Introduce a gdb_ref_ptr specialization for struct value
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
e2882c85 3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
c906108c 26#include "frame.h"
acd5c798
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
c906108c 29#include "inferior.h"
45741a9c 30#include "infrun.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
3b2ca824 42#include "target-float.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
22916b07
YQ
53#include "target-descriptions.h"
54#include "arch/i386.h"
90884b2b 55
6710bf39
SS
56#include "ax.h"
57#include "ax-gdb.h"
58
55aa24fb
SDJ
59#include "stap-probe.h"
60#include "user-regs.h"
61#include "cli/cli-utils.h"
62#include "expression.h"
63#include "parser-defs.h"
64#include <ctype.h>
325fac50 65#include <algorithm>
55aa24fb 66
c4fc7f1b 67/* Register names. */
c40e1eab 68
90884b2b 69static const char *i386_register_names[] =
fc633446
MK
70{
71 "eax", "ecx", "edx", "ebx",
72 "esp", "ebp", "esi", "edi",
73 "eip", "eflags", "cs", "ss",
74 "ds", "es", "fs", "gs",
75 "st0", "st1", "st2", "st3",
76 "st4", "st5", "st6", "st7",
77 "fctrl", "fstat", "ftag", "fiseg",
78 "fioff", "foseg", "fooff", "fop",
79 "xmm0", "xmm1", "xmm2", "xmm3",
80 "xmm4", "xmm5", "xmm6", "xmm7",
81 "mxcsr"
82};
83
01f9f808
MS
84static const char *i386_zmm_names[] =
85{
86 "zmm0", "zmm1", "zmm2", "zmm3",
87 "zmm4", "zmm5", "zmm6", "zmm7"
88};
89
90static const char *i386_zmmh_names[] =
91{
92 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
93 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
94};
95
96static const char *i386_k_names[] =
97{
98 "k0", "k1", "k2", "k3",
99 "k4", "k5", "k6", "k7"
100};
101
c131fcee
L
102static const char *i386_ymm_names[] =
103{
104 "ymm0", "ymm1", "ymm2", "ymm3",
105 "ymm4", "ymm5", "ymm6", "ymm7",
106};
107
108static const char *i386_ymmh_names[] =
109{
110 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
111 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
112};
113
1dbcd68c
WT
114static const char *i386_mpx_names[] =
115{
116 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
117};
118
51547df6
MS
119static const char* i386_pkeys_names[] =
120{
121 "pkru"
122};
123
1dbcd68c
WT
124/* Register names for MPX pseudo-registers. */
125
126static const char *i386_bnd_names[] =
127{
128 "bnd0", "bnd1", "bnd2", "bnd3"
129};
130
c4fc7f1b 131/* Register names for MMX pseudo-registers. */
28fc6740 132
90884b2b 133static const char *i386_mmx_names[] =
28fc6740
AC
134{
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137};
c40e1eab 138
1ba53b71
L
139/* Register names for byte pseudo-registers. */
140
141static const char *i386_byte_names[] =
142{
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145};
146
147/* Register names for word pseudo-registers. */
148
149static const char *i386_word_names[] =
150{
151 "ax", "cx", "dx", "bx",
9cad29ac 152 "", "bp", "si", "di"
1ba53b71
L
153};
154
01f9f808
MS
155/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159const int num_lower_zmm_regs = 16;
160
1ba53b71 161/* MMX register? */
c40e1eab 162
28fc6740 163static int
5716833c 164i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 165{
1ba53b71
L
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
168
169 if (mm0_regnum < 0)
170 return 0;
171
1ba53b71
L
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174}
175
176/* Byte register? */
177
178int
179i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180{
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185}
186
187/* Word register? */
188
189int
190i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191{
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196}
197
198/* Dword register? */
199
200int
201i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202{
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
211}
212
01f9f808
MS
213/* AVX512 register? */
214
215int
216i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217{
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226}
227
228int
229i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230{
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239}
240
241int
242i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243{
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252}
253
9191d390 254static int
c131fcee
L
255i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256{
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265}
266
267/* AVX register? */
268
269int
270i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271{
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280}
281
01f9f808
MS
282static int
283i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284{
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293}
294
295int
296i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297{
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306}
307
1dbcd68c
WT
308/* BND register? */
309
310int
311i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312{
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321}
322
5716833c 323/* SSE register? */
23a34459 324
c131fcee
L
325int
326i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 327{
5716833c 328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 330
c131fcee 331 if (num_xmm_regs == 0)
5716833c
MK
332 return 0;
333
c131fcee
L
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
336}
337
01f9f808
MS
338/* XMM_512 register? */
339
340int
341i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342{
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351}
352
5716833c
MK
353static int
354i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 355{
5716833c
MK
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
20a6ec49 358 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
359 return 0;
360
20a6ec49 361 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
362}
363
5716833c 364/* FP register? */
23a34459
AC
365
366int
20a6ec49 367i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 368{
20a6ec49
MD
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
372 return 0;
373
20a6ec49
MD
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
376}
377
378int
20a6ec49 379i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 380{
20a6ec49
MD
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
384 return 0;
385
20a6ec49
MD
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
388}
389
1dbcd68c
WT
390/* BNDr (raw) register? */
391
392static int
393i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394{
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402}
403
404/* BND control register? */
405
406static int
407i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408{
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416}
417
51547df6
MS
418/* PKRU register? */
419
420bool
421i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
422{
423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
424 int pkru_regnum = tdep->pkru_regnum;
425
426 if (pkru_regnum < 0)
427 return false;
428
429 regnum -= pkru_regnum;
430 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
431}
432
c131fcee
L
433/* Return the name of register REGNUM, or the empty string if it is
434 an anonymous register. */
435
436static const char *
437i386_register_name (struct gdbarch *gdbarch, int regnum)
438{
439 /* Hide the upper YMM registers. */
440 if (i386_ymmh_regnum_p (gdbarch, regnum))
441 return "";
442
01f9f808
MS
443 /* Hide the upper YMM16-31 registers. */
444 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
445 return "";
446
447 /* Hide the upper ZMM registers. */
448 if (i386_zmmh_regnum_p (gdbarch, regnum))
449 return "";
450
c131fcee
L
451 return tdesc_register_name (gdbarch, regnum);
452}
453
30b0e2d8 454/* Return the name of register REGNUM. */
fc633446 455
1ba53b71 456const char *
90884b2b 457i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 458{
1ba53b71 459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
460 if (i386_bnd_regnum_p (gdbarch, regnum))
461 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
462 if (i386_mmx_regnum_p (gdbarch, regnum))
463 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
464 else if (i386_ymm_regnum_p (gdbarch, regnum))
465 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
466 else if (i386_zmm_regnum_p (gdbarch, regnum))
467 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
468 else if (i386_byte_regnum_p (gdbarch, regnum))
469 return i386_byte_names[regnum - tdep->al_regnum];
470 else if (i386_word_regnum_p (gdbarch, regnum))
471 return i386_word_names[regnum - tdep->ax_regnum];
472
473 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
474}
475
c4fc7f1b 476/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
477 number used by GDB. */
478
8201327c 479static int
d3f73121 480i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 481{
20a6ec49
MD
482 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
483
c4fc7f1b
MK
484 /* This implements what GCC calls the "default" register map
485 (dbx_register_map[]). */
486
85540d8c
MK
487 if (reg >= 0 && reg <= 7)
488 {
9872ad24
JB
489 /* General-purpose registers. The debug info calls %ebp
490 register 4, and %esp register 5. */
491 if (reg == 4)
492 return 5;
493 else if (reg == 5)
494 return 4;
495 else return reg;
85540d8c
MK
496 }
497 else if (reg >= 12 && reg <= 19)
498 {
499 /* Floating-point registers. */
20a6ec49 500 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
501 }
502 else if (reg >= 21 && reg <= 28)
503 {
504 /* SSE registers. */
c131fcee
L
505 int ymm0_regnum = tdep->ymm0_regnum;
506
507 if (ymm0_regnum >= 0
508 && i386_xmm_regnum_p (gdbarch, reg))
509 return reg - 21 + ymm0_regnum;
510 else
511 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
512 }
513 else if (reg >= 29 && reg <= 36)
514 {
515 /* MMX registers. */
20a6ec49 516 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
517 }
518
519 /* This will hopefully provoke a warning. */
d3f73121 520 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
521}
522
0fde2c53 523/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 524 used by GDB. */
85540d8c 525
8201327c 526static int
0fde2c53 527i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 528{
20a6ec49
MD
529 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
530
c4fc7f1b
MK
531 /* This implements the GCC register map that tries to be compatible
532 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
533
534 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
535 numbers the floating point registers differently. */
536 if (reg >= 0 && reg <= 9)
537 {
acd5c798 538 /* General-purpose registers. */
85540d8c
MK
539 return reg;
540 }
541 else if (reg >= 11 && reg <= 18)
542 {
543 /* Floating-point registers. */
20a6ec49 544 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 545 }
c6f4c129 546 else if (reg >= 21 && reg <= 36)
85540d8c 547 {
c4fc7f1b 548 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 549 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
550 }
551
c6f4c129
JB
552 switch (reg)
553 {
20a6ec49
MD
554 case 37: return I387_FCTRL_REGNUM (tdep);
555 case 38: return I387_FSTAT_REGNUM (tdep);
556 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
557 case 40: return I386_ES_REGNUM;
558 case 41: return I386_CS_REGNUM;
559 case 42: return I386_SS_REGNUM;
560 case 43: return I386_DS_REGNUM;
561 case 44: return I386_FS_REGNUM;
562 case 45: return I386_GS_REGNUM;
563 }
564
0fde2c53
DE
565 return -1;
566}
567
568/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
569 num_regs + num_pseudo_regs for other debug formats. */
570
8f10c932 571int
0fde2c53
DE
572i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
573{
574 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
575
576 if (regnum == -1)
577 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
578 return regnum;
85540d8c 579}
5716833c 580
fc338970 581\f
917317f4 582
fc338970
MK
583/* This is the variable that is set with "set disassembly-flavor", and
584 its legitimate values. */
53904c9e
AC
585static const char att_flavor[] = "att";
586static const char intel_flavor[] = "intel";
40478521 587static const char *const valid_flavors[] =
c5aa993b 588{
c906108c
SS
589 att_flavor,
590 intel_flavor,
591 NULL
592};
53904c9e 593static const char *disassembly_flavor = att_flavor;
acd5c798 594\f
c906108c 595
acd5c798
MK
596/* Use the program counter to determine the contents and size of a
597 breakpoint instruction. Return a pointer to a string of bytes that
598 encode a breakpoint instruction, store the length of the string in
599 *LEN and optionally adjust *PC to point to the correct memory
600 location for inserting the breakpoint.
c906108c 601
acd5c798
MK
602 On the i386 we have a single breakpoint that fits in a single byte
603 and can be inserted anywhere.
c906108c 604
acd5c798 605 This function is 64-bit safe. */
63c0089f 606
04180708
YQ
607constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
608
609typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 610
237fc4c9
PA
611\f
612/* Displaced instruction handling. */
613
1903f0e6
DE
614/* Skip the legacy instruction prefixes in INSN.
615 Not all prefixes are valid for any particular insn
616 but we needn't care, the insn will fault if it's invalid.
617 The result is a pointer to the first opcode byte,
618 or NULL if we run off the end of the buffer. */
619
620static gdb_byte *
621i386_skip_prefixes (gdb_byte *insn, size_t max_len)
622{
623 gdb_byte *end = insn + max_len;
624
625 while (insn < end)
626 {
627 switch (*insn)
628 {
629 case DATA_PREFIX_OPCODE:
630 case ADDR_PREFIX_OPCODE:
631 case CS_PREFIX_OPCODE:
632 case DS_PREFIX_OPCODE:
633 case ES_PREFIX_OPCODE:
634 case FS_PREFIX_OPCODE:
635 case GS_PREFIX_OPCODE:
636 case SS_PREFIX_OPCODE:
637 case LOCK_PREFIX_OPCODE:
638 case REPE_PREFIX_OPCODE:
639 case REPNE_PREFIX_OPCODE:
640 ++insn;
641 continue;
642 default:
643 return insn;
644 }
645 }
646
647 return NULL;
648}
237fc4c9
PA
649
650static int
1903f0e6 651i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 652{
1777feb0 653 /* jmp far (absolute address in operand). */
237fc4c9
PA
654 if (insn[0] == 0xea)
655 return 1;
656
657 if (insn[0] == 0xff)
658 {
1777feb0 659 /* jump near, absolute indirect (/4). */
237fc4c9
PA
660 if ((insn[1] & 0x38) == 0x20)
661 return 1;
662
1777feb0 663 /* jump far, absolute indirect (/5). */
237fc4c9
PA
664 if ((insn[1] & 0x38) == 0x28)
665 return 1;
666 }
667
668 return 0;
669}
670
c2170eef
MM
671/* Return non-zero if INSN is a jump, zero otherwise. */
672
673static int
674i386_jmp_p (const gdb_byte *insn)
675{
676 /* jump short, relative. */
677 if (insn[0] == 0xeb)
678 return 1;
679
680 /* jump near, relative. */
681 if (insn[0] == 0xe9)
682 return 1;
683
684 return i386_absolute_jmp_p (insn);
685}
686
237fc4c9 687static int
1903f0e6 688i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 689{
1777feb0 690 /* call far, absolute. */
237fc4c9
PA
691 if (insn[0] == 0x9a)
692 return 1;
693
694 if (insn[0] == 0xff)
695 {
1777feb0 696 /* Call near, absolute indirect (/2). */
237fc4c9
PA
697 if ((insn[1] & 0x38) == 0x10)
698 return 1;
699
1777feb0 700 /* Call far, absolute indirect (/3). */
237fc4c9
PA
701 if ((insn[1] & 0x38) == 0x18)
702 return 1;
703 }
704
705 return 0;
706}
707
708static int
1903f0e6 709i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
710{
711 switch (insn[0])
712 {
1777feb0 713 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 714 case 0xc3: /* ret near */
1777feb0 715 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
716 case 0xcb: /* ret far */
717 case 0xcf: /* iret */
718 return 1;
719
720 default:
721 return 0;
722 }
723}
724
725static int
1903f0e6 726i386_call_p (const gdb_byte *insn)
237fc4c9
PA
727{
728 if (i386_absolute_call_p (insn))
729 return 1;
730
1777feb0 731 /* call near, relative. */
237fc4c9
PA
732 if (insn[0] == 0xe8)
733 return 1;
734
735 return 0;
736}
737
237fc4c9
PA
738/* Return non-zero if INSN is a system call, and set *LENGTHP to its
739 length in bytes. Otherwise, return zero. */
1903f0e6 740
237fc4c9 741static int
b55078be 742i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 743{
9a7f938f
JK
744 /* Is it 'int $0x80'? */
745 if ((insn[0] == 0xcd && insn[1] == 0x80)
746 /* Or is it 'sysenter'? */
747 || (insn[0] == 0x0f && insn[1] == 0x34)
748 /* Or is it 'syscall'? */
749 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
750 {
751 *lengthp = 2;
752 return 1;
753 }
754
755 return 0;
756}
757
c2170eef
MM
758/* The gdbarch insn_is_call method. */
759
760static int
761i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
762{
763 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
764
765 read_code (addr, buf, I386_MAX_INSN_LEN);
766 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
767
768 return i386_call_p (insn);
769}
770
771/* The gdbarch insn_is_ret method. */
772
773static int
774i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
775{
776 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
777
778 read_code (addr, buf, I386_MAX_INSN_LEN);
779 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
780
781 return i386_ret_p (insn);
782}
783
784/* The gdbarch insn_is_jump method. */
785
786static int
787i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
788{
789 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
790
791 read_code (addr, buf, I386_MAX_INSN_LEN);
792 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
793
794 return i386_jmp_p (insn);
795}
796
c2508e90 797/* Some kernels may run one past a syscall insn, so we have to cope. */
b55078be
DE
798
799struct displaced_step_closure *
800i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
801 CORE_ADDR from, CORE_ADDR to,
802 struct regcache *regs)
803{
804 size_t len = gdbarch_max_insn_length (gdbarch);
cfba9872
SM
805 i386_displaced_step_closure *closure = new i386_displaced_step_closure (len);
806 gdb_byte *buf = closure->buf.data ();
b55078be
DE
807
808 read_memory (from, buf, len);
809
810 /* GDB may get control back after the insn after the syscall.
811 Presumably this is a kernel bug.
812 If this is a syscall, make sure there's a nop afterwards. */
813 {
814 int syscall_length;
815 gdb_byte *insn;
816
817 insn = i386_skip_prefixes (buf, len);
818 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
819 insn[syscall_length] = NOP_OPCODE;
820 }
821
822 write_memory (to, buf, len);
823
824 if (debug_displaced)
825 {
826 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
827 paddress (gdbarch, from), paddress (gdbarch, to));
828 displaced_step_dump_bytes (gdb_stdlog, buf, len);
829 }
830
cfba9872 831 return closure;
b55078be
DE
832}
833
237fc4c9
PA
834/* Fix up the state of registers and memory after having single-stepped
835 a displaced instruction. */
1903f0e6 836
237fc4c9
PA
837void
838i386_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 839 struct displaced_step_closure *closure_,
237fc4c9
PA
840 CORE_ADDR from, CORE_ADDR to,
841 struct regcache *regs)
842{
e17a4113
UW
843 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
844
237fc4c9
PA
845 /* The offset we applied to the instruction's address.
846 This could well be negative (when viewed as a signed 32-bit
847 value), but ULONGEST won't reflect that, so take care when
848 applying it. */
849 ULONGEST insn_offset = to - from;
850
cfba9872
SM
851 i386_displaced_step_closure *closure
852 = (i386_displaced_step_closure *) closure_;
853 gdb_byte *insn = closure->buf.data ();
1903f0e6
DE
854 /* The start of the insn, needed in case we see some prefixes. */
855 gdb_byte *insn_start = insn;
237fc4c9
PA
856
857 if (debug_displaced)
858 fprintf_unfiltered (gdb_stdlog,
5af949e3 859 "displaced: fixup (%s, %s), "
237fc4c9 860 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
861 paddress (gdbarch, from), paddress (gdbarch, to),
862 insn[0], insn[1]);
237fc4c9
PA
863
864 /* The list of issues to contend with here is taken from
865 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
866 Yay for Free Software! */
867
868 /* Relocate the %eip, if necessary. */
869
1903f0e6
DE
870 /* The instruction recognizers we use assume any leading prefixes
871 have been skipped. */
872 {
873 /* This is the size of the buffer in closure. */
874 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
875 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
876 /* If there are too many prefixes, just ignore the insn.
877 It will fault when run. */
878 if (opcode != NULL)
879 insn = opcode;
880 }
881
237fc4c9
PA
882 /* Except in the case of absolute or indirect jump or call
883 instructions, or a return instruction, the new eip is relative to
884 the displaced instruction; make it relative. Well, signal
885 handler returns don't need relocation either, but we use the
886 value of %eip to recognize those; see below. */
887 if (! i386_absolute_jmp_p (insn)
888 && ! i386_absolute_call_p (insn)
889 && ! i386_ret_p (insn))
890 {
891 ULONGEST orig_eip;
b55078be 892 int insn_len;
237fc4c9
PA
893
894 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
895
896 /* A signal trampoline system call changes the %eip, resuming
897 execution of the main program after the signal handler has
898 returned. That makes them like 'return' instructions; we
899 shouldn't relocate %eip.
900
901 But most system calls don't, and we do need to relocate %eip.
902
903 Our heuristic for distinguishing these cases: if stepping
904 over the system call instruction left control directly after
905 the instruction, the we relocate --- control almost certainly
906 doesn't belong in the displaced copy. Otherwise, we assume
907 the instruction has put control where it belongs, and leave
908 it unrelocated. Goodness help us if there are PC-relative
909 system calls. */
910 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
911 && orig_eip != to + (insn - insn_start) + insn_len
912 /* GDB can get control back after the insn after the syscall.
913 Presumably this is a kernel bug.
914 i386_displaced_step_copy_insn ensures its a nop,
915 we add one to the length for it. */
916 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
917 {
918 if (debug_displaced)
919 fprintf_unfiltered (gdb_stdlog,
920 "displaced: syscall changed %%eip; "
921 "not relocating\n");
922 }
923 else
924 {
925 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
926
1903f0e6
DE
927 /* If we just stepped over a breakpoint insn, we don't backup
928 the pc on purpose; this is to match behaviour without
929 stepping. */
237fc4c9
PA
930
931 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
932
933 if (debug_displaced)
934 fprintf_unfiltered (gdb_stdlog,
935 "displaced: "
5af949e3
UW
936 "relocated %%eip from %s to %s\n",
937 paddress (gdbarch, orig_eip),
938 paddress (gdbarch, eip));
237fc4c9
PA
939 }
940 }
941
942 /* If the instruction was PUSHFL, then the TF bit will be set in the
943 pushed value, and should be cleared. We'll leave this for later,
944 since GDB already messes up the TF flag when stepping over a
945 pushfl. */
946
947 /* If the instruction was a call, the return address now atop the
948 stack is the address following the copied instruction. We need
949 to make it the address following the original instruction. */
950 if (i386_call_p (insn))
951 {
952 ULONGEST esp;
953 ULONGEST retaddr;
954 const ULONGEST retaddr_len = 4;
955
956 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 957 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 958 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 959 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
960
961 if (debug_displaced)
962 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
963 "displaced: relocated return addr at %s to %s\n",
964 paddress (gdbarch, esp),
965 paddress (gdbarch, retaddr));
237fc4c9
PA
966 }
967}
dde08ee1
PA
968
969static void
970append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
971{
972 target_write_memory (*to, buf, len);
973 *to += len;
974}
975
976static void
977i386_relocate_instruction (struct gdbarch *gdbarch,
978 CORE_ADDR *to, CORE_ADDR oldloc)
979{
980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
981 gdb_byte buf[I386_MAX_INSN_LEN];
982 int offset = 0, rel32, newrel;
983 int insn_length;
984 gdb_byte *insn = buf;
985
986 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
987
988 insn_length = gdb_buffered_insn_length (gdbarch, insn,
989 I386_MAX_INSN_LEN, oldloc);
990
991 /* Get past the prefixes. */
992 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
993
994 /* Adjust calls with 32-bit relative addresses as push/jump, with
995 the address pushed being the location where the original call in
996 the user program would return to. */
997 if (insn[0] == 0xe8)
998 {
999 gdb_byte push_buf[16];
1000 unsigned int ret_addr;
1001
1002 /* Where "ret" in the original code will return to. */
1003 ret_addr = oldloc + insn_length;
1777feb0 1004 push_buf[0] = 0x68; /* pushq $... */
144db827 1005 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
1006 /* Push the push. */
1007 append_insns (to, 5, push_buf);
1008
1009 /* Convert the relative call to a relative jump. */
1010 insn[0] = 0xe9;
1011
1012 /* Adjust the destination offset. */
1013 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1014 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1015 store_signed_integer (insn + 1, 4, byte_order, newrel);
1016
1017 if (debug_displaced)
1018 fprintf_unfiltered (gdb_stdlog,
1019 "Adjusted insn rel32=%s at %s to"
1020 " rel32=%s at %s\n",
1021 hex_string (rel32), paddress (gdbarch, oldloc),
1022 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1023
1024 /* Write the adjusted jump into its displaced location. */
1025 append_insns (to, 5, insn);
1026 return;
1027 }
1028
1029 /* Adjust jumps with 32-bit relative addresses. Calls are already
1030 handled above. */
1031 if (insn[0] == 0xe9)
1032 offset = 1;
1033 /* Adjust conditional jumps. */
1034 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1035 offset = 2;
1036
1037 if (offset)
1038 {
1039 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1040 newrel = (oldloc - *to) + rel32;
f4a1794a 1041 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1042 if (debug_displaced)
1043 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1044 "Adjusted insn rel32=%s at %s to"
1045 " rel32=%s at %s\n",
dde08ee1
PA
1046 hex_string (rel32), paddress (gdbarch, oldloc),
1047 hex_string (newrel), paddress (gdbarch, *to));
1048 }
1049
1050 /* Write the adjusted instructions into their displaced
1051 location. */
1052 append_insns (to, insn_length, buf);
1053}
1054
fc338970 1055\f
acd5c798
MK
1056#ifdef I386_REGNO_TO_SYMMETRY
1057#error "The Sequent Symmetry is no longer supported."
1058#endif
c906108c 1059
acd5c798
MK
1060/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1061 and %esp "belong" to the calling function. Therefore these
1062 registers should be saved if they're going to be modified. */
c906108c 1063
acd5c798
MK
1064/* The maximum number of saved registers. This should include all
1065 registers mentioned above, and %eip. */
a3386186 1066#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1067
1068struct i386_frame_cache
c906108c 1069{
acd5c798
MK
1070 /* Base address. */
1071 CORE_ADDR base;
8fbca658 1072 int base_p;
772562f8 1073 LONGEST sp_offset;
acd5c798
MK
1074 CORE_ADDR pc;
1075
fd13a04a
AC
1076 /* Saved registers. */
1077 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1078 CORE_ADDR saved_sp;
e0c62198 1079 int saved_sp_reg;
acd5c798
MK
1080 int pc_in_eax;
1081
1082 /* Stack space reserved for local variables. */
1083 long locals;
1084};
1085
1086/* Allocate and initialize a frame cache. */
1087
1088static struct i386_frame_cache *
fd13a04a 1089i386_alloc_frame_cache (void)
acd5c798
MK
1090{
1091 struct i386_frame_cache *cache;
1092 int i;
1093
1094 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1095
1096 /* Base address. */
8fbca658 1097 cache->base_p = 0;
acd5c798
MK
1098 cache->base = 0;
1099 cache->sp_offset = -4;
1100 cache->pc = 0;
1101
fd13a04a
AC
1102 /* Saved registers. We initialize these to -1 since zero is a valid
1103 offset (that's where %ebp is supposed to be stored). */
1104 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1105 cache->saved_regs[i] = -1;
acd5c798 1106 cache->saved_sp = 0;
e0c62198 1107 cache->saved_sp_reg = -1;
acd5c798
MK
1108 cache->pc_in_eax = 0;
1109
1110 /* Frameless until proven otherwise. */
1111 cache->locals = -1;
1112
1113 return cache;
1114}
c906108c 1115
acd5c798
MK
1116/* If the instruction at PC is a jump, return the address of its
1117 target. Otherwise, return PC. */
c906108c 1118
acd5c798 1119static CORE_ADDR
e17a4113 1120i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1121{
e17a4113 1122 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1123 gdb_byte op;
acd5c798
MK
1124 long delta = 0;
1125 int data16 = 0;
c906108c 1126
0865b04a 1127 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1128 return pc;
1129
acd5c798 1130 if (op == 0x66)
c906108c 1131 {
c906108c 1132 data16 = 1;
0865b04a
YQ
1133
1134 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1135 }
1136
acd5c798 1137 switch (op)
c906108c
SS
1138 {
1139 case 0xe9:
fc338970 1140 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1141 if (data16)
1142 {
e17a4113 1143 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1144
fc338970
MK
1145 /* Include the size of the jmp instruction (including the
1146 0x66 prefix). */
acd5c798 1147 delta += 4;
c906108c
SS
1148 }
1149 else
1150 {
e17a4113 1151 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1152
acd5c798
MK
1153 /* Include the size of the jmp instruction. */
1154 delta += 5;
c906108c
SS
1155 }
1156 break;
1157 case 0xeb:
fc338970 1158 /* Relative jump, disp8 (ignore data16). */
e17a4113 1159 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1160
acd5c798 1161 delta += data16 + 2;
c906108c
SS
1162 break;
1163 }
c906108c 1164
acd5c798
MK
1165 return pc + delta;
1166}
fc338970 1167
acd5c798
MK
1168/* Check whether PC points at a prologue for a function returning a
1169 structure or union. If so, it updates CACHE and returns the
1170 address of the first instruction after the code sequence that
1171 removes the "hidden" argument from the stack or CURRENT_PC,
1172 whichever is smaller. Otherwise, return PC. */
c906108c 1173
acd5c798
MK
1174static CORE_ADDR
1175i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1176 struct i386_frame_cache *cache)
c906108c 1177{
acd5c798
MK
1178 /* Functions that return a structure or union start with:
1179
1180 popl %eax 0x58
1181 xchgl %eax, (%esp) 0x87 0x04 0x24
1182 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1183
1184 (the System V compiler puts out the second `xchg' instruction,
1185 and the assembler doesn't try to optimize it, so the 'sib' form
1186 gets generated). This sequence is used to get the address of the
1187 return buffer for a function that returns a structure. */
63c0089f
MK
1188 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1189 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1190 gdb_byte buf[4];
1191 gdb_byte op;
c906108c 1192
acd5c798
MK
1193 if (current_pc <= pc)
1194 return pc;
1195
0865b04a 1196 if (target_read_code (pc, &op, 1))
3dcabaa8 1197 return pc;
c906108c 1198
acd5c798
MK
1199 if (op != 0x58) /* popl %eax */
1200 return pc;
c906108c 1201
0865b04a 1202 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1203 return pc;
1204
acd5c798
MK
1205 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1206 return pc;
c906108c 1207
acd5c798 1208 if (current_pc == pc)
c906108c 1209 {
acd5c798
MK
1210 cache->sp_offset += 4;
1211 return current_pc;
c906108c
SS
1212 }
1213
acd5c798 1214 if (current_pc == pc + 1)
c906108c 1215 {
acd5c798
MK
1216 cache->pc_in_eax = 1;
1217 return current_pc;
1218 }
1219
1220 if (buf[1] == proto1[1])
1221 return pc + 4;
1222 else
1223 return pc + 5;
1224}
1225
1226static CORE_ADDR
1227i386_skip_probe (CORE_ADDR pc)
1228{
1229 /* A function may start with
fc338970 1230
acd5c798
MK
1231 pushl constant
1232 call _probe
1233 addl $4, %esp
fc338970 1234
acd5c798
MK
1235 followed by
1236
1237 pushl %ebp
fc338970 1238
acd5c798 1239 etc. */
63c0089f
MK
1240 gdb_byte buf[8];
1241 gdb_byte op;
fc338970 1242
0865b04a 1243 if (target_read_code (pc, &op, 1))
3dcabaa8 1244 return pc;
acd5c798
MK
1245
1246 if (op == 0x68 || op == 0x6a)
1247 {
1248 int delta;
c906108c 1249
acd5c798
MK
1250 /* Skip past the `pushl' instruction; it has either a one-byte or a
1251 four-byte operand, depending on the opcode. */
c906108c 1252 if (op == 0x68)
acd5c798 1253 delta = 5;
c906108c 1254 else
acd5c798 1255 delta = 2;
c906108c 1256
acd5c798
MK
1257 /* Read the following 8 bytes, which should be `call _probe' (6
1258 bytes) followed by `addl $4,%esp' (2 bytes). */
1259 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1260 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1261 pc += delta + sizeof (buf);
c906108c
SS
1262 }
1263
acd5c798
MK
1264 return pc;
1265}
1266
92dd43fa
MK
1267/* GCC 4.1 and later, can put code in the prologue to realign the
1268 stack pointer. Check whether PC points to such code, and update
1269 CACHE accordingly. Return the first instruction after the code
1270 sequence or CURRENT_PC, whichever is smaller. If we don't
1271 recognize the code, return PC. */
1272
1273static CORE_ADDR
1274i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1275 struct i386_frame_cache *cache)
1276{
e0c62198
L
1277 /* There are 2 code sequences to re-align stack before the frame
1278 gets set up:
1279
1280 1. Use a caller-saved saved register:
1281
1282 leal 4(%esp), %reg
1283 andl $-XXX, %esp
1284 pushl -4(%reg)
1285
1286 2. Use a callee-saved saved register:
1287
1288 pushl %reg
1289 leal 8(%esp), %reg
1290 andl $-XXX, %esp
1291 pushl -4(%reg)
1292
1293 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1294
1295 0x83 0xe4 0xf0 andl $-16, %esp
1296 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1297 */
1298
1299 gdb_byte buf[14];
1300 int reg;
1301 int offset, offset_and;
1302 static int regnums[8] = {
1303 I386_EAX_REGNUM, /* %eax */
1304 I386_ECX_REGNUM, /* %ecx */
1305 I386_EDX_REGNUM, /* %edx */
1306 I386_EBX_REGNUM, /* %ebx */
1307 I386_ESP_REGNUM, /* %esp */
1308 I386_EBP_REGNUM, /* %ebp */
1309 I386_ESI_REGNUM, /* %esi */
1310 I386_EDI_REGNUM /* %edi */
92dd43fa 1311 };
92dd43fa 1312
0865b04a 1313 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1314 return pc;
1315
1316 /* Check caller-saved saved register. The first instruction has
1317 to be "leal 4(%esp), %reg". */
1318 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1319 {
1320 /* MOD must be binary 10 and R/M must be binary 100. */
1321 if ((buf[1] & 0xc7) != 0x44)
1322 return pc;
1323
1324 /* REG has register number. */
1325 reg = (buf[1] >> 3) & 7;
1326 offset = 4;
1327 }
1328 else
1329 {
1330 /* Check callee-saved saved register. The first instruction
1331 has to be "pushl %reg". */
1332 if ((buf[0] & 0xf8) != 0x50)
1333 return pc;
1334
1335 /* Get register. */
1336 reg = buf[0] & 0x7;
1337
1338 /* The next instruction has to be "leal 8(%esp), %reg". */
1339 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1340 return pc;
1341
1342 /* MOD must be binary 10 and R/M must be binary 100. */
1343 if ((buf[2] & 0xc7) != 0x44)
1344 return pc;
1345
1346 /* REG has register number. Registers in pushl and leal have to
1347 be the same. */
1348 if (reg != ((buf[2] >> 3) & 7))
1349 return pc;
1350
1351 offset = 5;
1352 }
1353
1354 /* Rigister can't be %esp nor %ebp. */
1355 if (reg == 4 || reg == 5)
1356 return pc;
1357
1358 /* The next instruction has to be "andl $-XXX, %esp". */
1359 if (buf[offset + 1] != 0xe4
1360 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1361 return pc;
1362
1363 offset_and = offset;
1364 offset += buf[offset] == 0x81 ? 6 : 3;
1365
1366 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1367 0xfc. REG must be binary 110 and MOD must be binary 01. */
1368 if (buf[offset] != 0xff
1369 || buf[offset + 2] != 0xfc
1370 || (buf[offset + 1] & 0xf8) != 0x70)
1371 return pc;
1372
1373 /* R/M has register. Registers in leal and pushl have to be the
1374 same. */
1375 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1376 return pc;
1377
e0c62198
L
1378 if (current_pc > pc + offset_and)
1379 cache->saved_sp_reg = regnums[reg];
92dd43fa 1380
325fac50 1381 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1382}
1383
37bdc87e 1384/* Maximum instruction length we need to handle. */
237fc4c9 1385#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1386
1387/* Instruction description. */
1388struct i386_insn
1389{
1390 size_t len;
237fc4c9
PA
1391 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1392 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1393};
1394
a3fcb948 1395/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1396
a3fcb948
JG
1397static int
1398i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1399{
63c0089f 1400 gdb_byte op;
37bdc87e 1401
0865b04a 1402 if (target_read_code (pc, &op, 1))
a3fcb948 1403 return 0;
37bdc87e 1404
a3fcb948 1405 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1406 {
a3fcb948
JG
1407 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1408 int insn_matched = 1;
1409 size_t i;
37bdc87e 1410
a3fcb948
JG
1411 gdb_assert (pattern.len > 1);
1412 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1413
0865b04a 1414 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1415 return 0;
613e8135 1416
a3fcb948
JG
1417 for (i = 1; i < pattern.len; i++)
1418 {
1419 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1420 insn_matched = 0;
37bdc87e 1421 }
a3fcb948
JG
1422 return insn_matched;
1423 }
1424 return 0;
1425}
1426
1427/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1428 the first instruction description that matches. Otherwise, return
1429 NULL. */
1430
1431static struct i386_insn *
1432i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1433{
1434 struct i386_insn *pattern;
1435
1436 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1437 {
1438 if (i386_match_pattern (pc, *pattern))
1439 return pattern;
37bdc87e
MK
1440 }
1441
1442 return NULL;
1443}
1444
a3fcb948
JG
1445/* Return whether PC points inside a sequence of instructions that
1446 matches INSN_PATTERNS. */
1447
1448static int
1449i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1450{
1451 CORE_ADDR current_pc;
1452 int ix, i;
a3fcb948
JG
1453 struct i386_insn *insn;
1454
1455 insn = i386_match_insn (pc, insn_patterns);
1456 if (insn == NULL)
1457 return 0;
1458
8bbdd3f4 1459 current_pc = pc;
a3fcb948
JG
1460 ix = insn - insn_patterns;
1461 for (i = ix - 1; i >= 0; i--)
1462 {
8bbdd3f4
MK
1463 current_pc -= insn_patterns[i].len;
1464
a3fcb948
JG
1465 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1466 return 0;
a3fcb948
JG
1467 }
1468
1469 current_pc = pc + insn->len;
1470 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1471 {
1472 if (!i386_match_pattern (current_pc, *insn))
1473 return 0;
1474
1475 current_pc += insn->len;
1476 }
1477
1478 return 1;
1479}
1480
37bdc87e
MK
1481/* Some special instructions that might be migrated by GCC into the
1482 part of the prologue that sets up the new stack frame. Because the
1483 stack frame hasn't been setup yet, no registers have been saved
1484 yet, and only the scratch registers %eax, %ecx and %edx can be
1485 touched. */
1486
1487struct i386_insn i386_frame_setup_skip_insns[] =
1488{
1777feb0 1489 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1490
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movb imm8, %al' and `movb imm8, %ah' */
1494 /* `movb imm8, %cl' and `movb imm8, %ch' */
1495 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1496 /* `movb imm8, %dl' and `movb imm8, %dh' */
1497 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1498 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1499 { 5, { 0xb8 }, { 0xfe } },
1500 /* `movl imm32, %edx' */
1501 { 5, { 0xba }, { 0xff } },
1502
1503 /* Check for `mov imm32, r32'. Note that there is an alternative
1504 encoding for `mov m32, %eax'.
