* dwarf2-frame.c (clear_pointer_cleanup): New function.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
0b302171 3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
fd0407d6 42#include "value.h"
a89aa300 43#include "dis-asm.h"
7a697b8d 44#include "disasm.h"
c8d5aac9 45#include "remote.h"
8fbca658 46#include "exceptions.h"
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
c131fcee 52#include "i386-xstate.h"
d2a7c97a 53
7ad10968
HZ
54#include "record.h"
55#include <stdint.h>
56
90884b2b 57#include "features/i386/i386.c"
c131fcee 58#include "features/i386/i386-avx.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
c131fcee
L
88static const char *i386_ymm_names[] =
89{
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92};
93
94static const char *i386_ymmh_names[] =
95{
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98};
99
c4fc7f1b 100/* Register names for MMX pseudo-registers. */
28fc6740 101
90884b2b 102static const char *i386_mmx_names[] =
28fc6740
AC
103{
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106};
c40e1eab 107
1ba53b71
L
108/* Register names for byte pseudo-registers. */
109
110static const char *i386_byte_names[] =
111{
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114};
115
116/* Register names for word pseudo-registers. */
117
118static const char *i386_word_names[] =
119{
120 "ax", "cx", "dx", "bx",
9cad29ac 121 "", "bp", "si", "di"
1ba53b71
L
122};
123
124/* MMX register? */
c40e1eab 125
28fc6740 126static int
5716833c 127i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 128{
1ba53b71
L
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
131
132 if (mm0_regnum < 0)
133 return 0;
134
1ba53b71
L
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137}
138
139/* Byte register? */
140
141int
142i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143{
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148}
149
150/* Word register? */
151
152int
153i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159}
160
161/* Dword register? */
162
163int
164i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165{
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
174}
175
9191d390 176static int
c131fcee
L
177i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178{
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187}
188
189/* AVX register? */
190
191int
192i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202}
203
5716833c 204/* SSE register? */
23a34459 205
c131fcee
L
206int
207i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 208{
5716833c 209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 211
c131fcee 212 if (num_xmm_regs == 0)
5716833c
MK
213 return 0;
214
c131fcee
L
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
217}
218
5716833c
MK
219static int
220i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 221{
5716833c
MK
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
20a6ec49 224 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
225 return 0;
226
20a6ec49 227 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
228}
229
5716833c 230/* FP register? */
23a34459
AC
231
232int
20a6ec49 233i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 234{
20a6ec49
MD
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
238 return 0;
239
20a6ec49
MD
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
242}
243
244int
20a6ec49 245i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 246{
20a6ec49
MD
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
250 return 0;
251
20a6ec49
MD
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
254}
255
c131fcee
L
256/* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259static const char *
260i386_register_name (struct gdbarch *gdbarch, int regnum)
261{
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267}
268
30b0e2d8 269/* Return the name of register REGNUM. */
fc633446 270
1ba53b71 271const char *
90884b2b 272i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 273{
1ba53b71
L
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
285}
286
c4fc7f1b 287/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
288 number used by GDB. */
289
8201327c 290static int
d3f73121 291i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 292{
20a6ec49
MD
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
c4fc7f1b
MK
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
85540d8c
MK
298 if (reg >= 0 && reg <= 7)
299 {
9872ad24
JB
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
85540d8c
MK
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
20a6ec49 311 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
c131fcee
L
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
20a6ec49 327 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
328 }
329
330 /* This will hopefully provoke a warning. */
d3f73121 331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
332}
333
c4fc7f1b
MK
334/* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
85540d8c 336
8201327c 337static int
d3f73121 338i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 339{
20a6ec49
MD
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
c4fc7f1b
MK
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
acd5c798 349 /* General-purpose registers. */
85540d8c
MK
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
20a6ec49 355 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 356 }
c6f4c129 357 else if (reg >= 21 && reg <= 36)
85540d8c 358 {
c4fc7f1b 359 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 360 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
361 }
362
c6f4c129
JB
363 switch (reg)
364 {
20a6ec49
MD
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
85540d8c 376 /* This will hopefully provoke a warning. */
d3f73121 377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 378}
5716833c 379
fc338970 380\f
917317f4 381
fc338970
MK
382/* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
53904c9e
AC
384static const char att_flavor[] = "att";
385static const char intel_flavor[] = "intel";
40478521 386static const char *const valid_flavors[] =
c5aa993b 387{
c906108c
SS
388 att_flavor,
389 intel_flavor,
390 NULL
391};
53904c9e 392static const char *disassembly_flavor = att_flavor;
acd5c798 393\f
c906108c 394
acd5c798
MK
395/* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
c906108c 400
acd5c798
MK
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
c906108c 403
acd5c798 404 This function is 64-bit safe. */
63c0089f
MK
405
406static const gdb_byte *
67d57894 407i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 408{
63c0089f
MK
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
acd5c798
MK
411 *len = sizeof (break_insn);
412 return break_insn;
c906108c 413}
237fc4c9
PA
414\f
415/* Displaced instruction handling. */
416
1903f0e6
DE
417/* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423static gdb_byte *
424i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425{
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451}
237fc4c9
PA
452
453static int
1903f0e6 454i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 455{
1777feb0 456 /* jmp far (absolute address in operand). */
237fc4c9
PA
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
1777feb0 462 /* jump near, absolute indirect (/4). */
237fc4c9
PA
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
1777feb0 466 /* jump far, absolute indirect (/5). */
237fc4c9
PA
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472}
473
474static int
1903f0e6 475i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 476{
1777feb0 477 /* call far, absolute. */
237fc4c9
PA
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
1777feb0 483 /* Call near, absolute indirect (/2). */
237fc4c9
PA
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
1777feb0 487 /* Call far, absolute indirect (/3). */
237fc4c9
PA
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493}
494
495static int
1903f0e6 496i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
497{
498 switch (insn[0])
499 {
1777feb0 500 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 501 case 0xc3: /* ret near */
1777feb0 502 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510}
511
512static int
1903f0e6 513i386_call_p (const gdb_byte *insn)
237fc4c9
PA
514{
515 if (i386_absolute_call_p (insn))
516 return 1;
517
1777feb0 518 /* call near, relative. */
237fc4c9
PA
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523}
524
237fc4c9
PA
525/* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
1903f0e6 527
237fc4c9 528static int
b55078be 529i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 530{
9a7f938f
JK
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543}
544
b55078be
DE
545/* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548struct displaced_step_closure *
549i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552{
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580}
581
237fc4c9
PA
582/* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
1903f0e6 584
237fc4c9
PA
585void
586i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590{
e17a4113
UW
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
237fc4c9
PA
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
237fc4c9
PA
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
5af949e3 607 "displaced: fixup (%s, %s), "
237fc4c9 608 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
237fc4c9
PA
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
1903f0e6
DE
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
237fc4c9
PA
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
b55078be 640 int insn_len;
237fc4c9
PA
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
1903f0e6
DE
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
237fc4c9
PA
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
5af949e3
UW
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
237fc4c9
PA
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
237fc4c9
PA
714 }
715}
dde08ee1
PA
716
717static void
718append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719{
720 target_write_memory (*to, buf, len);
721 *to += len;
722}
723
724static void
725i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727{
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
1777feb0 752 push_buf[0] = 0x68; /* pushq $... */
dde08ee1
PA
753 memcpy (&push_buf[1], &ret_addr, 4);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
f4a1794a 789 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
dde08ee1
PA
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801}
802
fc338970 803\f
acd5c798
MK
804#ifdef I386_REGNO_TO_SYMMETRY
805#error "The Sequent Symmetry is no longer supported."
806#endif
c906108c 807
acd5c798
MK
808/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
c906108c 811
acd5c798
MK
812/* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
a3386186 814#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
815
816struct i386_frame_cache
c906108c 817{
acd5c798
MK
818 /* Base address. */
819 CORE_ADDR base;
8fbca658 820 int base_p;
772562f8 821 LONGEST sp_offset;
acd5c798
MK
822 CORE_ADDR pc;
823
fd13a04a
AC
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 826 CORE_ADDR saved_sp;
e0c62198 827 int saved_sp_reg;
acd5c798
MK
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832};
833
834/* Allocate and initialize a frame cache. */
835
836static struct i386_frame_cache *
fd13a04a 837i386_alloc_frame_cache (void)
acd5c798
MK
838{
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
8fbca658 845 cache->base_p = 0;
acd5c798
MK
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
fd13a04a
AC
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
acd5c798 854 cache->saved_sp = 0;
e0c62198 855 cache->saved_sp_reg = -1;
acd5c798
MK
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862}
c906108c 863
acd5c798
MK
864/* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
c906108c 866
acd5c798 867static CORE_ADDR
e17a4113 868i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 869{
e17a4113 870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 871 gdb_byte op;
acd5c798
MK
872 long delta = 0;
873 int data16 = 0;
c906108c 874
3dcabaa8
MS
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
acd5c798 878 if (op == 0x66)
c906108c 879 {
c906108c 880 data16 = 1;
e17a4113 881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
882 }
883
acd5c798 884 switch (op)
c906108c
SS
885 {
886 case 0xe9:
fc338970 887 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
888 if (data16)
889 {
e17a4113 890 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 891
fc338970
MK
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
acd5c798 894 delta += 4;
c906108c
SS
895 }
896 else
897 {
e17a4113 898 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 899
acd5c798
MK
900 /* Include the size of the jmp instruction. */
901 delta += 5;
c906108c
SS
902 }
903 break;
904 case 0xeb:
fc338970 905 /* Relative jump, disp8 (ignore data16). */
e17a4113 906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 907
acd5c798 908 delta += data16 + 2;
c906108c
SS
909 break;
910 }
c906108c 911
acd5c798
MK
912 return pc + delta;
913}
fc338970 914
acd5c798
MK
915/* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
c906108c 920
acd5c798
MK
921static CORE_ADDR
922i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
c906108c 924{
acd5c798
MK
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
63c0089f
MK
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
c906108c 939
acd5c798
MK
940 if (current_pc <= pc)
941 return pc;
942
3dcabaa8
MS
943 if (target_read_memory (pc, &op, 1))
944 return pc;
c906108c 945
acd5c798
MK
946 if (op != 0x58) /* popl %eax */
947 return pc;
c906108c 948
3dcabaa8
MS
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
acd5c798
MK
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
c906108c 954
acd5c798 955 if (current_pc == pc)
c906108c 956 {
acd5c798
MK
957 cache->sp_offset += 4;
958 return current_pc;
c906108c
SS
959 }
960
acd5c798 961 if (current_pc == pc + 1)
c906108c 962 {
acd5c798
MK
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971}
972
973static CORE_ADDR
974i386_skip_probe (CORE_ADDR pc)
975{
976 /* A function may start with
fc338970 977
acd5c798
MK
978 pushl constant
979 call _probe
980 addl $4, %esp
fc338970 981
acd5c798
MK
982 followed by
983
984 pushl %ebp
fc338970 985
acd5c798 986 etc. */
63c0089f
MK
987 gdb_byte buf[8];
988 gdb_byte op;
fc338970 989
3dcabaa8
MS
990 if (target_read_memory (pc, &op, 1))
991 return pc;
acd5c798
MK
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
c906108c 996
acd5c798
MK
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
c906108c 999 if (op == 0x68)
acd5c798 1000 delta = 5;
c906108c 1001 else
acd5c798 1002 delta = 2;
c906108c 1003
acd5c798
MK
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1008 pc += delta + sizeof (buf);
c906108c
SS
1009 }
1010
acd5c798
MK
1011 return pc;
1012}
1013
92dd43fa
MK
1014/* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020static CORE_ADDR
1021i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023{
e0c62198
L
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
92dd43fa 1058 };
92dd43fa 1059
e0c62198
L
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1123 return pc;
1124
e0c62198
L
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
92dd43fa 1127
e0c62198 1128 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1129}
1130
37bdc87e 1131/* Maximum instruction length we need to handle. */
237fc4c9 1132#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1133
1134/* Instruction description. */
1135struct i386_insn
1136{
1137 size_t len;
237fc4c9
PA
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1140};
1141
a3fcb948 1142/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1143
a3fcb948
JG
1144static int
1145i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1146{
63c0089f 1147 gdb_byte op;
37bdc87e 1148
3dcabaa8 1149 if (target_read_memory (pc, &op, 1))
a3fcb948 1150 return 0;
37bdc87e 1151
a3fcb948 1152 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1153 {
a3fcb948
JG
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
37bdc87e 1157
a3fcb948
JG
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1160
a3fcb948
JG
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
613e8135 1163
a3fcb948
JG
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
37bdc87e 1168 }
a3fcb948
JG
1169 return insn_matched;
1170 }
1171 return 0;
1172}
1173
1174/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178static struct i386_insn *
1179i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180{
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
37bdc87e
MK
1187 }
1188
1189 return NULL;
1190}
1191
a3fcb948
JG
1192/* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195static int
1196i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197{
1198 CORE_ADDR current_pc;
1199 int ix, i;
a3fcb948
JG
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
8bbdd3f4 1206 current_pc = pc;
a3fcb948
JG
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
8bbdd3f4
MK
1210 current_pc -= insn_patterns[i].len;
1211
a3fcb948
JG
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
a3fcb948
JG
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226}
1227
37bdc87e
MK
1228/* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234struct i386_insn i386_frame_setup_skip_insns[] =
1235{
1777feb0 1236 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281};
1282
e11481da
PM
1283
1284/* Check whether PC points to a no-op instruction. */
1285static CORE_ADDR
1286i386_skip_noop (CORE_ADDR pc)
1287{
1288 gdb_byte op;
1289 int check = 1;
1290
3dcabaa8
MS
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
e11481da
PM
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
3dcabaa8
MS
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
e11481da
PM
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
3dcabaa8
MS
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
e11481da
PM
1321 if (op == 0xff)
1322 {
1323 pc += 2;
3dcabaa8
MS
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
e11481da
PM
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332}
1333
acd5c798
MK
1334/* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1338
1339static CORE_ADDR
e17a4113
UW
1340i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1342 struct i386_frame_cache *cache)
1343{
e17a4113 1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1345 struct i386_insn *insn;
63c0089f 1346 gdb_byte op;
26604a34 1347 int skip = 0;
acd5c798 1348
37bdc87e
MK
1349 if (limit <= pc)
1350 return limit;
acd5c798 1351
3dcabaa8
MS
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
acd5c798 1354
c906108c 1355 if (op == 0x55) /* pushl %ebp */
c5aa993b 1356 {
acd5c798
MK
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
fd13a04a 1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1360 cache->sp_offset += 4;
37bdc87e 1361 pc++;
acd5c798
MK
1362
1363 /* If that's all, return now. */
37bdc87e
MK
1364 if (limit <= pc)
1365 return limit;
26604a34 1366
b4632131 1367 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
5daa5b4e 1372
26604a34
MK
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1375 while (pc + skip < limit)
26604a34 1376 {
37bdc87e
MK
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
b4632131 1380
37bdc87e 1381 skip += insn->len;
26604a34
MK
1382 }
1383
37bdc87e
MK
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
3dcabaa8
MS
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
37bdc87e 1390
26604a34 1391 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1392 switch (op)
c906108c
SS
1393 {
1394 case 0x8b:
e17a4113
UW
1395 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1396 != 0xec)
37bdc87e 1397 return pc;
c906108c
SS
1398 break;
1399 case 0x89:
e17a4113
UW
1400 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1401 != 0xe5)
37bdc87e 1402 return pc;
c906108c
SS
1403 break;
1404 default:
37bdc87e 1405 return pc;
c906108c 1406 }
acd5c798 1407
26604a34
MK
1408 /* OK, we actually have a frame. We just don't know how large
1409 it is yet. Set its size to zero. We'll adjust it if
1410 necessary. We also now commit to skipping the special
1411 instructions mentioned before. */
acd5c798 1412 cache->locals = 0;
37bdc87e 1413 pc += (skip + 2);
acd5c798
MK
1414
1415 /* If that's all, return now. */
37bdc87e
MK
1416 if (limit <= pc)
1417 return limit;
acd5c798 1418
fc338970
MK
1419 /* Check for stack adjustment
1420
acd5c798 1421 subl $XXX, %esp
fc338970 1422
fd35795f 1423 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1424 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1425 if (target_read_memory (pc, &op, 1))
1426 return pc;
c906108c
SS
1427 if (op == 0x83)
1428 {
fd35795f 1429 /* `subl' with 8-bit immediate. */
e17a4113 1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1431 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1432 return pc;
acd5c798 1433
37bdc87e
MK
1434 /* `subl' with signed 8-bit immediate (though it wouldn't
1435 make sense to be negative). */
e17a4113 1436 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1437 return pc + 3;
c906108c
SS
1438 }
1439 else if (op == 0x81)
1440 {
fd35795f 1441 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1442 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1443 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1444 return pc;
acd5c798 1445
fd35795f 1446 /* It is `subl' with a 32-bit immediate. */
e17a4113 1447 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1448 return pc + 6;
c906108c
SS
1449 }
1450 else
1451 {
acd5c798 1452 /* Some instruction other than `subl'. */
37bdc87e 1453 return pc;
c906108c
SS
1454 }
1455 }
37bdc87e 1456 else if (op == 0xc8) /* enter */
c906108c 1457 {
e17a4113 1458 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1459 return pc + 4;
c906108c 1460 }
21d0e8a4 1461
acd5c798 1462 return pc;
21d0e8a4
MK
1463}
1464
acd5c798
MK
1465/* Check whether PC points at code that saves registers on the stack.
1466 If so, it updates CACHE and returns the address of the first
1467 instruction after the register saves or CURRENT_PC, whichever is
1468 smaller. Otherwise, return PC. */
6bff26de
MK
1469
1470static CORE_ADDR
acd5c798
MK
1471i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1472 struct i386_frame_cache *cache)
6bff26de 1473{
99ab4326 1474 CORE_ADDR offset = 0;
63c0089f 1475 gdb_byte op;
99ab4326 1476 int i;
c0d1d883 1477
99ab4326
MK
1478 if (cache->locals > 0)
1479 offset -= cache->locals;
1480 for (i = 0; i < 8 && pc < current_pc; i++)
1481 {
3dcabaa8
MS
1482 if (target_read_memory (pc, &op, 1))
1483 return pc;
99ab4326
MK
1484 if (op < 0x50 || op > 0x57)
1485 break;
0d17c81d 1486
99ab4326
MK
1487 offset -= 4;
1488 cache->saved_regs[op - 0x50] = offset;
1489 cache->sp_offset += 4;
1490 pc++;
6bff26de
MK
1491 }
1492
acd5c798 1493 return pc;
22797942
AC
1494}
1495
acd5c798
MK
1496/* Do a full analysis of the prologue at PC and update CACHE
1497 accordingly. Bail out early if CURRENT_PC is reached. Return the
1498 address where the analysis stopped.
ed84f6c1 1499
fc338970
MK
1500 We handle these cases:
1501
1502 The startup sequence can be at the start of the function, or the
1503 function can start with a branch to startup code at the end.
1504
1505 %ebp can be set up with either the 'enter' instruction, or "pushl
1506 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1507 once used in the System V compiler).
1508
1509 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1510 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1511 16-bit unsigned argument for space to allocate, and the 'addl'
1512 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1513
1514 Next, the registers used by this function are pushed. With the
1515 System V compiler they will always be in the order: %edi, %esi,
1516 %ebx (and sometimes a harmless bug causes it to also save but not
1517 restore %eax); however, the code below is willing to see the pushes
1518 in any order, and will handle up to 8 of them.
1519
1520 If the setup sequence is at the end of the function, then the next
1521 instruction will be a branch back to the start. */
c906108c 1522
acd5c798 1523static CORE_ADDR
e17a4113
UW
1524i386_analyze_prologue (struct gdbarch *gdbarch,
1525 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1526 struct i386_frame_cache *cache)
c906108c 1527{
e11481da 1528 pc = i386_skip_noop (pc);
e17a4113 1529 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1530 pc = i386_analyze_struct_return (pc, current_pc, cache);
1531 pc = i386_skip_probe (pc);
92dd43fa 1532 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1533 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1534 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1535}
1536
fc338970 1537/* Return PC of first real instruction. */
c906108c 1538
3a1e71e3 1539static CORE_ADDR
6093d2eb 1540i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1541{
e17a4113
UW
1542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1543
63c0089f 1544 static gdb_byte pic_pat[6] =
acd5c798
MK
1545 {
1546 0xe8, 0, 0, 0, 0, /* call 0x0 */
1547 0x5b, /* popl %ebx */
c5aa993b 1548 };
acd5c798
MK
1549 struct i386_frame_cache cache;
1550 CORE_ADDR pc;
63c0089f 1551 gdb_byte op;
acd5c798 1552 int i;
c5aa993b 1553
acd5c798 1554 cache.locals = -1;
e17a4113 1555 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1556 if (cache.locals < 0)
1557 return start_pc;
c5aa993b 1558
acd5c798 1559 /* Found valid frame setup. */
c906108c 1560
fc338970
MK
1561 /* The native cc on SVR4 in -K PIC mode inserts the following code
1562 to get the address of the global offset table (GOT) into register
acd5c798
MK
1563 %ebx:
1564
fc338970
MK
1565 call 0x0
1566 popl %ebx
1567 movl %ebx,x(%ebp) (optional)
1568 addl y,%ebx
1569
c906108c
SS
1570 This code is with the rest of the prologue (at the end of the
1571 function), so we have to skip it to get to the first real
1572 instruction at the start of the function. */
c5aa993b 1573
c906108c
SS
1574 for (i = 0; i < 6; i++)
1575 {
3dcabaa8
MS
1576 if (target_read_memory (pc + i, &op, 1))
1577 return pc;
1578
c5aa993b 1579 if (pic_pat[i] != op)
c906108c
SS
1580 break;
1581 }
1582 if (i == 6)
1583 {
acd5c798
MK
1584 int delta = 6;
1585
3dcabaa8
MS
1586 if (target_read_memory (pc + delta, &op, 1))
1587 return pc;
c906108c 1588
c5aa993b 1589 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1590 {
e17a4113 1591 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1592
fc338970 1593 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1594 delta += 3;
fc338970 1595 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1596 delta += 6;
fc338970 1597 else /* Unexpected instruction. */
acd5c798
MK
1598 delta = 0;
1599
3dcabaa8
MS
1600 if (target_read_memory (pc + delta, &op, 1))
1601 return pc;
c906108c 1602 }
acd5c798 1603
c5aa993b 1604 /* addl y,%ebx */
acd5c798 1605 if (delta > 0 && op == 0x81
e17a4113
UW
1606 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1607 == 0xc3)
c906108c 1608 {
acd5c798 1609 pc += delta + 6;
c906108c
SS
1610 }
1611 }
c5aa993b 1612
e63bbc88
MK
1613 /* If the function starts with a branch (to startup code at the end)
1614 the last instruction should bring us back to the first
1615 instruction of the real code. */
e17a4113
UW
1616 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1617 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1618
1619 return pc;
c906108c
SS
1620}
1621
4309257c
PM
1622/* Check that the code pointed to by PC corresponds to a call to
1623 __main, skip it if so. Return PC otherwise. */
1624
1625CORE_ADDR
1626i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1627{
e17a4113 1628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1629 gdb_byte op;
1630
3dcabaa8
MS
1631 if (target_read_memory (pc, &op, 1))
1632 return pc;
4309257c
PM
1633 if (op == 0xe8)
1634 {
1635 gdb_byte buf[4];
1636
1637 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1638 {
1639 /* Make sure address is computed correctly as a 32bit
1640 integer even if CORE_ADDR is 64 bit wide. */
1641 struct minimal_symbol *s;
e17a4113 1642 CORE_ADDR call_dest;
4309257c 1643
e17a4113 1644 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1645 call_dest = call_dest & 0xffffffffU;
1646 s = lookup_minimal_symbol_by_pc (call_dest);
1647 if (s != NULL
1648 && SYMBOL_LINKAGE_NAME (s) != NULL
1649 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1650 pc += 5;
1651 }
1652 }
1653
1654 return pc;
1655}
1656
acd5c798 1657/* This function is 64-bit safe. */
93924b6b 1658
acd5c798
MK
1659static CORE_ADDR
1660i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1661{
63c0089f 1662 gdb_byte buf[8];
acd5c798 1663
875f8d0e 1664 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1665 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1666}
acd5c798 1667\f
93924b6b 1668
acd5c798 1669/* Normal frames. */
c5aa993b 1670
8fbca658
PA
1671static void
1672i386_frame_cache_1 (struct frame_info *this_frame,
1673 struct i386_frame_cache *cache)
a7769679 1674{
e17a4113
UW
1675 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1677 gdb_byte buf[4];
acd5c798
MK
1678 int i;
1679
8fbca658 1680 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1681
1682 /* In principle, for normal frames, %ebp holds the frame pointer,
1683 which holds the base address for the current stack frame.
1684 However, for functions that don't need it, the frame pointer is
1685 optional. For these "frameless" functions the frame pointer is
1686 actually the frame pointer of the calling frame. Signal
1687 trampolines are just a special case of a "frameless" function.
1688 They (usually) share their frame pointer with the frame that was
1689 in progress when the signal occurred. */
1690
10458914 1691 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1692 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1693 if (cache->base == 0)
620fa63a
PA
1694 {
1695 cache->base_p = 1;
1696 return;
1697 }
acd5c798
MK
1698
1699 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1700 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1701
acd5c798 1702 if (cache->pc != 0)
e17a4113
UW
1703 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1704 cache);
acd5c798
MK
1705
1706 if (cache->locals < 0)
1707 {
1708 /* We didn't find a valid frame, which means that CACHE->base
1709 currently holds the frame pointer for our calling frame. If
1710 we're at the start of a function, or somewhere half-way its
1711 prologue, the function's frame probably hasn't been fully
1712 setup yet. Try to reconstruct the base address for the stack
1713 frame by looking at the stack pointer. For truly "frameless"
1714 functions this might work too. */
1715
e0c62198 1716 if (cache->saved_sp_reg != -1)
92dd43fa 1717 {
8fbca658
PA
1718 /* Saved stack pointer has been saved. */
1719 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1720 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1721
92dd43fa
MK
1722 /* We're halfway aligning the stack. */
1723 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1724 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1725
1726 /* This will be added back below. */
1727 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1728 }
7618e12b
DJ
1729 else if (cache->pc != 0
1730 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1731 {
7618e12b
DJ
1732 /* We're in a known function, but did not find a frame
1733 setup. Assume that the function does not use %ebp.
