test suite fixlet for gdb.trace
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
28e7fd62 3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
fd0407d6 42#include "value.h"
a89aa300 43#include "dis-asm.h"
7a697b8d 44#include "disasm.h"
c8d5aac9 45#include "remote.h"
8fbca658 46#include "exceptions.h"
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
c131fcee 52#include "i386-xstate.h"
d2a7c97a 53
7ad10968 54#include "record.h"
d02ed0bb 55#include "record-full.h"
7ad10968
HZ
56#include <stdint.h>
57
90884b2b 58#include "features/i386/i386.c"
c131fcee 59#include "features/i386/i386-avx.c"
3a13a53b 60#include "features/i386/i386-mmx.c"
90884b2b 61
6710bf39
SS
62#include "ax.h"
63#include "ax-gdb.h"
64
55aa24fb
SDJ
65#include "stap-probe.h"
66#include "user-regs.h"
67#include "cli/cli-utils.h"
68#include "expression.h"
69#include "parser-defs.h"
70#include <ctype.h>
71
c4fc7f1b 72/* Register names. */
c40e1eab 73
90884b2b 74static const char *i386_register_names[] =
fc633446
MK
75{
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87};
88
c131fcee
L
89static const char *i386_ymm_names[] =
90{
91 "ymm0", "ymm1", "ymm2", "ymm3",
92 "ymm4", "ymm5", "ymm6", "ymm7",
93};
94
95static const char *i386_ymmh_names[] =
96{
97 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
98 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
99};
100
c4fc7f1b 101/* Register names for MMX pseudo-registers. */
28fc6740 102
90884b2b 103static const char *i386_mmx_names[] =
28fc6740
AC
104{
105 "mm0", "mm1", "mm2", "mm3",
106 "mm4", "mm5", "mm6", "mm7"
107};
c40e1eab 108
1ba53b71
L
109/* Register names for byte pseudo-registers. */
110
111static const char *i386_byte_names[] =
112{
113 "al", "cl", "dl", "bl",
114 "ah", "ch", "dh", "bh"
115};
116
117/* Register names for word pseudo-registers. */
118
119static const char *i386_word_names[] =
120{
121 "ax", "cx", "dx", "bx",
9cad29ac 122 "", "bp", "si", "di"
1ba53b71
L
123};
124
125/* MMX register? */
c40e1eab 126
28fc6740 127static int
5716833c 128i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 129{
1ba53b71
L
130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
131 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
132
133 if (mm0_regnum < 0)
134 return 0;
135
1ba53b71
L
136 regnum -= mm0_regnum;
137 return regnum >= 0 && regnum < tdep->num_mmx_regs;
138}
139
140/* Byte register? */
141
142int
143i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
144{
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 regnum -= tdep->al_regnum;
148 return regnum >= 0 && regnum < tdep->num_byte_regs;
149}
150
151/* Word register? */
152
153int
154i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
155{
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157
158 regnum -= tdep->ax_regnum;
159 return regnum >= 0 && regnum < tdep->num_word_regs;
160}
161
162/* Dword register? */
163
164int
165i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
166{
167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168 int eax_regnum = tdep->eax_regnum;
169
170 if (eax_regnum < 0)
171 return 0;
172
173 regnum -= eax_regnum;
174 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
175}
176
9191d390 177static int
c131fcee
L
178i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
179{
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0h_regnum = tdep->ymm0h_regnum;
182
183 if (ymm0h_regnum < 0)
184 return 0;
185
186 regnum -= ymm0h_regnum;
187 return regnum >= 0 && regnum < tdep->num_ymm_regs;
188}
189
190/* AVX register? */
191
192int
193i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
194{
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196 int ymm0_regnum = tdep->ymm0_regnum;
197
198 if (ymm0_regnum < 0)
199 return 0;
200
201 regnum -= ymm0_regnum;
202 return regnum >= 0 && regnum < tdep->num_ymm_regs;
203}
204
5716833c 205/* SSE register? */
23a34459 206
c131fcee
L
207int
208i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 209{
5716833c 210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 211 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 212
c131fcee 213 if (num_xmm_regs == 0)
5716833c
MK
214 return 0;
215
c131fcee
L
216 regnum -= I387_XMM0_REGNUM (tdep);
217 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
218}
219
5716833c
MK
220static int
221i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 222{
5716833c
MK
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
20a6ec49 225 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
226 return 0;
227
20a6ec49 228 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
229}
230
5716833c 231/* FP register? */
23a34459
AC
232
233int
20a6ec49 234i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 235{
20a6ec49
MD
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
239 return 0;
240
20a6ec49
MD
241 return (I387_ST0_REGNUM (tdep) <= regnum
242 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
243}
244
245int
20a6ec49 246i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 247{
20a6ec49
MD
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249
250 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
251 return 0;
252
20a6ec49
MD
253 return (I387_FCTRL_REGNUM (tdep) <= regnum
254 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
255}
256
c131fcee
L
257/* Return the name of register REGNUM, or the empty string if it is
258 an anonymous register. */
259
260static const char *
261i386_register_name (struct gdbarch *gdbarch, int regnum)
262{
263 /* Hide the upper YMM registers. */
264 if (i386_ymmh_regnum_p (gdbarch, regnum))
265 return "";
266
267 return tdesc_register_name (gdbarch, regnum);
268}
269
30b0e2d8 270/* Return the name of register REGNUM. */
fc633446 271
1ba53b71 272const char *
90884b2b 273i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 274{
1ba53b71
L
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 if (i386_mmx_regnum_p (gdbarch, regnum))
277 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
278 else if (i386_ymm_regnum_p (gdbarch, regnum))
279 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
280 else if (i386_byte_regnum_p (gdbarch, regnum))
281 return i386_byte_names[regnum - tdep->al_regnum];
282 else if (i386_word_regnum_p (gdbarch, regnum))
283 return i386_word_names[regnum - tdep->ax_regnum];
284
285 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
286}
287
c4fc7f1b 288/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
289 number used by GDB. */
290
8201327c 291static int
d3f73121 292i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 293{
20a6ec49
MD
294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
295
c4fc7f1b
MK
296 /* This implements what GCC calls the "default" register map
297 (dbx_register_map[]). */
298
85540d8c
MK
299 if (reg >= 0 && reg <= 7)
300 {
9872ad24
JB
301 /* General-purpose registers. The debug info calls %ebp
302 register 4, and %esp register 5. */
303 if (reg == 4)
304 return 5;
305 else if (reg == 5)
306 return 4;
307 else return reg;
85540d8c
MK
308 }
309 else if (reg >= 12 && reg <= 19)
310 {
311 /* Floating-point registers. */
20a6ec49 312 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
313 }
314 else if (reg >= 21 && reg <= 28)
315 {
316 /* SSE registers. */
c131fcee
L
317 int ymm0_regnum = tdep->ymm0_regnum;
318
319 if (ymm0_regnum >= 0
320 && i386_xmm_regnum_p (gdbarch, reg))
321 return reg - 21 + ymm0_regnum;
322 else
323 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
324 }
325 else if (reg >= 29 && reg <= 36)
326 {
327 /* MMX registers. */
20a6ec49 328 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
329 }
330
331 /* This will hopefully provoke a warning. */
d3f73121 332 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
333}
334
c4fc7f1b
MK
335/* Convert SVR4 register number REG to the appropriate register number
336 used by GDB. */
85540d8c 337
8201327c 338static int
d3f73121 339i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 340{
20a6ec49
MD
341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
342
c4fc7f1b
MK
343 /* This implements the GCC register map that tries to be compatible
344 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
345
346 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
347 numbers the floating point registers differently. */
348 if (reg >= 0 && reg <= 9)
349 {
acd5c798 350 /* General-purpose registers. */
85540d8c
MK
351 return reg;
352 }
353 else if (reg >= 11 && reg <= 18)
354 {
355 /* Floating-point registers. */
20a6ec49 356 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 357 }
c6f4c129 358 else if (reg >= 21 && reg <= 36)
85540d8c 359 {
c4fc7f1b 360 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 361 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
362 }
363
c6f4c129
JB
364 switch (reg)
365 {
20a6ec49
MD
366 case 37: return I387_FCTRL_REGNUM (tdep);
367 case 38: return I387_FSTAT_REGNUM (tdep);
368 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
369 case 40: return I386_ES_REGNUM;
370 case 41: return I386_CS_REGNUM;
371 case 42: return I386_SS_REGNUM;
372 case 43: return I386_DS_REGNUM;
373 case 44: return I386_FS_REGNUM;
374 case 45: return I386_GS_REGNUM;
375 }
376
85540d8c 377 /* This will hopefully provoke a warning. */
d3f73121 378 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 379}
5716833c 380
fc338970 381\f
917317f4 382
fc338970
MK
383/* This is the variable that is set with "set disassembly-flavor", and
384 its legitimate values. */
53904c9e
AC
385static const char att_flavor[] = "att";
386static const char intel_flavor[] = "intel";
40478521 387static const char *const valid_flavors[] =
c5aa993b 388{
c906108c
SS
389 att_flavor,
390 intel_flavor,
391 NULL
392};
53904c9e 393static const char *disassembly_flavor = att_flavor;
acd5c798 394\f
c906108c 395
acd5c798
MK
396/* Use the program counter to determine the contents and size of a
397 breakpoint instruction. Return a pointer to a string of bytes that
398 encode a breakpoint instruction, store the length of the string in
399 *LEN and optionally adjust *PC to point to the correct memory
400 location for inserting the breakpoint.
c906108c 401
acd5c798
MK
402 On the i386 we have a single breakpoint that fits in a single byte
403 and can be inserted anywhere.
c906108c 404
acd5c798 405 This function is 64-bit safe. */
63c0089f
MK
406
407static const gdb_byte *
67d57894 408i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 409{
63c0089f
MK
410 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
411
acd5c798
MK
412 *len = sizeof (break_insn);
413 return break_insn;
c906108c 414}
237fc4c9
PA
415\f
416/* Displaced instruction handling. */
417
1903f0e6
DE
418/* Skip the legacy instruction prefixes in INSN.
419 Not all prefixes are valid for any particular insn
420 but we needn't care, the insn will fault if it's invalid.
421 The result is a pointer to the first opcode byte,
422 or NULL if we run off the end of the buffer. */
423
424static gdb_byte *
425i386_skip_prefixes (gdb_byte *insn, size_t max_len)
426{
427 gdb_byte *end = insn + max_len;
428
429 while (insn < end)
430 {
431 switch (*insn)
432 {
433 case DATA_PREFIX_OPCODE:
434 case ADDR_PREFIX_OPCODE:
435 case CS_PREFIX_OPCODE:
436 case DS_PREFIX_OPCODE:
437 case ES_PREFIX_OPCODE:
438 case FS_PREFIX_OPCODE:
439 case GS_PREFIX_OPCODE:
440 case SS_PREFIX_OPCODE:
441 case LOCK_PREFIX_OPCODE:
442 case REPE_PREFIX_OPCODE:
443 case REPNE_PREFIX_OPCODE:
444 ++insn;
445 continue;
446 default:
447 return insn;
448 }
449 }
450
451 return NULL;
452}
237fc4c9
PA
453
454static int
1903f0e6 455i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 456{
1777feb0 457 /* jmp far (absolute address in operand). */
237fc4c9
PA
458 if (insn[0] == 0xea)
459 return 1;
460
461 if (insn[0] == 0xff)
462 {
1777feb0 463 /* jump near, absolute indirect (/4). */
237fc4c9
PA
464 if ((insn[1] & 0x38) == 0x20)
465 return 1;
466
1777feb0 467 /* jump far, absolute indirect (/5). */
237fc4c9
PA
468 if ((insn[1] & 0x38) == 0x28)
469 return 1;
470 }
471
472 return 0;
473}
474
475static int
1903f0e6 476i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 477{
1777feb0 478 /* call far, absolute. */
237fc4c9
PA
479 if (insn[0] == 0x9a)
480 return 1;
481
482 if (insn[0] == 0xff)
483 {
1777feb0 484 /* Call near, absolute indirect (/2). */
237fc4c9
PA
485 if ((insn[1] & 0x38) == 0x10)
486 return 1;
487
1777feb0 488 /* Call far, absolute indirect (/3). */
237fc4c9
PA
489 if ((insn[1] & 0x38) == 0x18)
490 return 1;
491 }
492
493 return 0;
494}
495
496static int
1903f0e6 497i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
498{
499 switch (insn[0])
500 {
1777feb0 501 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 502 case 0xc3: /* ret near */
1777feb0 503 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
504 case 0xcb: /* ret far */
505 case 0xcf: /* iret */
506 return 1;
507
508 default:
509 return 0;
510 }
511}
512
513static int
1903f0e6 514i386_call_p (const gdb_byte *insn)
237fc4c9
PA
515{
516 if (i386_absolute_call_p (insn))
517 return 1;
518
1777feb0 519 /* call near, relative. */
237fc4c9
PA
520 if (insn[0] == 0xe8)
521 return 1;
522
523 return 0;
524}
525
237fc4c9
PA
526/* Return non-zero if INSN is a system call, and set *LENGTHP to its
527 length in bytes. Otherwise, return zero. */
1903f0e6 528
237fc4c9 529static int
b55078be 530i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 531{
9a7f938f
JK
532 /* Is it 'int $0x80'? */
533 if ((insn[0] == 0xcd && insn[1] == 0x80)
534 /* Or is it 'sysenter'? */
535 || (insn[0] == 0x0f && insn[1] == 0x34)
536 /* Or is it 'syscall'? */
537 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
538 {
539 *lengthp = 2;
540 return 1;
541 }
542
543 return 0;
544}
545
b55078be
DE
546/* Some kernels may run one past a syscall insn, so we have to cope.
547 Otherwise this is just simple_displaced_step_copy_insn. */
548
549struct displaced_step_closure *
550i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
551 CORE_ADDR from, CORE_ADDR to,
552 struct regcache *regs)
553{
554 size_t len = gdbarch_max_insn_length (gdbarch);
555 gdb_byte *buf = xmalloc (len);
556
557 read_memory (from, buf, len);
558
559 /* GDB may get control back after the insn after the syscall.
560 Presumably this is a kernel bug.
561 If this is a syscall, make sure there's a nop afterwards. */
562 {
563 int syscall_length;
564 gdb_byte *insn;
565
566 insn = i386_skip_prefixes (buf, len);
567 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
568 insn[syscall_length] = NOP_OPCODE;
569 }
570
571 write_memory (to, buf, len);
572
573 if (debug_displaced)
574 {
575 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
576 paddress (gdbarch, from), paddress (gdbarch, to));
577 displaced_step_dump_bytes (gdb_stdlog, buf, len);
578 }
579
580 return (struct displaced_step_closure *) buf;
581}
582
237fc4c9
PA
583/* Fix up the state of registers and memory after having single-stepped
584 a displaced instruction. */
1903f0e6 585
237fc4c9
PA
586void
587i386_displaced_step_fixup (struct gdbarch *gdbarch,
588 struct displaced_step_closure *closure,
589 CORE_ADDR from, CORE_ADDR to,
590 struct regcache *regs)
591{
e17a4113
UW
592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
593
237fc4c9
PA
594 /* The offset we applied to the instruction's address.
595 This could well be negative (when viewed as a signed 32-bit
596 value), but ULONGEST won't reflect that, so take care when
597 applying it. */
598 ULONGEST insn_offset = to - from;
599
600 /* Since we use simple_displaced_step_copy_insn, our closure is a
601 copy of the instruction. */
602 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
603 /* The start of the insn, needed in case we see some prefixes. */
604 gdb_byte *insn_start = insn;
237fc4c9
PA
605
606 if (debug_displaced)
607 fprintf_unfiltered (gdb_stdlog,
5af949e3 608 "displaced: fixup (%s, %s), "
237fc4c9 609 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
610 paddress (gdbarch, from), paddress (gdbarch, to),
611 insn[0], insn[1]);
237fc4c9
PA
612
613 /* The list of issues to contend with here is taken from
614 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
615 Yay for Free Software! */
616
617 /* Relocate the %eip, if necessary. */
618
1903f0e6
DE
619 /* The instruction recognizers we use assume any leading prefixes
620 have been skipped. */
621 {
622 /* This is the size of the buffer in closure. */
623 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
624 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
625 /* If there are too many prefixes, just ignore the insn.
626 It will fault when run. */
627 if (opcode != NULL)
628 insn = opcode;
629 }
630
237fc4c9
PA
631 /* Except in the case of absolute or indirect jump or call
632 instructions, or a return instruction, the new eip is relative to
633 the displaced instruction; make it relative. Well, signal
634 handler returns don't need relocation either, but we use the
635 value of %eip to recognize those; see below. */
636 if (! i386_absolute_jmp_p (insn)
637 && ! i386_absolute_call_p (insn)
638 && ! i386_ret_p (insn))
639 {
640 ULONGEST orig_eip;
b55078be 641 int insn_len;
237fc4c9
PA
642
643 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
644
645 /* A signal trampoline system call changes the %eip, resuming
646 execution of the main program after the signal handler has
647 returned. That makes them like 'return' instructions; we
648 shouldn't relocate %eip.
649
650 But most system calls don't, and we do need to relocate %eip.
651
652 Our heuristic for distinguishing these cases: if stepping
653 over the system call instruction left control directly after
654 the instruction, the we relocate --- control almost certainly
655 doesn't belong in the displaced copy. Otherwise, we assume
656 the instruction has put control where it belongs, and leave
657 it unrelocated. Goodness help us if there are PC-relative
658 system calls. */
659 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
660 && orig_eip != to + (insn - insn_start) + insn_len
661 /* GDB can get control back after the insn after the syscall.
662 Presumably this is a kernel bug.
663 i386_displaced_step_copy_insn ensures its a nop,
664 we add one to the length for it. */
665 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
666 {
667 if (debug_displaced)
668 fprintf_unfiltered (gdb_stdlog,
669 "displaced: syscall changed %%eip; "
670 "not relocating\n");
671 }
672 else
673 {
674 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
675
1903f0e6
DE
676 /* If we just stepped over a breakpoint insn, we don't backup
677 the pc on purpose; this is to match behaviour without
678 stepping. */
237fc4c9
PA
679
680 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: "
5af949e3
UW
685 "relocated %%eip from %s to %s\n",
686 paddress (gdbarch, orig_eip),
687 paddress (gdbarch, eip));
237fc4c9
PA
688 }
689 }
690
691 /* If the instruction was PUSHFL, then the TF bit will be set in the
692 pushed value, and should be cleared. We'll leave this for later,
693 since GDB already messes up the TF flag when stepping over a
694 pushfl. */
695
696 /* If the instruction was a call, the return address now atop the
697 stack is the address following the copied instruction. We need
698 to make it the address following the original instruction. */
699 if (i386_call_p (insn))
700 {
701 ULONGEST esp;
702 ULONGEST retaddr;
703 const ULONGEST retaddr_len = 4;
704
705 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 706 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 707 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 708 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
709
710 if (debug_displaced)
711 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
712 "displaced: relocated return addr at %s to %s\n",
713 paddress (gdbarch, esp),
714 paddress (gdbarch, retaddr));
237fc4c9
PA
715 }
716}
dde08ee1
PA
717
718static void
719append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
720{
721 target_write_memory (*to, buf, len);
722 *to += len;
723}
724
725static void
726i386_relocate_instruction (struct gdbarch *gdbarch,
727 CORE_ADDR *to, CORE_ADDR oldloc)
728{
729 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
730 gdb_byte buf[I386_MAX_INSN_LEN];
731 int offset = 0, rel32, newrel;
732 int insn_length;
733 gdb_byte *insn = buf;
734
735 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
736
737 insn_length = gdb_buffered_insn_length (gdbarch, insn,
738 I386_MAX_INSN_LEN, oldloc);
739
740 /* Get past the prefixes. */
741 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
742
743 /* Adjust calls with 32-bit relative addresses as push/jump, with
744 the address pushed being the location where the original call in
745 the user program would return to. */
746 if (insn[0] == 0xe8)
747 {
748 gdb_byte push_buf[16];
749 unsigned int ret_addr;
750
751 /* Where "ret" in the original code will return to. */
752 ret_addr = oldloc + insn_length;
1777feb0 753 push_buf[0] = 0x68; /* pushq $... */
144db827 754 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
755 /* Push the push. */
756 append_insns (to, 5, push_buf);
757
758 /* Convert the relative call to a relative jump. */
759 insn[0] = 0xe9;
760
761 /* Adjust the destination offset. */
762 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
763 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
764 store_signed_integer (insn + 1, 4, byte_order, newrel);
765
766 if (debug_displaced)
767 fprintf_unfiltered (gdb_stdlog,
768 "Adjusted insn rel32=%s at %s to"
769 " rel32=%s at %s\n",
770 hex_string (rel32), paddress (gdbarch, oldloc),
771 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
772
773 /* Write the adjusted jump into its displaced location. */
774 append_insns (to, 5, insn);
775 return;
776 }
777
778 /* Adjust jumps with 32-bit relative addresses. Calls are already
779 handled above. */
780 if (insn[0] == 0xe9)
781 offset = 1;
782 /* Adjust conditional jumps. */
783 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
784 offset = 2;
785
786 if (offset)
787 {
788 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
789 newrel = (oldloc - *to) + rel32;
f4a1794a 790 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
791 if (debug_displaced)
792 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
793 "Adjusted insn rel32=%s at %s to"
794 " rel32=%s at %s\n",
dde08ee1
PA
795 hex_string (rel32), paddress (gdbarch, oldloc),
796 hex_string (newrel), paddress (gdbarch, *to));
797 }
798
799 /* Write the adjusted instructions into their displaced
800 location. */
801 append_insns (to, insn_length, buf);
802}
803
fc338970 804\f
acd5c798
MK
805#ifdef I386_REGNO_TO_SYMMETRY
806#error "The Sequent Symmetry is no longer supported."
807#endif
c906108c 808
acd5c798
MK
809/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
810 and %esp "belong" to the calling function. Therefore these
811 registers should be saved if they're going to be modified. */
c906108c 812
acd5c798
MK
813/* The maximum number of saved registers. This should include all
814 registers mentioned above, and %eip. */
a3386186 815#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
816
817struct i386_frame_cache
c906108c 818{
acd5c798
MK
819 /* Base address. */
820 CORE_ADDR base;
8fbca658 821 int base_p;
772562f8 822 LONGEST sp_offset;
acd5c798
MK
823 CORE_ADDR pc;
824
fd13a04a
AC
825 /* Saved registers. */
826 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 827 CORE_ADDR saved_sp;
e0c62198 828 int saved_sp_reg;
acd5c798
MK
829 int pc_in_eax;
830
831 /* Stack space reserved for local variables. */
832 long locals;
833};
834
835/* Allocate and initialize a frame cache. */
836
837static struct i386_frame_cache *
fd13a04a 838i386_alloc_frame_cache (void)
acd5c798
MK
839{
840 struct i386_frame_cache *cache;
841 int i;
842
843 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
844
845 /* Base address. */
8fbca658 846 cache->base_p = 0;
acd5c798
MK
847 cache->base = 0;
848 cache->sp_offset = -4;
849 cache->pc = 0;
850
fd13a04a
AC
851 /* Saved registers. We initialize these to -1 since zero is a valid
852 offset (that's where %ebp is supposed to be stored). */
853 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
854 cache->saved_regs[i] = -1;
acd5c798 855 cache->saved_sp = 0;
e0c62198 856 cache->saved_sp_reg = -1;
acd5c798
MK
857 cache->pc_in_eax = 0;
858
859 /* Frameless until proven otherwise. */
860 cache->locals = -1;
861
862 return cache;
863}
c906108c 864
acd5c798
MK
865/* If the instruction at PC is a jump, return the address of its
866 target. Otherwise, return PC. */
c906108c 867
acd5c798 868static CORE_ADDR
e17a4113 869i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 870{
e17a4113 871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 872 gdb_byte op;
acd5c798
MK
873 long delta = 0;
874 int data16 = 0;
c906108c 875
3dcabaa8
MS
876 if (target_read_memory (pc, &op, 1))
877 return pc;
878
acd5c798 879 if (op == 0x66)
c906108c 880 {
c906108c 881 data16 = 1;
e17a4113 882 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
883 }
884
acd5c798 885 switch (op)
c906108c
SS
886 {
887 case 0xe9:
fc338970 888 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
889 if (data16)
890 {
e17a4113 891 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 892
fc338970
MK
893 /* Include the size of the jmp instruction (including the
894 0x66 prefix). */
acd5c798 895 delta += 4;
c906108c
SS
896 }
897 else
898 {
e17a4113 899 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 900
acd5c798
MK
901 /* Include the size of the jmp instruction. */
902 delta += 5;
c906108c
SS
903 }
904 break;
905 case 0xeb:
fc338970 906 /* Relative jump, disp8 (ignore data16). */
e17a4113 907 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 908
acd5c798 909 delta += data16 + 2;
c906108c
SS
910 break;
911 }
c906108c 912
acd5c798
MK
913 return pc + delta;
914}
fc338970 915
acd5c798
MK
916/* Check whether PC points at a prologue for a function returning a
917 structure or union. If so, it updates CACHE and returns the
918 address of the first instruction after the code sequence that
919 removes the "hidden" argument from the stack or CURRENT_PC,
920 whichever is smaller. Otherwise, return PC. */
c906108c 921
acd5c798
MK
922static CORE_ADDR
923i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
924 struct i386_frame_cache *cache)
c906108c 925{
acd5c798
MK
926 /* Functions that return a structure or union start with:
927
928 popl %eax 0x58
929 xchgl %eax, (%esp) 0x87 0x04 0x24
930 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
931
932 (the System V compiler puts out the second `xchg' instruction,
933 and the assembler doesn't try to optimize it, so the 'sib' form
934 gets generated). This sequence is used to get the address of the
935 return buffer for a function that returns a structure. */
63c0089f
MK
936 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
937 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
938 gdb_byte buf[4];
939 gdb_byte op;
c906108c 940
acd5c798
MK
941 if (current_pc <= pc)
942 return pc;
943
3dcabaa8
MS
944 if (target_read_memory (pc, &op, 1))
945 return pc;
c906108c 946
acd5c798
MK
947 if (op != 0x58) /* popl %eax */
948 return pc;
c906108c 949
3dcabaa8
MS
950 if (target_read_memory (pc + 1, buf, 4))
951 return pc;
952
acd5c798
MK
953 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
954 return pc;
c906108c 955
acd5c798 956 if (current_pc == pc)
c906108c 957 {
acd5c798
MK
958 cache->sp_offset += 4;
959 return current_pc;
c906108c
SS
960 }
961
acd5c798 962 if (current_pc == pc + 1)
c906108c 963 {
acd5c798
MK
964 cache->pc_in_eax = 1;
965 return current_pc;
966 }
967
968 if (buf[1] == proto1[1])
969 return pc + 4;
970 else
971 return pc + 5;
972}
973
974static CORE_ADDR
975i386_skip_probe (CORE_ADDR pc)
976{
977 /* A function may start with
fc338970 978
acd5c798
MK
979 pushl constant
980 call _probe
981 addl $4, %esp
fc338970 982
acd5c798
MK
983 followed by
984
985 pushl %ebp
fc338970 986
acd5c798 987 etc. */
63c0089f
MK
988 gdb_byte buf[8];
989 gdb_byte op;
fc338970 990
3dcabaa8
MS
991 if (target_read_memory (pc, &op, 1))
992 return pc;
acd5c798
MK
993
994 if (op == 0x68 || op == 0x6a)
995 {
996 int delta;
c906108c 997
acd5c798
MK
998 /* Skip past the `pushl' instruction; it has either a one-byte or a
999 four-byte operand, depending on the opcode. */
c906108c 1000 if (op == 0x68)
acd5c798 1001 delta = 5;
c906108c 1002 else
acd5c798 1003 delta = 2;
c906108c 1004
acd5c798
MK
1005 /* Read the following 8 bytes, which should be `call _probe' (6
1006 bytes) followed by `addl $4,%esp' (2 bytes). */
1007 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1008 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1009 pc += delta + sizeof (buf);
c906108c
SS
1010 }
1011
acd5c798
MK
1012 return pc;
1013}
1014
92dd43fa
MK
1015/* GCC 4.1 and later, can put code in the prologue to realign the
1016 stack pointer. Check whether PC points to such code, and update
1017 CACHE accordingly. Return the first instruction after the code
1018 sequence or CURRENT_PC, whichever is smaller. If we don't
1019 recognize the code, return PC. */
1020
1021static CORE_ADDR
1022i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1023 struct i386_frame_cache *cache)
1024{
e0c62198
L
1025 /* There are 2 code sequences to re-align stack before the frame
1026 gets set up:
1027
1028 1. Use a caller-saved saved register:
1029
1030 leal 4(%esp), %reg
1031 andl $-XXX, %esp
1032 pushl -4(%reg)
1033
1034 2. Use a callee-saved saved register:
1035
1036 pushl %reg
1037 leal 8(%esp), %reg
1038 andl $-XXX, %esp
1039 pushl -4(%reg)
1040
1041 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1042
1043 0x83 0xe4 0xf0 andl $-16, %esp
1044 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1045 */
1046
1047 gdb_byte buf[14];
1048 int reg;
1049 int offset, offset_and;
1050 static int regnums[8] = {
1051 I386_EAX_REGNUM, /* %eax */
1052 I386_ECX_REGNUM, /* %ecx */
1053 I386_EDX_REGNUM, /* %edx */
1054 I386_EBX_REGNUM, /* %ebx */
1055 I386_ESP_REGNUM, /* %esp */
1056 I386_EBP_REGNUM, /* %ebp */
1057 I386_ESI_REGNUM, /* %esi */
1058 I386_EDI_REGNUM /* %edi */
92dd43fa 1059 };
92dd43fa 1060
e0c62198
L
1061 if (target_read_memory (pc, buf, sizeof buf))
1062 return pc;
1063
1064 /* Check caller-saved saved register. The first instruction has
1065 to be "leal 4(%esp), %reg". */
1066 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1067 {
1068 /* MOD must be binary 10 and R/M must be binary 100. */
1069 if ((buf[1] & 0xc7) != 0x44)
1070 return pc;
1071
1072 /* REG has register number. */
1073 reg = (buf[1] >> 3) & 7;
1074 offset = 4;
1075 }
1076 else
1077 {
1078 /* Check callee-saved saved register. The first instruction
1079 has to be "pushl %reg". */
1080 if ((buf[0] & 0xf8) != 0x50)
1081 return pc;
1082
1083 /* Get register. */
1084 reg = buf[0] & 0x7;
1085
1086 /* The next instruction has to be "leal 8(%esp), %reg". */
1087 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1088 return pc;
1089
1090 /* MOD must be binary 10 and R/M must be binary 100. */
1091 if ((buf[2] & 0xc7) != 0x44)
1092 return pc;
1093
1094 /* REG has register number. Registers in pushl and leal have to
1095 be the same. */
1096 if (reg != ((buf[2] >> 3) & 7))
1097 return pc;
1098
1099 offset = 5;
1100 }
1101
1102 /* Rigister can't be %esp nor %ebp. */
1103 if (reg == 4 || reg == 5)
1104 return pc;
1105
1106 /* The next instruction has to be "andl $-XXX, %esp". */
1107 if (buf[offset + 1] != 0xe4
1108 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1109 return pc;
1110
1111 offset_and = offset;
1112 offset += buf[offset] == 0x81 ? 6 : 3;
1113
1114 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1115 0xfc. REG must be binary 110 and MOD must be binary 01. */
1116 if (buf[offset] != 0xff
1117 || buf[offset + 2] != 0xfc
1118 || (buf[offset + 1] & 0xf8) != 0x70)
1119 return pc;
1120
1121 /* R/M has register. Registers in leal and pushl have to be the
1122 same. */
1123 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1124 return pc;
1125
e0c62198
L
1126 if (current_pc > pc + offset_and)
1127 cache->saved_sp_reg = regnums[reg];
92dd43fa 1128
e0c62198 1129 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1130}
1131
37bdc87e 1132/* Maximum instruction length we need to handle. */
237fc4c9 1133#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1134
1135/* Instruction description. */
1136struct i386_insn
1137{
1138 size_t len;
237fc4c9
PA
1139 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1140 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1141};
1142
a3fcb948 1143/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1144
a3fcb948
JG
1145static int
1146i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1147{
63c0089f 1148 gdb_byte op;
37bdc87e 1149
3dcabaa8 1150 if (target_read_memory (pc, &op, 1))
a3fcb948 1151 return 0;
37bdc87e 1152
a3fcb948 1153 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1154 {
a3fcb948
JG
1155 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1156 int insn_matched = 1;
1157 size_t i;
37bdc87e 1158
a3fcb948
JG
1159 gdb_assert (pattern.len > 1);
1160 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1161
a3fcb948
JG
1162 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1163 return 0;
613e8135 1164
a3fcb948
JG
1165 for (i = 1; i < pattern.len; i++)
1166 {
1167 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1168 insn_matched = 0;
37bdc87e 1169 }
a3fcb948
JG
1170 return insn_matched;
1171 }
1172 return 0;
1173}
1174
1175/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1176 the first instruction description that matches. Otherwise, return
1177 NULL. */
1178
1179static struct i386_insn *
1180i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1181{
1182 struct i386_insn *pattern;
1183
1184 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1185 {
1186 if (i386_match_pattern (pc, *pattern))
1187 return pattern;
37bdc87e
MK
1188 }
1189
1190 return NULL;
1191}
1192
a3fcb948
JG
1193/* Return whether PC points inside a sequence of instructions that
1194 matches INSN_PATTERNS. */
1195
1196static int
1197i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1198{
1199 CORE_ADDR current_pc;
1200 int ix, i;
a3fcb948
JG
1201 struct i386_insn *insn;
1202
1203 insn = i386_match_insn (pc, insn_patterns);
1204 if (insn == NULL)
1205 return 0;
1206
8bbdd3f4 1207 current_pc = pc;
a3fcb948
JG
1208 ix = insn - insn_patterns;
1209 for (i = ix - 1; i >= 0; i--)
1210 {
8bbdd3f4
MK
1211 current_pc -= insn_patterns[i].len;
1212
a3fcb948
JG
1213 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 return 0;
a3fcb948
JG
1215 }
1216
1217 current_pc = pc + insn->len;
1218 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219 {
1220 if (!i386_match_pattern (current_pc, *insn))
1221 return 0;
1222
1223 current_pc += insn->len;
1224 }
1225
1226 return 1;
1227}
1228
37bdc87e
MK
1229/* Some special instructions that might be migrated by GCC into the
1230 part of the prologue that sets up the new stack frame. Because the
1231 stack frame hasn't been setup yet, no registers have been saved
1232 yet, and only the scratch registers %eax, %ecx and %edx can be
1233 touched. */
1234
1235struct i386_insn i386_frame_setup_skip_insns[] =
1236{
1777feb0 1237 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1238
1239 ??? Should we handle 16-bit operand-sizes here? */
1240
1241 /* `movb imm8, %al' and `movb imm8, %ah' */
1242 /* `movb imm8, %cl' and `movb imm8, %ch' */
1243 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244 /* `movb imm8, %dl' and `movb imm8, %dh' */
1245 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247 { 5, { 0xb8 }, { 0xfe } },
1248 /* `movl imm32, %edx' */
1249 { 5, { 0xba }, { 0xff } },
1250
1251 /* Check for `mov imm32, r32'. Note that there is an alternative
1252 encoding for `mov m32, %eax'.