1505
1506 ??? Should we handle SIB adressing here?
1507 ??? Should we handle 16-bit operand-sizes here? */
1508
1509 /* `movl m32, %eax' */
1510 { 5, { 0xa1 }, { 0xff } },
1511 /* `movl m32, %eax' and `mov; m32, %ecx' */
1512 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1513 /* `movl m32, %edx' */
1514 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1515
1516 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1517 Because of the symmetry, there are actually two ways to encode
1518 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1519 opcode bytes 0x31 and 0x33 for `xorl'. */
1520
1521 /* `subl %eax, %eax' */
1522 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1523 /* `subl %ecx, %ecx' */
1524 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1525 /* `subl %edx, %edx' */
1526 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1527 /* `xorl %eax, %eax' */
1528 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1529 /* `xorl %ecx, %ecx' */
1530 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1531 /* `xorl %edx, %edx' */
1532 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1533 { 0 }
1534};
1535
e11481da
PM
1536
1537/* Check whether PC points to a no-op instruction. */
1538static CORE_ADDR
1539i386_skip_noop (CORE_ADDR pc)
1540{
1541 gdb_byte op;
1542 int check = 1;
1543
0865b04a 1544 if (target_read_code (pc, &op, 1))
3dcabaa8 1545 return pc;
e11481da
PM
1546
1547 while (check)
1548 {
1549 check = 0;
1550 /* Ignore `nop' instruction. */
1551 if (op == 0x90)
1552 {
1553 pc += 1;
0865b04a 1554 if (target_read_code (pc, &op, 1))
3dcabaa8 1555 return pc;
e11481da
PM
1556 check = 1;
1557 }
1558 /* Ignore no-op instruction `mov %edi, %edi'.
1559 Microsoft system dlls often start with
1560 a `mov %edi,%edi' instruction.
1561 The 5 bytes before the function start are
1562 filled with `nop' instructions.
1563 This pattern can be used for hot-patching:
1564 The `mov %edi, %edi' instruction can be replaced by a
1565 near jump to the location of the 5 `nop' instructions
1566 which can be replaced by a 32-bit jump to anywhere
1567 in the 32-bit address space. */
1568
1569 else if (op == 0x8b)
1570 {
0865b04a 1571 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1572 return pc;
1573
e11481da
PM
1574 if (op == 0xff)
1575 {
1576 pc += 2;
0865b04a 1577 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1578 return pc;
1579
e11481da
PM
1580 check = 1;
1581 }
1582 }
1583 }
1584 return pc;
1585}
1586
acd5c798
MK
1587/* Check whether PC points at a code that sets up a new stack frame.
1588 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1589 instruction after the sequence that sets up the frame or LIMIT,
1590 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1591
1592static CORE_ADDR
e17a4113
UW
1593i386_analyze_frame_setup (struct gdbarch *gdbarch,
1594 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1595 struct i386_frame_cache *cache)
1596{
e17a4113 1597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1598 struct i386_insn *insn;
63c0089f 1599 gdb_byte op;
26604a34 1600 int skip = 0;
acd5c798 1601
37bdc87e
MK
1602 if (limit <= pc)
1603 return limit;
acd5c798 1604
0865b04a 1605 if (target_read_code (pc, &op, 1))
3dcabaa8 1606 return pc;
acd5c798 1607
c906108c 1608 if (op == 0x55) /* pushl %ebp */
c5aa993b 1609 {
acd5c798
MK
1610 /* Take into account that we've executed the `pushl %ebp' that
1611 starts this instruction sequence. */
fd13a04a 1612 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1613 cache->sp_offset += 4;
37bdc87e 1614 pc++;
acd5c798
MK
1615
1616 /* If that's all, return now. */
37bdc87e
MK
1617 if (limit <= pc)
1618 return limit;
26604a34 1619
b4632131 1620 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1621 GCC into the prologue and skip them. At this point in the
1622 prologue, code should only touch the scratch registers %eax,
1623 %ecx and %edx, so while the number of posibilities is sheer,
1624 it is limited.
5daa5b4e 1625
26604a34
MK
1626 Make sure we only skip these instructions if we later see the
1627 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1628 while (pc + skip < limit)
26604a34 1629 {
37bdc87e
MK
1630 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1631 if (insn == NULL)
1632 break;
b4632131 1633
37bdc87e 1634 skip += insn->len;
26604a34
MK
1635 }
1636
37bdc87e
MK
1637 /* If that's all, return now. */
1638 if (limit <= pc + skip)
1639 return limit;
1640
0865b04a 1641 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1642 return pc + skip;
37bdc87e 1643
30f8135b
YQ
1644 /* The i386 prologue looks like
1645
1646 push %ebp
1647 mov %esp,%ebp
1648 sub $0x10,%esp
1649
1650 and a different prologue can be generated for atom.
1651
1652 push %ebp
1653 lea (%esp),%ebp
1654 lea -0x10(%esp),%esp
1655
1656 We handle both of them here. */
1657
acd5c798 1658 switch (op)
c906108c 1659 {
30f8135b 1660 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1661 case 0x8b:
0865b04a 1662 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1663 != 0xec)
37bdc87e 1664 return pc;
30f8135b 1665 pc += (skip + 2);
c906108c
SS
1666 break;
1667 case 0x89:
0865b04a 1668 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1669 != 0xe5)
37bdc87e 1670 return pc;
30f8135b
YQ
1671 pc += (skip + 2);
1672 break;
1673 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1674 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1675 != 0x242c)
1676 return pc;
1677 pc += (skip + 3);
c906108c
SS
1678 break;
1679 default:
37bdc87e 1680 return pc;
c906108c 1681 }
acd5c798 1682
26604a34
MK
1683 /* OK, we actually have a frame. We just don't know how large
1684 it is yet. Set its size to zero. We'll adjust it if
1685 necessary. We also now commit to skipping the special
1686 instructions mentioned before. */
acd5c798
MK
1687 cache->locals = 0;
1688
1689 /* If that's all, return now. */
37bdc87e
MK
1690 if (limit <= pc)
1691 return limit;
acd5c798 1692
fc338970
MK
1693 /* Check for stack adjustment
1694
acd5c798 1695 subl $XXX, %esp
30f8135b
YQ
1696 or
1697 lea -XXX(%esp),%esp
fc338970 1698
fd35795f 1699 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1700 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1701 if (target_read_code (pc, &op, 1))
3dcabaa8 1702 return pc;
c906108c
SS
1703 if (op == 0x83)
1704 {
fd35795f 1705 /* `subl' with 8-bit immediate. */
0865b04a 1706 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1707 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1708 return pc;
acd5c798 1709
37bdc87e
MK
1710 /* `subl' with signed 8-bit immediate (though it wouldn't
1711 make sense to be negative). */
0865b04a 1712 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1713 return pc + 3;
c906108c
SS
1714 }
1715 else if (op == 0x81)
1716 {
fd35795f 1717 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1718 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1719 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1720 return pc;
acd5c798 1721
fd35795f 1722 /* It is `subl' with a 32-bit immediate. */
0865b04a 1723 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1724 return pc + 6;
c906108c 1725 }
30f8135b
YQ
1726 else if (op == 0x8d)
1727 {
1728 /* The ModR/M byte is 0x64. */
0865b04a 1729 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1730 return pc;
1731 /* 'lea' with 8-bit displacement. */
0865b04a 1732 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1733 return pc + 4;
1734 }
c906108c
SS
1735 else
1736 {
30f8135b 1737 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1738 return pc;
c906108c
SS
1739 }
1740 }
37bdc87e 1741 else if (op == 0xc8) /* enter */
c906108c 1742 {
0865b04a 1743 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1744 return pc + 4;
c906108c 1745 }
21d0e8a4 1746
acd5c798 1747 return pc;
21d0e8a4
MK
1748}
1749
acd5c798
MK
1750/* Check whether PC points at code that saves registers on the stack.
1751 If so, it updates CACHE and returns the address of the first
1752 instruction after the register saves or CURRENT_PC, whichever is
1753 smaller. Otherwise, return PC. */
6bff26de
MK
1754
1755static CORE_ADDR
acd5c798
MK
1756i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1757 struct i386_frame_cache *cache)
6bff26de 1758{
99ab4326 1759 CORE_ADDR offset = 0;
63c0089f 1760 gdb_byte op;
99ab4326 1761 int i;
c0d1d883 1762
99ab4326
MK
1763 if (cache->locals > 0)
1764 offset -= cache->locals;
1765 for (i = 0; i < 8 && pc < current_pc; i++)
1766 {
0865b04a 1767 if (target_read_code (pc, &op, 1))
3dcabaa8 1768 return pc;
99ab4326
MK
1769 if (op < 0x50 || op > 0x57)
1770 break;
0d17c81d 1771
99ab4326
MK
1772 offset -= 4;
1773 cache->saved_regs[op - 0x50] = offset;
1774 cache->sp_offset += 4;
1775 pc++;
6bff26de
MK
1776 }
1777
acd5c798 1778 return pc;
22797942
AC
1779}
1780
acd5c798
MK
1781/* Do a full analysis of the prologue at PC and update CACHE
1782 accordingly. Bail out early if CURRENT_PC is reached. Return the
1783 address where the analysis stopped.
ed84f6c1 1784
fc338970
MK
1785 We handle these cases:
1786
1787 The startup sequence can be at the start of the function, or the
1788 function can start with a branch to startup code at the end.
1789
1790 %ebp can be set up with either the 'enter' instruction, or "pushl
1791 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1792 once used in the System V compiler).
1793
1794 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1795 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1796 16-bit unsigned argument for space to allocate, and the 'addl'
1797 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1798
1799 Next, the registers used by this function are pushed. With the
1800 System V compiler they will always be in the order: %edi, %esi,
1801 %ebx (and sometimes a harmless bug causes it to also save but not
1802 restore %eax); however, the code below is willing to see the pushes
1803 in any order, and will handle up to 8 of them.
1804
1805 If the setup sequence is at the end of the function, then the next
1806 instruction will be a branch back to the start. */
c906108c 1807
acd5c798 1808static CORE_ADDR
e17a4113
UW
1809i386_analyze_prologue (struct gdbarch *gdbarch,
1810 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1811 struct i386_frame_cache *cache)
c906108c 1812{
e11481da 1813 pc = i386_skip_noop (pc);
e17a4113 1814 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1815 pc = i386_analyze_struct_return (pc, current_pc, cache);
1816 pc = i386_skip_probe (pc);
92dd43fa 1817 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1818 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1819 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1820}
1821
fc338970 1822/* Return PC of first real instruction. */
c906108c 1823
3a1e71e3 1824static CORE_ADDR
6093d2eb 1825i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1826{
e17a4113
UW
1827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1828
63c0089f 1829 static gdb_byte pic_pat[6] =
acd5c798
MK
1830 {
1831 0xe8, 0, 0, 0, 0, /* call 0x0 */
1832 0x5b, /* popl %ebx */
c5aa993b 1833 };
acd5c798
MK
1834 struct i386_frame_cache cache;
1835 CORE_ADDR pc;
63c0089f 1836 gdb_byte op;
acd5c798 1837 int i;
56bf0743 1838 CORE_ADDR func_addr;
4e879fc2 1839
56bf0743
KB
1840 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1841 {
1842 CORE_ADDR post_prologue_pc
1843 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1844 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1845
1846 /* Clang always emits a line note before the prologue and another
1847 one after. We trust clang to emit usable line notes. */
1848 if (post_prologue_pc
43f3e411
DE
1849 && (cust != NULL
1850 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 1851 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 1852 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1853 }
1854
e0f33b1f 1855 cache.locals = -1;
e17a4113 1856 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1857 if (cache.locals < 0)
1858 return start_pc;
c5aa993b 1859
acd5c798 1860 /* Found valid frame setup. */
c906108c 1861
fc338970
MK
1862 /* The native cc on SVR4 in -K PIC mode inserts the following code
1863 to get the address of the global offset table (GOT) into register
acd5c798
MK
1864 %ebx:
1865
fc338970
MK
1866 call 0x0
1867 popl %ebx
1868 movl %ebx,x(%ebp) (optional)
1869 addl y,%ebx
1870
c906108c
SS
1871 This code is with the rest of the prologue (at the end of the
1872 function), so we have to skip it to get to the first real
1873 instruction at the start of the function. */
c5aa993b 1874
c906108c
SS
1875 for (i = 0; i < 6; i++)
1876 {
0865b04a 1877 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1878 return pc;
1879
c5aa993b 1880 if (pic_pat[i] != op)
c906108c
SS
1881 break;
1882 }
1883 if (i == 6)
1884 {
acd5c798
MK
1885 int delta = 6;
1886
0865b04a 1887 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1888 return pc;
c906108c 1889
c5aa993b 1890 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1891 {
0865b04a 1892 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1893
fc338970 1894 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1895 delta += 3;
fc338970 1896 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1897 delta += 6;
fc338970 1898 else /* Unexpected instruction. */
acd5c798
MK
1899 delta = 0;
1900
0865b04a 1901 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1902 return pc;
c906108c 1903 }
acd5c798 1904
c5aa993b 1905 /* addl y,%ebx */
acd5c798 1906 if (delta > 0 && op == 0x81
0865b04a 1907 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1908 == 0xc3)
c906108c 1909 {
acd5c798 1910 pc += delta + 6;
c906108c
SS
1911 }
1912 }
c5aa993b 1913
e63bbc88
MK
1914 /* If the function starts with a branch (to startup code at the end)
1915 the last instruction should bring us back to the first
1916 instruction of the real code. */
e17a4113
UW
1917 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1918 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1919
1920 return pc;
c906108c
SS
1921}
1922
4309257c
PM
1923/* Check that the code pointed to by PC corresponds to a call to
1924 __main, skip it if so. Return PC otherwise. */
1925
1926CORE_ADDR
1927i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1928{
e17a4113 1929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1930 gdb_byte op;
1931
0865b04a 1932 if (target_read_code (pc, &op, 1))
3dcabaa8 1933 return pc;
4309257c
PM
1934 if (op == 0xe8)
1935 {
1936 gdb_byte buf[4];
1937
0865b04a 1938 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1939 {
1940 /* Make sure address is computed correctly as a 32bit
1941 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1942 struct bound_minimal_symbol s;
e17a4113 1943 CORE_ADDR call_dest;
4309257c 1944
e17a4113 1945 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1946 call_dest = call_dest & 0xffffffffU;
1947 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1948 if (s.minsym != NULL
efd66ac6
TT
1949 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1950 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1951 pc += 5;
1952 }
1953 }
1954
1955 return pc;
1956}
1957
acd5c798 1958/* This function is 64-bit safe. */
93924b6b 1959
acd5c798
MK
1960static CORE_ADDR
1961i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1962{
63c0089f 1963 gdb_byte buf[8];
acd5c798 1964
875f8d0e 1965 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1966 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1967}
acd5c798 1968\f
93924b6b 1969
acd5c798 1970/* Normal frames. */
c5aa993b 1971
8fbca658
PA
1972static void
1973i386_frame_cache_1 (struct frame_info *this_frame,
1974 struct i386_frame_cache *cache)
a7769679 1975{
e17a4113
UW
1976 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1977 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1978 gdb_byte buf[4];
acd5c798
MK
1979 int i;
1980
8fbca658 1981 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1982
1983 /* In principle, for normal frames, %ebp holds the frame pointer,
1984 which holds the base address for the current stack frame.
1985 However, for functions that don't need it, the frame pointer is
1986 optional. For these "frameless" functions the frame pointer is
1987 actually the frame pointer of the calling frame. Signal
1988 trampolines are just a special case of a "frameless" function.
1989 They (usually) share their frame pointer with the frame that was
1990 in progress when the signal occurred. */
1991
10458914 1992 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1993 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1994 if (cache->base == 0)
620fa63a
PA
1995 {
1996 cache->base_p = 1;
1997 return;
1998 }
acd5c798
MK
1999
2000 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2001 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2002
acd5c798 2003 if (cache->pc != 0)
e17a4113
UW
2004 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2005 cache);
acd5c798
MK
2006
2007 if (cache->locals < 0)
2008 {
2009 /* We didn't find a valid frame, which means that CACHE->base
2010 currently holds the frame pointer for our calling frame. If
2011 we're at the start of a function, or somewhere half-way its
2012 prologue, the function's frame probably hasn't been fully
2013 setup yet. Try to reconstruct the base address for the stack
2014 frame by looking at the stack pointer. For truly "frameless"
2015 functions this might work too. */
2016
e0c62198 2017 if (cache->saved_sp_reg != -1)
92dd43fa 2018 {
8fbca658
PA
2019 /* Saved stack pointer has been saved. */
2020 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2021 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2022
92dd43fa
MK
2023 /* We're halfway aligning the stack. */
2024 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2025 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2026
2027 /* This will be added back below. */
2028 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2029 }
7618e12b 2030 else if (cache->pc != 0
0865b04a 2031 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2032 {
7618e12b
DJ
2033 /* We're in a known function, but did not find a frame
2034 setup. Assume that the function does not use %ebp.
2035 Alternatively, we may have jumped to an invalid
2036 address; in that case there is definitely no new
2037 frame in %ebp. */
10458914 2038 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2039 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2040 + cache->sp_offset;
92dd43fa 2041 }
7618e12b
DJ
2042 else
2043 /* We're in an unknown function. We could not find the start
2044 of the function to analyze the prologue; our best option is
2045 to assume a typical frame layout with the caller's %ebp
2046 saved. */
2047 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2048 }
2049
8fbca658
PA
2050 if (cache->saved_sp_reg != -1)
2051 {
2052 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2053 register may be unavailable). */
2054 if (cache->saved_sp == 0
ca9d61b9
JB
2055 && deprecated_frame_register_read (this_frame,
2056 cache->saved_sp_reg, buf))
8fbca658
PA
2057 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2058 }
acd5c798
MK
2059 /* Now that we have the base address for the stack frame we can
2060 calculate the value of %esp in the calling frame. */
8fbca658 2061 else if (cache->saved_sp == 0)
92dd43fa 2062 cache->saved_sp = cache->base + 8;
a7769679 2063
acd5c798
MK
2064 /* Adjust all the saved registers such that they contain addresses
2065 instead of offsets. */
2066 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2067 if (cache->saved_regs[i] != -1)
2068 cache->saved_regs[i] += cache->base;
acd5c798 2069
8fbca658
PA
2070 cache->base_p = 1;
2071}
2072
2073static struct i386_frame_cache *
2074i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2075{
8fbca658
PA
2076 struct i386_frame_cache *cache;
2077
2078 if (*this_cache)
9a3c8263 2079 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2080
2081 cache = i386_alloc_frame_cache ();
2082 *this_cache = cache;
2083
492d29ea 2084 TRY
8fbca658
PA
2085 {
2086 i386_frame_cache_1 (this_frame, cache);
2087 }
492d29ea 2088 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2089 {
2090 if (ex.error != NOT_AVAILABLE_ERROR)
2091 throw_exception (ex);
2092 }
492d29ea 2093 END_CATCH
8fbca658 2094
acd5c798 2095 return cache;
a7769679
MK
2096}
2097
3a1e71e3 2098static void
10458914 2099i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2100 struct frame_id *this_id)
c906108c 2101{
10458914 2102 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2103
5ce0145d
PA
2104 if (!cache->base_p)
2105 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2106 else if (cache->base == 0)
2107 {
2108 /* This marks the outermost frame. */
2109 }
2110 else
2111 {
2112 /* See the end of i386_push_dummy_call. */
2113 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2114 }
acd5c798
MK
2115}
2116
8fbca658
PA
2117static enum unwind_stop_reason
2118i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2119 void **this_cache)
2120{
2121 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2122
2123 if (!cache->base_p)
2124 return UNWIND_UNAVAILABLE;
2125
2126 /* This marks the outermost frame. */
2127 if (cache->base == 0)
2128 return UNWIND_OUTERMOST;
2129
2130 return UNWIND_NO_REASON;
2131}
2132
10458914
DJ
2133static struct value *
2134i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2135 int regnum)
acd5c798 2136{
10458914 2137 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2138
2139 gdb_assert (regnum >= 0);
2140
2141 /* The System V ABI says that:
2142
2143 "The flags register contains the system flags, such as the
2144 direction flag and the carry flag. The direction flag must be
2145 set to the forward (that is, zero) direction before entry and
2146 upon exit from a function. Other user flags have no specified
2147 role in the standard calling sequence and are not preserved."
2148
2149 To guarantee the "upon exit" part of that statement we fake a
2150 saved flags register that has its direction flag cleared.
2151
2152 Note that GCC doesn't seem to rely on the fact that the direction
2153 flag is cleared after a function return; it always explicitly
2154 clears the flag before operations where it matters.
2155
2156 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2157 right thing to do. The way we fake the flags register here makes
2158 it impossible to change it. */
2159
2160 if (regnum == I386_EFLAGS_REGNUM)
2161 {
10458914 2162 ULONGEST val;
c5aa993b 2163
10458914
DJ
2164 val = get_frame_register_unsigned (this_frame, regnum);
2165 val &= ~(1 << 10);
2166 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2167 }
1211c4e4 2168
acd5c798 2169 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2170 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2171
fcf250e2
UW
2172 if (regnum == I386_ESP_REGNUM
2173 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2174 {
2175 /* If the SP has been saved, but we don't know where, then this
2176 means that SAVED_SP_REG register was found unavailable back
2177 when we built the cache. */
fcf250e2 2178 if (cache->saved_sp == 0)
8fbca658
PA
2179 return frame_unwind_got_register (this_frame, regnum,
2180 cache->saved_sp_reg);
2181 else
2182 return frame_unwind_got_constant (this_frame, regnum,
2183 cache->saved_sp);
2184 }
acd5c798 2185
fd13a04a 2186 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2187 return frame_unwind_got_memory (this_frame, regnum,
2188 cache->saved_regs[regnum]);
fd13a04a 2189
10458914 2190 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2191}
2192
2193static const struct frame_unwind i386_frame_unwind =
2194{
2195 NORMAL_FRAME,
8fbca658 2196 i386_frame_unwind_stop_reason,
acd5c798 2197 i386_frame_this_id,
10458914
DJ
2198 i386_frame_prev_register,
2199 NULL,
2200 default_frame_sniffer
acd5c798 2201};
06da04c6
MS
2202
2203/* Normal frames, but in a function epilogue. */
2204
c9cf6e20
MG
2205/* Implement the stack_frame_destroyed_p gdbarch method.
2206
2207 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2208 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2209 the function's stack frame. */
2210
2211static int
c9cf6e20 2212i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2213{
2214 gdb_byte insn;
43f3e411 2215 struct compunit_symtab *cust;
e0d00bc7 2216
43f3e411
DE
2217 cust = find_pc_compunit_symtab (pc);
2218 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2219 return 0;
06da04c6
MS
2220
2221 if (target_read_memory (pc, &insn, 1))
2222 return 0; /* Can't read memory at pc. */
2223
2224 if (insn != 0xc3) /* 'ret' instruction. */
2225 return 0;
2226
2227 return 1;
2228}
2229
2230static int
2231i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2232 struct frame_info *this_frame,
2233 void **this_prologue_cache)
2234{
2235 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2236 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2237 get_frame_pc (this_frame));
06da04c6
MS
2238 else
2239 return 0;
2240}
2241
2242static struct i386_frame_cache *
2243i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2244{
06da04c6 2245 struct i386_frame_cache *cache;
0d6c2135 2246 CORE_ADDR sp;
06da04c6
MS
2247
2248 if (*this_cache)
9a3c8263 2249 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2250
2251 cache = i386_alloc_frame_cache ();
2252 *this_cache = cache;
2253
492d29ea 2254 TRY
8fbca658 2255 {
0d6c2135 2256 cache->pc = get_frame_func (this_frame);
06da04c6 2257
0d6c2135
MK
2258 /* At this point the stack looks as if we just entered the
2259 function, with the return address at the top of the
2260 stack. */
2261 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2262 cache->base = sp + cache->sp_offset;
8fbca658 2263 cache->saved_sp = cache->base + 8;
8fbca658 2264 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2265
8fbca658
PA
2266 cache->base_p = 1;
2267 }
492d29ea 2268 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2269 {
2270 if (ex.error != NOT_AVAILABLE_ERROR)
2271 throw_exception (ex);
2272 }
492d29ea 2273 END_CATCH
06da04c6
MS
2274
2275 return cache;
2276}
2277
8fbca658
PA
2278static enum unwind_stop_reason
2279i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2280 void **this_cache)
2281{
0d6c2135
MK
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2284
2285 if (!cache->base_p)
2286 return UNWIND_UNAVAILABLE;
2287
2288 return UNWIND_NO_REASON;
2289}
2290
06da04c6
MS
2291static void
2292i386_epilogue_frame_this_id (struct frame_info *this_frame,
2293 void **this_cache,
2294 struct frame_id *this_id)
2295{
0d6c2135
MK
2296 struct i386_frame_cache *cache =
2297 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2298
8fbca658 2299 if (!cache->base_p)
5ce0145d
PA
2300 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2301 else
2302 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2303}
2304
0d6c2135
MK
2305static struct value *
2306i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2307 void **this_cache, int regnum)
2308{
2309 /* Make sure we've initialized the cache. */
2310 i386_epilogue_frame_cache (this_frame, this_cache);
2311
2312 return i386_frame_prev_register (this_frame, this_cache, regnum);
2313}
2314
06da04c6
MS
2315static const struct frame_unwind i386_epilogue_frame_unwind =
2316{
2317 NORMAL_FRAME,
8fbca658 2318 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2319 i386_epilogue_frame_this_id,
0d6c2135 2320 i386_epilogue_frame_prev_register,
06da04c6
MS
2321 NULL,
2322 i386_epilogue_frame_sniffer
2323};
acd5c798
MK
2324\f
2325
a3fcb948
JG
2326/* Stack-based trampolines. */
2327
2328/* These trampolines are used on cross x86 targets, when taking the
2329 address of a nested function. When executing these trampolines,
2330 no stack frame is set up, so we are in a similar situation as in
2331 epilogues and i386_epilogue_frame_this_id can be re-used. */
2332
2333/* Static chain passed in register. */
2334
2335struct i386_insn i386_tramp_chain_in_reg_insns[] =
2336{
2337 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2338 { 5, { 0xb8 }, { 0xfe } },
2339
2340 /* `jmp imm32' */
2341 { 5, { 0xe9 }, { 0xff } },
2342
2343 {0}
2344};
2345
2346/* Static chain passed on stack (when regparm=3). */
2347
2348struct i386_insn i386_tramp_chain_on_stack_insns[] =
2349{
2350 /* `push imm32' */
2351 { 5, { 0x68 }, { 0xff } },
2352
2353 /* `jmp imm32' */
2354 { 5, { 0xe9 }, { 0xff } },
2355
2356 {0}
2357};
2358
2359/* Return whether PC points inside a stack trampoline. */
2360
2361static int
6df81a63 2362i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2363{
2364 gdb_byte insn;
2c02bd72 2365 const char *name;
a3fcb948
JG
2366
2367 /* A stack trampoline is detected if no name is associated
2368 to the current pc and if it points inside a trampoline
2369 sequence. */
2370
2371 find_pc_partial_function (pc, &name, NULL, NULL);
2372 if (name)
2373 return 0;
2374
2375 if (target_read_memory (pc, &insn, 1))
2376 return 0;
2377
2378 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2379 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2380 return 0;
2381
2382 return 1;
2383}
2384
2385static int
2386i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2387 struct frame_info *this_frame,
2388 void **this_cache)
a3fcb948
JG
2389{
2390 if (frame_relative_level (this_frame) == 0)
6df81a63 2391 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2392 else
2393 return 0;
2394}
2395
2396static const struct frame_unwind i386_stack_tramp_frame_unwind =
2397{
2398 NORMAL_FRAME,
2399 i386_epilogue_frame_unwind_stop_reason,
2400 i386_epilogue_frame_this_id,
0d6c2135 2401 i386_epilogue_frame_prev_register,
a3fcb948
JG
2402 NULL,
2403 i386_stack_tramp_frame_sniffer
2404};
2405\f
6710bf39
SS
2406/* Generate a bytecode expression to get the value of the saved PC. */
2407
2408static void
2409i386_gen_return_address (struct gdbarch *gdbarch,
2410 struct agent_expr *ax, struct axs_value *value,
2411 CORE_ADDR scope)
2412{
2413 /* The following sequence assumes the traditional use of the base
2414 register. */
2415 ax_reg (ax, I386_EBP_REGNUM);
2416 ax_const_l (ax, 4);
2417 ax_simple (ax, aop_add);
2418 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2419 value->kind = axs_lvalue_memory;
2420}
2421\f
a3fcb948 2422
acd5c798
MK
2423/* Signal trampolines. */
2424
2425static struct i386_frame_cache *
10458914 2426i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2427{
e17a4113
UW
2428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2429 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2431 struct i386_frame_cache *cache;
acd5c798 2432 CORE_ADDR addr;
63c0089f 2433 gdb_byte buf[4];
acd5c798
MK
2434
2435 if (*this_cache)
9a3c8263 2436 return (struct i386_frame_cache *) *this_cache;
acd5c798 2437
fd13a04a 2438 cache = i386_alloc_frame_cache ();
acd5c798 2439
492d29ea 2440 TRY
a3386186 2441 {
8fbca658
PA
2442 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2443 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2444
8fbca658
PA
2445 addr = tdep->sigcontext_addr (this_frame);
2446 if (tdep->sc_reg_offset)
2447 {
2448 int i;
a3386186 2449
8fbca658
PA
2450 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2451
2452 for (i = 0; i < tdep->sc_num_regs; i++)
2453 if (tdep->sc_reg_offset[i] != -1)
2454 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2455 }
2456 else
2457 {
2458 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2459 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2460 }
2461
2462 cache->base_p = 1;
a3386186 2463 }
492d29ea 2464 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2465 {
2466 if (ex.error != NOT_AVAILABLE_ERROR)
2467 throw_exception (ex);
2468 }
492d29ea 2469 END_CATCH
acd5c798
MK
2470
2471 *this_cache = cache;
2472 return cache;
2473}
2474
8fbca658
PA
2475static enum unwind_stop_reason
2476i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478{
2479 struct i386_frame_cache *cache =
2480 i386_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486}
2487
acd5c798 2488static void
10458914 2489i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2490 struct frame_id *this_id)
2491{
2492 struct i386_frame_cache *cache =
10458914 2493 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2494
8fbca658 2495 if (!cache->base_p)
5ce0145d
PA
2496 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 else
2498 {
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2501 }
acd5c798
MK
2502}
2503
10458914
DJ
2504static struct value *
2505i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2506 void **this_cache, int regnum)
acd5c798
MK
2507{
2508 /* Make sure we've initialized the cache. */
10458914 2509 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2510
10458914 2511 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2512}
c0d1d883 2513
10458914
DJ
2514static int
2515i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2516 struct frame_info *this_frame,
2517 void **this_prologue_cache)
acd5c798 2518{
10458914 2519 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2520
911bc6ee
MK
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 handler. */
2523 if (tdep->sigcontext_addr == NULL)
10458914 2524 return 0;
1c3545ae 2525
911bc6ee
MK
2526 if (tdep->sigtramp_p != NULL)
2527 {
10458914
DJ
2528 if (tdep->sigtramp_p (this_frame))
2529 return 1;
911bc6ee
MK
2530 }
2531
2532 if (tdep->sigtramp_start != 0)
2533 {
10458914 2534 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2535
2536 gdb_assert (tdep->sigtramp_end != 0);
2537 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2538 return 1;
911bc6ee 2539 }
acd5c798 2540
10458914 2541 return 0;
acd5c798 2542}
10458914
DJ
2543
2544static const struct frame_unwind i386_sigtramp_frame_unwind =
2545{
2546 SIGTRAMP_FRAME,
8fbca658 2547 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2548 i386_sigtramp_frame_this_id,
2549 i386_sigtramp_frame_prev_register,
2550 NULL,
2551 i386_sigtramp_frame_sniffer
2552};
acd5c798
MK
2553\f
2554
2555static CORE_ADDR
10458914 2556i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2557{
10458914 2558 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2559
2560 return cache->base;
2561}
2562
2563static const struct frame_base i386_frame_base =
2564{
2565 &i386_frame_unwind,
2566 i386_frame_base_address,
2567 i386_frame_base_address,
2568 i386_frame_base_address
2569};
2570
acd5c798 2571static struct frame_id
10458914 2572i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2573{
acd5c798
MK
2574 CORE_ADDR fp;
2575
10458914 2576 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2577
3e210248 2578 /* See the end of i386_push_dummy_call. */
10458914 2579 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2580}
e04e5beb
JM
2581
2582/* _Decimal128 function return values need 16-byte alignment on the
2583 stack. */
2584
2585static CORE_ADDR
2586i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587{
2588 return sp & -(CORE_ADDR)16;
2589}
fc338970 2590\f
c906108c 2591
fc338970
MK
2592/* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2594 structure from which we extract the address that we will land at.