1734 Alternatively, we may have jumped to an invalid
1735 address; in that case there is definitely no new
1736 frame in %ebp. */
10458914 1737 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1738 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1739 + cache->sp_offset;
92dd43fa 1740 }
7618e12b
DJ
1741 else
1742 /* We're in an unknown function. We could not find the start
1743 of the function to analyze the prologue; our best option is
1744 to assume a typical frame layout with the caller's %ebp
1745 saved. */
1746 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1747 }
1748
8fbca658
PA
1749 if (cache->saved_sp_reg != -1)
1750 {
1751 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1752 register may be unavailable). */
1753 if (cache->saved_sp == 0
1754 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1755 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1756 }
acd5c798
MK
1757 /* Now that we have the base address for the stack frame we can
1758 calculate the value of %esp in the calling frame. */
8fbca658 1759 else if (cache->saved_sp == 0)
92dd43fa 1760 cache->saved_sp = cache->base + 8;
a7769679 1761
acd5c798
MK
1762 /* Adjust all the saved registers such that they contain addresses
1763 instead of offsets. */
1764 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1765 if (cache->saved_regs[i] != -1)
1766 cache->saved_regs[i] += cache->base;
acd5c798 1767
8fbca658
PA
1768 cache->base_p = 1;
1769}
1770
1771static struct i386_frame_cache *
1772i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1773{
1774 volatile struct gdb_exception ex;
1775 struct i386_frame_cache *cache;
1776
1777 if (*this_cache)
1778 return *this_cache;
1779
1780 cache = i386_alloc_frame_cache ();
1781 *this_cache = cache;
1782
1783 TRY_CATCH (ex, RETURN_MASK_ERROR)
1784 {
1785 i386_frame_cache_1 (this_frame, cache);
1786 }
1787 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1788 throw_exception (ex);
1789
acd5c798 1790 return cache;
a7769679
MK
1791}
1792
3a1e71e3 1793static void
10458914 1794i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1795 struct frame_id *this_id)
c906108c 1796{
10458914 1797 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1798
1799 /* This marks the outermost frame. */
1800 if (cache->base == 0)
1801 return;
1802
3e210248 1803 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1804 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1805}
1806
8fbca658
PA
1807static enum unwind_stop_reason
1808i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1809 void **this_cache)
1810{
1811 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1812
1813 if (!cache->base_p)
1814 return UNWIND_UNAVAILABLE;
1815
1816 /* This marks the outermost frame. */
1817 if (cache->base == 0)
1818 return UNWIND_OUTERMOST;
1819
1820 return UNWIND_NO_REASON;
1821}
1822
10458914
DJ
1823static struct value *
1824i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1825 int regnum)
acd5c798 1826{
10458914 1827 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1828
1829 gdb_assert (regnum >= 0);
1830
1831 /* The System V ABI says that:
1832
1833 "The flags register contains the system flags, such as the
1834 direction flag and the carry flag. The direction flag must be
1835 set to the forward (that is, zero) direction before entry and
1836 upon exit from a function. Other user flags have no specified
1837 role in the standard calling sequence and are not preserved."
1838
1839 To guarantee the "upon exit" part of that statement we fake a
1840 saved flags register that has its direction flag cleared.
1841
1842 Note that GCC doesn't seem to rely on the fact that the direction
1843 flag is cleared after a function return; it always explicitly
1844 clears the flag before operations where it matters.
1845
1846 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1847 right thing to do. The way we fake the flags register here makes
1848 it impossible to change it. */
1849
1850 if (regnum == I386_EFLAGS_REGNUM)
1851 {
10458914 1852 ULONGEST val;
c5aa993b 1853
10458914
DJ
1854 val = get_frame_register_unsigned (this_frame, regnum);
1855 val &= ~(1 << 10);
1856 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1857 }
1211c4e4 1858
acd5c798 1859 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1860 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1861
fcf250e2
UW
1862 if (regnum == I386_ESP_REGNUM
1863 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
1864 {
1865 /* If the SP has been saved, but we don't know where, then this
1866 means that SAVED_SP_REG register was found unavailable back
1867 when we built the cache. */
fcf250e2 1868 if (cache->saved_sp == 0)
8fbca658
PA
1869 return frame_unwind_got_register (this_frame, regnum,
1870 cache->saved_sp_reg);
1871 else
1872 return frame_unwind_got_constant (this_frame, regnum,
1873 cache->saved_sp);
1874 }
acd5c798 1875
fd13a04a 1876 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1877 return frame_unwind_got_memory (this_frame, regnum,
1878 cache->saved_regs[regnum]);
fd13a04a 1879
10458914 1880 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1881}
1882
1883static const struct frame_unwind i386_frame_unwind =
1884{
1885 NORMAL_FRAME,
8fbca658 1886 i386_frame_unwind_stop_reason,
acd5c798 1887 i386_frame_this_id,
10458914
DJ
1888 i386_frame_prev_register,
1889 NULL,
1890 default_frame_sniffer
acd5c798 1891};
06da04c6
MS
1892
1893/* Normal frames, but in a function epilogue. */
1894
1895/* The epilogue is defined here as the 'ret' instruction, which will
1896 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1897 the function's stack frame. */
1898
1899static int
1900i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1901{
1902 gdb_byte insn;
e0d00bc7
JK
1903 struct symtab *symtab;
1904
1905 symtab = find_pc_symtab (pc);
1906 if (symtab && symtab->epilogue_unwind_valid)
1907 return 0;
06da04c6
MS
1908
1909 if (target_read_memory (pc, &insn, 1))
1910 return 0; /* Can't read memory at pc. */
1911
1912 if (insn != 0xc3) /* 'ret' instruction. */
1913 return 0;
1914
1915 return 1;
1916}
1917
1918static int
1919i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1920 struct frame_info *this_frame,
1921 void **this_prologue_cache)
1922{
1923 if (frame_relative_level (this_frame) == 0)
1924 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1925 get_frame_pc (this_frame));
1926 else
1927 return 0;
1928}
1929
1930static struct i386_frame_cache *
1931i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1932{
8fbca658 1933 volatile struct gdb_exception ex;
06da04c6 1934 struct i386_frame_cache *cache;
0d6c2135 1935 CORE_ADDR sp;
06da04c6
MS
1936
1937 if (*this_cache)
1938 return *this_cache;
1939
1940 cache = i386_alloc_frame_cache ();
1941 *this_cache = cache;
1942
8fbca658
PA
1943 TRY_CATCH (ex, RETURN_MASK_ERROR)
1944 {
0d6c2135 1945 cache->pc = get_frame_func (this_frame);
06da04c6 1946
0d6c2135
MK
1947 /* At this point the stack looks as if we just entered the
1948 function, with the return address at the top of the
1949 stack. */
1950 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1951 cache->base = sp + cache->sp_offset;
8fbca658 1952 cache->saved_sp = cache->base + 8;
8fbca658 1953 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 1954
8fbca658
PA
1955 cache->base_p = 1;
1956 }
1957 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1958 throw_exception (ex);
06da04c6
MS
1959
1960 return cache;
1961}
1962
8fbca658
PA
1963static enum unwind_stop_reason
1964i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1965 void **this_cache)
1966{
0d6c2135
MK
1967 struct i386_frame_cache *cache =
1968 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
1969
1970 if (!cache->base_p)
1971 return UNWIND_UNAVAILABLE;
1972
1973 return UNWIND_NO_REASON;
1974}
1975
06da04c6
MS
1976static void
1977i386_epilogue_frame_this_id (struct frame_info *this_frame,
1978 void **this_cache,
1979 struct frame_id *this_id)
1980{
0d6c2135
MK
1981 struct i386_frame_cache *cache =
1982 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 1983
8fbca658
PA
1984 if (!cache->base_p)
1985 return;
1986
06da04c6
MS
1987 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1988}
1989
0d6c2135
MK
1990static struct value *
1991i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1992 void **this_cache, int regnum)
1993{
1994 /* Make sure we've initialized the cache. */
1995 i386_epilogue_frame_cache (this_frame, this_cache);
1996
1997 return i386_frame_prev_register (this_frame, this_cache, regnum);
1998}
1999
06da04c6
MS
2000static const struct frame_unwind i386_epilogue_frame_unwind =
2001{
2002 NORMAL_FRAME,
8fbca658 2003 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2004 i386_epilogue_frame_this_id,
0d6c2135 2005 i386_epilogue_frame_prev_register,
06da04c6
MS
2006 NULL,
2007 i386_epilogue_frame_sniffer
2008};
acd5c798
MK
2009\f
2010
a3fcb948
JG
2011/* Stack-based trampolines. */
2012
2013/* These trampolines are used on cross x86 targets, when taking the
2014 address of a nested function. When executing these trampolines,
2015 no stack frame is set up, so we are in a similar situation as in
2016 epilogues and i386_epilogue_frame_this_id can be re-used. */
2017
2018/* Static chain passed in register. */
2019
2020struct i386_insn i386_tramp_chain_in_reg_insns[] =
2021{
2022 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2023 { 5, { 0xb8 }, { 0xfe } },
2024
2025 /* `jmp imm32' */
2026 { 5, { 0xe9 }, { 0xff } },
2027
2028 {0}
2029};
2030
2031/* Static chain passed on stack (when regparm=3). */
2032
2033struct i386_insn i386_tramp_chain_on_stack_insns[] =
2034{
2035 /* `push imm32' */
2036 { 5, { 0x68 }, { 0xff } },
2037
2038 /* `jmp imm32' */
2039 { 5, { 0xe9 }, { 0xff } },
2040
2041 {0}
2042};
2043
2044/* Return whether PC points inside a stack trampoline. */
2045
2046static int
2047i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2048{
2049 gdb_byte insn;
2c02bd72 2050 const char *name;
a3fcb948
JG
2051
2052 /* A stack trampoline is detected if no name is associated
2053 to the current pc and if it points inside a trampoline
2054 sequence. */
2055
2056 find_pc_partial_function (pc, &name, NULL, NULL);
2057 if (name)
2058 return 0;
2059
2060 if (target_read_memory (pc, &insn, 1))
2061 return 0;
2062
2063 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2064 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2065 return 0;
2066
2067 return 1;
2068}
2069
2070static int
2071i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2072 struct frame_info *this_frame,
2073 void **this_cache)
a3fcb948
JG
2074{
2075 if (frame_relative_level (this_frame) == 0)
2076 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2077 get_frame_pc (this_frame));
2078 else
2079 return 0;
2080}
2081
2082static const struct frame_unwind i386_stack_tramp_frame_unwind =
2083{
2084 NORMAL_FRAME,
2085 i386_epilogue_frame_unwind_stop_reason,
2086 i386_epilogue_frame_this_id,
0d6c2135 2087 i386_epilogue_frame_prev_register,
a3fcb948
JG
2088 NULL,
2089 i386_stack_tramp_frame_sniffer
2090};
2091\f
6710bf39
SS
2092/* Generate a bytecode expression to get the value of the saved PC. */
2093
2094static void
2095i386_gen_return_address (struct gdbarch *gdbarch,
2096 struct agent_expr *ax, struct axs_value *value,
2097 CORE_ADDR scope)
2098{
2099 /* The following sequence assumes the traditional use of the base
2100 register. */
2101 ax_reg (ax, I386_EBP_REGNUM);
2102 ax_const_l (ax, 4);
2103 ax_simple (ax, aop_add);
2104 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2105 value->kind = axs_lvalue_memory;
2106}
2107\f
a3fcb948 2108
acd5c798
MK
2109/* Signal trampolines. */
2110
2111static struct i386_frame_cache *
10458914 2112i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2113{
e17a4113
UW
2114 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2115 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2117 volatile struct gdb_exception ex;
acd5c798 2118 struct i386_frame_cache *cache;
acd5c798 2119 CORE_ADDR addr;
63c0089f 2120 gdb_byte buf[4];
acd5c798
MK
2121
2122 if (*this_cache)
2123 return *this_cache;
2124
fd13a04a 2125 cache = i386_alloc_frame_cache ();
acd5c798 2126
8fbca658 2127 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2128 {
8fbca658
PA
2129 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2130 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2131
8fbca658
PA
2132 addr = tdep->sigcontext_addr (this_frame);
2133 if (tdep->sc_reg_offset)
2134 {
2135 int i;
a3386186 2136
8fbca658
PA
2137 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2138
2139 for (i = 0; i < tdep->sc_num_regs; i++)
2140 if (tdep->sc_reg_offset[i] != -1)
2141 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2142 }
2143 else
2144 {
2145 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2146 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2147 }
2148
2149 cache->base_p = 1;
a3386186 2150 }
8fbca658
PA
2151 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2152 throw_exception (ex);
acd5c798
MK
2153
2154 *this_cache = cache;
2155 return cache;
2156}
2157
8fbca658
PA
2158static enum unwind_stop_reason
2159i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2160 void **this_cache)
2161{
2162 struct i386_frame_cache *cache =
2163 i386_sigtramp_frame_cache (this_frame, this_cache);
2164
2165 if (!cache->base_p)
2166 return UNWIND_UNAVAILABLE;
2167
2168 return UNWIND_NO_REASON;
2169}
2170
acd5c798 2171static void
10458914 2172i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2173 struct frame_id *this_id)
2174{
2175 struct i386_frame_cache *cache =
10458914 2176 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2177
8fbca658
PA
2178 if (!cache->base_p)
2179 return;
2180
3e210248 2181 /* See the end of i386_push_dummy_call. */
10458914 2182 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
2183}
2184
10458914
DJ
2185static struct value *
2186i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2187 void **this_cache, int regnum)
acd5c798
MK
2188{
2189 /* Make sure we've initialized the cache. */
10458914 2190 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2191
10458914 2192 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2193}
c0d1d883 2194
10458914
DJ
2195static int
2196i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2197 struct frame_info *this_frame,
2198 void **this_prologue_cache)
acd5c798 2199{
10458914 2200 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2201
911bc6ee
MK
2202 /* We shouldn't even bother if we don't have a sigcontext_addr
2203 handler. */
2204 if (tdep->sigcontext_addr == NULL)
10458914 2205 return 0;
1c3545ae 2206
911bc6ee
MK
2207 if (tdep->sigtramp_p != NULL)
2208 {
10458914
DJ
2209 if (tdep->sigtramp_p (this_frame))
2210 return 1;
911bc6ee
MK
2211 }
2212
2213 if (tdep->sigtramp_start != 0)
2214 {
10458914 2215 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2216
2217 gdb_assert (tdep->sigtramp_end != 0);
2218 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2219 return 1;
911bc6ee 2220 }
acd5c798 2221
10458914 2222 return 0;
acd5c798 2223}
10458914
DJ
2224
2225static const struct frame_unwind i386_sigtramp_frame_unwind =
2226{
2227 SIGTRAMP_FRAME,
8fbca658 2228 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2229 i386_sigtramp_frame_this_id,
2230 i386_sigtramp_frame_prev_register,
2231 NULL,
2232 i386_sigtramp_frame_sniffer
2233};
acd5c798
MK
2234\f
2235
2236static CORE_ADDR
10458914 2237i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2238{
10458914 2239 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2240
2241 return cache->base;
2242}
2243
2244static const struct frame_base i386_frame_base =
2245{
2246 &i386_frame_unwind,
2247 i386_frame_base_address,
2248 i386_frame_base_address,
2249 i386_frame_base_address
2250};
2251
acd5c798 2252static struct frame_id
10458914 2253i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2254{
acd5c798
MK
2255 CORE_ADDR fp;
2256
10458914 2257 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2258
3e210248 2259 /* See the end of i386_push_dummy_call. */
10458914 2260 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2261}
e04e5beb
JM
2262
2263/* _Decimal128 function return values need 16-byte alignment on the
2264 stack. */
2265
2266static CORE_ADDR
2267i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2268{
2269 return sp & -(CORE_ADDR)16;
2270}
fc338970 2271\f
c906108c 2272
fc338970
MK
2273/* Figure out where the longjmp will land. Slurp the args out of the
2274 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2275 structure from which we extract the address that we will land at.
28bcfd30 2276 This address is copied into PC. This routine returns non-zero on
436675d3 2277 success. */
c906108c 2278
8201327c 2279static int
60ade65d 2280i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2281{
436675d3 2282 gdb_byte buf[4];
c906108c 2283 CORE_ADDR sp, jb_addr;
20a6ec49 2284 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2286 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2287
8201327c
MK
2288 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2289 longjmp will land. */
2290 if (jb_pc_offset == -1)
c906108c
SS
2291 return 0;
2292
436675d3 2293 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2294 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2295 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2296 return 0;
2297
e17a4113 2298 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2299 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2300 return 0;
c906108c 2301
e17a4113 2302 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2303 return 1;
2304}
fc338970 2305\f
c906108c 2306
7ccc1c74
JM
2307/* Check whether TYPE must be 16-byte-aligned when passed as a
2308 function argument. 16-byte vectors, _Decimal128 and structures or
2309 unions containing such types must be 16-byte-aligned; other
2310 arguments are 4-byte-aligned. */
2311
2312static int
2313i386_16_byte_align_p (struct type *type)
2314{
2315 type = check_typedef (type);
2316 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2317 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2318 && TYPE_LENGTH (type) == 16)
2319 return 1;
2320 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2321 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2322 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2323 || TYPE_CODE (type) == TYPE_CODE_UNION)
2324 {
2325 int i;
2326 for (i = 0; i < TYPE_NFIELDS (type); i++)
2327 {
2328 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2329 return 1;
2330 }
2331 }
2332 return 0;
2333}
2334
a9b8d892
JK
2335/* Implementation for set_gdbarch_push_dummy_code. */
2336
2337static CORE_ADDR
2338i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2339 struct value **args, int nargs, struct type *value_type,
2340 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2341 struct regcache *regcache)
2342{
2343 /* Use 0xcc breakpoint - 1 byte. */
2344 *bp_addr = sp - 1;
2345 *real_pc = funaddr;
2346
2347 /* Keep the stack aligned. */
2348 return sp - 16;
2349}
2350
3a1e71e3 2351static CORE_ADDR
7d9b040b 2352i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2353 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2354 struct value **args, CORE_ADDR sp, int struct_return,
2355 CORE_ADDR struct_addr)
22f8ba57 2356{
e17a4113 2357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2358 gdb_byte buf[4];
acd5c798 2359 int i;
7ccc1c74
JM
2360 int write_pass;
2361 int args_space = 0;
acd5c798 2362
7ccc1c74
JM
2363 /* Determine the total space required for arguments and struct
2364 return address in a first pass (allowing for 16-byte-aligned
2365 arguments), then push arguments in a second pass. */
2366
2367 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2368 {
7ccc1c74 2369 int args_space_used = 0;
7ccc1c74
JM
2370
2371 if (struct_return)
2372 {
2373 if (write_pass)
2374 {
2375 /* Push value address. */
e17a4113 2376 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2377 write_memory (sp, buf, 4);
2378 args_space_used += 4;
2379 }
2380 else
2381 args_space += 4;
2382 }
2383
2384 for (i = 0; i < nargs; i++)
2385 {
2386 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2387
7ccc1c74
JM
2388 if (write_pass)
2389 {
2390 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2391 args_space_used = align_up (args_space_used, 16);
acd5c798 2392
7ccc1c74
JM
2393 write_memory (sp + args_space_used,
2394 value_contents_all (args[i]), len);
2395 /* The System V ABI says that:
acd5c798 2396
7ccc1c74
JM
2397 "An argument's size is increased, if necessary, to make it a
2398 multiple of [32-bit] words. This may require tail padding,
2399 depending on the size of the argument."
22f8ba57 2400
7ccc1c74
JM
2401 This makes sure the stack stays word-aligned. */
2402 args_space_used += align_up (len, 4);
2403 }
2404 else
2405 {
2406 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2407 args_space = align_up (args_space, 16);
7ccc1c74
JM
2408 args_space += align_up (len, 4);
2409 }
2410 }
2411
2412 if (!write_pass)
2413 {
7ccc1c74 2414 sp -= args_space;
284c5a60
MK
2415
2416 /* The original System V ABI only requires word alignment,
2417 but modern incarnations need 16-byte alignment in order
2418 to support SSE. Since wasting a few bytes here isn't
2419 harmful we unconditionally enforce 16-byte alignment. */
2420 sp &= ~0xf;
7ccc1c74 2421 }
22f8ba57
MK
2422 }
2423
acd5c798
MK
2424 /* Store return address. */
2425 sp -= 4;
e17a4113 2426 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2427 write_memory (sp, buf, 4);
2428
2429 /* Finally, update the stack pointer... */
e17a4113 2430 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2431 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2432
2433 /* ...and fake a frame pointer. */
2434 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2435
3e210248
AC
2436 /* MarkK wrote: This "+ 8" is all over the place:
2437 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2438 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2439 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2440 definition of the stack address of a frame. Otherwise frame id
2441 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2442 stack address *before* the function call as a frame's CFA. On
2443 the i386, when %ebp is used as a frame pointer, the offset
2444 between the contents %ebp and the CFA as defined by GCC. */
2445 return sp + 8;
22f8ba57
MK
2446}
2447
1a309862
MK
2448/* These registers are used for returning integers (and on some
2449 targets also for returning `struct' and `union' values when their
ef9dff19 2450 size and alignment match an integer type). */
acd5c798
MK
2451#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2452#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2453
c5e656c1
MK
2454/* Read, for architecture GDBARCH, a function return value of TYPE
2455 from REGCACHE, and copy that into VALBUF. */
1a309862 2456
3a1e71e3 2457static void
c5e656c1 2458i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2459 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2460{
c5e656c1 2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2462 int len = TYPE_LENGTH (type);
63c0089f 2463 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2464
1e8d0a7b 2465 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2466 {
5716833c 2467 if (tdep->st0_regnum < 0)
1a309862 2468 {
8a3fe4f8 2469 warning (_("Cannot find floating-point return value."));
1a309862 2470 memset (valbuf, 0, len);
ef9dff19 2471 return;
1a309862
MK
2472 }
2473
c6ba6f0d
MK
2474 /* Floating-point return values can be found in %st(0). Convert
2475 its contents to the desired type. This is probably not
2476 exactly how it would happen on the target itself, but it is
2477 the best we can do. */
acd5c798 2478 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2479 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2480 }
2481 else
c5aa993b 2482 {
875f8d0e
UW
2483 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2484 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2485
2486 if (len <= low_size)
00f8375e 2487 {
0818c12a 2488 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2489 memcpy (valbuf, buf, len);
2490 }
d4f3574e
SS
2491 else if (len <= (low_size + high_size))
2492 {
0818c12a 2493 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2494 memcpy (valbuf, buf, low_size);
0818c12a 2495 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2496 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2497 }
2498 else
8e65ff28 2499 internal_error (__FILE__, __LINE__,
1777feb0
MS
2500 _("Cannot extract return value of %d bytes long."),
2501 len);
c906108c
SS
2502 }
2503}
2504
c5e656c1
MK
2505/* Write, for architecture GDBARCH, a function return value of TYPE
2506 from VALBUF into REGCACHE. */
ef9dff19 2507
3a1e71e3 2508static void
c5e656c1 2509i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2510 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2511{
c5e656c1 2512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2513 int len = TYPE_LENGTH (type);
2514
1e8d0a7b 2515 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2516 {
3d7f4f49 2517 ULONGEST fstat;
63c0089f 2518 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2519
5716833c 2520 if (tdep->st0_regnum < 0)
ef9dff19 2521 {
8a3fe4f8 2522 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2523 return;
2524 }
2525
635b0cc1
MK
2526 /* Returning floating-point values is a bit tricky. Apart from
2527 storing the return value in %st(0), we have to simulate the
2528 state of the FPU at function return point. */
2529
c6ba6f0d
MK
2530 /* Convert the value found in VALBUF to the extended
2531 floating-point format used by the FPU. This is probably
2532 not exactly how it would happen on the target itself, but
2533 it is the best we can do. */
27067745 2534 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2535 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2536
635b0cc1
MK
2537 /* Set the top of the floating-point register stack to 7. The
2538 actual value doesn't really matter, but 7 is what a normal
2539 function return would end up with if the program started out
2540 with a freshly initialized FPU. */
20a6ec49 2541 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2542 fstat |= (7 << 11);
20a6ec49 2543 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2544
635b0cc1
MK
2545 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2546 the floating-point register stack to 7, the appropriate value
2547 for the tag word is 0x3fff. */
20a6ec49 2548 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2549 }
2550 else
2551 {
875f8d0e
UW
2552 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2553 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2554
2555 if (len <= low_size)
3d7f4f49 2556 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2557 else if (len <= (low_size + high_size))
2558 {
3d7f4f49
MK
2559 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2560 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2561 len - low_size, valbuf + low_size);
ef9dff19
MK
2562 }
2563 else
8e65ff28 2564 internal_error (__FILE__, __LINE__,
e2e0b3e5 2565 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2566 }
2567}
fc338970 2568\f
ef9dff19 2569
8201327c
MK
2570/* This is the variable that is set with "set struct-convention", and
2571 its legitimate values. */
2572static const char default_struct_convention[] = "default";
2573static const char pcc_struct_convention[] = "pcc";
2574static const char reg_struct_convention[] = "reg";
40478521 2575static const char *const valid_conventions[] =
8201327c
MK
2576{
2577 default_struct_convention,
2578 pcc_struct_convention,
2579 reg_struct_convention,
2580 NULL
2581};
2582static const char *struct_convention = default_struct_convention;
2583
0e4377e1
JB
2584/* Return non-zero if TYPE, which is assumed to be a structure,
2585 a union type, or an array type, should be returned in registers
2586 for architecture GDBARCH. */
c5e656c1 2587
8201327c 2588static int
c5e656c1 2589i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2590{
c5e656c1
MK
2591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2592 enum type_code code = TYPE_CODE (type);
2593 int len = TYPE_LENGTH (type);
8201327c 2594
0e4377e1
JB
2595 gdb_assert (code == TYPE_CODE_STRUCT
2596 || code == TYPE_CODE_UNION
2597 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2598
2599 if (struct_convention == pcc_struct_convention
2600 || (struct_convention == default_struct_convention
2601 && tdep->struct_return == pcc_struct_return))
2602 return 0;
2603
9edde48e
MK
2604 /* Structures consisting of a single `float', `double' or 'long
2605 double' member are returned in %st(0). */
2606 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2607 {
2608 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2609 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2610 return (len == 4 || len == 8 || len == 12);
2611 }
2612
c5e656c1
MK
2613 return (len == 1 || len == 2 || len == 4 || len == 8);
2614}
2615
2616/* Determine, for architecture GDBARCH, how a return value of TYPE
2617 should be returned. If it is supposed to be returned in registers,
2618 and READBUF is non-zero, read the appropriate value from REGCACHE,
2619 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2620 from WRITEBUF into REGCACHE. */
2621
2622static enum return_value_convention
6a3a010b 2623i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2624 struct type *type, struct regcache *regcache,
2625 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2626{
2627 enum type_code code = TYPE_CODE (type);
2628
5daa78cc
TJB
2629 if (((code == TYPE_CODE_STRUCT
2630 || code == TYPE_CODE_UNION
2631 || code == TYPE_CODE_ARRAY)
2632 && !i386_reg_struct_return_p (gdbarch, type))
2633 /* 128-bit decimal float uses the struct return convention. */
2634 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2635 {
2636 /* The System V ABI says that:
2637
2638 "A function that returns a structure or union also sets %eax
2639 to the value of the original address of the caller's area
2640 before it returns. Thus when the caller receives control
2641 again, the address of the returned object resides in register
2642 %eax and can be used to access the object."
2643
2644 So the ABI guarantees that we can always find the return
2645 value just after the function has returned. */
2646
0e4377e1
JB
2647 /* Note that the ABI doesn't mention functions returning arrays,
2648 which is something possible in certain languages such as Ada.