1253
1254 ??? Should we handle SIB adressing here?
1255 ??? Should we handle 16-bit operand-sizes here? */
1256
1257 /* `movl m32, %eax' */
1258 { 5, { 0xa1 }, { 0xff } },
1259 /* `movl m32, %eax' and `mov; m32, %ecx' */
1260 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261 /* `movl m32, %edx' */
1262 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263
1264 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265 Because of the symmetry, there are actually two ways to encode
1266 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267 opcode bytes 0x31 and 0x33 for `xorl'. */
1268
1269 /* `subl %eax, %eax' */
1270 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271 /* `subl %ecx, %ecx' */
1272 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273 /* `subl %edx, %edx' */
1274 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275 /* `xorl %eax, %eax' */
1276 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277 /* `xorl %ecx, %ecx' */
1278 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279 /* `xorl %edx, %edx' */
1280 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281 { 0 }
1282};
1283
e11481da
PM
1284
1285/* Check whether PC points to a no-op instruction. */
1286static CORE_ADDR
1287i386_skip_noop (CORE_ADDR pc)
1288{
1289 gdb_byte op;
1290 int check = 1;
1291
3dcabaa8
MS
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
e11481da
PM
1294
1295 while (check)
1296 {
1297 check = 0;
1298 /* Ignore `nop' instruction. */
1299 if (op == 0x90)
1300 {
1301 pc += 1;
3dcabaa8
MS
1302 if (target_read_memory (pc, &op, 1))
1303 return pc;
e11481da
PM
1304 check = 1;
1305 }
1306 /* Ignore no-op instruction `mov %edi, %edi'.
1307 Microsoft system dlls often start with
1308 a `mov %edi,%edi' instruction.
1309 The 5 bytes before the function start are
1310 filled with `nop' instructions.
1311 This pattern can be used for hot-patching:
1312 The `mov %edi, %edi' instruction can be replaced by a
1313 near jump to the location of the 5 `nop' instructions
1314 which can be replaced by a 32-bit jump to anywhere
1315 in the 32-bit address space. */
1316
1317 else if (op == 0x8b)
1318 {
3dcabaa8
MS
1319 if (target_read_memory (pc + 1, &op, 1))
1320 return pc;
1321
e11481da
PM
1322 if (op == 0xff)
1323 {
1324 pc += 2;
3dcabaa8
MS
1325 if (target_read_memory (pc, &op, 1))
1326 return pc;
1327
e11481da
PM
1328 check = 1;
1329 }
1330 }
1331 }
1332 return pc;
1333}
1334
acd5c798
MK
1335/* Check whether PC points at a code that sets up a new stack frame.
1336 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1337 instruction after the sequence that sets up the frame or LIMIT,
1338 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1339
1340static CORE_ADDR
e17a4113
UW
1341i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1343 struct i386_frame_cache *cache)
1344{
e17a4113 1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1346 struct i386_insn *insn;
63c0089f 1347 gdb_byte op;
26604a34 1348 int skip = 0;
acd5c798 1349
37bdc87e
MK
1350 if (limit <= pc)
1351 return limit;
acd5c798 1352
3dcabaa8
MS
1353 if (target_read_memory (pc, &op, 1))
1354 return pc;
acd5c798 1355
c906108c 1356 if (op == 0x55) /* pushl %ebp */
c5aa993b 1357 {
acd5c798
MK
1358 /* Take into account that we've executed the `pushl %ebp' that
1359 starts this instruction sequence. */
fd13a04a 1360 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1361 cache->sp_offset += 4;
37bdc87e 1362 pc++;
acd5c798
MK
1363
1364 /* If that's all, return now. */
37bdc87e
MK
1365 if (limit <= pc)
1366 return limit;
26604a34 1367
b4632131 1368 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1369 GCC into the prologue and skip them. At this point in the
1370 prologue, code should only touch the scratch registers %eax,
1371 %ecx and %edx, so while the number of posibilities is sheer,
1372 it is limited.
5daa5b4e 1373
26604a34
MK
1374 Make sure we only skip these instructions if we later see the
1375 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1376 while (pc + skip < limit)
26604a34 1377 {
37bdc87e
MK
1378 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 if (insn == NULL)
1380 break;
b4632131 1381
37bdc87e 1382 skip += insn->len;
26604a34
MK
1383 }
1384
37bdc87e
MK
1385 /* If that's all, return now. */
1386 if (limit <= pc + skip)
1387 return limit;
1388
3dcabaa8
MS
1389 if (target_read_memory (pc + skip, &op, 1))
1390 return pc + skip;
37bdc87e 1391
30f8135b
YQ
1392 /* The i386 prologue looks like
1393
1394 push %ebp
1395 mov %esp,%ebp
1396 sub $0x10,%esp
1397
1398 and a different prologue can be generated for atom.
1399
1400 push %ebp
1401 lea (%esp),%ebp
1402 lea -0x10(%esp),%esp
1403
1404 We handle both of them here. */
1405
acd5c798 1406 switch (op)
c906108c 1407 {
30f8135b 1408 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1409 case 0x8b:
e17a4113
UW
1410 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1411 != 0xec)
37bdc87e 1412 return pc;
30f8135b 1413 pc += (skip + 2);
c906108c
SS
1414 break;
1415 case 0x89:
e17a4113
UW
1416 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1417 != 0xe5)
37bdc87e 1418 return pc;
30f8135b
YQ
1419 pc += (skip + 2);
1420 break;
1421 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1422 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1423 != 0x242c)
1424 return pc;
1425 pc += (skip + 3);
c906108c
SS
1426 break;
1427 default:
37bdc87e 1428 return pc;
c906108c 1429 }
acd5c798 1430
26604a34
MK
1431 /* OK, we actually have a frame. We just don't know how large
1432 it is yet. Set its size to zero. We'll adjust it if
1433 necessary. We also now commit to skipping the special
1434 instructions mentioned before. */
acd5c798
MK
1435 cache->locals = 0;
1436
1437 /* If that's all, return now. */
37bdc87e
MK
1438 if (limit <= pc)
1439 return limit;
acd5c798 1440
fc338970
MK
1441 /* Check for stack adjustment
1442
acd5c798 1443 subl $XXX, %esp
30f8135b
YQ
1444 or
1445 lea -XXX(%esp),%esp
fc338970 1446
fd35795f 1447 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1448 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1449 if (target_read_memory (pc, &op, 1))
1450 return pc;
c906108c
SS
1451 if (op == 0x83)
1452 {
fd35795f 1453 /* `subl' with 8-bit immediate. */
e17a4113 1454 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1455 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1456 return pc;
acd5c798 1457
37bdc87e
MK
1458 /* `subl' with signed 8-bit immediate (though it wouldn't
1459 make sense to be negative). */
e17a4113 1460 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1461 return pc + 3;
c906108c
SS
1462 }
1463 else if (op == 0x81)
1464 {
fd35795f 1465 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1466 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1467 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1468 return pc;
acd5c798 1469
fd35795f 1470 /* It is `subl' with a 32-bit immediate. */
e17a4113 1471 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1472 return pc + 6;
c906108c 1473 }
30f8135b
YQ
1474 else if (op == 0x8d)
1475 {
1476 /* The ModR/M byte is 0x64. */
1477 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1478 return pc;
1479 /* 'lea' with 8-bit displacement. */
1480 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1481 return pc + 4;
1482 }
c906108c
SS
1483 else
1484 {
30f8135b 1485 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1486 return pc;
c906108c
SS
1487 }
1488 }
37bdc87e 1489 else if (op == 0xc8) /* enter */
c906108c 1490 {
e17a4113 1491 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1492 return pc + 4;
c906108c 1493 }
21d0e8a4 1494
acd5c798 1495 return pc;
21d0e8a4
MK
1496}
1497
acd5c798
MK
1498/* Check whether PC points at code that saves registers on the stack.
1499 If so, it updates CACHE and returns the address of the first
1500 instruction after the register saves or CURRENT_PC, whichever is
1501 smaller. Otherwise, return PC. */
6bff26de
MK
1502
1503static CORE_ADDR
acd5c798
MK
1504i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1505 struct i386_frame_cache *cache)
6bff26de 1506{
99ab4326 1507 CORE_ADDR offset = 0;
63c0089f 1508 gdb_byte op;
99ab4326 1509 int i;
c0d1d883 1510
99ab4326
MK
1511 if (cache->locals > 0)
1512 offset -= cache->locals;
1513 for (i = 0; i < 8 && pc < current_pc; i++)
1514 {
3dcabaa8
MS
1515 if (target_read_memory (pc, &op, 1))
1516 return pc;
99ab4326
MK
1517 if (op < 0x50 || op > 0x57)
1518 break;
0d17c81d 1519
99ab4326
MK
1520 offset -= 4;
1521 cache->saved_regs[op - 0x50] = offset;
1522 cache->sp_offset += 4;
1523 pc++;
6bff26de
MK
1524 }
1525
acd5c798 1526 return pc;
22797942
AC
1527}
1528
acd5c798
MK
1529/* Do a full analysis of the prologue at PC and update CACHE
1530 accordingly. Bail out early if CURRENT_PC is reached. Return the
1531 address where the analysis stopped.
ed84f6c1 1532
fc338970
MK
1533 We handle these cases:
1534
1535 The startup sequence can be at the start of the function, or the
1536 function can start with a branch to startup code at the end.
1537
1538 %ebp can be set up with either the 'enter' instruction, or "pushl
1539 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1540 once used in the System V compiler).
1541
1542 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1543 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1544 16-bit unsigned argument for space to allocate, and the 'addl'
1545 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1546
1547 Next, the registers used by this function are pushed. With the
1548 System V compiler they will always be in the order: %edi, %esi,
1549 %ebx (and sometimes a harmless bug causes it to also save but not
1550 restore %eax); however, the code below is willing to see the pushes
1551 in any order, and will handle up to 8 of them.
1552
1553 If the setup sequence is at the end of the function, then the next
1554 instruction will be a branch back to the start. */
c906108c 1555
acd5c798 1556static CORE_ADDR
e17a4113
UW
1557i386_analyze_prologue (struct gdbarch *gdbarch,
1558 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1559 struct i386_frame_cache *cache)
c906108c 1560{
e11481da 1561 pc = i386_skip_noop (pc);
e17a4113 1562 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1563 pc = i386_analyze_struct_return (pc, current_pc, cache);
1564 pc = i386_skip_probe (pc);
92dd43fa 1565 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1566 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1567 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1568}
1569
fc338970 1570/* Return PC of first real instruction. */
c906108c 1571
3a1e71e3 1572static CORE_ADDR
6093d2eb 1573i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1574{
e17a4113
UW
1575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1576
63c0089f 1577 static gdb_byte pic_pat[6] =
acd5c798
MK
1578 {
1579 0xe8, 0, 0, 0, 0, /* call 0x0 */
1580 0x5b, /* popl %ebx */
c5aa993b 1581 };
acd5c798
MK
1582 struct i386_frame_cache cache;
1583 CORE_ADDR pc;
63c0089f 1584 gdb_byte op;
acd5c798 1585 int i;
56bf0743 1586 CORE_ADDR func_addr;
4e879fc2 1587
56bf0743
KB
1588 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1589 {
1590 CORE_ADDR post_prologue_pc
1591 = skip_prologue_using_sal (gdbarch, func_addr);
1592 struct symtab *s = find_pc_symtab (func_addr);
1593
1594 /* Clang always emits a line note before the prologue and another
1595 one after. We trust clang to emit usable line notes. */
1596 if (post_prologue_pc
1597 && (s != NULL
1598 && s->producer != NULL
1599 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1600 return max (start_pc, post_prologue_pc);
1601 }
1602
e0f33b1f 1603 cache.locals = -1;
e17a4113 1604 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1605 if (cache.locals < 0)
1606 return start_pc;
c5aa993b 1607
acd5c798 1608 /* Found valid frame setup. */
c906108c 1609
fc338970
MK
1610 /* The native cc on SVR4 in -K PIC mode inserts the following code
1611 to get the address of the global offset table (GOT) into register
acd5c798
MK
1612 %ebx:
1613
fc338970
MK
1614 call 0x0
1615 popl %ebx
1616 movl %ebx,x(%ebp) (optional)
1617 addl y,%ebx
1618
c906108c
SS
1619 This code is with the rest of the prologue (at the end of the
1620 function), so we have to skip it to get to the first real
1621 instruction at the start of the function. */
c5aa993b 1622
c906108c
SS
1623 for (i = 0; i < 6; i++)
1624 {
3dcabaa8
MS
1625 if (target_read_memory (pc + i, &op, 1))
1626 return pc;
1627
c5aa993b 1628 if (pic_pat[i] != op)
c906108c
SS
1629 break;
1630 }
1631 if (i == 6)
1632 {
acd5c798
MK
1633 int delta = 6;
1634
3dcabaa8
MS
1635 if (target_read_memory (pc + delta, &op, 1))
1636 return pc;
c906108c 1637
c5aa993b 1638 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1639 {
e17a4113 1640 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1641
fc338970 1642 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1643 delta += 3;
fc338970 1644 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1645 delta += 6;
fc338970 1646 else /* Unexpected instruction. */
acd5c798
MK
1647 delta = 0;
1648
3dcabaa8
MS
1649 if (target_read_memory (pc + delta, &op, 1))
1650 return pc;
c906108c 1651 }
acd5c798 1652
c5aa993b 1653 /* addl y,%ebx */
acd5c798 1654 if (delta > 0 && op == 0x81
e17a4113
UW
1655 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1656 == 0xc3)
c906108c 1657 {
acd5c798 1658 pc += delta + 6;
c906108c
SS
1659 }
1660 }
c5aa993b 1661
e63bbc88
MK
1662 /* If the function starts with a branch (to startup code at the end)
1663 the last instruction should bring us back to the first
1664 instruction of the real code. */
e17a4113
UW
1665 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1666 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1667
1668 return pc;
c906108c
SS
1669}
1670
4309257c
PM
1671/* Check that the code pointed to by PC corresponds to a call to
1672 __main, skip it if so. Return PC otherwise. */
1673
1674CORE_ADDR
1675i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1676{
e17a4113 1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1678 gdb_byte op;
1679
3dcabaa8
MS
1680 if (target_read_memory (pc, &op, 1))
1681 return pc;
4309257c
PM
1682 if (op == 0xe8)
1683 {
1684 gdb_byte buf[4];
1685
1686 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1687 {
1688 /* Make sure address is computed correctly as a 32bit
1689 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1690 struct bound_minimal_symbol s;
e17a4113 1691 CORE_ADDR call_dest;
4309257c 1692
e17a4113 1693 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1694 call_dest = call_dest & 0xffffffffU;
1695 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93
TT
1696 if (s.minsym != NULL
1697 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1698 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1699 pc += 5;
1700 }
1701 }
1702
1703 return pc;
1704}
1705
acd5c798 1706/* This function is 64-bit safe. */
93924b6b 1707
acd5c798
MK
1708static CORE_ADDR
1709i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1710{
63c0089f 1711 gdb_byte buf[8];
acd5c798 1712
875f8d0e 1713 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1714 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1715}
acd5c798 1716\f
93924b6b 1717
acd5c798 1718/* Normal frames. */
c5aa993b 1719
8fbca658
PA
1720static void
1721i386_frame_cache_1 (struct frame_info *this_frame,
1722 struct i386_frame_cache *cache)
a7769679 1723{
e17a4113
UW
1724 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1726 gdb_byte buf[4];
acd5c798
MK
1727 int i;
1728
8fbca658 1729 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1730
1731 /* In principle, for normal frames, %ebp holds the frame pointer,
1732 which holds the base address for the current stack frame.
1733 However, for functions that don't need it, the frame pointer is
1734 optional. For these "frameless" functions the frame pointer is
1735 actually the frame pointer of the calling frame. Signal
1736 trampolines are just a special case of a "frameless" function.
1737 They (usually) share their frame pointer with the frame that was
1738 in progress when the signal occurred. */
1739
10458914 1740 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1741 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1742 if (cache->base == 0)
620fa63a
PA
1743 {
1744 cache->base_p = 1;
1745 return;
1746 }
acd5c798
MK
1747
1748 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1749 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1750
acd5c798 1751 if (cache->pc != 0)
e17a4113
UW
1752 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1753 cache);
acd5c798
MK
1754
1755 if (cache->locals < 0)
1756 {
1757 /* We didn't find a valid frame, which means that CACHE->base
1758 currently holds the frame pointer for our calling frame. If
1759 we're at the start of a function, or somewhere half-way its
1760 prologue, the function's frame probably hasn't been fully
1761 setup yet. Try to reconstruct the base address for the stack
1762 frame by looking at the stack pointer. For truly "frameless"
1763 functions this might work too. */
1764
e0c62198 1765 if (cache->saved_sp_reg != -1)
92dd43fa 1766 {
8fbca658
PA
1767 /* Saved stack pointer has been saved. */
1768 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1769 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1770
92dd43fa
MK
1771 /* We're halfway aligning the stack. */
1772 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1773 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1774
1775 /* This will be added back below. */
1776 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1777 }
7618e12b
DJ
1778 else if (cache->pc != 0
1779 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1780 {
7618e12b
DJ
1781 /* We're in a known function, but did not find a frame
1782 setup. Assume that the function does not use %ebp.
1783 Alternatively, we may have jumped to an invalid
1784 address; in that case there is definitely no new
1785 frame in %ebp. */
10458914 1786 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1787 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1788 + cache->sp_offset;
92dd43fa 1789 }
7618e12b
DJ
1790 else
1791 /* We're in an unknown function. We could not find the start
1792 of the function to analyze the prologue; our best option is
1793 to assume a typical frame layout with the caller's %ebp
1794 saved. */
1795 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1796 }
1797
8fbca658
PA
1798 if (cache->saved_sp_reg != -1)
1799 {
1800 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1801 register may be unavailable). */
1802 if (cache->saved_sp == 0
ca9d61b9
JB
1803 && deprecated_frame_register_read (this_frame,
1804 cache->saved_sp_reg, buf))
8fbca658
PA
1805 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1806 }
acd5c798
MK
1807 /* Now that we have the base address for the stack frame we can
1808 calculate the value of %esp in the calling frame. */
8fbca658 1809 else if (cache->saved_sp == 0)
92dd43fa 1810 cache->saved_sp = cache->base + 8;
a7769679 1811
acd5c798
MK
1812 /* Adjust all the saved registers such that they contain addresses
1813 instead of offsets. */
1814 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1815 if (cache->saved_regs[i] != -1)
1816 cache->saved_regs[i] += cache->base;
acd5c798 1817
8fbca658
PA
1818 cache->base_p = 1;
1819}
1820
1821static struct i386_frame_cache *
1822i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1823{
1824 volatile struct gdb_exception ex;
1825 struct i386_frame_cache *cache;
1826
1827 if (*this_cache)
1828 return *this_cache;
1829
1830 cache = i386_alloc_frame_cache ();
1831 *this_cache = cache;
1832
1833 TRY_CATCH (ex, RETURN_MASK_ERROR)
1834 {
1835 i386_frame_cache_1 (this_frame, cache);
1836 }
1837 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1838 throw_exception (ex);
1839
acd5c798 1840 return cache;
a7769679
MK
1841}
1842
3a1e71e3 1843static void
10458914 1844i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1845 struct frame_id *this_id)
c906108c 1846{
10458914 1847 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1848
1849 /* This marks the outermost frame. */
1850 if (cache->base == 0)
1851 return;
1852
3e210248 1853 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1854 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1855}
1856
8fbca658
PA
1857static enum unwind_stop_reason
1858i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1859 void **this_cache)
1860{
1861 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1862
1863 if (!cache->base_p)
1864 return UNWIND_UNAVAILABLE;
1865
1866 /* This marks the outermost frame. */
1867 if (cache->base == 0)
1868 return UNWIND_OUTERMOST;
1869
1870 return UNWIND_NO_REASON;
1871}
1872
10458914
DJ
1873static struct value *
1874i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1875 int regnum)
acd5c798 1876{
10458914 1877 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1878
1879 gdb_assert (regnum >= 0);
1880
1881 /* The System V ABI says that:
1882
1883 "The flags register contains the system flags, such as the
1884 direction flag and the carry flag. The direction flag must be
1885 set to the forward (that is, zero) direction before entry and
1886 upon exit from a function. Other user flags have no specified
1887 role in the standard calling sequence and are not preserved."
1888
1889 To guarantee the "upon exit" part of that statement we fake a
1890 saved flags register that has its direction flag cleared.
1891
1892 Note that GCC doesn't seem to rely on the fact that the direction
1893 flag is cleared after a function return; it always explicitly
1894 clears the flag before operations where it matters.
