC i386 target always uses the same register
2648 numbering scheme across all its supported debugging formats
2649 i.e. SDB (COFF), stabs and DWARF 2. This is because
2650 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2651 DBX_REGISTER_NUMBER macro which is defined by each target's
2652 respective config header in a manner independent of the requested
2653 output debugging format.
2654
2655 This does not match the arrangement below, which presumes that
2656 the SDB and stabs numbering schemes differ from the DWARF and
2657 DWARF 2 ones. The reason for this arrangement is that it is
2658 likely to get the numbering scheme for the target's
2659 default/native debug format right. For targets where GCC is the
2660 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2661 targets where the native toolchain uses a different numbering
2662 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2663 the defaults below will have to be overridden, like
2664 i386_elf_init_abi() does. */
c4fc7f1b
MK
2665
2666 /* Use the dbx register numbering scheme for stabs and COFF. */
2667 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2668 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2669
ba2b1c56 2670 /* Use the SVR4 register numbering scheme for DWARF 2. */
c4fc7f1b 2671 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e 2672
055d23b8 2673 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
356a6b3e
MK
2674 be in use on any of the supported i386 targets. */
2675
61113f8b
MK
2676 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2677
8201327c 2678 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2679
a62cc96e 2680 /* Call dummy code. */
acd5c798 2681 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2682
ff2e87ac
AC
2683 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2684 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2685 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2686
c5e656c1 2687 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2688
93924b6b
MK
2689 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2690
2691 /* Stack grows downward. */
2692 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2693
2694 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2695 set_gdbarch_decr_pc_after_break (gdbarch, 1);
237fc4c9 2696 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
42fdc8df 2697
42fdc8df 2698 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2699
28fc6740 2700 /* Wire in the MMX registers. */
0f751ff2 2701 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2702 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2703 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2704
5e3397bb
MK
2705 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2706
10458914 2707 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
acd5c798
MK
2708
2709 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2710
38c968cf
AC
2711 /* Add the i386 register groups. */
2712 i386_add_reggroups (gdbarch);
2713 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2714
143985b7
AF
2715 /* Helper for function argument information. */
2716 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2717
6405b0a6 2718 /* Hook in the DWARF CFI frame unwinder. */
10458914 2719 dwarf2_append_unwinders (gdbarch);
6405b0a6 2720
acd5c798 2721 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2722
3ce1502b 2723 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2724 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2725
10458914
DJ
2726 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
2727 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 2728
8446b36a
MK
2729 /* If we have a register mapping, enable the generic core file
2730 support, unless it has already been enabled. */
2731 if (tdep->gregset_reg_offset
2732 && !gdbarch_regset_from_core_section_p (gdbarch))
2733 set_gdbarch_regset_from_core_section (gdbarch,
2734 i386_regset_from_core_section);
2735
5716833c
MK
2736 /* Unless support for MMX has been disabled, make %mm0 the first
2737 pseudo-register. */
2738 if (tdep->mm0_regnum == 0)
2739 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2740
a62cc96e
AC
2741 return gdbarch;
2742}
2743
8201327c
MK
2744static enum gdb_osabi
2745i386_coff_osabi_sniffer (bfd *abfd)
2746{
762c5349
MK
2747 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2748 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2749 return GDB_OSABI_GO32;
2750
2751 return GDB_OSABI_UNKNOWN;
2752}
8201327c
MK
2753\f
2754
28e9e0f0
MK
2755/* Provide a prototype to silence -Wmissing-prototypes. */
2756void _initialize_i386_tdep (void);
2757
c906108c 2758void
fba45db2 2759_initialize_i386_tdep (void)
c906108c 2760{
a62cc96e
AC
2761 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2762
fc338970 2763 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2764 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2765 &disassembly_flavor, _("\
2766Set the disassembly flavor."), _("\
2767Show the disassembly flavor."), _("\
2768The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2769 NULL,
2770 NULL, /* FIXME: i18n: */
2771 &setlist, &showlist);
8201327c
MK
2772
2773 /* Add the variable that controls the convention for returning
2774 structs. */
7ab04401
AC
2775 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2776 &struct_convention, _("\
2777Set the convention for returning small structs."), _("\
2778Show the convention for returning small structs."), _("\
2779Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2780is \"default\"."),
2781 NULL,
2782 NULL, /* FIXME: i18n: */
2783 &setlist, &showlist);
8201327c
MK
2784
2785 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2786 i386_coff_osabi_sniffer);
8201327c 2787
05816f70 2788 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2789 i386_svr4_init_abi);
05816f70 2790 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2791 i386_go32_init_abi);
38c968cf 2792
5ae96ec1 2793 /* Initialize the i386-specific register groups & types. */
38c968cf 2794 i386_init_reggroups ();
5ae96ec1 2795 i386_init_types();
c906108c 2796}
This page took 0.817591 seconds and 4 git commands to generate.