28bcfd30 2595 This address is copied into PC. This routine returns non-zero on
436675d3 2596 success. */
c906108c 2597
8201327c 2598static int
60ade65d 2599i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2600{
436675d3 2601 gdb_byte buf[4];
c906108c 2602 CORE_ADDR sp, jb_addr;
20a6ec49 2603 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2605 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2606
8201327c
MK
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset == -1)
c906108c
SS
2610 return 0;
2611
436675d3 2612 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2613 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2614 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2615 return 0;
2616
e17a4113 2617 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2618 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2619 return 0;
c906108c 2620
e17a4113 2621 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2622 return 1;
2623}
fc338970 2624\f
c906108c 2625
7ccc1c74
JM
2626/* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2630
2631static int
2632i386_16_byte_align_p (struct type *type)
2633{
2634 type = check_typedef (type);
2635 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2636 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2637 && TYPE_LENGTH (type) == 16)
2638 return 1;
2639 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2641 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2642 || TYPE_CODE (type) == TYPE_CODE_UNION)
2643 {
2644 int i;
2645 for (i = 0; i < TYPE_NFIELDS (type); i++)
2646 {
2647 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2648 return 1;
2649 }
2650 }
2651 return 0;
2652}
2653
a9b8d892
JK
2654/* Implementation for set_gdbarch_push_dummy_code. */
2655
2656static CORE_ADDR
2657i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2658 struct value **args, int nargs, struct type *value_type,
2659 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2660 struct regcache *regcache)
2661{
2662 /* Use 0xcc breakpoint - 1 byte. */
2663 *bp_addr = sp - 1;
2664 *real_pc = funaddr;
2665
2666 /* Keep the stack aligned. */
2667 return sp - 16;
2668}
2669
3a1e71e3 2670static CORE_ADDR
7d9b040b 2671i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2672 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2673 struct value **args, CORE_ADDR sp, int struct_return,
2674 CORE_ADDR struct_addr)
22f8ba57 2675{
e17a4113 2676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2677 gdb_byte buf[4];
acd5c798 2678 int i;
7ccc1c74
JM
2679 int write_pass;
2680 int args_space = 0;
acd5c798 2681
4a612d6f
WT
2682 /* BND registers can be in arbitrary values at the moment of the
2683 inferior call. This can cause boundary violations that are not
2684 due to a real bug or even desired by the user. The best to be done
2685 is set the BND registers to allow access to the whole memory, INIT
2686 state, before pushing the inferior call. */
2687 i387_reset_bnd_regs (gdbarch, regcache);
2688
7ccc1c74
JM
2689 /* Determine the total space required for arguments and struct
2690 return address in a first pass (allowing for 16-byte-aligned
2691 arguments), then push arguments in a second pass. */
2692
2693 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2694 {
7ccc1c74 2695 int args_space_used = 0;
7ccc1c74
JM
2696
2697 if (struct_return)
2698 {
2699 if (write_pass)
2700 {
2701 /* Push value address. */
e17a4113 2702 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2703 write_memory (sp, buf, 4);
2704 args_space_used += 4;
2705 }
2706 else
2707 args_space += 4;
2708 }
2709
2710 for (i = 0; i < nargs; i++)
2711 {
2712 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2713
7ccc1c74
JM
2714 if (write_pass)
2715 {
2716 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2717 args_space_used = align_up (args_space_used, 16);
acd5c798 2718
7ccc1c74
JM
2719 write_memory (sp + args_space_used,
2720 value_contents_all (args[i]), len);
2721 /* The System V ABI says that:
acd5c798 2722
7ccc1c74
JM
2723 "An argument's size is increased, if necessary, to make it a
2724 multiple of [32-bit] words. This may require tail padding,
2725 depending on the size of the argument."
22f8ba57 2726
7ccc1c74
JM
2727 This makes sure the stack stays word-aligned. */
2728 args_space_used += align_up (len, 4);
2729 }
2730 else
2731 {
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2733 args_space = align_up (args_space, 16);
7ccc1c74
JM
2734 args_space += align_up (len, 4);
2735 }
2736 }
2737
2738 if (!write_pass)
2739 {
7ccc1c74 2740 sp -= args_space;
284c5a60
MK
2741
2742 /* The original System V ABI only requires word alignment,
2743 but modern incarnations need 16-byte alignment in order
2744 to support SSE. Since wasting a few bytes here isn't
2745 harmful we unconditionally enforce 16-byte alignment. */
2746 sp &= ~0xf;
7ccc1c74 2747 }
22f8ba57
MK
2748 }
2749
acd5c798
MK
2750 /* Store return address. */
2751 sp -= 4;
e17a4113 2752 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2753 write_memory (sp, buf, 4);
2754
2755 /* Finally, update the stack pointer... */
e17a4113 2756 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2757 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2758
2759 /* ...and fake a frame pointer. */
2760 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2761
3e210248
AC
2762 /* MarkK wrote: This "+ 8" is all over the place:
2763 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2764 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2765 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2766 definition of the stack address of a frame. Otherwise frame id
2767 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2768 stack address *before* the function call as a frame's CFA. On
2769 the i386, when %ebp is used as a frame pointer, the offset
2770 between the contents %ebp and the CFA as defined by GCC. */
2771 return sp + 8;
22f8ba57
MK
2772}
2773
1a309862
MK
2774/* These registers are used for returning integers (and on some
2775 targets also for returning `struct' and `union' values when their
ef9dff19 2776 size and alignment match an integer type). */
acd5c798
MK
2777#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2778#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2779
c5e656c1
MK
2780/* Read, for architecture GDBARCH, a function return value of TYPE
2781 from REGCACHE, and copy that into VALBUF. */
1a309862 2782
3a1e71e3 2783static void
c5e656c1 2784i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2785 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2786{
c5e656c1 2787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2788 int len = TYPE_LENGTH (type);
63c0089f 2789 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2790
1e8d0a7b 2791 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2792 {
5716833c 2793 if (tdep->st0_regnum < 0)
1a309862 2794 {
8a3fe4f8 2795 warning (_("Cannot find floating-point return value."));
1a309862 2796 memset (valbuf, 0, len);
ef9dff19 2797 return;
1a309862
MK
2798 }
2799
c6ba6f0d
MK
2800 /* Floating-point return values can be found in %st(0). Convert
2801 its contents to the desired type. This is probably not
2802 exactly how it would happen on the target itself, but it is
2803 the best we can do. */
acd5c798 2804 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
3b2ca824 2805 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2806 }
2807 else
c5aa993b 2808 {
875f8d0e
UW
2809 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2810 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2811
2812 if (len <= low_size)
00f8375e 2813 {
0818c12a 2814 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2815 memcpy (valbuf, buf, len);
2816 }
d4f3574e
SS
2817 else if (len <= (low_size + high_size))
2818 {
0818c12a 2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2820 memcpy (valbuf, buf, low_size);
0818c12a 2821 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2822 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2823 }
2824 else
8e65ff28 2825 internal_error (__FILE__, __LINE__,
1777feb0
MS
2826 _("Cannot extract return value of %d bytes long."),
2827 len);
c906108c
SS
2828 }
2829}
2830
c5e656c1
MK
2831/* Write, for architecture GDBARCH, a function return value of TYPE
2832 from VALBUF into REGCACHE. */
ef9dff19 2833
3a1e71e3 2834static void
c5e656c1 2835i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2836 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2837{
c5e656c1 2838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2839 int len = TYPE_LENGTH (type);
2840
1e8d0a7b 2841 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2842 {
3d7f4f49 2843 ULONGEST fstat;
63c0089f 2844 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2845
5716833c 2846 if (tdep->st0_regnum < 0)
ef9dff19 2847 {
8a3fe4f8 2848 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2849 return;
2850 }
2851
635b0cc1
MK
2852 /* Returning floating-point values is a bit tricky. Apart from
2853 storing the return value in %st(0), we have to simulate the
2854 state of the FPU at function return point. */
2855
c6ba6f0d
MK
2856 /* Convert the value found in VALBUF to the extended
2857 floating-point format used by the FPU. This is probably
2858 not exactly how it would happen on the target itself, but
2859 it is the best we can do. */
3b2ca824 2860 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2861 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2862
635b0cc1
MK
2863 /* Set the top of the floating-point register stack to 7. The
2864 actual value doesn't really matter, but 7 is what a normal
2865 function return would end up with if the program started out
2866 with a freshly initialized FPU. */
20a6ec49 2867 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2868 fstat |= (7 << 11);
20a6ec49 2869 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2870
635b0cc1
MK
2871 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2872 the floating-point register stack to 7, the appropriate value
2873 for the tag word is 0x3fff. */
20a6ec49 2874 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2875 }
2876 else
2877 {
875f8d0e
UW
2878 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2879 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2880
2881 if (len <= low_size)
3d7f4f49 2882 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2883 else if (len <= (low_size + high_size))
2884 {
3d7f4f49
MK
2885 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2886 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2887 len - low_size, valbuf + low_size);
ef9dff19
MK
2888 }
2889 else
8e65ff28 2890 internal_error (__FILE__, __LINE__,
e2e0b3e5 2891 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2892 }
2893}
fc338970 2894\f
ef9dff19 2895
8201327c
MK
2896/* This is the variable that is set with "set struct-convention", and
2897 its legitimate values. */
2898static const char default_struct_convention[] = "default";
2899static const char pcc_struct_convention[] = "pcc";
2900static const char reg_struct_convention[] = "reg";
40478521 2901static const char *const valid_conventions[] =
8201327c
MK
2902{
2903 default_struct_convention,
2904 pcc_struct_convention,
2905 reg_struct_convention,
2906 NULL
2907};
2908static const char *struct_convention = default_struct_convention;
2909
0e4377e1
JB
2910/* Return non-zero if TYPE, which is assumed to be a structure,
2911 a union type, or an array type, should be returned in registers
2912 for architecture GDBARCH. */
c5e656c1 2913
8201327c 2914static int
c5e656c1 2915i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2916{
c5e656c1
MK
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918 enum type_code code = TYPE_CODE (type);
2919 int len = TYPE_LENGTH (type);
8201327c 2920
0e4377e1
JB
2921 gdb_assert (code == TYPE_CODE_STRUCT
2922 || code == TYPE_CODE_UNION
2923 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2924
2925 if (struct_convention == pcc_struct_convention
2926 || (struct_convention == default_struct_convention
2927 && tdep->struct_return == pcc_struct_return))
2928 return 0;
2929
9edde48e
MK
2930 /* Structures consisting of a single `float', `double' or 'long
2931 double' member are returned in %st(0). */
2932 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2933 {
2934 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2935 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2936 return (len == 4 || len == 8 || len == 12);
2937 }
2938
c5e656c1
MK
2939 return (len == 1 || len == 2 || len == 4 || len == 8);
2940}
2941
2942/* Determine, for architecture GDBARCH, how a return value of TYPE
2943 should be returned. If it is supposed to be returned in registers,
2944 and READBUF is non-zero, read the appropriate value from REGCACHE,
2945 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2946 from WRITEBUF into REGCACHE. */
2947
2948static enum return_value_convention
6a3a010b 2949i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2950 struct type *type, struct regcache *regcache,
2951 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2952{
2953 enum type_code code = TYPE_CODE (type);
2954
5daa78cc
TJB
2955 if (((code == TYPE_CODE_STRUCT
2956 || code == TYPE_CODE_UNION
2957 || code == TYPE_CODE_ARRAY)
2958 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2959 /* Complex double and long double uses the struct return covention. */
2960 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2961 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2962 /* 128-bit decimal float uses the struct return convention. */
2963 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2964 {
2965 /* The System V ABI says that:
2966
2967 "A function that returns a structure or union also sets %eax
2968 to the value of the original address of the caller's area
2969 before it returns. Thus when the caller receives control
2970 again, the address of the returned object resides in register
2971 %eax and can be used to access the object."
2972
2973 So the ABI guarantees that we can always find the return
2974 value just after the function has returned. */
2975
0e4377e1
JB
2976 /* Note that the ABI doesn't mention functions returning arrays,
2977 which is something possible in certain languages such as Ada.
2978 In this case, the value is returned as if it was wrapped in
2979 a record, so the convention applied to records also applies
2980 to arrays. */
2981
31db7b6c
MK
2982 if (readbuf)
2983 {
2984 ULONGEST addr;
2985
2986 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2987 read_memory (addr, readbuf, TYPE_LENGTH (type));
2988 }
2989
2990 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2991 }
c5e656c1
MK
2992
2993 /* This special case is for structures consisting of a single
9edde48e
MK
2994 `float', `double' or 'long double' member. These structures are
2995 returned in %st(0). For these structures, we call ourselves
2996 recursively, changing TYPE into the type of the first member of
2997 the structure. Since that should work for all structures that
2998 have only one member, we don't bother to check the member's type
2999 here. */
c5e656c1
MK
3000 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3001 {
3002 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 3003 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3004 readbuf, writebuf);
c5e656c1
MK
3005 }
3006
3007 if (readbuf)
3008 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3009 if (writebuf)
3010 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3011
c5e656c1 3012 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3013}
3014\f
3015
27067745
UW
3016struct type *
3017i387_ext_type (struct gdbarch *gdbarch)
3018{
3019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3020
3021 if (!tdep->i387_ext_type)
90884b2b
L
3022 {
3023 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3024 gdb_assert (tdep->i387_ext_type != NULL);
3025 }
27067745
UW
3026
3027 return tdep->i387_ext_type;
3028}
3029
1dbcd68c
WT
3030/* Construct type for pseudo BND registers. We can't use
3031 tdesc_find_type since a complement of one value has to be used
3032 to describe the upper bound. */
3033
3034static struct type *
3035i386_bnd_type (struct gdbarch *gdbarch)
3036{
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3038
3039
3040 if (!tdep->i386_bnd_type)
3041 {
870f88f7 3042 struct type *t;
1dbcd68c
WT
3043 const struct builtin_type *bt = builtin_type (gdbarch);
3044
3045 /* The type we're building is described bellow: */
3046#if 0
3047 struct __bound128
3048 {
3049 void *lbound;
3050 void *ubound; /* One complement of raw ubound field. */
3051 };
3052#endif
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3056
3057 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3058 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3059
3060 TYPE_NAME (t) = "builtin_type_bound128";
3061 tdep->i386_bnd_type = t;
3062 }
3063
3064 return tdep->i386_bnd_type;
3065}
3066
01f9f808
MS
3067/* Construct vector type for pseudo ZMM registers. We can't use
3068 tdesc_find_type since ZMM isn't described in target description. */
3069
3070static struct type *
3071i386_zmm_type (struct gdbarch *gdbarch)
3072{
3073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3074
3075 if (!tdep->i386_zmm_type)
3076 {
3077 const struct builtin_type *bt = builtin_type (gdbarch);
3078
3079 /* The type we're building is this: */
3080#if 0
3081 union __gdb_builtin_type_vec512i
3082 {
3083 int128_t uint128[4];
3084 int64_t v4_int64[8];
3085 int32_t v8_int32[16];
3086 int16_t v16_int16[32];
3087 int8_t v32_int8[64];
3088 double v4_double[8];
3089 float v8_float[16];
3090 };
3091#endif
3092
3093 struct type *t;
3094
3095 t = arch_composite_type (gdbarch,
3096 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3097 append_composite_type_field (t, "v16_float",
3098 init_vector_type (bt->builtin_float, 16));
3099 append_composite_type_field (t, "v8_double",
3100 init_vector_type (bt->builtin_double, 8));
3101 append_composite_type_field (t, "v64_int8",
3102 init_vector_type (bt->builtin_int8, 64));
3103 append_composite_type_field (t, "v32_int16",
3104 init_vector_type (bt->builtin_int16, 32));
3105 append_composite_type_field (t, "v16_int32",
3106 init_vector_type (bt->builtin_int32, 16));
3107 append_composite_type_field (t, "v8_int64",
3108 init_vector_type (bt->builtin_int64, 8));
3109 append_composite_type_field (t, "v4_int128",
3110 init_vector_type (bt->builtin_int128, 4));
3111
3112 TYPE_VECTOR (t) = 1;
3113 TYPE_NAME (t) = "builtin_type_vec512i";
3114 tdep->i386_zmm_type = t;
3115 }
3116
3117 return tdep->i386_zmm_type;
3118}
3119
c131fcee
L
3120/* Construct vector type for pseudo YMM registers. We can't use
3121 tdesc_find_type since YMM isn't described in target description. */
3122
3123static struct type *
3124i386_ymm_type (struct gdbarch *gdbarch)
3125{
3126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3127
3128 if (!tdep->i386_ymm_type)
3129 {
3130 const struct builtin_type *bt = builtin_type (gdbarch);
3131
3132 /* The type we're building is this: */
3133#if 0
3134 union __gdb_builtin_type_vec256i
3135 {
3136 int128_t uint128[2];
3137 int64_t v2_int64[4];
3138 int32_t v4_int32[8];
3139 int16_t v8_int16[16];
3140 int8_t v16_int8[32];
3141 double v2_double[4];
3142 float v4_float[8];
3143 };
3144#endif
3145
3146 struct type *t;
3147
3148 t = arch_composite_type (gdbarch,
3149 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3150 append_composite_type_field (t, "v8_float",
3151 init_vector_type (bt->builtin_float, 8));
3152 append_composite_type_field (t, "v4_double",
3153 init_vector_type (bt->builtin_double, 4));
3154 append_composite_type_field (t, "v32_int8",
3155 init_vector_type (bt->builtin_int8, 32));
3156 append_composite_type_field (t, "v16_int16",
3157 init_vector_type (bt->builtin_int16, 16));
3158 append_composite_type_field (t, "v8_int32",
3159 init_vector_type (bt->builtin_int32, 8));
3160 append_composite_type_field (t, "v4_int64",
3161 init_vector_type (bt->builtin_int64, 4));
3162 append_composite_type_field (t, "v2_int128",
3163 init_vector_type (bt->builtin_int128, 2));
3164
3165 TYPE_VECTOR (t) = 1;
0c5acf93 3166 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3167 tdep->i386_ymm_type = t;
3168 }
3169
3170 return tdep->i386_ymm_type;
3171}
3172
794ac428 3173/* Construct vector type for MMX registers. */
90884b2b 3174static struct type *
794ac428
UW
3175i386_mmx_type (struct gdbarch *gdbarch)
3176{
3177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3178
3179 if (!tdep->i386_mmx_type)
3180 {
df4df182
UW
3181 const struct builtin_type *bt = builtin_type (gdbarch);
3182
794ac428
UW
3183 /* The type we're building is this: */
3184#if 0
3185 union __gdb_builtin_type_vec64i
3186 {
3187 int64_t uint64;
3188 int32_t v2_int32[2];
3189 int16_t v4_int16[4];
3190 int8_t v8_int8[8];
3191 };
3192#endif
3193
3194 struct type *t;
3195
e9bb382b
UW
3196 t = arch_composite_type (gdbarch,
3197 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3198
3199 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3200 append_composite_type_field (t, "v2_int32",
df4df182 3201 init_vector_type (bt->builtin_int32, 2));
794ac428 3202 append_composite_type_field (t, "v4_int16",
df4df182 3203 init_vector_type (bt->builtin_int16, 4));
794ac428 3204 append_composite_type_field (t, "v8_int8",
df4df182 3205 init_vector_type (bt->builtin_int8, 8));
794ac428 3206
876cecd0 3207 TYPE_VECTOR (t) = 1;
794ac428
UW
3208 TYPE_NAME (t) = "builtin_type_vec64i";
3209 tdep->i386_mmx_type = t;
3210 }
3211
3212 return tdep->i386_mmx_type;
3213}
3214
d7a0d72c 3215/* Return the GDB type object for the "standard" data type of data in
1777feb0 3216 register REGNUM. */
d7a0d72c 3217
fff4548b 3218struct type *
90884b2b 3219i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3220{
1dbcd68c
WT
3221 if (i386_bnd_regnum_p (gdbarch, regnum))
3222 return i386_bnd_type (gdbarch);
1ba53b71
L
3223 if (i386_mmx_regnum_p (gdbarch, regnum))
3224 return i386_mmx_type (gdbarch);
c131fcee
L
3225 else if (i386_ymm_regnum_p (gdbarch, regnum))
3226 return i386_ymm_type (gdbarch);
01f9f808
MS
3227 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3228 return i386_ymm_type (gdbarch);
3229 else if (i386_zmm_regnum_p (gdbarch, regnum))
3230 return i386_zmm_type (gdbarch);
1ba53b71
L
3231 else
3232 {
3233 const struct builtin_type *bt = builtin_type (gdbarch);
3234 if (i386_byte_regnum_p (gdbarch, regnum))
3235 return bt->builtin_int8;
3236 else if (i386_word_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int16;
3238 else if (i386_dword_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int32;
01f9f808
MS
3240 else if (i386_k_regnum_p (gdbarch, regnum))
3241 return bt->builtin_int64;
1ba53b71
L
3242 }
3243
3244 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3245}
3246
28fc6740 3247/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3248 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3249
3250static int
849d0ba8 3251i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
28fc6740 3252{
ac7936df 3253 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
5716833c 3254 int mmxreg, fpreg;
28fc6740
AC
3255 ULONGEST fstat;
3256 int tos;
c86c27af 3257
5716833c 3258 mmxreg = regnum - tdep->mm0_regnum;
03f50fc8 3259 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3260 tos = (fstat >> 11) & 0x7;
5716833c
MK
3261 fpreg = (mmxreg + tos) % 8;
3262
20a6ec49 3263 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3264}
3265
3543a589
TT
3266/* A helper function for us by i386_pseudo_register_read_value and
3267 amd64_pseudo_register_read_value. It does all the work but reads
3268 the data into an already-allocated value. */
3269
3270void
3271i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
849d0ba8 3272 readable_regcache *regcache,
3543a589
TT
3273 int regnum,
3274 struct value *result_value)
28fc6740 3275{
975c21ab 3276 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3277 enum register_status status;
3543a589 3278 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3279
5716833c 3280 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3281 {
c86c27af
MK
3282 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3283
28fc6740 3284 /* Extract (always little endian). */
03f50fc8 3285 status = regcache->raw_read (fpnum, raw_buf);
05d1431c 3286 if (status != REG_VALID)
3543a589
TT
3287 mark_value_bytes_unavailable (result_value, 0,
3288 TYPE_LENGTH (value_type (result_value)));
3289 else
3290 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3291 }
3292 else
1ba53b71
L
3293 {
3294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3295 if (i386_bnd_regnum_p (gdbarch, regnum))
3296 {
3297 regnum -= tdep->bnd0_regnum;
1ba53b71 3298
1dbcd68c 3299 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3300 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3301 raw_buf);
1dbcd68c
WT
3302 if (status != REG_VALID)
3303 mark_value_bytes_unavailable (result_value, 0, 16);
3304 else
3305 {
3306 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3307 LONGEST upper, lower;
3308 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3309
3310 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3311 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3312 upper = ~upper;
3313
3314 memcpy (buf, &lower, size);
3315 memcpy (buf + size, &upper, size);
3316 }
3317 }
01f9f808
MS
3318 else if (i386_k_regnum_p (gdbarch, regnum))
3319 {
3320 regnum -= tdep->k0_regnum;
3321
3322 /* Extract (always little endian). */
03f50fc8 3323 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
01f9f808
MS
3324 if (status != REG_VALID)
3325 mark_value_bytes_unavailable (result_value, 0, 8);
3326 else
3327 memcpy (buf, raw_buf, 8);
3328 }
3329 else if (i386_zmm_regnum_p (gdbarch, regnum))
3330 {
3331 regnum -= tdep->zmm0_regnum;
3332
3333 if (regnum < num_lower_zmm_regs)
3334 {
3335 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3336 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3337 raw_buf);
01f9f808
MS
3338 if (status != REG_VALID)
3339 mark_value_bytes_unavailable (result_value, 0, 16);
3340 else
3341 memcpy (buf, raw_buf, 16);
3342
3343 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3344 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3345 raw_buf);
01f9f808
MS
3346 if (status != REG_VALID)
3347 mark_value_bytes_unavailable (result_value, 16, 16);
3348 else
3349 memcpy (buf + 16, raw_buf, 16);
3350 }
3351 else
3352 {
3353 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3354 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3355 - num_lower_zmm_regs,
3356 raw_buf);
01f9f808
MS
3357 if (status != REG_VALID)
3358 mark_value_bytes_unavailable (result_value, 0, 16);
3359 else
3360 memcpy (buf, raw_buf, 16);
3361
3362 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3363 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3364 - num_lower_zmm_regs,
3365 raw_buf);
01f9f808
MS
3366 if (status != REG_VALID)
3367 mark_value_bytes_unavailable (result_value, 16, 16);
3368 else
3369 memcpy (buf + 16, raw_buf, 16);
3370 }
3371
3372 /* Read upper 256bits. */
03f50fc8
YQ
3373 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3374 raw_buf);
01f9f808
MS
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 32, 32);
3377 else
3378 memcpy (buf + 32, raw_buf, 32);
3379 }
1dbcd68c 3380 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3381 {
3382 regnum -= tdep->ymm0_regnum;
3383
1777feb0 3384 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3385 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3386 raw_buf);
05d1431c 3387 if (status != REG_VALID)
3543a589
TT
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3389 else
3390 memcpy (buf, raw_buf, 16);
c131fcee 3391 /* Read upper 128bits. */
03f50fc8
YQ
3392 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3393 raw_buf);
05d1431c 3394 if (status != REG_VALID)
3543a589
TT
3395 mark_value_bytes_unavailable (result_value, 16, 32);
3396 else
3397 memcpy (buf + 16, raw_buf, 16);
c131fcee 3398 }
01f9f808
MS
3399 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3400 {
3401 regnum -= tdep->ymm16_regnum;
3402 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3403 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3404 raw_buf);
01f9f808
MS
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 0, 16);
3407 else
3408 memcpy (buf, raw_buf, 16);
3409 /* Read upper 128bits. */
03f50fc8
YQ
3410 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3411 raw_buf);
01f9f808
MS
3412 if (status != REG_VALID)
3413 mark_value_bytes_unavailable (result_value, 16, 16);
3414 else
3415 memcpy (buf + 16, raw_buf, 16);
3416 }
c131fcee 3417 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3418 {
3419 int gpnum = regnum - tdep->ax_regnum;
3420
3421 /* Extract (always little endian). */
03f50fc8 3422 status = regcache->raw_read (gpnum, raw_buf);
05d1431c 3423 if (status != REG_VALID)
3543a589
TT
3424 mark_value_bytes_unavailable (result_value, 0,
3425 TYPE_LENGTH (value_type (result_value)));
3426 else
3427 memcpy (buf, raw_buf, 2);
1ba53b71
L
3428 }
3429 else if (i386_byte_regnum_p (gdbarch, regnum))
3430 {
1ba53b71
L
3431 int gpnum = regnum - tdep->al_regnum;
3432
3433 /* Extract (always little endian). We read both lower and
3434 upper registers. */
03f50fc8 3435 status = regcache->raw_read (gpnum % 4, raw_buf);
05d1431c 3436 if (status != REG_VALID)
3543a589
TT
3437 mark_value_bytes_unavailable (result_value, 0,
3438 TYPE_LENGTH (value_type (result_value)));
3439 else if (gpnum >= 4)
1ba53b71
L
3440 memcpy (buf, raw_buf + 1, 1);
3441 else
3442 memcpy (buf, raw_buf, 1);
3443 }
3444 else
3445 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3446 }
3543a589
TT
3447}
3448
3449static struct value *
3450i386_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 3451 readable_regcache *regcache,
3543a589
TT
3452 int regnum)
3453{
3454 struct value *result;
3455
3456 result = allocate_value (register_type (gdbarch, regnum));
3457 VALUE_LVAL (result) = lval_register;
3458 VALUE_REGNUM (result) = regnum;
3459
3460 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3461
3543a589 3462 return result;
28fc6740
AC
3463}
3464
1ba53b71 3465void
28fc6740 3466i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3467 int regnum, const gdb_byte *buf)
28fc6740 3468{
975c21ab 3469 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3470
5716833c 3471 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3472 {
c86c27af
MK
3473 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3474
28fc6740 3475 /* Read ... */
1ba53b71 3476 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3477 /* ... Modify ... (always little endian). */
1ba53b71 3478 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3479 /* ... Write. */
1ba53b71 3480 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3481 }
3482 else
1ba53b71
L
3483 {
3484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3485
1dbcd68c
WT
3486 if (i386_bnd_regnum_p (gdbarch, regnum))
3487 {
3488 ULONGEST upper, lower;
3489 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3490 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3491
3492 /* New values from input value. */
3493 regnum -= tdep->bnd0_regnum;
3494 lower = extract_unsigned_integer (buf, size, byte_order);
3495 upper = extract_unsigned_integer (buf + size, size, byte_order);
3496
3497 /* Fetching register buffer. */
3498 regcache_raw_read (regcache,
3499 I387_BND0R_REGNUM (tdep) + regnum,
3500 raw_buf);
3501
3502 upper = ~upper;
3503
3504 /* Set register bits. */
3505 memcpy (raw_buf, &lower, 8);
3506 memcpy (raw_buf + 8, &upper, 8);
3507
3508
3509 regcache_raw_write (regcache,
3510 I387_BND0R_REGNUM (tdep) + regnum,
3511 raw_buf);
3512 }
01f9f808
MS
3513 else if (i386_k_regnum_p (gdbarch, regnum))
3514 {
3515 regnum -= tdep->k0_regnum;
3516
3517 regcache_raw_write (regcache,
3518 tdep->k0_regnum + regnum,
3519 buf);
3520 }
3521 else if (i386_zmm_regnum_p (gdbarch, regnum))
3522 {
3523 regnum -= tdep->zmm0_regnum;
3524
3525 if (regnum < num_lower_zmm_regs)
3526 {
3527 /* Write lower 128bits. */
3528 regcache_raw_write (regcache,
3529 I387_XMM0_REGNUM (tdep) + regnum,
3530 buf);
3531 /* Write upper 128bits. */
3532 regcache_raw_write (regcache,
3533 I387_YMM0_REGNUM (tdep) + regnum,
3534 buf + 16);
3535 }
3536 else
3537 {
3538 /* Write lower 128bits. */
3539 regcache_raw_write (regcache,
3540 I387_XMM16_REGNUM (tdep) + regnum
3541 - num_lower_zmm_regs,
3542 buf);
3543 /* Write upper 128bits. */
3544 regcache_raw_write (regcache,
3545 I387_YMM16H_REGNUM (tdep) + regnum
3546 - num_lower_zmm_regs,
3547 buf + 16);
3548 }
3549 /* Write upper 256bits. */
3550 regcache_raw_write (regcache,
3551 tdep->zmm0h_regnum + regnum,
3552 buf + 32);
3553 }
1dbcd68c 3554 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3555 {
3556 regnum -= tdep->ymm0_regnum;
3557
3558 /* ... Write lower 128bits. */
3559 regcache_raw_write (regcache,
3560 I387_XMM0_REGNUM (tdep) + regnum,
3561 buf);
3562 /* ... Write upper 128bits. */
3563 regcache_raw_write (regcache,
3564 tdep->ymm0h_regnum + regnum,
3565 buf + 16);
3566 }
01f9f808
MS
3567 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3568 {
3569 regnum -= tdep->ymm16_regnum;
3570
3571 /* ... Write lower 128bits. */
3572 regcache_raw_write (regcache,
3573 I387_XMM16_REGNUM (tdep) + regnum,
3574 buf);
3575 /* ... Write upper 128bits. */
3576 regcache_raw_write (regcache,