1895
1896 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1897 right thing to do. The way we fake the flags register here makes
1898 it impossible to change it. */
1899
1900 if (regnum == I386_EFLAGS_REGNUM)
1901 {
10458914 1902 ULONGEST val;
c5aa993b 1903
10458914
DJ
1904 val = get_frame_register_unsigned (this_frame, regnum);
1905 val &= ~(1 << 10);
1906 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1907 }
1211c4e4 1908
acd5c798 1909 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1910 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1911
fcf250e2
UW
1912 if (regnum == I386_ESP_REGNUM
1913 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
1914 {
1915 /* If the SP has been saved, but we don't know where, then this
1916 means that SAVED_SP_REG register was found unavailable back
1917 when we built the cache. */
fcf250e2 1918 if (cache->saved_sp == 0)
8fbca658
PA
1919 return frame_unwind_got_register (this_frame, regnum,
1920 cache->saved_sp_reg);
1921 else
1922 return frame_unwind_got_constant (this_frame, regnum,
1923 cache->saved_sp);
1924 }
acd5c798 1925
fd13a04a 1926 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1927 return frame_unwind_got_memory (this_frame, regnum,
1928 cache->saved_regs[regnum]);
fd13a04a 1929
10458914 1930 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1931}
1932
1933static const struct frame_unwind i386_frame_unwind =
1934{
1935 NORMAL_FRAME,
8fbca658 1936 i386_frame_unwind_stop_reason,
acd5c798 1937 i386_frame_this_id,
10458914
DJ
1938 i386_frame_prev_register,
1939 NULL,
1940 default_frame_sniffer
acd5c798 1941};
06da04c6
MS
1942
1943/* Normal frames, but in a function epilogue. */
1944
1945/* The epilogue is defined here as the 'ret' instruction, which will
1946 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1947 the function's stack frame. */
1948
1949static int
1950i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1951{
1952 gdb_byte insn;
e0d00bc7
JK
1953 struct symtab *symtab;
1954
1955 symtab = find_pc_symtab (pc);
1956 if (symtab && symtab->epilogue_unwind_valid)
1957 return 0;
06da04c6
MS
1958
1959 if (target_read_memory (pc, &insn, 1))
1960 return 0; /* Can't read memory at pc. */
1961
1962 if (insn != 0xc3) /* 'ret' instruction. */
1963 return 0;
1964
1965 return 1;
1966}
1967
1968static int
1969i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1970 struct frame_info *this_frame,
1971 void **this_prologue_cache)
1972{
1973 if (frame_relative_level (this_frame) == 0)
1974 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1975 get_frame_pc (this_frame));
1976 else
1977 return 0;
1978}
1979
1980static struct i386_frame_cache *
1981i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1982{
8fbca658 1983 volatile struct gdb_exception ex;
06da04c6 1984 struct i386_frame_cache *cache;
0d6c2135 1985 CORE_ADDR sp;
06da04c6
MS
1986
1987 if (*this_cache)
1988 return *this_cache;
1989
1990 cache = i386_alloc_frame_cache ();
1991 *this_cache = cache;
1992
8fbca658
PA
1993 TRY_CATCH (ex, RETURN_MASK_ERROR)
1994 {
0d6c2135 1995 cache->pc = get_frame_func (this_frame);
06da04c6 1996
0d6c2135
MK
1997 /* At this point the stack looks as if we just entered the
1998 function, with the return address at the top of the
1999 stack. */
2000 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2001 cache->base = sp + cache->sp_offset;
8fbca658 2002 cache->saved_sp = cache->base + 8;
8fbca658 2003 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2004
8fbca658
PA
2005 cache->base_p = 1;
2006 }
2007 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2008 throw_exception (ex);
06da04c6
MS
2009
2010 return cache;
2011}
2012
8fbca658
PA
2013static enum unwind_stop_reason
2014i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2015 void **this_cache)
2016{
0d6c2135
MK
2017 struct i386_frame_cache *cache =
2018 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2019
2020 if (!cache->base_p)
2021 return UNWIND_UNAVAILABLE;
2022
2023 return UNWIND_NO_REASON;
2024}
2025
06da04c6
MS
2026static void
2027i386_epilogue_frame_this_id (struct frame_info *this_frame,
2028 void **this_cache,
2029 struct frame_id *this_id)
2030{
0d6c2135
MK
2031 struct i386_frame_cache *cache =
2032 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2033
8fbca658
PA
2034 if (!cache->base_p)
2035 return;
2036
06da04c6
MS
2037 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2038}
2039
0d6c2135
MK
2040static struct value *
2041i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2042 void **this_cache, int regnum)
2043{
2044 /* Make sure we've initialized the cache. */
2045 i386_epilogue_frame_cache (this_frame, this_cache);
2046
2047 return i386_frame_prev_register (this_frame, this_cache, regnum);
2048}
2049
06da04c6
MS
2050static const struct frame_unwind i386_epilogue_frame_unwind =
2051{
2052 NORMAL_FRAME,
8fbca658 2053 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2054 i386_epilogue_frame_this_id,
0d6c2135 2055 i386_epilogue_frame_prev_register,
06da04c6
MS
2056 NULL,
2057 i386_epilogue_frame_sniffer
2058};
acd5c798
MK
2059\f
2060
a3fcb948
JG
2061/* Stack-based trampolines. */
2062
2063/* These trampolines are used on cross x86 targets, when taking the
2064 address of a nested function. When executing these trampolines,
2065 no stack frame is set up, so we are in a similar situation as in
2066 epilogues and i386_epilogue_frame_this_id can be re-used. */
2067
2068/* Static chain passed in register. */
2069
2070struct i386_insn i386_tramp_chain_in_reg_insns[] =
2071{
2072 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2073 { 5, { 0xb8 }, { 0xfe } },
2074
2075 /* `jmp imm32' */
2076 { 5, { 0xe9 }, { 0xff } },
2077
2078 {0}
2079};
2080
2081/* Static chain passed on stack (when regparm=3). */
2082
2083struct i386_insn i386_tramp_chain_on_stack_insns[] =
2084{
2085 /* `push imm32' */
2086 { 5, { 0x68 }, { 0xff } },
2087
2088 /* `jmp imm32' */
2089 { 5, { 0xe9 }, { 0xff } },
2090
2091 {0}
2092};
2093
2094/* Return whether PC points inside a stack trampoline. */
2095
2096static int
2097i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2098{
2099 gdb_byte insn;
2c02bd72 2100 const char *name;
a3fcb948
JG
2101
2102 /* A stack trampoline is detected if no name is associated
2103 to the current pc and if it points inside a trampoline
2104 sequence. */
2105
2106 find_pc_partial_function (pc, &name, NULL, NULL);
2107 if (name)
2108 return 0;
2109
2110 if (target_read_memory (pc, &insn, 1))
2111 return 0;
2112
2113 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2114 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2115 return 0;
2116
2117 return 1;
2118}
2119
2120static int
2121i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2122 struct frame_info *this_frame,
2123 void **this_cache)
a3fcb948
JG
2124{
2125 if (frame_relative_level (this_frame) == 0)
2126 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2127 get_frame_pc (this_frame));
2128 else
2129 return 0;
2130}
2131
2132static const struct frame_unwind i386_stack_tramp_frame_unwind =
2133{
2134 NORMAL_FRAME,
2135 i386_epilogue_frame_unwind_stop_reason,
2136 i386_epilogue_frame_this_id,
0d6c2135 2137 i386_epilogue_frame_prev_register,
a3fcb948
JG
2138 NULL,
2139 i386_stack_tramp_frame_sniffer
2140};
2141\f
6710bf39
SS
2142/* Generate a bytecode expression to get the value of the saved PC. */
2143
2144static void
2145i386_gen_return_address (struct gdbarch *gdbarch,
2146 struct agent_expr *ax, struct axs_value *value,
2147 CORE_ADDR scope)
2148{
2149 /* The following sequence assumes the traditional use of the base
2150 register. */
2151 ax_reg (ax, I386_EBP_REGNUM);
2152 ax_const_l (ax, 4);
2153 ax_simple (ax, aop_add);
2154 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2155 value->kind = axs_lvalue_memory;
2156}
2157\f
a3fcb948 2158
acd5c798
MK
2159/* Signal trampolines. */
2160
2161static struct i386_frame_cache *
10458914 2162i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2163{
e17a4113
UW
2164 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2167 volatile struct gdb_exception ex;
acd5c798 2168 struct i386_frame_cache *cache;
acd5c798 2169 CORE_ADDR addr;
63c0089f 2170 gdb_byte buf[4];
acd5c798
MK
2171
2172 if (*this_cache)
2173 return *this_cache;
2174
fd13a04a 2175 cache = i386_alloc_frame_cache ();
acd5c798 2176
8fbca658 2177 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2178 {
8fbca658
PA
2179 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2180 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2181
8fbca658
PA
2182 addr = tdep->sigcontext_addr (this_frame);
2183 if (tdep->sc_reg_offset)
2184 {
2185 int i;
a3386186 2186
8fbca658
PA
2187 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2188
2189 for (i = 0; i < tdep->sc_num_regs; i++)
2190 if (tdep->sc_reg_offset[i] != -1)
2191 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2192 }
2193 else
2194 {
2195 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2196 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2197 }
2198
2199 cache->base_p = 1;
a3386186 2200 }
8fbca658
PA
2201 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2202 throw_exception (ex);
acd5c798
MK
2203
2204 *this_cache = cache;
2205 return cache;
2206}
2207
8fbca658
PA
2208static enum unwind_stop_reason
2209i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2210 void **this_cache)
2211{
2212 struct i386_frame_cache *cache =
2213 i386_sigtramp_frame_cache (this_frame, this_cache);
2214
2215 if (!cache->base_p)
2216 return UNWIND_UNAVAILABLE;
2217
2218 return UNWIND_NO_REASON;
2219}
2220
acd5c798 2221static void
10458914 2222i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2223 struct frame_id *this_id)
2224{
2225 struct i386_frame_cache *cache =
10458914 2226 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2227
8fbca658
PA
2228 if (!cache->base_p)
2229 return;
2230
3e210248 2231 /* See the end of i386_push_dummy_call. */
10458914 2232 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
2233}
2234
10458914
DJ
2235static struct value *
2236i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2237 void **this_cache, int regnum)
acd5c798
MK
2238{
2239 /* Make sure we've initialized the cache. */
10458914 2240 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2241
10458914 2242 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2243}
c0d1d883 2244
10458914
DJ
2245static int
2246i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2247 struct frame_info *this_frame,
2248 void **this_prologue_cache)
acd5c798 2249{
10458914 2250 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2251
911bc6ee
MK
2252 /* We shouldn't even bother if we don't have a sigcontext_addr
2253 handler. */
2254 if (tdep->sigcontext_addr == NULL)
10458914 2255 return 0;
1c3545ae 2256
911bc6ee
MK
2257 if (tdep->sigtramp_p != NULL)
2258 {
10458914
DJ
2259 if (tdep->sigtramp_p (this_frame))
2260 return 1;
911bc6ee
MK
2261 }
2262
2263 if (tdep->sigtramp_start != 0)
2264 {
10458914 2265 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2266
2267 gdb_assert (tdep->sigtramp_end != 0);
2268 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2269 return 1;
911bc6ee 2270 }
acd5c798 2271
10458914 2272 return 0;
acd5c798 2273}
10458914
DJ
2274
2275static const struct frame_unwind i386_sigtramp_frame_unwind =
2276{
2277 SIGTRAMP_FRAME,
8fbca658 2278 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2279 i386_sigtramp_frame_this_id,
2280 i386_sigtramp_frame_prev_register,
2281 NULL,
2282 i386_sigtramp_frame_sniffer
2283};
acd5c798
MK
2284\f
2285
2286static CORE_ADDR
10458914 2287i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2288{
10458914 2289 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2290
2291 return cache->base;
2292}
2293
2294static const struct frame_base i386_frame_base =
2295{
2296 &i386_frame_unwind,
2297 i386_frame_base_address,
2298 i386_frame_base_address,
2299 i386_frame_base_address
2300};
2301
acd5c798 2302static struct frame_id
10458914 2303i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2304{
acd5c798
MK
2305 CORE_ADDR fp;
2306
10458914 2307 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2308
3e210248 2309 /* See the end of i386_push_dummy_call. */
10458914 2310 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2311}
e04e5beb
JM
2312
2313/* _Decimal128 function return values need 16-byte alignment on the
2314 stack. */
2315
2316static CORE_ADDR
2317i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2318{
2319 return sp & -(CORE_ADDR)16;
2320}
fc338970 2321\f
c906108c 2322
fc338970
MK
2323/* Figure out where the longjmp will land. Slurp the args out of the
2324 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2325 structure from which we extract the address that we will land at.
28bcfd30 2326 This address is copied into PC. This routine returns non-zero on
436675d3 2327 success. */
c906108c 2328
8201327c 2329static int
60ade65d 2330i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2331{
436675d3 2332 gdb_byte buf[4];
c906108c 2333 CORE_ADDR sp, jb_addr;
20a6ec49 2334 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2336 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2337
8201327c
MK
2338 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2339 longjmp will land. */
2340 if (jb_pc_offset == -1)
c906108c
SS
2341 return 0;
2342
436675d3 2343 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2344 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2345 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2346 return 0;
2347
e17a4113 2348 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2349 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2350 return 0;
c906108c 2351
e17a4113 2352 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2353 return 1;
2354}
fc338970 2355\f
c906108c 2356
7ccc1c74
JM
2357/* Check whether TYPE must be 16-byte-aligned when passed as a
2358 function argument. 16-byte vectors, _Decimal128 and structures or
2359 unions containing such types must be 16-byte-aligned; other
2360 arguments are 4-byte-aligned. */
2361
2362static int
2363i386_16_byte_align_p (struct type *type)
2364{
2365 type = check_typedef (type);
2366 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2367 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2368 && TYPE_LENGTH (type) == 16)
2369 return 1;
2370 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2371 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2372 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2373 || TYPE_CODE (type) == TYPE_CODE_UNION)
2374 {
2375 int i;
2376 for (i = 0; i < TYPE_NFIELDS (type); i++)
2377 {
2378 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2379 return 1;
2380 }
2381 }
2382 return 0;
2383}
2384
a9b8d892
JK
2385/* Implementation for set_gdbarch_push_dummy_code. */
2386
2387static CORE_ADDR
2388i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2389 struct value **args, int nargs, struct type *value_type,
2390 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2391 struct regcache *regcache)
2392{
2393 /* Use 0xcc breakpoint - 1 byte. */
2394 *bp_addr = sp - 1;
2395 *real_pc = funaddr;
2396
2397 /* Keep the stack aligned. */
2398 return sp - 16;
2399}
2400
3a1e71e3 2401static CORE_ADDR
7d9b040b 2402i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2403 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2404 struct value **args, CORE_ADDR sp, int struct_return,
2405 CORE_ADDR struct_addr)
22f8ba57 2406{
e17a4113 2407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2408 gdb_byte buf[4];
acd5c798 2409 int i;
7ccc1c74
JM
2410 int write_pass;
2411 int args_space = 0;
acd5c798 2412
7ccc1c74
JM
2413 /* Determine the total space required for arguments and struct
2414 return address in a first pass (allowing for 16-byte-aligned
2415 arguments), then push arguments in a second pass. */
2416
2417 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2418 {
7ccc1c74 2419 int args_space_used = 0;
7ccc1c74
JM
2420
2421 if (struct_return)
2422 {
2423 if (write_pass)
2424 {
2425 /* Push value address. */
e17a4113 2426 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2427 write_memory (sp, buf, 4);
2428 args_space_used += 4;
2429 }
2430 else
2431 args_space += 4;
2432 }
2433
2434 for (i = 0; i < nargs; i++)
2435 {
2436 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2437
7ccc1c74
JM
2438 if (write_pass)
2439 {
2440 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2441 args_space_used = align_up (args_space_used, 16);
acd5c798 2442
7ccc1c74
JM
2443 write_memory (sp + args_space_used,
2444 value_contents_all (args[i]), len);
2445 /* The System V ABI says that:
acd5c798 2446
7ccc1c74
JM
2447 "An argument's size is increased, if necessary, to make it a
2448 multiple of [32-bit] words. This may require tail padding,
2449 depending on the size of the argument."
22f8ba57 2450
7ccc1c74
JM
2451 This makes sure the stack stays word-aligned. */
2452 args_space_used += align_up (len, 4);
2453 }
2454 else
2455 {
2456 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2457 args_space = align_up (args_space, 16);
7ccc1c74
JM
2458 args_space += align_up (len, 4);
2459 }
2460 }
2461
2462 if (!write_pass)
2463 {
7ccc1c74 2464 sp -= args_space;
284c5a60
MK
2465
2466 /* The original System V ABI only requires word alignment,
2467 but modern incarnations need 16-byte alignment in order
2468 to support SSE. Since wasting a few bytes here isn't
2469 harmful we unconditionally enforce 16-byte alignment. */
2470 sp &= ~0xf;
7ccc1c74 2471 }
22f8ba57
MK
2472 }
2473
acd5c798
MK
2474 /* Store return address. */
2475 sp -= 4;
e17a4113 2476 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2477 write_memory (sp, buf, 4);
2478
2479 /* Finally, update the stack pointer... */
e17a4113 2480 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2481 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2482
2483 /* ...and fake a frame pointer. */
2484 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2485
3e210248
AC
2486 /* MarkK wrote: This "+ 8" is all over the place:
2487 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2488 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2489 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2490 definition of the stack address of a frame. Otherwise frame id
2491 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2492 stack address *before* the function call as a frame's CFA. On
2493 the i386, when %ebp is used as a frame pointer, the offset
2494 between the contents %ebp and the CFA as defined by GCC. */
2495 return sp + 8;
22f8ba57
MK
2496}
2497
1a309862
MK
2498/* These registers are used for returning integers (and on some
2499 targets also for returning `struct' and `union' values when their
ef9dff19 2500 size and alignment match an integer type). */
acd5c798
MK
2501#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2502#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2503
c5e656c1
MK
2504/* Read, for architecture GDBARCH, a function return value of TYPE
2505 from REGCACHE, and copy that into VALBUF. */
1a309862 2506
3a1e71e3 2507static void
c5e656c1 2508i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2509 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2510{
c5e656c1 2511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2512 int len = TYPE_LENGTH (type);
63c0089f 2513 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2514
1e8d0a7b 2515 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2516 {
5716833c 2517 if (tdep->st0_regnum < 0)
1a309862 2518 {
8a3fe4f8 2519 warning (_("Cannot find floating-point return value."));
1a309862 2520 memset (valbuf, 0, len);
ef9dff19 2521 return;
1a309862
MK
2522 }
2523
c6ba6f0d
MK
2524 /* Floating-point return values can be found in %st(0). Convert
2525 its contents to the desired type. This is probably not
2526 exactly how it would happen on the target itself, but it is
2527 the best we can do. */
acd5c798 2528 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2529 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2530 }
2531 else
c5aa993b 2532 {
875f8d0e
UW
2533 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2534 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2535
2536 if (len <= low_size)
00f8375e 2537 {
0818c12a 2538 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2539 memcpy (valbuf, buf, len);
2540 }
d4f3574e
SS
2541 else if (len <= (low_size + high_size))
2542 {
0818c12a 2543 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2544 memcpy (valbuf, buf, low_size);
0818c12a 2545 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2546 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2547 }
2548 else
8e65ff28 2549 internal_error (__FILE__, __LINE__,
1777feb0
MS
2550 _("Cannot extract return value of %d bytes long."),
2551 len);
c906108c
SS
2552 }
2553}
2554
c5e656c1
MK
2555/* Write, for architecture GDBARCH, a function return value of TYPE
2556 from VALBUF into REGCACHE. */
ef9dff19 2557
3a1e71e3 2558static void
c5e656c1 2559i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2560 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2561{
c5e656c1 2562 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2563 int len = TYPE_LENGTH (type);
2564
1e8d0a7b 2565 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2566 {
3d7f4f49 2567 ULONGEST fstat;
63c0089f 2568 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2569
5716833c 2570 if (tdep->st0_regnum < 0)
ef9dff19 2571 {
8a3fe4f8 2572 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2573 return;
2574 }
2575
635b0cc1
MK
2576 /* Returning floating-point values is a bit tricky. Apart from
2577 storing the return value in %st(0), we have to simulate the
2578 state of the FPU at function return point. */
2579
c6ba6f0d
MK
2580 /* Convert the value found in VALBUF to the extended
2581 floating-point format used by the FPU. This is probably
2582 not exactly how it would happen on the target itself, but
2583 it is the best we can do. */
27067745 2584 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2585 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2586
635b0cc1
MK
2587 /* Set the top of the floating-point register stack to 7. The
2588 actual value doesn't really matter, but 7 is what a normal
2589 function return would end up with if the program started out
2590 with a freshly initialized FPU. */
20a6ec49 2591 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2592 fstat |= (7 << 11);
20a6ec49 2593 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2594
635b0cc1
MK
2595 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2596 the floating-point register stack to 7, the appropriate value
2597 for the tag word is 0x3fff. */
20a6ec49 2598 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2599 }
2600 else
2601 {
875f8d0e
UW
2602 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2603 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2604
2605 if (len <= low_size)
3d7f4f49 2606 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2607 else if (len <= (low_size + high_size))
2608 {
3d7f4f49
MK
2609 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2610 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2611 len - low_size, valbuf + low_size);
ef9dff19
MK
2612 }
2613 else
8e65ff28 2614 internal_error (__FILE__, __LINE__,
e2e0b3e5 2615 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2616 }
2617}
fc338970 2618\f
ef9dff19 2619
8201327c
MK
2620/* This is the variable that is set with "set struct-convention", and
2621 its legitimate values. */
2622static const char default_struct_convention[] = "default";
2623static const char pcc_struct_convention[] = "pcc";
2624static const char reg_struct_convention[] = "reg";
40478521 2625static const char *const valid_conventions[] =
8201327c
MK
2626{
2627 default_struct_convention,
2628 pcc_struct_convention,
2629 reg_struct_convention,
2630 NULL
2631};
2632static const char *struct_convention = default_struct_convention;
2633
0e4377e1
JB
2634/* Return non-zero if TYPE, which is assumed to be a structure,
2635 a union type, or an array type, should be returned in registers
2636 for architecture GDBARCH. */
c5e656c1 2637
8201327c 2638static int
c5e656c1 2639i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2640{
c5e656c1
MK
2641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2642 enum type_code code = TYPE_CODE (type);
2643 int len = TYPE_LENGTH (type);
8201327c 2644
0e4377e1
JB
2645 gdb_assert (code == TYPE_CODE_STRUCT
2646 || code == TYPE_CODE_UNION
2647 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2648
2649 if (struct_convention == pcc_struct_convention
2650 || (struct_convention == default_struct_convention
2651 && tdep->struct_return == pcc_struct_return))
2652 return 0;
2653
9edde48e
MK
2654 /* Structures consisting of a single `float', `double' or 'long
2655 double' member are returned in %st(0). */
2656 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2657 {
2658 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2659 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2660 return (len == 4 || len == 8 || len == 12);
2661 }
2662
c5e656c1
MK
2663 return (len == 1 || len == 2 || len == 4 || len == 8);
2664}
2665
2666/* Determine, for architecture GDBARCH, how a return value of TYPE
2667 should be returned. If it is supposed to be returned in registers,
2668 and READBUF is non-zero, read the appropriate value from REGCACHE,
2669 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2670 from WRITEBUF into REGCACHE. */
2671
2672static enum return_value_convention
6a3a010b 2673i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2674 struct type *type, struct regcache *regcache,
2675 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2676{
2677 enum type_code code = TYPE_CODE (type);
2678
5daa78cc
TJB
2679 if (((code == TYPE_CODE_STRUCT
2680 || code == TYPE_CODE_UNION
2681 || code == TYPE_CODE_ARRAY)
2682 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2683 /* Complex double and long double uses the struct return covention. */
2684 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2685 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2686 /* 128-bit decimal float uses the struct return convention. */
2687 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2688 {
2689 /* The System V ABI says that:
2690
2691 "A function that returns a structure or union also sets %eax
2692 to the value of the original address of the caller's area
2693 before it returns. Thus when the caller receives control
2694 again, the address of the returned object resides in register
2695 %eax and can be used to access the object."
2696
2697 So the ABI guarantees that we can always find the return
2698 value just after the function has returned. */
2699
0e4377e1
JB
2700 /* Note that the ABI doesn't mention functions returning arrays,
2701 which is something possible in certain languages such as Ada.
2702 In this case, the value is returned as if it was wrapped in
2703 a record, so the convention applied to records also applies
2704 to arrays. */
2705
31db7b6c
MK
2706 if (readbuf)
2707 {
2708 ULONGEST addr;
2709
2710 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2711 read_memory (addr, readbuf, TYPE_LENGTH (type));
2712 }
2713
2714 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2715 }
c5e656c1
MK
2716
2717 /* This special case is for structures consisting of a single
9edde48e
MK
2718 `float', `double' or 'long double' member. These structures are
2719 returned in %st(0). For these structures, we call ourselves
2720 recursively, changing TYPE into the type of the first member of
2721 the structure. Since that should work for all structures that
2722 have only one member, we don't bother to check the member's type
2723 here. */
c5e656c1
MK
2724 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2725 {
2726 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2727 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2728 readbuf, writebuf);
c5e656c1
MK
2729 }
2730
2731 if (readbuf)
2732 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2733 if (writebuf)
2734 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2735
c5e656c1 2736 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2737}
2738\f
2739
27067745
UW
2740struct type *
2741i387_ext_type (struct gdbarch *gdbarch)
2742{
2743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744
2745 if (!tdep->i387_ext_type)
90884b2b
L
2746 {
2747 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2748 gdb_assert (tdep->i387_ext_type != NULL);
2749 }
27067745
UW
2750
2751 return tdep->i387_ext_type;
2752}
2753
c131fcee
L
2754/* Construct vector type for pseudo YMM registers. We can't use
2755 tdesc_find_type since YMM isn't described in target description. */
2756
2757static struct type *
2758i386_ymm_type (struct gdbarch *gdbarch)
2759{
2760 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2761
2762 if (!tdep->i386_ymm_type)
2763 {
2764 const struct builtin_type *bt = builtin_type (gdbarch);
2765
2766 /* The type we're building is this: */
2767#if 0
2768 union __gdb_builtin_type_vec256i
2769 {
2770 int128_t uint128[2];
2771 int64_t v2_int64[4];
2772 int32_t v4_int32[8];
2773 int16_t v8_int16[16];
2774 int8_t v16_int8[32];
2775 double v2_double[4];
2776 float v4_float[8];
2777 };
2778#endif
2779
2780 struct type *t;
2781
2782 t = arch_composite_type (gdbarch,
2783 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2784 append_composite_type_field (t, "v8_float",
2785 init_vector_type (bt->builtin_float, 8));
2786 append_composite_type_field (t, "v4_double",
2787 init_vector_type (bt->builtin_double, 4));
2788 append_composite_type_field (t, "v32_int8",
2789 init_vector_type (bt->builtin_int8, 32));
2790 append_composite_type_field (t, "v16_int16",
2791 init_vector_type (bt->builtin_int16, 16));
2792 append_composite_type_field (t, "v8_int32",
2793 init_vector_type (bt->builtin_int32, 8));
2794 append_composite_type_field (t, "v4_int64",
2795 init_vector_type (bt->builtin_int64, 4));
2796 append_composite_type_field (t, "v2_int128",
2797 init_vector_type (bt->builtin_int128, 2));
2798
2799 TYPE_VECTOR (t) = 1;
0c5acf93 2800 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2801 tdep->i386_ymm_type = t;
2802 }
2803
2804 return tdep->i386_ymm_type;
2805}
2806
794ac428 2807/* Construct vector type for MMX registers. */
90884b2b 2808static struct type *
794ac428
UW
2809i386_mmx_type (struct gdbarch *gdbarch)
2810{
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812
2813 if (!tdep->i386_mmx_type)
2814 {
df4df182
UW
2815 const struct builtin_type *bt = builtin_type (gdbarch);
2816
794ac428
UW
2817 /* The type we're building is this: */
2818#if 0
2819 union __gdb_builtin_type_vec64i
2820 {
2821 int64_t uint64;
2822 int32_t v2_int32[2];
2823 int16_t v4_int16[4];
2824 int8_t v8_int8[8];
2825 };
2826#endif
2827
2828 struct type *t;
2829
e9bb382b
UW
2830 t = arch_composite_type (gdbarch,
2831 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2832
2833 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2834 append_composite_type_field (t, "v2_int32",
df4df182 2835 init_vector_type (bt->builtin_int32, 2));
794ac428 2836 append_composite_type_field (t, "v4_int16",
df4df182 2837 init_vector_type (bt->builtin_int16, 4));
794ac428 2838 append_composite_type_field (t, "v8_int8",
df4df182 2839 init_vector_type (bt->builtin_int8, 8));
794ac428 2840
876cecd0 2841 TYPE_VECTOR (t) = 1;
794ac428
UW
2842 TYPE_NAME (t) = "builtin_type_vec64i";
2843 tdep->i386_mmx_type = t;
2844 }
2845
2846 return tdep->i386_mmx_type;
2847}
2848
d7a0d72c 2849/* Return the GDB type object for the "standard" data type of data in
1777feb0 2850 register REGNUM. */
d7a0d72c 2851
fff4548b 2852struct type *
90884b2b 2853i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2854{
1ba53b71
L
2855 if (i386_mmx_regnum_p (gdbarch, regnum))
2856 return i386_mmx_type (gdbarch);
c131fcee
L
2857 else if (i386_ymm_regnum_p (gdbarch, regnum))
2858 return i386_ymm_type (gdbarch);
1ba53b71
L
2859 else
2860 {
2861 const struct builtin_type *bt = builtin_type (gdbarch);
2862 if (i386_byte_regnum_p (gdbarch, regnum))
2863 return bt->builtin_int8;
2864 else if (i386_word_regnum_p (gdbarch, regnum))
2865 return bt->builtin_int16;
2866 else if (i386_dword_regnum_p (gdbarch, regnum))
2867 return bt->builtin_int32;
2868 }
2869
2870 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2871}
2872
28fc6740 2873/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2874 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2875
2876static int
c86c27af 2877i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2878{
5716833c
MK
2879 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2880 int mmxreg, fpreg;
28fc6740
AC
2881 ULONGEST fstat;
2882 int tos;
c86c27af 2883
5716833c 2884 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2885 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2886 tos = (fstat >> 11) & 0x7;
5716833c
MK
2887 fpreg = (mmxreg + tos) % 8;
