testsuite: i386 regression for funcargs.exp
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
618f726f 3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
90884b2b 53#include "features/i386/i386.c"
c131fcee 54#include "features/i386/i386-avx.c"
1dbcd68c 55#include "features/i386/i386-mpx.c"
01f9f808 56#include "features/i386/i386-avx512.c"
3a13a53b 57#include "features/i386/i386-mmx.c"
90884b2b 58
6710bf39
SS
59#include "ax.h"
60#include "ax-gdb.h"
61
55aa24fb
SDJ
62#include "stap-probe.h"
63#include "user-regs.h"
64#include "cli/cli-utils.h"
65#include "expression.h"
66#include "parser-defs.h"
67#include <ctype.h>
68
c4fc7f1b 69/* Register names. */
c40e1eab 70
90884b2b 71static const char *i386_register_names[] =
fc633446
MK
72{
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84};
85
01f9f808
MS
86static const char *i386_zmm_names[] =
87{
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90};
91
92static const char *i386_zmmh_names[] =
93{
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96};
97
98static const char *i386_k_names[] =
99{
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102};
103
c131fcee
L
104static const char *i386_ymm_names[] =
105{
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108};
109
110static const char *i386_ymmh_names[] =
111{
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114};
115
1dbcd68c
WT
116static const char *i386_mpx_names[] =
117{
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119};
120
121/* Register names for MPX pseudo-registers. */
122
123static const char *i386_bnd_names[] =
124{
125 "bnd0", "bnd1", "bnd2", "bnd3"
126};
127
c4fc7f1b 128/* Register names for MMX pseudo-registers. */
28fc6740 129
90884b2b 130static const char *i386_mmx_names[] =
28fc6740
AC
131{
132 "mm0", "mm1", "mm2", "mm3",
133 "mm4", "mm5", "mm6", "mm7"
134};
c40e1eab 135
1ba53b71
L
136/* Register names for byte pseudo-registers. */
137
138static const char *i386_byte_names[] =
139{
140 "al", "cl", "dl", "bl",
141 "ah", "ch", "dh", "bh"
142};
143
144/* Register names for word pseudo-registers. */
145
146static const char *i386_word_names[] =
147{
148 "ax", "cx", "dx", "bx",
9cad29ac 149 "", "bp", "si", "di"
1ba53b71
L
150};
151
01f9f808
MS
152/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
153 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
154 we have 16 upper ZMM regs that have to be handled differently. */
155
156const int num_lower_zmm_regs = 16;
157
1ba53b71 158/* MMX register? */
c40e1eab 159
28fc6740 160static int
5716833c 161i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 162{
1ba53b71
L
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
165
166 if (mm0_regnum < 0)
167 return 0;
168
1ba53b71
L
169 regnum -= mm0_regnum;
170 return regnum >= 0 && regnum < tdep->num_mmx_regs;
171}
172
173/* Byte register? */
174
175int
176i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
177{
178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
179
180 regnum -= tdep->al_regnum;
181 return regnum >= 0 && regnum < tdep->num_byte_regs;
182}
183
184/* Word register? */
185
186int
187i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
188{
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 regnum -= tdep->ax_regnum;
192 return regnum >= 0 && regnum < tdep->num_word_regs;
193}
194
195/* Dword register? */
196
197int
198i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
199{
200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
201 int eax_regnum = tdep->eax_regnum;
202
203 if (eax_regnum < 0)
204 return 0;
205
206 regnum -= eax_regnum;
207 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
208}
209
01f9f808
MS
210/* AVX512 register? */
211
212int
213i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
214{
215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
216 int zmm0h_regnum = tdep->zmm0h_regnum;
217
218 if (zmm0h_regnum < 0)
219 return 0;
220
221 regnum -= zmm0h_regnum;
222 return regnum >= 0 && regnum < tdep->num_zmm_regs;
223}
224
225int
226i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
227{
228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
229 int zmm0_regnum = tdep->zmm0_regnum;
230
231 if (zmm0_regnum < 0)
232 return 0;
233
234 regnum -= zmm0_regnum;
235 return regnum >= 0 && regnum < tdep->num_zmm_regs;
236}
237
238int
239i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
240{
241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
242 int k0_regnum = tdep->k0_regnum;
243
244 if (k0_regnum < 0)
245 return 0;
246
247 regnum -= k0_regnum;
248 return regnum >= 0 && regnum < I387_NUM_K_REGS;
249}
250
9191d390 251static int
c131fcee
L
252i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
253{
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255 int ymm0h_regnum = tdep->ymm0h_regnum;
256
257 if (ymm0h_regnum < 0)
258 return 0;
259
260 regnum -= ymm0h_regnum;
261 return regnum >= 0 && regnum < tdep->num_ymm_regs;
262}
263
264/* AVX register? */
265
266int
267i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
268{
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270 int ymm0_regnum = tdep->ymm0_regnum;
271
272 if (ymm0_regnum < 0)
273 return 0;
274
275 regnum -= ymm0_regnum;
276 return regnum >= 0 && regnum < tdep->num_ymm_regs;
277}
278
01f9f808
MS
279static int
280i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