3577 tdep->ymm16h_regnum + regnum,
3578 buf + 16);
3579 }
c131fcee 3580 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3581 {
3582 int gpnum = regnum - tdep->ax_regnum;
3583
3584 /* Read ... */
3585 regcache_raw_read (regcache, gpnum, raw_buf);
3586 /* ... Modify ... (always little endian). */
3587 memcpy (raw_buf, buf, 2);
3588 /* ... Write. */
3589 regcache_raw_write (regcache, gpnum, raw_buf);
3590 }
3591 else if (i386_byte_regnum_p (gdbarch, regnum))
3592 {
1ba53b71
L
3593 int gpnum = regnum - tdep->al_regnum;
3594
3595 /* Read ... We read both lower and upper registers. */
3596 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3597 /* ... Modify ... (always little endian). */
3598 if (gpnum >= 4)
3599 memcpy (raw_buf + 1, buf, 1);
3600 else
3601 memcpy (raw_buf, buf, 1);
3602 /* ... Write. */
3603 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3604 }
3605 else
3606 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3607 }
28fc6740 3608}
62e5fd57
MK
3609
3610/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3611
3612int
3613i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3614 struct agent_expr *ax, int regnum)
3615{
3616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3617
3618 if (i386_mmx_regnum_p (gdbarch, regnum))
3619 {
3620 /* MMX to FPU register mapping depends on current TOS. Let's just
3621 not care and collect everything... */
3622 int i;
3623
3624 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3625 for (i = 0; i < 8; i++)
3626 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3627 return 0;
3628 }
3629 else if (i386_bnd_regnum_p (gdbarch, regnum))
3630 {
3631 regnum -= tdep->bnd0_regnum;
3632 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3633 return 0;
3634 }
3635 else if (i386_k_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->k0_regnum;
3638 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3639 return 0;
3640 }
3641 else if (i386_zmm_regnum_p (gdbarch, regnum))
3642 {
3643 regnum -= tdep->zmm0_regnum;
3644 if (regnum < num_lower_zmm_regs)
3645 {
3646 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3647 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3648 }
3649 else
3650 {
3651 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3652 - num_lower_zmm_regs);
3653 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3654 - num_lower_zmm_regs);
3655 }
3656 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3657 return 0;
3658 }
3659 else if (i386_ymm_regnum_p (gdbarch, regnum))
3660 {
3661 regnum -= tdep->ymm0_regnum;
3662 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3663 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3664 return 0;
3665 }
3666 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3667 {
3668 regnum -= tdep->ymm16_regnum;
3669 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3670 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3671 return 0;
3672 }
3673 else if (i386_word_regnum_p (gdbarch, regnum))
3674 {
3675 int gpnum = regnum - tdep->ax_regnum;
3676
3677 ax_reg_mask (ax, gpnum);
3678 return 0;
3679 }
3680 else if (i386_byte_regnum_p (gdbarch, regnum))
3681 {
3682 int gpnum = regnum - tdep->al_regnum;
3683
3684 ax_reg_mask (ax, gpnum % 4);
3685 return 0;
3686 }
3687 else
3688 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3689 return 1;
3690}
ff2e87ac
AC
3691\f
3692
ff2e87ac
AC
3693/* Return the register number of the register allocated by GCC after
3694 REGNUM, or -1 if there is no such register. */
3695
3696static int
3697i386_next_regnum (int regnum)
3698{
3699 /* GCC allocates the registers in the order:
3700
3701 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3702
3703 Since storing a variable in %esp doesn't make any sense we return
3704 -1 for %ebp and for %esp itself. */
3705 static int next_regnum[] =
3706 {
3707 I386_EDX_REGNUM, /* Slot for %eax. */
3708 I386_EBX_REGNUM, /* Slot for %ecx. */
3709 I386_ECX_REGNUM, /* Slot for %edx. */
3710 I386_ESI_REGNUM, /* Slot for %ebx. */
3711 -1, -1, /* Slots for %esp and %ebp. */
3712 I386_EDI_REGNUM, /* Slot for %esi. */
3713 I386_EBP_REGNUM /* Slot for %edi. */
3714 };
3715
de5b9bb9 3716 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3717 return next_regnum[regnum];
28fc6740 3718
ff2e87ac
AC
3719 return -1;
3720}
3721
3722/* Return nonzero if a value of type TYPE stored in register REGNUM
3723 needs any special handling. */
d7a0d72c 3724
3a1e71e3 3725static int
1777feb0
MS
3726i386_convert_register_p (struct gdbarch *gdbarch,
3727 int regnum, struct type *type)
d7a0d72c 3728{
de5b9bb9
MK
3729 int len = TYPE_LENGTH (type);
3730
ff2e87ac
AC
3731 /* Values may be spread across multiple registers. Most debugging
3732 formats aren't expressive enough to specify the locations, so
3733 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3734 have a length that is a multiple of the word size, since GCC
3735 doesn't seem to put any other types into registers. */
3736 if (len > 4 && len % 4 == 0)
3737 {
3738 int last_regnum = regnum;
3739
3740 while (len > 4)
3741 {
3742 last_regnum = i386_next_regnum (last_regnum);
3743 len -= 4;
3744 }
3745
3746 if (last_regnum != -1)
3747 return 1;
3748 }
ff2e87ac 3749
0abe36f5 3750 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3751}
3752
ff2e87ac
AC
3753/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3754 return its contents in TO. */
ac27f131 3755
8dccd430 3756static int
ff2e87ac 3757i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3758 struct type *type, gdb_byte *to,
3759 int *optimizedp, int *unavailablep)
ac27f131 3760{
20a6ec49 3761 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3762 int len = TYPE_LENGTH (type);
de5b9bb9 3763
20a6ec49 3764 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3765 return i387_register_to_value (frame, regnum, type, to,
3766 optimizedp, unavailablep);
ff2e87ac 3767
fd35795f 3768 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3769
3770 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3771
de5b9bb9
MK
3772 while (len > 0)
3773 {
3774 gdb_assert (regnum != -1);
20a6ec49 3775 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3776
8dccd430
PA
3777 if (!get_frame_register_bytes (frame, regnum, 0,
3778 register_size (gdbarch, regnum),
3779 to, optimizedp, unavailablep))
3780 return 0;
3781
de5b9bb9
MK
3782 regnum = i386_next_regnum (regnum);
3783 len -= 4;
42835c2b 3784 to += 4;
de5b9bb9 3785 }
8dccd430
PA
3786
3787 *optimizedp = *unavailablep = 0;
3788 return 1;
ac27f131
MK
3789}
3790
ff2e87ac
AC
3791/* Write the contents FROM of a value of type TYPE into register
3792 REGNUM in frame FRAME. */
ac27f131 3793
3a1e71e3 3794static void
ff2e87ac 3795i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3796 struct type *type, const gdb_byte *from)
ac27f131 3797{
de5b9bb9 3798 int len = TYPE_LENGTH (type);
de5b9bb9 3799
20a6ec49 3800 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3801 {
d532c08f
MK
3802 i387_value_to_register (frame, regnum, type, from);
3803 return;
3804 }
3d261580 3805
fd35795f 3806 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3807
3808 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3809
de5b9bb9
MK
3810 while (len > 0)
3811 {
3812 gdb_assert (regnum != -1);
875f8d0e 3813 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3814
42835c2b 3815 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3816 regnum = i386_next_regnum (regnum);
3817 len -= 4;
42835c2b 3818 from += 4;
de5b9bb9 3819 }
ac27f131 3820}
ff2e87ac 3821\f
7fdafb5a
MK
3822/* Supply register REGNUM from the buffer specified by GREGS and LEN
3823 in the general-purpose register set REGSET to register cache
3824 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3825
20187ed5 3826void
473f17b0
MK
3827i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3828 int regnum, const void *gregs, size_t len)
3829{
ac7936df 3830 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3831 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3832 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3833 int i;
3834
1528345d 3835 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3836
3837 for (i = 0; i < tdep->gregset_num_regs; i++)
3838 {
3839 if ((regnum == i || regnum == -1)
3840 && tdep->gregset_reg_offset[i] != -1)
3841 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3842 }
3843}
3844
7fdafb5a
MK
3845/* Collect register REGNUM from the register cache REGCACHE and store
3846 it in the buffer specified by GREGS and LEN as described by the
3847 general-purpose register set REGSET. If REGNUM is -1, do this for
3848 all registers in REGSET. */
3849
ecc37a5a 3850static void
7fdafb5a
MK
3851i386_collect_gregset (const struct regset *regset,
3852 const struct regcache *regcache,
3853 int regnum, void *gregs, size_t len)
3854{
ac7936df 3855 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3856 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3857 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3858 int i;
3859
1528345d 3860 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3861
3862 for (i = 0; i < tdep->gregset_num_regs; i++)
3863 {
3864 if ((regnum == i || regnum == -1)
3865 && tdep->gregset_reg_offset[i] != -1)
3866 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3867 }
3868}
3869
3870/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3871 in the floating-point register set REGSET to register cache
3872 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3873
3874static void
3875i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3876 int regnum, const void *fpregs, size_t len)
3877{
ac7936df 3878 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3879 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3880
66a72d25
MK
3881 if (len == I387_SIZEOF_FXSAVE)
3882 {
3883 i387_supply_fxsave (regcache, regnum, fpregs);
3884 return;
3885 }
3886
1528345d 3887 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3888 i387_supply_fsave (regcache, regnum, fpregs);
3889}
8446b36a 3890
2f305df1
MK
3891/* Collect register REGNUM from the register cache REGCACHE and store
3892 it in the buffer specified by FPREGS and LEN as described by the
3893 floating-point register set REGSET. If REGNUM is -1, do this for
3894 all registers in REGSET. */
7fdafb5a
MK
3895
3896static void
3897i386_collect_fpregset (const struct regset *regset,
3898 const struct regcache *regcache,
3899 int regnum, void *fpregs, size_t len)
3900{
ac7936df 3901 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3902 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3903
3904 if (len == I387_SIZEOF_FXSAVE)
3905 {
3906 i387_collect_fxsave (regcache, regnum, fpregs);
3907 return;
3908 }
3909
1528345d 3910 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3911 i387_collect_fsave (regcache, regnum, fpregs);
3912}
3913
ecc37a5a
AA
3914/* Register set definitions. */
3915
3916const struct regset i386_gregset =
3917 {
3918 NULL, i386_supply_gregset, i386_collect_gregset
3919 };
3920
8f0435f7 3921const struct regset i386_fpregset =
ecc37a5a
AA
3922 {
3923 NULL, i386_supply_fpregset, i386_collect_fpregset
3924 };
3925
490496c3 3926/* Default iterator over core file register note sections. */
8446b36a 3927
490496c3
AA
3928void
3929i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3930 iterate_over_regset_sections_cb *cb,
3931 void *cb_data,
3932 const struct regcache *regcache)
8446b36a
MK
3933{
3934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3935
490496c3
AA
3936 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3937 if (tdep->sizeof_fpregset)
3938 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3939}
473f17b0 3940\f
fc338970 3941
fc338970 3942/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3943
3944CORE_ADDR
e17a4113
UW
3945i386_pe_skip_trampoline_code (struct frame_info *frame,
3946 CORE_ADDR pc, char *name)
c906108c 3947{
e17a4113
UW
3948 struct gdbarch *gdbarch = get_frame_arch (frame);
3949 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3950
3951 /* jmp *(dest) */
3952 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3953 {
e17a4113
UW
3954 unsigned long indirect =
3955 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3956 struct minimal_symbol *indsym =
7cbd4a93 3957 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3958 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3959
c5aa993b 3960 if (symname)
c906108c 3961 {
61012eef
GB
3962 if (startswith (symname, "__imp_")
3963 || startswith (symname, "_imp_"))
e17a4113
UW
3964 return name ? 1 :
3965 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3966 }
3967 }
fc338970 3968 return 0; /* Not a trampoline. */
c906108c 3969}
fc338970
MK
3970\f
3971
10458914
DJ
3972/* Return whether the THIS_FRAME corresponds to a sigtramp
3973 routine. */
8201327c 3974
4bd207ef 3975int
10458914 3976i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3977{
10458914 3978 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3979 const char *name;
911bc6ee
MK
3980
3981 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3982 return (name && strcmp ("_sigtramp", name) == 0);
3983}
3984\f
3985
fc338970
MK
3986/* We have two flavours of disassembly. The machinery on this page
3987 deals with switching between those. */
c906108c
SS
3988
3989static int
a89aa300 3990i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3991{
5e3397bb
MK
3992 gdb_assert (disassembly_flavor == att_flavor
3993 || disassembly_flavor == intel_flavor);
3994
f995bbe8 3995 info->disassembler_options = disassembly_flavor;
5e3397bb 3996
6394c606 3997 return default_print_insn (pc, info);
7a292a7a 3998}
fc338970 3999\f
3ce1502b 4000
8201327c
MK
4001/* There are a few i386 architecture variants that differ only
4002 slightly from the generic i386 target. For now, we don't give them
4003 their own source file, but include them here. As a consequence,
4004 they'll always be included. */
3ce1502b 4005
8201327c 4006/* System V Release 4 (SVR4). */
3ce1502b 4007
10458914
DJ
4008/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4009 routine. */
911bc6ee 4010
8201327c 4011static int
10458914 4012i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4013{
10458914 4014 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4015 const char *name;
911bc6ee 4016
05b4bd79 4017 /* The origin of these symbols is currently unknown. */
911bc6ee 4018 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4019 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4020 || strcmp ("sigvechandler", name) == 0));
4021}
d2a7c97a 4022
10458914
DJ
4023/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4024 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4025
3a1e71e3 4026static CORE_ADDR
10458914 4027i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4028{
e17a4113
UW
4029 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4030 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4031 gdb_byte buf[4];
acd5c798 4032 CORE_ADDR sp;
3ce1502b 4033
10458914 4034 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4035 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4036
e17a4113 4037 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4038}
55aa24fb
SDJ
4039
4040\f
4041
4042/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4043 gdbarch.h. */
4044
4045int
4046i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4047{
4048 return (*s == '$' /* Literal number. */
4049 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4050 || (*s == '(' && s[1] == '%') /* Register indirection. */
4051 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4052}
4053
5acfdbae
SDJ
4054/* Helper function for i386_stap_parse_special_token.
4055
4056 This function parses operands of the form `-8+3+1(%rbp)', which
4057 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4058
4059 Return 1 if the operand was parsed successfully, zero
4060 otherwise. */
4061
4062static int
4063i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4064 struct stap_parse_info *p)
4065{
4066 const char *s = p->arg;
4067
4068 if (isdigit (*s) || *s == '-' || *s == '+')
4069 {
4070 int got_minus[3];
4071 int i;
4072 long displacements[3];
4073 const char *start;
4074 char *regname;
4075 int len;
4076 struct stoken str;
4077 char *endp;
4078
4079 got_minus[0] = 0;
4080 if (*s == '+')
4081 ++s;
4082 else if (*s == '-')
4083 {
4084 ++s;
4085 got_minus[0] = 1;
4086 }
4087
d7b30f67
SDJ
4088 if (!isdigit ((unsigned char) *s))
4089 return 0;
4090
5acfdbae
SDJ
4091 displacements[0] = strtol (s, &endp, 10);
4092 s = endp;
4093
4094 if (*s != '+' && *s != '-')
4095 {
4096 /* We are not dealing with a triplet. */
4097 return 0;
4098 }
4099
4100 got_minus[1] = 0;
4101 if (*s == '+')
4102 ++s;
4103 else
4104 {
4105 ++s;
4106 got_minus[1] = 1;
4107 }
4108
d7b30f67
SDJ
4109 if (!isdigit ((unsigned char) *s))
4110 return 0;
4111
5acfdbae
SDJ
4112 displacements[1] = strtol (s, &endp, 10);
4113 s = endp;
4114
4115 if (*s != '+' && *s != '-')
4116 {
4117 /* We are not dealing with a triplet. */
4118 return 0;
4119 }
4120
4121 got_minus[2] = 0;
4122 if (*s == '+')
4123 ++s;
4124 else
4125 {
4126 ++s;
4127 got_minus[2] = 1;
4128 }
4129
d7b30f67
SDJ
4130 if (!isdigit ((unsigned char) *s))
4131 return 0;
4132
5acfdbae
SDJ
4133 displacements[2] = strtol (s, &endp, 10);
4134 s = endp;
4135
4136 if (*s != '(' || s[1] != '%')
4137 return 0;
4138
4139 s += 2;
4140 start = s;
4141
4142 while (isalnum (*s))
4143 ++s;
4144
4145 if (*s++ != ')')
4146 return 0;
4147
d7b30f67 4148 len = s - start - 1;
224c3ddb 4149 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4150
4151 strncpy (regname, start, len);
4152 regname[len] = '\0';
4153
4154 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4155 error (_("Invalid register name `%s' on expression `%s'."),
4156 regname, p->saved_arg);
4157
4158 for (i = 0; i < 3; i++)
4159 {
410a0ff2
SDJ
4160 write_exp_elt_opcode (&p->pstate, OP_LONG);
4161 write_exp_elt_type
4162 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4163 write_exp_elt_longcst (&p->pstate, displacements[i]);
4164 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4165 if (got_minus[i])
410a0ff2 4166 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4167 }
4168
410a0ff2 4169 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4170 str.ptr = regname;
4171 str.length = len;
410a0ff2
SDJ
4172 write_exp_string (&p->pstate, str);
4173 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4174
410a0ff2
SDJ
4175 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4176 write_exp_elt_type (&p->pstate,
4177 builtin_type (gdbarch)->builtin_data_ptr);
4178 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4179
410a0ff2
SDJ
4180 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4181 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4182 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4183
410a0ff2
SDJ
4184 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4185 write_exp_elt_type (&p->pstate,
4186 lookup_pointer_type (p->arg_type));
4187 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4188
410a0ff2 4189 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4190
4191 p->arg = s;
4192
4193 return 1;
4194 }
4195
4196 return 0;
4197}
4198
4199/* Helper function for i386_stap_parse_special_token.
4200
4201 This function parses operands of the form `register base +
4202 (register index * size) + offset', as represented in
4203 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4204
4205 Return 1 if the operand was parsed successfully, zero
4206 otherwise. */
4207
4208static int
4209i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4210 struct stap_parse_info *p)
4211{
4212 const char *s = p->arg;
4213
4214 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4215 {
4216 int offset_minus = 0;
4217 long offset = 0;
4218 int size_minus = 0;
4219 long size = 0;
4220 const char *start;
4221 char *base;
4222 int len_base;
4223 char *index;
4224 int len_index;
4225 struct stoken base_token, index_token;
4226
4227 if (*s == '+')
4228 ++s;
4229 else if (*s == '-')
4230 {
4231 ++s;
4232 offset_minus = 1;
4233 }
4234
4235 if (offset_minus && !isdigit (*s))
4236 return 0;
4237
4238 if (isdigit (*s))
4239 {
4240 char *endp;
4241
4242 offset = strtol (s, &endp, 10);
4243 s = endp;
4244 }
4245
4246 if (*s != '(' || s[1] != '%')
4247 return 0;
4248
4249 s += 2;
4250 start = s;
4251
4252 while (isalnum (*s))
4253 ++s;
4254
4255 if (*s != ',' || s[1] != '%')
4256 return 0;
4257
4258 len_base = s - start;
224c3ddb 4259 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4260 strncpy (base, start, len_base);
4261 base[len_base] = '\0';
4262
4263 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4264 error (_("Invalid register name `%s' on expression `%s'."),
4265 base, p->saved_arg);
4266
4267 s += 2;
4268 start = s;
4269
4270 while (isalnum (*s))
4271 ++s;
4272
4273 len_index = s - start;
224c3ddb 4274 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4275 strncpy (index, start, len_index);
4276 index[len_index] = '\0';
4277
4278 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4279 error (_("Invalid register name `%s' on expression `%s'."),
4280 index, p->saved_arg);
4281
4282 if (*s != ',' && *s != ')')
4283 return 0;
4284
4285 if (*s == ',')
4286 {
4287 char *endp;
4288
4289 ++s;
4290 if (*s == '+')
4291 ++s;
4292 else if (*s == '-')
4293 {
4294 ++s;
4295 size_minus = 1;
4296 }
4297
4298 size = strtol (s, &endp, 10);
4299 s = endp;
4300
4301 if (*s != ')')
4302 return 0;
4303 }
4304
4305 ++s;
4306
4307 if (offset)
4308 {
410a0ff2
SDJ
4309 write_exp_elt_opcode (&p->pstate, OP_LONG);
4310 write_exp_elt_type (&p->pstate,
4311 builtin_type (gdbarch)->builtin_long);
4312 write_exp_elt_longcst (&p->pstate, offset);
4313 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4314 if (offset_minus)
410a0ff2 4315 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4316 }
4317
410a0ff2 4318 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4319 base_token.ptr = base;
4320 base_token.length = len_base;
410a0ff2
SDJ
4321 write_exp_string (&p->pstate, base_token);
4322 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4323
4324 if (offset)
410a0ff2 4325 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4326
410a0ff2 4327 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4328 index_token.ptr = index;
4329 index_token.length = len_index;
410a0ff2
SDJ
4330 write_exp_string (&p->pstate, index_token);
4331 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4332
4333 if (size)
4334 {
410a0ff2
SDJ
4335 write_exp_elt_opcode (&p->pstate, OP_LONG);
4336 write_exp_elt_type (&p->pstate,
4337 builtin_type (gdbarch)->builtin_long);
4338 write_exp_elt_longcst (&p->pstate, size);
4339 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4340 if (size_minus)
410a0ff2
SDJ
4341 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4342 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4343 }
4344
410a0ff2 4345 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4346
410a0ff2
SDJ
4347 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4348 write_exp_elt_type (&p->pstate,
4349 lookup_pointer_type (p->arg_type));
4350 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4351
410a0ff2 4352 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4353
4354 p->arg = s;
4355
4356 return 1;
4357 }
4358
4359 return 0;
4360}
4361
55aa24fb
SDJ
4362/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4363 gdbarch.h. */
4364
4365int
4366i386_stap_parse_special_token (struct gdbarch *gdbarch,
4367 struct stap_parse_info *p)
4368{
55aa24fb
SDJ
4369 /* In order to parse special tokens, we use a state-machine that go
4370 through every known token and try to get a match. */
4371 enum
4372 {
4373 TRIPLET,
4374 THREE_ARG_DISPLACEMENT,
4375 DONE
570dc176
TT
4376 };
4377 int current_state;
55aa24fb
SDJ
4378
4379 current_state = TRIPLET;
4380
4381 /* The special tokens to be parsed here are:
4382
4383 - `register base + (register index * size) + offset', as represented
4384 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4385
4386 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4387 `*(-8 + 3 - 1 + (void *) $eax)'. */
4388
4389 while (current_state != DONE)
4390 {
55aa24fb
SDJ
4391 switch (current_state)
4392 {
4393 case TRIPLET:
5acfdbae
SDJ
4394 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4395 return 1;
4396 break;
4397
55aa24fb 4398 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4399 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4400 return 1;
4401 break;
55aa24fb
SDJ
4402 }
4403
4404 /* Advancing to the next state. */
4405 ++current_state;
4406 }
4407
4408 return 0;
4409}
4410
8201327c 4411\f
3ce1502b 4412
ac04f72b
TT
4413/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4414 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4415
4416static const char *
4417i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4418{
4419 return "(x86_64|i.86)";
4420}
4421
4422\f
4423
8201327c 4424/* Generic ELF. */
d2a7c97a 4425
8201327c
MK
4426void
4427i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4428{
05c0465e
SDJ
4429 static const char *const stap_integer_prefixes[] = { "$", NULL };
4430 static const char *const stap_register_prefixes[] = { "%", NULL };
4431 static const char *const stap_register_indirection_prefixes[] = { "(",
4432 NULL };
4433 static const char *const stap_register_indirection_suffixes[] = { ")",
4434 NULL };
4435
c4fc7f1b
MK
4436 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4437 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4438
4439 /* Registering SystemTap handlers. */
05c0465e
SDJ
4440 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4441 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4442 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4443 stap_register_indirection_prefixes);
4444 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4445 stap_register_indirection_suffixes);
55aa24fb
SDJ
4446 set_gdbarch_stap_is_single_operand (gdbarch,
4447 i386_stap_is_single_operand);
4448 set_gdbarch_stap_parse_special_token (gdbarch,
4449 i386_stap_parse_special_token);
8201327c 4450}
3ce1502b 4451
8201327c 4452/* System V Release 4 (SVR4). */
3ce1502b 4453
8201327c
MK
4454void
4455i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4456{
4457 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4458
8201327c
MK
4459 /* System V Release 4 uses ELF. */
4460 i386_elf_init_abi (info, gdbarch);
3ce1502b 4461
dfe01d39 4462 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4463 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4464
911bc6ee 4465 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4466 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4467 tdep->sc_pc_offset = 36 + 14 * 4;
4468 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4469
8201327c 4470 tdep->jb_pc_offset = 20;
3ce1502b
MK
4471}
4472
8201327c 4473\f
2acceee2 4474
38c968cf
AC
4475/* i386 register groups. In addition to the normal groups, add "mmx"
4476 and "sse". */
4477
4478static struct reggroup *i386_sse_reggroup;
4479static struct reggroup *i386_mmx_reggroup;
4480
4481static void
4482i386_init_reggroups (void)
4483{
4484 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4485 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4486}
4487
4488static void
4489i386_add_reggroups (struct gdbarch *gdbarch)
4490{
4491 reggroup_add (gdbarch, i386_sse_reggroup);
4492 reggroup_add (gdbarch, i386_mmx_reggroup);
4493 reggroup_add (gdbarch, general_reggroup);
4494 reggroup_add (gdbarch, float_reggroup);
4495 reggroup_add (gdbarch, all_reggroup);
4496 reggroup_add (gdbarch, save_reggroup);
4497 reggroup_add (gdbarch, restore_reggroup);
4498 reggroup_add (gdbarch, vector_reggroup);
4499 reggroup_add (gdbarch, system_reggroup);
4500}
4501
4502int
4503i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4504 struct reggroup *group)
4505{
c131fcee
L
4506 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4507 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808 4508 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
798a7429
SM
4509 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4510 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4511 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4512
1ba53b71
L
4513 /* Don't include pseudo registers, except for MMX, in any register
4514 groups. */
c131fcee 4515 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4516 return 0;
4517
c131fcee 4518 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4519 return 0;
4520
c131fcee 4521 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4522 return 0;
4523
4524 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4525 if (group == i386_mmx_reggroup)
4526 return mmx_regnum_p;
1ba53b71 4527
51547df6 4528 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4529 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4530 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4531 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4532 if (group == i386_sse_reggroup)
01f9f808 4533 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4534
4535 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4536 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4537 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4538
22049425
MS
4539 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4540 == X86_XSTATE_AVX_AVX512_MASK);
4541 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4542 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4543 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4544 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4545
38c968cf 4546 if (group == vector_reggroup)
c131fcee 4547 return (mmx_regnum_p
01f9f808
MS
4548 || (zmm_regnum_p && avx512_p)
4549 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4550 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4551 || mxcsr_regnum_p);
1ba53b71
L
4552
4553 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4554 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4555 if (group == float_reggroup)
4556 return fp_regnum_p;
1ba53b71 4557
c131fcee
L
4558 /* For "info reg all", don't include upper YMM registers nor XMM
4559 registers when AVX is supported. */
4560 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4561 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4562 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4563 if (group == all_reggroup
01f9f808
MS
4564 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4565 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4566 || ymmh_regnum_p
4567 || ymmh_avx512_regnum_p
4568 || zmmh_regnum_p))
c131fcee
L
4569 return 0;
4570
1dbcd68c
WT
4571 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4572 if (group == all_reggroup
df7e5265 4573 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4574 return bnd_regnum_p;
4575
4576 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4577 if (group == all_reggroup
df7e5265 4578 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4579 return 0;
4580
4581 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4582 if (group == all_reggroup
df7e5265 4583 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4584 return mpx_ctrl_regnum_p;
4585
38c968cf 4586 if (group == general_reggroup)
1ba53b71
L
4587 return (!fp_regnum_p
4588 && !mmx_regnum_p
c131fcee
L
4589 && !mxcsr_regnum_p
4590 && !xmm_regnum_p
01f9f808 4591 && !xmm_avx512_regnum_p
c131fcee 4592 && !ymm_regnum_p
1dbcd68c 4593 && !ymmh_regnum_p
01f9f808
MS
4594 && !ymm_avx512_regnum_p
4595 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4596 && !bndr_regnum_p
4597 && !bnd_regnum_p
01f9f808
MS
4598 && !mpx_ctrl_regnum_p
4599 && !zmm_regnum_p
51547df6
MS
4600 && !zmmh_regnum_p
4601 && !pkru_regnum_p);
acd5c798 4602
38c968cf
AC
4603 return default_register_reggroup_p (gdbarch, regnum, group);
4604}
38c968cf 4605\f
acd5c798 4606
f837910f
MK
4607/* Get the ARGIth function argument for the current function. */
4608
42c466d7 4609static CORE_ADDR
143985b7
AF
4610i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4611 struct type *type)
4612{
e17a4113
UW
4613 struct gdbarch *gdbarch = get_frame_arch (frame);
4614 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4615 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4616 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4617}
4618
7ad10968
HZ
4619#define PREFIX_REPZ 0x01
4620#define PREFIX_REPNZ 0x02
4621#define PREFIX_LOCK 0x04
4622#define PREFIX_DATA 0x08
4623#define PREFIX_ADDR 0x10
473f17b0 4624
7ad10968
HZ
4625/* operand size */
4626enum
4627{
4628 OT_BYTE = 0,
4629 OT_WORD,
4630 OT_LONG,
cf648174 4631 OT_QUAD,
a3c4230a 4632 OT_DQUAD,
7ad10968 4633};
473f17b0 4634
7ad10968
HZ
4635/* i386 arith/logic operations */
4636enum
4637{
4638 OP_ADDL,
4639 OP_ORL,
4640 OP_ADCL,
4641 OP_SBBL,
4642 OP_ANDL,
4643 OP_SUBL,
4644 OP_XORL,
4645 OP_CMPL,
4646};
5716833c 4647
7ad10968
HZ
4648struct i386_record_s
4649{
cf648174 4650 struct gdbarch *gdbarch;
7ad10968 4651 struct regcache *regcache;
df61f520 4652 CORE_ADDR orig_addr;
7ad10968
HZ
4653 CORE_ADDR addr;
4654 int aflag;
4655 int dflag;
4656 int override;
4657 uint8_t modrm;
4658 uint8_t mod, reg, rm;
4659 int ot;
cf648174
HZ
4660 uint8_t rex_x;
4661 uint8_t rex_b;
4662 int rip_offset;
4663 int popl_esp_hack;
4664 const int *regmap;
7ad10968 4665};
5716833c 4666
99c1624c
PA
4667/* Parse the "modrm" part of the memory address irp->addr points at.