2888
20a6ec49 2889 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2890}
2891
3543a589
TT
2892/* A helper function for us by i386_pseudo_register_read_value and
2893 amd64_pseudo_register_read_value. It does all the work but reads
2894 the data into an already-allocated value. */
2895
2896void
2897i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2898 struct regcache *regcache,
2899 int regnum,
2900 struct value *result_value)
28fc6740 2901{
1ba53b71 2902 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2903 enum register_status status;
3543a589 2904 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 2905
5716833c 2906 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2907 {
c86c27af
MK
2908 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2909
28fc6740 2910 /* Extract (always little endian). */
05d1431c
PA
2911 status = regcache_raw_read (regcache, fpnum, raw_buf);
2912 if (status != REG_VALID)
3543a589
TT
2913 mark_value_bytes_unavailable (result_value, 0,
2914 TYPE_LENGTH (value_type (result_value)));
2915 else
2916 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2917 }
2918 else
1ba53b71
L
2919 {
2920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2921
c131fcee
L
2922 if (i386_ymm_regnum_p (gdbarch, regnum))
2923 {
2924 regnum -= tdep->ymm0_regnum;
2925
1777feb0 2926 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2927 status = regcache_raw_read (regcache,
2928 I387_XMM0_REGNUM (tdep) + regnum,
2929 raw_buf);
2930 if (status != REG_VALID)
3543a589
TT
2931 mark_value_bytes_unavailable (result_value, 0, 16);
2932 else
2933 memcpy (buf, raw_buf, 16);
c131fcee 2934 /* Read upper 128bits. */
05d1431c
PA
2935 status = regcache_raw_read (regcache,
2936 tdep->ymm0h_regnum + regnum,
2937 raw_buf);
2938 if (status != REG_VALID)
3543a589
TT
2939 mark_value_bytes_unavailable (result_value, 16, 32);
2940 else
2941 memcpy (buf + 16, raw_buf, 16);
c131fcee
L
2942 }
2943 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2944 {
2945 int gpnum = regnum - tdep->ax_regnum;
2946
2947 /* Extract (always little endian). */
05d1431c
PA
2948 status = regcache_raw_read (regcache, gpnum, raw_buf);
2949 if (status != REG_VALID)
3543a589
TT
2950 mark_value_bytes_unavailable (result_value, 0,
2951 TYPE_LENGTH (value_type (result_value)));
2952 else
2953 memcpy (buf, raw_buf, 2);
1ba53b71
L
2954 }
2955 else if (i386_byte_regnum_p (gdbarch, regnum))
2956 {
2957 /* Check byte pseudo registers last since this function will
2958 be called from amd64_pseudo_register_read, which handles
2959 byte pseudo registers differently. */
2960 int gpnum = regnum - tdep->al_regnum;
2961
2962 /* Extract (always little endian). We read both lower and
2963 upper registers. */
05d1431c
PA
2964 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2965 if (status != REG_VALID)
3543a589
TT
2966 mark_value_bytes_unavailable (result_value, 0,
2967 TYPE_LENGTH (value_type (result_value)));
2968 else if (gpnum >= 4)
1ba53b71
L
2969 memcpy (buf, raw_buf + 1, 1);
2970 else
2971 memcpy (buf, raw_buf, 1);
2972 }
2973 else
2974 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2975 }
3543a589
TT
2976}
2977
2978static struct value *
2979i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2980 struct regcache *regcache,
2981 int regnum)
2982{
2983 struct value *result;
2984
2985 result = allocate_value (register_type (gdbarch, regnum));
2986 VALUE_LVAL (result) = lval_register;
2987 VALUE_REGNUM (result) = regnum;
2988
2989 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 2990
3543a589 2991 return result;
28fc6740
AC
2992}
2993
1ba53b71 2994void
28fc6740 2995i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2996 int regnum, const gdb_byte *buf)
28fc6740 2997{
1ba53b71
L
2998 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2999
5716833c 3000 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3001 {
c86c27af
MK
3002 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3003
28fc6740 3004 /* Read ... */
1ba53b71 3005 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3006 /* ... Modify ... (always little endian). */
1ba53b71 3007 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3008 /* ... Write. */
1ba53b71 3009 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3010 }
3011 else
1ba53b71
L
3012 {
3013 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3014
c131fcee
L
3015 if (i386_ymm_regnum_p (gdbarch, regnum))
3016 {
3017 regnum -= tdep->ymm0_regnum;
3018
3019 /* ... Write lower 128bits. */
3020 regcache_raw_write (regcache,
3021 I387_XMM0_REGNUM (tdep) + regnum,
3022 buf);
3023 /* ... Write upper 128bits. */
3024 regcache_raw_write (regcache,
3025 tdep->ymm0h_regnum + regnum,
3026 buf + 16);
3027 }
3028 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3029 {
3030 int gpnum = regnum - tdep->ax_regnum;
3031
3032 /* Read ... */
3033 regcache_raw_read (regcache, gpnum, raw_buf);
3034 /* ... Modify ... (always little endian). */
3035 memcpy (raw_buf, buf, 2);
3036 /* ... Write. */
3037 regcache_raw_write (regcache, gpnum, raw_buf);
3038 }
3039 else if (i386_byte_regnum_p (gdbarch, regnum))
3040 {
3041 /* Check byte pseudo registers last since this function will
3042 be called from amd64_pseudo_register_read, which handles
3043 byte pseudo registers differently. */
3044 int gpnum = regnum - tdep->al_regnum;
3045
3046 /* Read ... We read both lower and upper registers. */
3047 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3048 /* ... Modify ... (always little endian). */
3049 if (gpnum >= 4)
3050 memcpy (raw_buf + 1, buf, 1);
3051 else
3052 memcpy (raw_buf, buf, 1);
3053 /* ... Write. */
3054 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3055 }
3056 else
3057 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3058 }
28fc6740 3059}
ff2e87ac
AC
3060\f
3061
ff2e87ac
AC
3062/* Return the register number of the register allocated by GCC after
3063 REGNUM, or -1 if there is no such register. */
3064
3065static int
3066i386_next_regnum (int regnum)
3067{
3068 /* GCC allocates the registers in the order:
3069
3070 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3071
3072 Since storing a variable in %esp doesn't make any sense we return
3073 -1 for %ebp and for %esp itself. */
3074 static int next_regnum[] =
3075 {
3076 I386_EDX_REGNUM, /* Slot for %eax. */
3077 I386_EBX_REGNUM, /* Slot for %ecx. */
3078 I386_ECX_REGNUM, /* Slot for %edx. */
3079 I386_ESI_REGNUM, /* Slot for %ebx. */
3080 -1, -1, /* Slots for %esp and %ebp. */
3081 I386_EDI_REGNUM, /* Slot for %esi. */
3082 I386_EBP_REGNUM /* Slot for %edi. */
3083 };
3084
de5b9bb9 3085 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3086 return next_regnum[regnum];
28fc6740 3087
ff2e87ac
AC
3088 return -1;
3089}
3090
3091/* Return nonzero if a value of type TYPE stored in register REGNUM
3092 needs any special handling. */
d7a0d72c 3093
3a1e71e3 3094static int
1777feb0
MS
3095i386_convert_register_p (struct gdbarch *gdbarch,
3096 int regnum, struct type *type)
d7a0d72c 3097{
de5b9bb9
MK
3098 int len = TYPE_LENGTH (type);
3099
ff2e87ac
AC
3100 /* Values may be spread across multiple registers. Most debugging
3101 formats aren't expressive enough to specify the locations, so
3102 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3103 have a length that is a multiple of the word size, since GCC
3104 doesn't seem to put any other types into registers. */
3105 if (len > 4 && len % 4 == 0)
3106 {
3107 int last_regnum = regnum;
3108
3109 while (len > 4)
3110 {
3111 last_regnum = i386_next_regnum (last_regnum);
3112 len -= 4;
3113 }
3114
3115 if (last_regnum != -1)
3116 return 1;
3117 }
ff2e87ac 3118
0abe36f5 3119 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3120}
3121
ff2e87ac
AC
3122/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3123 return its contents in TO. */
ac27f131 3124
8dccd430 3125static int
ff2e87ac 3126i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3127 struct type *type, gdb_byte *to,
3128 int *optimizedp, int *unavailablep)
ac27f131 3129{
20a6ec49 3130 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3131 int len = TYPE_LENGTH (type);
de5b9bb9 3132
20a6ec49 3133 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3134 return i387_register_to_value (frame, regnum, type, to,
3135 optimizedp, unavailablep);
ff2e87ac 3136
fd35795f 3137 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3138
3139 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3140
de5b9bb9
MK
3141 while (len > 0)
3142 {
3143 gdb_assert (regnum != -1);
20a6ec49 3144 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3145
8dccd430
PA
3146 if (!get_frame_register_bytes (frame, regnum, 0,
3147 register_size (gdbarch, regnum),
3148 to, optimizedp, unavailablep))
3149 return 0;
3150
de5b9bb9
MK
3151 regnum = i386_next_regnum (regnum);
3152 len -= 4;
42835c2b 3153 to += 4;
de5b9bb9 3154 }
8dccd430
PA
3155
3156 *optimizedp = *unavailablep = 0;
3157 return 1;
ac27f131
MK
3158}
3159
ff2e87ac
AC
3160/* Write the contents FROM of a value of type TYPE into register
3161 REGNUM in frame FRAME. */
ac27f131 3162
3a1e71e3 3163static void
ff2e87ac 3164i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3165 struct type *type, const gdb_byte *from)
ac27f131 3166{
de5b9bb9 3167 int len = TYPE_LENGTH (type);
de5b9bb9 3168
20a6ec49 3169 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3170 {
d532c08f
MK
3171 i387_value_to_register (frame, regnum, type, from);
3172 return;
3173 }
3d261580 3174
fd35795f 3175 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3176
3177 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3178
de5b9bb9
MK
3179 while (len > 0)
3180 {
3181 gdb_assert (regnum != -1);
875f8d0e 3182 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3183
42835c2b 3184 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3185 regnum = i386_next_regnum (regnum);
3186 len -= 4;
42835c2b 3187 from += 4;
de5b9bb9 3188 }
ac27f131 3189}
ff2e87ac 3190\f
7fdafb5a
MK
3191/* Supply register REGNUM from the buffer specified by GREGS and LEN
3192 in the general-purpose register set REGSET to register cache
3193 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3194
20187ed5 3195void
473f17b0
MK
3196i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3197 int regnum, const void *gregs, size_t len)
3198{
9ea75c57 3199 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3200 const gdb_byte *regs = gregs;
473f17b0
MK
3201 int i;
3202
3203 gdb_assert (len == tdep->sizeof_gregset);
3204
3205 for (i = 0; i < tdep->gregset_num_regs; i++)
3206 {
3207 if ((regnum == i || regnum == -1)
3208 && tdep->gregset_reg_offset[i] != -1)
3209 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3210 }
3211}
3212
7fdafb5a
MK
3213/* Collect register REGNUM from the register cache REGCACHE and store
3214 it in the buffer specified by GREGS and LEN as described by the
3215 general-purpose register set REGSET. If REGNUM is -1, do this for
3216 all registers in REGSET. */
3217
3218void
3219i386_collect_gregset (const struct regset *regset,
3220 const struct regcache *regcache,
3221 int regnum, void *gregs, size_t len)
3222{
3223 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3224 gdb_byte *regs = gregs;
7fdafb5a
MK
3225 int i;
3226
3227 gdb_assert (len == tdep->sizeof_gregset);
3228
3229 for (i = 0; i < tdep->gregset_num_regs; i++)
3230 {
3231 if ((regnum == i || regnum == -1)
3232 && tdep->gregset_reg_offset[i] != -1)
3233 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3234 }
3235}
3236
3237/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3238 in the floating-point register set REGSET to register cache
3239 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3240
3241static void
3242i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3243 int regnum, const void *fpregs, size_t len)
3244{
9ea75c57 3245 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 3246
66a72d25
MK
3247 if (len == I387_SIZEOF_FXSAVE)
3248 {
3249 i387_supply_fxsave (regcache, regnum, fpregs);
3250 return;
3251 }
3252
473f17b0
MK
3253 gdb_assert (len == tdep->sizeof_fpregset);
3254 i387_supply_fsave (regcache, regnum, fpregs);
3255}
8446b36a 3256
2f305df1
MK
3257/* Collect register REGNUM from the register cache REGCACHE and store
3258 it in the buffer specified by FPREGS and LEN as described by the
3259 floating-point register set REGSET. If REGNUM is -1, do this for
3260 all registers in REGSET. */
7fdafb5a
MK
3261
3262static void
3263i386_collect_fpregset (const struct regset *regset,
3264 const struct regcache *regcache,
3265 int regnum, void *fpregs, size_t len)
3266{
3267 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3268
3269 if (len == I387_SIZEOF_FXSAVE)
3270 {
3271 i387_collect_fxsave (regcache, regnum, fpregs);
3272 return;
3273 }
3274
3275 gdb_assert (len == tdep->sizeof_fpregset);
3276 i387_collect_fsave (regcache, regnum, fpregs);
3277}
3278
c131fcee
L
3279/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3280
3281static void
3282i386_supply_xstateregset (const struct regset *regset,
3283 struct regcache *regcache, int regnum,
3284 const void *xstateregs, size_t len)
3285{
c131fcee
L
3286 i387_supply_xsave (regcache, regnum, xstateregs);
3287}
3288
3289/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3290
3291static void
3292i386_collect_xstateregset (const struct regset *regset,
3293 const struct regcache *regcache,
3294 int regnum, void *xstateregs, size_t len)
3295{
c131fcee
L
3296 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3297}
3298
8446b36a
MK
3299/* Return the appropriate register set for the core section identified
3300 by SECT_NAME and SECT_SIZE. */
3301
3302const struct regset *
3303i386_regset_from_core_section (struct gdbarch *gdbarch,
3304 const char *sect_name, size_t sect_size)
3305{
3306 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3307
3308 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3309 {
3310 if (tdep->gregset == NULL)
7fdafb5a
MK
3311 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3312 i386_collect_gregset);
8446b36a
MK
3313 return tdep->gregset;
3314 }
3315
66a72d25
MK
3316 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3317 || (strcmp (sect_name, ".reg-xfp") == 0
3318 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3319 {
3320 if (tdep->fpregset == NULL)
7fdafb5a
MK
3321 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3322 i386_collect_fpregset);
8446b36a
MK
3323 return tdep->fpregset;
3324 }
3325
c131fcee
L
3326 if (strcmp (sect_name, ".reg-xstate") == 0)
3327 {
3328 if (tdep->xstateregset == NULL)
3329 tdep->xstateregset = regset_alloc (gdbarch,
3330 i386_supply_xstateregset,
3331 i386_collect_xstateregset);
3332
3333 return tdep->xstateregset;
3334 }
3335
8446b36a
MK
3336 return NULL;
3337}
473f17b0 3338\f
fc338970 3339
fc338970 3340/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3341
3342CORE_ADDR
e17a4113
UW
3343i386_pe_skip_trampoline_code (struct frame_info *frame,
3344 CORE_ADDR pc, char *name)
c906108c 3345{
e17a4113
UW
3346 struct gdbarch *gdbarch = get_frame_arch (frame);
3347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3348
3349 /* jmp *(dest) */
3350 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3351 {
e17a4113
UW
3352 unsigned long indirect =
3353 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3354 struct minimal_symbol *indsym =
7cbd4a93 3355 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
0d5cff50 3356 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3357
c5aa993b 3358 if (symname)
c906108c 3359 {
c5aa993b
JM
3360 if (strncmp (symname, "__imp_", 6) == 0
3361 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3362 return name ? 1 :
3363 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3364 }
3365 }
fc338970 3366 return 0; /* Not a trampoline. */
c906108c 3367}
fc338970
MK
3368\f
3369
10458914
DJ
3370/* Return whether the THIS_FRAME corresponds to a sigtramp
3371 routine. */
8201327c 3372
4bd207ef 3373int
10458914 3374i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3375{
10458914 3376 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3377 const char *name;
911bc6ee
MK
3378
3379 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3380 return (name && strcmp ("_sigtramp", name) == 0);
3381}
3382\f
3383
fc338970
MK
3384/* We have two flavours of disassembly. The machinery on this page
3385 deals with switching between those. */
c906108c
SS
3386
3387static int
a89aa300 3388i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3389{
5e3397bb
MK
3390 gdb_assert (disassembly_flavor == att_flavor
3391 || disassembly_flavor == intel_flavor);
3392
3393 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3394 constified, cast to prevent a compiler warning. */
3395 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3396
3397 return print_insn_i386 (pc, info);
7a292a7a 3398}
fc338970 3399\f
3ce1502b 3400
8201327c
MK
3401/* There are a few i386 architecture variants that differ only
3402 slightly from the generic i386 target. For now, we don't give them
3403 their own source file, but include them here. As a consequence,
3404 they'll always be included. */
3ce1502b 3405
8201327c 3406/* System V Release 4 (SVR4). */
3ce1502b 3407
10458914
DJ
3408/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3409 routine. */
911bc6ee 3410
8201327c 3411static int
10458914 3412i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3413{
10458914 3414 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3415 const char *name;
911bc6ee 3416
05b4bd79 3417 /* The origin of these symbols is currently unknown. */
911bc6ee 3418 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3419 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3420 || strcmp ("sigvechandler", name) == 0));
3421}
d2a7c97a 3422
10458914
DJ
3423/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3424 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3425
3a1e71e3 3426static CORE_ADDR
10458914 3427i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3428{
e17a4113
UW
3429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3431 gdb_byte buf[4];
acd5c798 3432 CORE_ADDR sp;
3ce1502b 3433
10458914 3434 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3435 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3436
e17a4113 3437 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3438}
55aa24fb
SDJ
3439
3440\f
3441
3442/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3443 gdbarch.h. */
3444
3445int
3446i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3447{
3448 return (*s == '$' /* Literal number. */
3449 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3450 || (*s == '(' && s[1] == '%') /* Register indirection. */
3451 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3452}
3453
3454/* Implementation of `gdbarch_stap_parse_special_token', as defined in
3455 gdbarch.h. */
3456
3457int
3458i386_stap_parse_special_token (struct gdbarch *gdbarch,
3459 struct stap_parse_info *p)
3460{
55aa24fb
SDJ
3461 /* In order to parse special tokens, we use a state-machine that go
3462 through every known token and try to get a match. */
3463 enum
3464 {
3465 TRIPLET,
3466 THREE_ARG_DISPLACEMENT,
3467 DONE
3468 } current_state;
3469
3470 current_state = TRIPLET;
3471
3472 /* The special tokens to be parsed here are:
3473
3474 - `register base + (register index * size) + offset', as represented
3475 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3476
3477 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3478 `*(-8 + 3 - 1 + (void *) $eax)'. */
3479
3480 while (current_state != DONE)
3481 {
3482 const char *s = p->arg;
3483
3484 switch (current_state)
3485 {
3486 case TRIPLET:
3487 {
3488 if (isdigit (*s) || *s == '-' || *s == '+')
3489 {
3490 int got_minus[3];
3491 int i;
3492 long displacements[3];
3493 const char *start;
3494 char *regname;
3495 int len;
3496 struct stoken str;
a0bcdaa7 3497 char *endp;
55aa24fb
SDJ
3498
3499 got_minus[0] = 0;
3500 if (*s == '+')
3501 ++s;
3502 else if (*s == '-')
3503 {
3504 ++s;
3505 got_minus[0] = 1;
3506 }
3507
a0bcdaa7
PA
3508 displacements[0] = strtol (s, &endp, 10);
3509 s = endp;
55aa24fb
SDJ
3510
3511 if (*s != '+' && *s != '-')
3512 {
3513 /* We are not dealing with a triplet. */
3514 break;
3515 }
3516
3517 got_minus[1] = 0;
3518 if (*s == '+')
3519 ++s;
3520 else
3521 {
3522 ++s;
3523 got_minus[1] = 1;
3524 }
3525
a0bcdaa7
PA
3526 displacements[1] = strtol (s, &endp, 10);
3527 s = endp;
55aa24fb
SDJ
3528
3529 if (*s != '+' && *s != '-')
3530 {
3531 /* We are not dealing with a triplet. */
3532 break;
3533 }
3534
3535 got_minus[2] = 0;
3536 if (*s == '+')
3537 ++s;
3538 else
3539 {
3540 ++s;
3541 got_minus[2] = 1;
3542 }
3543
a0bcdaa7
PA
3544 displacements[2] = strtol (s, &endp, 10);
3545 s = endp;
55aa24fb
SDJ
3546
3547 if (*s != '(' || s[1] != '%')
3548 break;
3549
3550 s += 2;
3551 start = s;
3552
3553 while (isalnum (*s))
3554 ++s;
3555
3556 if (*s++ != ')')
3557 break;
3558
3559 len = s - start;
3560 regname = alloca (len + 1);
3561
3562 strncpy (regname, start, len);
3563 regname[len] = '\0';
3564
3565 if (user_reg_map_name_to_regnum (gdbarch,
3566 regname, len) == -1)
3567 error (_("Invalid register name `%s' "
3568 "on expression `%s'."),
3569 regname, p->saved_arg);
3570
3571 for (i = 0; i < 3; i++)
3572 {
3573 write_exp_elt_opcode (OP_LONG);
3574 write_exp_elt_type
3575 (builtin_type (gdbarch)->builtin_long);
3576 write_exp_elt_longcst (displacements[i]);
3577 write_exp_elt_opcode (OP_LONG);
3578 if (got_minus[i])
3579 write_exp_elt_opcode (UNOP_NEG);
3580 }
3581
3582 write_exp_elt_opcode (OP_REGISTER);
3583 str.ptr = regname;
3584 str.length = len;
3585 write_exp_string (str);
3586 write_exp_elt_opcode (OP_REGISTER);
3587
3588 write_exp_elt_opcode (UNOP_CAST);
3589 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3590 write_exp_elt_opcode (UNOP_CAST);
3591
3592 write_exp_elt_opcode (BINOP_ADD);
3593 write_exp_elt_opcode (BINOP_ADD);
3594 write_exp_elt_opcode (BINOP_ADD);
3595
3596 write_exp_elt_opcode (UNOP_CAST);
3597 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3598 write_exp_elt_opcode (UNOP_CAST);
3599
3600 write_exp_elt_opcode (UNOP_IND);
3601
3602 p->arg = s;
3603
3604 return 1;
3605 }
3606 break;
3607 }
3608 case THREE_ARG_DISPLACEMENT:
3609 {
3610 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3611 {
3612 int offset_minus = 0;
3613 long offset = 0;
3614 int size_minus = 0;
3615 long size = 0;
3616 const char *start;
3617 char *base;
3618 int len_base;
3619 char *index;
3620 int len_index;
3621 struct stoken base_token, index_token;
3622
3623 if (*s == '+')
3624 ++s;
3625 else if (*s == '-')
3626 {
3627 ++s;
3628 offset_minus = 1;
3629 }
3630
3631 if (offset_minus && !isdigit (*s))
3632 break;
3633
3634 if (isdigit (*s))
a0bcdaa7
PA
3635 {
3636 char *endp;
3637
3638 offset = strtol (s, &endp, 10);
3639 s = endp;
3640 }
55aa24fb
SDJ
3641
3642 if (*s != '(' || s[1] != '%')
3643 break;
3644
3645 s += 2;
3646 start = s;
3647
3648 while (isalnum (*s))
3649 ++s;
3650
3651 if (*s != ',' || s[1] != '%')
3652 break;
3653
3654 len_base = s - start;
3655 base = alloca (len_base + 1);
3656 strncpy (base, start, len_base);
3657 base[len_base] = '\0';
3658
3659 if (user_reg_map_name_to_regnum (gdbarch,
3660 base, len_base) == -1)
3661 error (_("Invalid register name `%s' "
3662 "on expression `%s'."),
3663 base, p->saved_arg);
3664
3665 s += 2;
3666 start = s;
3667
3668 while (isalnum (*s))
3669 ++s;
3670
3671 len_index = s - start;
3672 index = alloca (len_index + 1);
3673 strncpy (index, start, len_index);
3674 index[len_index] = '\0';
3675
3676 if (user_reg_map_name_to_regnum (gdbarch,
3677 index, len_index) == -1)
3678 error (_("Invalid register name `%s' "
3679 "on expression `%s'."),
3680 index, p->saved_arg);
3681
3682 if (*s != ',' && *s != ')')
3683 break;
3684
3685 if (*s == ',')
3686 {
a0bcdaa7
PA
3687 char *endp;
3688
55aa24fb
SDJ
3689 ++s;
3690 if (*s == '+')
3691 ++s;
3692 else if (*s == '-')
3693 {
3694 ++s;
3695 size_minus = 1;
3696 }
3697
a0bcdaa7
PA
3698 size = strtol (s, &endp, 10);
3699 s = endp;
55aa24fb
SDJ
3700
3701 if (*s != ')')
3702 break;
3703 }
3704
3705 ++s;
3706
3707 if (offset)
3708 {
3709 write_exp_elt_opcode (OP_LONG);
3710 write_exp_elt_type
3711 (builtin_type (gdbarch)->builtin_long);
3712 write_exp_elt_longcst (offset);
3713 write_exp_elt_opcode (OP_LONG);
3714 if (offset_minus)
3715 write_exp_elt_opcode (UNOP_NEG);
3716 }
3717
3718 write_exp_elt_opcode (OP_REGISTER);
3719 base_token.ptr = base;
3720 base_token.length = len_base;
3721 write_exp_string (base_token);
3722 write_exp_elt_opcode (OP_REGISTER);
3723
3724 if (offset)
3725 write_exp_elt_opcode (BINOP_ADD);
3726
3727 write_exp_elt_opcode (OP_REGISTER);
3728 index_token.ptr = index;
3729 index_token.length = len_index;
3730 write_exp_string (index_token);
3731 write_exp_elt_opcode (OP_REGISTER);
3732
3733 if (size)
3734 {
3735 write_exp_elt_opcode (OP_LONG);
3736 write_exp_elt_type
3737 (builtin_type (gdbarch)->builtin_long);
3738 write_exp_elt_longcst (size);
3739 write_exp_elt_opcode (OP_LONG);
3740 if (size_minus)
3741 write_exp_elt_opcode (UNOP_NEG);
3742 write_exp_elt_opcode (BINOP_MUL);
3743 }
3744
3745 write_exp_elt_opcode (BINOP_ADD);
3746
3747 write_exp_elt_opcode (UNOP_CAST);
3748 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3749 write_exp_elt_opcode (UNOP_CAST);
3750
3751 write_exp_elt_opcode (UNOP_IND);
3752
3753 p->arg = s;
3754
3755 return 1;
3756 }
3757 break;
3758 }
3759 }
3760
3761 /* Advancing to the next state. */
3762 ++current_state;
3763 }
3764
3765 return 0;
3766}
3767
8201327c 3768\f
3ce1502b 3769
8201327c 3770/* Generic ELF. */
d2a7c97a 3771
8201327c
MK
3772void
3773i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3774{
c4fc7f1b
MK
3775 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3776 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
3777
3778 /* Registering SystemTap handlers. */
3779 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3780 set_gdbarch_stap_register_prefix (gdbarch, "%");
3781 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3782 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3783 set_gdbarch_stap_is_single_operand (gdbarch,
3784 i386_stap_is_single_operand);
3785 set_gdbarch_stap_parse_special_token (gdbarch,
3786 i386_stap_parse_special_token);
8201327c 3787}
3ce1502b 3788
8201327c 3789/* System V Release 4 (SVR4). */
3ce1502b 3790
8201327c
MK
3791void
3792i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3793{
3794 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3795
8201327c
MK
3796 /* System V Release 4 uses ELF. */
3797 i386_elf_init_abi (info, gdbarch);
3ce1502b 3798
dfe01d39 3799 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3800 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3801
911bc6ee 3802 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3803 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3804 tdep->sc_pc_offset = 36 + 14 * 4;
3805 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3806
8201327c 3807 tdep->jb_pc_offset = 20;
3ce1502b
MK
3808}
3809
8201327c 3810/* DJGPP. */
3ce1502b 3811
3a1e71e3 3812static void
8201327c 3813i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3814{
8201327c 3815 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3816
911bc6ee
MK
3817 /* DJGPP doesn't have any special frames for signal handlers. */
3818 tdep->sigtramp_p = NULL;
3ce1502b 3819
8201327c 3820 tdep->jb_pc_offset = 36;
15430fc0
EZ
3821
3822 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3823 if (! tdesc_has_registers (info.target_desc))
3824 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3825
3826 /* Native compiler is GCC, which uses the SVR4 register numbering
3827 even in COFF and STABS. See the comment in i386_gdbarch_init,
3828 before the calls to set_gdbarch_stab_reg_to_regnum and
3829 set_gdbarch_sdb_reg_to_regnum. */
3830 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3831 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3832
3833 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3834}
8201327c 3835\f
2acceee2 3836
38c968cf
AC
3837/* i386 register groups. In addition to the normal groups, add "mmx"
3838 and "sse". */
3839
3840static struct reggroup *i386_sse_reggroup;
3841static struct reggroup *i386_mmx_reggroup;
3842
3843static void
3844i386_init_reggroups (void)
3845{
3846 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3847 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3848}
3849
3850static void
3851i386_add_reggroups (struct gdbarch *gdbarch)
3852{
3853 reggroup_add (gdbarch, i386_sse_reggroup);
3854 reggroup_add (gdbarch, i386_mmx_reggroup);
3855 reggroup_add (gdbarch, general_reggroup);
3856 reggroup_add (gdbarch, float_reggroup);
3857 reggroup_add (gdbarch, all_reggroup);
3858 reggroup_add (gdbarch, save_reggroup);
3859 reggroup_add (gdbarch, restore_reggroup);
3860 reggroup_add (gdbarch, vector_reggroup);
3861 reggroup_add (gdbarch, system_reggroup);
3862}
3863
3864int
3865i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3866 struct reggroup *group)
3867{
c131fcee
L
3868 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3869 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3870 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3871
1ba53b71
L
3872 /* Don't include pseudo registers, except for MMX, in any register
3873 groups. */
c131fcee 3874 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3875 return 0;
3876
c131fcee 3877 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3878 return 0;
3879
c131fcee 3880 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3881 return 0;
3882
3883 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3884 if (group == i386_mmx_reggroup)
3885 return mmx_regnum_p;
1ba53b71 3886
c131fcee
L
3887 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3888 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3889 if (group == i386_sse_reggroup)
c131fcee
L
3890 return xmm_regnum_p || mxcsr_regnum_p;
3891
3892 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3893 if (group == vector_reggroup)
c131fcee
L
3894 return (mmx_regnum_p
3895 || ymm_regnum_p
3896 || mxcsr_regnum_p
3897 || (xmm_regnum_p
3898 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3899 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3900
3901 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3902 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3903 if (group == float_reggroup)
3904 return fp_regnum_p;
1ba53b71 3905
c131fcee
L
3906 /* For "info reg all", don't include upper YMM registers nor XMM
3907 registers when AVX is supported. */
3908 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3909 if (group == all_reggroup
3910 && ((xmm_regnum_p
3911 && (tdep->xcr0 & I386_XSTATE_AVX))
3912 || ymmh_regnum_p))
3913 return 0;
3914
38c968cf 3915 if (group == general_reggroup)
1ba53b71
L
3916 return (!fp_regnum_p
3917 && !mmx_regnum_p
c131fcee
L
3918 && !mxcsr_regnum_p
3919 && !xmm_regnum_p
3920 && !ymm_regnum_p
3921 && !ymmh_regnum_p);
acd5c798 3922
38c968cf
AC
3923 return default_register_reggroup_p (gdbarch, regnum, group);
3924}
38c968cf 3925\f
acd5c798 3926
f837910f
MK
3927/* Get the ARGIth function argument for the current function. */
3928
42c466d7 3929static CORE_ADDR
143985b7
AF
3930i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3931 struct type *type)
3932{
e17a4113
UW
3933 struct gdbarch *gdbarch = get_frame_arch (frame);
3934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 3935 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3936 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3937}
3938
514f746b
AR
3939static void
3940i386_skip_permanent_breakpoint (struct regcache *regcache)
3941{
3942 CORE_ADDR current_pc = regcache_read_pc (regcache);
3943
3944 /* On i386, breakpoint is exactly 1 byte long, so we just
3945 adjust the PC in the regcache. */
3946 current_pc += 1;
3947 regcache_write_pc (regcache, current_pc);
3948}
3949
3950
7ad10968
HZ
3951#define PREFIX_REPZ 0x01
3952#define PREFIX_REPNZ 0x02
3953#define PREFIX_LOCK 0x04
3954#define PREFIX_DATA 0x08
3955#define PREFIX_ADDR 0x10
473f17b0 3956
7ad10968
HZ
3957/* operand size */
3958enum
3959{
3960 OT_BYTE = 0,
3961 OT_WORD,
3962 OT_LONG,
cf648174 3963 OT_QUAD,
a3c4230a 3964 OT_DQUAD,
7ad10968 3965};
473f17b0 3966
7ad10968
HZ
3967/* i386 arith/logic operations */
3968enum
3969{
3970 OP_ADDL,
3971 OP_ORL,
3972 OP_ADCL,
3973 OP_SBBL,
3974 OP_ANDL,
3975 OP_SUBL,
3976 OP_XORL,
3977 OP_CMPL,
3978};
5716833c 3979
7ad10968
HZ
3980struct i386_record_s
3981{
cf648174 3982 struct gdbarch *gdbarch;
7ad10968 3983 struct regcache *regcache;
df61f520 3984 CORE_ADDR orig_addr;
7ad10968
HZ
3985 CORE_ADDR addr;
3986 int aflag;
3987 int dflag;
3988 int override;
3989 uint8_t modrm;
3990 uint8_t mod, reg, rm;
3991 int ot;
cf648174
HZ
3992 uint8_t rex_x;
3993 uint8_t rex_b;
3994 int rip_offset;
3995 int popl_esp_hack;
3996 const int *regmap;
7ad10968 3997};
5716833c 3998
99c1624c
PA
3999/* Parse the "modrm" part of the memory address irp->addr points at.