2649 In this case, the value is returned as if it was wrapped in
2650 a record, so the convention applied to records also applies
2651 to arrays. */
2652
31db7b6c
MK
2653 if (readbuf)
2654 {
2655 ULONGEST addr;
2656
2657 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2658 read_memory (addr, readbuf, TYPE_LENGTH (type));
2659 }
2660
2661 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2662 }
c5e656c1
MK
2663
2664 /* This special case is for structures consisting of a single
9edde48e
MK
2665 `float', `double' or 'long double' member. These structures are
2666 returned in %st(0). For these structures, we call ourselves
2667 recursively, changing TYPE into the type of the first member of
2668 the structure. Since that should work for all structures that
2669 have only one member, we don't bother to check the member's type
2670 here. */
c5e656c1
MK
2671 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2672 {
2673 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2674 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2675 readbuf, writebuf);
c5e656c1
MK
2676 }
2677
2678 if (readbuf)
2679 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2680 if (writebuf)
2681 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2682
c5e656c1 2683 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2684}
2685\f
2686
27067745
UW
2687struct type *
2688i387_ext_type (struct gdbarch *gdbarch)
2689{
2690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2691
2692 if (!tdep->i387_ext_type)
90884b2b
L
2693 {
2694 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2695 gdb_assert (tdep->i387_ext_type != NULL);
2696 }
27067745
UW
2697
2698 return tdep->i387_ext_type;
2699}
2700
c131fcee
L
2701/* Construct vector type for pseudo YMM registers. We can't use
2702 tdesc_find_type since YMM isn't described in target description. */
2703
2704static struct type *
2705i386_ymm_type (struct gdbarch *gdbarch)
2706{
2707 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2708
2709 if (!tdep->i386_ymm_type)
2710 {
2711 const struct builtin_type *bt = builtin_type (gdbarch);
2712
2713 /* The type we're building is this: */
2714#if 0
2715 union __gdb_builtin_type_vec256i
2716 {
2717 int128_t uint128[2];
2718 int64_t v2_int64[4];
2719 int32_t v4_int32[8];
2720 int16_t v8_int16[16];
2721 int8_t v16_int8[32];
2722 double v2_double[4];
2723 float v4_float[8];
2724 };
2725#endif
2726
2727 struct type *t;
2728
2729 t = arch_composite_type (gdbarch,
2730 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2731 append_composite_type_field (t, "v8_float",
2732 init_vector_type (bt->builtin_float, 8));
2733 append_composite_type_field (t, "v4_double",
2734 init_vector_type (bt->builtin_double, 4));
2735 append_composite_type_field (t, "v32_int8",
2736 init_vector_type (bt->builtin_int8, 32));
2737 append_composite_type_field (t, "v16_int16",
2738 init_vector_type (bt->builtin_int16, 16));
2739 append_composite_type_field (t, "v8_int32",
2740 init_vector_type (bt->builtin_int32, 8));
2741 append_composite_type_field (t, "v4_int64",
2742 init_vector_type (bt->builtin_int64, 4));
2743 append_composite_type_field (t, "v2_int128",
2744 init_vector_type (bt->builtin_int128, 2));
2745
2746 TYPE_VECTOR (t) = 1;
0c5acf93 2747 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2748 tdep->i386_ymm_type = t;
2749 }
2750
2751 return tdep->i386_ymm_type;
2752}
2753
794ac428 2754/* Construct vector type for MMX registers. */
90884b2b 2755static struct type *
794ac428
UW
2756i386_mmx_type (struct gdbarch *gdbarch)
2757{
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2759
2760 if (!tdep->i386_mmx_type)
2761 {
df4df182
UW
2762 const struct builtin_type *bt = builtin_type (gdbarch);
2763
794ac428
UW
2764 /* The type we're building is this: */
2765#if 0
2766 union __gdb_builtin_type_vec64i
2767 {
2768 int64_t uint64;
2769 int32_t v2_int32[2];
2770 int16_t v4_int16[4];
2771 int8_t v8_int8[8];
2772 };
2773#endif
2774
2775 struct type *t;
2776
e9bb382b
UW
2777 t = arch_composite_type (gdbarch,
2778 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2779
2780 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2781 append_composite_type_field (t, "v2_int32",
df4df182 2782 init_vector_type (bt->builtin_int32, 2));
794ac428 2783 append_composite_type_field (t, "v4_int16",
df4df182 2784 init_vector_type (bt->builtin_int16, 4));
794ac428 2785 append_composite_type_field (t, "v8_int8",
df4df182 2786 init_vector_type (bt->builtin_int8, 8));
794ac428 2787
876cecd0 2788 TYPE_VECTOR (t) = 1;
794ac428
UW
2789 TYPE_NAME (t) = "builtin_type_vec64i";
2790 tdep->i386_mmx_type = t;
2791 }
2792
2793 return tdep->i386_mmx_type;
2794}
2795
d7a0d72c 2796/* Return the GDB type object for the "standard" data type of data in
1777feb0 2797 register REGNUM. */
d7a0d72c 2798
fff4548b 2799struct type *
90884b2b 2800i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2801{
1ba53b71
L
2802 if (i386_mmx_regnum_p (gdbarch, regnum))
2803 return i386_mmx_type (gdbarch);
c131fcee
L
2804 else if (i386_ymm_regnum_p (gdbarch, regnum))
2805 return i386_ymm_type (gdbarch);
1ba53b71
L
2806 else
2807 {
2808 const struct builtin_type *bt = builtin_type (gdbarch);
2809 if (i386_byte_regnum_p (gdbarch, regnum))
2810 return bt->builtin_int8;
2811 else if (i386_word_regnum_p (gdbarch, regnum))
2812 return bt->builtin_int16;
2813 else if (i386_dword_regnum_p (gdbarch, regnum))
2814 return bt->builtin_int32;
2815 }
2816
2817 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2818}
2819
28fc6740 2820/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2821 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2822
2823static int
c86c27af 2824i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2825{
5716833c
MK
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2827 int mmxreg, fpreg;
28fc6740
AC
2828 ULONGEST fstat;
2829 int tos;
c86c27af 2830
5716833c 2831 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2832 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2833 tos = (fstat >> 11) & 0x7;
5716833c
MK
2834 fpreg = (mmxreg + tos) % 8;
2835
20a6ec49 2836 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2837}
2838
3543a589
TT
2839/* A helper function for us by i386_pseudo_register_read_value and
2840 amd64_pseudo_register_read_value. It does all the work but reads
2841 the data into an already-allocated value. */
2842
2843void
2844i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2845 struct regcache *regcache,
2846 int regnum,
2847 struct value *result_value)
28fc6740 2848{
1ba53b71 2849 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2850 enum register_status status;
3543a589 2851 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 2852
5716833c 2853 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2854 {
c86c27af
MK
2855 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2856
28fc6740 2857 /* Extract (always little endian). */
05d1431c
PA
2858 status = regcache_raw_read (regcache, fpnum, raw_buf);
2859 if (status != REG_VALID)
3543a589
TT
2860 mark_value_bytes_unavailable (result_value, 0,
2861 TYPE_LENGTH (value_type (result_value)));
2862 else
2863 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2864 }
2865 else
1ba53b71
L
2866 {
2867 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2868
c131fcee
L
2869 if (i386_ymm_regnum_p (gdbarch, regnum))
2870 {
2871 regnum -= tdep->ymm0_regnum;
2872
1777feb0 2873 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2874 status = regcache_raw_read (regcache,
2875 I387_XMM0_REGNUM (tdep) + regnum,
2876 raw_buf);
2877 if (status != REG_VALID)
3543a589
TT
2878 mark_value_bytes_unavailable (result_value, 0, 16);
2879 else
2880 memcpy (buf, raw_buf, 16);
c131fcee 2881 /* Read upper 128bits. */
05d1431c
PA
2882 status = regcache_raw_read (regcache,
2883 tdep->ymm0h_regnum + regnum,
2884 raw_buf);
2885 if (status != REG_VALID)
3543a589
TT
2886 mark_value_bytes_unavailable (result_value, 16, 32);
2887 else
2888 memcpy (buf + 16, raw_buf, 16);
c131fcee
L
2889 }
2890 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2891 {
2892 int gpnum = regnum - tdep->ax_regnum;
2893
2894 /* Extract (always little endian). */
05d1431c
PA
2895 status = regcache_raw_read (regcache, gpnum, raw_buf);
2896 if (status != REG_VALID)
3543a589
TT
2897 mark_value_bytes_unavailable (result_value, 0,
2898 TYPE_LENGTH (value_type (result_value)));
2899 else
2900 memcpy (buf, raw_buf, 2);
1ba53b71
L
2901 }
2902 else if (i386_byte_regnum_p (gdbarch, regnum))
2903 {
2904 /* Check byte pseudo registers last since this function will
2905 be called from amd64_pseudo_register_read, which handles
2906 byte pseudo registers differently. */
2907 int gpnum = regnum - tdep->al_regnum;
2908
2909 /* Extract (always little endian). We read both lower and
2910 upper registers. */
05d1431c
PA
2911 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2912 if (status != REG_VALID)
3543a589
TT
2913 mark_value_bytes_unavailable (result_value, 0,
2914 TYPE_LENGTH (value_type (result_value)));
2915 else if (gpnum >= 4)
1ba53b71
L
2916 memcpy (buf, raw_buf + 1, 1);
2917 else
2918 memcpy (buf, raw_buf, 1);
2919 }
2920 else
2921 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2922 }
3543a589
TT
2923}
2924
2925static struct value *
2926i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2927 struct regcache *regcache,
2928 int regnum)
2929{
2930 struct value *result;
2931
2932 result = allocate_value (register_type (gdbarch, regnum));
2933 VALUE_LVAL (result) = lval_register;
2934 VALUE_REGNUM (result) = regnum;
2935
2936 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 2937
3543a589 2938 return result;
28fc6740
AC
2939}
2940
1ba53b71 2941void
28fc6740 2942i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2943 int regnum, const gdb_byte *buf)
28fc6740 2944{
1ba53b71
L
2945 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2946
5716833c 2947 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2948 {
c86c27af
MK
2949 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2950
28fc6740 2951 /* Read ... */
1ba53b71 2952 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2953 /* ... Modify ... (always little endian). */
1ba53b71 2954 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2955 /* ... Write. */
1ba53b71 2956 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2957 }
2958 else
1ba53b71
L
2959 {
2960 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2961
c131fcee
L
2962 if (i386_ymm_regnum_p (gdbarch, regnum))
2963 {
2964 regnum -= tdep->ymm0_regnum;
2965
2966 /* ... Write lower 128bits. */
2967 regcache_raw_write (regcache,
2968 I387_XMM0_REGNUM (tdep) + regnum,
2969 buf);
2970 /* ... Write upper 128bits. */
2971 regcache_raw_write (regcache,
2972 tdep->ymm0h_regnum + regnum,
2973 buf + 16);
2974 }
2975 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2976 {
2977 int gpnum = regnum - tdep->ax_regnum;
2978
2979 /* Read ... */
2980 regcache_raw_read (regcache, gpnum, raw_buf);
2981 /* ... Modify ... (always little endian). */
2982 memcpy (raw_buf, buf, 2);
2983 /* ... Write. */
2984 regcache_raw_write (regcache, gpnum, raw_buf);
2985 }
2986 else if (i386_byte_regnum_p (gdbarch, regnum))
2987 {
2988 /* Check byte pseudo registers last since this function will
2989 be called from amd64_pseudo_register_read, which handles
2990 byte pseudo registers differently. */
2991 int gpnum = regnum - tdep->al_regnum;
2992
2993 /* Read ... We read both lower and upper registers. */
2994 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2995 /* ... Modify ... (always little endian). */
2996 if (gpnum >= 4)
2997 memcpy (raw_buf + 1, buf, 1);
2998 else
2999 memcpy (raw_buf, buf, 1);
3000 /* ... Write. */
3001 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3002 }
3003 else
3004 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3005 }
28fc6740 3006}
ff2e87ac
AC
3007\f
3008
ff2e87ac
AC
3009/* Return the register number of the register allocated by GCC after
3010 REGNUM, or -1 if there is no such register. */
3011
3012static int
3013i386_next_regnum (int regnum)
3014{
3015 /* GCC allocates the registers in the order:
3016
3017 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3018
3019 Since storing a variable in %esp doesn't make any sense we return
3020 -1 for %ebp and for %esp itself. */
3021 static int next_regnum[] =
3022 {
3023 I386_EDX_REGNUM, /* Slot for %eax. */
3024 I386_EBX_REGNUM, /* Slot for %ecx. */
3025 I386_ECX_REGNUM, /* Slot for %edx. */
3026 I386_ESI_REGNUM, /* Slot for %ebx. */
3027 -1, -1, /* Slots for %esp and %ebp. */
3028 I386_EDI_REGNUM, /* Slot for %esi. */
3029 I386_EBP_REGNUM /* Slot for %edi. */
3030 };
3031
de5b9bb9 3032 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3033 return next_regnum[regnum];
28fc6740 3034
ff2e87ac
AC
3035 return -1;
3036}
3037
3038/* Return nonzero if a value of type TYPE stored in register REGNUM
3039 needs any special handling. */
d7a0d72c 3040
3a1e71e3 3041static int
1777feb0
MS
3042i386_convert_register_p (struct gdbarch *gdbarch,
3043 int regnum, struct type *type)
d7a0d72c 3044{
de5b9bb9
MK
3045 int len = TYPE_LENGTH (type);
3046
ff2e87ac
AC
3047 /* Values may be spread across multiple registers. Most debugging
3048 formats aren't expressive enough to specify the locations, so
3049 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3050 have a length that is a multiple of the word size, since GCC
3051 doesn't seem to put any other types into registers. */
3052 if (len > 4 && len % 4 == 0)
3053 {
3054 int last_regnum = regnum;
3055
3056 while (len > 4)
3057 {
3058 last_regnum = i386_next_regnum (last_regnum);
3059 len -= 4;
3060 }
3061
3062 if (last_regnum != -1)
3063 return 1;
3064 }
ff2e87ac 3065
0abe36f5 3066 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3067}
3068
ff2e87ac
AC
3069/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3070 return its contents in TO. */
ac27f131 3071
8dccd430 3072static int
ff2e87ac 3073i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3074 struct type *type, gdb_byte *to,
3075 int *optimizedp, int *unavailablep)
ac27f131 3076{
20a6ec49 3077 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3078 int len = TYPE_LENGTH (type);
de5b9bb9 3079
20a6ec49 3080 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3081 return i387_register_to_value (frame, regnum, type, to,
3082 optimizedp, unavailablep);
ff2e87ac 3083
fd35795f 3084 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3085
3086 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3087
de5b9bb9
MK
3088 while (len > 0)
3089 {
3090 gdb_assert (regnum != -1);
20a6ec49 3091 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3092
8dccd430
PA
3093 if (!get_frame_register_bytes (frame, regnum, 0,
3094 register_size (gdbarch, regnum),
3095 to, optimizedp, unavailablep))
3096 return 0;
3097
de5b9bb9
MK
3098 regnum = i386_next_regnum (regnum);
3099 len -= 4;
42835c2b 3100 to += 4;
de5b9bb9 3101 }
8dccd430
PA
3102
3103 *optimizedp = *unavailablep = 0;
3104 return 1;
ac27f131
MK
3105}
3106
ff2e87ac
AC
3107/* Write the contents FROM of a value of type TYPE into register
3108 REGNUM in frame FRAME. */
ac27f131 3109
3a1e71e3 3110static void
ff2e87ac 3111i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3112 struct type *type, const gdb_byte *from)
ac27f131 3113{
de5b9bb9 3114 int len = TYPE_LENGTH (type);
de5b9bb9 3115
20a6ec49 3116 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3117 {
d532c08f
MK
3118 i387_value_to_register (frame, regnum, type, from);
3119 return;
3120 }
3d261580 3121
fd35795f 3122 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3123
3124 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3125
de5b9bb9
MK
3126 while (len > 0)
3127 {
3128 gdb_assert (regnum != -1);
875f8d0e 3129 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3130
42835c2b 3131 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3132 regnum = i386_next_regnum (regnum);
3133 len -= 4;
42835c2b 3134 from += 4;
de5b9bb9 3135 }
ac27f131 3136}
ff2e87ac 3137\f
7fdafb5a
MK
3138/* Supply register REGNUM from the buffer specified by GREGS and LEN
3139 in the general-purpose register set REGSET to register cache
3140 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3141
20187ed5 3142void
473f17b0
MK
3143i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3144 int regnum, const void *gregs, size_t len)
3145{
9ea75c57 3146 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3147 const gdb_byte *regs = gregs;
473f17b0
MK
3148 int i;
3149
3150 gdb_assert (len == tdep->sizeof_gregset);
3151
3152 for (i = 0; i < tdep->gregset_num_regs; i++)
3153 {
3154 if ((regnum == i || regnum == -1)
3155 && tdep->gregset_reg_offset[i] != -1)
3156 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3157 }
3158}
3159
7fdafb5a
MK
3160/* Collect register REGNUM from the register cache REGCACHE and store
3161 it in the buffer specified by GREGS and LEN as described by the
3162 general-purpose register set REGSET. If REGNUM is -1, do this for
3163 all registers in REGSET. */
3164
3165void
3166i386_collect_gregset (const struct regset *regset,
3167 const struct regcache *regcache,
3168 int regnum, void *gregs, size_t len)
3169{
3170 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3171 gdb_byte *regs = gregs;
7fdafb5a
MK
3172 int i;
3173
3174 gdb_assert (len == tdep->sizeof_gregset);
3175
3176 for (i = 0; i < tdep->gregset_num_regs; i++)
3177 {
3178 if ((regnum == i || regnum == -1)
3179 && tdep->gregset_reg_offset[i] != -1)
3180 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3181 }
3182}
3183
3184/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3185 in the floating-point register set REGSET to register cache
3186 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3187
3188static void
3189i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3190 int regnum, const void *fpregs, size_t len)
3191{
9ea75c57 3192 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 3193
66a72d25
MK
3194 if (len == I387_SIZEOF_FXSAVE)
3195 {
3196 i387_supply_fxsave (regcache, regnum, fpregs);
3197 return;
3198 }
3199
473f17b0
MK
3200 gdb_assert (len == tdep->sizeof_fpregset);
3201 i387_supply_fsave (regcache, regnum, fpregs);
3202}
8446b36a 3203
2f305df1
MK
3204/* Collect register REGNUM from the register cache REGCACHE and store
3205 it in the buffer specified by FPREGS and LEN as described by the
3206 floating-point register set REGSET. If REGNUM is -1, do this for
3207 all registers in REGSET. */
7fdafb5a
MK
3208
3209static void
3210i386_collect_fpregset (const struct regset *regset,
3211 const struct regcache *regcache,
3212 int regnum, void *fpregs, size_t len)
3213{
3214 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3215
3216 if (len == I387_SIZEOF_FXSAVE)
3217 {
3218 i387_collect_fxsave (regcache, regnum, fpregs);
3219 return;
3220 }
3221
3222 gdb_assert (len == tdep->sizeof_fpregset);
3223 i387_collect_fsave (regcache, regnum, fpregs);
3224}
3225
c131fcee
L
3226/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3227
3228static void
3229i386_supply_xstateregset (const struct regset *regset,
3230 struct regcache *regcache, int regnum,
3231 const void *xstateregs, size_t len)
3232{
c131fcee
L
3233 i387_supply_xsave (regcache, regnum, xstateregs);
3234}
3235
3236/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3237
3238static void
3239i386_collect_xstateregset (const struct regset *regset,
3240 const struct regcache *regcache,
3241 int regnum, void *xstateregs, size_t len)
3242{
c131fcee
L
3243 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3244}
3245
8446b36a
MK
3246/* Return the appropriate register set for the core section identified
3247 by SECT_NAME and SECT_SIZE. */
3248
3249const struct regset *
3250i386_regset_from_core_section (struct gdbarch *gdbarch,
3251 const char *sect_name, size_t sect_size)
3252{
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254
3255 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3256 {
3257 if (tdep->gregset == NULL)
7fdafb5a
MK
3258 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3259 i386_collect_gregset);
8446b36a
MK
3260 return tdep->gregset;
3261 }
3262
66a72d25
MK
3263 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3264 || (strcmp (sect_name, ".reg-xfp") == 0
3265 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3266 {
3267 if (tdep->fpregset == NULL)
7fdafb5a
MK
3268 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3269 i386_collect_fpregset);
8446b36a
MK
3270 return tdep->fpregset;
3271 }
3272
c131fcee
L
3273 if (strcmp (sect_name, ".reg-xstate") == 0)
3274 {
3275 if (tdep->xstateregset == NULL)
3276 tdep->xstateregset = regset_alloc (gdbarch,
3277 i386_supply_xstateregset,
3278 i386_collect_xstateregset);
3279
3280 return tdep->xstateregset;
3281 }
3282
8446b36a
MK
3283 return NULL;
3284}
473f17b0 3285\f
fc338970 3286
fc338970 3287/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3288
3289CORE_ADDR
e17a4113
UW
3290i386_pe_skip_trampoline_code (struct frame_info *frame,
3291 CORE_ADDR pc, char *name)
c906108c 3292{
e17a4113
UW
3293 struct gdbarch *gdbarch = get_frame_arch (frame);
3294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3295
3296 /* jmp *(dest) */
3297 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3298 {
e17a4113
UW
3299 unsigned long indirect =
3300 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3301 struct minimal_symbol *indsym =
fc338970 3302 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
0d5cff50 3303 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3304
c5aa993b 3305 if (symname)
c906108c 3306 {
c5aa993b
JM
3307 if (strncmp (symname, "__imp_", 6) == 0
3308 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3309 return name ? 1 :
3310 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3311 }
3312 }
fc338970 3313 return 0; /* Not a trampoline. */
c906108c 3314}
fc338970
MK
3315\f
3316
10458914
DJ
3317/* Return whether the THIS_FRAME corresponds to a sigtramp
3318 routine. */
8201327c 3319
4bd207ef 3320int
10458914 3321i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3322{
10458914 3323 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3324 const char *name;
911bc6ee
MK
3325
3326 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3327 return (name && strcmp ("_sigtramp", name) == 0);
3328}
3329\f
3330
fc338970
MK
3331/* We have two flavours of disassembly. The machinery on this page
3332 deals with switching between those. */
c906108c
SS
3333
3334static int
a89aa300 3335i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3336{
5e3397bb
MK
3337 gdb_assert (disassembly_flavor == att_flavor
3338 || disassembly_flavor == intel_flavor);
3339
3340 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3341 constified, cast to prevent a compiler warning. */
3342 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3343
3344 return print_insn_i386 (pc, info);
7a292a7a 3345}
fc338970 3346\f
3ce1502b 3347
8201327c
MK
3348/* There are a few i386 architecture variants that differ only
3349 slightly from the generic i386 target. For now, we don't give them
3350 their own source file, but include them here. As a consequence,
3351 they'll always be included. */
3ce1502b 3352
8201327c 3353/* System V Release 4 (SVR4). */
3ce1502b 3354
10458914
DJ
3355/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3356 routine. */
911bc6ee 3357
8201327c 3358static int
10458914 3359i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3360{
10458914 3361 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3362 const char *name;
911bc6ee 3363
acd5c798
MK
3364 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3365 currently unknown. */
911bc6ee 3366 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3367 return (name && (strcmp ("_sigreturn", name) == 0
3368 || strcmp ("_sigacthandler", name) == 0
3369 || strcmp ("sigvechandler", name) == 0));
3370}
d2a7c97a 3371
10458914
DJ
3372/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3373 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3374
3a1e71e3 3375static CORE_ADDR
10458914 3376i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3377{
e17a4113
UW
3378 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3379 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3380 gdb_byte buf[4];
acd5c798 3381 CORE_ADDR sp;
3ce1502b 3382
10458914 3383 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3384 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3385
e17a4113 3386 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3387}
55aa24fb
SDJ
3388
3389\f
3390
3391/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3392 gdbarch.h. */
3393
3394int
3395i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3396{
3397 return (*s == '$' /* Literal number. */
3398 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3399 || (*s == '(' && s[1] == '%') /* Register indirection. */
3400 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3401}
3402
3403/* Implementation of `gdbarch_stap_parse_special_token', as defined in
3404 gdbarch.h. */
3405
3406int
3407i386_stap_parse_special_token (struct gdbarch *gdbarch,
3408 struct stap_parse_info *p)
3409{
55aa24fb
SDJ
3410 /* In order to parse special tokens, we use a state-machine that go
3411 through every known token and try to get a match. */