4668 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4669
7ad10968
HZ
4670static int
4671i386_record_modrm (struct i386_record_s *irp)
4672{
cf648174 4673 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4674
4ffa4fc7
PA
4675 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4676 return -1;
4677
7ad10968
HZ
4678 irp->addr++;
4679 irp->mod = (irp->modrm >> 6) & 3;
4680 irp->reg = (irp->modrm >> 3) & 7;
4681 irp->rm = irp->modrm & 7;
5716833c 4682
7ad10968
HZ
4683 return 0;
4684}
d2a7c97a 4685
99c1624c
PA
4686/* Extract the memory address that the current instruction writes to,
4687 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4688
7ad10968 4689static int
cf648174 4690i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4691{
cf648174 4692 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4693 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4694 gdb_byte buf[4];
4695 ULONGEST offset64;
21d0e8a4 4696
7ad10968 4697 *addr = 0;
1e87984a 4698 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4699 {
1e87984a 4700 /* 32/64 bits */
7ad10968
HZ
4701 int havesib = 0;
4702 uint8_t scale = 0;
648d0c8b 4703 uint8_t byte;
7ad10968
HZ
4704 uint8_t index = 0;
4705 uint8_t base = irp->rm;
896fb97d 4706
7ad10968
HZ
4707 if (base == 4)
4708 {
4709 havesib = 1;
4ffa4fc7
PA
4710 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4711 return -1;
7ad10968 4712 irp->addr++;
648d0c8b
MS
4713 scale = (byte >> 6) & 3;
4714 index = ((byte >> 3) & 7) | irp->rex_x;
4715 base = (byte & 7);
7ad10968 4716 }
cf648174 4717 base |= irp->rex_b;
21d0e8a4 4718
7ad10968
HZ
4719 switch (irp->mod)
4720 {
4721 case 0:
4722 if ((base & 7) == 5)
4723 {
4724 base = 0xff;
4ffa4fc7
PA
4725 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4726 return -1;
7ad10968 4727 irp->addr += 4;
60a1502a 4728 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4729 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4730 *addr += irp->addr + irp->rip_offset;
7ad10968 4731 }
7ad10968
HZ
4732 break;
4733 case 1:
4ffa4fc7
PA
4734 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4735 return -1;
7ad10968 4736 irp->addr++;
60a1502a 4737 *addr = (int8_t) buf[0];
7ad10968
HZ
4738 break;
4739 case 2:
4ffa4fc7
PA
4740 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4741 return -1;
60a1502a 4742 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4743 irp->addr += 4;
4744 break;
4745 }
356a6b3e 4746
60a1502a 4747 offset64 = 0;
7ad10968 4748 if (base != 0xff)
cf648174
HZ
4749 {
4750 if (base == 4 && irp->popl_esp_hack)
4751 *addr += irp->popl_esp_hack;
4752 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4753 &offset64);
7ad10968 4754 }
cf648174
HZ
4755 if (irp->aflag == 2)
4756 {
60a1502a 4757 *addr += offset64;
cf648174
HZ
4758 }
4759 else
60a1502a 4760 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4761
7ad10968
HZ
4762 if (havesib && (index != 4 || scale != 0))
4763 {
cf648174 4764 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4765 &offset64);
cf648174 4766 if (irp->aflag == 2)
60a1502a 4767 *addr += offset64 << scale;
cf648174 4768 else
60a1502a 4769 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4770 }
e85596e0
L
4771
4772 if (!irp->aflag)
4773 {
4774 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4775 address from 32-bit to 64-bit. */
4776 *addr = (uint32_t) *addr;
4777 }
7ad10968
HZ
4778 }
4779 else
4780 {
4781 /* 16 bits */
4782 switch (irp->mod)
4783 {
4784 case 0:
4785 if (irp->rm == 6)
4786 {
4ffa4fc7
PA
4787 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4788 return -1;
7ad10968 4789 irp->addr += 2;
60a1502a 4790 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4791 irp->rm = 0;
4792 goto no_rm;
4793 }
7ad10968
HZ
4794 break;
4795 case 1:
4ffa4fc7
PA
4796 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4797 return -1;
7ad10968 4798 irp->addr++;
60a1502a 4799 *addr = (int8_t) buf[0];
7ad10968
HZ
4800 break;
4801 case 2:
4ffa4fc7
PA
4802 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4803 return -1;
7ad10968 4804 irp->addr += 2;
60a1502a 4805 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4806 break;
4807 }
c4fc7f1b 4808
7ad10968
HZ
4809 switch (irp->rm)
4810 {
4811 case 0:
cf648174
HZ
4812 regcache_raw_read_unsigned (irp->regcache,
4813 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4814 &offset64);
4815 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4816 regcache_raw_read_unsigned (irp->regcache,
4817 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4818 &offset64);
4819 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4820 break;
4821 case 1:
cf648174
HZ
4822 regcache_raw_read_unsigned (irp->regcache,
4823 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4824 &offset64);
4825 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4826 regcache_raw_read_unsigned (irp->regcache,
4827 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4828 &offset64);
4829 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4830 break;
4831 case 2:
cf648174
HZ
4832 regcache_raw_read_unsigned (irp->regcache,
4833 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4834 &offset64);
4835 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4836 regcache_raw_read_unsigned (irp->regcache,
4837 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4838 &offset64);
4839 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4840 break;
4841 case 3:
cf648174
HZ
4842 regcache_raw_read_unsigned (irp->regcache,
4843 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4844 &offset64);
4845 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4846 regcache_raw_read_unsigned (irp->regcache,
4847 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4848 &offset64);
4849 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4850 break;
4851 case 4:
cf648174
HZ
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4854 &offset64);
4855 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4856 break;
4857 case 5:
cf648174
HZ
4858 regcache_raw_read_unsigned (irp->regcache,
4859 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4860 &offset64);
4861 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4862 break;
4863 case 6:
cf648174
HZ
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4868 break;
4869 case 7:
cf648174
HZ
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4872 &offset64);
4873 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4874 break;
4875 }
4876 *addr &= 0xffff;
4877 }
c4fc7f1b 4878
01fe1b41 4879 no_rm:
7ad10968
HZ
4880 return 0;
4881}
c4fc7f1b 4882
99c1624c
PA
4883/* Record the address and contents of the memory that will be changed
4884 by the current instruction. Return -1 if something goes wrong, 0
4885 otherwise. */
356a6b3e 4886
7ad10968
HZ
4887static int
4888i386_record_lea_modrm (struct i386_record_s *irp)
4889{
cf648174
HZ
4890 struct gdbarch *gdbarch = irp->gdbarch;
4891 uint64_t addr;
356a6b3e 4892
d7877f7e 4893 if (irp->override >= 0)
7ad10968 4894 {
25ea693b 4895 if (record_full_memory_query)
bb08c432 4896 {
651ce16a 4897 if (yquery (_("\
bb08c432
HZ
4898Process record ignores the memory change of instruction at address %s\n\
4899because it can't get the value of the segment register.\n\
4900Do you want to stop the program?"),
651ce16a
PA
4901 paddress (gdbarch, irp->orig_addr)))
4902 return -1;
bb08c432
HZ
4903 }
4904
7ad10968
HZ
4905 return 0;
4906 }
61113f8b 4907
7ad10968
HZ
4908 if (i386_record_lea_modrm_addr (irp, &addr))
4909 return -1;
96297dab 4910
25ea693b 4911 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4912 return -1;
a62cc96e 4913
7ad10968
HZ
4914 return 0;
4915}
b6197528 4916
99c1624c
PA
4917/* Record the effects of a push operation. Return -1 if something
4918 goes wrong, 0 otherwise. */
cf648174
HZ
4919
4920static int
4921i386_record_push (struct i386_record_s *irp, int size)
4922{
648d0c8b 4923 ULONGEST addr;
cf648174 4924
25ea693b
MM
4925 if (record_full_arch_list_add_reg (irp->regcache,
4926 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4927 return -1;
4928 regcache_raw_read_unsigned (irp->regcache,
4929 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4930 &addr);
25ea693b 4931 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4932 return -1;
4933
4934 return 0;
4935}
4936
0289bdd7
MS
4937
4938/* Defines contents to record. */
4939#define I386_SAVE_FPU_REGS 0xfffd
4940#define I386_SAVE_FPU_ENV 0xfffe
4941#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4942
99c1624c
PA
4943/* Record the values of the floating point registers which will be
4944 changed by the current instruction. Returns -1 if something is
4945 wrong, 0 otherwise. */
0289bdd7
MS
4946
4947static int i386_record_floats (struct gdbarch *gdbarch,
4948 struct i386_record_s *ir,
4949 uint32_t iregnum)
4950{
4951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4952 int i;
4953
4954 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4955 happen. Currently we store st0-st7 registers, but we need not store all
4956 registers all the time, in future we use ftag register and record only
4957 those who are not marked as an empty. */
4958
4959 if (I386_SAVE_FPU_REGS == iregnum)
4960 {
4961 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4962 {
25ea693b 4963 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4964 return -1;
4965 }
4966 }
4967 else if (I386_SAVE_FPU_ENV == iregnum)
4968 {
4969 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4970 {
25ea693b 4971 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4972 return -1;
4973 }
4974 }
4975 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4976 {
4977 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4978 {
25ea693b 4979 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4980 return -1;
4981 }
4982 }
4983 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4984 (iregnum <= I387_FOP_REGNUM (tdep)))
4985 {
25ea693b 4986 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4987 return -1;
4988 }
4989 else
4990 {
4991 /* Parameter error. */
4992 return -1;
4993 }
4994 if(I386_SAVE_FPU_ENV != iregnum)
4995 {
4996 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4997 {
25ea693b 4998 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4999 return -1;
5000 }
5001 }
5002 return 0;
5003}
5004
99c1624c
PA
5005/* Parse the current instruction, and record the values of the
5006 registers and memory that will be changed by the current
5007 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5008
25ea693b
MM
5009#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5010 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5011
a6b808b4 5012int
7ad10968 5013i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5014 CORE_ADDR input_addr)
7ad10968 5015{
60a1502a 5016 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5017 int prefixes = 0;
580879fc 5018 int regnum = 0;
425b824a 5019 uint32_t opcode;
f4644a3f 5020 uint8_t opcode8;
648d0c8b 5021 ULONGEST addr;
975c21ab 5022 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5023 struct i386_record_s ir;
0289bdd7 5024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5025 uint8_t rex_w = -1;
5026 uint8_t rex_r = 0;
7ad10968 5027
8408d274 5028 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5029 ir.regcache = regcache;
648d0c8b
MS
5030 ir.addr = input_addr;
5031 ir.orig_addr = input_addr;
7ad10968
HZ
5032 ir.aflag = 1;
5033 ir.dflag = 1;
cf648174
HZ
5034 ir.override = -1;
5035 ir.popl_esp_hack = 0;
a3c4230a 5036 ir.regmap = tdep->record_regmap;
cf648174 5037 ir.gdbarch = gdbarch;
7ad10968
HZ
5038
5039 if (record_debug > 1)
5040 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
5041 "addr = %s\n",
5042 paddress (gdbarch, ir.addr));
7ad10968
HZ
5043
5044 /* prefixes */
5045 while (1)
5046 {
4ffa4fc7
PA
5047 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5048 return -1;
7ad10968 5049 ir.addr++;
425b824a 5050 switch (opcode8) /* Instruction prefixes */
7ad10968 5051 {
01fe1b41 5052 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5053 prefixes |= PREFIX_REPZ;
5054 break;
01fe1b41 5055 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5056 prefixes |= PREFIX_REPNZ;
5057 break;
01fe1b41 5058 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5059 prefixes |= PREFIX_LOCK;
5060 break;
01fe1b41 5061 case CS_PREFIX_OPCODE:
cf648174 5062 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5063 break;
01fe1b41 5064 case SS_PREFIX_OPCODE:
cf648174 5065 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5066 break;
01fe1b41 5067 case DS_PREFIX_OPCODE:
cf648174 5068 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5069 break;
01fe1b41 5070 case ES_PREFIX_OPCODE:
cf648174 5071 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5072 break;
01fe1b41 5073 case FS_PREFIX_OPCODE:
cf648174 5074 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5075 break;
01fe1b41 5076 case GS_PREFIX_OPCODE:
cf648174 5077 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5078 break;
01fe1b41 5079 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5080 prefixes |= PREFIX_DATA;
5081 break;
01fe1b41 5082 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5083 prefixes |= PREFIX_ADDR;
5084 break;
d691bec7
MS
5085 case 0x40: /* i386 inc %eax */
5086 case 0x41: /* i386 inc %ecx */
5087 case 0x42: /* i386 inc %edx */
5088 case 0x43: /* i386 inc %ebx */
5089 case 0x44: /* i386 inc %esp */
5090 case 0x45: /* i386 inc %ebp */
5091 case 0x46: /* i386 inc %esi */
5092 case 0x47: /* i386 inc %edi */
5093 case 0x48: /* i386 dec %eax */
5094 case 0x49: /* i386 dec %ecx */
5095 case 0x4a: /* i386 dec %edx */
5096 case 0x4b: /* i386 dec %ebx */
5097 case 0x4c: /* i386 dec %esp */
5098 case 0x4d: /* i386 dec %ebp */
5099 case 0x4e: /* i386 dec %esi */
5100 case 0x4f: /* i386 dec %edi */
5101 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5102 {
5103 /* REX */
425b824a
MS
5104 rex_w = (opcode8 >> 3) & 1;
5105 rex_r = (opcode8 & 0x4) << 1;
5106 ir.rex_x = (opcode8 & 0x2) << 2;
5107 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5108 }
d691bec7
MS
5109 else /* 32 bit target */
5110 goto out_prefixes;
cf648174 5111 break;
7ad10968
HZ
5112 default:
5113 goto out_prefixes;
5114 break;
5115 }
5116 }
01fe1b41 5117 out_prefixes:
cf648174
HZ
5118 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5119 {
5120 ir.dflag = 2;
5121 }
5122 else
5123 {
5124 if (prefixes & PREFIX_DATA)
5125 ir.dflag ^= 1;
5126 }
7ad10968
HZ
5127 if (prefixes & PREFIX_ADDR)
5128 ir.aflag ^= 1;
cf648174
HZ
5129 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5130 ir.aflag = 2;
7ad10968 5131
1777feb0 5132 /* Now check op code. */
425b824a 5133 opcode = (uint32_t) opcode8;
01fe1b41 5134 reswitch:
7ad10968
HZ
5135 switch (opcode)
5136 {
5137 case 0x0f:
4ffa4fc7
PA
5138 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5139 return -1;
7ad10968 5140 ir.addr++;
a3c4230a 5141 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5142 goto reswitch;
5143 break;
93924b6b 5144
a38bba38 5145 case 0x00: /* arith & logic */
7ad10968
HZ
5146 case 0x01:
5147 case 0x02:
5148 case 0x03:
5149 case 0x04:
5150 case 0x05:
5151 case 0x08:
5152 case 0x09:
5153 case 0x0a:
5154 case 0x0b:
5155 case 0x0c:
5156 case 0x0d:
5157 case 0x10:
5158 case 0x11:
5159 case 0x12:
5160 case 0x13:
5161 case 0x14:
5162 case 0x15:
5163 case 0x18:
5164 case 0x19:
5165 case 0x1a:
5166 case 0x1b:
5167 case 0x1c:
5168 case 0x1d:
5169 case 0x20:
5170 case 0x21:
5171 case 0x22:
5172 case 0x23:
5173 case 0x24:
5174 case 0x25:
5175 case 0x28:
5176 case 0x29:
5177 case 0x2a:
5178 case 0x2b:
5179 case 0x2c:
5180 case 0x2d:
5181 case 0x30:
5182 case 0x31:
5183 case 0x32:
5184 case 0x33:
5185 case 0x34:
5186 case 0x35:
5187 case 0x38:
5188 case 0x39:
5189 case 0x3a:
5190 case 0x3b:
5191 case 0x3c:
5192 case 0x3d:
5193 if (((opcode >> 3) & 7) != OP_CMPL)
5194 {
5195 if ((opcode & 1) == 0)
5196 ir.ot = OT_BYTE;
5197 else
5198 ir.ot = ir.dflag + OT_WORD;
93924b6b 5199
7ad10968
HZ
5200 switch ((opcode >> 1) & 3)
5201 {
a38bba38 5202 case 0: /* OP Ev, Gv */
7ad10968
HZ
5203 if (i386_record_modrm (&ir))
5204 return -1;
5205 if (ir.mod != 3)
5206 {
5207 if (i386_record_lea_modrm (&ir))
5208 return -1;
5209 }
5210 else
5211 {
cf648174
HZ
5212 ir.rm |= ir.rex_b;
5213 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5214 ir.rm &= 0x3;
25ea693b 5215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5216 }
5217 break;
a38bba38 5218 case 1: /* OP Gv, Ev */
7ad10968
HZ
5219 if (i386_record_modrm (&ir))
5220 return -1;
cf648174
HZ
5221 ir.reg |= rex_r;
5222 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5223 ir.reg &= 0x3;
25ea693b 5224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5225 break;
a38bba38 5226 case 2: /* OP A, Iv */
25ea693b 5227 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5228 break;
5229 }
5230 }
25ea693b 5231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5232 break;
42fdc8df 5233
a38bba38 5234 case 0x80: /* GRP1 */
7ad10968
HZ
5235 case 0x81:
5236 case 0x82:
5237 case 0x83:
5238 if (i386_record_modrm (&ir))
5239 return -1;
8201327c 5240
7ad10968
HZ
5241 if (ir.reg != OP_CMPL)
5242 {
5243 if ((opcode & 1) == 0)
5244 ir.ot = OT_BYTE;
5245 else
5246 ir.ot = ir.dflag + OT_WORD;
28fc6740 5247
7ad10968
HZ
5248 if (ir.mod != 3)
5249 {
cf648174
HZ
5250 if (opcode == 0x83)
5251 ir.rip_offset = 1;
5252 else
5253 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5254 if (i386_record_lea_modrm (&ir))
5255 return -1;
5256 }
5257 else
25ea693b 5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5259 }
25ea693b 5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5261 break;
5e3397bb 5262
a38bba38 5263 case 0x40: /* inc */
7ad10968
HZ
5264 case 0x41:
5265 case 0x42:
5266 case 0x43:
5267 case 0x44:
5268 case 0x45:
5269 case 0x46:
5270 case 0x47:
a38bba38
MS
5271
5272 case 0x48: /* dec */
7ad10968
HZ
5273 case 0x49:
5274 case 0x4a:
5275 case 0x4b:
5276 case 0x4c:
5277 case 0x4d:
5278 case 0x4e:
5279 case 0x4f:
a38bba38 5280
25ea693b
MM
5281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5283 break;
acd5c798 5284
a38bba38 5285 case 0xf6: /* GRP3 */
7ad10968
HZ
5286 case 0xf7:
5287 if ((opcode & 1) == 0)
5288 ir.ot = OT_BYTE;
5289 else
5290 ir.ot = ir.dflag + OT_WORD;
5291 if (i386_record_modrm (&ir))
5292 return -1;
acd5c798 5293
cf648174
HZ
5294 if (ir.mod != 3 && ir.reg == 0)
5295 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5296
7ad10968
HZ
5297 switch (ir.reg)
5298 {
a38bba38 5299 case 0: /* test */
25ea693b 5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5301 break;
a38bba38
MS
5302 case 2: /* not */
5303 case 3: /* neg */
7ad10968
HZ
5304 if (ir.mod != 3)
5305 {
5306 if (i386_record_lea_modrm (&ir))
5307 return -1;
5308 }
5309 else
5310 {
cf648174
HZ
5311 ir.rm |= ir.rex_b;
5312 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5313 ir.rm &= 0x3;
25ea693b 5314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5315 }
a38bba38 5316 if (ir.reg == 3) /* neg */
25ea693b 5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5318 break;
a38bba38
MS
5319 case 4: /* mul */
5320 case 5: /* imul */
5321 case 6: /* div */
5322 case 7: /* idiv */
25ea693b 5323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5324 if (ir.ot != OT_BYTE)
25ea693b
MM
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5327 break;
5328 default:
5329 ir.addr -= 2;
5330 opcode = opcode << 8 | ir.modrm;
5331 goto no_support;
5332 break;
5333 }
5334 break;
5335
a38bba38
MS
5336 case 0xfe: /* GRP4 */
5337 case 0xff: /* GRP5 */
7ad10968
HZ
5338 if (i386_record_modrm (&ir))
5339 return -1;
5340 if (ir.reg >= 2 && opcode == 0xfe)
5341 {
5342 ir.addr -= 2;
5343 opcode = opcode << 8 | ir.modrm;
5344 goto no_support;
5345 }
7ad10968
HZ
5346 switch (ir.reg)
5347 {
a38bba38
MS
5348 case 0: /* inc */
5349 case 1: /* dec */
cf648174
HZ
5350 if ((opcode & 1) == 0)
5351 ir.ot = OT_BYTE;
5352 else
5353 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5354 if (ir.mod != 3)
5355 {
5356 if (i386_record_lea_modrm (&ir))
5357 return -1;
5358 }
5359 else
5360 {
cf648174
HZ
5361 ir.rm |= ir.rex_b;
5362 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5363 ir.rm &= 0x3;
25ea693b 5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5365 }
25ea693b 5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5367 break;
a38bba38 5368 case 2: /* call */
cf648174
HZ
5369 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5370 ir.dflag = 2;
5371 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5372 return -1;
25ea693b 5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5374 break;
a38bba38 5375 case 3: /* lcall */
25ea693b 5376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5377 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5378 return -1;
25ea693b 5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5380 break;
a38bba38
MS
5381 case 4: /* jmp */
5382 case 5: /* ljmp */
25ea693b 5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5384 break;
a38bba38 5385 case 6: /* push */
cf648174
HZ
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5387 ir.dflag = 2;
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5389 return -1;
7ad10968
HZ
5390 break;
5391 default:
5392 ir.addr -= 2;
5393 opcode = opcode << 8 | ir.modrm;
5394 goto no_support;
5395 break;
5396 }
5397 break;
5398
a38bba38 5399 case 0x84: /* test */
7ad10968
HZ
5400 case 0x85:
5401 case 0xa8:
5402 case 0xa9:
25ea693b 5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5404 break;
5405
a38bba38 5406 case 0x98: /* CWDE/CBW */
25ea693b 5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5408 break;
5409
a38bba38 5410 case 0x99: /* CDQ/CWD */
25ea693b
MM
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5413 break;
5414
a38bba38 5415 case 0x0faf: /* imul */
7ad10968
HZ
5416 case 0x69:
5417 case 0x6b:
5418 ir.ot = ir.dflag + OT_WORD;
5419 if (i386_record_modrm (&ir))
5420 return -1;
cf648174
HZ
5421 if (opcode == 0x69)
5422 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5423 else if (opcode == 0x6b)
5424 ir.rip_offset = 1;
5425 ir.reg |= rex_r;
5426 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5427 ir.reg &= 0x3;
25ea693b
MM
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5430 break;
5431
a38bba38 5432 case 0x0fc0: /* xadd */
7ad10968
HZ
5433 case 0x0fc1:
5434 if ((opcode & 1) == 0)
5435 ir.ot = OT_BYTE;
5436 else
5437 ir.ot = ir.dflag + OT_WORD;
5438 if (i386_record_modrm (&ir))
5439 return -1;
cf648174 5440 ir.reg |= rex_r;
7ad10968
HZ
5441 if (ir.mod == 3)
5442 {
cf648174 5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5444 ir.reg &= 0x3;
25ea693b 5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5447 ir.rm &= 0x3;
25ea693b 5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5449 }
5450 else
5451 {
5452 if (i386_record_lea_modrm (&ir))
5453 return -1;
cf648174 5454 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5455 ir.reg &= 0x3;
25ea693b 5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5457 }
25ea693b 5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5459 break;
5460
a38bba38 5461 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5462 case 0x0fb1:
5463 if ((opcode & 1) == 0)
5464 ir.ot = OT_BYTE;
5465 else
5466 ir.ot = ir.dflag + OT_WORD;
5467 if (i386_record_modrm (&ir))
5468 return -1;
5469 if (ir.mod == 3)
5470 {
cf648174 5471 ir.reg |= rex_r;
25ea693b 5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5473 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5474 ir.reg &= 0x3;
25ea693b 5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5476 }
5477 else
5478 {
25ea693b 5479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5480 if (i386_record_lea_modrm (&ir))
5481 return -1;
5482 }
25ea693b 5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5484 break;
5485
20b477a7 5486 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5487 if (i386_record_modrm (&ir))
5488 return -1;
5489 if (ir.mod == 3)
5490 {
20b477a7
LM
5491 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5492 an extended opcode. rdrand has bits 110 (/6) and rdseed
5493 has bits 111 (/7). */
5494 if (ir.reg == 6 || ir.reg == 7)
5495 {
5496 /* The storage register is described by the 3 R/M bits, but the
5497 REX.B prefix may be used to give access to registers
5498 R8~R15. In this case ir.rex_b + R/M will give us the register
5499 in the range R8~R15.