4000 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4001
7ad10968
HZ
4002static int
4003i386_record_modrm (struct i386_record_s *irp)
4004{
cf648174 4005 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4006
4ffa4fc7
PA
4007 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4008 return -1;
4009
7ad10968
HZ
4010 irp->addr++;
4011 irp->mod = (irp->modrm >> 6) & 3;
4012 irp->reg = (irp->modrm >> 3) & 7;
4013 irp->rm = irp->modrm & 7;
5716833c 4014
7ad10968
HZ
4015 return 0;
4016}
d2a7c97a 4017
99c1624c
PA
4018/* Extract the memory address that the current instruction writes to,
4019 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4020
7ad10968 4021static int
cf648174 4022i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4023{
cf648174 4024 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4026 gdb_byte buf[4];
4027 ULONGEST offset64;
21d0e8a4 4028
7ad10968
HZ
4029 *addr = 0;
4030 if (irp->aflag)
4031 {
4032 /* 32 bits */
4033 int havesib = 0;
4034 uint8_t scale = 0;
648d0c8b 4035 uint8_t byte;
7ad10968
HZ
4036 uint8_t index = 0;
4037 uint8_t base = irp->rm;
896fb97d 4038
7ad10968
HZ
4039 if (base == 4)
4040 {
4041 havesib = 1;
4ffa4fc7
PA
4042 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4043 return -1;
7ad10968 4044 irp->addr++;
648d0c8b
MS
4045 scale = (byte >> 6) & 3;
4046 index = ((byte >> 3) & 7) | irp->rex_x;
4047 base = (byte & 7);
7ad10968 4048 }
cf648174 4049 base |= irp->rex_b;
21d0e8a4 4050
7ad10968
HZ
4051 switch (irp->mod)
4052 {
4053 case 0:
4054 if ((base & 7) == 5)
4055 {
4056 base = 0xff;
4ffa4fc7
PA
4057 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4058 return -1;
7ad10968 4059 irp->addr += 4;
60a1502a 4060 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4061 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4062 *addr += irp->addr + irp->rip_offset;
7ad10968 4063 }
7ad10968
HZ
4064 break;
4065 case 1:
4ffa4fc7
PA
4066 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4067 return -1;
7ad10968 4068 irp->addr++;
60a1502a 4069 *addr = (int8_t) buf[0];
7ad10968
HZ
4070 break;
4071 case 2:
4ffa4fc7
PA
4072 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4073 return -1;
60a1502a 4074 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4075 irp->addr += 4;
4076 break;
4077 }
356a6b3e 4078
60a1502a 4079 offset64 = 0;
7ad10968 4080 if (base != 0xff)
cf648174
HZ
4081 {
4082 if (base == 4 && irp->popl_esp_hack)
4083 *addr += irp->popl_esp_hack;
4084 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4085 &offset64);
7ad10968 4086 }
cf648174
HZ
4087 if (irp->aflag == 2)
4088 {
60a1502a 4089 *addr += offset64;
cf648174
HZ
4090 }
4091 else
60a1502a 4092 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4093
7ad10968
HZ
4094 if (havesib && (index != 4 || scale != 0))
4095 {
cf648174 4096 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4097 &offset64);
cf648174 4098 if (irp->aflag == 2)
60a1502a 4099 *addr += offset64 << scale;
cf648174 4100 else
60a1502a 4101 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
4102 }
4103 }
4104 else
4105 {
4106 /* 16 bits */
4107 switch (irp->mod)
4108 {
4109 case 0:
4110 if (irp->rm == 6)
4111 {
4ffa4fc7
PA
4112 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4113 return -1;
7ad10968 4114 irp->addr += 2;
60a1502a 4115 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4116 irp->rm = 0;
4117 goto no_rm;
4118 }
7ad10968
HZ
4119 break;
4120 case 1:
4ffa4fc7
PA
4121 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4122 return -1;
7ad10968 4123 irp->addr++;
60a1502a 4124 *addr = (int8_t) buf[0];
7ad10968
HZ
4125 break;
4126 case 2:
4ffa4fc7
PA
4127 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4128 return -1;
7ad10968 4129 irp->addr += 2;
60a1502a 4130 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4131 break;
4132 }
c4fc7f1b 4133
7ad10968
HZ
4134 switch (irp->rm)
4135 {
4136 case 0:
cf648174
HZ
4137 regcache_raw_read_unsigned (irp->regcache,
4138 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4139 &offset64);
4140 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4141 regcache_raw_read_unsigned (irp->regcache,
4142 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4143 &offset64);
4144 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4145 break;
4146 case 1:
cf648174
HZ
4147 regcache_raw_read_unsigned (irp->regcache,
4148 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4149 &offset64);
4150 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4151 regcache_raw_read_unsigned (irp->regcache,
4152 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4153 &offset64);
4154 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4155 break;
4156 case 2:
cf648174
HZ
4157 regcache_raw_read_unsigned (irp->regcache,
4158 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4159 &offset64);
4160 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4161 regcache_raw_read_unsigned (irp->regcache,
4162 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4163 &offset64);
4164 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4165 break;
4166 case 3:
cf648174
HZ
4167 regcache_raw_read_unsigned (irp->regcache,
4168 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4169 &offset64);
4170 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4171 regcache_raw_read_unsigned (irp->regcache,
4172 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4173 &offset64);
4174 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4175 break;
4176 case 4:
cf648174
HZ
4177 regcache_raw_read_unsigned (irp->regcache,
4178 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4179 &offset64);
4180 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4181 break;
4182 case 5:
cf648174
HZ
4183 regcache_raw_read_unsigned (irp->regcache,
4184 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4185 &offset64);
4186 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4187 break;
4188 case 6:
cf648174
HZ
4189 regcache_raw_read_unsigned (irp->regcache,
4190 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4191 &offset64);
4192 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4193 break;
4194 case 7:
cf648174
HZ
4195 regcache_raw_read_unsigned (irp->regcache,
4196 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4197 &offset64);
4198 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4199 break;
4200 }
4201 *addr &= 0xffff;
4202 }
c4fc7f1b 4203
01fe1b41 4204 no_rm:
7ad10968
HZ
4205 return 0;
4206}
c4fc7f1b 4207
99c1624c
PA
4208/* Record the address and contents of the memory that will be changed
4209 by the current instruction. Return -1 if something goes wrong, 0
4210 otherwise. */
356a6b3e 4211
7ad10968
HZ
4212static int
4213i386_record_lea_modrm (struct i386_record_s *irp)
4214{
cf648174
HZ
4215 struct gdbarch *gdbarch = irp->gdbarch;
4216 uint64_t addr;
356a6b3e 4217
d7877f7e 4218 if (irp->override >= 0)
7ad10968 4219 {
25ea693b 4220 if (record_full_memory_query)
bb08c432
HZ
4221 {
4222 int q;
4223
4224 target_terminal_ours ();
4225 q = yquery (_("\
4226Process record ignores the memory change of instruction at address %s\n\
4227because it can't get the value of the segment register.\n\
4228Do you want to stop the program?"),
4229 paddress (gdbarch, irp->orig_addr));
4230 target_terminal_inferior ();
4231 if (q)
4232 return -1;
4233 }
4234
7ad10968
HZ
4235 return 0;
4236 }
61113f8b 4237
7ad10968
HZ
4238 if (i386_record_lea_modrm_addr (irp, &addr))
4239 return -1;
96297dab 4240
25ea693b 4241 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4242 return -1;
a62cc96e 4243
7ad10968
HZ
4244 return 0;
4245}
b6197528 4246
99c1624c
PA
4247/* Record the effects of a push operation. Return -1 if something
4248 goes wrong, 0 otherwise. */
cf648174
HZ
4249
4250static int
4251i386_record_push (struct i386_record_s *irp, int size)
4252{
648d0c8b 4253 ULONGEST addr;
cf648174 4254
25ea693b
MM
4255 if (record_full_arch_list_add_reg (irp->regcache,
4256 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4257 return -1;
4258 regcache_raw_read_unsigned (irp->regcache,
4259 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4260 &addr);
25ea693b 4261 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4262 return -1;
4263
4264 return 0;
4265}
4266
0289bdd7
MS
4267
4268/* Defines contents to record. */
4269#define I386_SAVE_FPU_REGS 0xfffd
4270#define I386_SAVE_FPU_ENV 0xfffe
4271#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4272
99c1624c
PA
4273/* Record the values of the floating point registers which will be
4274 changed by the current instruction. Returns -1 if something is
4275 wrong, 0 otherwise. */
0289bdd7
MS
4276
4277static int i386_record_floats (struct gdbarch *gdbarch,
4278 struct i386_record_s *ir,
4279 uint32_t iregnum)
4280{
4281 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4282 int i;
4283
4284 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4285 happen. Currently we store st0-st7 registers, but we need not store all
4286 registers all the time, in future we use ftag register and record only
4287 those who are not marked as an empty. */
4288
4289 if (I386_SAVE_FPU_REGS == iregnum)
4290 {
4291 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4292 {
25ea693b 4293 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4294 return -1;
4295 }
4296 }
4297 else if (I386_SAVE_FPU_ENV == iregnum)
4298 {
4299 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4300 {
25ea693b 4301 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4302 return -1;
4303 }
4304 }
4305 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4306 {
4307 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4308 {
25ea693b 4309 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4310 return -1;
4311 }
4312 }
4313 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4314 (iregnum <= I387_FOP_REGNUM (tdep)))
4315 {
25ea693b 4316 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4317 return -1;
4318 }
4319 else
4320 {
4321 /* Parameter error. */
4322 return -1;
4323 }
4324 if(I386_SAVE_FPU_ENV != iregnum)
4325 {
4326 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4327 {
25ea693b 4328 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4329 return -1;
4330 }
4331 }
4332 return 0;
4333}
4334
99c1624c
PA
4335/* Parse the current instruction, and record the values of the
4336 registers and memory that will be changed by the current
4337 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4338
25ea693b
MM
4339#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4340 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4341
a6b808b4 4342int
7ad10968 4343i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4344 CORE_ADDR input_addr)
7ad10968 4345{
60a1502a 4346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4347 int prefixes = 0;
580879fc 4348 int regnum = 0;
425b824a 4349 uint32_t opcode;
f4644a3f 4350 uint8_t opcode8;
648d0c8b 4351 ULONGEST addr;
60a1502a 4352 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4353 struct i386_record_s ir;
0289bdd7 4354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4355 uint8_t rex_w = -1;
4356 uint8_t rex_r = 0;
7ad10968 4357
8408d274 4358 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4359 ir.regcache = regcache;
648d0c8b
MS
4360 ir.addr = input_addr;
4361 ir.orig_addr = input_addr;
7ad10968
HZ
4362 ir.aflag = 1;
4363 ir.dflag = 1;
cf648174
HZ
4364 ir.override = -1;
4365 ir.popl_esp_hack = 0;
a3c4230a 4366 ir.regmap = tdep->record_regmap;
cf648174 4367 ir.gdbarch = gdbarch;
7ad10968
HZ
4368
4369 if (record_debug > 1)
4370 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4371 "addr = %s\n",
4372 paddress (gdbarch, ir.addr));
7ad10968
HZ
4373
4374 /* prefixes */
4375 while (1)
4376 {
4ffa4fc7
PA
4377 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4378 return -1;
7ad10968 4379 ir.addr++;
425b824a 4380 switch (opcode8) /* Instruction prefixes */
7ad10968 4381 {
01fe1b41 4382 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4383 prefixes |= PREFIX_REPZ;
4384 break;
01fe1b41 4385 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4386 prefixes |= PREFIX_REPNZ;
4387 break;
01fe1b41 4388 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4389 prefixes |= PREFIX_LOCK;
4390 break;
01fe1b41 4391 case CS_PREFIX_OPCODE:
cf648174 4392 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4393 break;
01fe1b41 4394 case SS_PREFIX_OPCODE:
cf648174 4395 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4396 break;
01fe1b41 4397 case DS_PREFIX_OPCODE:
cf648174 4398 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4399 break;
01fe1b41 4400 case ES_PREFIX_OPCODE:
cf648174 4401 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4402 break;
01fe1b41 4403 case FS_PREFIX_OPCODE:
cf648174 4404 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4405 break;
01fe1b41 4406 case GS_PREFIX_OPCODE:
cf648174 4407 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4408 break;
01fe1b41 4409 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4410 prefixes |= PREFIX_DATA;
4411 break;
01fe1b41 4412 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4413 prefixes |= PREFIX_ADDR;
4414 break;
d691bec7
MS
4415 case 0x40: /* i386 inc %eax */
4416 case 0x41: /* i386 inc %ecx */
4417 case 0x42: /* i386 inc %edx */
4418 case 0x43: /* i386 inc %ebx */
4419 case 0x44: /* i386 inc %esp */
4420 case 0x45: /* i386 inc %ebp */
4421 case 0x46: /* i386 inc %esi */
4422 case 0x47: /* i386 inc %edi */
4423 case 0x48: /* i386 dec %eax */
4424 case 0x49: /* i386 dec %ecx */
4425 case 0x4a: /* i386 dec %edx */
4426 case 0x4b: /* i386 dec %ebx */
4427 case 0x4c: /* i386 dec %esp */
4428 case 0x4d: /* i386 dec %ebp */
4429 case 0x4e: /* i386 dec %esi */
4430 case 0x4f: /* i386 dec %edi */
4431 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
4432 {
4433 /* REX */
425b824a
MS
4434 rex_w = (opcode8 >> 3) & 1;
4435 rex_r = (opcode8 & 0x4) << 1;
4436 ir.rex_x = (opcode8 & 0x2) << 2;
4437 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 4438 }
d691bec7
MS
4439 else /* 32 bit target */
4440 goto out_prefixes;
cf648174 4441 break;
7ad10968
HZ
4442 default:
4443 goto out_prefixes;
4444 break;
4445 }
4446 }
01fe1b41 4447 out_prefixes:
cf648174
HZ
4448 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4449 {
4450 ir.dflag = 2;
4451 }
4452 else
4453 {
4454 if (prefixes & PREFIX_DATA)
4455 ir.dflag ^= 1;
4456 }
7ad10968
HZ
4457 if (prefixes & PREFIX_ADDR)
4458 ir.aflag ^= 1;
cf648174
HZ
4459 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4460 ir.aflag = 2;
7ad10968 4461
1777feb0 4462 /* Now check op code. */
425b824a 4463 opcode = (uint32_t) opcode8;
01fe1b41 4464 reswitch:
7ad10968
HZ
4465 switch (opcode)
4466 {
4467 case 0x0f:
4ffa4fc7
PA
4468 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4469 return -1;
7ad10968 4470 ir.addr++;
a3c4230a 4471 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
4472 goto reswitch;
4473 break;
93924b6b 4474
a38bba38 4475 case 0x00: /* arith & logic */
7ad10968
HZ
4476 case 0x01:
4477 case 0x02:
4478 case 0x03:
4479 case 0x04:
4480 case 0x05:
4481 case 0x08:
4482 case 0x09:
4483 case 0x0a:
4484 case 0x0b:
4485 case 0x0c:
4486 case 0x0d:
4487 case 0x10:
4488 case 0x11:
4489 case 0x12:
4490 case 0x13:
4491 case 0x14:
4492 case 0x15:
4493 case 0x18:
4494 case 0x19:
4495 case 0x1a:
4496 case 0x1b:
4497 case 0x1c:
4498 case 0x1d:
4499 case 0x20:
4500 case 0x21:
4501 case 0x22:
4502 case 0x23:
4503 case 0x24:
4504 case 0x25:
4505 case 0x28:
4506 case 0x29:
4507 case 0x2a:
4508 case 0x2b:
4509 case 0x2c:
4510 case 0x2d:
4511 case 0x30:
4512 case 0x31:
4513 case 0x32:
4514 case 0x33:
4515 case 0x34:
4516 case 0x35:
4517 case 0x38:
4518 case 0x39:
4519 case 0x3a:
4520 case 0x3b:
4521 case 0x3c:
4522 case 0x3d:
4523 if (((opcode >> 3) & 7) != OP_CMPL)
4524 {
4525 if ((opcode & 1) == 0)
4526 ir.ot = OT_BYTE;
4527 else
4528 ir.ot = ir.dflag + OT_WORD;
93924b6b 4529
7ad10968
HZ
4530 switch ((opcode >> 1) & 3)
4531 {
a38bba38 4532 case 0: /* OP Ev, Gv */
7ad10968
HZ
4533 if (i386_record_modrm (&ir))
4534 return -1;
4535 if (ir.mod != 3)
4536 {
4537 if (i386_record_lea_modrm (&ir))
4538 return -1;
4539 }
4540 else
4541 {
cf648174
HZ
4542 ir.rm |= ir.rex_b;
4543 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4544 ir.rm &= 0x3;
25ea693b 4545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4546 }
4547 break;
a38bba38 4548 case 1: /* OP Gv, Ev */
7ad10968
HZ
4549 if (i386_record_modrm (&ir))
4550 return -1;
cf648174
HZ
4551 ir.reg |= rex_r;
4552 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4553 ir.reg &= 0x3;
25ea693b 4554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4555 break;
a38bba38 4556 case 2: /* OP A, Iv */
25ea693b 4557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4558 break;
4559 }
4560 }
25ea693b 4561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4562 break;
42fdc8df 4563
a38bba38 4564 case 0x80: /* GRP1 */
7ad10968
HZ
4565 case 0x81:
4566 case 0x82:
4567 case 0x83:
4568 if (i386_record_modrm (&ir))
4569 return -1;
8201327c 4570
7ad10968
HZ
4571 if (ir.reg != OP_CMPL)
4572 {
4573 if ((opcode & 1) == 0)
4574 ir.ot = OT_BYTE;
4575 else
4576 ir.ot = ir.dflag + OT_WORD;
28fc6740 4577
7ad10968
HZ
4578 if (ir.mod != 3)
4579 {
cf648174
HZ
4580 if (opcode == 0x83)
4581 ir.rip_offset = 1;
4582 else
4583 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4584 if (i386_record_lea_modrm (&ir))
4585 return -1;
4586 }
4587 else
25ea693b 4588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4589 }
25ea693b 4590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4591 break;
5e3397bb 4592
a38bba38 4593 case 0x40: /* inc */
7ad10968
HZ
4594 case 0x41:
4595 case 0x42:
4596 case 0x43:
4597 case 0x44:
4598 case 0x45:
4599 case 0x46:
4600 case 0x47:
a38bba38
MS
4601
4602 case 0x48: /* dec */
7ad10968
HZ
4603 case 0x49:
4604 case 0x4a:
4605 case 0x4b:
4606 case 0x4c:
4607 case 0x4d:
4608 case 0x4e:
4609 case 0x4f:
a38bba38 4610
25ea693b
MM
4611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4613 break;
acd5c798 4614
a38bba38 4615 case 0xf6: /* GRP3 */
7ad10968
HZ
4616 case 0xf7:
4617 if ((opcode & 1) == 0)
4618 ir.ot = OT_BYTE;
4619 else
4620 ir.ot = ir.dflag + OT_WORD;
4621 if (i386_record_modrm (&ir))
4622 return -1;
acd5c798 4623
cf648174
HZ
4624 if (ir.mod != 3 && ir.reg == 0)
4625 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4626
7ad10968
HZ
4627 switch (ir.reg)
4628 {
a38bba38 4629 case 0: /* test */
25ea693b 4630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4631 break;
a38bba38
MS
4632 case 2: /* not */
4633 case 3: /* neg */
7ad10968
HZ
4634 if (ir.mod != 3)
4635 {
4636 if (i386_record_lea_modrm (&ir))
4637 return -1;
4638 }
4639 else
4640 {
cf648174
HZ
4641 ir.rm |= ir.rex_b;
4642 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4643 ir.rm &= 0x3;
25ea693b 4644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4645 }
a38bba38 4646 if (ir.reg == 3) /* neg */
25ea693b 4647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4648 break;
a38bba38
MS
4649 case 4: /* mul */
4650 case 5: /* imul */
4651 case 6: /* div */
4652 case 7: /* idiv */
25ea693b 4653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4654 if (ir.ot != OT_BYTE)
25ea693b
MM
4655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4657 break;
4658 default:
4659 ir.addr -= 2;
4660 opcode = opcode << 8 | ir.modrm;
4661 goto no_support;
4662 break;
4663 }
4664 break;
4665
a38bba38
MS
4666 case 0xfe: /* GRP4 */
4667 case 0xff: /* GRP5 */
7ad10968
HZ
4668 if (i386_record_modrm (&ir))
4669 return -1;
4670 if (ir.reg >= 2 && opcode == 0xfe)
4671 {
4672 ir.addr -= 2;
4673 opcode = opcode << 8 | ir.modrm;
4674 goto no_support;
4675 }
7ad10968
HZ
4676 switch (ir.reg)
4677 {
a38bba38
MS
4678 case 0: /* inc */
4679 case 1: /* dec */
cf648174
HZ
4680 if ((opcode & 1) == 0)
4681 ir.ot = OT_BYTE;
4682 else
4683 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4684 if (ir.mod != 3)
4685 {
4686 if (i386_record_lea_modrm (&ir))
4687 return -1;
4688 }
4689 else
4690 {
cf648174
HZ
4691 ir.rm |= ir.rex_b;
4692 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4693 ir.rm &= 0x3;
25ea693b 4694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4695 }
25ea693b 4696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4697 break;
a38bba38 4698 case 2: /* call */
cf648174
HZ
4699 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4700 ir.dflag = 2;
4701 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4702 return -1;
25ea693b 4703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4704 break;
a38bba38 4705 case 3: /* lcall */
25ea693b 4706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 4707 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4708 return -1;
25ea693b 4709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4710 break;
a38bba38
MS
4711 case 4: /* jmp */
4712 case 5: /* ljmp */
25ea693b 4713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 4714 break;
a38bba38 4715 case 6: /* push */
cf648174
HZ
4716 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4717 ir.dflag = 2;
4718 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4719 return -1;
7ad10968
HZ
4720 break;
4721 default:
4722 ir.addr -= 2;
4723 opcode = opcode << 8 | ir.modrm;
4724 goto no_support;
4725 break;
4726 }
4727 break;
4728
a38bba38 4729 case 0x84: /* test */
7ad10968
HZ
4730 case 0x85:
4731 case 0xa8:
4732 case 0xa9:
25ea693b 4733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4734 break;
4735
a38bba38 4736 case 0x98: /* CWDE/CBW */
25ea693b 4737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4738 break;
4739
a38bba38 4740 case 0x99: /* CDQ/CWD */
25ea693b
MM
4741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4743 break;
4744
a38bba38 4745 case 0x0faf: /* imul */
7ad10968
HZ
4746 case 0x69:
4747 case 0x6b:
4748 ir.ot = ir.dflag + OT_WORD;
4749 if (i386_record_modrm (&ir))
4750 return -1;
cf648174
HZ
4751 if (opcode == 0x69)
4752 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4753 else if (opcode == 0x6b)
4754 ir.rip_offset = 1;
4755 ir.reg |= rex_r;
4756 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4757 ir.reg &= 0x3;
25ea693b
MM
4758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4760 break;
4761
a38bba38 4762 case 0x0fc0: /* xadd */
7ad10968
HZ
4763 case 0x0fc1:
4764 if ((opcode & 1) == 0)
4765 ir.ot = OT_BYTE;
4766 else
4767 ir.ot = ir.dflag + OT_WORD;
4768 if (i386_record_modrm (&ir))
4769 return -1;
cf648174 4770 ir.reg |= rex_r;
7ad10968
HZ
4771 if (ir.mod == 3)
4772 {
cf648174 4773 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4774 ir.reg &= 0x3;
25ea693b 4775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 4776 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4777 ir.rm &= 0x3;
25ea693b 4778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4779 }
4780 else
4781 {
4782 if (i386_record_lea_modrm (&ir))
4783 return -1;
cf648174 4784 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4785 ir.reg &= 0x3;
25ea693b 4786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4787 }
25ea693b 4788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4789 break;
4790
a38bba38 4791 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4792 case 0x0fb1:
4793 if ((opcode & 1) == 0)
4794 ir.ot = OT_BYTE;
4795 else
4796 ir.ot = ir.dflag + OT_WORD;
4797 if (i386_record_modrm (&ir))
4798 return -1;
4799 if (ir.mod == 3)
4800 {
cf648174 4801 ir.reg |= rex_r;
25ea693b 4802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 4803 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4804 ir.reg &= 0x3;
25ea693b 4805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4806 }
4807 else
4808 {
25ea693b 4809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4810 if (i386_record_lea_modrm (&ir))
4811 return -1;
4812 }
25ea693b 4813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4814 break;
4815
a38bba38 4816 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4817 if (i386_record_modrm (&ir))
4818 return -1;
4819 if (ir.mod == 3)
4820 {
4821 ir.addr -= 2;
4822 opcode = opcode << 8 | ir.modrm;
4823 goto no_support;
4824 }
25ea693b
MM
4825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4827 if (i386_record_lea_modrm (&ir))
4828 return -1;
25ea693b 4829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4830 break;
4831
a38bba38 4832 case 0x50: /* push */
7ad10968
HZ
4833 case 0x51:
4834 case 0x52:
4835 case 0x53:
4836 case 0x54:
4837 case 0x55:
4838 case 0x56:
4839 case 0x57:
4840 case 0x68:
4841 case 0x6a:
cf648174
HZ
4842 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4843 ir.dflag = 2;
4844 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4845 return -1;
4846 break;
4847
a38bba38
MS
4848 case 0x06: /* push es */
4849 case 0x0e: /* push cs */
4850 case 0x16: /* push ss */
4851 case 0x1e: /* push ds */
cf648174
HZ
4852 if (ir.regmap[X86_RECORD_R8_REGNUM])
4853 {
4854 ir.addr -= 1;
4855 goto no_support;
4856 }
4857 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4858 return -1;
4859 break;
4860
a38bba38
MS
4861 case 0x0fa0: /* push fs */
4862 case 0x0fa8: /* push gs */
cf648174
HZ
4863 if (ir.regmap[X86_RECORD_R8_REGNUM])
4864 {
4865 ir.addr -= 2;
4866 goto no_support;
4867 }
4868 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4869 return -1;
cf648174
HZ
4870 break;
4871
a38bba38 4872 case 0x60: /* pusha */
cf648174
HZ
4873 if (ir.regmap[X86_RECORD_R8_REGNUM])
4874 {
4875 ir.addr -= 1;
4876 goto no_support;
4877 }
4878 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4879 return -1;
4880 break;
4881
a38bba38 4882 case 0x58: /* pop */
7ad10968
HZ
4883 case 0x59:
4884 case 0x5a:
4885 case 0x5b:
4886 case 0x5c:
4887 case 0x5d:
4888 case 0x5e:
4889 case 0x5f:
25ea693b
MM
4890 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4891 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4892 break;
4893
a38bba38 4894 case 0x61: /* popa */
cf648174
HZ
4895 if (ir.regmap[X86_RECORD_R8_REGNUM])
4896 {
4897 ir.addr -= 1;
4898 goto no_support;
7ad10968 4899 }
425b824a
MS
4900 for (regnum = X86_RECORD_REAX_REGNUM;
4901 regnum <= X86_RECORD_REDI_REGNUM;
4902 regnum++)
25ea693b 4903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4904 break;
4905
a38bba38 4906 case 0x8f: /* pop */
cf648174
HZ
4907 if (ir.regmap[X86_RECORD_R8_REGNUM])
4908 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4909 else
4910 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4911 if (i386_record_modrm (&ir))
4912 return -1;
4913 if (ir.mod == 3)
25ea693b 4914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4915 else
4916 {
cf648174 4917 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4918 if (i386_record_lea_modrm (&ir))
4919 return -1;
4920 }
25ea693b 4921 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4922 break;
4923
a38bba38 4924 case 0xc8: /* enter */
25ea693b 4925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
4926 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4927 ir.dflag = 2;
4928 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4929 return -1;
4930 break;
4931
a38bba38 4932 case 0xc9: /* leave */
25ea693b
MM
4933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4935 break;
4936
a38bba38 4937 case 0x07: /* pop es */
cf648174
HZ
4938 if (ir.regmap[X86_RECORD_R8_REGNUM])
4939 {
4940 ir.addr -= 1;
4941 goto no_support;
4942 }
25ea693b
MM
4943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4946 break;
4947
a38bba38 4948 case 0x17: /* pop ss */
cf648174
HZ
4949 if (ir.regmap[X86_RECORD_R8_REGNUM])
4950 {
4951 ir.addr -= 1;
4952 goto no_support;
4953 }
25ea693b
MM
4954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4957 break;
4958
a38bba38 4959 case 0x1f: /* pop ds */
cf648174
HZ
4960 if (ir.regmap[X86_RECORD_R8_REGNUM])
4961 {