3412 enum
3413 {
3414 TRIPLET,
3415 THREE_ARG_DISPLACEMENT,
3416 DONE
3417 } current_state;
3418
3419 current_state = TRIPLET;
3420
3421 /* The special tokens to be parsed here are:
3422
3423 - `register base + (register index * size) + offset', as represented
3424 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3425
3426 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3427 `*(-8 + 3 - 1 + (void *) $eax)'. */
3428
3429 while (current_state != DONE)
3430 {
3431 const char *s = p->arg;
3432
3433 switch (current_state)
3434 {
3435 case TRIPLET:
3436 {
3437 if (isdigit (*s) || *s == '-' || *s == '+')
3438 {
3439 int got_minus[3];
3440 int i;
3441 long displacements[3];
3442 const char *start;
3443 char *regname;
3444 int len;
3445 struct stoken str;
3446
3447 got_minus[0] = 0;
3448 if (*s == '+')
3449 ++s;
3450 else if (*s == '-')
3451 {
3452 ++s;
3453 got_minus[0] = 1;
3454 }
3455
3456 displacements[0] = strtol (s, (char **) &s, 10);
3457
3458 if (*s != '+' && *s != '-')
3459 {
3460 /* We are not dealing with a triplet. */
3461 break;
3462 }
3463
3464 got_minus[1] = 0;
3465 if (*s == '+')
3466 ++s;
3467 else
3468 {
3469 ++s;
3470 got_minus[1] = 1;
3471 }
3472
3473 displacements[1] = strtol (s, (char **) &s, 10);
3474
3475 if (*s != '+' && *s != '-')
3476 {
3477 /* We are not dealing with a triplet. */
3478 break;
3479 }
3480
3481 got_minus[2] = 0;
3482 if (*s == '+')
3483 ++s;
3484 else
3485 {
3486 ++s;
3487 got_minus[2] = 1;
3488 }
3489
3490 displacements[2] = strtol (s, (char **) &s, 10);
3491
3492 if (*s != '(' || s[1] != '%')
3493 break;
3494
3495 s += 2;
3496 start = s;
3497
3498 while (isalnum (*s))
3499 ++s;
3500
3501 if (*s++ != ')')
3502 break;
3503
3504 len = s - start;
3505 regname = alloca (len + 1);
3506
3507 strncpy (regname, start, len);
3508 regname[len] = '\0';
3509
3510 if (user_reg_map_name_to_regnum (gdbarch,
3511 regname, len) == -1)
3512 error (_("Invalid register name `%s' "
3513 "on expression `%s'."),
3514 regname, p->saved_arg);
3515
3516 for (i = 0; i < 3; i++)
3517 {
3518 write_exp_elt_opcode (OP_LONG);
3519 write_exp_elt_type
3520 (builtin_type (gdbarch)->builtin_long);
3521 write_exp_elt_longcst (displacements[i]);
3522 write_exp_elt_opcode (OP_LONG);
3523 if (got_minus[i])
3524 write_exp_elt_opcode (UNOP_NEG);
3525 }
3526
3527 write_exp_elt_opcode (OP_REGISTER);
3528 str.ptr = regname;
3529 str.length = len;
3530 write_exp_string (str);
3531 write_exp_elt_opcode (OP_REGISTER);
3532
3533 write_exp_elt_opcode (UNOP_CAST);
3534 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3535 write_exp_elt_opcode (UNOP_CAST);
3536
3537 write_exp_elt_opcode (BINOP_ADD);
3538 write_exp_elt_opcode (BINOP_ADD);
3539 write_exp_elt_opcode (BINOP_ADD);
3540
3541 write_exp_elt_opcode (UNOP_CAST);
3542 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3543 write_exp_elt_opcode (UNOP_CAST);
3544
3545 write_exp_elt_opcode (UNOP_IND);
3546
3547 p->arg = s;
3548
3549 return 1;
3550 }
3551 break;
3552 }
3553 case THREE_ARG_DISPLACEMENT:
3554 {
3555 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3556 {
3557 int offset_minus = 0;
3558 long offset = 0;
3559 int size_minus = 0;
3560 long size = 0;
3561 const char *start;
3562 char *base;
3563 int len_base;
3564 char *index;
3565 int len_index;
3566 struct stoken base_token, index_token;
3567
3568 if (*s == '+')
3569 ++s;
3570 else if (*s == '-')
3571 {
3572 ++s;
3573 offset_minus = 1;
3574 }
3575
3576 if (offset_minus && !isdigit (*s))
3577 break;
3578
3579 if (isdigit (*s))
3580 offset = strtol (s, (char **) &s, 10);
3581
3582 if (*s != '(' || s[1] != '%')
3583 break;
3584
3585 s += 2;
3586 start = s;
3587
3588 while (isalnum (*s))
3589 ++s;
3590
3591 if (*s != ',' || s[1] != '%')
3592 break;
3593
3594 len_base = s - start;
3595 base = alloca (len_base + 1);
3596 strncpy (base, start, len_base);
3597 base[len_base] = '\0';
3598
3599 if (user_reg_map_name_to_regnum (gdbarch,
3600 base, len_base) == -1)
3601 error (_("Invalid register name `%s' "
3602 "on expression `%s'."),
3603 base, p->saved_arg);
3604
3605 s += 2;
3606 start = s;
3607
3608 while (isalnum (*s))
3609 ++s;
3610
3611 len_index = s - start;
3612 index = alloca (len_index + 1);
3613 strncpy (index, start, len_index);
3614 index[len_index] = '\0';
3615
3616 if (user_reg_map_name_to_regnum (gdbarch,
3617 index, len_index) == -1)
3618 error (_("Invalid register name `%s' "
3619 "on expression `%s'."),
3620 index, p->saved_arg);
3621
3622 if (*s != ',' && *s != ')')
3623 break;
3624
3625 if (*s == ',')
3626 {
3627 ++s;
3628 if (*s == '+')
3629 ++s;
3630 else if (*s == '-')
3631 {
3632 ++s;
3633 size_minus = 1;
3634 }
3635
3636 size = strtol (s, (char **) &s, 10);
3637
3638 if (*s != ')')
3639 break;
3640 }
3641
3642 ++s;
3643
3644 if (offset)
3645 {
3646 write_exp_elt_opcode (OP_LONG);
3647 write_exp_elt_type
3648 (builtin_type (gdbarch)->builtin_long);
3649 write_exp_elt_longcst (offset);
3650 write_exp_elt_opcode (OP_LONG);
3651 if (offset_minus)
3652 write_exp_elt_opcode (UNOP_NEG);
3653 }
3654
3655 write_exp_elt_opcode (OP_REGISTER);
3656 base_token.ptr = base;
3657 base_token.length = len_base;
3658 write_exp_string (base_token);
3659 write_exp_elt_opcode (OP_REGISTER);
3660
3661 if (offset)
3662 write_exp_elt_opcode (BINOP_ADD);
3663
3664 write_exp_elt_opcode (OP_REGISTER);
3665 index_token.ptr = index;
3666 index_token.length = len_index;
3667 write_exp_string (index_token);
3668 write_exp_elt_opcode (OP_REGISTER);
3669
3670 if (size)
3671 {
3672 write_exp_elt_opcode (OP_LONG);
3673 write_exp_elt_type
3674 (builtin_type (gdbarch)->builtin_long);
3675 write_exp_elt_longcst (size);
3676 write_exp_elt_opcode (OP_LONG);
3677 if (size_minus)
3678 write_exp_elt_opcode (UNOP_NEG);
3679 write_exp_elt_opcode (BINOP_MUL);
3680 }
3681
3682 write_exp_elt_opcode (BINOP_ADD);
3683
3684 write_exp_elt_opcode (UNOP_CAST);
3685 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3686 write_exp_elt_opcode (UNOP_CAST);
3687
3688 write_exp_elt_opcode (UNOP_IND);
3689
3690 p->arg = s;
3691
3692 return 1;
3693 }
3694 break;
3695 }
3696 }
3697
3698 /* Advancing to the next state. */
3699 ++current_state;
3700 }
3701
3702 return 0;
3703}
3704
8201327c 3705\f
3ce1502b 3706
8201327c 3707/* Generic ELF. */
d2a7c97a 3708
8201327c
MK
3709void
3710i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3711{
c4fc7f1b
MK
3712 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3713 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
3714
3715 /* Registering SystemTap handlers. */
3716 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3717 set_gdbarch_stap_register_prefix (gdbarch, "%");
3718 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3719 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3720 set_gdbarch_stap_is_single_operand (gdbarch,
3721 i386_stap_is_single_operand);
3722 set_gdbarch_stap_parse_special_token (gdbarch,
3723 i386_stap_parse_special_token);
8201327c 3724}
3ce1502b 3725
8201327c 3726/* System V Release 4 (SVR4). */
3ce1502b 3727
8201327c
MK
3728void
3729i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3730{
3731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3732
8201327c
MK
3733 /* System V Release 4 uses ELF. */
3734 i386_elf_init_abi (info, gdbarch);
3ce1502b 3735
dfe01d39 3736 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3737 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3738
911bc6ee 3739 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3740 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3741 tdep->sc_pc_offset = 36 + 14 * 4;
3742 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3743
8201327c 3744 tdep->jb_pc_offset = 20;
3ce1502b
MK
3745}
3746
8201327c 3747/* DJGPP. */
3ce1502b 3748
3a1e71e3 3749static void
8201327c 3750i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3751{
8201327c 3752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3753
911bc6ee
MK
3754 /* DJGPP doesn't have any special frames for signal handlers. */
3755 tdep->sigtramp_p = NULL;
3ce1502b 3756
8201327c 3757 tdep->jb_pc_offset = 36;
15430fc0
EZ
3758
3759 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3760 if (! tdesc_has_registers (info.target_desc))
3761 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3762
3763 /* Native compiler is GCC, which uses the SVR4 register numbering
3764 even in COFF and STABS. See the comment in i386_gdbarch_init,
3765 before the calls to set_gdbarch_stab_reg_to_regnum and
3766 set_gdbarch_sdb_reg_to_regnum. */
3767 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3768 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3769
3770 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3771}
8201327c 3772\f
2acceee2 3773
38c968cf
AC
3774/* i386 register groups. In addition to the normal groups, add "mmx"
3775 and "sse". */
3776
3777static struct reggroup *i386_sse_reggroup;
3778static struct reggroup *i386_mmx_reggroup;
3779
3780static void
3781i386_init_reggroups (void)
3782{
3783 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3784 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3785}
3786
3787static void
3788i386_add_reggroups (struct gdbarch *gdbarch)
3789{
3790 reggroup_add (gdbarch, i386_sse_reggroup);
3791 reggroup_add (gdbarch, i386_mmx_reggroup);
3792 reggroup_add (gdbarch, general_reggroup);
3793 reggroup_add (gdbarch, float_reggroup);
3794 reggroup_add (gdbarch, all_reggroup);
3795 reggroup_add (gdbarch, save_reggroup);
3796 reggroup_add (gdbarch, restore_reggroup);
3797 reggroup_add (gdbarch, vector_reggroup);
3798 reggroup_add (gdbarch, system_reggroup);
3799}
3800
3801int
3802i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3803 struct reggroup *group)
3804{
c131fcee
L
3805 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3806 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3807 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3808
1ba53b71
L
3809 /* Don't include pseudo registers, except for MMX, in any register
3810 groups. */
c131fcee 3811 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3812 return 0;
3813
c131fcee 3814 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3815 return 0;
3816
c131fcee 3817 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3818 return 0;
3819
3820 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3821 if (group == i386_mmx_reggroup)
3822 return mmx_regnum_p;
1ba53b71 3823
c131fcee
L
3824 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3825 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3826 if (group == i386_sse_reggroup)
c131fcee
L
3827 return xmm_regnum_p || mxcsr_regnum_p;
3828
3829 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3830 if (group == vector_reggroup)
c131fcee
L
3831 return (mmx_regnum_p
3832 || ymm_regnum_p
3833 || mxcsr_regnum_p
3834 || (xmm_regnum_p
3835 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3836 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3837
3838 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3839 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3840 if (group == float_reggroup)
3841 return fp_regnum_p;
1ba53b71 3842
c131fcee
L
3843 /* For "info reg all", don't include upper YMM registers nor XMM
3844 registers when AVX is supported. */
3845 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3846 if (group == all_reggroup
3847 && ((xmm_regnum_p
3848 && (tdep->xcr0 & I386_XSTATE_AVX))
3849 || ymmh_regnum_p))
3850 return 0;
3851
38c968cf 3852 if (group == general_reggroup)
1ba53b71
L
3853 return (!fp_regnum_p
3854 && !mmx_regnum_p
c131fcee
L
3855 && !mxcsr_regnum_p
3856 && !xmm_regnum_p
3857 && !ymm_regnum_p
3858 && !ymmh_regnum_p);
acd5c798 3859
38c968cf
AC
3860 return default_register_reggroup_p (gdbarch, regnum, group);
3861}
38c968cf 3862\f
acd5c798 3863
f837910f
MK
3864/* Get the ARGIth function argument for the current function. */
3865
42c466d7 3866static CORE_ADDR
143985b7
AF
3867i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3868 struct type *type)
3869{
e17a4113
UW
3870 struct gdbarch *gdbarch = get_frame_arch (frame);
3871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 3872 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3873 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3874}
3875
514f746b
AR
3876static void
3877i386_skip_permanent_breakpoint (struct regcache *regcache)
3878{
3879 CORE_ADDR current_pc = regcache_read_pc (regcache);
3880
3881 /* On i386, breakpoint is exactly 1 byte long, so we just
3882 adjust the PC in the regcache. */
3883 current_pc += 1;
3884 regcache_write_pc (regcache, current_pc);
3885}
3886
3887
7ad10968
HZ
3888#define PREFIX_REPZ 0x01
3889#define PREFIX_REPNZ 0x02
3890#define PREFIX_LOCK 0x04
3891#define PREFIX_DATA 0x08
3892#define PREFIX_ADDR 0x10
473f17b0 3893
7ad10968
HZ
3894/* operand size */
3895enum
3896{
3897 OT_BYTE = 0,
3898 OT_WORD,
3899 OT_LONG,
cf648174 3900 OT_QUAD,
a3c4230a 3901 OT_DQUAD,
7ad10968 3902};
473f17b0 3903
7ad10968
HZ
3904/* i386 arith/logic operations */
3905enum
3906{
3907 OP_ADDL,
3908 OP_ORL,
3909 OP_ADCL,
3910 OP_SBBL,
3911 OP_ANDL,
3912 OP_SUBL,
3913 OP_XORL,
3914 OP_CMPL,
3915};
5716833c 3916
7ad10968
HZ
3917struct i386_record_s
3918{
cf648174 3919 struct gdbarch *gdbarch;
7ad10968 3920 struct regcache *regcache;
df61f520 3921 CORE_ADDR orig_addr;
7ad10968
HZ
3922 CORE_ADDR addr;
3923 int aflag;
3924 int dflag;
3925 int override;
3926 uint8_t modrm;
3927 uint8_t mod, reg, rm;
3928 int ot;
cf648174
HZ
3929 uint8_t rex_x;
3930 uint8_t rex_b;
3931 int rip_offset;
3932 int popl_esp_hack;
3933 const int *regmap;
7ad10968 3934};
5716833c 3935
99c1624c
PA
3936/* Parse the "modrm" part of the memory address irp->addr points at.
3937 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 3938
7ad10968
HZ
3939static int
3940i386_record_modrm (struct i386_record_s *irp)
3941{
cf648174 3942 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3943
4ffa4fc7
PA
3944 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3945 return -1;
3946
7ad10968
HZ
3947 irp->addr++;
3948 irp->mod = (irp->modrm >> 6) & 3;
3949 irp->reg = (irp->modrm >> 3) & 7;
3950 irp->rm = irp->modrm & 7;
5716833c 3951
7ad10968
HZ
3952 return 0;
3953}
d2a7c97a 3954
99c1624c
PA
3955/* Extract the memory address that the current instruction writes to,
3956 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 3957
7ad10968 3958static int
cf648174 3959i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3960{
cf648174 3961 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3962 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3963 gdb_byte buf[4];
3964 ULONGEST offset64;
21d0e8a4 3965
7ad10968
HZ
3966 *addr = 0;
3967 if (irp->aflag)
3968 {
3969 /* 32 bits */
3970 int havesib = 0;
3971 uint8_t scale = 0;
648d0c8b 3972 uint8_t byte;
7ad10968
HZ
3973 uint8_t index = 0;
3974 uint8_t base = irp->rm;
896fb97d 3975
7ad10968
HZ
3976 if (base == 4)
3977 {
3978 havesib = 1;
4ffa4fc7
PA
3979 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
3980 return -1;
7ad10968 3981 irp->addr++;
648d0c8b
MS
3982 scale = (byte >> 6) & 3;
3983 index = ((byte >> 3) & 7) | irp->rex_x;
3984 base = (byte & 7);
7ad10968 3985 }
cf648174 3986 base |= irp->rex_b;
21d0e8a4 3987
7ad10968
HZ
3988 switch (irp->mod)
3989 {
3990 case 0:
3991 if ((base & 7) == 5)
3992 {
3993 base = 0xff;
4ffa4fc7
PA
3994 if (record_read_memory (gdbarch, irp->addr, buf, 4))
3995 return -1;
7ad10968 3996 irp->addr += 4;
60a1502a 3997 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
3998 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3999 *addr += irp->addr + irp->rip_offset;
7ad10968 4000 }
7ad10968
HZ
4001 break;
4002 case 1:
4ffa4fc7
PA
4003 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4004 return -1;
7ad10968 4005 irp->addr++;
60a1502a 4006 *addr = (int8_t) buf[0];
7ad10968
HZ
4007 break;
4008 case 2:
4ffa4fc7
PA
4009 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4010 return -1;
60a1502a 4011 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4012 irp->addr += 4;
4013 break;
4014 }
356a6b3e 4015
60a1502a 4016 offset64 = 0;
7ad10968 4017 if (base != 0xff)
cf648174
HZ
4018 {
4019 if (base == 4 && irp->popl_esp_hack)
4020 *addr += irp->popl_esp_hack;
4021 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4022 &offset64);
7ad10968 4023 }
cf648174
HZ
4024 if (irp->aflag == 2)
4025 {
60a1502a 4026 *addr += offset64;
cf648174
HZ
4027 }
4028 else
60a1502a 4029 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4030
7ad10968
HZ
4031 if (havesib && (index != 4 || scale != 0))
4032 {
cf648174 4033 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4034 &offset64);
cf648174 4035 if (irp->aflag == 2)
60a1502a 4036 *addr += offset64 << scale;
cf648174 4037 else
60a1502a 4038 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
4039 }
4040 }
4041 else
4042 {
4043 /* 16 bits */
4044 switch (irp->mod)
4045 {
4046 case 0:
4047 if (irp->rm == 6)
4048 {
4ffa4fc7
PA
4049 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4050 return -1;
7ad10968 4051 irp->addr += 2;
60a1502a 4052 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4053 irp->rm = 0;
4054 goto no_rm;
4055 }
7ad10968
HZ
4056 break;
4057 case 1:
4ffa4fc7
PA
4058 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4059 return -1;
7ad10968 4060 irp->addr++;
60a1502a 4061 *addr = (int8_t) buf[0];
7ad10968
HZ
4062 break;
4063 case 2:
4ffa4fc7
PA
4064 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4065 return -1;
7ad10968 4066 irp->addr += 2;
60a1502a 4067 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4068 break;
4069 }
c4fc7f1b 4070
7ad10968
HZ
4071 switch (irp->rm)
4072 {
4073 case 0:
cf648174
HZ
4074 regcache_raw_read_unsigned (irp->regcache,
4075 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4076 &offset64);
4077 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4078 regcache_raw_read_unsigned (irp->regcache,
4079 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4080 &offset64);
4081 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4082 break;
4083 case 1:
cf648174
HZ
4084 regcache_raw_read_unsigned (irp->regcache,
4085 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4086 &offset64);
4087 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4088 regcache_raw_read_unsigned (irp->regcache,
4089 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4090 &offset64);
4091 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4092 break;
4093 case 2:
cf648174
HZ
4094 regcache_raw_read_unsigned (irp->regcache,
4095 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4096 &offset64);
4097 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4098 regcache_raw_read_unsigned (irp->regcache,
4099 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4100 &offset64);
4101 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4102 break;
4103 case 3:
cf648174
HZ
4104 regcache_raw_read_unsigned (irp->regcache,
4105 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4106 &offset64);
4107 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4108 regcache_raw_read_unsigned (irp->regcache,
4109 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4110 &offset64);
4111 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4112 break;
4113 case 4:
cf648174
HZ
4114 regcache_raw_read_unsigned (irp->regcache,
4115 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4116 &offset64);
4117 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4118 break;
4119 case 5:
cf648174
HZ
4120 regcache_raw_read_unsigned (irp->regcache,
4121 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4122 &offset64);
4123 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4124 break;
4125 case 6:
cf648174
HZ
4126 regcache_raw_read_unsigned (irp->regcache,
4127 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4128 &offset64);
4129 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4130 break;
4131 case 7:
cf648174
HZ
4132 regcache_raw_read_unsigned (irp->regcache,
4133 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4134 &offset64);
4135 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4136 break;
4137 }
4138 *addr &= 0xffff;
4139 }
c4fc7f1b 4140
01fe1b41 4141 no_rm:
7ad10968
HZ
4142 return 0;
4143}
c4fc7f1b 4144
99c1624c
PA
4145/* Record the address and contents of the memory that will be changed
4146 by the current instruction. Return -1 if something goes wrong, 0
4147 otherwise. */
356a6b3e 4148
7ad10968
HZ
4149static int
4150i386_record_lea_modrm (struct i386_record_s *irp)
4151{
cf648174
HZ
4152 struct gdbarch *gdbarch = irp->gdbarch;
4153 uint64_t addr;
356a6b3e 4154
d7877f7e 4155 if (irp->override >= 0)
7ad10968 4156 {
bb08c432
HZ
4157 if (record_memory_query)
4158 {
4159 int q;
4160
4161 target_terminal_ours ();
4162 q = yquery (_("\
4163Process record ignores the memory change of instruction at address %s\n\
4164because it can't get the value of the segment register.\n\
4165Do you want to stop the program?"),
4166 paddress (gdbarch, irp->orig_addr));
4167 target_terminal_inferior ();
4168 if (q)
4169 return -1;
4170 }
4171
7ad10968
HZ
4172 return 0;
4173 }
61113f8b 4174
7ad10968
HZ
4175 if (i386_record_lea_modrm_addr (irp, &addr))
4176 return -1;
96297dab 4177
7ad10968
HZ
4178 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4179 return -1;
a62cc96e 4180
7ad10968
HZ
4181 return 0;
4182}
b6197528 4183
99c1624c
PA
4184/* Record the effects of a push operation. Return -1 if something
4185 goes wrong, 0 otherwise. */
cf648174
HZ
4186
4187static int
4188i386_record_push (struct i386_record_s *irp, int size)
4189{
648d0c8b 4190 ULONGEST addr;
cf648174
HZ
4191
4192 if (record_arch_list_add_reg (irp->regcache,
4193 irp->regmap[X86_RECORD_RESP_REGNUM]))
4194 return -1;
4195 regcache_raw_read_unsigned (irp->regcache,
4196 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
4197 &addr);
4198 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4199 return -1;
4200
4201 return 0;
4202}
4203
0289bdd7
MS
4204
4205/* Defines contents to record. */
4206#define I386_SAVE_FPU_REGS 0xfffd
4207#define I386_SAVE_FPU_ENV 0xfffe
4208#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4209
99c1624c
PA
4210/* Record the values of the floating point registers which will be
4211 changed by the current instruction. Returns -1 if something is
4212 wrong, 0 otherwise. */
0289bdd7
MS
4213
4214static int i386_record_floats (struct gdbarch *gdbarch,
4215 struct i386_record_s *ir,
4216 uint32_t iregnum)
4217{
4218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4219 int i;
4220
4221 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4222 happen. Currently we store st0-st7 registers, but we need not store all
4223 registers all the time, in future we use ftag register and record only
4224 those who are not marked as an empty. */
4225
4226 if (I386_SAVE_FPU_REGS == iregnum)
4227 {
4228 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4229 {
4230 if (record_arch_list_add_reg (ir->regcache, i))
4231 return -1;
4232 }
4233 }
4234 else if (I386_SAVE_FPU_ENV == iregnum)
4235 {
4236 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4237 {
4238 if (record_arch_list_add_reg (ir->regcache, i))
4239 return -1;
4240 }
4241 }
4242 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4243 {
4244 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4245 {
4246 if (record_arch_list_add_reg (ir->regcache, i))
4247 return -1;
4248 }
4249 }
4250 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4251 (iregnum <= I387_FOP_REGNUM (tdep)))
4252 {
4253 if (record_arch_list_add_reg (ir->regcache,iregnum))
4254 return -1;
4255 }
4256 else
4257 {
4258 /* Parameter error. */
4259 return -1;
4260 }
4261 if(I386_SAVE_FPU_ENV != iregnum)
4262 {
4263 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4264 {
4265 if (record_arch_list_add_reg (ir->regcache, i))
4266 return -1;
4267 }
4268 }
4269 return 0;
4270}
4271
99c1624c
PA
4272/* Parse the current instruction, and record the values of the
4273 registers and memory that will be changed by the current
4274 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4275
cf648174
HZ
4276#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4277 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4278
a6b808b4 4279int
7ad10968 4280i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4281 CORE_ADDR input_addr)
7ad10968 4282{
60a1502a 4283 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4284 int prefixes = 0;
580879fc 4285 int regnum = 0;
425b824a 4286 uint32_t opcode;
f4644a3f 4287 uint8_t opcode8;
648d0c8b 4288 ULONGEST addr;
60a1502a 4289 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4290 struct i386_record_s ir;
0289bdd7 4291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4292 int rex = 0;
4293 uint8_t rex_w = -1;
4294 uint8_t rex_r = 0;
7ad10968 4295
8408d274 4296 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4297 ir.regcache = regcache;
648d0c8b
MS
4298 ir.addr = input_addr;
4299 ir.orig_addr = input_addr;
7ad10968
HZ
4300 ir.aflag = 1;
4301 ir.dflag = 1;
cf648174
HZ
4302 ir.override = -1;
4303 ir.popl_esp_hack = 0;
a3c4230a 4304 ir.regmap = tdep->record_regmap;
cf648174 4305 ir.gdbarch = gdbarch;
7ad10968
HZ
4306
4307 if (record_debug > 1)
4308 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4309 "addr = %s\n",
4310 paddress (gdbarch, ir.addr));
7ad10968
HZ
4311