5500
5501 REX.W may also be used to access 64-bit registers, but we
5502 already record entire registers and not just partial bits
5503 of them. */
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5505 /* These instructions also set conditional bits. */
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5507 break;
5508 }
5509 else
5510 {
5511 /* We don't handle this particular instruction yet. */
5512 ir.addr -= 2;
5513 opcode = opcode << 8 | ir.modrm;
5514 goto no_support;
5515 }
7ad10968 5516 }
25ea693b
MM
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5519 if (i386_record_lea_modrm (&ir))
5520 return -1;
25ea693b 5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5522 break;
5523
a38bba38 5524 case 0x50: /* push */
7ad10968
HZ
5525 case 0x51:
5526 case 0x52:
5527 case 0x53:
5528 case 0x54:
5529 case 0x55:
5530 case 0x56:
5531 case 0x57:
5532 case 0x68:
5533 case 0x6a:
cf648174
HZ
5534 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5535 ir.dflag = 2;
5536 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5537 return -1;
5538 break;
5539
a38bba38
MS
5540 case 0x06: /* push es */
5541 case 0x0e: /* push cs */
5542 case 0x16: /* push ss */
5543 case 0x1e: /* push ds */
cf648174
HZ
5544 if (ir.regmap[X86_RECORD_R8_REGNUM])
5545 {
5546 ir.addr -= 1;
5547 goto no_support;
5548 }
5549 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5550 return -1;
5551 break;
5552
a38bba38
MS
5553 case 0x0fa0: /* push fs */
5554 case 0x0fa8: /* push gs */
cf648174
HZ
5555 if (ir.regmap[X86_RECORD_R8_REGNUM])
5556 {
5557 ir.addr -= 2;
5558 goto no_support;
5559 }
5560 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5561 return -1;
cf648174
HZ
5562 break;
5563
a38bba38 5564 case 0x60: /* pusha */
cf648174
HZ
5565 if (ir.regmap[X86_RECORD_R8_REGNUM])
5566 {
5567 ir.addr -= 1;
5568 goto no_support;
5569 }
5570 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5571 return -1;
5572 break;
5573
a38bba38 5574 case 0x58: /* pop */
7ad10968
HZ
5575 case 0x59:
5576 case 0x5a:
5577 case 0x5b:
5578 case 0x5c:
5579 case 0x5d:
5580 case 0x5e:
5581 case 0x5f:
25ea693b
MM
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5583 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5584 break;
5585
a38bba38 5586 case 0x61: /* popa */
cf648174
HZ
5587 if (ir.regmap[X86_RECORD_R8_REGNUM])
5588 {
5589 ir.addr -= 1;
5590 goto no_support;
7ad10968 5591 }
425b824a
MS
5592 for (regnum = X86_RECORD_REAX_REGNUM;
5593 regnum <= X86_RECORD_REDI_REGNUM;
5594 regnum++)
25ea693b 5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5596 break;
5597
a38bba38 5598 case 0x8f: /* pop */
cf648174
HZ
5599 if (ir.regmap[X86_RECORD_R8_REGNUM])
5600 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5601 else
5602 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5603 if (i386_record_modrm (&ir))
5604 return -1;
5605 if (ir.mod == 3)
25ea693b 5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5607 else
5608 {
cf648174 5609 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5610 if (i386_record_lea_modrm (&ir))
5611 return -1;
5612 }
25ea693b 5613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5614 break;
5615
a38bba38 5616 case 0xc8: /* enter */
25ea693b 5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5618 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5619 ir.dflag = 2;
5620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5621 return -1;
5622 break;
5623
a38bba38 5624 case 0xc9: /* leave */
25ea693b
MM
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5627 break;
5628
a38bba38 5629 case 0x07: /* pop es */
cf648174
HZ
5630 if (ir.regmap[X86_RECORD_R8_REGNUM])
5631 {
5632 ir.addr -= 1;
5633 goto no_support;
5634 }
25ea693b
MM
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5638 break;
5639
a38bba38 5640 case 0x17: /* pop ss */
cf648174
HZ
5641 if (ir.regmap[X86_RECORD_R8_REGNUM])
5642 {
5643 ir.addr -= 1;
5644 goto no_support;
5645 }
25ea693b
MM
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5649 break;
5650
a38bba38 5651 case 0x1f: /* pop ds */
cf648174
HZ
5652 if (ir.regmap[X86_RECORD_R8_REGNUM])
5653 {
5654 ir.addr -= 1;
5655 goto no_support;
5656 }
25ea693b
MM
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5660 break;
5661
a38bba38 5662 case 0x0fa1: /* pop fs */
25ea693b
MM
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5666 break;
5667
a38bba38 5668 case 0x0fa9: /* pop gs */
25ea693b
MM
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5672 break;
5673
a38bba38 5674 case 0x88: /* mov */
7ad10968
HZ
5675 case 0x89:
5676 case 0xc6:
5677 case 0xc7:
5678 if ((opcode & 1) == 0)
5679 ir.ot = OT_BYTE;
5680 else
5681 ir.ot = ir.dflag + OT_WORD;
5682
5683 if (i386_record_modrm (&ir))
5684 return -1;
5685
5686 if (ir.mod != 3)
5687 {
cf648174
HZ
5688 if (opcode == 0xc6 || opcode == 0xc7)
5689 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5690 if (i386_record_lea_modrm (&ir))
5691 return -1;
5692 }
5693 else
5694 {
cf648174
HZ
5695 if (opcode == 0xc6 || opcode == 0xc7)
5696 ir.rm |= ir.rex_b;
5697 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5698 ir.rm &= 0x3;
25ea693b 5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5700 }
7ad10968 5701 break;
cf648174 5702
a38bba38 5703 case 0x8a: /* mov */
7ad10968
HZ
5704 case 0x8b:
5705 if ((opcode & 1) == 0)
5706 ir.ot = OT_BYTE;
5707 else
5708 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5709 if (i386_record_modrm (&ir))
5710 return -1;
cf648174
HZ
5711 ir.reg |= rex_r;
5712 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5713 ir.reg &= 0x3;
25ea693b 5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5715 break;
7ad10968 5716
a38bba38 5717 case 0x8c: /* mov seg */
cf648174 5718 if (i386_record_modrm (&ir))
7ad10968 5719 return -1;
cf648174
HZ
5720 if (ir.reg > 5)
5721 {
5722 ir.addr -= 2;
5723 opcode = opcode << 8 | ir.modrm;
5724 goto no_support;
5725 }
5726
5727 if (ir.mod == 3)
25ea693b 5728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5729 else
5730 {
5731 ir.ot = OT_WORD;
5732 if (i386_record_lea_modrm (&ir))
5733 return -1;
5734 }
7ad10968
HZ
5735 break;
5736
a38bba38 5737 case 0x8e: /* mov seg */
7ad10968
HZ
5738 if (i386_record_modrm (&ir))
5739 return -1;
7ad10968
HZ
5740 switch (ir.reg)
5741 {
5742 case 0:
425b824a 5743 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5744 break;
5745 case 2:
425b824a 5746 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5747 break;
5748 case 3:
425b824a 5749 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5750 break;
5751 case 4:
425b824a 5752 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5753 break;
5754 case 5:
425b824a 5755 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5756 break;
5757 default:
5758 ir.addr -= 2;
5759 opcode = opcode << 8 | ir.modrm;
5760 goto no_support;
5761 break;
5762 }
25ea693b
MM
5763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5765 break;
5766
a38bba38
MS
5767 case 0x0fb6: /* movzbS */
5768 case 0x0fb7: /* movzwS */
5769 case 0x0fbe: /* movsbS */
5770 case 0x0fbf: /* movswS */
7ad10968
HZ
5771 if (i386_record_modrm (&ir))
5772 return -1;
25ea693b 5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5774 break;
5775
a38bba38 5776 case 0x8d: /* lea */
7ad10968
HZ
5777 if (i386_record_modrm (&ir))
5778 return -1;
5779 if (ir.mod == 3)
5780 {
5781 ir.addr -= 2;
5782 opcode = opcode << 8 | ir.modrm;
5783 goto no_support;
5784 }
7ad10968 5785 ir.ot = ir.dflag;
cf648174
HZ
5786 ir.reg |= rex_r;
5787 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5788 ir.reg &= 0x3;
25ea693b 5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5790 break;
5791
a38bba38 5792 case 0xa0: /* mov EAX */
7ad10968 5793 case 0xa1:
a38bba38
MS
5794
5795 case 0xd7: /* xlat */
25ea693b 5796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5797 break;
5798
a38bba38 5799 case 0xa2: /* mov EAX */
7ad10968 5800 case 0xa3:
d7877f7e 5801 if (ir.override >= 0)
cf648174 5802 {
25ea693b 5803 if (record_full_memory_query)
bb08c432 5804 {
651ce16a 5805 if (yquery (_("\
bb08c432
HZ
5806Process record ignores the memory change of instruction at address %s\n\
5807because it can't get the value of the segment register.\n\
5808Do you want to stop the program?"),
651ce16a 5809 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
5810 return -1;
5811 }
cf648174
HZ
5812 }
5813 else
5814 {
5815 if ((opcode & 1) == 0)
5816 ir.ot = OT_BYTE;
5817 else
5818 ir.ot = ir.dflag + OT_WORD;
5819 if (ir.aflag == 2)
5820 {
4ffa4fc7
PA
5821 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5822 return -1;
cf648174 5823 ir.addr += 8;
60a1502a 5824 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5825 }
5826 else if (ir.aflag)
5827 {
4ffa4fc7
PA
5828 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5829 return -1;
cf648174 5830 ir.addr += 4;
60a1502a 5831 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5832 }
5833 else
5834 {
4ffa4fc7
PA
5835 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5836 return -1;
cf648174 5837 ir.addr += 2;
60a1502a 5838 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5839 }
25ea693b 5840 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5841 return -1;
5842 }
7ad10968
HZ
5843 break;
5844
a38bba38 5845 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5846 case 0xb1:
5847 case 0xb2:
5848 case 0xb3:
5849 case 0xb4:
5850 case 0xb5:
5851 case 0xb6:
5852 case 0xb7:
25ea693b
MM
5853 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5854 ? ((opcode & 0x7) | ir.rex_b)
5855 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5856 break;
5857
a38bba38 5858 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5859 case 0xb9:
5860 case 0xba:
5861 case 0xbb:
5862 case 0xbc:
5863 case 0xbd:
5864 case 0xbe:
5865 case 0xbf:
25ea693b 5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5867 break;
5868
a38bba38 5869 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5870 case 0x92:
5871 case 0x93:
5872 case 0x94:
5873 case 0x95:
5874 case 0x96:
5875 case 0x97:
25ea693b
MM
5876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5878 break;
5879
a38bba38 5880 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5881 case 0x87:
5882 if ((opcode & 1) == 0)
5883 ir.ot = OT_BYTE;
5884 else
5885 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5886 if (i386_record_modrm (&ir))
5887 return -1;
7ad10968
HZ
5888 if (ir.mod == 3)
5889 {
86839d38 5890 ir.rm |= ir.rex_b;
cf648174
HZ
5891 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5892 ir.rm &= 0x3;
25ea693b 5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5894 }
5895 else
5896 {
5897 if (i386_record_lea_modrm (&ir))
5898 return -1;
5899 }
cf648174
HZ
5900 ir.reg |= rex_r;
5901 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5902 ir.reg &= 0x3;
25ea693b 5903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5904 break;
5905
a38bba38
MS
5906 case 0xc4: /* les Gv */
5907 case 0xc5: /* lds Gv */
cf648174
HZ
5908 if (ir.regmap[X86_RECORD_R8_REGNUM])
5909 {
5910 ir.addr -= 1;
5911 goto no_support;
5912 }
d3f323f3 5913 /* FALLTHROUGH */
a38bba38
MS
5914 case 0x0fb2: /* lss Gv */
5915 case 0x0fb4: /* lfs Gv */
5916 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5917 if (i386_record_modrm (&ir))
5918 return -1;
5919 if (ir.mod == 3)
5920 {
5921 if (opcode > 0xff)
5922 ir.addr -= 3;
5923 else
5924 ir.addr -= 2;
5925 opcode = opcode << 8 | ir.modrm;
5926 goto no_support;
5927 }
7ad10968
HZ
5928 switch (opcode)
5929 {
a38bba38 5930 case 0xc4: /* les Gv */
425b824a 5931 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5932 break;
a38bba38 5933 case 0xc5: /* lds Gv */
425b824a 5934 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5935 break;
a38bba38 5936 case 0x0fb2: /* lss Gv */
425b824a 5937 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5938 break;
a38bba38 5939 case 0x0fb4: /* lfs Gv */
425b824a 5940 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5941 break;
a38bba38 5942 case 0x0fb5: /* lgs Gv */
425b824a 5943 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5944 break;
5945 }
25ea693b
MM
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5949 break;
5950
a38bba38 5951 case 0xc0: /* shifts */
7ad10968
HZ
5952 case 0xc1:
5953 case 0xd0:
5954 case 0xd1:
5955 case 0xd2:
5956 case 0xd3:
5957 if ((opcode & 1) == 0)
5958 ir.ot = OT_BYTE;
5959 else
5960 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5961 if (i386_record_modrm (&ir))
5962 return -1;
7ad10968
HZ
5963 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5964 {
5965 if (i386_record_lea_modrm (&ir))
5966 return -1;
5967 }
5968 else
5969 {
cf648174
HZ
5970 ir.rm |= ir.rex_b;
5971 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5972 ir.rm &= 0x3;
25ea693b 5973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5974 }
25ea693b 5975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5976 break;
5977
5978 case 0x0fa4:
5979 case 0x0fa5:
5980 case 0x0fac:
5981 case 0x0fad:
5982 if (i386_record_modrm (&ir))
5983 return -1;
5984 if (ir.mod == 3)
5985 {
25ea693b 5986 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5987 return -1;
5988 }
5989 else
5990 {
5991 if (i386_record_lea_modrm (&ir))
5992 return -1;
5993 }
5994 break;
5995
a38bba38 5996 case 0xd8: /* Floats. */
7ad10968
HZ
5997 case 0xd9:
5998 case 0xda:
5999 case 0xdb:
6000 case 0xdc:
6001 case 0xdd:
6002 case 0xde:
6003 case 0xdf:
6004 if (i386_record_modrm (&ir))
6005 return -1;
6006 ir.reg |= ((opcode & 7) << 3);
6007 if (ir.mod != 3)
6008 {
1777feb0 6009 /* Memory. */
955db0c0 6010 uint64_t addr64;
7ad10968 6011
955db0c0 6012 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6013 return -1;
6014 switch (ir.reg)
6015 {
7ad10968 6016 case 0x02:
0289bdd7
MS
6017 case 0x12:
6018 case 0x22:
6019 case 0x32:
6020 /* For fcom, ficom nothing to do. */
6021 break;
7ad10968 6022 case 0x03:
0289bdd7
MS
6023 case 0x13:
6024 case 0x23:
6025 case 0x33:
6026 /* For fcomp, ficomp pop FPU stack, store all. */
6027 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6028 return -1;
6029 break;
6030 case 0x00:
6031 case 0x01:
7ad10968
HZ
6032 case 0x04:
6033 case 0x05:
6034 case 0x06:
6035 case 0x07:
6036 case 0x10:
6037 case 0x11:
7ad10968
HZ
6038 case 0x14:
6039 case 0x15:
6040 case 0x16:
6041 case 0x17:
6042 case 0x20:
6043 case 0x21:
7ad10968
HZ
6044 case 0x24:
6045 case 0x25:
6046 case 0x26:
6047 case 0x27:
6048 case 0x30:
6049 case 0x31:
7ad10968
HZ
6050 case 0x34:
6051 case 0x35:
6052 case 0x36:
6053 case 0x37:
0289bdd7
MS
6054 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6055 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6056 of code, always affects st(0) register. */
6057 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6058 return -1;
7ad10968
HZ
6059 break;
6060 case 0x08:
6061 case 0x0a:
6062 case 0x0b:
6063 case 0x18:
6064 case 0x19:
6065 case 0x1a:
6066 case 0x1b:
0289bdd7 6067 case 0x1d:
7ad10968
HZ
6068 case 0x28:
6069 case 0x29:
6070 case 0x2a:
6071 case 0x2b:
6072 case 0x38:
6073 case 0x39:
6074 case 0x3a:
6075 case 0x3b:
0289bdd7
MS
6076 case 0x3c:
6077 case 0x3d:
7ad10968
HZ
6078 switch (ir.reg & 7)
6079 {
6080 case 0:
0289bdd7
MS
6081 /* Handling fld, fild. */
6082 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6083 return -1;
7ad10968
HZ
6084 break;
6085 case 1:
6086 switch (ir.reg >> 4)
6087 {
6088 case 0:
25ea693b 6089 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6090 return -1;
6091 break;
6092 case 2:
25ea693b 6093 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6094 return -1;
6095 break;
6096 case 3:
0289bdd7 6097 break;
7ad10968 6098 default:
25ea693b 6099 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6100 return -1;
6101 break;
6102 }
6103 break;
6104 default:
6105 switch (ir.reg >> 4)
6106 {
6107 case 0:
25ea693b 6108 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6109 return -1;
6110 if (3 == (ir.reg & 7))
6111 {
6112 /* For fstp m32fp. */
6113 if (i386_record_floats (gdbarch, &ir,
6114 I386_SAVE_FPU_REGS))
6115 return -1;
6116 }
6117 break;
7ad10968 6118 case 1:
25ea693b 6119 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6120 return -1;
0289bdd7
MS
6121 if ((3 == (ir.reg & 7))
6122 || (5 == (ir.reg & 7))
6123 || (7 == (ir.reg & 7)))
6124 {
6125 /* For fstp insn. */
6126 if (i386_record_floats (gdbarch, &ir,
6127 I386_SAVE_FPU_REGS))
6128 return -1;
6129 }
7ad10968
HZ
6130 break;
6131 case 2:
25ea693b 6132 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6133 return -1;
0289bdd7
MS
6134 if (3 == (ir.reg & 7))
6135 {
6136 /* For fstp m64fp. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_REGS))
6139 return -1;
6140 }
7ad10968
HZ
6141 break;
6142 case 3:
0289bdd7
MS
6143 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6144 {
6145 /* For fistp, fbld, fild, fbstp. */
6146 if (i386_record_floats (gdbarch, &ir,
6147 I386_SAVE_FPU_REGS))
6148 return -1;
6149 }
6150 /* Fall through */
7ad10968 6151 default:
25ea693b 6152 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6153 return -1;
6154 break;
6155 }
6156 break;
6157 }
6158 break;
6159 case 0x0c:
0289bdd7
MS
6160 /* Insn fldenv. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_ENV_REG_STACK))
6163 return -1;
6164 break;
7ad10968 6165 case 0x0d:
0289bdd7
MS
6166 /* Insn fldcw. */
6167 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6168 return -1;
6169 break;
7ad10968 6170 case 0x2c:
0289bdd7
MS
6171 /* Insn frstor. */
6172 if (i386_record_floats (gdbarch, &ir,
6173 I386_SAVE_FPU_ENV_REG_STACK))
6174 return -1;
7ad10968
HZ
6175 break;
6176 case 0x0e:
6177 if (ir.dflag)
6178 {
25ea693b 6179 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6180 return -1;
6181 }
6182 else
6183 {
25ea693b 6184 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6185 return -1;
6186 }
6187 break;
6188 case 0x0f:
6189 case 0x2f:
25ea693b 6190 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6191 return -1;
0289bdd7
MS
6192 /* Insn fstp, fbstp. */
6193 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6194 return -1;
7ad10968
HZ
6195 break;
6196 case 0x1f:
6197 case 0x3e:
25ea693b 6198 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6199 return -1;
6200 break;
6201 case 0x2e:
6202 if (ir.dflag)
6203 {
25ea693b 6204 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6205 return -1;
955db0c0 6206 addr64 += 28;
7ad10968
HZ
6207 }
6208 else
6209 {
25ea693b 6210 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6211 return -1;
955db0c0 6212 addr64 += 14;
7ad10968 6213 }
25ea693b 6214 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6215 return -1;
0289bdd7
MS
6216 /* Insn fsave. */
6217 if (i386_record_floats (gdbarch, &ir,
6218 I386_SAVE_FPU_ENV_REG_STACK))
6219 return -1;
7ad10968
HZ
6220 break;
6221 case 0x3f:
25ea693b 6222 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6223 return -1;
0289bdd7
MS
6224 /* Insn fistp. */
6225 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6226 return -1;
7ad10968
HZ
6227 break;
6228 default:
6229 ir.addr -= 2;
6230 opcode = opcode << 8 | ir.modrm;
6231 goto no_support;
6232 break;
6233 }
6234 }
0289bdd7
MS
6235 /* Opcode is an extension of modR/M byte. */
6236 else
6237 {
6238 switch (opcode)
6239 {
6240 case 0xd8:
6241 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6242 return -1;
6243 break;
6244 case 0xd9:
6245 if (0x0c == (ir.modrm >> 4))
6246 {
6247 if ((ir.modrm & 0x0f) <= 7)
6248 {
6249 if (i386_record_floats (gdbarch, &ir,
6250 I386_SAVE_FPU_REGS))
6251 return -1;
6252 }
6253 else
6254 {
6255 if (i386_record_floats (gdbarch, &ir,
6256 I387_ST0_REGNUM (tdep)))
6257 return -1;
6258 /* If only st(0) is changing, then we have already
6259 recorded. */
6260 if ((ir.modrm & 0x0f) - 0x08)
6261 {
6262 if (i386_record_floats (gdbarch, &ir,
6263 I387_ST0_REGNUM (tdep) +
6264 ((ir.modrm & 0x0f) - 0x08)))
6265 return -1;
6266 }
6267 }
6268 }
6269 else
6270 {
6271 switch (ir.modrm)
6272 {
6273 case 0xe0:
6274 case 0xe1:
6275 case 0xf0:
6276 case 0xf5:
6277 case 0xf8:
6278 case 0xfa:
6279 case 0xfc:
6280 case 0xfe:
6281 case 0xff:
6282 if (i386_record_floats (gdbarch, &ir,
6283 I387_ST0_REGNUM (tdep)))
6284 return -1;
6285 break;
6286 case 0xf1:
6287 case 0xf2:
6288 case 0xf3:
6289 case 0xf4:
6290 case 0xf6:
6291 case 0xf7:
6292 case 0xe8:
6293 case 0xe9:
6294 case 0xea:
6295 case 0xeb:
6296 case 0xec:
6297 case 0xed:
6298 case 0xee:
6299 case 0xf9:
6300 case 0xfb:
6301 if (i386_record_floats (gdbarch, &ir,
6302 I386_SAVE_FPU_REGS))
6303 return -1;
6304 break;
6305 case 0xfd:
6306 if (i386_record_floats (gdbarch, &ir,
6307 I387_ST0_REGNUM (tdep)))
6308 return -1;
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) + 1))
6311 return -1;
6312 break;
6313 }
6314 }
6315 break;
6316 case 0xda:
6317 if (0xe9 == ir.modrm)
6318 {
6319 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6320 return -1;
6321 }
6322 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6323 {
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep)))
6326 return -1;
6327 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6328 {
6329 if (i386_record_floats (gdbarch, &ir,
6330 I387_ST0_REGNUM (tdep) +
6331 (ir.modrm & 0x0f)))
6332 return -1;
6333 }
6334 else if ((ir.modrm & 0x0f) - 0x08)
6335 {
6336 if (i386_record_floats (gdbarch, &ir,
6337 I387_ST0_REGNUM (tdep) +
6338 ((ir.modrm & 0x0f) - 0x08)))
6339 return -1;
6340 }
6341 }
6342 break;
6343 case 0xdb:
6344 if (0xe3 == ir.modrm)
6345 {
6346 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6347 return -1;
6348 }
6349 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6350 {
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep)))
6353 return -1;
6354 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6355 {
6356 if (i386_record_floats (gdbarch, &ir,
6357 I387_ST0_REGNUM (tdep) +
6358 (ir.modrm & 0x0f)))
6359 return -1;
6360 }
6361 else if ((ir.modrm & 0x0f) - 0x08)
6362 {
6363 if (i386_record_floats (gdbarch, &ir,
6364 I387_ST0_REGNUM (tdep) +
6365 ((ir.modrm & 0x0f) - 0x08)))
6366 return -1;
6367 }
6368 }
6369 break;
6370 case 0xdc:
6371 if ((0x0c == ir.modrm >> 4)
6372 || (0x0d == ir.modrm >> 4)
6373 || (0x0f == ir.modrm >> 4))
6374 {
6375 if ((ir.modrm & 0x0f) <= 7)
6376 {
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6379 (ir.modrm & 0x0f)))
6380 return -1;
6381 }
6382 else
6383 {
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_ST0_REGNUM (tdep) +
6386 ((ir.modrm & 0x0f) - 0x08)))
6387 return -1;
6388 }
6389 }
6390 break;
6391 case 0xdd:
6392 if (0x0c == ir.modrm >> 4)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_FTAG_REGNUM (tdep)))
6396 return -1;
6397 }
6398 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6399 {
6400 if ((ir.modrm & 0x0f) <= 7)
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 (ir.modrm & 0x0f)))
6405 return -1;
6406 }
6407 else
6408 {
6409 if (i386_record_floats (gdbarch, &ir,
6410 I386_SAVE_FPU_REGS))
6411 return -1;
6412 }
6413 }
6414 break;
6415 case 0xde:
6416 if ((0x0c == ir.modrm >> 4)
6417 || (0x0e == ir.modrm >> 4)
6418 || (0x0f == ir.modrm >> 4)
6419 || (0xd9 == ir.modrm))
6420 {
6421 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6422 return -1;
6423 }
6424 break;
6425 case 0xdf:
6426 if (0xe0 == ir.modrm)
6427 {
25ea693b
MM
6428 if (record_full_arch_list_add_reg (ir.regcache,
6429 I386_EAX_REGNUM))
0289bdd7
MS
6430 return -1;
6431 }
6432 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6433 {
6434 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6435 return -1;
6436 }
6437 break;
6438 }
6439 }
7ad10968 6440 break;
7ad10968 6441 /* string ops */
a38bba38 6442 case 0xa4: /* movsS */
7ad10968 6443 case 0xa5:
a38bba38 6444 case 0xaa: /* stosS */
7ad10968 6445 case 0xab:
a38bba38 6446 case 0x6c: /* insS */
7ad10968 6447 case 0x6d:
cf648174 6448 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6449 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6450 &addr);
6451 if (addr)
cf648174 6452 {
77d7dc92
HZ
6453 ULONGEST es, ds;
6454
6455 if ((opcode & 1) == 0)
6456 ir.ot = OT_BYTE;
6457 else
6458 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6459 regcache_raw_read_unsigned (ir.regcache,
6460 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6461 &addr);
77d7dc92 6462
d7877f7e
HZ
6463 regcache_raw_read_unsigned (ir.regcache,
6464 ir.regmap[X86_RECORD_ES_REGNUM],
6465 &es);
6466 regcache_raw_read_unsigned (ir.regcache,
6467 ir.regmap[X86_RECORD_DS_REGNUM],
6468 &ds);
6469 if (ir.aflag && (es != ds))
77d7dc92
HZ
6470 {
6471 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6472 if (record_full_memory_query)
bb08c432 6473 {
651ce16a 6474 if (yquery (_("\
bb08c432
HZ
6475Process record ignores the memory change of instruction at address %s\n\
6476because it can't get the value of the segment register.\n\
6477Do you want to stop the program?"),
651ce16a 6478 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
6479 return -1;
6480 }
df61f520
HZ
6481 }
6482 else
6483 {
25ea693b 6484 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6485 return -1;
77d7dc92
HZ
6486 }
6487
6488 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6490 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6494 }
cf648174 6495 break;
7ad10968 6496
a38bba38 6497 case 0xa6: /* cmpsS */
cf648174 6498 case 0xa7:
25ea693b
MM
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6504 break;
6505
a38bba38 6506 case 0xac: /* lodsS */
7ad10968 6507 case 0xad:
25ea693b
MM
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6510 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6513 break;
6514
a38bba38 6515 case 0xae: /* scasS */
7ad10968 6516 case 0xaf:
25ea693b 6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6521 break;
6522
a38bba38 6523 case 0x6e: /* outsS */
cf648174 6524 case 0x6f:
25ea693b 6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6526 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6529 break;
6530
a38bba38 6531 case 0xe4: /* port I/O */
7ad10968
HZ
6532 case 0xe5:
6533 case 0xec:
6534 case 0xed:
25ea693b
MM
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6537 break;
6538
6539 case 0xe6:
6540 case 0xe7:
6541 case 0xee:
6542 case 0xef:
6543 break;
6544
6545 /* control */
a38bba38
MS
6546 case 0xc2: /* ret im */
6547 case 0xc3: /* ret */
25ea693b
MM
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6550 break;
6551
a38bba38
MS
6552 case 0xca: /* lret im */
6553 case 0xcb: /* lret */
6554 case 0xcf: /* iret */
25ea693b
MM
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6558 break;
6559
a38bba38 6560 case 0xe8: /* call im */
cf648174
HZ
6561 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6562 ir.dflag = 2;
6563 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6564 return -1;
7ad10968
HZ
6565 break;
6566
a38bba38 6567 case 0x9a: /* lcall im */
cf648174
HZ
6568 if (ir.regmap[X86_RECORD_R8_REGNUM])
6569 {
6570 ir.addr -= 1;
6571 goto no_support;
6572 }
25ea693b 6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6574 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6575 return -1;
7ad10968
HZ
6576 break;
6577
a38bba38
MS
6578 case 0xe9: /* jmp im */
6579 case 0xea: /* ljmp im */
6580 case 0xeb: /* jmp Jb */
6581 case 0x70: /* jcc Jb */
7ad10968
HZ
6582 case 0x71:
6583 case 0x72:
6584 case 0x73:
6585 case 0x74:
6586 case 0x75:
6587 case 0x76:
6588 case 0x77:
6589 case 0x78:
6590 case 0x79:
6591 case 0x7a:
6592 case 0x7b:
6593 case 0x7c:
6594 case 0x7d:
6595 case 0x7e:
6596 case 0x7f:
a38bba38 6597 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6598 case 0x0f81:
6599 case 0x0f82:
6600 case 0x0f83:
6601 case 0x0f84:
6602 case 0x0f85:
6603 case 0x0f86:
6604 case 0x0f87:
6605 case 0x0f88:
6606 case 0x0f89:
6607 case 0x0f8a:
6608 case 0x0f8b:
6609 case 0x0f8c:
6610 case 0x0f8d:
6611 case 0x0f8e:
6612 case 0x0f8f:
6613 break;
6614
a38bba38 6615 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6616 case 0x0f91:
6617 case 0x0f92:
6618 case 0x0f93:
6619 case 0x0f94:
6620 case 0x0f95:
6621 case 0x0f96:
6622 case 0x0f97:
6623 case 0x0f98:
6624 case 0x0f99:
6625 case 0x0f9a:
6626 case 0x0f9b:
6627 case 0x0f9c:
6628 case 0x0f9d:
6629 case 0x0f9e:
6630 case 0x0f9f:
25ea693b 6631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6632 ir.ot = OT_BYTE;
6633 if (i386_record_modrm (&ir))
6634 return -1;
6635 if (ir.mod == 3)
25ea693b
MM
6636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6637 : (ir.rm & 0x3));
7ad10968
HZ
6638 else
6639 {
6640 if (i386_record_lea_modrm (&ir))
6641 return -1;
6642 }
6643 break;
6644
a38bba38 6645 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6646 case 0x0f41:
6647 case 0x0f42:
6648 case 0x0f43:
6649 case 0x0f44:
6650 case 0x0f45:
6651 case 0x0f46:
6652 case 0x0f47:
6653 case 0x0f48:
6654 case 0x0f49:
6655 case 0x0f4a:
6656 case 0x0f4b:
6657 case 0x0f4c:
6658 case 0x0f4d:
6659 case 0x0f4e:
6660 case 0x0f4f:
6661 if (i386_record_modrm (&ir))
6662 return -1;
cf648174 6663 ir.reg |= rex_r;
7ad10968
HZ
6664 if (ir.dflag == OT_BYTE)
6665 ir.reg &= 0x3;
25ea693b 6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6667 break;
6668
6669 /* flags */
a38bba38 6670 case 0x9c: /* pushf */
25ea693b 6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6672 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6673 ir.dflag = 2;
6674 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6675 return -1;
7ad10968
HZ
6676 break;
6677
a38bba38 6678 case 0x9d: /* popf */
25ea693b
MM
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6681 break;
6682
a38bba38 6683 case 0x9e: /* sahf */
cf648174
HZ
6684 if (ir.regmap[X86_RECORD_R8_REGNUM])
6685 {
6686 ir.addr -= 1;
6687 goto no_support;
6688 }
d3f323f3 6689 /* FALLTHROUGH */
a38bba38
MS
6690 case 0xf5: /* cmc */
6691 case 0xf8: /* clc */
6692 case 0xf9: /* stc */
6693 case 0xfc: /* cld */
6694 case 0xfd: /* std */
25ea693b 6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6696 break;
6697
a38bba38 6698 case 0x9f: /* lahf */
cf648174
HZ
6699 if (ir.regmap[X86_RECORD_R8_REGNUM])
6700 {
6701 ir.addr -= 1;
6702 goto no_support;
6703 }
25ea693b
MM
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6706 break;
6707
6708 /* bit operations */
a38bba38 6709 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6710 ir.ot = ir.dflag + OT_WORD;
6711 if (i386_record_modrm (&ir))
6712 return -1;
6713 if (ir.reg < 4)
6714 {
cf648174 6715 ir.addr -= 2;
7ad10968
HZ
6716 opcode = opcode << 8 | ir.modrm;
6717 goto no_support;
6718 }
cf648174 6719 if (ir.reg != 4)
7ad10968 6720 {
cf648174 6721 if (ir.mod == 3)
25ea693b 6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6723 else
6724 {
cf648174 6725 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6726 return -1;
6727 }
6728 }
25ea693b 6729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6730 break;
6731
a38bba38 6732 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6734 break;
6735
a38bba38
MS
6736 case 0x0fab: /* bts */
6737 case 0x0fb3: /* btr */
6738 case 0x0fbb: /* btc */
cf648174
HZ
6739 ir.ot = ir.dflag + OT_WORD;
6740 if (i386_record_modrm (&ir))
6741 return -1;
6742 if (ir.mod == 3)
25ea693b 6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6744 else
6745 {
955db0c0
MS
6746 uint64_t addr64;
6747 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6748 return -1;
6749 regcache_raw_read_unsigned (ir.regcache,
6750 ir.regmap[ir.reg | rex_r],
648d0c8b 6751 &addr);
cf648174
HZ
6752 switch (ir.dflag)
6753 {
6754 case 0:
648d0c8b 6755 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6756 break;
6757 case 1:
648d0c8b 6758 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6759 break;
6760 case 2:
648d0c8b 6761 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6762 break;
6763 }
25ea693b 6764 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6765 return -1;
6766 if (i386_record_lea_modrm (&ir))
6767 return -1;
6768 }
25ea693b 6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6770 break;
6771
a38bba38
MS
6772 case 0x0fbc: /* bsf */
6773 case 0x0fbd: /* bsr */
25ea693b
MM
6774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6776 break;
6777
6778 /* bcd */
a38bba38
MS
6779 case 0x27: /* daa */
6780 case 0x2f: /* das */
6781 case 0x37: /* aaa */
6782 case 0x3f: /* aas */
6783 case 0xd4: /* aam */
6784 case 0xd5: /* aad */
cf648174
HZ
6785 if (ir.regmap[X86_RECORD_R8_REGNUM])
6786 {
6787 ir.addr -= 1;
6788 goto no_support;
6789 }
25ea693b
MM
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6792 break;
6793
6794 /* misc */
a38bba38 6795 case 0x90: /* nop */
7ad10968
HZ
6796 if (prefixes & PREFIX_LOCK)
6797 {
6798 ir.addr -= 1;
6799 goto no_support;
6800 }
6801 break;
6802
a38bba38 6803 case 0x9b: /* fwait */
4ffa4fc7
PA
6804 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6805 return -1;
425b824a 6806 opcode = (uint32_t) opcode8;
0289bdd7
MS
6807 ir.addr++;
6808 goto reswitch;
7ad10968
HZ
6809 break;
6810
7ad10968 6811 /* XXX */
a38bba38 6812 case 0xcc: /* int3 */
a3c4230a 6813 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6814 "int3.\n"));
6815 ir.addr -= 1;
6816 goto no_support;
6817 break;
6818
7ad10968 6819 /* XXX */
a38bba38 6820 case 0xcd: /* int */
7ad10968
HZ
6821 {
6822 int ret;
425b824a 6823 uint8_t interrupt;
4ffa4fc7
PA
6824 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6825 return -1;
7ad10968 6826 ir.addr++;
425b824a 6827 if (interrupt != 0x80
a3c4230a 6828 || tdep->i386_intx80_record == NULL)
7ad10968 6829 {
a3c4230a 6830 printf_unfiltered (_("Process record does not support "
7ad10968 6831 "instruction int 0x%02x.\n"),
425b824a 6832 interrupt);
7ad10968
HZ
6833 ir.addr -= 2;
6834 goto no_support;
6835 }
a3c4230a 6836 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6837 if (ret)
6838 return ret;
6839 }
6840 break;
6841
7ad10968 6842 /* XXX */
a38bba38 6843 case 0xce: /* into */
a3c4230a 6844 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6845 "instruction into.\n"));
6846 ir.addr -= 1;
6847 goto no_support;
6848 break;
6849
a38bba38
MS
6850 case 0xfa: /* cli */
6851 case 0xfb: /* sti */
7ad10968
HZ
6852 break;
6853
a38bba38 6854 case 0x62: /* bound */
a3c4230a 6855 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6856 "instruction bound.\n"));
6857 ir.addr -= 1;
6858 goto no_support;
6859 break;
6860
a38bba38 6861 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6862 case 0x0fc9:
6863 case 0x0fca:
6864 case 0x0fcb:
6865 case 0x0fcc:
6866 case 0x0fcd:
6867 case 0x0fce:
6868 case 0x0fcf:
25ea693b 6869 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6870 break;
6871
a38bba38 6872 case 0xd6: /* salc */
cf648174
HZ
6873 if (ir.regmap[X86_RECORD_R8_REGNUM])
6874 {
6875 ir.addr -= 1;
6876 goto no_support;
6877 }
25ea693b
MM
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6880 break;
6881
a38bba38
MS
6882 case 0xe0: /* loopnz */
6883 case 0xe1: /* loopz */
6884 case 0xe2: /* loop */
6885 case 0xe3: /* jecxz */
25ea693b
MM
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6888 break;
6889
a38bba38 6890 case 0x0f30: /* wrmsr */
a3c4230a 6891 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6892 "instruction wrmsr.\n"));
6893 ir.addr -= 2;
6894 goto no_support;
6895 break;
6896
a38bba38 6897 case 0x0f32: /* rdmsr */
a3c4230a 6898 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6899 "instruction rdmsr.\n"));
6900 ir.addr -= 2;
6901 goto no_support;
6902 break;
6903