4962 ir.addr -= 1;
4963 goto no_support;
4964 }
25ea693b
MM
4965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4968 break;
4969
a38bba38 4970 case 0x0fa1: /* pop fs */
25ea693b
MM
4971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4972 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4974 break;
4975
a38bba38 4976 case 0x0fa9: /* pop gs */
25ea693b
MM
4977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4980 break;
4981
a38bba38 4982 case 0x88: /* mov */
7ad10968
HZ
4983 case 0x89:
4984 case 0xc6:
4985 case 0xc7:
4986 if ((opcode & 1) == 0)
4987 ir.ot = OT_BYTE;
4988 else
4989 ir.ot = ir.dflag + OT_WORD;
4990
4991 if (i386_record_modrm (&ir))
4992 return -1;
4993
4994 if (ir.mod != 3)
4995 {
cf648174
HZ
4996 if (opcode == 0xc6 || opcode == 0xc7)
4997 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4998 if (i386_record_lea_modrm (&ir))
4999 return -1;
5000 }
5001 else
5002 {
cf648174
HZ
5003 if (opcode == 0xc6 || opcode == 0xc7)
5004 ir.rm |= ir.rex_b;
5005 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5006 ir.rm &= 0x3;
25ea693b 5007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5008 }
7ad10968 5009 break;
cf648174 5010
a38bba38 5011 case 0x8a: /* mov */
7ad10968
HZ
5012 case 0x8b:
5013 if ((opcode & 1) == 0)
5014 ir.ot = OT_BYTE;
5015 else
5016 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5017 if (i386_record_modrm (&ir))
5018 return -1;
cf648174
HZ
5019 ir.reg |= rex_r;
5020 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5021 ir.reg &= 0x3;
25ea693b 5022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5023 break;
7ad10968 5024
a38bba38 5025 case 0x8c: /* mov seg */
cf648174 5026 if (i386_record_modrm (&ir))
7ad10968 5027 return -1;
cf648174
HZ
5028 if (ir.reg > 5)
5029 {
5030 ir.addr -= 2;
5031 opcode = opcode << 8 | ir.modrm;
5032 goto no_support;
5033 }
5034
5035 if (ir.mod == 3)
25ea693b 5036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5037 else
5038 {
5039 ir.ot = OT_WORD;
5040 if (i386_record_lea_modrm (&ir))
5041 return -1;
5042 }
7ad10968
HZ
5043 break;
5044
a38bba38 5045 case 0x8e: /* mov seg */
7ad10968
HZ
5046 if (i386_record_modrm (&ir))
5047 return -1;
7ad10968
HZ
5048 switch (ir.reg)
5049 {
5050 case 0:
425b824a 5051 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5052 break;
5053 case 2:
425b824a 5054 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5055 break;
5056 case 3:
425b824a 5057 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5058 break;
5059 case 4:
425b824a 5060 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5061 break;
5062 case 5:
425b824a 5063 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5064 break;
5065 default:
5066 ir.addr -= 2;
5067 opcode = opcode << 8 | ir.modrm;
5068 goto no_support;
5069 break;
5070 }
25ea693b
MM
5071 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5073 break;
5074
a38bba38
MS
5075 case 0x0fb6: /* movzbS */
5076 case 0x0fb7: /* movzwS */
5077 case 0x0fbe: /* movsbS */
5078 case 0x0fbf: /* movswS */
7ad10968
HZ
5079 if (i386_record_modrm (&ir))
5080 return -1;
25ea693b 5081 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5082 break;
5083
a38bba38 5084 case 0x8d: /* lea */
7ad10968
HZ
5085 if (i386_record_modrm (&ir))
5086 return -1;
5087 if (ir.mod == 3)
5088 {
5089 ir.addr -= 2;
5090 opcode = opcode << 8 | ir.modrm;
5091 goto no_support;
5092 }
7ad10968 5093 ir.ot = ir.dflag;
cf648174
HZ
5094 ir.reg |= rex_r;
5095 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5096 ir.reg &= 0x3;
25ea693b 5097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5098 break;
5099
a38bba38 5100 case 0xa0: /* mov EAX */
7ad10968 5101 case 0xa1:
a38bba38
MS
5102
5103 case 0xd7: /* xlat */
25ea693b 5104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5105 break;
5106
a38bba38 5107 case 0xa2: /* mov EAX */
7ad10968 5108 case 0xa3:
d7877f7e 5109 if (ir.override >= 0)
cf648174 5110 {
25ea693b 5111 if (record_full_memory_query)
bb08c432
HZ
5112 {
5113 int q;
5114
5115 target_terminal_ours ();
5116 q = yquery (_("\
5117Process record ignores the memory change of instruction at address %s\n\
5118because it can't get the value of the segment register.\n\
5119Do you want to stop the program?"),
5120 paddress (gdbarch, ir.orig_addr));
5121 target_terminal_inferior ();
5122 if (q)
5123 return -1;
5124 }
cf648174
HZ
5125 }
5126 else
5127 {
5128 if ((opcode & 1) == 0)
5129 ir.ot = OT_BYTE;
5130 else
5131 ir.ot = ir.dflag + OT_WORD;
5132 if (ir.aflag == 2)
5133 {
4ffa4fc7
PA
5134 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5135 return -1;
cf648174 5136 ir.addr += 8;
60a1502a 5137 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5138 }
5139 else if (ir.aflag)
5140 {
4ffa4fc7
PA
5141 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5142 return -1;
cf648174 5143 ir.addr += 4;
60a1502a 5144 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5145 }
5146 else
5147 {
4ffa4fc7
PA
5148 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5149 return -1;
cf648174 5150 ir.addr += 2;
60a1502a 5151 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5152 }
25ea693b 5153 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5154 return -1;
5155 }
7ad10968
HZ
5156 break;
5157
a38bba38 5158 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5159 case 0xb1:
5160 case 0xb2:
5161 case 0xb3:
5162 case 0xb4:
5163 case 0xb5:
5164 case 0xb6:
5165 case 0xb7:
25ea693b
MM
5166 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5167 ? ((opcode & 0x7) | ir.rex_b)
5168 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5169 break;
5170
a38bba38 5171 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5172 case 0xb9:
5173 case 0xba:
5174 case 0xbb:
5175 case 0xbc:
5176 case 0xbd:
5177 case 0xbe:
5178 case 0xbf:
25ea693b 5179 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5180 break;
5181
a38bba38 5182 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5183 case 0x92:
5184 case 0x93:
5185 case 0x94:
5186 case 0x95:
5187 case 0x96:
5188 case 0x97:
25ea693b
MM
5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5191 break;
5192
a38bba38 5193 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5194 case 0x87:
5195 if ((opcode & 1) == 0)
5196 ir.ot = OT_BYTE;
5197 else
5198 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5199 if (i386_record_modrm (&ir))
5200 return -1;
7ad10968
HZ
5201 if (ir.mod == 3)
5202 {
86839d38 5203 ir.rm |= ir.rex_b;
cf648174
HZ
5204 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5205 ir.rm &= 0x3;
25ea693b 5206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5207 }
5208 else
5209 {
5210 if (i386_record_lea_modrm (&ir))
5211 return -1;
5212 }
cf648174
HZ
5213 ir.reg |= rex_r;
5214 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5215 ir.reg &= 0x3;
25ea693b 5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5217 break;
5218
a38bba38
MS
5219 case 0xc4: /* les Gv */
5220 case 0xc5: /* lds Gv */
cf648174
HZ
5221 if (ir.regmap[X86_RECORD_R8_REGNUM])
5222 {
5223 ir.addr -= 1;
5224 goto no_support;
5225 }
d3f323f3 5226 /* FALLTHROUGH */
a38bba38
MS
5227 case 0x0fb2: /* lss Gv */
5228 case 0x0fb4: /* lfs Gv */
5229 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5230 if (i386_record_modrm (&ir))
5231 return -1;
5232 if (ir.mod == 3)
5233 {
5234 if (opcode > 0xff)
5235 ir.addr -= 3;
5236 else
5237 ir.addr -= 2;
5238 opcode = opcode << 8 | ir.modrm;
5239 goto no_support;
5240 }
7ad10968
HZ
5241 switch (opcode)
5242 {
a38bba38 5243 case 0xc4: /* les Gv */
425b824a 5244 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5245 break;
a38bba38 5246 case 0xc5: /* lds Gv */
425b824a 5247 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5248 break;
a38bba38 5249 case 0x0fb2: /* lss Gv */
425b824a 5250 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5251 break;
a38bba38 5252 case 0x0fb4: /* lfs Gv */
425b824a 5253 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5254 break;
a38bba38 5255 case 0x0fb5: /* lgs Gv */
425b824a 5256 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5257 break;
5258 }
25ea693b
MM
5259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5262 break;
5263
a38bba38 5264 case 0xc0: /* shifts */
7ad10968
HZ
5265 case 0xc1:
5266 case 0xd0:
5267 case 0xd1:
5268 case 0xd2:
5269 case 0xd3:
5270 if ((opcode & 1) == 0)
5271 ir.ot = OT_BYTE;
5272 else
5273 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5274 if (i386_record_modrm (&ir))
5275 return -1;
7ad10968
HZ
5276 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5277 {
5278 if (i386_record_lea_modrm (&ir))
5279 return -1;
5280 }
5281 else
5282 {
cf648174
HZ
5283 ir.rm |= ir.rex_b;
5284 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5285 ir.rm &= 0x3;
25ea693b 5286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5287 }
25ea693b 5288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5289 break;
5290
5291 case 0x0fa4:
5292 case 0x0fa5:
5293 case 0x0fac:
5294 case 0x0fad:
5295 if (i386_record_modrm (&ir))
5296 return -1;
5297 if (ir.mod == 3)
5298 {
25ea693b 5299 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5300 return -1;
5301 }
5302 else
5303 {
5304 if (i386_record_lea_modrm (&ir))
5305 return -1;
5306 }
5307 break;
5308
a38bba38 5309 case 0xd8: /* Floats. */
7ad10968
HZ
5310 case 0xd9:
5311 case 0xda:
5312 case 0xdb:
5313 case 0xdc:
5314 case 0xdd:
5315 case 0xde:
5316 case 0xdf:
5317 if (i386_record_modrm (&ir))
5318 return -1;
5319 ir.reg |= ((opcode & 7) << 3);
5320 if (ir.mod != 3)
5321 {
1777feb0 5322 /* Memory. */
955db0c0 5323 uint64_t addr64;
7ad10968 5324
955db0c0 5325 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5326 return -1;
5327 switch (ir.reg)
5328 {
7ad10968 5329 case 0x02:
0289bdd7
MS
5330 case 0x12:
5331 case 0x22:
5332 case 0x32:
5333 /* For fcom, ficom nothing to do. */
5334 break;
7ad10968 5335 case 0x03:
0289bdd7
MS
5336 case 0x13:
5337 case 0x23:
5338 case 0x33:
5339 /* For fcomp, ficomp pop FPU stack, store all. */
5340 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5341 return -1;
5342 break;
5343 case 0x00:
5344 case 0x01:
7ad10968
HZ
5345 case 0x04:
5346 case 0x05:
5347 case 0x06:
5348 case 0x07:
5349 case 0x10:
5350 case 0x11:
7ad10968
HZ
5351 case 0x14:
5352 case 0x15:
5353 case 0x16:
5354 case 0x17:
5355 case 0x20:
5356 case 0x21:
7ad10968
HZ
5357 case 0x24:
5358 case 0x25:
5359 case 0x26:
5360 case 0x27:
5361 case 0x30:
5362 case 0x31:
7ad10968
HZ
5363 case 0x34:
5364 case 0x35:
5365 case 0x36:
5366 case 0x37:
0289bdd7
MS
5367 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5368 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5369 of code, always affects st(0) register. */
5370 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5371 return -1;
7ad10968
HZ
5372 break;
5373 case 0x08:
5374 case 0x0a:
5375 case 0x0b:
5376 case 0x18:
5377 case 0x19:
5378 case 0x1a:
5379 case 0x1b:
0289bdd7 5380 case 0x1d:
7ad10968
HZ
5381 case 0x28:
5382 case 0x29:
5383 case 0x2a:
5384 case 0x2b:
5385 case 0x38:
5386 case 0x39:
5387 case 0x3a:
5388 case 0x3b:
0289bdd7
MS
5389 case 0x3c:
5390 case 0x3d:
7ad10968
HZ
5391 switch (ir.reg & 7)
5392 {
5393 case 0:
0289bdd7
MS
5394 /* Handling fld, fild. */
5395 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5396 return -1;
7ad10968
HZ
5397 break;
5398 case 1:
5399 switch (ir.reg >> 4)
5400 {
5401 case 0:
25ea693b 5402 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5403 return -1;
5404 break;
5405 case 2:
25ea693b 5406 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5407 return -1;
5408 break;
5409 case 3:
0289bdd7 5410 break;
7ad10968 5411 default:
25ea693b 5412 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5413 return -1;
5414 break;
5415 }
5416 break;
5417 default:
5418 switch (ir.reg >> 4)
5419 {
5420 case 0:
25ea693b 5421 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
5422 return -1;
5423 if (3 == (ir.reg & 7))
5424 {
5425 /* For fstp m32fp. */
5426 if (i386_record_floats (gdbarch, &ir,
5427 I386_SAVE_FPU_REGS))
5428 return -1;
5429 }
5430 break;
7ad10968 5431 case 1:
25ea693b 5432 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 5433 return -1;
0289bdd7
MS
5434 if ((3 == (ir.reg & 7))
5435 || (5 == (ir.reg & 7))
5436 || (7 == (ir.reg & 7)))
5437 {
5438 /* For fstp insn. */
5439 if (i386_record_floats (gdbarch, &ir,
5440 I386_SAVE_FPU_REGS))
5441 return -1;
5442 }
7ad10968
HZ
5443 break;
5444 case 2:
25ea693b 5445 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 5446 return -1;
0289bdd7
MS
5447 if (3 == (ir.reg & 7))
5448 {
5449 /* For fstp m64fp. */
5450 if (i386_record_floats (gdbarch, &ir,
5451 I386_SAVE_FPU_REGS))
5452 return -1;
5453 }
7ad10968
HZ
5454 break;
5455 case 3:
0289bdd7
MS
5456 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5457 {
5458 /* For fistp, fbld, fild, fbstp. */
5459 if (i386_record_floats (gdbarch, &ir,
5460 I386_SAVE_FPU_REGS))
5461 return -1;
5462 }
5463 /* Fall through */
7ad10968 5464 default:
25ea693b 5465 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5466 return -1;
5467 break;
5468 }
5469 break;
5470 }
5471 break;
5472 case 0x0c:
0289bdd7
MS
5473 /* Insn fldenv. */
5474 if (i386_record_floats (gdbarch, &ir,
5475 I386_SAVE_FPU_ENV_REG_STACK))
5476 return -1;
5477 break;
7ad10968 5478 case 0x0d:
0289bdd7
MS
5479 /* Insn fldcw. */
5480 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5481 return -1;
5482 break;
7ad10968 5483 case 0x2c:
0289bdd7
MS
5484 /* Insn frstor. */
5485 if (i386_record_floats (gdbarch, &ir,
5486 I386_SAVE_FPU_ENV_REG_STACK))
5487 return -1;
7ad10968
HZ
5488 break;
5489 case 0x0e:
5490 if (ir.dflag)
5491 {
25ea693b 5492 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
5493 return -1;
5494 }
5495 else
5496 {
25ea693b 5497 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
5498 return -1;
5499 }
5500 break;
5501 case 0x0f:
5502 case 0x2f:
25ea693b 5503 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 5504 return -1;
0289bdd7
MS
5505 /* Insn fstp, fbstp. */
5506 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5507 return -1;
7ad10968
HZ
5508 break;
5509 case 0x1f:
5510 case 0x3e:
25ea693b 5511 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
5512 return -1;
5513 break;
5514 case 0x2e:
5515 if (ir.dflag)
5516 {
25ea693b 5517 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 5518 return -1;
955db0c0 5519 addr64 += 28;
7ad10968
HZ
5520 }
5521 else
5522 {
25ea693b 5523 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 5524 return -1;
955db0c0 5525 addr64 += 14;
7ad10968 5526 }
25ea693b 5527 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 5528 return -1;
0289bdd7
MS
5529 /* Insn fsave. */
5530 if (i386_record_floats (gdbarch, &ir,
5531 I386_SAVE_FPU_ENV_REG_STACK))
5532 return -1;
7ad10968
HZ
5533 break;
5534 case 0x3f:
25ea693b 5535 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 5536 return -1;
0289bdd7
MS
5537 /* Insn fistp. */
5538 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5539 return -1;
7ad10968
HZ
5540 break;
5541 default:
5542 ir.addr -= 2;
5543 opcode = opcode << 8 | ir.modrm;
5544 goto no_support;
5545 break;
5546 }
5547 }
0289bdd7
MS
5548 /* Opcode is an extension of modR/M byte. */
5549 else
5550 {
5551 switch (opcode)
5552 {
5553 case 0xd8:
5554 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5555 return -1;
5556 break;
5557 case 0xd9:
5558 if (0x0c == (ir.modrm >> 4))
5559 {
5560 if ((ir.modrm & 0x0f) <= 7)
5561 {
5562 if (i386_record_floats (gdbarch, &ir,
5563 I386_SAVE_FPU_REGS))
5564 return -1;
5565 }
5566 else
5567 {
5568 if (i386_record_floats (gdbarch, &ir,
5569 I387_ST0_REGNUM (tdep)))
5570 return -1;
5571 /* If only st(0) is changing, then we have already
5572 recorded. */
5573 if ((ir.modrm & 0x0f) - 0x08)
5574 {
5575 if (i386_record_floats (gdbarch, &ir,
5576 I387_ST0_REGNUM (tdep) +
5577 ((ir.modrm & 0x0f) - 0x08)))
5578 return -1;
5579 }
5580 }
5581 }
5582 else
5583 {
5584 switch (ir.modrm)
5585 {
5586 case 0xe0:
5587 case 0xe1:
5588 case 0xf0:
5589 case 0xf5:
5590 case 0xf8:
5591 case 0xfa:
5592 case 0xfc:
5593 case 0xfe:
5594 case 0xff:
5595 if (i386_record_floats (gdbarch, &ir,
5596 I387_ST0_REGNUM (tdep)))
5597 return -1;
5598 break;
5599 case 0xf1:
5600 case 0xf2:
5601 case 0xf3:
5602 case 0xf4:
5603 case 0xf6:
5604 case 0xf7:
5605 case 0xe8:
5606 case 0xe9:
5607 case 0xea:
5608 case 0xeb:
5609 case 0xec:
5610 case 0xed:
5611 case 0xee:
5612 case 0xf9:
5613 case 0xfb:
5614 if (i386_record_floats (gdbarch, &ir,
5615 I386_SAVE_FPU_REGS))
5616 return -1;
5617 break;
5618 case 0xfd:
5619 if (i386_record_floats (gdbarch, &ir,
5620 I387_ST0_REGNUM (tdep)))
5621 return -1;
5622 if (i386_record_floats (gdbarch, &ir,
5623 I387_ST0_REGNUM (tdep) + 1))
5624 return -1;
5625 break;
5626 }
5627 }
5628 break;
5629 case 0xda:
5630 if (0xe9 == ir.modrm)
5631 {
5632 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5633 return -1;
5634 }
5635 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5636 {
5637 if (i386_record_floats (gdbarch, &ir,
5638 I387_ST0_REGNUM (tdep)))
5639 return -1;
5640 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5641 {
5642 if (i386_record_floats (gdbarch, &ir,
5643 I387_ST0_REGNUM (tdep) +
5644 (ir.modrm & 0x0f)))
5645 return -1;
5646 }
5647 else if ((ir.modrm & 0x0f) - 0x08)
5648 {
5649 if (i386_record_floats (gdbarch, &ir,
5650 I387_ST0_REGNUM (tdep) +
5651 ((ir.modrm & 0x0f) - 0x08)))
5652 return -1;
5653 }
5654 }
5655 break;
5656 case 0xdb:
5657 if (0xe3 == ir.modrm)
5658 {
5659 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5660 return -1;
5661 }
5662 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5663 {
5664 if (i386_record_floats (gdbarch, &ir,
5665 I387_ST0_REGNUM (tdep)))
5666 return -1;
5667 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5668 {
5669 if (i386_record_floats (gdbarch, &ir,
5670 I387_ST0_REGNUM (tdep) +
5671 (ir.modrm & 0x0f)))
5672 return -1;
5673 }
5674 else if ((ir.modrm & 0x0f) - 0x08)
5675 {
5676 if (i386_record_floats (gdbarch, &ir,
5677 I387_ST0_REGNUM (tdep) +
5678 ((ir.modrm & 0x0f) - 0x08)))
5679 return -1;
5680 }
5681 }
5682 break;
5683 case 0xdc:
5684 if ((0x0c == ir.modrm >> 4)
5685 || (0x0d == ir.modrm >> 4)
5686 || (0x0f == ir.modrm >> 4))
5687 {
5688 if ((ir.modrm & 0x0f) <= 7)
5689 {
5690 if (i386_record_floats (gdbarch, &ir,
5691 I387_ST0_REGNUM (tdep) +
5692 (ir.modrm & 0x0f)))
5693 return -1;
5694 }
5695 else
5696 {
5697 if (i386_record_floats (gdbarch, &ir,
5698 I387_ST0_REGNUM (tdep) +
5699 ((ir.modrm & 0x0f) - 0x08)))
5700 return -1;
5701 }
5702 }
5703 break;
5704 case 0xdd:
5705 if (0x0c == ir.modrm >> 4)
5706 {
5707 if (i386_record_floats (gdbarch, &ir,
5708 I387_FTAG_REGNUM (tdep)))
5709 return -1;
5710 }
5711 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5712 {
5713 if ((ir.modrm & 0x0f) <= 7)
5714 {
5715 if (i386_record_floats (gdbarch, &ir,
5716 I387_ST0_REGNUM (tdep) +
5717 (ir.modrm & 0x0f)))
5718 return -1;
5719 }
5720 else
5721 {
5722 if (i386_record_floats (gdbarch, &ir,
5723 I386_SAVE_FPU_REGS))
5724 return -1;
5725 }
5726 }
5727 break;
5728 case 0xde:
5729 if ((0x0c == ir.modrm >> 4)
5730 || (0x0e == ir.modrm >> 4)
5731 || (0x0f == ir.modrm >> 4)
5732 || (0xd9 == ir.modrm))
5733 {
5734 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5735 return -1;
5736 }
5737 break;
5738 case 0xdf:
5739 if (0xe0 == ir.modrm)
5740 {
25ea693b
MM
5741 if (record_full_arch_list_add_reg (ir.regcache,
5742 I386_EAX_REGNUM))
0289bdd7
MS
5743 return -1;
5744 }
5745 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5746 {
5747 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5748 return -1;
5749 }
5750 break;
5751 }
5752 }
7ad10968 5753 break;
7ad10968 5754 /* string ops */
a38bba38 5755 case 0xa4: /* movsS */
7ad10968 5756 case 0xa5:
a38bba38 5757 case 0xaa: /* stosS */
7ad10968 5758 case 0xab:
a38bba38 5759 case 0x6c: /* insS */
7ad10968 5760 case 0x6d:
cf648174 5761 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5762 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5763 &addr);
5764 if (addr)
cf648174 5765 {
77d7dc92
HZ
5766 ULONGEST es, ds;
5767
5768 if ((opcode & 1) == 0)
5769 ir.ot = OT_BYTE;
5770 else
5771 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5772 regcache_raw_read_unsigned (ir.regcache,
5773 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5774 &addr);
77d7dc92 5775
d7877f7e
HZ
5776 regcache_raw_read_unsigned (ir.regcache,
5777 ir.regmap[X86_RECORD_ES_REGNUM],
5778 &es);
5779 regcache_raw_read_unsigned (ir.regcache,
5780 ir.regmap[X86_RECORD_DS_REGNUM],
5781 &ds);
5782 if (ir.aflag && (es != ds))
77d7dc92
HZ
5783 {
5784 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 5785 if (record_full_memory_query)
bb08c432
HZ
5786 {
5787 int q;
5788
5789 target_terminal_ours ();
5790 q = yquery (_("\
5791Process record ignores the memory change of instruction at address %s\n\
5792because it can't get the value of the segment register.\n\
5793Do you want to stop the program?"),
5794 paddress (gdbarch, ir.orig_addr));
5795 target_terminal_inferior ();
5796 if (q)
5797 return -1;
5798 }
df61f520
HZ
5799 }
5800 else
5801 {
25ea693b 5802 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5803 return -1;
77d7dc92
HZ
5804 }
5805
5806 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 5808 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 5812 }
cf648174 5813 break;
7ad10968 5814
a38bba38 5815 case 0xa6: /* cmpsS */
cf648174 5816 case 0xa7:
25ea693b
MM
5817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 5819 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
5820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5822 break;
5823
a38bba38 5824 case 0xac: /* lodsS */
7ad10968 5825 case 0xad:
25ea693b
MM
5826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5828 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
5829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5831 break;
5832
a38bba38 5833 case 0xae: /* scasS */
7ad10968 5834 case 0xaf:
25ea693b 5835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5836 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5839 break;
5840
a38bba38 5841 case 0x6e: /* outsS */
cf648174 5842 case 0x6f:
25ea693b 5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5844 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
5845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5847 break;
5848
a38bba38 5849 case 0xe4: /* port I/O */
7ad10968
HZ
5850 case 0xe5:
5851 case 0xec:
5852 case 0xed:
25ea693b
MM
5853 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5854 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5855 break;
5856
5857 case 0xe6:
5858 case 0xe7:
5859 case 0xee:
5860 case 0xef:
5861 break;
5862
5863 /* control */
a38bba38
MS
5864 case 0xc2: /* ret im */
5865 case 0xc3: /* ret */
25ea693b
MM
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
5868 break;
5869
a38bba38
MS
5870 case 0xca: /* lret im */
5871 case 0xcb: /* lret */
5872 case 0xcf: /* iret */
25ea693b
MM
5873 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5876 break;
5877
a38bba38 5878 case 0xe8: /* call im */
cf648174
HZ
5879 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5880 ir.dflag = 2;
5881 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5882 return -1;
7ad10968
HZ
5883 break;
5884
a38bba38 5885 case 0x9a: /* lcall im */
cf648174
HZ
5886 if (ir.regmap[X86_RECORD_R8_REGNUM])
5887 {
5888 ir.addr -= 1;
5889 goto no_support;
5890 }
25ea693b 5891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
5892 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5893 return -1;
7ad10968
HZ
5894 break;
5895
a38bba38
MS
5896 case 0xe9: /* jmp im */
5897 case 0xea: /* ljmp im */
5898 case 0xeb: /* jmp Jb */
5899 case 0x70: /* jcc Jb */
7ad10968
HZ
5900 case 0x71:
5901 case 0x72:
5902 case 0x73:
5903 case 0x74:
5904 case 0x75:
5905 case 0x76:
5906 case 0x77:
5907 case 0x78:
5908 case 0x79:
5909 case 0x7a:
5910 case 0x7b:
5911 case 0x7c:
5912 case 0x7d:
5913 case 0x7e:
5914 case 0x7f:
a38bba38 5915 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5916 case 0x0f81:
5917 case 0x0f82:
5918 case 0x0f83:
5919 case 0x0f84:
5920 case 0x0f85:
5921 case 0x0f86:
5922 case 0x0f87:
5923 case 0x0f88:
5924 case 0x0f89:
5925 case 0x0f8a:
5926 case 0x0f8b:
5927 case 0x0f8c:
5928 case 0x0f8d:
5929 case 0x0f8e:
5930 case 0x0f8f:
5931 break;
5932
a38bba38 5933 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5934 case 0x0f91:
5935 case 0x0f92:
5936 case 0x0f93:
5937 case 0x0f94:
5938 case 0x0f95:
5939 case 0x0f96:
5940 case 0x0f97:
5941 case 0x0f98:
5942 case 0x0f99:
5943 case 0x0f9a:
5944 case 0x0f9b:
5945 case 0x0f9c:
5946 case 0x0f9d:
5947 case 0x0f9e:
5948 case 0x0f9f:
25ea693b 5949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5950 ir.ot = OT_BYTE;
5951 if (i386_record_modrm (&ir))
5952 return -1;
5953 if (ir.mod == 3)
25ea693b
MM
5954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5955 : (ir.rm & 0x3));
7ad10968
HZ
5956 else
5957 {
5958 if (i386_record_lea_modrm (&ir))
5959 return -1;
5960 }
5961 break;
5962
a38bba38 5963 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5964 case 0x0f41:
5965 case 0x0f42:
5966 case 0x0f43:
5967 case 0x0f44:
5968 case 0x0f45:
5969 case 0x0f46:
5970 case 0x0f47:
5971 case 0x0f48:
5972 case 0x0f49:
5973 case 0x0f4a:
5974 case 0x0f4b:
5975 case 0x0f4c:
5976 case 0x0f4d:
5977 case 0x0f4e:
5978 case 0x0f4f:
5979 if (i386_record_modrm (&ir))
5980 return -1;
cf648174 5981 ir.reg |= rex_r;
7ad10968
HZ
5982 if (ir.dflag == OT_BYTE)
5983 ir.reg &= 0x3;
25ea693b 5984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5985 break;
5986
5987 /* flags */
a38bba38 5988 case 0x9c: /* pushf */
25ea693b 5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
5990 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5991 ir.dflag = 2;
5992 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5993 return -1;
7ad10968
HZ
5994 break;
5995
a38bba38 5996 case 0x9d: /* popf */
25ea693b
MM
5997 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5998 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5999 break;
6000
a38bba38 6001 case 0x9e: /* sahf */
cf648174
HZ
6002 if (ir.regmap[X86_RECORD_R8_REGNUM])
6003 {
6004 ir.addr -= 1;
6005 goto no_support;
6006 }
d3f323f3 6007 /* FALLTHROUGH */
a38bba38
MS
6008 case 0xf5: /* cmc */
6009 case 0xf8: /* clc */
6010 case 0xf9: /* stc */
6011 case 0xfc: /* cld */
6012 case 0xfd: /* std */
25ea693b 6013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6014 break;
6015
a38bba38 6016 case 0x9f: /* lahf */
cf648174
HZ
6017 if (ir.regmap[X86_RECORD_R8_REGNUM])
6018 {
6019 ir.addr -= 1;
6020 goto no_support;
6021 }
25ea693b
MM
6022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6024 break;
6025
6026 /* bit operations */
a38bba38 6027 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6028 ir.ot = ir.dflag + OT_WORD;
6029 if (i386_record_modrm (&ir))
6030 return -1;
6031 if (ir.reg < 4)
6032 {
cf648174 6033 ir.addr -= 2;
7ad10968
HZ
6034 opcode = opcode << 8 | ir.modrm;
6035 goto no_support;
6036 }
cf648174 6037 if (ir.reg != 4)
7ad10968 6038 {
cf648174 6039 if (ir.mod == 3)
25ea693b 6040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6041 else
6042 {
cf648174 6043 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6044 return -1;
6045 }
6046 }
25ea693b 6047 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6048 break;
6049
a38bba38 6050 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6051 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6052 break;
6053
a38bba38
MS
6054 case 0x0fab: /* bts */
6055 case 0x0fb3: /* btr */
6056 case 0x0fbb: /* btc */
cf648174
HZ
6057 ir.ot = ir.dflag + OT_WORD;
6058 if (i386_record_modrm (&ir))
6059 return -1;
6060 if (ir.mod == 3)
25ea693b 6061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6062 else