4312 /* prefixes */
4313 while (1)
4314 {
4ffa4fc7
PA
4315 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4316 return -1;
7ad10968 4317 ir.addr++;
425b824a 4318 switch (opcode8) /* Instruction prefixes */
7ad10968 4319 {
01fe1b41 4320 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4321 prefixes |= PREFIX_REPZ;
4322 break;
01fe1b41 4323 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4324 prefixes |= PREFIX_REPNZ;
4325 break;
01fe1b41 4326 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4327 prefixes |= PREFIX_LOCK;
4328 break;
01fe1b41 4329 case CS_PREFIX_OPCODE:
cf648174 4330 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4331 break;
01fe1b41 4332 case SS_PREFIX_OPCODE:
cf648174 4333 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4334 break;
01fe1b41 4335 case DS_PREFIX_OPCODE:
cf648174 4336 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4337 break;
01fe1b41 4338 case ES_PREFIX_OPCODE:
cf648174 4339 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4340 break;
01fe1b41 4341 case FS_PREFIX_OPCODE:
cf648174 4342 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4343 break;
01fe1b41 4344 case GS_PREFIX_OPCODE:
cf648174 4345 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4346 break;
01fe1b41 4347 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4348 prefixes |= PREFIX_DATA;
4349 break;
01fe1b41 4350 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4351 prefixes |= PREFIX_ADDR;
4352 break;
d691bec7
MS
4353 case 0x40: /* i386 inc %eax */
4354 case 0x41: /* i386 inc %ecx */
4355 case 0x42: /* i386 inc %edx */
4356 case 0x43: /* i386 inc %ebx */
4357 case 0x44: /* i386 inc %esp */
4358 case 0x45: /* i386 inc %ebp */
4359 case 0x46: /* i386 inc %esi */
4360 case 0x47: /* i386 inc %edi */
4361 case 0x48: /* i386 dec %eax */
4362 case 0x49: /* i386 dec %ecx */
4363 case 0x4a: /* i386 dec %edx */
4364 case 0x4b: /* i386 dec %ebx */
4365 case 0x4c: /* i386 dec %esp */
4366 case 0x4d: /* i386 dec %ebp */
4367 case 0x4e: /* i386 dec %esi */
4368 case 0x4f: /* i386 dec %edi */
4369 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
4370 {
4371 /* REX */
4372 rex = 1;
425b824a
MS
4373 rex_w = (opcode8 >> 3) & 1;
4374 rex_r = (opcode8 & 0x4) << 1;
4375 ir.rex_x = (opcode8 & 0x2) << 2;
4376 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 4377 }
d691bec7
MS
4378 else /* 32 bit target */
4379 goto out_prefixes;
cf648174 4380 break;
7ad10968
HZ
4381 default:
4382 goto out_prefixes;
4383 break;
4384 }
4385 }
01fe1b41 4386 out_prefixes:
cf648174
HZ
4387 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4388 {
4389 ir.dflag = 2;
4390 }
4391 else
4392 {
4393 if (prefixes & PREFIX_DATA)
4394 ir.dflag ^= 1;
4395 }
7ad10968
HZ
4396 if (prefixes & PREFIX_ADDR)
4397 ir.aflag ^= 1;
cf648174
HZ
4398 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4399 ir.aflag = 2;
7ad10968 4400
1777feb0 4401 /* Now check op code. */
425b824a 4402 opcode = (uint32_t) opcode8;
01fe1b41 4403 reswitch:
7ad10968
HZ
4404 switch (opcode)
4405 {
4406 case 0x0f:
4ffa4fc7
PA
4407 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4408 return -1;
7ad10968 4409 ir.addr++;
a3c4230a 4410 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
4411 goto reswitch;
4412 break;
93924b6b 4413
a38bba38 4414 case 0x00: /* arith & logic */
7ad10968
HZ
4415 case 0x01:
4416 case 0x02:
4417 case 0x03:
4418 case 0x04:
4419 case 0x05:
4420 case 0x08:
4421 case 0x09:
4422 case 0x0a:
4423 case 0x0b:
4424 case 0x0c:
4425 case 0x0d:
4426 case 0x10:
4427 case 0x11:
4428 case 0x12:
4429 case 0x13:
4430 case 0x14:
4431 case 0x15:
4432 case 0x18:
4433 case 0x19:
4434 case 0x1a:
4435 case 0x1b:
4436 case 0x1c:
4437 case 0x1d:
4438 case 0x20:
4439 case 0x21:
4440 case 0x22:
4441 case 0x23:
4442 case 0x24:
4443 case 0x25:
4444 case 0x28:
4445 case 0x29:
4446 case 0x2a:
4447 case 0x2b:
4448 case 0x2c:
4449 case 0x2d:
4450 case 0x30:
4451 case 0x31:
4452 case 0x32:
4453 case 0x33:
4454 case 0x34:
4455 case 0x35:
4456 case 0x38:
4457 case 0x39:
4458 case 0x3a:
4459 case 0x3b:
4460 case 0x3c:
4461 case 0x3d:
4462 if (((opcode >> 3) & 7) != OP_CMPL)
4463 {
4464 if ((opcode & 1) == 0)
4465 ir.ot = OT_BYTE;
4466 else
4467 ir.ot = ir.dflag + OT_WORD;
93924b6b 4468
7ad10968
HZ
4469 switch ((opcode >> 1) & 3)
4470 {
a38bba38 4471 case 0: /* OP Ev, Gv */
7ad10968
HZ
4472 if (i386_record_modrm (&ir))
4473 return -1;
4474 if (ir.mod != 3)
4475 {
4476 if (i386_record_lea_modrm (&ir))
4477 return -1;
4478 }
4479 else
4480 {
cf648174
HZ
4481 ir.rm |= ir.rex_b;
4482 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4483 ir.rm &= 0x3;
cf648174 4484 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4485 }
4486 break;
a38bba38 4487 case 1: /* OP Gv, Ev */
7ad10968
HZ
4488 if (i386_record_modrm (&ir))
4489 return -1;
cf648174
HZ
4490 ir.reg |= rex_r;
4491 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4492 ir.reg &= 0x3;
cf648174 4493 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4494 break;
a38bba38 4495 case 2: /* OP A, Iv */
cf648174 4496 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4497 break;
4498 }
4499 }
cf648174 4500 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4501 break;
42fdc8df 4502
a38bba38 4503 case 0x80: /* GRP1 */
7ad10968
HZ
4504 case 0x81:
4505 case 0x82:
4506 case 0x83:
4507 if (i386_record_modrm (&ir))
4508 return -1;
8201327c 4509
7ad10968
HZ
4510 if (ir.reg != OP_CMPL)
4511 {
4512 if ((opcode & 1) == 0)
4513 ir.ot = OT_BYTE;
4514 else
4515 ir.ot = ir.dflag + OT_WORD;
28fc6740 4516
7ad10968
HZ
4517 if (ir.mod != 3)
4518 {
cf648174
HZ
4519 if (opcode == 0x83)
4520 ir.rip_offset = 1;
4521 else
4522 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4523 if (i386_record_lea_modrm (&ir))
4524 return -1;
4525 }
4526 else
cf648174 4527 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4528 }
cf648174 4529 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4530 break;
5e3397bb 4531
a38bba38 4532 case 0x40: /* inc */
7ad10968
HZ
4533 case 0x41:
4534 case 0x42:
4535 case 0x43:
4536 case 0x44:
4537 case 0x45:
4538 case 0x46:
4539 case 0x47:
a38bba38
MS
4540
4541 case 0x48: /* dec */
7ad10968
HZ
4542 case 0x49:
4543 case 0x4a:
4544 case 0x4b:
4545 case 0x4c:
4546 case 0x4d:
4547 case 0x4e:
4548 case 0x4f:
a38bba38 4549
cf648174
HZ
4550 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4551 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4552 break;
acd5c798 4553
a38bba38 4554 case 0xf6: /* GRP3 */
7ad10968
HZ
4555 case 0xf7:
4556 if ((opcode & 1) == 0)
4557 ir.ot = OT_BYTE;
4558 else
4559 ir.ot = ir.dflag + OT_WORD;
4560 if (i386_record_modrm (&ir))
4561 return -1;
acd5c798 4562
cf648174
HZ
4563 if (ir.mod != 3 && ir.reg == 0)
4564 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4565
7ad10968
HZ
4566 switch (ir.reg)
4567 {
a38bba38 4568 case 0: /* test */
cf648174 4569 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4570 break;
a38bba38
MS
4571 case 2: /* not */
4572 case 3: /* neg */
7ad10968
HZ
4573 if (ir.mod != 3)
4574 {
4575 if (i386_record_lea_modrm (&ir))
4576 return -1;
4577 }
4578 else
4579 {
cf648174
HZ
4580 ir.rm |= ir.rex_b;
4581 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4582 ir.rm &= 0x3;
cf648174 4583 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4584 }
a38bba38 4585 if (ir.reg == 3) /* neg */
cf648174 4586 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4587 break;
a38bba38
MS
4588 case 4: /* mul */
4589 case 5: /* imul */
4590 case 6: /* div */
4591 case 7: /* idiv */
cf648174 4592 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4593 if (ir.ot != OT_BYTE)
cf648174
HZ
4594 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4595 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4596 break;
4597 default:
4598 ir.addr -= 2;
4599 opcode = opcode << 8 | ir.modrm;
4600 goto no_support;
4601 break;
4602 }
4603 break;
4604
a38bba38
MS
4605 case 0xfe: /* GRP4 */
4606 case 0xff: /* GRP5 */
7ad10968
HZ
4607 if (i386_record_modrm (&ir))
4608 return -1;
4609 if (ir.reg >= 2 && opcode == 0xfe)
4610 {
4611 ir.addr -= 2;
4612 opcode = opcode << 8 | ir.modrm;
4613 goto no_support;
4614 }
7ad10968
HZ
4615 switch (ir.reg)
4616 {
a38bba38
MS
4617 case 0: /* inc */
4618 case 1: /* dec */
cf648174
HZ
4619 if ((opcode & 1) == 0)
4620 ir.ot = OT_BYTE;
4621 else
4622 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4623 if (ir.mod != 3)
4624 {
4625 if (i386_record_lea_modrm (&ir))
4626 return -1;
4627 }
4628 else
4629 {
cf648174
HZ
4630 ir.rm |= ir.rex_b;
4631 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4632 ir.rm &= 0x3;
cf648174 4633 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4634 }
cf648174 4635 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4636 break;
a38bba38 4637 case 2: /* call */
cf648174
HZ
4638 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4639 ir.dflag = 2;
4640 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4641 return -1;
cf648174 4642 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4643 break;
a38bba38 4644 case 3: /* lcall */
cf648174
HZ
4645 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4646 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4647 return -1;
cf648174 4648 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4649 break;
a38bba38
MS
4650 case 4: /* jmp */
4651 case 5: /* ljmp */
cf648174
HZ
4652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4653 break;
a38bba38 4654 case 6: /* push */
cf648174
HZ
4655 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4656 ir.dflag = 2;
4657 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4658 return -1;
7ad10968
HZ
4659 break;
4660 default:
4661 ir.addr -= 2;
4662 opcode = opcode << 8 | ir.modrm;
4663 goto no_support;
4664 break;
4665 }
4666 break;
4667
a38bba38 4668 case 0x84: /* test */
7ad10968
HZ
4669 case 0x85:
4670 case 0xa8:
4671 case 0xa9:
cf648174 4672 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4673 break;
4674
a38bba38 4675 case 0x98: /* CWDE/CBW */
cf648174 4676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4677 break;
4678
a38bba38 4679 case 0x99: /* CDQ/CWD */
cf648174
HZ
4680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4681 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4682 break;
4683
a38bba38 4684 case 0x0faf: /* imul */
7ad10968
HZ
4685 case 0x69:
4686 case 0x6b:
4687 ir.ot = ir.dflag + OT_WORD;
4688 if (i386_record_modrm (&ir))
4689 return -1;
cf648174
HZ
4690 if (opcode == 0x69)
4691 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4692 else if (opcode == 0x6b)
4693 ir.rip_offset = 1;
4694 ir.reg |= rex_r;
4695 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4696 ir.reg &= 0x3;
cf648174
HZ
4697 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4698 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4699 break;
4700
a38bba38 4701 case 0x0fc0: /* xadd */
7ad10968
HZ
4702 case 0x0fc1:
4703 if ((opcode & 1) == 0)
4704 ir.ot = OT_BYTE;
4705 else
4706 ir.ot = ir.dflag + OT_WORD;
4707 if (i386_record_modrm (&ir))
4708 return -1;
cf648174 4709 ir.reg |= rex_r;
7ad10968
HZ
4710 if (ir.mod == 3)
4711 {
cf648174 4712 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4713 ir.reg &= 0x3;
cf648174
HZ
4714 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4715 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4716 ir.rm &= 0x3;
cf648174 4717 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4718 }
4719 else
4720 {
4721 if (i386_record_lea_modrm (&ir))
4722 return -1;
cf648174 4723 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4724 ir.reg &= 0x3;
cf648174 4725 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4726 }
cf648174 4727 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4728 break;
4729
a38bba38 4730 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4731 case 0x0fb1:
4732 if ((opcode & 1) == 0)
4733 ir.ot = OT_BYTE;
4734 else
4735 ir.ot = ir.dflag + OT_WORD;
4736 if (i386_record_modrm (&ir))
4737 return -1;
4738 if (ir.mod == 3)
4739 {
cf648174
HZ
4740 ir.reg |= rex_r;
4741 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4742 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4743 ir.reg &= 0x3;
cf648174 4744 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4745 }
4746 else
4747 {
cf648174 4748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4749 if (i386_record_lea_modrm (&ir))
4750 return -1;
4751 }
cf648174 4752 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4753 break;
4754
a38bba38 4755 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4756 if (i386_record_modrm (&ir))
4757 return -1;
4758 if (ir.mod == 3)
4759 {
4760 ir.addr -= 2;
4761 opcode = opcode << 8 | ir.modrm;
4762 goto no_support;
4763 }
cf648174
HZ
4764 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4765 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4766 if (i386_record_lea_modrm (&ir))
4767 return -1;
cf648174 4768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4769 break;
4770
a38bba38 4771 case 0x50: /* push */
7ad10968
HZ
4772 case 0x51:
4773 case 0x52:
4774 case 0x53:
4775 case 0x54:
4776 case 0x55:
4777 case 0x56:
4778 case 0x57:
4779 case 0x68:
4780 case 0x6a:
cf648174
HZ
4781 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4782 ir.dflag = 2;
4783 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4784 return -1;
4785 break;
4786
a38bba38
MS
4787 case 0x06: /* push es */
4788 case 0x0e: /* push cs */
4789 case 0x16: /* push ss */
4790 case 0x1e: /* push ds */
cf648174
HZ
4791 if (ir.regmap[X86_RECORD_R8_REGNUM])
4792 {
4793 ir.addr -= 1;
4794 goto no_support;
4795 }
4796 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4797 return -1;
4798 break;
4799
a38bba38
MS
4800 case 0x0fa0: /* push fs */
4801 case 0x0fa8: /* push gs */
cf648174
HZ
4802 if (ir.regmap[X86_RECORD_R8_REGNUM])
4803 {
4804 ir.addr -= 2;
4805 goto no_support;
4806 }
4807 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4808 return -1;
cf648174
HZ
4809 break;
4810
a38bba38 4811 case 0x60: /* pusha */
cf648174
HZ
4812 if (ir.regmap[X86_RECORD_R8_REGNUM])
4813 {
4814 ir.addr -= 1;
4815 goto no_support;
4816 }
4817 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4818 return -1;
4819 break;
4820
a38bba38 4821 case 0x58: /* pop */
7ad10968
HZ
4822 case 0x59:
4823 case 0x5a:
4824 case 0x5b:
4825 case 0x5c:
4826 case 0x5d:
4827 case 0x5e:
4828 case 0x5f:
cf648174
HZ
4829 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4830 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4831 break;
4832
a38bba38 4833 case 0x61: /* popa */
cf648174
HZ
4834 if (ir.regmap[X86_RECORD_R8_REGNUM])
4835 {
4836 ir.addr -= 1;
4837 goto no_support;
7ad10968 4838 }
425b824a
MS
4839 for (regnum = X86_RECORD_REAX_REGNUM;
4840 regnum <= X86_RECORD_REDI_REGNUM;
4841 regnum++)
4842 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4843 break;
4844
a38bba38 4845 case 0x8f: /* pop */
cf648174
HZ
4846 if (ir.regmap[X86_RECORD_R8_REGNUM])
4847 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4848 else
4849 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4850 if (i386_record_modrm (&ir))
4851 return -1;
4852 if (ir.mod == 3)
cf648174 4853 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4854 else
4855 {
cf648174 4856 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4857 if (i386_record_lea_modrm (&ir))
4858 return -1;
4859 }
cf648174 4860 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4861 break;
4862
a38bba38 4863 case 0xc8: /* enter */
cf648174
HZ
4864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4865 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4866 ir.dflag = 2;
4867 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4868 return -1;
4869 break;
4870
a38bba38 4871 case 0xc9: /* leave */
cf648174
HZ
4872 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4873 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4874 break;
4875
a38bba38 4876 case 0x07: /* pop es */
cf648174
HZ
4877 if (ir.regmap[X86_RECORD_R8_REGNUM])
4878 {
4879 ir.addr -= 1;
4880 goto no_support;
4881 }
4882 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4883 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4884 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4885 break;
4886
a38bba38 4887 case 0x17: /* pop ss */
cf648174
HZ
4888 if (ir.regmap[X86_RECORD_R8_REGNUM])
4889 {
4890 ir.addr -= 1;
4891 goto no_support;
4892 }
4893 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4895 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4896 break;
4897
a38bba38 4898 case 0x1f: /* pop ds */
cf648174
HZ
4899 if (ir.regmap[X86_RECORD_R8_REGNUM])
4900 {
4901 ir.addr -= 1;
4902 goto no_support;
4903 }
4904 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4905 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4906 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4907 break;
4908
a38bba38 4909 case 0x0fa1: /* pop fs */
cf648174
HZ
4910 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4911 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4912 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4913 break;
4914
a38bba38 4915 case 0x0fa9: /* pop gs */
cf648174
HZ
4916 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4917 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4918 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4919 break;
4920
a38bba38 4921 case 0x88: /* mov */
7ad10968
HZ
4922 case 0x89:
4923 case 0xc6:
4924 case 0xc7:
4925 if ((opcode & 1) == 0)
4926 ir.ot = OT_BYTE;
4927 else
4928 ir.ot = ir.dflag + OT_WORD;
4929
4930 if (i386_record_modrm (&ir))
4931 return -1;
4932
4933 if (ir.mod != 3)
4934 {
cf648174
HZ
4935 if (opcode == 0xc6 || opcode == 0xc7)
4936 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4937 if (i386_record_lea_modrm (&ir))
4938 return -1;
4939 }
4940 else
4941 {
cf648174
HZ
4942 if (opcode == 0xc6 || opcode == 0xc7)
4943 ir.rm |= ir.rex_b;
4944 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4945 ir.rm &= 0x3;
cf648174 4946 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4947 }
7ad10968 4948 break;
cf648174 4949
a38bba38 4950 case 0x8a: /* mov */
7ad10968
HZ
4951 case 0x8b:
4952 if ((opcode & 1) == 0)
4953 ir.ot = OT_BYTE;
4954 else
4955 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4956 if (i386_record_modrm (&ir))
4957 return -1;
cf648174
HZ
4958 ir.reg |= rex_r;
4959 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4960 ir.reg &= 0x3;
cf648174
HZ
4961 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4962 break;
7ad10968 4963
a38bba38 4964 case 0x8c: /* mov seg */
cf648174 4965 if (i386_record_modrm (&ir))
7ad10968 4966 return -1;
cf648174
HZ
4967 if (ir.reg > 5)
4968 {
4969 ir.addr -= 2;
4970 opcode = opcode << 8 | ir.modrm;
4971 goto no_support;
4972 }
4973
4974 if (ir.mod == 3)
4975 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4976 else
4977 {
4978 ir.ot = OT_WORD;
4979 if (i386_record_lea_modrm (&ir))
4980 return -1;
4981 }
7ad10968
HZ
4982 break;
4983
a38bba38 4984 case 0x8e: /* mov seg */
7ad10968
HZ
4985 if (i386_record_modrm (&ir))
4986 return -1;
7ad10968
HZ
4987 switch (ir.reg)
4988 {
4989 case 0:
425b824a 4990 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
4991 break;
4992 case 2:
425b824a 4993 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
4994 break;
4995 case 3:
425b824a 4996 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
4997 break;
4998 case 4:
425b824a 4999 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5000 break;
5001 case 5:
425b824a 5002 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5003 break;
5004 default:
5005 ir.addr -= 2;
5006 opcode = opcode << 8 | ir.modrm;
5007 goto no_support;
5008 break;
5009 }
425b824a 5010 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 5011 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5012 break;
5013
a38bba38
MS
5014 case 0x0fb6: /* movzbS */
5015 case 0x0fb7: /* movzwS */
5016 case 0x0fbe: /* movsbS */
5017 case 0x0fbf: /* movswS */
7ad10968
HZ
5018 if (i386_record_modrm (&ir))
5019 return -1;
cf648174 5020 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5021 break;
5022
a38bba38 5023 case 0x8d: /* lea */
7ad10968
HZ
5024 if (i386_record_modrm (&ir))
5025 return -1;
5026 if (ir.mod == 3)
5027 {
5028 ir.addr -= 2;
5029 opcode = opcode << 8 | ir.modrm;
5030 goto no_support;
5031 }
7ad10968 5032 ir.ot = ir.dflag;
cf648174
HZ
5033 ir.reg |= rex_r;
5034 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5035 ir.reg &= 0x3;
cf648174 5036 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5037 break;
5038
a38bba38 5039 case 0xa0: /* mov EAX */
7ad10968 5040 case 0xa1:
a38bba38
MS
5041
5042 case 0xd7: /* xlat */
cf648174 5043 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5044 break;
5045
a38bba38 5046 case 0xa2: /* mov EAX */
7ad10968 5047 case 0xa3:
d7877f7e 5048 if (ir.override >= 0)
cf648174 5049 {
bb08c432
HZ
5050 if (record_memory_query)
5051 {
5052 int q;
5053
5054 target_terminal_ours ();
5055 q = yquery (_("\
5056Process record ignores the memory change of instruction at address %s\n\
5057because it can't get the value of the segment register.\n\
5058Do you want to stop the program?"),
5059 paddress (gdbarch, ir.orig_addr));
5060 target_terminal_inferior ();
5061 if (q)
5062 return -1;
5063 }
cf648174
HZ
5064 }
5065 else
5066 {
5067 if ((opcode & 1) == 0)
5068 ir.ot = OT_BYTE;
5069 else
5070 ir.ot = ir.dflag + OT_WORD;
5071 if (ir.aflag == 2)
5072 {
4ffa4fc7
PA
5073 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5074 return -1;
cf648174 5075 ir.addr += 8;
60a1502a 5076 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5077 }
5078 else if (ir.aflag)
5079 {
4ffa4fc7
PA
5080 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5081 return -1;
cf648174 5082 ir.addr += 4;
60a1502a 5083 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5084 }
5085 else
5086 {
4ffa4fc7
PA
5087 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5088 return -1;
cf648174 5089 ir.addr += 2;
60a1502a 5090 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5091 }
648d0c8b 5092 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5093 return -1;
5094 }
7ad10968
HZ
5095 break;
5096
a38bba38 5097 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5098 case 0xb1:
5099 case 0xb2:
5100 case 0xb3:
5101 case 0xb4:
5102 case 0xb5:
5103 case 0xb6:
5104 case 0xb7:
cf648174
HZ
5105 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5106 ? ((opcode & 0x7) | ir.rex_b)
5107 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5108 break;
5109
a38bba38 5110 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5111 case 0xb9:
5112 case 0xba:
5113 case 0xbb:
5114 case 0xbc:
5115 case 0xbd:
5116 case 0xbe:
5117 case 0xbf:
cf648174 5118 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5119 break;
5120
a38bba38 5121 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5122 case 0x92:
5123 case 0x93:
5124 case 0x94:
5125 case 0x95:
5126 case 0x96:
5127 case 0x97:
cf648174
HZ
5128 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5129 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5130 break;
5131
a38bba38 5132 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5133 case 0x87:
5134 if ((opcode & 1) == 0)
5135 ir.ot = OT_BYTE;
5136 else
5137 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5138 if (i386_record_modrm (&ir))
5139 return -1;
7ad10968
HZ
5140 if (ir.mod == 3)
5141 {
86839d38 5142 ir.rm |= ir.rex_b;
cf648174
HZ
5143 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5144 ir.rm &= 0x3;
5145 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5146 }
5147 else
5148 {
5149 if (i386_record_lea_modrm (&ir))
5150 return -1;
5151 }
cf648174
HZ
5152 ir.reg |= rex_r;
5153 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5154 ir.reg &= 0x3;
cf648174 5155 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5156 break;
5157
a38bba38
MS
5158 case 0xc4: /* les Gv */
5159 case 0xc5: /* lds Gv */
cf648174
HZ
5160 if (ir.regmap[X86_RECORD_R8_REGNUM])
5161 {
5162 ir.addr -= 1;
5163 goto no_support;
5164 }
d3f323f3 5165 /* FALLTHROUGH */
a38bba38
MS
5166 case 0x0fb2: /* lss Gv */
5167 case 0x0fb4: /* lfs Gv */
5168 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5169 if (i386_record_modrm (&ir))
5170 return -1;
5171 if (ir.mod == 3)
5172 {
5173 if (opcode > 0xff)
5174 ir.addr -= 3;
5175 else
5176 ir.addr -= 2;
5177 opcode = opcode << 8 | ir.modrm;
5178 goto no_support;
5179 }
7ad10968
HZ
5180 switch (opcode)
5181 {
a38bba38 5182 case 0xc4: /* les Gv */
425b824a 5183 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5184 break;
a38bba38 5185 case 0xc5: /* lds Gv */
425b824a 5186 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5187 break;
a38bba38 5188 case 0x0fb2: /* lss Gv */
425b824a 5189 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5190 break;
a38bba38 5191 case 0x0fb4: /* lfs Gv */
425b824a 5192 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5193 break;
a38bba38 5194 case 0x0fb5: /* lgs Gv */
425b824a 5195 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5196 break;
5197 }
425b824a 5198 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
5199 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5200 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5201 break;
5202
a38bba38 5203 case 0xc0: /* shifts */
7ad10968
HZ
5204 case 0xc1:
5205 case 0xd0:
5206 case 0xd1:
5207 case 0xd2:
5208 case 0xd3:
5209 if ((opcode & 1) == 0)
5210 ir.ot = OT_BYTE;
5211 else
5212 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5213 if (i386_record_modrm (&ir))
5214 return -1;
7ad10968
HZ
5215 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5216 {
5217 if (i386_record_lea_modrm (&ir))
5218 return -1;
5219 }
5220 else
5221 {
cf648174
HZ
5222 ir.rm |= ir.rex_b;
5223 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5224 ir.rm &= 0x3;
cf648174 5225 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5226 }
cf648174 5227 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5228 break;
5229
5230 case 0x0fa4:
5231 case 0x0fa5:
5232 case 0x0fac:
5233 case 0x0fad:
5234 if (i386_record_modrm (&ir))
5235 return -1;
5236 if (ir.mod == 3)
5237 {
5238 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5239 return -1;
5240 }
5241 else
5242 {
5243 if (i386_record_lea_modrm (&ir))
5244 return -1;
5245 }
5246 break;
5247
a38bba38 5248 case 0xd8: /* Floats. */
7ad10968
HZ
5249 case 0xd9:
5250 case 0xda:
5251 case 0xdb:
5252 case 0xdc:
5253 case 0xdd:
5254 case 0xde:
5255 case 0xdf:
5256 if (i386_record_modrm (&ir))
5257 return -1;
5258 ir.reg |= ((opcode & 7) << 3);
5259 if (ir.mod != 3)
5260 {
1777feb0 5261 /* Memory. */
955db0c0 5262 uint64_t addr64;
7ad10968 5263
955db0c0 5264 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5265 return -1;
5266 switch (ir.reg)
5267 {
7ad10968 5268 case 0x02:
0289bdd7
MS
5269 case 0x12:
5270 case 0x22:
5271 case 0x32:
5272 /* For fcom, ficom nothing to do. */
5273 break;
7ad10968 5274 case 0x03:
0289bdd7
MS
5275 case 0x13:
5276 case 0x23:
5277 case 0x33:
5278 /* For fcomp, ficomp pop FPU stack, store all. */
5279 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5280 return -1;
5281 break;
5282 case 0x00:
5283 case 0x01:
7ad10968
HZ
5284 case 0x04:
5285 case 0x05:
5286 case 0x06:
5287 case 0x07:
5288 case 0x10:
5289 case 0x11:
7ad10968
HZ
5290 case 0x14:
5291 case 0x15:
5292 case 0x16:
5293 case 0x17:
5294 case 0x20:
5295 case 0x21:
7ad10968
HZ
5296 case 0x24:
5297 case 0x25:
5298 case 0x26:
5299 case 0x27:
5300 case 0x30:
5301 case 0x31:
7ad10968
HZ
5302 case 0x34:
5303 case 0x35:
5304 case 0x36:
5305 case 0x37:
0289bdd7
MS
5306 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5307 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5308 of code, always affects st(0) register. */
5309 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5310 return -1;
7ad10968
HZ
5311 break;
5312 case 0x08:
5313 case 0x0a:
5314 case 0x0b:
5315 case 0x18:
5316 case 0x19:
5317 case 0x1a:
5318 case 0x1b:
0289bdd7 5319 case 0x1d:
7ad10968
HZ
5320 case 0x28:
5321 case 0x29:
5322 case 0x2a:
5323 case 0x2b:
5324 case 0x38:
5325 case 0x39:
5326 case 0x3a:
5327 case 0x3b:
0289bdd7
MS
5328 case 0x3c:
5329 case 0x3d:
7ad10968
HZ
5330 switch (ir.reg & 7)
5331 {
5332 case 0:
0289bdd7
MS
5333 /* Handling fld, fild. */
5334 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5335 return -1;
7ad10968
HZ
5336 break;
5337 case 1:
5338 switch (ir.reg >> 4)
5339 {
5340 case 0:
955db0c0 5341 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5342 return -1;
5343 break;
5344 case 2:
955db0c0 5345 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5346 return -1;
5347 break;
5348 case 3:
0289bdd7 5349 break;
7ad10968 5350 default:
955db0c0 5351 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5352 return -1;
5353 break;
5354 }
5355 break;
5356 default:
5357 switch (ir.reg >> 4)
5358 {
5359 case 0:
955db0c0 5360 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
5361 return -1;
5362 if (3 == (ir.reg & 7))
5363 {
5364 /* For fstp m32fp. */
5365 if (i386_record_floats (gdbarch, &ir,
5366 I386_SAVE_FPU_REGS))
5367 return -1;
5368 }
5369 break;
7ad10968 5370 case 1:
955db0c0 5371 if (record_arch_list_add_mem (addr64, 4))
7ad10968 5372 return -1;
0289bdd7
MS
5373 if ((3 == (ir.reg & 7))
5374 || (5 == (ir.reg & 7))
5375 || (7 == (ir.reg & 7)))
5376 {
5377 /* For fstp insn. */
5378 if (i386_record_floats (gdbarch, &ir,
5379 I386_SAVE_FPU_REGS))
5380 return -1;
5381 }
7ad10968
HZ
5382 break;
5383 case 2:
955db0c0 5384 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5385 return -1;
0289bdd7
MS
5386 if (3 == (ir.reg & 7))
5387 {
5388 /* For fstp m64fp. */
5389 if (i386_record_floats (gdbarch, &ir,
5390 I386_SAVE_FPU_REGS))
5391 return -1;
5392 }
7ad10968
HZ
5393 break;
5394 case 3:
0289bdd7
MS
5395 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5396 {
5397 /* For fistp, fbld, fild, fbstp. */
5398 if (i386_record_floats (gdbarch, &ir,
5399 I386_SAVE_FPU_REGS))
5400 return -1;
5401 }
5402 /* Fall through */
7ad10968 5403 default:
955db0c0 5404 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5405 return -1;
5406 break;
5407 }
5408 break;
5409 }
5410 break;
5411 case 0x0c:
0289bdd7
MS
5412 /* Insn fldenv. */
5413 if (i386_record_floats (gdbarch, &ir,
5414 I386_SAVE_FPU_ENV_REG_STACK))
5415 return -1;
5416 break;
7ad10968 5417 case 0x0d:
0289bdd7
MS
5418 /* Insn fldcw. */
5419 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5420 return -1;
5421 break;
7ad10968 5422 case 0x2c:
0289bdd7
MS
5423 /* Insn frstor. */
5424 if (i386_record_floats (gdbarch, &ir,
5425 I386_SAVE_FPU_ENV_REG_STACK))
5426 return -1;
7ad10968
HZ
5427 break;
5428 case 0x0e:
5429 if (ir.dflag)
5430 {
955db0c0 5431 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
5432 return -1;
5433 }
5434 else
5435 {
955db0c0 5436 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
5437 return -1;
5438 }
5439 break;
5440 case 0x0f:
5441 case 0x2f:
955db0c0 5442 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5443 return -1;
0289bdd7
MS
5444 /* Insn fstp, fbstp. */
5445 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5446 return -1;
7ad10968
HZ
5447 break;
5448 case 0x1f:
5449 case 0x3e:
955db0c0 5450 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
5451 return -1;
5452 break;
5453 case 0x2e:
5454 if (ir.dflag)
5455 {
955db0c0 5456 if (record_arch_list_add_mem (addr64, 28))
7ad10968 5457 return -1;
955db0c0 5458 addr64 += 28;
7ad10968
HZ
5459 }
5460 else
5461 {
955db0c0 5462 if (record_arch_list_add_mem (addr64, 14))
7ad10968 5463 return -1;
955db0c0 5464 addr64 += 14;
7ad10968 5465 }
955db0c0 5466 if (record_arch_list_add_mem (addr64, 80))
7ad10968 5467 return -1;
0289bdd7
MS
5468 /* Insn fsave. */
5469 if (i386_record_floats (gdbarch, &ir,
5470 I386_SAVE_FPU_ENV_REG_STACK))
5471 return -1;
7ad10968
HZ
5472 break;
5473 case 0x3f:
955db0c0 5474 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5475 return -1;
0289bdd7
MS
5476 /* Insn fistp. */
5477 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5478 return -1;
7ad10968
HZ
5479 break;
5480 default:
5481 ir.addr -= 2;
5482 opcode = opcode << 8 | ir.modrm;
5483 goto no_support;
5484 break;
5485 }
5486 }
0289bdd7
MS
5487 /* Opcode is an extension of modR/M byte. */
5488 else
5489 {
5490 switch (opcode)
5491 {
5492 case 0xd8:
5493 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5494 return -1;
5495 break;
5496 case 0xd9:
5497 if (0x0c == (ir.modrm >> 4))
5498 {
5499 if ((ir.modrm & 0x0f) <= 7)
5500 {
5501 if (i386_record_floats (gdbarch, &ir,
5502 I386_SAVE_FPU_REGS))
5503 return -1;
5504 }
5505 else
5506 {
5507 if (i386_record_floats (gdbarch, &ir,
5508 I387_ST0_REGNUM (tdep)))
5509 return -1;
5510 /* If only st(0) is changing, then we have already
5511 recorded. */
5512 if ((ir.modrm & 0x0f) - 0x08)
5513 {
5514 if (i386_record_floats (gdbarch, &ir,
5515 I387_ST0_REGNUM (tdep) +
5516 ((ir.modrm & 0x0f) - 0x08)))
5517 return -1;
5518 }
5519 }
5520 }
5521 else
5522 {
5523 switch (ir.modrm)
5524 {
5525 case 0xe0:
5526 case 0xe1:
5527 case 0xf0:
5528 case 0xf5:
5529 case 0xf8:
5530 case 0xfa:
5531 case 0xfc:
5532 case 0xfe:
5533 case 0xff:
5534 if (i386_record_floats (gdbarch, &ir,
5535 I387_ST0_REGNUM (tdep)))
5536 return -1;
5537 break;
5538 case 0xf1:
5539 case 0xf2:
5540 case 0xf3:
5541 case 0xf4:
5542 case 0xf6:
5543 case 0xf7:
5544 case 0xe8:
5545 case 0xe9:
5546 case 0xea:
5547 case 0xeb:
5548 case 0xec:
5549 case 0xed:
5550 case 0xee:
5551 case 0xf9:
5552 case 0xfb:
5553 if (i386_record_floats (gdbarch, &ir,
5554 I386_SAVE_FPU_REGS))
5555 return -1;
5556 break;
5557 case 0xfd:
5558 if (i386_record_floats (gdbarch, &ir,
5559 I387_ST0_REGNUM (tdep)))
5560 return -1;
5561 if (i386_record_floats (gdbarch, &ir,
5562 I387_ST0_REGNUM (tdep) + 1))
5563 return -1;
5564 break;
5565 }
5566 }
5567 break;
5568 case 0xda:
5569 if (0xe9 == ir.modrm)
5570 {
5571 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5572 return -1;
5573 }
5574 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5575 {
5576 if (i386_record_floats (gdbarch, &ir,
5577 I387_ST0_REGNUM (tdep)))
5578 return -1;
5579 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5580 {
5581 if (i386_record_floats (gdbarch, &ir,
5582 I387_ST0_REGNUM (tdep) +
5583 (ir.modrm & 0x0f)))
5584 return -1;
5585 }
5586 else if ((ir.modrm & 0x0f) - 0x08)
5587 {
5588 if (i386_record_floats (gdbarch, &ir,
5589 I387_ST0_REGNUM (tdep) +
5590 ((ir.modrm & 0x0f) - 0x08)))
5591 return -1;
5592 }
5593 }
5594 break;
5595 case 0xdb:
5596 if (0xe3 == ir.modrm)
5597 {
5598 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5599 return -1;
5600 }
5601 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5602 {
5603 if (i386_record_floats (gdbarch, &ir,
5604 I387_ST0_REGNUM (tdep)))
5605 return -1;
5606 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5607 {
5608 if (i386_record_floats (gdbarch, &ir,
5609 I387_ST0_REGNUM (tdep) +
5610 (ir.modrm & 0x0f)))
5611 return -1;
5612 }
5613 else if ((ir.modrm & 0x0f) - 0x08)
5614 {
5615 if (i386_record_floats (gdbarch, &ir,
5616 I387_ST0_REGNUM (tdep) +
5617 ((ir.modrm & 0x0f) - 0x08)))
5618 return -1;
5619 }
5620 }
5621 break;
5622 case 0xdc:
5623 if ((0x0c == ir.modrm >> 4)
5624 || (0x0d == ir.modrm >> 4)
5625 || (0x0f == ir.modrm >> 4))
5626 {
5627 if ((ir.modrm & 0x0f) <= 7)
5628 {
5629 if (i386_record_floats (gdbarch, &ir,
5630 I387_ST0_REGNUM (tdep) +
5631 (ir.modrm & 0x0f)))
5632 return -1;
5633 }
5634 else
5635 {
5636 if (i386_record_floats (gdbarch, &ir,
5637 I387_ST0_REGNUM (tdep) +
5638 ((ir.modrm & 0x0f) - 0x08)))
5639 return -1;
5640 }
5641 }
5642 break;
5643 case 0xdd:
5644 if (0x0c == ir.modrm >> 4)
5645 {
5646 if (i386_record_floats (gdbarch, &ir,
5647 I387_FTAG_REGNUM (tdep)))
5648 return -1;
5649 }
5650 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5651 {
5652 if ((ir.modrm & 0x0f) <= 7)
5653 {
5654 if (i386_record_floats (gdbarch, &ir,
5655 I387_ST0_REGNUM (tdep) +
5656 (ir.modrm & 0x0f)))
5657 return -1;
5658 }
5659 else
5660 {
5661 if (i386_record_floats (gdbarch, &ir,
5662 I386_SAVE_FPU_REGS))
5663 return -1;
5664 }
5665 }
5666 break;
5667 case 0xde:
5668 if ((0x0c == ir.modrm >> 4)
5669 || (0x0e == ir.modrm >> 4)
5670 || (0x0f == ir.modrm >> 4)
5671 || (0xd9 == ir.modrm))
5672 {
5673 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5674 return -1;
5675 }
5676 break;
5677 case 0xdf:
5678 if (0xe0 == ir.modrm)
5679 {
5680 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5681 return -1;
5682 }
5683 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5684 {
5685 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5686 return -1;
5687 }
5688 break;
5689 }
5690 }
7ad10968 5691 break;
7ad10968 5692 /* string ops */
a38bba38 5693 case 0xa4: /* movsS */
7ad10968 5694 case 0xa5:
a38bba38 5695 case 0xaa: /* stosS */
7ad10968 5696 case 0xab:
a38bba38 5697 case 0x6c: /* insS */
7ad10968 5698 case 0x6d:
cf648174 5699 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5700 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5701 &addr);
5702 if (addr)
cf648174 5703 {
77d7dc92
HZ
5704 ULONGEST es, ds;
5705
5706 if ((opcode & 1) == 0)
5707 ir.ot = OT_BYTE;
5708 else
5709 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5710 regcache_raw_read_unsigned (ir.regcache,
5711 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5712 &addr);
77d7dc92 5713
d7877f7e
HZ
5714 regcache_raw_read_unsigned (ir.regcache,
5715 ir.regmap[X86_RECORD_ES_REGNUM],
5716 &es);
5717 regcache_raw_read_unsigned (ir.regcache,
5718 ir.regmap[X86_RECORD_DS_REGNUM],
5719 &ds);
5720 if (ir.aflag && (es != ds))
77d7dc92
HZ
5721 {
5722 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5723 if (record_memory_query)
5724 {
5725 int q;
5726
5727 target_terminal_ours ();
5728 q = yquery (_("\
5729Process record ignores the memory change of instruction at address %s\n\
5730because it can't get the value of the segment register.\n\
5731Do you want to stop the program?"),
5732 paddress (gdbarch, ir.orig_addr));
5733 target_terminal_inferior ();
5734 if (q)
5735 return -1;
5736 }
df61f520
HZ
5737 }
5738 else
5739 {
648d0c8b 5740 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5741 return -1;
77d7dc92
HZ
5742 }
5743
5744 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5745 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5746 if (opcode == 0xa4 || opcode == 0xa5)
5747 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5749 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5750 }
cf648174 5751 break;
7ad10968 5752
a38bba38 5753 case 0xa6: /* cmpsS */
cf648174
HZ
5754 case 0xa7:
5755 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5756 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5757 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5758 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5760 break;
5761
a38bba38 5762 case 0xac: /* lodsS */
7ad10968 5763 case 0xad:
cf648174
HZ
5764 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5765 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5766 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5767 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5768 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5769 break;
5770
a38bba38 5771 case 0xae: /* scasS */
7ad10968 5772 case 0xaf:
cf648174 5773 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5774 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5775 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5776 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5777 break;
5778
a38bba38 5779 case 0x6e: /* outsS */
cf648174
HZ
5780 case 0x6f:
5781 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5782 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5783 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5784 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5785 break;
5786
a38bba38 5787 case 0xe4: /* port I/O */
7ad10968
HZ
5788 case 0xe5:
5789 case 0xec:
5790 case 0xed:
cf648174
HZ
5791 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5792 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5793 break;
5794
5795 case 0xe6:
5796 case 0xe7:
5797 case 0xee:
5798 case 0xef:
5799 break;
5800
5801 /* control */
a38bba38
MS
5802 case 0xc2: /* ret im */
5803 case 0xc3: /* ret */
cf648174
HZ
5804 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5805 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5806 break;
5807
a38bba38
MS
5808 case 0xca: /* lret im */
5809 case 0xcb: /* lret */
5810 case 0xcf: /* iret */
cf648174
HZ
5811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5814 break;
5815
a38bba38 5816 case 0xe8: /* call im */
cf648174
HZ
5817 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5818 ir.dflag = 2;
5819 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5820 return -1;
7ad10968
HZ
5821 break;
5822
a38bba38 5823 case 0x9a: /* lcall im */
cf648174
HZ
5824 if (ir.regmap[X86_RECORD_R8_REGNUM])
5825 {
5826 ir.addr -= 1;
5827 goto no_support;
5828 }
5829 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5830 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5831 return -1;
7ad10968
HZ
5832 break;
5833
a38bba38
MS
5834 case 0xe9: /* jmp im */
5835 case 0xea: /* ljmp im */
5836 case 0xeb: /* jmp Jb */
5837 case 0x70: /* jcc Jb */
7ad10968
HZ
5838 case 0x71:
5839 case 0x72:
5840 case 0x73:
5841 case 0x74:
5842 case 0x75:
5843 case 0x76:
5844 case 0x77:
5845 case 0x78:
5846 case 0x79:
5847 case 0x7a:
5848 case 0x7b:
5849 case 0x7c:
5850 case 0x7d:
5851 case 0x7e:
5852 case 0x7f:
a38bba38 5853 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5854 case 0x0f81:
5855 case 0x0f82:
5856 case 0x0f83:
5857 case 0x0f84:
5858 case 0x0f85:
5859 case 0x0f86:
5860 case 0x0f87:
5861 case 0x0f88:
5862 case 0x0f89:
5863 case 0x0f8a:
5864 case 0x0f8b:
5865 case 0x0f8c:
5866 case 0x0f8d:
5867 case 0x0f8e:
5868 case 0x0f8f:
5869 break;
5870
a38bba38 5871 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5872 case 0x0f91:
5873 case 0x0f92:
5874 case 0x0f93:
5875 case 0x0f94:
5876 case 0x0f95:
5877 case 0x0f96:
5878 case 0x0f97:
5879 case 0x0f98:
5880 case 0x0f99:
5881 case 0x0f9a:
5882 case 0x0f9b:
5883 case 0x0f9c:
5884 case 0x0f9d:
5885 case 0x0f9e:
5886 case 0x0f9f:
cf648174 5887 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5888 ir.ot = OT_BYTE;
5889 if (i386_record_modrm (&ir))
5890 return -1;
5891 if (ir.mod == 3)
cf648174
HZ
5892 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5893 : (ir.rm & 0x3));
7ad10968
HZ
5894 else
5895 {
5896 if (i386_record_lea_modrm (&ir))
5897 return -1;
5898 }
5899 break;
5900
a38bba38 5901 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5902 case 0x0f41:
5903 case 0x0f42:
5904 case 0x0f43:
5905 case 0x0f44:
5906 case 0x0f45:
5907 case 0x0f46:
5908 case 0x0f47:
5909 case 0x0f48:
5910 case 0x0f49:
5911 case 0x0f4a:
5912 case 0x0f4b:
5913 case 0x0f4c:
5914 case 0x0f4d:
5915 case 0x0f4e:
5916 case 0x0f4f:
5917 if (i386_record_modrm (&ir))
5918 return -1;
cf648174 5919 ir.reg |= rex_r;
7ad10968
HZ
5920 if (ir.dflag == OT_BYTE)
5921 ir.reg &= 0x3;
cf648174 5922 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5923 break;
5924
5925 /* flags */
a38bba38 5926 case 0x9c: /* pushf */
cf648174
HZ
5927 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5928 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5929 ir.dflag = 2;
5930 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5931 return -1;
7ad10968
HZ
5932 break;
5933
a38bba38 5934 case 0x9d: /* popf */
cf648174
HZ
5935 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5936 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5937 break;
5938
a38bba38 5939 case 0x9e: /* sahf */
cf648174
HZ
5940 if (ir.regmap[X86_RECORD_R8_REGNUM])
5941 {
5942 ir.addr -= 1;
5943 goto no_support;
5944 }
d3f323f3 5945 /* FALLTHROUGH */
a38bba38
MS
5946 case 0xf5: /* cmc */
5947 case 0xf8: /* clc */
5948 case 0xf9: /* stc */
5949 case 0xfc: /* cld */
5950 case 0xfd: /* std */
cf648174 5951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5952 break;
5953
a38bba38 5954 case 0x9f: /* lahf */
cf648174
HZ
5955 if (ir.regmap[X86_RECORD_R8_REGNUM])
5956 {
5957 ir.addr -= 1;
5958 goto no_support;
5959 }
5960 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5962 break;
5963
5964 /* bit operations */
a38bba38 5965 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
5966 ir.ot = ir.dflag + OT_WORD;
5967 if (i386_record_modrm (&ir))
5968 return -1;
5969 if (ir.reg < 4)
5970 {
cf648174 5971 ir.addr -= 2;
7ad10968
HZ
5972 opcode = opcode << 8 | ir.modrm;
5973 goto no_support;
5974 }
cf648174 5975 if (ir.reg != 4)
7ad10968 5976 {
cf648174
HZ
5977 if (ir.mod == 3)
5978 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5979 else
5980 {
cf648174 5981 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
5982 return -1;
5983 }
5984 }
cf648174 5985 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5986 break;
5987
a38bba38 5988 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
5989 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5990 break;
5991
a38bba38
MS
5992 case 0x0fab: /* bts */
5993 case 0x0fb3: /* btr */
5994 case 0x0fbb: /* btc */
cf648174
HZ
5995 ir.ot = ir.dflag + OT_WORD;
5996 if (i386_record_modrm (&ir))
5997 return -1;
5998 if (ir.mod == 3)
5999 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6000 else
6001 {
955db0c0
MS
6002 uint64_t addr64;
6003 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6004 return -1;
6005 regcache_raw_read_unsigned (ir.regcache,
6006 ir.regmap[ir.reg | rex_r],
648d0c8b 6007 &addr);
cf648174
HZ
6008 switch (ir.dflag)
6009 {
6010 case 0:
648d0c8b 6011 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6012 break;
6013 case 1:
648d0c8b 6014 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6015 break;
6016 case 2:
648d0c8b 6017 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6018 break;
6019 }
955db0c0 6020 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6021 return -1;
6022 if (i386_record_lea_modrm (&ir))
6023 return -1;
6024 }
6025 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6026 break;
6027
a38bba38
MS
6028 case 0x0fbc: /* bsf */
6029 case 0x0fbd: /* bsr */
cf648174
HZ
6030 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6031 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6032 break;
6033
6034 /* bcd */
a38bba38
MS
6035 case 0x27: /* daa */
6036 case 0x2f: /* das */
6037 case 0x37: /* aaa */
6038 case 0x3f: /* aas */
6039 case 0xd4: /* aam */
6040 case 0xd5: /* aad */
cf648174
HZ
6041 if (ir.regmap[X86_RECORD_R8_REGNUM])
6042 {
6043 ir.addr -= 1;
6044 goto no_support;
6045 }
6046 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6047 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6048 break;
6049
6050 /* misc */
a38bba38 6051 case 0x90: /* nop */
7ad10968
HZ
6052 if (prefixes & PREFIX_LOCK)
6053 {
6054 ir.addr -= 1;
6055 goto no_support;
6056 }
6057 break;
6058
a38bba38 6059 case 0x9b: /* fwait */
4ffa4fc7
PA
6060 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6061 return -1;
425b824a 6062 opcode = (uint32_t) opcode8;
0289bdd7
MS
6063 ir.addr++;
6064 goto reswitch;
7ad10968
HZ
6065 break;
6066
7ad10968 6067 /* XXX */
a38bba38 6068 case 0xcc: /* int3 */
a3c4230a 6069 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6070 "int3.\n"));
6071 ir.addr -= 1;
6072 goto no_support;
6073 break;
6074
7ad10968 6075 /* XXX */
a38bba38 6076 case 0xcd: /* int */
7ad10968
HZ
6077 {
6078 int ret;
425b824a 6079 uint8_t interrupt;
4ffa4fc7
PA
6080 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6081 return -1;
7ad10968 6082 ir.addr++;
425b824a 6083 if (interrupt != 0x80
a3c4230a 6084 || tdep->i386_intx80_record == NULL)
7ad10968 6085 {
a3c4230a 6086 printf_unfiltered (_("Process record does not support "
7ad10968 6087 "instruction int 0x%02x.\n"),
425b824a 6088 interrupt);
7ad10968
HZ
6089 ir.addr -= 2;
6090 goto no_support;
6091 }
a3c4230a 6092 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6093 if (ret)
6094 return ret;
6095 }
6096 break;
6097
7ad10968 6098 /* XXX */
a38bba38 6099 case 0xce: /* into */
a3c4230a 6100 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6101 "instruction into.\n"));
6102 ir.addr -= 1;
6103 goto no_support;
6104 break;
6105
a38bba38
MS
6106 case 0xfa: /* cli */
6107 case 0xfb: /* sti */
7ad10968
HZ
6108 break;
6109
a38bba38 6110 case 0x62: /* bound */
a3c4230a 6111 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6112 "instruction bound.\n"));
6113 ir.addr -= 1;
6114 goto no_support;
6115 break;
6116
a38bba38 6117 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6118 case 0x0fc9:
6119 case 0x0fca:
6120 case 0x0fcb:
6121 case 0x0fcc:
6122 case 0x0fcd:
6123 case 0x0fce:
6124 case 0x0fcf:
cf648174 6125 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6126 break;
6127
a38bba38 6128 case 0xd6: /* salc */
cf648174
HZ
6129 if (ir.regmap[X86_RECORD_R8_REGNUM])
6130 {
6131 ir.addr -= 1;
6132 goto no_support;
6133 }
6134 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6135 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6136 break;
6137
a38bba38
MS
6138 case 0xe0: /* loopnz */
6139 case 0xe1: /* loopz */
6140 case 0xe2: /* loop */
6141 case 0xe3: /* jecxz */
cf648174
HZ
6142 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6143 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6144 break;
6145
a38bba38 6146 case 0x0f30: /* wrmsr */
a3c4230a 6147 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6148 "instruction wrmsr.\n"));
6149 ir.addr -= 2;
6150 goto no_support;
6151 break;
6152
a38bba38 6153 case 0x0f32: /* rdmsr */
a3c4230a 6154 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6155 "instruction rdmsr.\n"));
6156 ir.addr -= 2;
6157 goto no_support;
6158 break;
6159
a38bba38 6160 case 0x0f31: /* rdtsc */
f8c4f480
HZ
6161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6162 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6163 break;
6164
a38bba38 6165 case 0x0f34: /* sysenter */
7ad10968
HZ
6166 {
6167 int ret;
cf648174
HZ
6168 if (ir.regmap[X86_RECORD_R8_REGNUM])
6169 {
6170 ir.addr -= 2;
6171 goto no_support;
6172 }
a3c4230a 6173 if (tdep->i386_sysenter_record == NULL)
7ad10968 6174 {
a3c4230a 6175 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6176 "instruction sysenter.\n"));
6177 ir.addr -= 2;
6178 goto no_support;
6179 }
a3c4230a 6180 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6181 if (ret)
6182 return ret;
6183 }
6184 break;
6185
a38bba38 6186 case 0x0f35: /* sysexit */
a3c4230a 6187 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6188 "instruction sysexit.\n"));
6189 ir.addr -= 2;
6190 goto no_support;
6191 break;
6192
a38bba38 6193 case 0x0f05: /* syscall */
cf648174