a38bba38 6904 case 0x0f31: /* rdtsc */
25ea693b
MM
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6907 break;
6908
a38bba38 6909 case 0x0f34: /* sysenter */
7ad10968
HZ
6910 {
6911 int ret;
cf648174
HZ
6912 if (ir.regmap[X86_RECORD_R8_REGNUM])
6913 {
6914 ir.addr -= 2;
6915 goto no_support;
6916 }
a3c4230a 6917 if (tdep->i386_sysenter_record == NULL)
7ad10968 6918 {
a3c4230a 6919 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6920 "instruction sysenter.\n"));
6921 ir.addr -= 2;
6922 goto no_support;
6923 }
a3c4230a 6924 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6925 if (ret)
6926 return ret;
6927 }
6928 break;
6929
a38bba38 6930 case 0x0f35: /* sysexit */
a3c4230a 6931 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6932 "instruction sysexit.\n"));
6933 ir.addr -= 2;
6934 goto no_support;
6935 break;
6936
a38bba38 6937 case 0x0f05: /* syscall */
cf648174
HZ
6938 {
6939 int ret;
a3c4230a 6940 if (tdep->i386_syscall_record == NULL)
cf648174 6941 {
a3c4230a 6942 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6943 "instruction syscall.\n"));
6944 ir.addr -= 2;
6945 goto no_support;
6946 }
a3c4230a 6947 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6948 if (ret)
6949 return ret;
6950 }
6951 break;
6952
a38bba38 6953 case 0x0f07: /* sysret */
a3c4230a 6954 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6955 "instruction sysret.\n"));
6956 ir.addr -= 2;
6957 goto no_support;
6958 break;
6959
a38bba38 6960 case 0x0fa2: /* cpuid */
25ea693b
MM
6961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6965 break;
6966
a38bba38 6967 case 0xf4: /* hlt */
a3c4230a 6968 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6969 "instruction hlt.\n"));
6970 ir.addr -= 1;
6971 goto no_support;
6972 break;
6973
6974 case 0x0f00:
6975 if (i386_record_modrm (&ir))
6976 return -1;
6977 switch (ir.reg)
6978 {
a38bba38
MS
6979 case 0: /* sldt */
6980 case 1: /* str */
7ad10968 6981 if (ir.mod == 3)
25ea693b 6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6983 else
6984 {
6985 ir.ot = OT_WORD;
6986 if (i386_record_lea_modrm (&ir))
6987 return -1;
6988 }
6989 break;
a38bba38
MS
6990 case 2: /* lldt */
6991 case 3: /* ltr */
7ad10968 6992 break;
a38bba38
MS
6993 case 4: /* verr */
6994 case 5: /* verw */
25ea693b 6995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6996 break;
6997 default:
6998 ir.addr -= 3;
6999 opcode = opcode << 8 | ir.modrm;
7000 goto no_support;
7001 break;
7002 }
7003 break;
7004
7005 case 0x0f01:
7006 if (i386_record_modrm (&ir))
7007 return -1;
7008 switch (ir.reg)
7009 {
a38bba38 7010 case 0: /* sgdt */
7ad10968 7011 {
955db0c0 7012 uint64_t addr64;
7ad10968
HZ
7013
7014 if (ir.mod == 3)
7015 {
7016 ir.addr -= 3;
7017 opcode = opcode << 8 | ir.modrm;
7018 goto no_support;
7019 }
d7877f7e 7020 if (ir.override >= 0)
7ad10968 7021 {
25ea693b 7022 if (record_full_memory_query)
bb08c432 7023 {
651ce16a 7024 if (yquery (_("\
bb08c432
HZ
7025Process record ignores the memory change of instruction at address %s\n\
7026because it can't get the value of the segment register.\n\
7027Do you want to stop the program?"),
651ce16a
PA
7028 paddress (gdbarch, ir.orig_addr)))
7029 return -1;
bb08c432 7030 }
7ad10968
HZ
7031 }
7032 else
7033 {
955db0c0 7034 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7035 return -1;
25ea693b 7036 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7037 return -1;
955db0c0 7038 addr64 += 2;
cf648174
HZ
7039 if (ir.regmap[X86_RECORD_R8_REGNUM])
7040 {
25ea693b 7041 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7042 return -1;
7043 }
7044 else
7045 {
25ea693b 7046 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7047 return -1;
7048 }
7ad10968
HZ
7049 }
7050 }
7051 break;
7052 case 1:
7053 if (ir.mod == 3)
7054 {
7055 switch (ir.rm)
7056 {
a38bba38 7057 case 0: /* monitor */
7ad10968 7058 break;
a38bba38 7059 case 1: /* mwait */
25ea693b 7060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7061 break;
7062 default:
7063 ir.addr -= 3;
7064 opcode = opcode << 8 | ir.modrm;
7065 goto no_support;
7066 break;
7067 }
7068 }
7069 else
7070 {
7071 /* sidt */
d7877f7e 7072 if (ir.override >= 0)
7ad10968 7073 {
25ea693b 7074 if (record_full_memory_query)
bb08c432 7075 {
651ce16a 7076 if (yquery (_("\
bb08c432
HZ
7077Process record ignores the memory change of instruction at address %s\n\
7078because it can't get the value of the segment register.\n\
7079Do you want to stop the program?"),
651ce16a 7080 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
7081 return -1;
7082 }
7ad10968
HZ
7083 }
7084 else
7085 {
955db0c0 7086 uint64_t addr64;
7ad10968 7087
955db0c0 7088 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7089 return -1;
25ea693b 7090 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7091 return -1;
955db0c0 7092 addr64 += 2;
cf648174
HZ
7093 if (ir.regmap[X86_RECORD_R8_REGNUM])
7094 {
25ea693b 7095 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7096 return -1;
7097 }
7098 else
7099 {
25ea693b 7100 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7101 return -1;
7102 }
7ad10968
HZ
7103 }
7104 }
7105 break;
a38bba38 7106 case 2: /* lgdt */
3800e645
MS
7107 if (ir.mod == 3)
7108 {
7109 /* xgetbv */
7110 if (ir.rm == 0)
7111 {
25ea693b
MM
7112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7113 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7114 break;
7115 }
7116 /* xsetbv */
7117 else if (ir.rm == 1)
7118 break;
7119 }
a38bba38 7120 case 3: /* lidt */
7ad10968
HZ
7121 if (ir.mod == 3)
7122 {
7123 ir.addr -= 3;
7124 opcode = opcode << 8 | ir.modrm;
7125 goto no_support;
7126 }
7127 break;
a38bba38 7128 case 4: /* smsw */
7ad10968
HZ
7129 if (ir.mod == 3)
7130 {
25ea693b 7131 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7132 return -1;
7133 }
7134 else
7135 {
7136 ir.ot = OT_WORD;
7137 if (i386_record_lea_modrm (&ir))
7138 return -1;
7139 }
25ea693b 7140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7141 break;
a38bba38 7142 case 6: /* lmsw */
25ea693b 7143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7144 break;
a38bba38 7145 case 7: /* invlpg */
cf648174
HZ
7146 if (ir.mod == 3)
7147 {
7148 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7150 else
7151 {
7152 ir.addr -= 3;
7153 opcode = opcode << 8 | ir.modrm;
7154 goto no_support;
7155 }
7156 }
7157 else
25ea693b 7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7159 break;
7160 default:
7161 ir.addr -= 3;
7162 opcode = opcode << 8 | ir.modrm;
7163 goto no_support;
7ad10968
HZ
7164 break;
7165 }
7166 break;
7167
a38bba38
MS
7168 case 0x0f08: /* invd */
7169 case 0x0f09: /* wbinvd */
7ad10968
HZ
7170 break;
7171
a38bba38 7172 case 0x63: /* arpl */
7ad10968
HZ
7173 if (i386_record_modrm (&ir))
7174 return -1;
cf648174
HZ
7175 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7176 {
25ea693b
MM
7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7178 ? (ir.reg | rex_r) : ir.rm);
cf648174 7179 }
7ad10968 7180 else
cf648174
HZ
7181 {
7182 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7183 if (i386_record_lea_modrm (&ir))
7184 return -1;
7185 }
7186 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7188 break;
7189
a38bba38
MS
7190 case 0x0f02: /* lar */
7191 case 0x0f03: /* lsl */
7ad10968
HZ
7192 if (i386_record_modrm (&ir))
7193 return -1;
25ea693b
MM
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7196 break;
7197
7198 case 0x0f18:
cf648174
HZ
7199 if (i386_record_modrm (&ir))
7200 return -1;
7201 if (ir.mod == 3 && ir.reg == 3)
7202 {
7203 ir.addr -= 3;
7204 opcode = opcode << 8 | ir.modrm;
7205 goto no_support;
7206 }
7ad10968
HZ
7207 break;
7208
7ad10968
HZ
7209 case 0x0f19:
7210 case 0x0f1a:
7211 case 0x0f1b:
7212 case 0x0f1c:
7213 case 0x0f1d:
7214 case 0x0f1e:
7215 case 0x0f1f:
a38bba38 7216 /* nop (multi byte) */
7ad10968
HZ
7217 break;
7218
a38bba38
MS
7219 case 0x0f20: /* mov reg, crN */
7220 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7221 if (i386_record_modrm (&ir))
7222 return -1;
7223 if ((ir.modrm & 0xc0) != 0xc0)
7224 {
cf648174 7225 ir.addr -= 3;
7ad10968
HZ
7226 opcode = opcode << 8 | ir.modrm;
7227 goto no_support;
7228 }
7229 switch (ir.reg)
7230 {
7231 case 0:
7232 case 2:
7233 case 3:
7234 case 4:
7235 case 8:
7236 if (opcode & 2)
25ea693b 7237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7238 else
25ea693b 7239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7240 break;
7241 default:
cf648174 7242 ir.addr -= 3;
7ad10968
HZ
7243 opcode = opcode << 8 | ir.modrm;
7244 goto no_support;
7245 break;
7246 }
7247 break;
7248
a38bba38
MS
7249 case 0x0f21: /* mov reg, drN */
7250 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7251 if (i386_record_modrm (&ir))
7252 return -1;
7253 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7254 || ir.reg == 5 || ir.reg >= 8)
7255 {
cf648174 7256 ir.addr -= 3;
7ad10968
HZ
7257 opcode = opcode << 8 | ir.modrm;
7258 goto no_support;
7259 }
7260 if (opcode & 2)
25ea693b 7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7262 else
25ea693b 7263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7264 break;
7265
a38bba38 7266 case 0x0f06: /* clts */
25ea693b 7267 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7268 break;
7269
a3c4230a
HZ
7270 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7271
7272 case 0x0f0d: /* 3DNow! prefetch */
7273 break;
7274
7275 case 0x0f0e: /* 3DNow! femms */
7276 case 0x0f77: /* emms */
7277 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7278 goto no_support;
25ea693b 7279 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7280 break;
7281
7282 case 0x0f0f: /* 3DNow! data */
7283 if (i386_record_modrm (&ir))
7284 return -1;
4ffa4fc7
PA
7285 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7286 return -1;
a3c4230a
HZ
7287 ir.addr++;
7288 switch (opcode8)
7289 {
7290 case 0x0c: /* 3DNow! pi2fw */
7291 case 0x0d: /* 3DNow! pi2fd */
7292 case 0x1c: /* 3DNow! pf2iw */
7293 case 0x1d: /* 3DNow! pf2id */
7294 case 0x8a: /* 3DNow! pfnacc */
7295 case 0x8e: /* 3DNow! pfpnacc */
7296 case 0x90: /* 3DNow! pfcmpge */
7297 case 0x94: /* 3DNow! pfmin */
7298 case 0x96: /* 3DNow! pfrcp */
7299 case 0x97: /* 3DNow! pfrsqrt */
7300 case 0x9a: /* 3DNow! pfsub */
7301 case 0x9e: /* 3DNow! pfadd */
7302 case 0xa0: /* 3DNow! pfcmpgt */
7303 case 0xa4: /* 3DNow! pfmax */
7304 case 0xa6: /* 3DNow! pfrcpit1 */
7305 case 0xa7: /* 3DNow! pfrsqit1 */
7306 case 0xaa: /* 3DNow! pfsubr */
7307 case 0xae: /* 3DNow! pfacc */
7308 case 0xb0: /* 3DNow! pfcmpeq */
7309 case 0xb4: /* 3DNow! pfmul */
7310 case 0xb6: /* 3DNow! pfrcpit2 */
7311 case 0xb7: /* 3DNow! pmulhrw */
7312 case 0xbb: /* 3DNow! pswapd */
7313 case 0xbf: /* 3DNow! pavgusb */
7314 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7315 goto no_support_3dnow_data;
25ea693b 7316 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7317 break;
7318
7319 default:
7320no_support_3dnow_data:
7321 opcode = (opcode << 8) | opcode8;
7322 goto no_support;
7323 break;
7324 }
7325 break;
7326
7327 case 0x0faa: /* rsm */
25ea693b
MM
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7337 break;
7338
7339 case 0x0fae:
7340 if (i386_record_modrm (&ir))
7341 return -1;
7342 switch(ir.reg)
7343 {
7344 case 0: /* fxsave */
7345 {
7346 uint64_t tmpu64;
7347
25ea693b 7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7349 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7350 return -1;
25ea693b 7351 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7352 return -1;
7353 }
7354 break;
7355
7356 case 1: /* fxrstor */
7357 {
7358 int i;
7359
25ea693b 7360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7361
7362 for (i = I387_MM0_REGNUM (tdep);
7363 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7364 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7365
7366 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7367 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7368 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7369
7370 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7371 record_full_arch_list_add_reg (ir.regcache,
7372 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7373
7374 for (i = I387_ST0_REGNUM (tdep);
7375 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7376 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7377
7378 for (i = I387_FCTRL_REGNUM (tdep);
7379 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7380 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7381 }
7382 break;
7383
7384 case 2: /* ldmxcsr */
7385 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7386 goto no_support;
25ea693b 7387 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7388 break;
7389
7390 case 3: /* stmxcsr */
7391 ir.ot = OT_LONG;
7392 if (i386_record_lea_modrm (&ir))
7393 return -1;
7394 break;
7395
7396 case 5: /* lfence */
7397 case 6: /* mfence */
7398 case 7: /* sfence clflush */
7399 break;
7400
7401 default:
7402 opcode = (opcode << 8) | ir.modrm;
7403 goto no_support;
7404 break;
7405 }
7406 break;
7407
7408 case 0x0fc3: /* movnti */
7409 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7410 if (i386_record_modrm (&ir))
7411 return -1;
7412 if (ir.mod == 3)
7413 goto no_support;
7414 ir.reg |= rex_r;
7415 if (i386_record_lea_modrm (&ir))
7416 return -1;
7417 break;
7418
7419 /* Add prefix to opcode. */
7420 case 0x0f10:
7421 case 0x0f11:
7422 case 0x0f12:
7423 case 0x0f13:
7424 case 0x0f14:
7425 case 0x0f15:
7426 case 0x0f16:
7427 case 0x0f17:
7428 case 0x0f28:
7429 case 0x0f29:
7430 case 0x0f2a:
7431 case 0x0f2b:
7432 case 0x0f2c:
7433 case 0x0f2d:
7434 case 0x0f2e:
7435 case 0x0f2f:
7436 case 0x0f38:
7437 case 0x0f39:
7438 case 0x0f3a:
7439 case 0x0f50:
7440 case 0x0f51:
7441 case 0x0f52:
7442 case 0x0f53:
7443 case 0x0f54:
7444 case 0x0f55:
7445 case 0x0f56:
7446 case 0x0f57:
7447 case 0x0f58:
7448 case 0x0f59:
7449 case 0x0f5a:
7450 case 0x0f5b:
7451 case 0x0f5c:
7452 case 0x0f5d:
7453 case 0x0f5e:
7454 case 0x0f5f:
7455 case 0x0f60:
7456 case 0x0f61:
7457 case 0x0f62:
7458 case 0x0f63:
7459 case 0x0f64:
7460 case 0x0f65:
7461 case 0x0f66:
7462 case 0x0f67:
7463 case 0x0f68:
7464 case 0x0f69:
7465 case 0x0f6a:
7466 case 0x0f6b:
7467 case 0x0f6c:
7468 case 0x0f6d:
7469 case 0x0f6e:
7470 case 0x0f6f:
7471 case 0x0f70:
7472 case 0x0f71:
7473 case 0x0f72:
7474 case 0x0f73:
7475 case 0x0f74:
7476 case 0x0f75:
7477 case 0x0f76:
7478 case 0x0f7c:
7479 case 0x0f7d:
7480 case 0x0f7e:
7481 case 0x0f7f:
7482 case 0x0fb8:
7483 case 0x0fc2:
7484 case 0x0fc4:
7485 case 0x0fc5:
7486 case 0x0fc6:
7487 case 0x0fd0:
7488 case 0x0fd1:
7489 case 0x0fd2:
7490 case 0x0fd3:
7491 case 0x0fd4:
7492 case 0x0fd5:
7493 case 0x0fd6:
7494 case 0x0fd7:
7495 case 0x0fd8:
7496 case 0x0fd9:
7497 case 0x0fda:
7498 case 0x0fdb:
7499 case 0x0fdc:
7500 case 0x0fdd:
7501 case 0x0fde:
7502 case 0x0fdf:
7503 case 0x0fe0:
7504 case 0x0fe1:
7505 case 0x0fe2:
7506 case 0x0fe3:
7507 case 0x0fe4:
7508 case 0x0fe5:
7509 case 0x0fe6:
7510 case 0x0fe7:
7511 case 0x0fe8:
7512 case 0x0fe9:
7513 case 0x0fea:
7514 case 0x0feb:
7515 case 0x0fec:
7516 case 0x0fed:
7517 case 0x0fee:
7518 case 0x0fef:
7519 case 0x0ff0:
7520 case 0x0ff1:
7521 case 0x0ff2:
7522 case 0x0ff3:
7523 case 0x0ff4:
7524 case 0x0ff5:
7525 case 0x0ff6:
7526 case 0x0ff7:
7527 case 0x0ff8:
7528 case 0x0ff9:
7529 case 0x0ffa:
7530 case 0x0ffb:
7531 case 0x0ffc:
7532 case 0x0ffd:
7533 case 0x0ffe:
f9fda3f5
L
7534 /* Mask out PREFIX_ADDR. */
7535 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7536 {
7537 case PREFIX_REPNZ:
7538 opcode |= 0xf20000;
7539 break;
7540 case PREFIX_DATA:
7541 opcode |= 0x660000;
7542 break;
7543 case PREFIX_REPZ:
7544 opcode |= 0xf30000;
7545 break;
7546 }
7547reswitch_prefix_add:
7548 switch (opcode)
7549 {
7550 case 0x0f38:
7551 case 0x660f38:
7552 case 0xf20f38:
7553 case 0x0f3a:
7554 case 0x660f3a:
4ffa4fc7
PA
7555 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7556 return -1;
a3c4230a
HZ
7557 ir.addr++;
7558 opcode = (uint32_t) opcode8 | opcode << 8;
7559 goto reswitch_prefix_add;
7560 break;
7561
7562 case 0x0f10: /* movups */
7563 case 0x660f10: /* movupd */
7564 case 0xf30f10: /* movss */
7565 case 0xf20f10: /* movsd */
7566 case 0x0f12: /* movlps */
7567 case 0x660f12: /* movlpd */
7568 case 0xf30f12: /* movsldup */
7569 case 0xf20f12: /* movddup */
7570 case 0x0f14: /* unpcklps */
7571 case 0x660f14: /* unpcklpd */
7572 case 0x0f15: /* unpckhps */
7573 case 0x660f15: /* unpckhpd */
7574 case 0x0f16: /* movhps */
7575 case 0x660f16: /* movhpd */
7576 case 0xf30f16: /* movshdup */
7577 case 0x0f28: /* movaps */
7578 case 0x660f28: /* movapd */
7579 case 0x0f2a: /* cvtpi2ps */
7580 case 0x660f2a: /* cvtpi2pd */
7581 case 0xf30f2a: /* cvtsi2ss */
7582 case 0xf20f2a: /* cvtsi2sd */
7583 case 0x0f2c: /* cvttps2pi */
7584 case 0x660f2c: /* cvttpd2pi */
7585 case 0x0f2d: /* cvtps2pi */
7586 case 0x660f2d: /* cvtpd2pi */
7587 case 0x660f3800: /* pshufb */
7588 case 0x660f3801: /* phaddw */
7589 case 0x660f3802: /* phaddd */
7590 case 0x660f3803: /* phaddsw */
7591 case 0x660f3804: /* pmaddubsw */
7592 case 0x660f3805: /* phsubw */
7593 case 0x660f3806: /* phsubd */
4f7d61a8 7594 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7595 case 0x660f3808: /* psignb */
7596 case 0x660f3809: /* psignw */
7597 case 0x660f380a: /* psignd */
7598 case 0x660f380b: /* pmulhrsw */
7599 case 0x660f3810: /* pblendvb */
7600 case 0x660f3814: /* blendvps */
7601 case 0x660f3815: /* blendvpd */
7602 case 0x660f381c: /* pabsb */
7603 case 0x660f381d: /* pabsw */
7604 case 0x660f381e: /* pabsd */
7605 case 0x660f3820: /* pmovsxbw */
7606 case 0x660f3821: /* pmovsxbd */
7607 case 0x660f3822: /* pmovsxbq */
7608 case 0x660f3823: /* pmovsxwd */
7609 case 0x660f3824: /* pmovsxwq */
7610 case 0x660f3825: /* pmovsxdq */
7611 case 0x660f3828: /* pmuldq */
7612 case 0x660f3829: /* pcmpeqq */
7613 case 0x660f382a: /* movntdqa */
7614 case 0x660f3a08: /* roundps */
7615 case 0x660f3a09: /* roundpd */
7616 case 0x660f3a0a: /* roundss */
7617 case 0x660f3a0b: /* roundsd */
7618 case 0x660f3a0c: /* blendps */
7619 case 0x660f3a0d: /* blendpd */
7620 case 0x660f3a0e: /* pblendw */
7621 case 0x660f3a0f: /* palignr */
7622 case 0x660f3a20: /* pinsrb */
7623 case 0x660f3a21: /* insertps */
7624 case 0x660f3a22: /* pinsrd pinsrq */
7625 case 0x660f3a40: /* dpps */
7626 case 0x660f3a41: /* dppd */
7627 case 0x660f3a42: /* mpsadbw */
7628 case 0x660f3a60: /* pcmpestrm */
7629 case 0x660f3a61: /* pcmpestri */
7630 case 0x660f3a62: /* pcmpistrm */
7631 case 0x660f3a63: /* pcmpistri */
7632 case 0x0f51: /* sqrtps */
7633 case 0x660f51: /* sqrtpd */
7634 case 0xf20f51: /* sqrtsd */
7635 case 0xf30f51: /* sqrtss */
7636 case 0x0f52: /* rsqrtps */
7637 case 0xf30f52: /* rsqrtss */
7638 case 0x0f53: /* rcpps */
7639 case 0xf30f53: /* rcpss */
7640 case 0x0f54: /* andps */
7641 case 0x660f54: /* andpd */
7642 case 0x0f55: /* andnps */
7643 case 0x660f55: /* andnpd */
7644 case 0x0f56: /* orps */
7645 case 0x660f56: /* orpd */
7646 case 0x0f57: /* xorps */
7647 case 0x660f57: /* xorpd */
7648 case 0x0f58: /* addps */
7649 case 0x660f58: /* addpd */
7650 case 0xf20f58: /* addsd */
7651 case 0xf30f58: /* addss */
7652 case 0x0f59: /* mulps */
7653 case 0x660f59: /* mulpd */
7654 case 0xf20f59: /* mulsd */
7655 case 0xf30f59: /* mulss */
7656 case 0x0f5a: /* cvtps2pd */
7657 case 0x660f5a: /* cvtpd2ps */
7658 case 0xf20f5a: /* cvtsd2ss */
7659 case 0xf30f5a: /* cvtss2sd */
7660 case 0x0f5b: /* cvtdq2ps */
7661 case 0x660f5b: /* cvtps2dq */
7662 case 0xf30f5b: /* cvttps2dq */
7663 case 0x0f5c: /* subps */
7664 case 0x660f5c: /* subpd */
7665 case 0xf20f5c: /* subsd */
7666 case 0xf30f5c: /* subss */
7667 case 0x0f5d: /* minps */
7668 case 0x660f5d: /* minpd */
7669 case 0xf20f5d: /* minsd */
7670 case 0xf30f5d: /* minss */
7671 case 0x0f5e: /* divps */
7672 case 0x660f5e: /* divpd */
7673 case 0xf20f5e: /* divsd */
7674 case 0xf30f5e: /* divss */
7675 case 0x0f5f: /* maxps */
7676 case 0x660f5f: /* maxpd */
7677 case 0xf20f5f: /* maxsd */
7678 case 0xf30f5f: /* maxss */
7679 case 0x660f60: /* punpcklbw */
7680 case 0x660f61: /* punpcklwd */
7681 case 0x660f62: /* punpckldq */
7682 case 0x660f63: /* packsswb */
7683 case 0x660f64: /* pcmpgtb */
7684 case 0x660f65: /* pcmpgtw */
56d2815c 7685 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7686 case 0x660f67: /* packuswb */
7687 case 0x660f68: /* punpckhbw */
7688 case 0x660f69: /* punpckhwd */
7689 case 0x660f6a: /* punpckhdq */
7690 case 0x660f6b: /* packssdw */
7691 case 0x660f6c: /* punpcklqdq */
7692 case 0x660f6d: /* punpckhqdq */
7693 case 0x660f6e: /* movd */
7694 case 0x660f6f: /* movdqa */
7695 case 0xf30f6f: /* movdqu */
7696 case 0x660f70: /* pshufd */
7697 case 0xf20f70: /* pshuflw */
7698 case 0xf30f70: /* pshufhw */
7699 case 0x660f74: /* pcmpeqb */
7700 case 0x660f75: /* pcmpeqw */
56d2815c 7701 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7702 case 0x660f7c: /* haddpd */
7703 case 0xf20f7c: /* haddps */
7704 case 0x660f7d: /* hsubpd */
7705 case 0xf20f7d: /* hsubps */
7706 case 0xf30f7e: /* movq */
7707 case 0x0fc2: /* cmpps */
7708 case 0x660fc2: /* cmppd */
7709 case 0xf20fc2: /* cmpsd */
7710 case 0xf30fc2: /* cmpss */
7711 case 0x660fc4: /* pinsrw */
7712 case 0x0fc6: /* shufps */
7713 case 0x660fc6: /* shufpd */
7714 case 0x660fd0: /* addsubpd */
7715 case 0xf20fd0: /* addsubps */
7716 case 0x660fd1: /* psrlw */
7717 case 0x660fd2: /* psrld */
7718 case 0x660fd3: /* psrlq */
7719 case 0x660fd4: /* paddq */
7720 case 0x660fd5: /* pmullw */
7721 case 0xf30fd6: /* movq2dq */
7722 case 0x660fd8: /* psubusb */
7723 case 0x660fd9: /* psubusw */
7724 case 0x660fda: /* pminub */
7725 case 0x660fdb: /* pand */
7726 case 0x660fdc: /* paddusb */
7727 case 0x660fdd: /* paddusw */
7728 case 0x660fde: /* pmaxub */
7729 case 0x660fdf: /* pandn */
7730 case 0x660fe0: /* pavgb */
7731 case 0x660fe1: /* psraw */
7732 case 0x660fe2: /* psrad */
7733 case 0x660fe3: /* pavgw */
7734 case 0x660fe4: /* pmulhuw */
7735 case 0x660fe5: /* pmulhw */
7736 case 0x660fe6: /* cvttpd2dq */
7737 case 0xf20fe6: /* cvtpd2dq */
7738 case 0xf30fe6: /* cvtdq2pd */
7739 case 0x660fe8: /* psubsb */
7740 case 0x660fe9: /* psubsw */
7741 case 0x660fea: /* pminsw */
7742 case 0x660feb: /* por */
7743 case 0x660fec: /* paddsb */
7744 case 0x660fed: /* paddsw */
7745 case 0x660fee: /* pmaxsw */
7746 case 0x660fef: /* pxor */
4f7d61a8 7747 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7748 case 0x660ff1: /* psllw */
7749 case 0x660ff2: /* pslld */
7750 case 0x660ff3: /* psllq */
7751 case 0x660ff4: /* pmuludq */
7752 case 0x660ff5: /* pmaddwd */
7753 case 0x660ff6: /* psadbw */
7754 case 0x660ff8: /* psubb */
7755 case 0x660ff9: /* psubw */
56d2815c 7756 case 0x660ffa: /* psubd */
a3c4230a
HZ
7757 case 0x660ffb: /* psubq */
7758 case 0x660ffc: /* paddb */
7759 case 0x660ffd: /* paddw */
56d2815c 7760 case 0x660ffe: /* paddd */
a3c4230a
HZ
7761 if (i386_record_modrm (&ir))
7762 return -1;
7763 ir.reg |= rex_r;
c131fcee 7764 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7765 goto no_support;
25ea693b
MM
7766 record_full_arch_list_add_reg (ir.regcache,
7767 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7768 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7770 break;
7771
7772 case 0x0f11: /* movups */
7773 case 0x660f11: /* movupd */
7774 case 0xf30f11: /* movss */
7775 case 0xf20f11: /* movsd */
7776 case 0x0f13: /* movlps */
7777 case 0x660f13: /* movlpd */
7778 case 0x0f17: /* movhps */
7779 case 0x660f17: /* movhpd */
7780 case 0x0f29: /* movaps */
7781 case 0x660f29: /* movapd */
7782 case 0x660f3a14: /* pextrb */
7783 case 0x660f3a15: /* pextrw */
7784 case 0x660f3a16: /* pextrd pextrq */
7785 case 0x660f3a17: /* extractps */
7786 case 0x660f7f: /* movdqa */
7787 case 0xf30f7f: /* movdqu */
7788 if (i386_record_modrm (&ir))
7789 return -1;
7790 if (ir.mod == 3)
7791 {
7792 if (opcode == 0x0f13 || opcode == 0x660f13
7793 || opcode == 0x0f17 || opcode == 0x660f17)
7794 goto no_support;
7795 ir.rm |= ir.rex_b;
1777feb0
MS
7796 if (!i386_xmm_regnum_p (gdbarch,
7797 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7798 goto no_support;
25ea693b
MM
7799 record_full_arch_list_add_reg (ir.regcache,
7800 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7801 }
7802 else
7803 {
7804 switch (opcode)
7805 {
7806 case 0x660f3a14:
7807 ir.ot = OT_BYTE;
7808 break;
7809 case 0x660f3a15:
7810 ir.ot = OT_WORD;
7811 break;
7812 case 0x660f3a16:
7813 ir.ot = OT_LONG;
7814 break;
7815 case 0x660f3a17:
7816 ir.ot = OT_QUAD;
7817 break;
7818 default:
7819 ir.ot = OT_DQUAD;
7820 break;
7821 }
7822 if (i386_record_lea_modrm (&ir))
7823 return -1;
7824 }
7825 break;
7826
7827 case 0x0f2b: /* movntps */
7828 case 0x660f2b: /* movntpd */
7829 case 0x0fe7: /* movntq */
7830 case 0x660fe7: /* movntdq */
7831 if (ir.mod == 3)
7832 goto no_support;
7833 if (opcode == 0x0fe7)
7834 ir.ot = OT_QUAD;
7835 else
7836 ir.ot = OT_DQUAD;
7837 if (i386_record_lea_modrm (&ir))
7838 return -1;
7839 break;
7840
7841 case 0xf30f2c: /* cvttss2si */
7842 case 0xf20f2c: /* cvttsd2si */
7843 case 0xf30f2d: /* cvtss2si */
7844 case 0xf20f2d: /* cvtsd2si */
7845 case 0xf20f38f0: /* crc32 */
7846 case 0xf20f38f1: /* crc32 */
7847 case 0x0f50: /* movmskps */
7848 case 0x660f50: /* movmskpd */
7849 case 0x0fc5: /* pextrw */
7850 case 0x660fc5: /* pextrw */
7851 case 0x0fd7: /* pmovmskb */
7852 case 0x660fd7: /* pmovmskb */
25ea693b 7853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7854 break;
7855
7856 case 0x0f3800: /* pshufb */
7857 case 0x0f3801: /* phaddw */
7858 case 0x0f3802: /* phaddd */
7859 case 0x0f3803: /* phaddsw */
7860 case 0x0f3804: /* pmaddubsw */
7861 case 0x0f3805: /* phsubw */
7862 case 0x0f3806: /* phsubd */
4f7d61a8 7863 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7864 case 0x0f3808: /* psignb */
7865 case 0x0f3809: /* psignw */
7866 case 0x0f380a: /* psignd */
7867 case 0x0f380b: /* pmulhrsw */
7868 case 0x0f381c: /* pabsb */
7869 case 0x0f381d: /* pabsw */
7870 case 0x0f381e: /* pabsd */
7871 case 0x0f382b: /* packusdw */
7872 case 0x0f3830: /* pmovzxbw */
7873 case 0x0f3831: /* pmovzxbd */
7874 case 0x0f3832: /* pmovzxbq */
7875 case 0x0f3833: /* pmovzxwd */
7876 case 0x0f3834: /* pmovzxwq */
7877 case 0x0f3835: /* pmovzxdq */
7878 case 0x0f3837: /* pcmpgtq */
7879 case 0x0f3838: /* pminsb */
7880 case 0x0f3839: /* pminsd */
7881 case 0x0f383a: /* pminuw */
7882 case 0x0f383b: /* pminud */
7883 case 0x0f383c: /* pmaxsb */
7884 case 0x0f383d: /* pmaxsd */
7885 case 0x0f383e: /* pmaxuw */
7886 case 0x0f383f: /* pmaxud */
7887 case 0x0f3840: /* pmulld */
7888 case 0x0f3841: /* phminposuw */
7889 case 0x0f3a0f: /* palignr */
7890 case 0x0f60: /* punpcklbw */
7891 case 0x0f61: /* punpcklwd */
7892 case 0x0f62: /* punpckldq */
7893 case 0x0f63: /* packsswb */
7894 case 0x0f64: /* pcmpgtb */
7895 case 0x0f65: /* pcmpgtw */
56d2815c 7896 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7897 case 0x0f67: /* packuswb */
7898 case 0x0f68: /* punpckhbw */
7899 case 0x0f69: /* punpckhwd */
7900 case 0x0f6a: /* punpckhdq */
7901 case 0x0f6b: /* packssdw */
7902 case 0x0f6e: /* movd */
7903 case 0x0f6f: /* movq */
7904 case 0x0f70: /* pshufw */
7905 case 0x0f74: /* pcmpeqb */
7906 case 0x0f75: /* pcmpeqw */
56d2815c 7907 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7908 case 0x0fc4: /* pinsrw */
7909 case 0x0fd1: /* psrlw */
7910 case 0x0fd2: /* psrld */
7911 case 0x0fd3: /* psrlq */
7912 case 0x0fd4: /* paddq */
7913 case 0x0fd5: /* pmullw */
7914 case 0xf20fd6: /* movdq2q */
7915 case 0x0fd8: /* psubusb */
7916 case 0x0fd9: /* psubusw */
7917 case 0x0fda: /* pminub */
7918 case 0x0fdb: /* pand */
7919 case 0x0fdc: /* paddusb */
7920 case 0x0fdd: /* paddusw */
7921 case 0x0fde: /* pmaxub */
7922 case 0x0fdf: /* pandn */
7923 case 0x0fe0: /* pavgb */
7924 case 0x0fe1: /* psraw */
7925 case 0x0fe2: /* psrad */
7926 case 0x0fe3: /* pavgw */
7927 case 0x0fe4: /* pmulhuw */
7928 case 0x0fe5: /* pmulhw */
7929 case 0x0fe8: /* psubsb */
7930 case 0x0fe9: /* psubsw */
7931 case 0x0fea: /* pminsw */
7932 case 0x0feb: /* por */
7933 case 0x0fec: /* paddsb */
7934 case 0x0fed: /* paddsw */
7935 case 0x0fee: /* pmaxsw */
7936 case 0x0fef: /* pxor */
7937 case 0x0ff1: /* psllw */
7938 case 0x0ff2: /* pslld */
7939 case 0x0ff3: /* psllq */
7940 case 0x0ff4: /* pmuludq */
7941 case 0x0ff5: /* pmaddwd */
7942 case 0x0ff6: /* psadbw */
7943 case 0x0ff8: /* psubb */
7944 case 0x0ff9: /* psubw */
56d2815c 7945 case 0x0ffa: /* psubd */
a3c4230a
HZ
7946 case 0x0ffb: /* psubq */
7947 case 0x0ffc: /* paddb */
7948 case 0x0ffd: /* paddw */
56d2815c 7949 case 0x0ffe: /* paddd */
a3c4230a
HZ
7950 if (i386_record_modrm (&ir))
7951 return -1;
7952 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7953 goto no_support;
25ea693b
MM
7954 record_full_arch_list_add_reg (ir.regcache,
7955 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7956 break;
7957
7958 case 0x0f71: /* psllw */
7959 case 0x0f72: /* pslld */
7960 case 0x0f73: /* psllq */
7961 if (i386_record_modrm (&ir))
7962 return -1;
7963 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7964 goto no_support;
25ea693b
MM
7965 record_full_arch_list_add_reg (ir.regcache,
7966 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7967 break;
7968
7969 case 0x660f71: /* psllw */
7970 case 0x660f72: /* pslld */
7971 case 0x660f73: /* psllq */
7972 if (i386_record_modrm (&ir))
7973 return -1;
7974 ir.rm |= ir.rex_b;
c131fcee 7975 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7976 goto no_support;
25ea693b
MM
7977 record_full_arch_list_add_reg (ir.regcache,
7978 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7979 break;
7980
7981 case 0x0f7e: /* movd */
7982 case 0x660f7e: /* movd */
7983 if (i386_record_modrm (&ir))
7984 return -1;
7985 if (ir.mod == 3)
25ea693b 7986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7987 else
7988 {
7989 if (ir.dflag == 2)
7990 ir.ot = OT_QUAD;
7991 else
7992 ir.ot = OT_LONG;
7993 if (i386_record_lea_modrm (&ir))
7994 return -1;
7995 }
7996 break;
7997
7998 case 0x0f7f: /* movq */
7999 if (i386_record_modrm (&ir))
8000 return -1;
8001 if (ir.mod == 3)
8002 {
8003 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8004 goto no_support;
25ea693b
MM
8005 record_full_arch_list_add_reg (ir.regcache,
8006 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8007 }
8008 else
8009 {
8010 ir.ot = OT_QUAD;
8011 if (i386_record_lea_modrm (&ir))
8012 return -1;
8013 }
8014 break;
8015
8016 case 0xf30fb8: /* popcnt */
8017 if (i386_record_modrm (&ir))
8018 return -1;
25ea693b
MM
8019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8021 break;
8022
8023 case 0x660fd6: /* movq */
8024 if (i386_record_modrm (&ir))
8025 return -1;
8026 if (ir.mod == 3)
8027 {
8028 ir.rm |= ir.rex_b;
1777feb0
MS
8029 if (!i386_xmm_regnum_p (gdbarch,
8030 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8031 goto no_support;
25ea693b
MM
8032 record_full_arch_list_add_reg (ir.regcache,
8033 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8034 }
8035 else
8036 {
8037 ir.ot = OT_QUAD;
8038 if (i386_record_lea_modrm (&ir))
8039 return -1;
8040 }
8041 break;
8042
8043 case 0x660f3817: /* ptest */
8044 case 0x0f2e: /* ucomiss */
8045 case 0x660f2e: /* ucomisd */
8046 case 0x0f2f: /* comiss */
8047 case 0x660f2f: /* comisd */
25ea693b 8048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8049 break;
8050
8051 case 0x0ff7: /* maskmovq */
8052 regcache_raw_read_unsigned (ir.regcache,
8053 ir.regmap[X86_RECORD_REDI_REGNUM],
8054 &addr);
25ea693b 8055 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8056 return -1;
8057 break;
8058
8059 case 0x660ff7: /* maskmovdqu */
8060 regcache_raw_read_unsigned (ir.regcache,
8061 ir.regmap[X86_RECORD_REDI_REGNUM],
8062 &addr);
25ea693b 8063 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8064 return -1;
8065 break;
8066
8067 default:
8068 goto no_support;
8069 break;
8070 }
8071 break;
7ad10968
HZ
8072
8073 default:
7ad10968
HZ
8074 goto no_support;
8075 break;
8076 }
8077
cf648174 8078 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8079 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8080 if (record_full_arch_list_add_end ())
7ad10968
HZ
8081 return -1;
8082
8083 return 0;
8084
01fe1b41 8085 no_support:
a3c4230a
HZ
8086 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8087 "at address %s.\n"),
8088 (unsigned int) (opcode),
8089 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8090 return -1;
8091}
8092
cf648174
HZ
8093static const int i386_record_regmap[] =
8094{
8095 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8096 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8097 0, 0, 0, 0, 0, 0, 0, 0,
8098 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8099 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8100};
8101
7a697b8d 8102/* Check that the given address appears suitable for a fast
405f8e94 8103 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8104 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8105 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8106 middle of the tracepoint jump. On x86, it may be possible to use
8107 4-byte jumps with a 2-byte offset to a trampoline located in the
8108 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8109 of instruction to replace, and 0 if not, plus an explanatory
8110 string. */
8111
8112static int
6b940e6a 8113i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
281d762b 8114 std::string *msg)
7a697b8d
SS
8115{
8116 int len, jumplen;
7a697b8d 8117
405f8e94
SS
8118 /* Ask the target for the minimum instruction length supported. */
8119 jumplen = target_get_min_fast_tracepoint_insn_len ();
8120
8121 if (jumplen < 0)
8122 {
8123 /* If the target does not support the get_min_fast_tracepoint_insn_len
8124 operation, assume that fast tracepoints will always be implemented
8125 using 4-byte relative jumps on both x86 and x86-64. */
8126 jumplen = 5;
8127 }
8128 else if (jumplen == 0)
8129 {
8130 /* If the target does support get_min_fast_tracepoint_insn_len but
8131 returns zero, then the IPA has not loaded yet. In this case,
8132 we optimistically assume that truncated 2-byte relative jumps
8133 will be available on x86, and compensate later if this assumption
8134 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8135 jumps will always be used. */
8136 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8137 }
7a697b8d 8138
7a697b8d 8139 /* Check for fit. */
be85ce7d 8140 len = gdb_insn_length (gdbarch, addr);
405f8e94 8141
7a697b8d
SS
8142 if (len < jumplen)
8143 {
8144 /* Return a bit of target-specific detail to add to the caller's
8145 generic failure message. */
8146 if (msg)
281d762b
TT
8147 *msg = string_printf (_("; instruction is only %d bytes long, "
8148 "need at least %d bytes for the jump"),
8149 len, jumplen);
7a697b8d
SS
8150 return 0;
8151 }
405f8e94
SS
8152 else
8153 {
8154 if (msg)
281d762b 8155 msg->clear ();
405f8e94
SS
8156 return 1;
8157 }
7a697b8d
SS
8158}
8159
00d5215e
UW
8160/* Return a floating-point format for a floating-point variable of
8161 length LEN in bits. If non-NULL, NAME is the name of its type.