6063 {
955db0c0
MS
6064 uint64_t addr64;
6065 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6066 return -1;
6067 regcache_raw_read_unsigned (ir.regcache,
6068 ir.regmap[ir.reg | rex_r],
648d0c8b 6069 &addr);
cf648174
HZ
6070 switch (ir.dflag)
6071 {
6072 case 0:
648d0c8b 6073 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6074 break;
6075 case 1:
648d0c8b 6076 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6077 break;
6078 case 2:
648d0c8b 6079 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6080 break;
6081 }
25ea693b 6082 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6083 return -1;
6084 if (i386_record_lea_modrm (&ir))
6085 return -1;
6086 }
25ea693b 6087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6088 break;
6089
a38bba38
MS
6090 case 0x0fbc: /* bsf */
6091 case 0x0fbd: /* bsr */
25ea693b
MM
6092 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6093 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6094 break;
6095
6096 /* bcd */
a38bba38
MS
6097 case 0x27: /* daa */
6098 case 0x2f: /* das */
6099 case 0x37: /* aaa */
6100 case 0x3f: /* aas */
6101 case 0xd4: /* aam */
6102 case 0xd5: /* aad */
cf648174
HZ
6103 if (ir.regmap[X86_RECORD_R8_REGNUM])
6104 {
6105 ir.addr -= 1;
6106 goto no_support;
6107 }
25ea693b
MM
6108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6110 break;
6111
6112 /* misc */
a38bba38 6113 case 0x90: /* nop */
7ad10968
HZ
6114 if (prefixes & PREFIX_LOCK)
6115 {
6116 ir.addr -= 1;
6117 goto no_support;
6118 }
6119 break;
6120
a38bba38 6121 case 0x9b: /* fwait */
4ffa4fc7
PA
6122 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6123 return -1;
425b824a 6124 opcode = (uint32_t) opcode8;
0289bdd7
MS
6125 ir.addr++;
6126 goto reswitch;
7ad10968
HZ
6127 break;
6128
7ad10968 6129 /* XXX */
a38bba38 6130 case 0xcc: /* int3 */
a3c4230a 6131 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6132 "int3.\n"));
6133 ir.addr -= 1;
6134 goto no_support;
6135 break;
6136
7ad10968 6137 /* XXX */
a38bba38 6138 case 0xcd: /* int */
7ad10968
HZ
6139 {
6140 int ret;
425b824a 6141 uint8_t interrupt;
4ffa4fc7
PA
6142 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6143 return -1;
7ad10968 6144 ir.addr++;
425b824a 6145 if (interrupt != 0x80
a3c4230a 6146 || tdep->i386_intx80_record == NULL)
7ad10968 6147 {
a3c4230a 6148 printf_unfiltered (_("Process record does not support "
7ad10968 6149 "instruction int 0x%02x.\n"),
425b824a 6150 interrupt);
7ad10968
HZ
6151 ir.addr -= 2;
6152 goto no_support;
6153 }
a3c4230a 6154 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6155 if (ret)
6156 return ret;
6157 }
6158 break;
6159
7ad10968 6160 /* XXX */
a38bba38 6161 case 0xce: /* into */
a3c4230a 6162 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6163 "instruction into.\n"));
6164 ir.addr -= 1;
6165 goto no_support;
6166 break;
6167
a38bba38
MS
6168 case 0xfa: /* cli */
6169 case 0xfb: /* sti */
7ad10968
HZ
6170 break;
6171
a38bba38 6172 case 0x62: /* bound */
a3c4230a 6173 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6174 "instruction bound.\n"));
6175 ir.addr -= 1;
6176 goto no_support;
6177 break;
6178
a38bba38 6179 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6180 case 0x0fc9:
6181 case 0x0fca:
6182 case 0x0fcb:
6183 case 0x0fcc:
6184 case 0x0fcd:
6185 case 0x0fce:
6186 case 0x0fcf:
25ea693b 6187 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6188 break;
6189
a38bba38 6190 case 0xd6: /* salc */
cf648174
HZ
6191 if (ir.regmap[X86_RECORD_R8_REGNUM])
6192 {
6193 ir.addr -= 1;
6194 goto no_support;
6195 }
25ea693b
MM
6196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6198 break;
6199
a38bba38
MS
6200 case 0xe0: /* loopnz */
6201 case 0xe1: /* loopz */
6202 case 0xe2: /* loop */
6203 case 0xe3: /* jecxz */
25ea693b
MM
6204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6206 break;
6207
a38bba38 6208 case 0x0f30: /* wrmsr */
a3c4230a 6209 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6210 "instruction wrmsr.\n"));
6211 ir.addr -= 2;
6212 goto no_support;
6213 break;
6214
a38bba38 6215 case 0x0f32: /* rdmsr */
a3c4230a 6216 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6217 "instruction rdmsr.\n"));
6218 ir.addr -= 2;
6219 goto no_support;
6220 break;
6221
a38bba38 6222 case 0x0f31: /* rdtsc */
25ea693b
MM
6223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6225 break;
6226
a38bba38 6227 case 0x0f34: /* sysenter */
7ad10968
HZ
6228 {
6229 int ret;
cf648174
HZ
6230 if (ir.regmap[X86_RECORD_R8_REGNUM])
6231 {
6232 ir.addr -= 2;
6233 goto no_support;
6234 }
a3c4230a 6235 if (tdep->i386_sysenter_record == NULL)
7ad10968 6236 {
a3c4230a 6237 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6238 "instruction sysenter.\n"));
6239 ir.addr -= 2;
6240 goto no_support;
6241 }
a3c4230a 6242 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6243 if (ret)
6244 return ret;
6245 }
6246 break;
6247
a38bba38 6248 case 0x0f35: /* sysexit */
a3c4230a 6249 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6250 "instruction sysexit.\n"));
6251 ir.addr -= 2;
6252 goto no_support;
6253 break;
6254
a38bba38 6255 case 0x0f05: /* syscall */
cf648174
HZ
6256 {
6257 int ret;
a3c4230a 6258 if (tdep->i386_syscall_record == NULL)
cf648174 6259 {
a3c4230a 6260 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6261 "instruction syscall.\n"));
6262 ir.addr -= 2;
6263 goto no_support;
6264 }
a3c4230a 6265 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6266 if (ret)
6267 return ret;
6268 }
6269 break;
6270
a38bba38 6271 case 0x0f07: /* sysret */
a3c4230a 6272 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6273 "instruction sysret.\n"));
6274 ir.addr -= 2;
6275 goto no_support;
6276 break;
6277
a38bba38 6278 case 0x0fa2: /* cpuid */
25ea693b
MM
6279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6283 break;
6284
a38bba38 6285 case 0xf4: /* hlt */
a3c4230a 6286 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6287 "instruction hlt.\n"));
6288 ir.addr -= 1;
6289 goto no_support;
6290 break;
6291
6292 case 0x0f00:
6293 if (i386_record_modrm (&ir))
6294 return -1;
6295 switch (ir.reg)
6296 {
a38bba38
MS
6297 case 0: /* sldt */
6298 case 1: /* str */
7ad10968 6299 if (ir.mod == 3)
25ea693b 6300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6301 else
6302 {
6303 ir.ot = OT_WORD;
6304 if (i386_record_lea_modrm (&ir))
6305 return -1;
6306 }
6307 break;
a38bba38
MS
6308 case 2: /* lldt */
6309 case 3: /* ltr */
7ad10968 6310 break;
a38bba38
MS
6311 case 4: /* verr */
6312 case 5: /* verw */
25ea693b 6313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6314 break;
6315 default:
6316 ir.addr -= 3;
6317 opcode = opcode << 8 | ir.modrm;
6318 goto no_support;
6319 break;
6320 }
6321 break;
6322
6323 case 0x0f01:
6324 if (i386_record_modrm (&ir))
6325 return -1;
6326 switch (ir.reg)
6327 {
a38bba38 6328 case 0: /* sgdt */
7ad10968 6329 {
955db0c0 6330 uint64_t addr64;
7ad10968
HZ
6331
6332 if (ir.mod == 3)
6333 {
6334 ir.addr -= 3;
6335 opcode = opcode << 8 | ir.modrm;
6336 goto no_support;
6337 }
d7877f7e 6338 if (ir.override >= 0)
7ad10968 6339 {
25ea693b 6340 if (record_full_memory_query)
bb08c432
HZ
6341 {
6342 int q;
6343
6344 target_terminal_ours ();
6345 q = yquery (_("\
6346Process record ignores the memory change of instruction at address %s\n\
6347because it can't get the value of the segment register.\n\
6348Do you want to stop the program?"),
6349 paddress (gdbarch, ir.orig_addr));
6350 target_terminal_inferior ();
6351 if (q)
6352 return -1;
6353 }
7ad10968
HZ
6354 }
6355 else
6356 {
955db0c0 6357 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6358 return -1;
25ea693b 6359 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6360 return -1;
955db0c0 6361 addr64 += 2;
cf648174
HZ
6362 if (ir.regmap[X86_RECORD_R8_REGNUM])
6363 {
25ea693b 6364 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6365 return -1;
6366 }
6367 else
6368 {
25ea693b 6369 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6370 return -1;
6371 }
7ad10968
HZ
6372 }
6373 }
6374 break;
6375 case 1:
6376 if (ir.mod == 3)
6377 {
6378 switch (ir.rm)
6379 {
a38bba38 6380 case 0: /* monitor */
7ad10968 6381 break;
a38bba38 6382 case 1: /* mwait */
25ea693b 6383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6384 break;
6385 default:
6386 ir.addr -= 3;
6387 opcode = opcode << 8 | ir.modrm;
6388 goto no_support;
6389 break;
6390 }
6391 }
6392 else
6393 {
6394 /* sidt */
d7877f7e 6395 if (ir.override >= 0)
7ad10968 6396 {
25ea693b 6397 if (record_full_memory_query)
bb08c432
HZ
6398 {
6399 int q;
6400
6401 target_terminal_ours ();
6402 q = yquery (_("\
6403Process record ignores the memory change of instruction at address %s\n\
6404because it can't get the value of the segment register.\n\
6405Do you want to stop the program?"),
6406 paddress (gdbarch, ir.orig_addr));
6407 target_terminal_inferior ();
6408 if (q)
6409 return -1;
6410 }
7ad10968
HZ
6411 }
6412 else
6413 {
955db0c0 6414 uint64_t addr64;
7ad10968 6415
955db0c0 6416 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6417 return -1;
25ea693b 6418 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6419 return -1;
955db0c0 6420 addr64 += 2;
cf648174
HZ
6421 if (ir.regmap[X86_RECORD_R8_REGNUM])
6422 {
25ea693b 6423 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6424 return -1;
6425 }
6426 else
6427 {
25ea693b 6428 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6429 return -1;
6430 }
7ad10968
HZ
6431 }
6432 }
6433 break;
a38bba38 6434 case 2: /* lgdt */
3800e645
MS
6435 if (ir.mod == 3)
6436 {
6437 /* xgetbv */
6438 if (ir.rm == 0)
6439 {
25ea693b
MM
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
6442 break;
6443 }
6444 /* xsetbv */
6445 else if (ir.rm == 1)
6446 break;
6447 }
a38bba38 6448 case 3: /* lidt */
7ad10968
HZ
6449 if (ir.mod == 3)
6450 {
6451 ir.addr -= 3;
6452 opcode = opcode << 8 | ir.modrm;
6453 goto no_support;
6454 }
6455 break;
a38bba38 6456 case 4: /* smsw */
7ad10968
HZ
6457 if (ir.mod == 3)
6458 {
25ea693b 6459 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
6460 return -1;
6461 }
6462 else
6463 {
6464 ir.ot = OT_WORD;
6465 if (i386_record_lea_modrm (&ir))
6466 return -1;
6467 }
25ea693b 6468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6469 break;
a38bba38 6470 case 6: /* lmsw */
25ea693b 6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 6472 break;
a38bba38 6473 case 7: /* invlpg */
cf648174
HZ
6474 if (ir.mod == 3)
6475 {
6476 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 6477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
6478 else
6479 {
6480 ir.addr -= 3;
6481 opcode = opcode << 8 | ir.modrm;
6482 goto no_support;
6483 }
6484 }
6485 else
25ea693b 6486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6487 break;
6488 default:
6489 ir.addr -= 3;
6490 opcode = opcode << 8 | ir.modrm;
6491 goto no_support;
7ad10968
HZ
6492 break;
6493 }
6494 break;
6495
a38bba38
MS
6496 case 0x0f08: /* invd */
6497 case 0x0f09: /* wbinvd */
7ad10968
HZ
6498 break;
6499
a38bba38 6500 case 0x63: /* arpl */
7ad10968
HZ
6501 if (i386_record_modrm (&ir))
6502 return -1;
cf648174
HZ
6503 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6504 {
25ea693b
MM
6505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6506 ? (ir.reg | rex_r) : ir.rm);
cf648174 6507 }
7ad10968 6508 else
cf648174
HZ
6509 {
6510 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6511 if (i386_record_lea_modrm (&ir))
6512 return -1;
6513 }
6514 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 6515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6516 break;
6517
a38bba38
MS
6518 case 0x0f02: /* lar */
6519 case 0x0f03: /* lsl */
7ad10968
HZ
6520 if (i386_record_modrm (&ir))
6521 return -1;
25ea693b
MM
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6524 break;
6525
6526 case 0x0f18:
cf648174
HZ
6527 if (i386_record_modrm (&ir))
6528 return -1;
6529 if (ir.mod == 3 && ir.reg == 3)
6530 {
6531 ir.addr -= 3;
6532 opcode = opcode << 8 | ir.modrm;
6533 goto no_support;
6534 }
7ad10968
HZ
6535 break;
6536
7ad10968
HZ
6537 case 0x0f19:
6538 case 0x0f1a:
6539 case 0x0f1b:
6540 case 0x0f1c:
6541 case 0x0f1d:
6542 case 0x0f1e:
6543 case 0x0f1f:
a38bba38 6544 /* nop (multi byte) */
7ad10968
HZ
6545 break;
6546
a38bba38
MS
6547 case 0x0f20: /* mov reg, crN */
6548 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6549 if (i386_record_modrm (&ir))
6550 return -1;
6551 if ((ir.modrm & 0xc0) != 0xc0)
6552 {
cf648174 6553 ir.addr -= 3;
7ad10968
HZ
6554 opcode = opcode << 8 | ir.modrm;
6555 goto no_support;
6556 }
6557 switch (ir.reg)
6558 {
6559 case 0:
6560 case 2:
6561 case 3:
6562 case 4:
6563 case 8:
6564 if (opcode & 2)
25ea693b 6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6566 else
25ea693b 6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6568 break;
6569 default:
cf648174 6570 ir.addr -= 3;
7ad10968
HZ
6571 opcode = opcode << 8 | ir.modrm;
6572 goto no_support;
6573 break;
6574 }
6575 break;
6576
a38bba38
MS
6577 case 0x0f21: /* mov reg, drN */
6578 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6579 if (i386_record_modrm (&ir))
6580 return -1;
6581 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6582 || ir.reg == 5 || ir.reg >= 8)
6583 {
cf648174 6584 ir.addr -= 3;
7ad10968
HZ
6585 opcode = opcode << 8 | ir.modrm;
6586 goto no_support;
6587 }
6588 if (opcode & 2)
25ea693b 6589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6590 else
25ea693b 6591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6592 break;
6593
a38bba38 6594 case 0x0f06: /* clts */
25ea693b 6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6596 break;
6597
a3c4230a
HZ
6598 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6599
6600 case 0x0f0d: /* 3DNow! prefetch */
6601 break;
6602
6603 case 0x0f0e: /* 3DNow! femms */
6604 case 0x0f77: /* emms */
6605 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6606 goto no_support;
25ea693b 6607 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
6608 break;
6609
6610 case 0x0f0f: /* 3DNow! data */
6611 if (i386_record_modrm (&ir))
6612 return -1;
4ffa4fc7
PA
6613 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6614 return -1;
a3c4230a
HZ
6615 ir.addr++;
6616 switch (opcode8)
6617 {
6618 case 0x0c: /* 3DNow! pi2fw */
6619 case 0x0d: /* 3DNow! pi2fd */
6620 case 0x1c: /* 3DNow! pf2iw */
6621 case 0x1d: /* 3DNow! pf2id */
6622 case 0x8a: /* 3DNow! pfnacc */
6623 case 0x8e: /* 3DNow! pfpnacc */
6624 case 0x90: /* 3DNow! pfcmpge */
6625 case 0x94: /* 3DNow! pfmin */
6626 case 0x96: /* 3DNow! pfrcp */
6627 case 0x97: /* 3DNow! pfrsqrt */
6628 case 0x9a: /* 3DNow! pfsub */
6629 case 0x9e: /* 3DNow! pfadd */
6630 case 0xa0: /* 3DNow! pfcmpgt */
6631 case 0xa4: /* 3DNow! pfmax */
6632 case 0xa6: /* 3DNow! pfrcpit1 */
6633 case 0xa7: /* 3DNow! pfrsqit1 */
6634 case 0xaa: /* 3DNow! pfsubr */
6635 case 0xae: /* 3DNow! pfacc */
6636 case 0xb0: /* 3DNow! pfcmpeq */
6637 case 0xb4: /* 3DNow! pfmul */
6638 case 0xb6: /* 3DNow! pfrcpit2 */
6639 case 0xb7: /* 3DNow! pmulhrw */
6640 case 0xbb: /* 3DNow! pswapd */
6641 case 0xbf: /* 3DNow! pavgusb */
6642 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6643 goto no_support_3dnow_data;
25ea693b 6644 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
6645 break;
6646
6647 default:
6648no_support_3dnow_data:
6649 opcode = (opcode << 8) | opcode8;
6650 goto no_support;
6651 break;
6652 }
6653 break;
6654
6655 case 0x0faa: /* rsm */
25ea693b
MM
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
6665 break;
6666
6667 case 0x0fae:
6668 if (i386_record_modrm (&ir))
6669 return -1;
6670 switch(ir.reg)
6671 {
6672 case 0: /* fxsave */
6673 {
6674 uint64_t tmpu64;
6675
25ea693b 6676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
6677 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6678 return -1;
25ea693b 6679 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
6680 return -1;
6681 }
6682 break;
6683
6684 case 1: /* fxrstor */
6685 {
6686 int i;
6687
25ea693b 6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
6689
6690 for (i = I387_MM0_REGNUM (tdep);
6691 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 6692 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
6693
6694 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6695 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 6696 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
6697
6698 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
6699 record_full_arch_list_add_reg (ir.regcache,
6700 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
6701
6702 for (i = I387_ST0_REGNUM (tdep);
6703 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 6704 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
6705
6706 for (i = I387_FCTRL_REGNUM (tdep);
6707 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 6708 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
6709 }
6710 break;
6711
6712 case 2: /* ldmxcsr */
6713 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6714 goto no_support;
25ea693b 6715 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
6716 break;
6717
6718 case 3: /* stmxcsr */
6719 ir.ot = OT_LONG;
6720 if (i386_record_lea_modrm (&ir))
6721 return -1;
6722 break;
6723
6724 case 5: /* lfence */
6725 case 6: /* mfence */
6726 case 7: /* sfence clflush */
6727 break;
6728
6729 default:
6730 opcode = (opcode << 8) | ir.modrm;
6731 goto no_support;
6732 break;
6733 }
6734 break;
6735
6736 case 0x0fc3: /* movnti */
6737 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6738 if (i386_record_modrm (&ir))
6739 return -1;
6740 if (ir.mod == 3)
6741 goto no_support;
6742 ir.reg |= rex_r;
6743 if (i386_record_lea_modrm (&ir))
6744 return -1;
6745 break;
6746
6747 /* Add prefix to opcode. */
6748 case 0x0f10:
6749 case 0x0f11:
6750 case 0x0f12:
6751 case 0x0f13:
6752 case 0x0f14:
6753 case 0x0f15:
6754 case 0x0f16:
6755 case 0x0f17:
6756 case 0x0f28:
6757 case 0x0f29:
6758 case 0x0f2a:
6759 case 0x0f2b:
6760 case 0x0f2c:
6761 case 0x0f2d:
6762 case 0x0f2e:
6763 case 0x0f2f:
6764 case 0x0f38:
6765 case 0x0f39:
6766 case 0x0f3a:
6767 case 0x0f50:
6768 case 0x0f51:
6769 case 0x0f52:
6770 case 0x0f53:
6771 case 0x0f54:
6772 case 0x0f55:
6773 case 0x0f56:
6774 case 0x0f57:
6775 case 0x0f58:
6776 case 0x0f59:
6777 case 0x0f5a:
6778 case 0x0f5b:
6779 case 0x0f5c:
6780 case 0x0f5d:
6781 case 0x0f5e:
6782 case 0x0f5f:
6783 case 0x0f60:
6784 case 0x0f61:
6785 case 0x0f62:
6786 case 0x0f63:
6787 case 0x0f64:
6788 case 0x0f65:
6789 case 0x0f66:
6790 case 0x0f67:
6791 case 0x0f68:
6792 case 0x0f69:
6793 case 0x0f6a:
6794 case 0x0f6b:
6795 case 0x0f6c:
6796 case 0x0f6d:
6797 case 0x0f6e:
6798 case 0x0f6f:
6799 case 0x0f70:
6800 case 0x0f71:
6801 case 0x0f72:
6802 case 0x0f73:
6803 case 0x0f74:
6804 case 0x0f75:
6805 case 0x0f76:
6806 case 0x0f7c:
6807 case 0x0f7d:
6808 case 0x0f7e:
6809 case 0x0f7f:
6810 case 0x0fb8:
6811 case 0x0fc2:
6812 case 0x0fc4:
6813 case 0x0fc5:
6814 case 0x0fc6:
6815 case 0x0fd0:
6816 case 0x0fd1:
6817 case 0x0fd2:
6818 case 0x0fd3:
6819 case 0x0fd4:
6820 case 0x0fd5:
6821 case 0x0fd6:
6822 case 0x0fd7:
6823 case 0x0fd8:
6824 case 0x0fd9:
6825 case 0x0fda:
6826 case 0x0fdb:
6827 case 0x0fdc:
6828 case 0x0fdd:
6829 case 0x0fde:
6830 case 0x0fdf:
6831 case 0x0fe0:
6832 case 0x0fe1:
6833 case 0x0fe2:
6834 case 0x0fe3:
6835 case 0x0fe4:
6836 case 0x0fe5:
6837 case 0x0fe6:
6838 case 0x0fe7:
6839 case 0x0fe8:
6840 case 0x0fe9:
6841 case 0x0fea:
6842 case 0x0feb:
6843 case 0x0fec:
6844 case 0x0fed:
6845 case 0x0fee:
6846 case 0x0fef:
6847 case 0x0ff0:
6848 case 0x0ff1:
6849 case 0x0ff2:
6850 case 0x0ff3:
6851 case 0x0ff4:
6852 case 0x0ff5:
6853 case 0x0ff6:
6854 case 0x0ff7:
6855 case 0x0ff8:
6856 case 0x0ff9:
6857 case 0x0ffa:
6858 case 0x0ffb:
6859 case 0x0ffc:
6860 case 0x0ffd:
6861 case 0x0ffe:
6862 switch (prefixes)
6863 {
6864 case PREFIX_REPNZ:
6865 opcode |= 0xf20000;
6866 break;
6867 case PREFIX_DATA:
6868 opcode |= 0x660000;
6869 break;
6870 case PREFIX_REPZ:
6871 opcode |= 0xf30000;
6872 break;
6873 }
6874reswitch_prefix_add:
6875 switch (opcode)
6876 {
6877 case 0x0f38:
6878 case 0x660f38:
6879 case 0xf20f38:
6880 case 0x0f3a:
6881 case 0x660f3a:
4ffa4fc7
PA
6882 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6883 return -1;
a3c4230a
HZ
6884 ir.addr++;
6885 opcode = (uint32_t) opcode8 | opcode << 8;
6886 goto reswitch_prefix_add;
6887 break;
6888
6889 case 0x0f10: /* movups */
6890 case 0x660f10: /* movupd */
6891 case 0xf30f10: /* movss */
6892 case 0xf20f10: /* movsd */
6893 case 0x0f12: /* movlps */
6894 case 0x660f12: /* movlpd */
6895 case 0xf30f12: /* movsldup */
6896 case 0xf20f12: /* movddup */
6897 case 0x0f14: /* unpcklps */
6898 case 0x660f14: /* unpcklpd */
6899 case 0x0f15: /* unpckhps */
6900 case 0x660f15: /* unpckhpd */
6901 case 0x0f16: /* movhps */
6902 case 0x660f16: /* movhpd */
6903 case 0xf30f16: /* movshdup */
6904 case 0x0f28: /* movaps */
6905 case 0x660f28: /* movapd */
6906 case 0x0f2a: /* cvtpi2ps */
6907 case 0x660f2a: /* cvtpi2pd */
6908 case 0xf30f2a: /* cvtsi2ss */
6909 case 0xf20f2a: /* cvtsi2sd */
6910 case 0x0f2c: /* cvttps2pi */
6911 case 0x660f2c: /* cvttpd2pi */
6912 case 0x0f2d: /* cvtps2pi */
6913 case 0x660f2d: /* cvtpd2pi */
6914 case 0x660f3800: /* pshufb */
6915 case 0x660f3801: /* phaddw */
6916 case 0x660f3802: /* phaddd */
6917 case 0x660f3803: /* phaddsw */
6918 case 0x660f3804: /* pmaddubsw */
6919 case 0x660f3805: /* phsubw */
6920 case 0x660f3806: /* phsubd */
4f7d61a8 6921 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6922 case 0x660f3808: /* psignb */
6923 case 0x660f3809: /* psignw */
6924 case 0x660f380a: /* psignd */
6925 case 0x660f380b: /* pmulhrsw */
6926 case 0x660f3810: /* pblendvb */
6927 case 0x660f3814: /* blendvps */
6928 case 0x660f3815: /* blendvpd */
6929 case 0x660f381c: /* pabsb */
6930 case 0x660f381d: /* pabsw */
6931 case 0x660f381e: /* pabsd */
6932 case 0x660f3820: /* pmovsxbw */
6933 case 0x660f3821: /* pmovsxbd */
6934 case 0x660f3822: /* pmovsxbq */
6935 case 0x660f3823: /* pmovsxwd */
6936 case 0x660f3824: /* pmovsxwq */
6937 case 0x660f3825: /* pmovsxdq */
6938 case 0x660f3828: /* pmuldq */
6939 case 0x660f3829: /* pcmpeqq */
6940 case 0x660f382a: /* movntdqa */
6941 case 0x660f3a08: /* roundps */
6942 case 0x660f3a09: /* roundpd */
6943 case 0x660f3a0a: /* roundss */
6944 case 0x660f3a0b: /* roundsd */
6945 case 0x660f3a0c: /* blendps */
6946 case 0x660f3a0d: /* blendpd */
6947 case 0x660f3a0e: /* pblendw */
6948 case 0x660f3a0f: /* palignr */
6949 case 0x660f3a20: /* pinsrb */
6950 case 0x660f3a21: /* insertps */
6951 case 0x660f3a22: /* pinsrd pinsrq */
6952 case 0x660f3a40: /* dpps */
6953 case 0x660f3a41: /* dppd */
6954 case 0x660f3a42: /* mpsadbw */
6955 case 0x660f3a60: /* pcmpestrm */
6956 case 0x660f3a61: /* pcmpestri */
6957 case 0x660f3a62: /* pcmpistrm */
6958 case 0x660f3a63: /* pcmpistri */
6959 case 0x0f51: /* sqrtps */
6960 case 0x660f51: /* sqrtpd */
6961 case 0xf20f51: /* sqrtsd */
6962 case 0xf30f51: /* sqrtss */
6963 case 0x0f52: /* rsqrtps */
6964 case 0xf30f52: /* rsqrtss */
6965 case 0x0f53: /* rcpps */
6966 case 0xf30f53: /* rcpss */
6967 case 0x0f54: /* andps */
6968 case 0x660f54: /* andpd */
6969 case 0x0f55: /* andnps */
6970 case 0x660f55: /* andnpd */
6971 case 0x0f56: /* orps */
6972 case 0x660f56: /* orpd */
6973 case 0x0f57: /* xorps */
6974 case 0x660f57: /* xorpd */
6975 case 0x0f58: /* addps */
6976 case 0x660f58: /* addpd */
6977 case 0xf20f58: /* addsd */
6978 case 0xf30f58: /* addss */
6979 case 0x0f59: /* mulps */
6980 case 0x660f59: /* mulpd */
6981 case 0xf20f59: /* mulsd */
6982 case 0xf30f59: /* mulss */
6983 case 0x0f5a: /* cvtps2pd */
6984 case 0x660f5a: /* cvtpd2ps */
6985 case 0xf20f5a: /* cvtsd2ss */
6986 case 0xf30f5a: /* cvtss2sd */
6987 case 0x0f5b: /* cvtdq2ps */
6988 case 0x660f5b: /* cvtps2dq */
6989 case 0xf30f5b: /* cvttps2dq */
6990 case 0x0f5c: /* subps */
6991 case 0x660f5c: /* subpd */
6992 case 0xf20f5c: /* subsd */
6993 case 0xf30f5c: /* subss */
6994 case 0x0f5d: /* minps */
6995 case 0x660f5d: /* minpd */
6996 case 0xf20f5d: /* minsd */
6997 case 0xf30f5d: /* minss */
6998 case 0x0f5e: /* divps */
6999 case 0x660f5e: /* divpd */
7000 case 0xf20f5e: /* divsd */
7001 case 0xf30f5e: /* divss */
7002 case 0x0f5f: /* maxps */
7003 case 0x660f5f: /* maxpd */
7004 case 0xf20f5f: /* maxsd */
7005 case 0xf30f5f: /* maxss */
7006 case 0x660f60: /* punpcklbw */
7007 case 0x660f61: /* punpcklwd */
7008 case 0x660f62: /* punpckldq */
7009 case 0x660f63: /* packsswb */
7010 case 0x660f64: /* pcmpgtb */
7011 case 0x660f65: /* pcmpgtw */
56d2815c 7012 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7013 case 0x660f67: /* packuswb */
7014 case 0x660f68: /* punpckhbw */
7015 case 0x660f69: /* punpckhwd */
7016 case 0x660f6a: /* punpckhdq */
7017 case 0x660f6b: /* packssdw */
7018 case 0x660f6c: /* punpcklqdq */
7019 case 0x660f6d: /* punpckhqdq */
7020 case 0x660f6e: /* movd */
7021 case 0x660f6f: /* movdqa */
7022 case 0xf30f6f: /* movdqu */
7023 case 0x660f70: /* pshufd */
7024 case 0xf20f70: /* pshuflw */
7025 case 0xf30f70: /* pshufhw */
7026 case 0x660f74: /* pcmpeqb */
7027 case 0x660f75: /* pcmpeqw */
56d2815c 7028 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7029 case 0x660f7c: /* haddpd */
7030 case 0xf20f7c: /* haddps */
7031 case 0x660f7d: /* hsubpd */
7032 case 0xf20f7d: /* hsubps */
7033 case 0xf30f7e: /* movq */
7034 case 0x0fc2: /* cmpps */
7035 case 0x660fc2: /* cmppd */
7036 case 0xf20fc2: /* cmpsd */
7037 case 0xf30fc2: /* cmpss */
7038 case 0x660fc4: /* pinsrw */
7039 case 0x0fc6: /* shufps */
7040 case 0x660fc6: /* shufpd */
7041 case 0x660fd0: /* addsubpd */
7042 case 0xf20fd0: /* addsubps */
7043 case 0x660fd1: /* psrlw */
7044 case 0x660fd2: /* psrld */
7045 case 0x660fd3: /* psrlq */
7046 case 0x660fd4: /* paddq */
7047 case 0x660fd5: /* pmullw */
7048 case 0xf30fd6: /* movq2dq */
7049 case 0x660fd8: /* psubusb */
7050 case 0x660fd9: /* psubusw */
7051 case 0x660fda: /* pminub */
7052 case 0x660fdb: /* pand */
7053 case 0x660fdc: /* paddusb */
7054 case 0x660fdd: /* paddusw */
7055 case 0x660fde: /* pmaxub */
7056 case 0x660fdf: /* pandn */
7057 case 0x660fe0: /* pavgb */
7058 case 0x660fe1: /* psraw */
7059 case 0x660fe2: /* psrad */
7060 case 0x660fe3: /* pavgw */
7061 case 0x660fe4: /* pmulhuw */
7062 case 0x660fe5: /* pmulhw */
7063 case 0x660fe6: /* cvttpd2dq */
7064 case 0xf20fe6: /* cvtpd2dq */
7065 case 0xf30fe6: /* cvtdq2pd */
7066 case 0x660fe8: /* psubsb */
7067 case 0x660fe9: /* psubsw */
7068 case 0x660fea: /* pminsw */
7069 case 0x660feb: /* por */
7070 case 0x660fec: /* paddsb */
7071 case 0x660fed: /* paddsw */
7072 case 0x660fee: /* pmaxsw */
7073 case 0x660fef: /* pxor */
4f7d61a8 7074 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7075 case 0x660ff1: /* psllw */
7076 case 0x660ff2: /* pslld */
7077 case 0x660ff3: /* psllq */
7078 case 0x660ff4: /* pmuludq */
7079 case 0x660ff5: /* pmaddwd */
7080 case 0x660ff6: /* psadbw */
7081 case 0x660ff8: /* psubb */
7082 case 0x660ff9: /* psubw */
56d2815c 7083 case 0x660ffa: /* psubd */
a3c4230a
HZ
7084 case 0x660ffb: /* psubq */
7085 case 0x660ffc: /* paddb */
7086 case 0x660ffd: /* paddw */
56d2815c 7087 case 0x660ffe: /* paddd */
a3c4230a
HZ
7088 if (i386_record_modrm (&ir))
7089 return -1;
7090 ir.reg |= rex_r;
c131fcee 7091 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7092 goto no_support;
25ea693b
MM
7093 record_full_arch_list_add_reg (ir.regcache,
7094 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7095 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7097 break;
7098
7099 case 0x0f11: /* movups */
7100 case 0x660f11: /* movupd */