HZ
6194 {
6195 int ret;
a3c4230a 6196 if (tdep->i386_syscall_record == NULL)
cf648174 6197 {
a3c4230a 6198 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6199 "instruction syscall.\n"));
6200 ir.addr -= 2;
6201 goto no_support;
6202 }
a3c4230a 6203 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6204 if (ret)
6205 return ret;
6206 }
6207 break;
6208
a38bba38 6209 case 0x0f07: /* sysret */
a3c4230a 6210 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6211 "instruction sysret.\n"));
6212 ir.addr -= 2;
6213 goto no_support;
6214 break;
6215
a38bba38 6216 case 0x0fa2: /* cpuid */
cf648174
HZ
6217 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6218 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6221 break;
6222
a38bba38 6223 case 0xf4: /* hlt */
a3c4230a 6224 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6225 "instruction hlt.\n"));
6226 ir.addr -= 1;
6227 goto no_support;
6228 break;
6229
6230 case 0x0f00:
6231 if (i386_record_modrm (&ir))
6232 return -1;
6233 switch (ir.reg)
6234 {
a38bba38
MS
6235 case 0: /* sldt */
6236 case 1: /* str */
7ad10968 6237 if (ir.mod == 3)
cf648174 6238 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6239 else
6240 {
6241 ir.ot = OT_WORD;
6242 if (i386_record_lea_modrm (&ir))
6243 return -1;
6244 }
6245 break;
a38bba38
MS
6246 case 2: /* lldt */
6247 case 3: /* ltr */
7ad10968 6248 break;
a38bba38
MS
6249 case 4: /* verr */
6250 case 5: /* verw */
cf648174 6251 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6252 break;
6253 default:
6254 ir.addr -= 3;
6255 opcode = opcode << 8 | ir.modrm;
6256 goto no_support;
6257 break;
6258 }
6259 break;
6260
6261 case 0x0f01:
6262 if (i386_record_modrm (&ir))
6263 return -1;
6264 switch (ir.reg)
6265 {
a38bba38 6266 case 0: /* sgdt */
7ad10968 6267 {
955db0c0 6268 uint64_t addr64;
7ad10968
HZ
6269
6270 if (ir.mod == 3)
6271 {
6272 ir.addr -= 3;
6273 opcode = opcode << 8 | ir.modrm;
6274 goto no_support;
6275 }
d7877f7e 6276 if (ir.override >= 0)
7ad10968 6277 {
bb08c432
HZ
6278 if (record_memory_query)
6279 {
6280 int q;
6281
6282 target_terminal_ours ();
6283 q = yquery (_("\
6284Process record ignores the memory change of instruction at address %s\n\
6285because it can't get the value of the segment register.\n\
6286Do you want to stop the program?"),
6287 paddress (gdbarch, ir.orig_addr));
6288 target_terminal_inferior ();
6289 if (q)
6290 return -1;
6291 }
7ad10968
HZ
6292 }
6293 else
6294 {
955db0c0 6295 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6296 return -1;
955db0c0 6297 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6298 return -1;
955db0c0 6299 addr64 += 2;
cf648174
HZ
6300 if (ir.regmap[X86_RECORD_R8_REGNUM])
6301 {
955db0c0 6302 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6303 return -1;
6304 }
6305 else
6306 {
955db0c0 6307 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6308 return -1;
6309 }
7ad10968
HZ
6310 }
6311 }
6312 break;
6313 case 1:
6314 if (ir.mod == 3)
6315 {
6316 switch (ir.rm)
6317 {
a38bba38 6318 case 0: /* monitor */
7ad10968 6319 break;
a38bba38 6320 case 1: /* mwait */
cf648174 6321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6322 break;
6323 default:
6324 ir.addr -= 3;
6325 opcode = opcode << 8 | ir.modrm;
6326 goto no_support;
6327 break;
6328 }
6329 }
6330 else
6331 {
6332 /* sidt */
d7877f7e 6333 if (ir.override >= 0)
7ad10968 6334 {
bb08c432
HZ
6335 if (record_memory_query)
6336 {
6337 int q;
6338
6339 target_terminal_ours ();
6340 q = yquery (_("\
6341Process record ignores the memory change of instruction at address %s\n\
6342because it can't get the value of the segment register.\n\
6343Do you want to stop the program?"),
6344 paddress (gdbarch, ir.orig_addr));
6345 target_terminal_inferior ();
6346 if (q)
6347 return -1;
6348 }
7ad10968
HZ
6349 }
6350 else
6351 {
955db0c0 6352 uint64_t addr64;
7ad10968 6353
955db0c0 6354 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6355 return -1;
955db0c0 6356 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6357 return -1;
955db0c0 6358 addr64 += 2;
cf648174
HZ
6359 if (ir.regmap[X86_RECORD_R8_REGNUM])
6360 {
955db0c0 6361 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6362 return -1;
6363 }
6364 else
6365 {
955db0c0 6366 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6367 return -1;
6368 }
7ad10968
HZ
6369 }
6370 }
6371 break;
a38bba38 6372 case 2: /* lgdt */
3800e645
MS
6373 if (ir.mod == 3)
6374 {
6375 /* xgetbv */
6376 if (ir.rm == 0)
6377 {
6378 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6379 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6380 break;
6381 }
6382 /* xsetbv */
6383 else if (ir.rm == 1)
6384 break;
6385 }
a38bba38 6386 case 3: /* lidt */
7ad10968
HZ
6387 if (ir.mod == 3)
6388 {
6389 ir.addr -= 3;
6390 opcode = opcode << 8 | ir.modrm;
6391 goto no_support;
6392 }
6393 break;
a38bba38 6394 case 4: /* smsw */
7ad10968
HZ
6395 if (ir.mod == 3)
6396 {
cf648174 6397 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
6398 return -1;
6399 }
6400 else
6401 {
6402 ir.ot = OT_WORD;
6403 if (i386_record_lea_modrm (&ir))
6404 return -1;
6405 }
cf648174 6406 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6407 break;
a38bba38 6408 case 6: /* lmsw */
cf648174
HZ
6409 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6410 break;
a38bba38 6411 case 7: /* invlpg */
cf648174
HZ
6412 if (ir.mod == 3)
6413 {
6414 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6415 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6416 else
6417 {
6418 ir.addr -= 3;
6419 opcode = opcode << 8 | ir.modrm;
6420 goto no_support;
6421 }
6422 }
6423 else
6424 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6425 break;
6426 default:
6427 ir.addr -= 3;
6428 opcode = opcode << 8 | ir.modrm;
6429 goto no_support;
7ad10968
HZ
6430 break;
6431 }
6432 break;
6433
a38bba38
MS
6434 case 0x0f08: /* invd */
6435 case 0x0f09: /* wbinvd */
7ad10968
HZ
6436 break;
6437
a38bba38 6438 case 0x63: /* arpl */
7ad10968
HZ
6439 if (i386_record_modrm (&ir))
6440 return -1;
cf648174
HZ
6441 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6442 {
6443 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6444 ? (ir.reg | rex_r) : ir.rm);
6445 }
7ad10968 6446 else
cf648174
HZ
6447 {
6448 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6449 if (i386_record_lea_modrm (&ir))
6450 return -1;
6451 }
6452 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6454 break;
6455
a38bba38
MS
6456 case 0x0f02: /* lar */
6457 case 0x0f03: /* lsl */
7ad10968
HZ
6458 if (i386_record_modrm (&ir))
6459 return -1;
cf648174
HZ
6460 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6461 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6462 break;
6463
6464 case 0x0f18:
cf648174
HZ
6465 if (i386_record_modrm (&ir))
6466 return -1;
6467 if (ir.mod == 3 && ir.reg == 3)
6468 {
6469 ir.addr -= 3;
6470 opcode = opcode << 8 | ir.modrm;
6471 goto no_support;
6472 }
7ad10968
HZ
6473 break;
6474
7ad10968
HZ
6475 case 0x0f19:
6476 case 0x0f1a:
6477 case 0x0f1b:
6478 case 0x0f1c:
6479 case 0x0f1d:
6480 case 0x0f1e:
6481 case 0x0f1f:
a38bba38 6482 /* nop (multi byte) */
7ad10968
HZ
6483 break;
6484
a38bba38
MS
6485 case 0x0f20: /* mov reg, crN */
6486 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6487 if (i386_record_modrm (&ir))
6488 return -1;
6489 if ((ir.modrm & 0xc0) != 0xc0)
6490 {
cf648174 6491 ir.addr -= 3;
7ad10968
HZ
6492 opcode = opcode << 8 | ir.modrm;
6493 goto no_support;
6494 }
6495 switch (ir.reg)
6496 {
6497 case 0:
6498 case 2:
6499 case 3:
6500 case 4:
6501 case 8:
6502 if (opcode & 2)
cf648174 6503 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6504 else
cf648174 6505 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6506 break;
6507 default:
cf648174 6508 ir.addr -= 3;
7ad10968
HZ
6509 opcode = opcode << 8 | ir.modrm;
6510 goto no_support;
6511 break;
6512 }
6513 break;
6514
a38bba38
MS
6515 case 0x0f21: /* mov reg, drN */
6516 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6517 if (i386_record_modrm (&ir))
6518 return -1;
6519 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6520 || ir.reg == 5 || ir.reg >= 8)
6521 {
cf648174 6522 ir.addr -= 3;
7ad10968
HZ
6523 opcode = opcode << 8 | ir.modrm;
6524 goto no_support;
6525 }
6526 if (opcode & 2)
cf648174 6527 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6528 else
cf648174 6529 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6530 break;
6531
a38bba38 6532 case 0x0f06: /* clts */
cf648174 6533 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6534 break;
6535
a3c4230a
HZ
6536 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6537
6538 case 0x0f0d: /* 3DNow! prefetch */
6539 break;
6540
6541 case 0x0f0e: /* 3DNow! femms */
6542 case 0x0f77: /* emms */
6543 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6544 goto no_support;
6545 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6546 break;
6547
6548 case 0x0f0f: /* 3DNow! data */
6549 if (i386_record_modrm (&ir))
6550 return -1;
4ffa4fc7
PA
6551 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6552 return -1;
a3c4230a
HZ
6553 ir.addr++;
6554 switch (opcode8)
6555 {
6556 case 0x0c: /* 3DNow! pi2fw */
6557 case 0x0d: /* 3DNow! pi2fd */
6558 case 0x1c: /* 3DNow! pf2iw */
6559 case 0x1d: /* 3DNow! pf2id */
6560 case 0x8a: /* 3DNow! pfnacc */
6561 case 0x8e: /* 3DNow! pfpnacc */
6562 case 0x90: /* 3DNow! pfcmpge */
6563 case 0x94: /* 3DNow! pfmin */
6564 case 0x96: /* 3DNow! pfrcp */
6565 case 0x97: /* 3DNow! pfrsqrt */
6566 case 0x9a: /* 3DNow! pfsub */
6567 case 0x9e: /* 3DNow! pfadd */
6568 case 0xa0: /* 3DNow! pfcmpgt */
6569 case 0xa4: /* 3DNow! pfmax */
6570 case 0xa6: /* 3DNow! pfrcpit1 */
6571 case 0xa7: /* 3DNow! pfrsqit1 */
6572 case 0xaa: /* 3DNow! pfsubr */
6573 case 0xae: /* 3DNow! pfacc */
6574 case 0xb0: /* 3DNow! pfcmpeq */
6575 case 0xb4: /* 3DNow! pfmul */
6576 case 0xb6: /* 3DNow! pfrcpit2 */
6577 case 0xb7: /* 3DNow! pmulhrw */
6578 case 0xbb: /* 3DNow! pswapd */
6579 case 0xbf: /* 3DNow! pavgusb */
6580 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6581 goto no_support_3dnow_data;
6582 record_arch_list_add_reg (ir.regcache, ir.reg);
6583 break;
6584
6585 default:
6586no_support_3dnow_data:
6587 opcode = (opcode << 8) | opcode8;
6588 goto no_support;
6589 break;
6590 }
6591 break;
6592
6593 case 0x0faa: /* rsm */
6594 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6595 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6596 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6597 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6599 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6600 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6602 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6603 break;
6604
6605 case 0x0fae:
6606 if (i386_record_modrm (&ir))
6607 return -1;
6608 switch(ir.reg)
6609 {
6610 case 0: /* fxsave */
6611 {
6612 uint64_t tmpu64;
6613
6614 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6615 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6616 return -1;
6617 if (record_arch_list_add_mem (tmpu64, 512))
6618 return -1;
6619 }
6620 break;
6621
6622 case 1: /* fxrstor */
6623 {
6624 int i;
6625
6626 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6627
6628 for (i = I387_MM0_REGNUM (tdep);
6629 i386_mmx_regnum_p (gdbarch, i); i++)
6630 record_arch_list_add_reg (ir.regcache, i);
6631
6632 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6633 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6634 record_arch_list_add_reg (ir.regcache, i);
6635
6636 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6637 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6638
6639 for (i = I387_ST0_REGNUM (tdep);
6640 i386_fp_regnum_p (gdbarch, i); i++)
6641 record_arch_list_add_reg (ir.regcache, i);
6642
6643 for (i = I387_FCTRL_REGNUM (tdep);
6644 i386_fpc_regnum_p (gdbarch, i); i++)
6645 record_arch_list_add_reg (ir.regcache, i);
6646 }
6647 break;
6648
6649 case 2: /* ldmxcsr */
6650 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6651 goto no_support;
6652 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6653 break;
6654
6655 case 3: /* stmxcsr */
6656 ir.ot = OT_LONG;
6657 if (i386_record_lea_modrm (&ir))
6658 return -1;
6659 break;
6660
6661 case 5: /* lfence */
6662 case 6: /* mfence */
6663 case 7: /* sfence clflush */
6664 break;
6665
6666 default:
6667 opcode = (opcode << 8) | ir.modrm;
6668 goto no_support;
6669 break;
6670 }
6671 break;
6672
6673 case 0x0fc3: /* movnti */
6674 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6675 if (i386_record_modrm (&ir))
6676 return -1;
6677 if (ir.mod == 3)
6678 goto no_support;
6679 ir.reg |= rex_r;
6680 if (i386_record_lea_modrm (&ir))
6681 return -1;
6682 break;
6683
6684 /* Add prefix to opcode. */
6685 case 0x0f10:
6686 case 0x0f11:
6687 case 0x0f12:
6688 case 0x0f13:
6689 case 0x0f14:
6690 case 0x0f15:
6691 case 0x0f16:
6692 case 0x0f17:
6693 case 0x0f28:
6694 case 0x0f29:
6695 case 0x0f2a:
6696 case 0x0f2b:
6697 case 0x0f2c:
6698 case 0x0f2d:
6699 case 0x0f2e:
6700 case 0x0f2f:
6701 case 0x0f38:
6702 case 0x0f39:
6703 case 0x0f3a:
6704 case 0x0f50:
6705 case 0x0f51:
6706 case 0x0f52:
6707 case 0x0f53:
6708 case 0x0f54:
6709 case 0x0f55:
6710 case 0x0f56:
6711 case 0x0f57:
6712 case 0x0f58:
6713 case 0x0f59:
6714 case 0x0f5a:
6715 case 0x0f5b:
6716 case 0x0f5c:
6717 case 0x0f5d:
6718 case 0x0f5e:
6719 case 0x0f5f:
6720 case 0x0f60:
6721 case 0x0f61:
6722 case 0x0f62:
6723 case 0x0f63:
6724 case 0x0f64:
6725 case 0x0f65:
6726 case 0x0f66:
6727 case 0x0f67:
6728 case 0x0f68:
6729 case 0x0f69:
6730 case 0x0f6a:
6731 case 0x0f6b:
6732 case 0x0f6c:
6733 case 0x0f6d:
6734 case 0x0f6e:
6735 case 0x0f6f:
6736 case 0x0f70:
6737 case 0x0f71:
6738 case 0x0f72:
6739 case 0x0f73:
6740 case 0x0f74:
6741 case 0x0f75:
6742 case 0x0f76:
6743 case 0x0f7c:
6744 case 0x0f7d:
6745 case 0x0f7e:
6746 case 0x0f7f:
6747 case 0x0fb8:
6748 case 0x0fc2:
6749 case 0x0fc4:
6750 case 0x0fc5:
6751 case 0x0fc6:
6752 case 0x0fd0:
6753 case 0x0fd1:
6754 case 0x0fd2:
6755 case 0x0fd3:
6756 case 0x0fd4:
6757 case 0x0fd5:
6758 case 0x0fd6:
6759 case 0x0fd7:
6760 case 0x0fd8:
6761 case 0x0fd9:
6762 case 0x0fda:
6763 case 0x0fdb:
6764 case 0x0fdc:
6765 case 0x0fdd:
6766 case 0x0fde:
6767 case 0x0fdf:
6768 case 0x0fe0:
6769 case 0x0fe1:
6770 case 0x0fe2:
6771 case 0x0fe3:
6772 case 0x0fe4:
6773 case 0x0fe5:
6774 case 0x0fe6:
6775 case 0x0fe7:
6776 case 0x0fe8:
6777 case 0x0fe9:
6778 case 0x0fea:
6779 case 0x0feb:
6780 case 0x0fec:
6781 case 0x0fed:
6782 case 0x0fee:
6783 case 0x0fef:
6784 case 0x0ff0:
6785 case 0x0ff1:
6786 case 0x0ff2:
6787 case 0x0ff3:
6788 case 0x0ff4:
6789 case 0x0ff5:
6790 case 0x0ff6:
6791 case 0x0ff7:
6792 case 0x0ff8:
6793 case 0x0ff9:
6794 case 0x0ffa:
6795 case 0x0ffb:
6796 case 0x0ffc:
6797 case 0x0ffd:
6798 case 0x0ffe:
6799 switch (prefixes)
6800 {
6801 case PREFIX_REPNZ:
6802 opcode |= 0xf20000;
6803 break;
6804 case PREFIX_DATA:
6805 opcode |= 0x660000;
6806 break;
6807 case PREFIX_REPZ:
6808 opcode |= 0xf30000;
6809 break;
6810 }
6811reswitch_prefix_add:
6812 switch (opcode)
6813 {
6814 case 0x0f38:
6815 case 0x660f38:
6816 case 0xf20f38:
6817 case 0x0f3a:
6818 case 0x660f3a:
4ffa4fc7
PA
6819 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6820 return -1;
a3c4230a
HZ
6821 ir.addr++;
6822 opcode = (uint32_t) opcode8 | opcode << 8;
6823 goto reswitch_prefix_add;
6824 break;
6825
6826 case 0x0f10: /* movups */
6827 case 0x660f10: /* movupd */
6828 case 0xf30f10: /* movss */
6829 case 0xf20f10: /* movsd */
6830 case 0x0f12: /* movlps */
6831 case 0x660f12: /* movlpd */
6832 case 0xf30f12: /* movsldup */
6833 case 0xf20f12: /* movddup */
6834 case 0x0f14: /* unpcklps */
6835 case 0x660f14: /* unpcklpd */
6836 case 0x0f15: /* unpckhps */
6837 case 0x660f15: /* unpckhpd */
6838 case 0x0f16: /* movhps */
6839 case 0x660f16: /* movhpd */
6840 case 0xf30f16: /* movshdup */
6841 case 0x0f28: /* movaps */
6842 case 0x660f28: /* movapd */
6843 case 0x0f2a: /* cvtpi2ps */
6844 case 0x660f2a: /* cvtpi2pd */
6845 case 0xf30f2a: /* cvtsi2ss */
6846 case 0xf20f2a: /* cvtsi2sd */
6847 case 0x0f2c: /* cvttps2pi */
6848 case 0x660f2c: /* cvttpd2pi */
6849 case 0x0f2d: /* cvtps2pi */
6850 case 0x660f2d: /* cvtpd2pi */
6851 case 0x660f3800: /* pshufb */
6852 case 0x660f3801: /* phaddw */
6853 case 0x660f3802: /* phaddd */
6854 case 0x660f3803: /* phaddsw */
6855 case 0x660f3804: /* pmaddubsw */
6856 case 0x660f3805: /* phsubw */
6857 case 0x660f3806: /* phsubd */
4f7d61a8 6858 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6859 case 0x660f3808: /* psignb */
6860 case 0x660f3809: /* psignw */
6861 case 0x660f380a: /* psignd */
6862 case 0x660f380b: /* pmulhrsw */
6863 case 0x660f3810: /* pblendvb */
6864 case 0x660f3814: /* blendvps */
6865 case 0x660f3815: /* blendvpd */
6866 case 0x660f381c: /* pabsb */
6867 case 0x660f381d: /* pabsw */
6868 case 0x660f381e: /* pabsd */
6869 case 0x660f3820: /* pmovsxbw */
6870 case 0x660f3821: /* pmovsxbd */
6871 case 0x660f3822: /* pmovsxbq */
6872 case 0x660f3823: /* pmovsxwd */
6873 case 0x660f3824: /* pmovsxwq */
6874 case 0x660f3825: /* pmovsxdq */
6875 case 0x660f3828: /* pmuldq */
6876 case 0x660f3829: /* pcmpeqq */
6877 case 0x660f382a: /* movntdqa */
6878 case 0x660f3a08: /* roundps */
6879 case 0x660f3a09: /* roundpd */
6880 case 0x660f3a0a: /* roundss */
6881 case 0x660f3a0b: /* roundsd */
6882 case 0x660f3a0c: /* blendps */
6883 case 0x660f3a0d: /* blendpd */
6884 case 0x660f3a0e: /* pblendw */
6885 case 0x660f3a0f: /* palignr */
6886 case 0x660f3a20: /* pinsrb */
6887 case 0x660f3a21: /* insertps */
6888 case 0x660f3a22: /* pinsrd pinsrq */
6889 case 0x660f3a40: /* dpps */
6890 case 0x660f3a41: /* dppd */
6891 case 0x660f3a42: /* mpsadbw */
6892 case 0x660f3a60: /* pcmpestrm */
6893 case 0x660f3a61: /* pcmpestri */
6894 case 0x660f3a62: /* pcmpistrm */
6895 case 0x660f3a63: /* pcmpistri */
6896 case 0x0f51: /* sqrtps */
6897 case 0x660f51: /* sqrtpd */
6898 case 0xf20f51: /* sqrtsd */
6899 case 0xf30f51: /* sqrtss */
6900 case 0x0f52: /* rsqrtps */
6901 case 0xf30f52: /* rsqrtss */
6902 case 0x0f53: /* rcpps */
6903 case 0xf30f53: /* rcpss */
6904 case 0x0f54: /* andps */
6905 case 0x660f54: /* andpd */
6906 case 0x0f55: /* andnps */
6907 case 0x660f55: /* andnpd */
6908 case 0x0f56: /* orps */
6909 case 0x660f56: /* orpd */
6910 case 0x0f57: /* xorps */
6911 case 0x660f57: /* xorpd */
6912 case 0x0f58: /* addps */
6913 case 0x660f58: /* addpd */
6914 case 0xf20f58: /* addsd */
6915 case 0xf30f58: /* addss */
6916 case 0x0f59: /* mulps */
6917 case 0x660f59: /* mulpd */
6918 case 0xf20f59: /* mulsd */
6919 case 0xf30f59: /* mulss */
6920 case 0x0f5a: /* cvtps2pd */
6921 case 0x660f5a: /* cvtpd2ps */
6922 case 0xf20f5a: /* cvtsd2ss */
6923 case 0xf30f5a: /* cvtss2sd */
6924 case 0x0f5b: /* cvtdq2ps */
6925 case 0x660f5b: /* cvtps2dq */
6926 case 0xf30f5b: /* cvttps2dq */
6927 case 0x0f5c: /* subps */
6928 case 0x660f5c: /* subpd */
6929 case 0xf20f5c: /* subsd */
6930 case 0xf30f5c: /* subss */
6931 case 0x0f5d: /* minps */
6932 case 0x660f5d: /* minpd */
6933 case 0xf20f5d: /* minsd */
6934 case 0xf30f5d: /* minss */
6935 case 0x0f5e: /* divps */
6936 case 0x660f5e: /* divpd */
6937 case 0xf20f5e: /* divsd */
6938 case 0xf30f5e: /* divss */
6939 case 0x0f5f: /* maxps */
6940 case 0x660f5f: /* maxpd */
6941 case 0xf20f5f: /* maxsd */
6942 case 0xf30f5f: /* maxss */
6943 case 0x660f60: /* punpcklbw */
6944 case 0x660f61: /* punpcklwd */
6945 case 0x660f62: /* punpckldq */
6946 case 0x660f63: /* packsswb */
6947 case 0x660f64: /* pcmpgtb */
6948 case 0x660f65: /* pcmpgtw */
56d2815c 6949 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
6950 case 0x660f67: /* packuswb */
6951 case 0x660f68: /* punpckhbw */
6952 case 0x660f69: /* punpckhwd */
6953 case 0x660f6a: /* punpckhdq */
6954 case 0x660f6b: /* packssdw */
6955 case 0x660f6c: /* punpcklqdq */
6956 case 0x660f6d: /* punpckhqdq */
6957 case 0x660f6e: /* movd */
6958 case 0x660f6f: /* movdqa */
6959 case 0xf30f6f: /* movdqu */
6960 case 0x660f70: /* pshufd */
6961 case 0xf20f70: /* pshuflw */
6962 case 0xf30f70: /* pshufhw */
6963 case 0x660f74: /* pcmpeqb */
6964 case 0x660f75: /* pcmpeqw */
56d2815c 6965 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
6966 case 0x660f7c: /* haddpd */
6967 case 0xf20f7c: /* haddps */
6968 case 0x660f7d: /* hsubpd */
6969 case 0xf20f7d: /* hsubps */
6970 case 0xf30f7e: /* movq */
6971 case 0x0fc2: /* cmpps */
6972 case 0x660fc2: /* cmppd */
6973 case 0xf20fc2: /* cmpsd */
6974 case 0xf30fc2: /* cmpss */
6975 case 0x660fc4: /* pinsrw */
6976 case 0x0fc6: /* shufps */
6977 case 0x660fc6: /* shufpd */
6978 case 0x660fd0: /* addsubpd */
6979 case 0xf20fd0: /* addsubps */
6980 case 0x660fd1: /* psrlw */
6981 case 0x660fd2: /* psrld */
6982 case 0x660fd3: /* psrlq */
6983 case 0x660fd4: /* paddq */
6984 case 0x660fd5: /* pmullw */
6985 case 0xf30fd6: /* movq2dq */
6986 case 0x660fd8: /* psubusb */
6987 case 0x660fd9: /* psubusw */
6988 case 0x660fda: /* pminub */
6989 case 0x660fdb: /* pand */
6990 case 0x660fdc: /* paddusb */
6991 case 0x660fdd: /* paddusw */
6992 case 0x660fde: /* pmaxub */
6993 case 0x660fdf: /* pandn */
6994 case 0x660fe0: /* pavgb */
6995 case 0x660fe1: /* psraw */
6996 case 0x660fe2: /* psrad */
6997 case 0x660fe3: /* pavgw */
6998 case 0x660fe4: /* pmulhuw */
6999 case 0x660fe5: /* pmulhw */
7000 case 0x660fe6: /* cvttpd2dq */
7001 case 0xf20fe6: /* cvtpd2dq */
7002 case 0xf30fe6: /* cvtdq2pd */
7003 case 0x660fe8: /* psubsb */
7004 case 0x660fe9: /* psubsw */
7005 case 0x660fea: /* pminsw */
7006 case 0x660feb: /* por */
7007 case 0x660fec: /* paddsb */
7008 case 0x660fed: /* paddsw */
7009 case 0x660fee: /* pmaxsw */
7010 case 0x660fef: /* pxor */
4f7d61a8 7011 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7012 case 0x660ff1: /* psllw */
7013 case 0x660ff2: /* pslld */
7014 case 0x660ff3: /* psllq */
7015 case 0x660ff4: /* pmuludq */
7016 case 0x660ff5: /* pmaddwd */
7017 case 0x660ff6: /* psadbw */
7018 case 0x660ff8: /* psubb */
7019 case 0x660ff9: /* psubw */
56d2815c 7020 case 0x660ffa: /* psubd */
a3c4230a
HZ
7021 case 0x660ffb: /* psubq */
7022 case 0x660ffc: /* paddb */
7023 case 0x660ffd: /* paddw */
56d2815c 7024 case 0x660ffe: /* paddd */
a3c4230a
HZ
7025 if (i386_record_modrm (&ir))
7026 return -1;
7027 ir.reg |= rex_r;
c131fcee 7028 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
7029 goto no_support;
7030 record_arch_list_add_reg (ir.regcache,
7031 I387_XMM0_REGNUM (tdep) + ir.reg);
7032 if ((opcode & 0xfffffffc) == 0x660f3a60)
7033 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7034 break;
7035
7036 case 0x0f11: /* movups */
7037 case 0x660f11: /* movupd */
7038 case 0xf30f11: /* movss */
7039 case 0xf20f11: /* movsd */
7040 case 0x0f13: /* movlps */
7041 case 0x660f13: /* movlpd */
7042 case 0x0f17: /* movhps */
7043 case 0x660f17: /* movhpd */
7044 case 0x0f29: /* movaps */
7045 case 0x660f29: /* movapd */
7046 case 0x660f3a14: /* pextrb */
7047 case 0x660f3a15: /* pextrw */
7048 case 0x660f3a16: /* pextrd pextrq */
7049 case 0x660f3a17: /* extractps */
7050 case 0x660f7f: /* movdqa */
7051 case 0xf30f7f: /* movdqu */
7052 if (i386_record_modrm (&ir))
7053 return -1;
7054 if (ir.mod == 3)
7055 {
7056 if (opcode == 0x0f13 || opcode == 0x660f13
7057 || opcode == 0x0f17 || opcode == 0x660f17)
7058 goto no_support;
7059 ir.rm |= ir.rex_b;
1777feb0
MS
7060 if (!i386_xmm_regnum_p (gdbarch,
7061 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7062 goto no_support;
7063 record_arch_list_add_reg (ir.regcache,
7064 I387_XMM0_REGNUM (tdep) + ir.rm);
7065 }
7066 else
7067 {
7068 switch (opcode)
7069 {
7070 case 0x660f3a14:
7071 ir.ot = OT_BYTE;
7072 break;
7073 case 0x660f3a15:
7074 ir.ot = OT_WORD;
7075 break;
7076 case 0x660f3a16:
7077 ir.ot = OT_LONG;
7078 break;
7079 case 0x660f3a17:
7080 ir.ot = OT_QUAD;
7081 break;
7082 default:
7083 ir.ot = OT_DQUAD;
7084 break;
7085 }
7086 if (i386_record_lea_modrm (&ir))
7087 return -1;
7088 }
7089 break;
7090
7091 case 0x0f2b: /* movntps */
7092 case 0x660f2b: /* movntpd */
7093 case 0x0fe7: /* movntq */
7094 case 0x660fe7: /* movntdq */
7095 if (ir.mod == 3)
7096 goto no_support;
7097 if (opcode == 0x0fe7)
7098 ir.ot = OT_QUAD;
7099 else
7100 ir.ot = OT_DQUAD;
7101 if (i386_record_lea_modrm (&ir))
7102 return -1;
7103 break;
7104
7105 case 0xf30f2c: /* cvttss2si */
7106 case 0xf20f2c: /* cvttsd2si */
7107 case 0xf30f2d: /* cvtss2si */
7108 case 0xf20f2d: /* cvtsd2si */
7109 case 0xf20f38f0: /* crc32 */
7110 case 0xf20f38f1: /* crc32 */
7111 case 0x0f50: /* movmskps */
7112 case 0x660f50: /* movmskpd */
7113 case 0x0fc5: /* pextrw */
7114 case 0x660fc5: /* pextrw */
7115 case 0x0fd7: /* pmovmskb */
7116 case 0x660fd7: /* pmovmskb */
7117 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7118 break;
7119
7120 case 0x0f3800: /* pshufb */
7121 case 0x0f3801: /* phaddw */
7122 case 0x0f3802: /* phaddd */
7123 case 0x0f3803: /* phaddsw */
7124 case 0x0f3804: /* pmaddubsw */
7125 case 0x0f3805: /* phsubw */
7126 case 0x0f3806: /* phsubd */
4f7d61a8 7127 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7128 case 0x0f3808: /* psignb */
7129 case 0x0f3809: /* psignw */
7130 case 0x0f380a: /* psignd */
7131 case 0x0f380b: /* pmulhrsw */