8162 If no suitable type is found, return NULL. */
8163
8164const struct floatformat **
8165i386_floatformat_for_type (struct gdbarch *gdbarch,
8166 const char *name, int len)
8167{
8168 if (len == 128 && name)
8169 if (strcmp (name, "__float128") == 0
8170 || strcmp (name, "_Float128") == 0
8171 || strcmp (name, "complex _Float128") == 0)
8172 return floatformats_ia64_quad;
8173
8174 return default_floatformat_for_type (gdbarch, name, len);
8175}
8176
90884b2b
L
8177static int
8178i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8179 struct tdesc_arch_data *tdesc_data)
8180{
8181 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8182 const struct tdesc_feature *feature_core;
01f9f808
MS
8183
8184 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
51547df6 8185 *feature_avx512, *feature_pkeys;
90884b2b
L
8186 int i, num_regs, valid_p;
8187
8188 if (! tdesc_has_registers (tdesc))
8189 return 0;
8190
8191 /* Get core registers. */
8192 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8193 if (feature_core == NULL)
8194 return 0;
90884b2b
L
8195
8196 /* Get SSE registers. */
c131fcee 8197 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8198
c131fcee
L
8199 /* Try AVX registers. */
8200 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8201
1dbcd68c
WT
8202 /* Try MPX registers. */
8203 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8204
01f9f808
MS
8205 /* Try AVX512 registers. */
8206 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8207
51547df6
MS
8208 /* Try PKEYS */
8209 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8210
90884b2b
L
8211 valid_p = 1;
8212
c131fcee 8213 /* The XCR0 bits. */
01f9f808
MS
8214 if (feature_avx512)
8215 {
8216 /* AVX512 register description requires AVX register description. */
8217 if (!feature_avx)
8218 return 0;
8219
a1fa17ee 8220 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8221
8222 /* It may have been set by OSABI initialization function. */
8223 if (tdep->k0_regnum < 0)
8224 {
8225 tdep->k_register_names = i386_k_names;
8226 tdep->k0_regnum = I386_K0_REGNUM;
8227 }
8228
8229 for (i = 0; i < I387_NUM_K_REGS; i++)
8230 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8231 tdep->k0_regnum + i,
8232 i386_k_names[i]);
8233
8234 if (tdep->num_zmm_regs == 0)
8235 {
8236 tdep->zmmh_register_names = i386_zmmh_names;
8237 tdep->num_zmm_regs = 8;
8238 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8239 }
8240
8241 for (i = 0; i < tdep->num_zmm_regs; i++)
8242 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8243 tdep->zmm0h_regnum + i,
8244 tdep->zmmh_register_names[i]);
8245
8246 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8247 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8248 tdep->xmm16_regnum + i,
8249 tdep->xmm_avx512_register_names[i]);
8250
8251 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8252 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8253 tdep->ymm16h_regnum + i,
8254 tdep->ymm16h_register_names[i]);
8255 }
c131fcee
L
8256 if (feature_avx)
8257 {
3a13a53b
L
8258 /* AVX register description requires SSE register description. */
8259 if (!feature_sse)
8260 return 0;
8261
01f9f808 8262 if (!feature_avx512)
df7e5265 8263 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8264
8265 /* It may have been set by OSABI initialization function. */
8266 if (tdep->num_ymm_regs == 0)
8267 {
8268 tdep->ymmh_register_names = i386_ymmh_names;
8269 tdep->num_ymm_regs = 8;
8270 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8271 }
8272
8273 for (i = 0; i < tdep->num_ymm_regs; i++)
8274 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8275 tdep->ymm0h_regnum + i,
8276 tdep->ymmh_register_names[i]);
8277 }
3a13a53b 8278 else if (feature_sse)
df7e5265 8279 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8280 else
8281 {
df7e5265 8282 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8283 tdep->num_xmm_regs = 0;
8284 }
c131fcee 8285
90884b2b
L
8286 num_regs = tdep->num_core_regs;
8287 for (i = 0; i < num_regs; i++)
8288 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8289 tdep->register_names[i]);
8290
3a13a53b
L
8291 if (feature_sse)
8292 {
8293 /* Need to include %mxcsr, so add one. */
8294 num_regs += tdep->num_xmm_regs + 1;
8295 for (; i < num_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8297 tdep->register_names[i]);
8298 }
90884b2b 8299
1dbcd68c
WT
8300 if (feature_mpx)
8301 {
df7e5265 8302 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8303
8304 if (tdep->bnd0r_regnum < 0)
8305 {
8306 tdep->mpx_register_names = i386_mpx_names;
8307 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8308 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8309 }
8310
8311 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8312 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8313 I387_BND0R_REGNUM (tdep) + i,
8314 tdep->mpx_register_names[i]);
8315 }
8316
51547df6
MS
8317 if (feature_pkeys)
8318 {
8319 tdep->xcr0 |= X86_XSTATE_PKRU;
8320 if (tdep->pkru_regnum < 0)
8321 {
8322 tdep->pkeys_register_names = i386_pkeys_names;
8323 tdep->pkru_regnum = I386_PKRU_REGNUM;
8324 tdep->num_pkeys_regs = 1;
8325 }
8326
8327 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8328 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8329 I387_PKRU_REGNUM (tdep) + i,
8330 tdep->pkeys_register_names[i]);
8331 }
8332
90884b2b
L
8333 return valid_p;
8334}
8335
7ad10968 8336\f
ad9eb1fd
DE
8337/* Note: This is called for both i386 and amd64. */
8338
7ad10968
HZ
8339static struct gdbarch *
8340i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8341{
8342 struct gdbarch_tdep *tdep;
8343 struct gdbarch *gdbarch;
90884b2b
L
8344 struct tdesc_arch_data *tdesc_data;
8345 const struct target_desc *tdesc;
1ba53b71 8346 int mm0_regnum;
c131fcee 8347 int ymm0_regnum;
1dbcd68c
WT
8348 int bnd0_regnum;
8349 int num_bnd_cooked;
7ad10968
HZ
8350
8351 /* If there is already a candidate, use it. */
8352 arches = gdbarch_list_lookup_by_info (arches, &info);
8353 if (arches != NULL)
8354 return arches->gdbarch;
8355
ad9eb1fd 8356 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8357 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8358 gdbarch = gdbarch_alloc (&info, tdep);
8359
8360 /* General-purpose registers. */
7ad10968
HZ
8361 tdep->gregset_reg_offset = NULL;
8362 tdep->gregset_num_regs = I386_NUM_GREGS;
8363 tdep->sizeof_gregset = 0;
8364
8365 /* Floating-point registers. */
7ad10968 8366 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8367 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8368
8369 /* The default settings include the FPU registers, the MMX registers
8370 and the SSE registers. This can be overridden for a specific ABI
8371 by adjusting the members `st0_regnum', `mm0_regnum' and
8372 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8373 will show up in the output of "info all-registers". */
7ad10968
HZ
8374
8375 tdep->st0_regnum = I386_ST0_REGNUM;
8376
7ad10968
HZ
8377 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8378 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8379
8380 tdep->jb_pc_offset = -1;
8381 tdep->struct_return = pcc_struct_return;
8382 tdep->sigtramp_start = 0;
8383 tdep->sigtramp_end = 0;
8384 tdep->sigtramp_p = i386_sigtramp_p;
8385 tdep->sigcontext_addr = NULL;
8386 tdep->sc_reg_offset = NULL;
8387 tdep->sc_pc_offset = -1;
8388 tdep->sc_sp_offset = -1;
8389
c131fcee
L
8390 tdep->xsave_xcr0_offset = -1;
8391
cf648174
HZ
8392 tdep->record_regmap = i386_record_regmap;
8393
205c306f
DM
8394 set_gdbarch_long_long_align_bit (gdbarch, 32);
8395
7ad10968
HZ
8396 /* The format used for `long double' on almost all i386 targets is
8397 the i387 extended floating-point format. In fact, of all targets
8398 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8399 on having a `long double' that's not `long' at all. */
8400 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8401
8402 /* Although the i387 extended floating-point has only 80 significant
8403 bits, a `long double' actually takes up 96, probably to enforce
8404 alignment. */
8405 set_gdbarch_long_double_bit (gdbarch, 96);
8406
00d5215e
UW
8407 /* Support for floating-point data type variants. */
8408 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8409
7ad10968
HZ
8410 /* Register numbers of various important registers. */
8411 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8412 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8413 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8414 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8415
8416 /* NOTE: kettenis/20040418: GCC does have two possible register
8417 numbering schemes on the i386: dbx and SVR4. These schemes
8418 differ in how they number %ebp, %esp, %eflags, and the
8419 floating-point registers, and are implemented by the arrays
8420 dbx_register_map[] and svr4_dbx_register_map in
8421 gcc/config/i386.c. GCC also defines a third numbering scheme in
8422 gcc/config/i386.c, which it designates as the "default" register
8423 map used in 64bit mode. This last register numbering scheme is
8424 implemented in dbx64_register_map, and is used for AMD64; see
8425 amd64-tdep.c.
8426
8427 Currently, each GCC i386 target always uses the same register
8428 numbering scheme across all its supported debugging formats
8429 i.e. SDB (COFF), stabs and DWARF 2. This is because
8430 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8431 DBX_REGISTER_NUMBER macro which is defined by each target's
8432 respective config header in a manner independent of the requested
8433 output debugging format.
8434
8435 This does not match the arrangement below, which presumes that
8436 the SDB and stabs numbering schemes differ from the DWARF and
8437 DWARF 2 ones. The reason for this arrangement is that it is
8438 likely to get the numbering scheme for the target's
8439 default/native debug format right. For targets where GCC is the
8440 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8441 targets where the native toolchain uses a different numbering
8442 scheme for a particular debug format (stabs-in-ELF on Solaris)
8443 the defaults below will have to be overridden, like
8444 i386_elf_init_abi() does. */
8445
8446 /* Use the dbx register numbering scheme for stabs and COFF. */
8447 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8448 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8449
8450 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8451 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8452
8453 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8454 be in use on any of the supported i386 targets. */
8455
8456 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8457
8458 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8459
8460 /* Call dummy code. */
a9b8d892
JK
8461 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8462 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8463 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8464 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8465
8466 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8467 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8468 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8469
8470 set_gdbarch_return_value (gdbarch, i386_return_value);
8471
8472 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8473
8474 /* Stack grows downward. */
8475 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8476
04180708
YQ
8477 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8478 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8479
7ad10968
HZ
8480 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8481 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8482
8483 set_gdbarch_frame_args_skip (gdbarch, 8);
8484
7ad10968
HZ
8485 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8486
8487 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8488
8489 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8490
8491 /* Add the i386 register groups. */
8492 i386_add_reggroups (gdbarch);
90884b2b 8493 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8494
143985b7
AF
8495 /* Helper for function argument information. */
8496 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8497
06da04c6 8498 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8499 appended to the list first, so that it supercedes the DWARF
8500 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8501 currently fails). */
8502 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8503
8504 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8505 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8506 CFI info will be used if it is available. */
10458914 8507 dwarf2_append_unwinders (gdbarch);
6405b0a6 8508
acd5c798 8509 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8510
1ba53b71 8511 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8512 set_gdbarch_pseudo_register_read_value (gdbarch,
8513 i386_pseudo_register_read_value);
90884b2b 8514 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8515 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8516 i386_ax_pseudo_register_collect);
90884b2b
L
8517
8518 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8519 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8520
c131fcee
L
8521 /* Override the normal target description method to make the AVX
8522 upper halves anonymous. */
8523 set_gdbarch_register_name (gdbarch, i386_register_name);
8524
8525 /* Even though the default ABI only includes general-purpose registers,
8526 floating-point registers and the SSE registers, we have to leave a
01f9f808 8527 gap for the upper AVX, MPX and AVX512 registers. */
51547df6 8528 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
90884b2b 8529
ac04f72b
TT
8530 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8531
90884b2b
L
8532 /* Get the x86 target description from INFO. */
8533 tdesc = info.target_desc;
8534 if (! tdesc_has_registers (tdesc))
ca1fa5ee 8535 tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
90884b2b
L
8536 tdep->tdesc = tdesc;
8537
8538 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8539 tdep->register_names = i386_register_names;
8540
c131fcee
L
8541 /* No upper YMM registers. */
8542 tdep->ymmh_register_names = NULL;
8543 tdep->ymm0h_regnum = -1;
8544
01f9f808
MS
8545 /* No upper ZMM registers. */
8546 tdep->zmmh_register_names = NULL;
8547 tdep->zmm0h_regnum = -1;
8548
8549 /* No high XMM registers. */
8550 tdep->xmm_avx512_register_names = NULL;
8551 tdep->xmm16_regnum = -1;
8552
8553 /* No upper YMM16-31 registers. */
8554 tdep->ymm16h_register_names = NULL;
8555 tdep->ymm16h_regnum = -1;
8556
1ba53b71
L
8557 tdep->num_byte_regs = 8;
8558 tdep->num_word_regs = 8;
8559 tdep->num_dword_regs = 0;
8560 tdep->num_mmx_regs = 8;
c131fcee 8561 tdep->num_ymm_regs = 0;
1ba53b71 8562
1dbcd68c
WT
8563 /* No MPX registers. */
8564 tdep->bnd0r_regnum = -1;
8565 tdep->bndcfgu_regnum = -1;
8566
01f9f808
MS
8567 /* No AVX512 registers. */
8568 tdep->k0_regnum = -1;
8569 tdep->num_zmm_regs = 0;
8570 tdep->num_ymm_avx512_regs = 0;
8571 tdep->num_xmm_avx512_regs = 0;
8572
51547df6
MS
8573 /* No PKEYS registers */
8574 tdep->pkru_regnum = -1;
8575 tdep->num_pkeys_regs = 0;
8576
90884b2b
L
8577 tdesc_data = tdesc_data_alloc ();
8578
dde08ee1
PA
8579 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8580
6710bf39
SS
8581 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8582
c2170eef
MM
8583 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8584 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8585 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8586
ad9eb1fd
DE
8587 /* Hook in ABI-specific overrides, if they have been registered.
8588 Note: If INFO specifies a 64 bit arch, this is where we turn
8589 a 32-bit i386 into a 64-bit amd64. */
0dba2a6c 8590 info.tdesc_data = tdesc_data;
4be87837 8591 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8592
c131fcee
L
8593 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8594 {
8595 tdesc_data_cleanup (tdesc_data);
8596 xfree (tdep);
8597 gdbarch_free (gdbarch);
8598 return NULL;
8599 }
8600
1dbcd68c
WT
8601 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8602
1ba53b71
L
8603 /* Wire in pseudo registers. Number of pseudo registers may be
8604 changed. */
8605 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8606 + tdep->num_word_regs
8607 + tdep->num_dword_regs
c131fcee 8608 + tdep->num_mmx_regs
1dbcd68c 8609 + tdep->num_ymm_regs
01f9f808
MS
8610 + num_bnd_cooked
8611 + tdep->num_ymm_avx512_regs
8612 + tdep->num_zmm_regs));
1ba53b71 8613
90884b2b
L
8614 /* Target description may be changed. */
8615 tdesc = tdep->tdesc;
8616
90884b2b
L
8617 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8618
8619 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8620 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8621
1ba53b71
L
8622 /* Make %al the first pseudo-register. */
8623 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8624 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8625
c131fcee 8626 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8627 if (tdep->num_dword_regs)
8628 {
1c6272a6 8629 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8630 tdep->eax_regnum = ymm0_regnum;
8631 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8632 }
8633 else
8634 tdep->eax_regnum = -1;
8635
c131fcee
L
8636 mm0_regnum = ymm0_regnum;
8637 if (tdep->num_ymm_regs)
8638 {
1c6272a6 8639 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8640 tdep->ymm0_regnum = ymm0_regnum;
8641 mm0_regnum += tdep->num_ymm_regs;
8642 }
8643 else
8644 tdep->ymm0_regnum = -1;
8645
01f9f808
MS
8646 if (tdep->num_ymm_avx512_regs)
8647 {
8648 /* Support YMM16-31 pseudo registers if available. */
8649 tdep->ymm16_regnum = mm0_regnum;
8650 mm0_regnum += tdep->num_ymm_avx512_regs;
8651 }
8652 else
8653 tdep->ymm16_regnum = -1;
8654
8655 if (tdep->num_zmm_regs)
8656 {
8657 /* Support ZMM pseudo-register if it is available. */
8658 tdep->zmm0_regnum = mm0_regnum;
8659 mm0_regnum += tdep->num_zmm_regs;
8660 }
8661 else
8662 tdep->zmm0_regnum = -1;
8663
1dbcd68c 8664 bnd0_regnum = mm0_regnum;
1ba53b71
L
8665 if (tdep->num_mmx_regs != 0)
8666 {
1c6272a6 8667 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8668 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8669 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8670 }
8671 else
8672 tdep->mm0_regnum = -1;
8673
1dbcd68c
WT
8674 if (tdep->bnd0r_regnum > 0)
8675 tdep->bnd0_regnum = bnd0_regnum;
8676 else
8677 tdep-> bnd0_regnum = -1;
8678
06da04c6 8679 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8680 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8681 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8682 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8683
8446b36a
MK
8684 /* If we have a register mapping, enable the generic core file
8685 support, unless it has already been enabled. */
8686 if (tdep->gregset_reg_offset
8f0435f7 8687 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8688 set_gdbarch_iterate_over_regset_sections
8689 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8690
7a697b8d
SS
8691 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8692 i386_fast_tracepoint_valid_at);
8693
a62cc96e
AC
8694 return gdbarch;
8695}
8696
8201327c
MK
8697\f
8698
97de3545
JB
8699/* Return the target description for a specified XSAVE feature mask. */
8700
8701const struct target_desc *
8702i386_target_description (uint64_t xcr0)
8703{
22916b07
YQ
8704 static target_desc *i386_tdescs \
8705 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
8706 target_desc **tdesc;
8707
8708 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8709 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8710 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8711 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8712 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
8713
8714 if (*tdesc == NULL)
8715 *tdesc = i386_create_target_description (xcr0, false);
8716
8717 return *tdesc;
97de3545
JB
8718}
8719
29c1c244
WT
8720#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8721
8722/* Find the bound directory base address. */
8723
8724static unsigned long
8725i386_mpx_bd_base (void)
8726{
8727 struct regcache *rcache;
8728 struct gdbarch_tdep *tdep;
8729 ULONGEST ret;
8730 enum register_status regstatus;
29c1c244
WT
8731
8732 rcache = get_current_regcache ();
ac7936df 8733 tdep = gdbarch_tdep (rcache->arch ());
29c1c244
WT
8734
8735 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8736
8737 if (regstatus != REG_VALID)
8738 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8739
8740 return ret & MPX_BASE_MASK;
8741}
8742
012b3a21 8743int
29c1c244
WT
8744i386_mpx_enabled (void)
8745{
8746 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8747 const struct target_desc *tdesc = tdep->tdesc;
8748
8749 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8750}
8751
8752#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8753#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8754#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8755#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8756
8757/* Find the bound table entry given the pointer location and the base
8758 address of the table. */
8759
8760static CORE_ADDR
8761i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8762{
8763 CORE_ADDR offset1;
8764 CORE_ADDR offset2;
8765 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8766 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8767 CORE_ADDR bd_entry_addr;
8768 CORE_ADDR bt_addr;
8769 CORE_ADDR bd_entry;
8770 struct gdbarch *gdbarch = get_current_arch ();
8771 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8772
8773
8774 if (gdbarch_ptr_bit (gdbarch) == 64)
8775 {
966f0aef 8776 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8777 bd_ptr_r_shift = 20;
8778 bd_ptr_l_shift = 3;
8779 bt_select_r_shift = 3;
8780 bt_select_l_shift = 5;
966f0aef
WT
8781 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8782
8783 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8784 error (_("bound table examination not supported\
8785 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8786 }
8787 else
8788 {
8789 mpx_bd_mask = MPX_BD_MASK_32;
8790 bd_ptr_r_shift = 12;
8791 bd_ptr_l_shift = 2;
8792 bt_select_r_shift = 2;
8793 bt_select_l_shift = 4;
8794 bt_mask = MPX_BT_MASK_32;
8795 }
8796
8797 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8798 bd_entry_addr = bd_base + offset1;
8799 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8800
8801 if ((bd_entry & 0x1) == 0)
8802 error (_("Invalid bounds directory entry at %s."),
8803 paddress (get_current_arch (), bd_entry_addr));
8804
8805 /* Clearing status bit. */
8806 bd_entry--;
8807 bt_addr = bd_entry & ~bt_select_r_shift;
8808 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8809
8810 return bt_addr + offset2;
8811}
8812
8813/* Print routine for the mpx bounds. */
8814
8815static void
8816i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8817{
8818 struct ui_out *uiout = current_uiout;
34f8ac9f 8819 LONGEST size;
29c1c244
WT
8820 struct gdbarch *gdbarch = get_current_arch ();
8821 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8822 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8823
8824 if (bounds_in_map == 1)
8825 {
112e8700
SM
8826 uiout->text ("Null bounds on map:");
8827 uiout->text (" pointer value = ");
8828 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8829 uiout->text (".");
8830 uiout->text ("\n");
29c1c244
WT
8831 }
8832 else
8833 {
112e8700
SM
8834 uiout->text ("{lbound = ");
8835 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8836 uiout->text (", ubound = ");
29c1c244
WT
8837
8838 /* The upper bound is stored in 1's complement. */
112e8700
SM
8839 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8840 uiout->text ("}: pointer value = ");
8841 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8842
8843 if (gdbarch_ptr_bit (gdbarch) == 64)
8844 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8845 else
8846 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8847
8848 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8849 -1 represents in this sense full memory access, and there is no need
8850 one to the size. */
8851
8852 size = (size > -1 ? size + 1 : size);
112e8700
SM
8853 uiout->text (", size = ");
8854 uiout->field_fmt ("size", "%s", plongest (size));
29c1c244 8855
112e8700
SM
8856 uiout->text (", metadata = ");
8857 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8858 uiout->text ("\n");
29c1c244
WT
8859 }
8860}
8861
8862/* Implement the command "show mpx bound". */
8863
8864static void
c4a3e68e 8865i386_mpx_info_bounds (const char *args, int from_tty)
29c1c244
WT
8866{
8867 CORE_ADDR bd_base = 0;
8868 CORE_ADDR addr;
8869 CORE_ADDR bt_entry_addr = 0;
8870 CORE_ADDR bt_entry[4];
8871 int i;
8872 struct gdbarch *gdbarch = get_current_arch ();
8873 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8874
ae71e7b5
MR
8875 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8876 || !i386_mpx_enabled ())
118ca224 8877 {
bc504a31 8878 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8879 "supported on this target.\n"));
8880 return;
8881 }
29c1c244
WT
8882
8883 if (args == NULL)
118ca224
PP
8884 {
8885 printf_unfiltered (_("Address of pointer variable expected.\n"));
8886 return;
8887 }
29c1c244
WT
8888
8889 addr = parse_and_eval_address (args);
8890
8891 bd_base = i386_mpx_bd_base ();
8892 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8893
8894 memset (bt_entry, 0, sizeof (bt_entry));
8895
8896 for (i = 0; i < 4; i++)
8897 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8898 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8899 data_ptr_type);
8900
8901 i386_mpx_print_bounds (bt_entry);
8902}
8903
8904/* Implement the command "set mpx bound". */
8905
8906static void
c4a3e68e 8907i386_mpx_set_bounds (const char *args, int from_tty)
29c1c244
WT
8908{
8909 CORE_ADDR bd_base = 0;
8910 CORE_ADDR addr, lower, upper;
8911 CORE_ADDR bt_entry_addr = 0;
8912 CORE_ADDR bt_entry[2];
8913 const char *input = args;
8914 int i;
8915 struct gdbarch *gdbarch = get_current_arch ();
8916 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8917 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8918
ae71e7b5
MR
8919 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8920 || !i386_mpx_enabled ())
bc504a31 8921 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
8922 on this target."));
8923
8924 if (args == NULL)
8925 error (_("Pointer value expected."));
8926
8927 addr = value_as_address (parse_to_comma_and_eval (&input));
8928
8929 if (input[0] == ',')
8930 ++input;
8931 if (input[0] == '\0')
8932 error (_("wrong number of arguments: missing lower and upper bound."));
8933 lower = value_as_address (parse_to_comma_and_eval (&input));
8934
8935 if (input[0] == ',')
8936 ++input;
8937 if (input[0] == '\0')
8938 error (_("Wrong number of arguments; Missing upper bound."));
8939 upper = value_as_address (parse_to_comma_and_eval (&input));
8940
8941 bd_base = i386_mpx_bd_base ();
8942 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8943 for (i = 0; i < 2; i++)
8944 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8945 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8946 data_ptr_type);
8947 bt_entry[0] = (uint64_t) lower;
8948 bt_entry[1] = ~(uint64_t) upper;
8949
8950 for (i = 0; i < 2; i++)
132874d7
AB
8951 write_memory_unsigned_integer (bt_entry_addr
8952 + i * TYPE_LENGTH (data_ptr_type),
8953 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
8954 bt_entry[i]);
8955}
8956
8957static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8958
8959/* Helper function for the CLI commands. */
8960
8961static void
981a3fb3 8962set_mpx_cmd (const char *args, int from_tty)
29c1c244 8963{
118ca224 8964 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
29c1c244
WT
8965}
8966
8967/* Helper function for the CLI commands. */
8968
8969static void
981a3fb3 8970show_mpx_cmd (const char *args, int from_tty)
29c1c244
WT
8971{
8972 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8973}
8974
c906108c 8975void
fba45db2 8976_initialize_i386_tdep (void)
c906108c 8977{
a62cc96e
AC
8978 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8979
fc338970 8980 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8981 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8982 &disassembly_flavor, _("\
8983Set the disassembly flavor."), _("\
8984Show the disassembly flavor."), _("\
8985The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8986 NULL,
8987 NULL, /* FIXME: i18n: */
8988 &setlist, &showlist);
8201327c
MK
8989
8990 /* Add the variable that controls the convention for returning
8991 structs. */
7ab04401
AC
8992 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8993 &struct_convention, _("\
8994Set the convention for returning small structs."), _("\
8995Show the convention for returning small structs."), _("\
8996Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8997is \"default\"."),
8998 NULL,
8999 NULL, /* FIXME: i18n: */
9000 &setlist, &showlist);
8201327c 9001
29c1c244
WT
9002 /* Add "mpx" prefix for the set commands. */
9003
9004 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
bc504a31 9005Set Intel Memory Protection Extensions specific variables."),
118ca224 9006 &mpx_set_cmdlist, "set mpx ",
29c1c244
WT
9007 0 /* allow-unknown */, &setlist);
9008
9009 /* Add "mpx" prefix for the show commands. */
9010
9011 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
bc504a31 9012Show Intel Memory Protection Extensions specific variables."),
29c1c244
WT
9013 &mpx_show_cmdlist, "show mpx ",
9014 0 /* allow-unknown */, &showlist);
9015
9016 /* Add "bound" command for the show mpx commands list. */
9017
9018 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9019 "Show the memory bounds for a given array/pointer storage\
9020 in the bound table.",
9021 &mpx_show_cmdlist);
9022
9023 /* Add "bound" command for the set mpx commands list. */
9024
9025 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9026 "Set the memory bounds for a given array/pointer storage\
9027 in the bound table.",
9028 &mpx_set_cmdlist);
9029
05816f70 9030 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9031 i386_svr4_init_abi);
38c968cf 9032
209bd28e 9033 /* Initialize the i386-specific register groups. */
38c968cf 9034 i386_init_reggroups ();
90884b2b 9035
c8d5aac9
L
9036 /* Tell remote stub that we support XML target description. */
9037 register_remote_support_xml ("i386");
22916b07
YQ
9038
9039#if GDB_SELF_TEST
9040 struct
9041 {
9042 const char *xml;
9043 uint64_t mask;
9044 } xml_masks[] = {
9045 { "i386/i386.xml", X86_XSTATE_SSE_MASK },
9046 { "i386/i386-mmx.xml", X86_XSTATE_X87_MASK },
9047 { "i386/i386-avx.xml", X86_XSTATE_AVX_MASK },
9048 { "i386/i386-mpx.xml", X86_XSTATE_MPX_MASK },
9049 { "i386/i386-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
9050 { "i386/i386-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
9051 { "i386/i386-avx-mpx-avx512-pku.xml",
9052 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
9053 };
9054
9055 for (auto &a : xml_masks)
9056 {
9057 auto tdesc = i386_target_description (a.mask);
9058
9059 selftests::record_xml_tdesc (a.xml, tdesc);
9060 }
9061#endif /* GDB_SELF_TEST */
c906108c 9062}
This page took 2.517379 seconds and 4 git commands to generate.