7101 case 0xf30f11: /* movss */
7102 case 0xf20f11: /* movsd */
7103 case 0x0f13: /* movlps */
7104 case 0x660f13: /* movlpd */
7105 case 0x0f17: /* movhps */
7106 case 0x660f17: /* movhpd */
7107 case 0x0f29: /* movaps */
7108 case 0x660f29: /* movapd */
7109 case 0x660f3a14: /* pextrb */
7110 case 0x660f3a15: /* pextrw */
7111 case 0x660f3a16: /* pextrd pextrq */
7112 case 0x660f3a17: /* extractps */
7113 case 0x660f7f: /* movdqa */
7114 case 0xf30f7f: /* movdqu */
7115 if (i386_record_modrm (&ir))
7116 return -1;
7117 if (ir.mod == 3)
7118 {
7119 if (opcode == 0x0f13 || opcode == 0x660f13
7120 || opcode == 0x0f17 || opcode == 0x660f17)
7121 goto no_support;
7122 ir.rm |= ir.rex_b;
1777feb0
MS
7123 if (!i386_xmm_regnum_p (gdbarch,
7124 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7125 goto no_support;
25ea693b
MM
7126 record_full_arch_list_add_reg (ir.regcache,
7127 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7128 }
7129 else
7130 {
7131 switch (opcode)
7132 {
7133 case 0x660f3a14:
7134 ir.ot = OT_BYTE;
7135 break;
7136 case 0x660f3a15:
7137 ir.ot = OT_WORD;
7138 break;
7139 case 0x660f3a16:
7140 ir.ot = OT_LONG;
7141 break;
7142 case 0x660f3a17:
7143 ir.ot = OT_QUAD;
7144 break;
7145 default:
7146 ir.ot = OT_DQUAD;
7147 break;
7148 }
7149 if (i386_record_lea_modrm (&ir))
7150 return -1;
7151 }
7152 break;
7153
7154 case 0x0f2b: /* movntps */
7155 case 0x660f2b: /* movntpd */
7156 case 0x0fe7: /* movntq */
7157 case 0x660fe7: /* movntdq */
7158 if (ir.mod == 3)
7159 goto no_support;
7160 if (opcode == 0x0fe7)
7161 ir.ot = OT_QUAD;
7162 else
7163 ir.ot = OT_DQUAD;
7164 if (i386_record_lea_modrm (&ir))
7165 return -1;
7166 break;
7167
7168 case 0xf30f2c: /* cvttss2si */
7169 case 0xf20f2c: /* cvttsd2si */
7170 case 0xf30f2d: /* cvtss2si */
7171 case 0xf20f2d: /* cvtsd2si */
7172 case 0xf20f38f0: /* crc32 */
7173 case 0xf20f38f1: /* crc32 */
7174 case 0x0f50: /* movmskps */
7175 case 0x660f50: /* movmskpd */
7176 case 0x0fc5: /* pextrw */
7177 case 0x660fc5: /* pextrw */
7178 case 0x0fd7: /* pmovmskb */
7179 case 0x660fd7: /* pmovmskb */
25ea693b 7180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7181 break;
7182
7183 case 0x0f3800: /* pshufb */
7184 case 0x0f3801: /* phaddw */
7185 case 0x0f3802: /* phaddd */
7186 case 0x0f3803: /* phaddsw */
7187 case 0x0f3804: /* pmaddubsw */
7188 case 0x0f3805: /* phsubw */
7189 case 0x0f3806: /* phsubd */
4f7d61a8 7190 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7191 case 0x0f3808: /* psignb */
7192 case 0x0f3809: /* psignw */
7193 case 0x0f380a: /* psignd */
7194 case 0x0f380b: /* pmulhrsw */
7195 case 0x0f381c: /* pabsb */
7196 case 0x0f381d: /* pabsw */
7197 case 0x0f381e: /* pabsd */
7198 case 0x0f382b: /* packusdw */
7199 case 0x0f3830: /* pmovzxbw */
7200 case 0x0f3831: /* pmovzxbd */
7201 case 0x0f3832: /* pmovzxbq */
7202 case 0x0f3833: /* pmovzxwd */
7203 case 0x0f3834: /* pmovzxwq */
7204 case 0x0f3835: /* pmovzxdq */
7205 case 0x0f3837: /* pcmpgtq */
7206 case 0x0f3838: /* pminsb */
7207 case 0x0f3839: /* pminsd */
7208 case 0x0f383a: /* pminuw */
7209 case 0x0f383b: /* pminud */
7210 case 0x0f383c: /* pmaxsb */
7211 case 0x0f383d: /* pmaxsd */
7212 case 0x0f383e: /* pmaxuw */
7213 case 0x0f383f: /* pmaxud */
7214 case 0x0f3840: /* pmulld */
7215 case 0x0f3841: /* phminposuw */
7216 case 0x0f3a0f: /* palignr */
7217 case 0x0f60: /* punpcklbw */
7218 case 0x0f61: /* punpcklwd */
7219 case 0x0f62: /* punpckldq */
7220 case 0x0f63: /* packsswb */
7221 case 0x0f64: /* pcmpgtb */
7222 case 0x0f65: /* pcmpgtw */
56d2815c 7223 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7224 case 0x0f67: /* packuswb */
7225 case 0x0f68: /* punpckhbw */
7226 case 0x0f69: /* punpckhwd */
7227 case 0x0f6a: /* punpckhdq */
7228 case 0x0f6b: /* packssdw */
7229 case 0x0f6e: /* movd */
7230 case 0x0f6f: /* movq */
7231 case 0x0f70: /* pshufw */
7232 case 0x0f74: /* pcmpeqb */
7233 case 0x0f75: /* pcmpeqw */
56d2815c 7234 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7235 case 0x0fc4: /* pinsrw */
7236 case 0x0fd1: /* psrlw */
7237 case 0x0fd2: /* psrld */
7238 case 0x0fd3: /* psrlq */
7239 case 0x0fd4: /* paddq */
7240 case 0x0fd5: /* pmullw */
7241 case 0xf20fd6: /* movdq2q */
7242 case 0x0fd8: /* psubusb */
7243 case 0x0fd9: /* psubusw */
7244 case 0x0fda: /* pminub */
7245 case 0x0fdb: /* pand */
7246 case 0x0fdc: /* paddusb */
7247 case 0x0fdd: /* paddusw */
7248 case 0x0fde: /* pmaxub */
7249 case 0x0fdf: /* pandn */
7250 case 0x0fe0: /* pavgb */
7251 case 0x0fe1: /* psraw */
7252 case 0x0fe2: /* psrad */
7253 case 0x0fe3: /* pavgw */
7254 case 0x0fe4: /* pmulhuw */
7255 case 0x0fe5: /* pmulhw */
7256 case 0x0fe8: /* psubsb */
7257 case 0x0fe9: /* psubsw */
7258 case 0x0fea: /* pminsw */
7259 case 0x0feb: /* por */
7260 case 0x0fec: /* paddsb */
7261 case 0x0fed: /* paddsw */
7262 case 0x0fee: /* pmaxsw */
7263 case 0x0fef: /* pxor */
7264 case 0x0ff1: /* psllw */
7265 case 0x0ff2: /* pslld */
7266 case 0x0ff3: /* psllq */
7267 case 0x0ff4: /* pmuludq */
7268 case 0x0ff5: /* pmaddwd */
7269 case 0x0ff6: /* psadbw */
7270 case 0x0ff8: /* psubb */
7271 case 0x0ff9: /* psubw */
56d2815c 7272 case 0x0ffa: /* psubd */
a3c4230a
HZ
7273 case 0x0ffb: /* psubq */
7274 case 0x0ffc: /* paddb */
7275 case 0x0ffd: /* paddw */
56d2815c 7276 case 0x0ffe: /* paddd */
a3c4230a
HZ
7277 if (i386_record_modrm (&ir))
7278 return -1;
7279 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7280 goto no_support;
25ea693b
MM
7281 record_full_arch_list_add_reg (ir.regcache,
7282 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7283 break;
7284
7285 case 0x0f71: /* psllw */
7286 case 0x0f72: /* pslld */
7287 case 0x0f73: /* psllq */
7288 if (i386_record_modrm (&ir))
7289 return -1;
7290 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7291 goto no_support;
25ea693b
MM
7292 record_full_arch_list_add_reg (ir.regcache,
7293 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7294 break;
7295
7296 case 0x660f71: /* psllw */
7297 case 0x660f72: /* pslld */
7298 case 0x660f73: /* psllq */
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 ir.rm |= ir.rex_b;
c131fcee 7302 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7303 goto no_support;
25ea693b
MM
7304 record_full_arch_list_add_reg (ir.regcache,
7305 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7306 break;
7307
7308 case 0x0f7e: /* movd */
7309 case 0x660f7e: /* movd */
7310 if (i386_record_modrm (&ir))
7311 return -1;
7312 if (ir.mod == 3)
25ea693b 7313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7314 else
7315 {
7316 if (ir.dflag == 2)
7317 ir.ot = OT_QUAD;
7318 else
7319 ir.ot = OT_LONG;
7320 if (i386_record_lea_modrm (&ir))
7321 return -1;
7322 }
7323 break;
7324
7325 case 0x0f7f: /* movq */
7326 if (i386_record_modrm (&ir))
7327 return -1;
7328 if (ir.mod == 3)
7329 {
7330 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7331 goto no_support;
25ea693b
MM
7332 record_full_arch_list_add_reg (ir.regcache,
7333 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7334 }
7335 else
7336 {
7337 ir.ot = OT_QUAD;
7338 if (i386_record_lea_modrm (&ir))
7339 return -1;
7340 }
7341 break;
7342
7343 case 0xf30fb8: /* popcnt */
7344 if (i386_record_modrm (&ir))
7345 return -1;
25ea693b
MM
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7348 break;
7349
7350 case 0x660fd6: /* movq */
7351 if (i386_record_modrm (&ir))
7352 return -1;
7353 if (ir.mod == 3)
7354 {
7355 ir.rm |= ir.rex_b;
1777feb0
MS
7356 if (!i386_xmm_regnum_p (gdbarch,
7357 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7358 goto no_support;
25ea693b
MM
7359 record_full_arch_list_add_reg (ir.regcache,
7360 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7361 }
7362 else
7363 {
7364 ir.ot = OT_QUAD;
7365 if (i386_record_lea_modrm (&ir))
7366 return -1;
7367 }
7368 break;
7369
7370 case 0x660f3817: /* ptest */
7371 case 0x0f2e: /* ucomiss */
7372 case 0x660f2e: /* ucomisd */
7373 case 0x0f2f: /* comiss */
7374 case 0x660f2f: /* comisd */
25ea693b 7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7376 break;
7377
7378 case 0x0ff7: /* maskmovq */
7379 regcache_raw_read_unsigned (ir.regcache,
7380 ir.regmap[X86_RECORD_REDI_REGNUM],
7381 &addr);
25ea693b 7382 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
7383 return -1;
7384 break;
7385
7386 case 0x660ff7: /* maskmovdqu */
7387 regcache_raw_read_unsigned (ir.regcache,
7388 ir.regmap[X86_RECORD_REDI_REGNUM],
7389 &addr);
25ea693b 7390 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
7391 return -1;
7392 break;
7393
7394 default:
7395 goto no_support;
7396 break;
7397 }
7398 break;
7ad10968
HZ
7399
7400 default:
7ad10968
HZ
7401 goto no_support;
7402 break;
7403 }
7404
cf648174 7405 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
7406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7407 if (record_full_arch_list_add_end ())
7ad10968
HZ
7408 return -1;
7409
7410 return 0;
7411
01fe1b41 7412 no_support:
a3c4230a
HZ
7413 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7414 "at address %s.\n"),
7415 (unsigned int) (opcode),
7416 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
7417 return -1;
7418}
7419
cf648174
HZ
7420static const int i386_record_regmap[] =
7421{
7422 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7423 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7424 0, 0, 0, 0, 0, 0, 0, 0,
7425 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7426 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7427};
7428
7a697b8d 7429/* Check that the given address appears suitable for a fast
405f8e94 7430 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
7431 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7432 jump and not have to worry about program jumps to an address in the
405f8e94
SS
7433 middle of the tracepoint jump. On x86, it may be possible to use
7434 4-byte jumps with a 2-byte offset to a trampoline located in the
7435 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
7436 of instruction to replace, and 0 if not, plus an explanatory
7437 string. */
7438
7439static int
7440i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7441 CORE_ADDR addr, int *isize, char **msg)
7442{
7443 int len, jumplen;
7444 static struct ui_file *gdb_null = NULL;
7445
405f8e94
SS
7446 /* Ask the target for the minimum instruction length supported. */
7447 jumplen = target_get_min_fast_tracepoint_insn_len ();
7448
7449 if (jumplen < 0)
7450 {
7451 /* If the target does not support the get_min_fast_tracepoint_insn_len
7452 operation, assume that fast tracepoints will always be implemented
7453 using 4-byte relative jumps on both x86 and x86-64. */
7454 jumplen = 5;
7455 }
7456 else if (jumplen == 0)
7457 {
7458 /* If the target does support get_min_fast_tracepoint_insn_len but
7459 returns zero, then the IPA has not loaded yet. In this case,
7460 we optimistically assume that truncated 2-byte relative jumps
7461 will be available on x86, and compensate later if this assumption
7462 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7463 jumps will always be used. */
7464 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7465 }
7a697b8d
SS
7466
7467 /* Dummy file descriptor for the disassembler. */
7468 if (!gdb_null)
7469 gdb_null = ui_file_new ();
7470
7471 /* Check for fit. */
7472 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
7473 if (isize)
7474 *isize = len;
7475
7a697b8d
SS
7476 if (len < jumplen)
7477 {
7478 /* Return a bit of target-specific detail to add to the caller's
7479 generic failure message. */
7480 if (msg)
1777feb0
MS
7481 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7482 "need at least %d bytes for the jump"),
7a697b8d
SS
7483 len, jumplen);
7484 return 0;
7485 }
405f8e94
SS
7486 else
7487 {
7488 if (msg)
7489 *msg = NULL;
7490 return 1;
7491 }
7a697b8d
SS
7492}
7493
90884b2b
L
7494static int
7495i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7496 struct tdesc_arch_data *tdesc_data)
7497{
7498 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
7499 const struct tdesc_feature *feature_core;
7500 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
7501 int i, num_regs, valid_p;
7502
7503 if (! tdesc_has_registers (tdesc))
7504 return 0;
7505
7506 /* Get core registers. */
7507 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
7508 if (feature_core == NULL)
7509 return 0;
90884b2b
L
7510
7511 /* Get SSE registers. */
c131fcee 7512 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 7513
c131fcee
L
7514 /* Try AVX registers. */
7515 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7516
90884b2b
L
7517 valid_p = 1;
7518
c131fcee
L
7519 /* The XCR0 bits. */
7520 if (feature_avx)
7521 {
3a13a53b
L
7522 /* AVX register description requires SSE register description. */
7523 if (!feature_sse)
7524 return 0;
7525
c131fcee
L
7526 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7527
7528 /* It may have been set by OSABI initialization function. */
7529 if (tdep->num_ymm_regs == 0)
7530 {
7531 tdep->ymmh_register_names = i386_ymmh_names;
7532 tdep->num_ymm_regs = 8;
7533 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7534 }
7535
7536 for (i = 0; i < tdep->num_ymm_regs; i++)
7537 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7538 tdep->ymm0h_regnum + i,
7539 tdep->ymmh_register_names[i]);
7540 }
3a13a53b 7541 else if (feature_sse)
c131fcee 7542 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7543 else
7544 {
7545 tdep->xcr0 = I386_XSTATE_X87_MASK;
7546 tdep->num_xmm_regs = 0;
7547 }
c131fcee 7548
90884b2b
L
7549 num_regs = tdep->num_core_regs;
7550 for (i = 0; i < num_regs; i++)
7551 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7552 tdep->register_names[i]);
7553
3a13a53b
L
7554 if (feature_sse)
7555 {
7556 /* Need to include %mxcsr, so add one. */
7557 num_regs += tdep->num_xmm_regs + 1;
7558 for (; i < num_regs; i++)
7559 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7560 tdep->register_names[i]);
7561 }
90884b2b
L
7562
7563 return valid_p;
7564}
7565
7ad10968
HZ
7566\f
7567static struct gdbarch *
7568i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7569{
7570 struct gdbarch_tdep *tdep;
7571 struct gdbarch *gdbarch;
90884b2b
L
7572 struct tdesc_arch_data *tdesc_data;
7573 const struct target_desc *tdesc;
1ba53b71 7574 int mm0_regnum;
c131fcee 7575 int ymm0_regnum;
7ad10968
HZ
7576
7577 /* If there is already a candidate, use it. */
7578 arches = gdbarch_list_lookup_by_info (arches, &info);
7579 if (arches != NULL)
7580 return arches->gdbarch;
7581
7582 /* Allocate space for the new architecture. */
7583 tdep = XCALLOC (1, struct gdbarch_tdep);
7584 gdbarch = gdbarch_alloc (&info, tdep);
7585
7586 /* General-purpose registers. */
7587 tdep->gregset = NULL;
7588 tdep->gregset_reg_offset = NULL;
7589 tdep->gregset_num_regs = I386_NUM_GREGS;
7590 tdep->sizeof_gregset = 0;
7591
7592 /* Floating-point registers. */
7593 tdep->fpregset = NULL;
7594 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7595
c131fcee
L
7596 tdep->xstateregset = NULL;
7597
7ad10968
HZ
7598 /* The default settings include the FPU registers, the MMX registers
7599 and the SSE registers. This can be overridden for a specific ABI
7600 by adjusting the members `st0_regnum', `mm0_regnum' and
7601 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7602 will show up in the output of "info all-registers". */
7ad10968
HZ
7603
7604 tdep->st0_regnum = I386_ST0_REGNUM;
7605
7ad10968
HZ
7606 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7607 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7608
7609 tdep->jb_pc_offset = -1;
7610 tdep->struct_return = pcc_struct_return;
7611 tdep->sigtramp_start = 0;
7612 tdep->sigtramp_end = 0;
7613 tdep->sigtramp_p = i386_sigtramp_p;
7614 tdep->sigcontext_addr = NULL;
7615 tdep->sc_reg_offset = NULL;
7616 tdep->sc_pc_offset = -1;
7617 tdep->sc_sp_offset = -1;
7618
c131fcee
L
7619 tdep->xsave_xcr0_offset = -1;
7620
cf648174
HZ
7621 tdep->record_regmap = i386_record_regmap;
7622
205c306f
DM
7623 set_gdbarch_long_long_align_bit (gdbarch, 32);
7624
7ad10968
HZ
7625 /* The format used for `long double' on almost all i386 targets is
7626 the i387 extended floating-point format. In fact, of all targets
7627 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7628 on having a `long double' that's not `long' at all. */
7629 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7630
7631 /* Although the i387 extended floating-point has only 80 significant
7632 bits, a `long double' actually takes up 96, probably to enforce
7633 alignment. */
7634 set_gdbarch_long_double_bit (gdbarch, 96);
7635
7ad10968
HZ
7636 /* Register numbers of various important registers. */
7637 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7638 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7639 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7640 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7641
7642 /* NOTE: kettenis/20040418: GCC does have two possible register
7643 numbering schemes on the i386: dbx and SVR4. These schemes
7644 differ in how they number %ebp, %esp, %eflags, and the
7645 floating-point registers, and are implemented by the arrays
7646 dbx_register_map[] and svr4_dbx_register_map in
7647 gcc/config/i386.c. GCC also defines a third numbering scheme in
7648 gcc/config/i386.c, which it designates as the "default" register
7649 map used in 64bit mode. This last register numbering scheme is
7650 implemented in dbx64_register_map, and is used for AMD64; see
7651 amd64-tdep.c.
7652
7653 Currently, each GCC i386 target always uses the same register
7654 numbering scheme across all its supported debugging formats
7655 i.e. SDB (COFF), stabs and DWARF 2. This is because
7656 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7657 DBX_REGISTER_NUMBER macro which is defined by each target's
7658 respective config header in a manner independent of the requested
7659 output debugging format.
7660
7661 This does not match the arrangement below, which presumes that
7662 the SDB and stabs numbering schemes differ from the DWARF and
7663 DWARF 2 ones. The reason for this arrangement is that it is
7664 likely to get the numbering scheme for the target's
7665 default/native debug format right. For targets where GCC is the
7666 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7667 targets where the native toolchain uses a different numbering
7668 scheme for a particular debug format (stabs-in-ELF on Solaris)
7669 the defaults below will have to be overridden, like
7670 i386_elf_init_abi() does. */
7671
7672 /* Use the dbx register numbering scheme for stabs and COFF. */
7673 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7674 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7675
7676 /* Use the SVR4 register numbering scheme for DWARF 2. */
7677 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7678
7679 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7680 be in use on any of the supported i386 targets. */
7681
7682 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7683
7684 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7685
7686 /* Call dummy code. */
a9b8d892
JK
7687 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7688 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 7689 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 7690 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
7691
7692 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7693 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7694 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7695
7696 set_gdbarch_return_value (gdbarch, i386_return_value);
7697
7698 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7699
7700 /* Stack grows downward. */
7701 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7702
7703 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7704 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7705 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7706
7707 set_gdbarch_frame_args_skip (gdbarch, 8);
7708
7ad10968
HZ
7709 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7710
7711 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7712
7713 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7714
7715 /* Add the i386 register groups. */
7716 i386_add_reggroups (gdbarch);
90884b2b 7717 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7718
143985b7
AF
7719 /* Helper for function argument information. */
7720 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7721
06da04c6 7722 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
7723 appended to the list first, so that it supercedes the DWARF
7724 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
7725 currently fails). */
7726 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7727
7728 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 7729 to the list before the prologue-based unwinders, so that DWARF
06da04c6 7730 CFI info will be used if it is available. */
10458914 7731 dwarf2_append_unwinders (gdbarch);
6405b0a6 7732
acd5c798 7733 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7734
1ba53b71 7735 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
7736 set_gdbarch_pseudo_register_read_value (gdbarch,
7737 i386_pseudo_register_read_value);
90884b2b
L
7738 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7739
7740 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7741 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7742
c131fcee
L
7743 /* Override the normal target description method to make the AVX
7744 upper halves anonymous. */
7745 set_gdbarch_register_name (gdbarch, i386_register_name);
7746
7747 /* Even though the default ABI only includes general-purpose registers,
7748 floating-point registers and the SSE registers, we have to leave a
7749 gap for the upper AVX registers. */
7750 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7751
7752 /* Get the x86 target description from INFO. */
7753 tdesc = info.target_desc;
7754 if (! tdesc_has_registers (tdesc))
7755 tdesc = tdesc_i386;
7756 tdep->tdesc = tdesc;
7757
7758 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7759 tdep->register_names = i386_register_names;
7760
c131fcee
L
7761 /* No upper YMM registers. */
7762 tdep->ymmh_register_names = NULL;
7763 tdep->ymm0h_regnum = -1;
7764
1ba53b71
L
7765 tdep->num_byte_regs = 8;
7766 tdep->num_word_regs = 8;
7767 tdep->num_dword_regs = 0;
7768 tdep->num_mmx_regs = 8;
c131fcee 7769 tdep->num_ymm_regs = 0;
1ba53b71 7770
90884b2b
L
7771 tdesc_data = tdesc_data_alloc ();
7772
dde08ee1
PA
7773 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7774
6710bf39
SS
7775 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7776
3ce1502b 7777 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7778 info.tdep_info = (void *) tdesc_data;
4be87837 7779 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7780
c131fcee
L
7781 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7782 {
7783 tdesc_data_cleanup (tdesc_data);
7784 xfree (tdep);
7785 gdbarch_free (gdbarch);
7786 return NULL;
7787 }
7788
1ba53b71
L
7789 /* Wire in pseudo registers. Number of pseudo registers may be
7790 changed. */
7791 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7792 + tdep->num_word_regs
7793 + tdep->num_dword_regs
c131fcee
L
7794 + tdep->num_mmx_regs
7795 + tdep->num_ymm_regs));
1ba53b71 7796
90884b2b
L
7797 /* Target description may be changed. */
7798 tdesc = tdep->tdesc;
7799
90884b2b
L
7800 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7801
7802 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7803 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7804
1ba53b71
L
7805 /* Make %al the first pseudo-register. */
7806 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7807 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7808
c131fcee 7809 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7810 if (tdep->num_dword_regs)
7811 {
1c6272a6 7812 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7813 tdep->eax_regnum = ymm0_regnum;
7814 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7815 }
7816 else
7817 tdep->eax_regnum = -1;
7818
c131fcee
L
7819 mm0_regnum = ymm0_regnum;
7820 if (tdep->num_ymm_regs)
7821 {
1c6272a6 7822 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7823 tdep->ymm0_regnum = ymm0_regnum;
7824 mm0_regnum += tdep->num_ymm_regs;
7825 }
7826 else
7827 tdep->ymm0_regnum = -1;
7828
1ba53b71
L
7829 if (tdep->num_mmx_regs != 0)
7830 {
1c6272a6 7831 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7832 tdep->mm0_regnum = mm0_regnum;
7833 }
7834 else
7835 tdep->mm0_regnum = -1;
7836
06da04c6 7837 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 7838 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
7839 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7840 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7841
8446b36a
MK
7842 /* If we have a register mapping, enable the generic core file
7843 support, unless it has already been enabled. */
7844 if (tdep->gregset_reg_offset
7845 && !gdbarch_regset_from_core_section_p (gdbarch))
7846 set_gdbarch_regset_from_core_section (gdbarch,
7847 i386_regset_from_core_section);
7848
514f746b
AR
7849 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7850 i386_skip_permanent_breakpoint);
7851
7a697b8d
SS
7852 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7853 i386_fast_tracepoint_valid_at);
7854
a62cc96e
AC
7855 return gdbarch;
7856}
7857
8201327c
MK
7858static enum gdb_osabi
7859i386_coff_osabi_sniffer (bfd *abfd)
7860{
762c5349
MK
7861 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7862 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7863 return GDB_OSABI_GO32;
7864
7865 return GDB_OSABI_UNKNOWN;
7866}
8201327c
MK
7867\f
7868
28e9e0f0
MK
7869/* Provide a prototype to silence -Wmissing-prototypes. */
7870void _initialize_i386_tdep (void);
7871
c906108c 7872void
fba45db2 7873_initialize_i386_tdep (void)
c906108c 7874{
a62cc96e
AC
7875 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7876
fc338970 7877 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7878 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7879 &disassembly_flavor, _("\
7880Set the disassembly flavor."), _("\
7881Show the disassembly flavor."), _("\
7882The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7883 NULL,
7884 NULL, /* FIXME: i18n: */
7885 &setlist, &showlist);
8201327c
MK
7886
7887 /* Add the variable that controls the convention for returning
7888 structs. */
7ab04401
AC
7889 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7890 &struct_convention, _("\
7891Set the convention for returning small structs."), _("\
7892Show the convention for returning small structs."), _("\
7893Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7894is \"default\"."),
7895 NULL,
7896 NULL, /* FIXME: i18n: */
7897 &setlist, &showlist);
8201327c
MK
7898
7899 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7900 i386_coff_osabi_sniffer);
8201327c 7901
05816f70 7902 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7903 i386_svr4_init_abi);
05816f70 7904 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7905 i386_go32_init_abi);
38c968cf 7906
209bd28e 7907 /* Initialize the i386-specific register groups. */
38c968cf 7908 i386_init_reggroups ();
90884b2b
L
7909
7910 /* Initialize the standard target descriptions. */
7911 initialize_tdesc_i386 ();
3a13a53b 7912 initialize_tdesc_i386_mmx ();
c131fcee 7913 initialize_tdesc_i386_avx ();
c8d5aac9
L
7914
7915 /* Tell remote stub that we support XML target description. */
7916 register_remote_support_xml ("i386");
c906108c 7917}
This page took 1.688654 seconds and 4 git commands to generate.