7132 case 0x0f381c: /* pabsb */
7133 case 0x0f381d: /* pabsw */
7134 case 0x0f381e: /* pabsd */
7135 case 0x0f382b: /* packusdw */
7136 case 0x0f3830: /* pmovzxbw */
7137 case 0x0f3831: /* pmovzxbd */
7138 case 0x0f3832: /* pmovzxbq */
7139 case 0x0f3833: /* pmovzxwd */
7140 case 0x0f3834: /* pmovzxwq */
7141 case 0x0f3835: /* pmovzxdq */
7142 case 0x0f3837: /* pcmpgtq */
7143 case 0x0f3838: /* pminsb */
7144 case 0x0f3839: /* pminsd */
7145 case 0x0f383a: /* pminuw */
7146 case 0x0f383b: /* pminud */
7147 case 0x0f383c: /* pmaxsb */
7148 case 0x0f383d: /* pmaxsd */
7149 case 0x0f383e: /* pmaxuw */
7150 case 0x0f383f: /* pmaxud */
7151 case 0x0f3840: /* pmulld */
7152 case 0x0f3841: /* phminposuw */
7153 case 0x0f3a0f: /* palignr */
7154 case 0x0f60: /* punpcklbw */
7155 case 0x0f61: /* punpcklwd */
7156 case 0x0f62: /* punpckldq */
7157 case 0x0f63: /* packsswb */
7158 case 0x0f64: /* pcmpgtb */
7159 case 0x0f65: /* pcmpgtw */
56d2815c 7160 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7161 case 0x0f67: /* packuswb */
7162 case 0x0f68: /* punpckhbw */
7163 case 0x0f69: /* punpckhwd */
7164 case 0x0f6a: /* punpckhdq */
7165 case 0x0f6b: /* packssdw */
7166 case 0x0f6e: /* movd */
7167 case 0x0f6f: /* movq */
7168 case 0x0f70: /* pshufw */
7169 case 0x0f74: /* pcmpeqb */
7170 case 0x0f75: /* pcmpeqw */
56d2815c 7171 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7172 case 0x0fc4: /* pinsrw */
7173 case 0x0fd1: /* psrlw */
7174 case 0x0fd2: /* psrld */
7175 case 0x0fd3: /* psrlq */
7176 case 0x0fd4: /* paddq */
7177 case 0x0fd5: /* pmullw */
7178 case 0xf20fd6: /* movdq2q */
7179 case 0x0fd8: /* psubusb */
7180 case 0x0fd9: /* psubusw */
7181 case 0x0fda: /* pminub */
7182 case 0x0fdb: /* pand */
7183 case 0x0fdc: /* paddusb */
7184 case 0x0fdd: /* paddusw */
7185 case 0x0fde: /* pmaxub */
7186 case 0x0fdf: /* pandn */
7187 case 0x0fe0: /* pavgb */
7188 case 0x0fe1: /* psraw */
7189 case 0x0fe2: /* psrad */
7190 case 0x0fe3: /* pavgw */
7191 case 0x0fe4: /* pmulhuw */
7192 case 0x0fe5: /* pmulhw */
7193 case 0x0fe8: /* psubsb */
7194 case 0x0fe9: /* psubsw */
7195 case 0x0fea: /* pminsw */
7196 case 0x0feb: /* por */
7197 case 0x0fec: /* paddsb */
7198 case 0x0fed: /* paddsw */
7199 case 0x0fee: /* pmaxsw */
7200 case 0x0fef: /* pxor */
7201 case 0x0ff1: /* psllw */
7202 case 0x0ff2: /* pslld */
7203 case 0x0ff3: /* psllq */
7204 case 0x0ff4: /* pmuludq */
7205 case 0x0ff5: /* pmaddwd */
7206 case 0x0ff6: /* psadbw */
7207 case 0x0ff8: /* psubb */
7208 case 0x0ff9: /* psubw */
56d2815c 7209 case 0x0ffa: /* psubd */
a3c4230a
HZ
7210 case 0x0ffb: /* psubq */
7211 case 0x0ffc: /* paddb */
7212 case 0x0ffd: /* paddw */
56d2815c 7213 case 0x0ffe: /* paddd */
a3c4230a
HZ
7214 if (i386_record_modrm (&ir))
7215 return -1;
7216 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7217 goto no_support;
7218 record_arch_list_add_reg (ir.regcache,
7219 I387_MM0_REGNUM (tdep) + ir.reg);
7220 break;
7221
7222 case 0x0f71: /* psllw */
7223 case 0x0f72: /* pslld */
7224 case 0x0f73: /* psllq */
7225 if (i386_record_modrm (&ir))
7226 return -1;
7227 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7228 goto no_support;
7229 record_arch_list_add_reg (ir.regcache,
7230 I387_MM0_REGNUM (tdep) + ir.rm);
7231 break;
7232
7233 case 0x660f71: /* psllw */
7234 case 0x660f72: /* pslld */
7235 case 0x660f73: /* psllq */
7236 if (i386_record_modrm (&ir))
7237 return -1;
7238 ir.rm |= ir.rex_b;
c131fcee 7239 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7240 goto no_support;
7241 record_arch_list_add_reg (ir.regcache,
7242 I387_XMM0_REGNUM (tdep) + ir.rm);
7243 break;
7244
7245 case 0x0f7e: /* movd */
7246 case 0x660f7e: /* movd */
7247 if (i386_record_modrm (&ir))
7248 return -1;
7249 if (ir.mod == 3)
7250 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7251 else
7252 {
7253 if (ir.dflag == 2)
7254 ir.ot = OT_QUAD;
7255 else
7256 ir.ot = OT_LONG;
7257 if (i386_record_lea_modrm (&ir))
7258 return -1;
7259 }
7260 break;
7261
7262 case 0x0f7f: /* movq */
7263 if (i386_record_modrm (&ir))
7264 return -1;
7265 if (ir.mod == 3)
7266 {
7267 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7268 goto no_support;
7269 record_arch_list_add_reg (ir.regcache,
7270 I387_MM0_REGNUM (tdep) + ir.rm);
7271 }
7272 else
7273 {
7274 ir.ot = OT_QUAD;
7275 if (i386_record_lea_modrm (&ir))
7276 return -1;
7277 }
7278 break;
7279
7280 case 0xf30fb8: /* popcnt */
7281 if (i386_record_modrm (&ir))
7282 return -1;
7283 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7284 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7285 break;
7286
7287 case 0x660fd6: /* movq */
7288 if (i386_record_modrm (&ir))
7289 return -1;
7290 if (ir.mod == 3)
7291 {
7292 ir.rm |= ir.rex_b;
1777feb0
MS
7293 if (!i386_xmm_regnum_p (gdbarch,
7294 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7295 goto no_support;
7296 record_arch_list_add_reg (ir.regcache,
7297 I387_XMM0_REGNUM (tdep) + ir.rm);
7298 }
7299 else
7300 {
7301 ir.ot = OT_QUAD;
7302 if (i386_record_lea_modrm (&ir))
7303 return -1;
7304 }
7305 break;
7306
7307 case 0x660f3817: /* ptest */
7308 case 0x0f2e: /* ucomiss */
7309 case 0x660f2e: /* ucomisd */
7310 case 0x0f2f: /* comiss */
7311 case 0x660f2f: /* comisd */
7312 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7313 break;
7314
7315 case 0x0ff7: /* maskmovq */
7316 regcache_raw_read_unsigned (ir.regcache,
7317 ir.regmap[X86_RECORD_REDI_REGNUM],
7318 &addr);
7319 if (record_arch_list_add_mem (addr, 64))
7320 return -1;
7321 break;
7322
7323 case 0x660ff7: /* maskmovdqu */
7324 regcache_raw_read_unsigned (ir.regcache,
7325 ir.regmap[X86_RECORD_REDI_REGNUM],
7326 &addr);
7327 if (record_arch_list_add_mem (addr, 128))
7328 return -1;
7329 break;
7330
7331 default:
7332 goto no_support;
7333 break;
7334 }
7335 break;
7ad10968
HZ
7336
7337 default:
7ad10968
HZ
7338 goto no_support;
7339 break;
7340 }
7341
cf648174
HZ
7342 /* In the future, maybe still need to deal with need_dasm. */
7343 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
7344 if (record_arch_list_add_end ())
7345 return -1;
7346
7347 return 0;
7348
01fe1b41 7349 no_support:
a3c4230a
HZ
7350 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7351 "at address %s.\n"),
7352 (unsigned int) (opcode),
7353 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
7354 return -1;
7355}
7356
cf648174
HZ
7357static const int i386_record_regmap[] =
7358{
7359 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7360 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7361 0, 0, 0, 0, 0, 0, 0, 0,
7362 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7363 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7364};
7365
7a697b8d 7366/* Check that the given address appears suitable for a fast
405f8e94 7367 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
7368 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7369 jump and not have to worry about program jumps to an address in the
405f8e94
SS
7370 middle of the tracepoint jump. On x86, it may be possible to use
7371 4-byte jumps with a 2-byte offset to a trampoline located in the
7372 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
7373 of instruction to replace, and 0 if not, plus an explanatory
7374 string. */
7375
7376static int
7377i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7378 CORE_ADDR addr, int *isize, char **msg)
7379{
7380 int len, jumplen;
7381 static struct ui_file *gdb_null = NULL;
7382
405f8e94
SS
7383 /* Ask the target for the minimum instruction length supported. */
7384 jumplen = target_get_min_fast_tracepoint_insn_len ();
7385
7386 if (jumplen < 0)
7387 {
7388 /* If the target does not support the get_min_fast_tracepoint_insn_len
7389 operation, assume that fast tracepoints will always be implemented
7390 using 4-byte relative jumps on both x86 and x86-64. */
7391 jumplen = 5;
7392 }
7393 else if (jumplen == 0)
7394 {
7395 /* If the target does support get_min_fast_tracepoint_insn_len but
7396 returns zero, then the IPA has not loaded yet. In this case,
7397 we optimistically assume that truncated 2-byte relative jumps
7398 will be available on x86, and compensate later if this assumption
7399 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7400 jumps will always be used. */
7401 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7402 }
7a697b8d
SS
7403
7404 /* Dummy file descriptor for the disassembler. */
7405 if (!gdb_null)
7406 gdb_null = ui_file_new ();
7407
7408 /* Check for fit. */
7409 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
7410 if (isize)
7411 *isize = len;
7412
7a697b8d
SS
7413 if (len < jumplen)
7414 {
7415 /* Return a bit of target-specific detail to add to the caller's
7416 generic failure message. */
7417 if (msg)
1777feb0
MS
7418 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7419 "need at least %d bytes for the jump"),
7a697b8d
SS
7420 len, jumplen);
7421 return 0;
7422 }
405f8e94
SS
7423 else
7424 {
7425 if (msg)
7426 *msg = NULL;
7427 return 1;
7428 }
7a697b8d
SS
7429}
7430
90884b2b
L
7431static int
7432i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7433 struct tdesc_arch_data *tdesc_data)
7434{
7435 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
7436 const struct tdesc_feature *feature_core;
7437 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
7438 int i, num_regs, valid_p;
7439
7440 if (! tdesc_has_registers (tdesc))
7441 return 0;
7442
7443 /* Get core registers. */
7444 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
7445 if (feature_core == NULL)
7446 return 0;
90884b2b
L
7447
7448 /* Get SSE registers. */
c131fcee 7449 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 7450
c131fcee
L
7451 /* Try AVX registers. */
7452 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7453
90884b2b
L
7454 valid_p = 1;
7455
c131fcee
L
7456 /* The XCR0 bits. */
7457 if (feature_avx)
7458 {
3a13a53b
L
7459 /* AVX register description requires SSE register description. */
7460 if (!feature_sse)
7461 return 0;
7462
c131fcee
L
7463 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7464
7465 /* It may have been set by OSABI initialization function. */
7466 if (tdep->num_ymm_regs == 0)
7467 {
7468 tdep->ymmh_register_names = i386_ymmh_names;
7469 tdep->num_ymm_regs = 8;
7470 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7471 }
7472
7473 for (i = 0; i < tdep->num_ymm_regs; i++)
7474 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7475 tdep->ymm0h_regnum + i,
7476 tdep->ymmh_register_names[i]);
7477 }
3a13a53b 7478 else if (feature_sse)
c131fcee 7479 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7480 else
7481 {
7482 tdep->xcr0 = I386_XSTATE_X87_MASK;
7483 tdep->num_xmm_regs = 0;
7484 }
c131fcee 7485
90884b2b
L
7486 num_regs = tdep->num_core_regs;
7487 for (i = 0; i < num_regs; i++)
7488 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7489 tdep->register_names[i]);
7490
3a13a53b
L
7491 if (feature_sse)
7492 {
7493 /* Need to include %mxcsr, so add one. */
7494 num_regs += tdep->num_xmm_regs + 1;
7495 for (; i < num_regs; i++)
7496 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7497 tdep->register_names[i]);
7498 }
90884b2b
L
7499
7500 return valid_p;
7501}
7502
7ad10968
HZ
7503\f
7504static struct gdbarch *
7505i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7506{
7507 struct gdbarch_tdep *tdep;
7508 struct gdbarch *gdbarch;
90884b2b
L
7509 struct tdesc_arch_data *tdesc_data;
7510 const struct target_desc *tdesc;
1ba53b71 7511 int mm0_regnum;
c131fcee 7512 int ymm0_regnum;
7ad10968
HZ
7513
7514 /* If there is already a candidate, use it. */
7515 arches = gdbarch_list_lookup_by_info (arches, &info);
7516 if (arches != NULL)
7517 return arches->gdbarch;
7518
7519 /* Allocate space for the new architecture. */
7520 tdep = XCALLOC (1, struct gdbarch_tdep);
7521 gdbarch = gdbarch_alloc (&info, tdep);
7522
7523 /* General-purpose registers. */
7524 tdep->gregset = NULL;
7525 tdep->gregset_reg_offset = NULL;
7526 tdep->gregset_num_regs = I386_NUM_GREGS;
7527 tdep->sizeof_gregset = 0;
7528
7529 /* Floating-point registers. */
7530 tdep->fpregset = NULL;
7531 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7532
c131fcee
L
7533 tdep->xstateregset = NULL;
7534
7ad10968
HZ
7535 /* The default settings include the FPU registers, the MMX registers
7536 and the SSE registers. This can be overridden for a specific ABI
7537 by adjusting the members `st0_regnum', `mm0_regnum' and
7538 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7539 will show up in the output of "info all-registers". */
7ad10968
HZ
7540
7541 tdep->st0_regnum = I386_ST0_REGNUM;
7542
7ad10968
HZ
7543 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7544 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7545
7546 tdep->jb_pc_offset = -1;
7547 tdep->struct_return = pcc_struct_return;
7548 tdep->sigtramp_start = 0;
7549 tdep->sigtramp_end = 0;
7550 tdep->sigtramp_p = i386_sigtramp_p;
7551 tdep->sigcontext_addr = NULL;
7552 tdep->sc_reg_offset = NULL;
7553 tdep->sc_pc_offset = -1;
7554 tdep->sc_sp_offset = -1;
7555
c131fcee
L
7556 tdep->xsave_xcr0_offset = -1;
7557
cf648174
HZ
7558 tdep->record_regmap = i386_record_regmap;
7559
205c306f
DM
7560 set_gdbarch_long_long_align_bit (gdbarch, 32);
7561
7ad10968
HZ
7562 /* The format used for `long double' on almost all i386 targets is
7563 the i387 extended floating-point format. In fact, of all targets
7564 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7565 on having a `long double' that's not `long' at all. */
7566 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7567
7568 /* Although the i387 extended floating-point has only 80 significant
7569 bits, a `long double' actually takes up 96, probably to enforce
7570 alignment. */
7571 set_gdbarch_long_double_bit (gdbarch, 96);
7572
7ad10968
HZ
7573 /* Register numbers of various important registers. */
7574 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7575 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7576 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7577 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7578
7579 /* NOTE: kettenis/20040418: GCC does have two possible register
7580 numbering schemes on the i386: dbx and SVR4. These schemes
7581 differ in how they number %ebp, %esp, %eflags, and the
7582 floating-point registers, and are implemented by the arrays
7583 dbx_register_map[] and svr4_dbx_register_map in
7584 gcc/config/i386.c. GCC also defines a third numbering scheme in
7585 gcc/config/i386.c, which it designates as the "default" register
7586 map used in 64bit mode. This last register numbering scheme is
7587 implemented in dbx64_register_map, and is used for AMD64; see
7588 amd64-tdep.c.
7589
7590 Currently, each GCC i386 target always uses the same register
7591 numbering scheme across all its supported debugging formats
7592 i.e. SDB (COFF), stabs and DWARF 2. This is because
7593 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7594 DBX_REGISTER_NUMBER macro which is defined by each target's
7595 respective config header in a manner independent of the requested
7596 output debugging format.
7597
7598 This does not match the arrangement below, which presumes that
7599 the SDB and stabs numbering schemes differ from the DWARF and
7600 DWARF 2 ones. The reason for this arrangement is that it is
7601 likely to get the numbering scheme for the target's
7602 default/native debug format right. For targets where GCC is the
7603 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7604 targets where the native toolchain uses a different numbering
7605 scheme for a particular debug format (stabs-in-ELF on Solaris)
7606 the defaults below will have to be overridden, like
7607 i386_elf_init_abi() does. */
7608
7609 /* Use the dbx register numbering scheme for stabs and COFF. */
7610 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7611 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7612
7613 /* Use the SVR4 register numbering scheme for DWARF 2. */
7614 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7615
7616 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7617 be in use on any of the supported i386 targets. */
7618
7619 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7620
7621 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7622
7623 /* Call dummy code. */
a9b8d892
JK
7624 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7625 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 7626 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 7627 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
7628
7629 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7630 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7631 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7632
7633 set_gdbarch_return_value (gdbarch, i386_return_value);
7634
7635 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7636
7637 /* Stack grows downward. */
7638 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7639
7640 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7641 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7642 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7643
7644 set_gdbarch_frame_args_skip (gdbarch, 8);
7645
7ad10968
HZ
7646 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7647
7648 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7649
7650 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7651
7652 /* Add the i386 register groups. */
7653 i386_add_reggroups (gdbarch);
90884b2b 7654 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7655
143985b7
AF
7656 /* Helper for function argument information. */
7657 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7658
06da04c6 7659 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
7660 appended to the list first, so that it supercedes the DWARF
7661 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
7662 currently fails). */
7663 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7664
7665 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 7666 to the list before the prologue-based unwinders, so that DWARF
06da04c6 7667 CFI info will be used if it is available. */
10458914 7668 dwarf2_append_unwinders (gdbarch);
6405b0a6 7669
acd5c798 7670 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7671
1ba53b71 7672 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
7673 set_gdbarch_pseudo_register_read_value (gdbarch,
7674 i386_pseudo_register_read_value);
90884b2b
L
7675 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7676
7677 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7678 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7679
c131fcee
L
7680 /* Override the normal target description method to make the AVX
7681 upper halves anonymous. */
7682 set_gdbarch_register_name (gdbarch, i386_register_name);
7683
7684 /* Even though the default ABI only includes general-purpose registers,
7685 floating-point registers and the SSE registers, we have to leave a
7686 gap for the upper AVX registers. */
7687 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7688
7689 /* Get the x86 target description from INFO. */
7690 tdesc = info.target_desc;
7691 if (! tdesc_has_registers (tdesc))
7692 tdesc = tdesc_i386;
7693 tdep->tdesc = tdesc;
7694
7695 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7696 tdep->register_names = i386_register_names;
7697
c131fcee
L
7698 /* No upper YMM registers. */
7699 tdep->ymmh_register_names = NULL;
7700 tdep->ymm0h_regnum = -1;
7701
1ba53b71
L
7702 tdep->num_byte_regs = 8;
7703 tdep->num_word_regs = 8;
7704 tdep->num_dword_regs = 0;
7705 tdep->num_mmx_regs = 8;
c131fcee 7706 tdep->num_ymm_regs = 0;
1ba53b71 7707
23e2d720
L
7708 tdep->sp_regnum_from_eax = -1;
7709 tdep->pc_regnum_from_eax = -1;
7710
90884b2b
L
7711 tdesc_data = tdesc_data_alloc ();
7712
dde08ee1
PA
7713 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7714
6710bf39
SS
7715 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7716
3ce1502b 7717 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7718 info.tdep_info = (void *) tdesc_data;
4be87837 7719 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7720
c131fcee
L
7721 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7722 {
7723 tdesc_data_cleanup (tdesc_data);
7724 xfree (tdep);
7725 gdbarch_free (gdbarch);
7726 return NULL;
7727 }
7728
1ba53b71
L
7729 /* Wire in pseudo registers. Number of pseudo registers may be
7730 changed. */
7731 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7732 + tdep->num_word_regs
7733 + tdep->num_dword_regs
c131fcee
L
7734 + tdep->num_mmx_regs
7735 + tdep->num_ymm_regs));
1ba53b71 7736
90884b2b
L
7737 /* Target description may be changed. */
7738 tdesc = tdep->tdesc;
7739
90884b2b
L
7740 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7741
7742 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7743 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7744
1ba53b71
L
7745 /* Make %al the first pseudo-register. */
7746 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7747 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7748
c131fcee 7749 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7750 if (tdep->num_dword_regs)
7751 {
1c6272a6 7752 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7753 tdep->eax_regnum = ymm0_regnum;
7754 ymm0_regnum += tdep->num_dword_regs;
23e2d720
L
7755 if (tdep->sp_regnum_from_eax != -1)
7756 set_gdbarch_sp_regnum (gdbarch,
7757 (tdep->eax_regnum
7758 + tdep->sp_regnum_from_eax));
7759 if (tdep->pc_regnum_from_eax != -1)
7760 set_gdbarch_pc_regnum (gdbarch,
7761 (tdep->eax_regnum
7762 + tdep->pc_regnum_from_eax));
1ba53b71
L
7763 }
7764 else
7765 tdep->eax_regnum = -1;
7766
c131fcee
L
7767 mm0_regnum = ymm0_regnum;
7768 if (tdep->num_ymm_regs)
7769 {
1c6272a6 7770 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7771 tdep->ymm0_regnum = ymm0_regnum;
7772 mm0_regnum += tdep->num_ymm_regs;
7773 }
7774 else
7775 tdep->ymm0_regnum = -1;
7776
1ba53b71
L
7777 if (tdep->num_mmx_regs != 0)
7778 {
1c6272a6 7779 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7780 tdep->mm0_regnum = mm0_regnum;
7781 }
7782 else
7783 tdep->mm0_regnum = -1;
7784
06da04c6 7785 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 7786 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
7787 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7788 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7789
8446b36a
MK
7790 /* If we have a register mapping, enable the generic core file
7791 support, unless it has already been enabled. */
7792 if (tdep->gregset_reg_offset
7793 && !gdbarch_regset_from_core_section_p (gdbarch))
7794 set_gdbarch_regset_from_core_section (gdbarch,
7795 i386_regset_from_core_section);
7796
514f746b
AR
7797 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7798 i386_skip_permanent_breakpoint);
7799
7a697b8d
SS
7800 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7801 i386_fast_tracepoint_valid_at);
7802
a62cc96e
AC
7803 return gdbarch;
7804}
7805
8201327c
MK
7806static enum gdb_osabi
7807i386_coff_osabi_sniffer (bfd *abfd)
7808{
762c5349
MK
7809 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7810 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7811 return GDB_OSABI_GO32;
7812
7813 return GDB_OSABI_UNKNOWN;
7814}
8201327c
MK
7815\f
7816
28e9e0f0
MK
7817/* Provide a prototype to silence -Wmissing-prototypes. */
7818void _initialize_i386_tdep (void);
7819
c906108c 7820void
fba45db2 7821_initialize_i386_tdep (void)
c906108c 7822{
a62cc96e
AC
7823 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7824
fc338970 7825 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7826 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7827 &disassembly_flavor, _("\
7828Set the disassembly flavor."), _("\
7829Show the disassembly flavor."), _("\
7830The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7831 NULL,
7832 NULL, /* FIXME: i18n: */
7833 &setlist, &showlist);
8201327c
MK
7834
7835 /* Add the variable that controls the convention for returning
7836 structs. */
7ab04401
AC
7837 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7838 &struct_convention, _("\
7839Set the convention for returning small structs."), _("\
7840Show the convention for returning small structs."), _("\
7841Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7842is \"default\"."),
7843 NULL,
7844 NULL, /* FIXME: i18n: */
7845 &setlist, &showlist);
8201327c
MK
7846
7847 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7848 i386_coff_osabi_sniffer);
8201327c 7849
05816f70 7850 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7851 i386_svr4_init_abi);
05816f70 7852 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7853 i386_go32_init_abi);
38c968cf 7854
209bd28e 7855 /* Initialize the i386-specific register groups. */
38c968cf 7856 i386_init_reggroups ();
90884b2b
L
7857
7858 /* Initialize the standard target descriptions. */
7859 initialize_tdesc_i386 ();
3a13a53b 7860 initialize_tdesc_i386_mmx ();
c131fcee 7861 initialize_tdesc_i386_avx ();
c8d5aac9
L
7862
7863 /* Tell remote stub that we support XML target description. */
7864 register_remote_support_xml ("i386");
c906108c 7865}
This page took 1.407178 seconds and 4 git commands to generate.