281{
282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
283 int ymm16h_regnum = tdep->ymm16h_regnum;
284
285 if (ymm16h_regnum < 0)
286 return 0;
287
288 regnum -= ymm16h_regnum;
289 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
290}
291
292int
293i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
294{
295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
296 int ymm16_regnum = tdep->ymm16_regnum;
297
298 if (ymm16_regnum < 0)
299 return 0;
300
301 regnum -= ymm16_regnum;
302 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
303}
304
1dbcd68c
WT
305/* BND register? */
306
307int
308i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
309{
310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 int bnd0_regnum = tdep->bnd0_regnum;
312
313 if (bnd0_regnum < 0)
314 return 0;
315
316 regnum -= bnd0_regnum;
317 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
318}
319
5716833c 320/* SSE register? */
23a34459 321
c131fcee
L
322int
323i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 324{
5716833c 325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 326 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 327
c131fcee 328 if (num_xmm_regs == 0)
5716833c
MK
329 return 0;
330
c131fcee
L
331 regnum -= I387_XMM0_REGNUM (tdep);
332 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
333}
334
01f9f808
MS
335/* XMM_512 register? */
336
337int
338i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
339{
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
342
343 if (num_xmm_avx512_regs == 0)
344 return 0;
345
346 regnum -= I387_XMM16_REGNUM (tdep);
347 return regnum >= 0 && regnum < num_xmm_avx512_regs;
348}
349
5716833c
MK
350static int
351i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 352{
5716833c
MK
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
20a6ec49 355 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
356 return 0;
357
20a6ec49 358 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
359}
360
5716833c 361/* FP register? */
23a34459
AC
362
363int
20a6ec49 364i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 365{
20a6ec49
MD
366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
367
368 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
369 return 0;
370
20a6ec49
MD
371 return (I387_ST0_REGNUM (tdep) <= regnum
372 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
373}
374
375int
20a6ec49 376i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 377{
20a6ec49
MD
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379
380 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
381 return 0;
382
20a6ec49
MD
383 return (I387_FCTRL_REGNUM (tdep) <= regnum
384 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
385}
386
1dbcd68c
WT
387/* BNDr (raw) register? */
388
389static int
390i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
391{
392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
393
394 if (I387_BND0R_REGNUM (tdep) < 0)
395 return 0;
396
397 regnum -= tdep->bnd0r_regnum;
398 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
399}
400
401/* BND control register? */
402
403static int
404i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
405{
406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
407
408 if (I387_BNDCFGU_REGNUM (tdep) < 0)
409 return 0;
410
411 regnum -= I387_BNDCFGU_REGNUM (tdep);
412 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
413}
414
c131fcee
L
415/* Return the name of register REGNUM, or the empty string if it is
416 an anonymous register. */
417
418static const char *
419i386_register_name (struct gdbarch *gdbarch, int regnum)
420{
421 /* Hide the upper YMM registers. */
422 if (i386_ymmh_regnum_p (gdbarch, regnum))
423 return "";
424
01f9f808
MS
425 /* Hide the upper YMM16-31 registers. */
426 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
427 return "";
428
429 /* Hide the upper ZMM registers. */
430 if (i386_zmmh_regnum_p (gdbarch, regnum))
431 return "";
432
c131fcee
L
433 return tdesc_register_name (gdbarch, regnum);
434}
435
30b0e2d8 436/* Return the name of register REGNUM. */
fc633446 437
1ba53b71 438const char *
90884b2b 439i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 440{
1ba53b71 441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
442 if (i386_bnd_regnum_p (gdbarch, regnum))
443 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
444 if (i386_mmx_regnum_p (gdbarch, regnum))
445 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
446 else if (i386_ymm_regnum_p (gdbarch, regnum))
447 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
448 else if (i386_zmm_regnum_p (gdbarch, regnum))
449 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
450 else if (i386_byte_regnum_p (gdbarch, regnum))
451 return i386_byte_names[regnum - tdep->al_regnum];
452 else if (i386_word_regnum_p (gdbarch, regnum))
453 return i386_word_names[regnum - tdep->ax_regnum];
454
455 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
456}
457
c4fc7f1b 458/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
459 number used by GDB. */
460
8201327c 461static int
d3f73121 462i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 463{
20a6ec49
MD
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465
c4fc7f1b
MK
466 /* This implements what GCC calls the "default" register map
467 (dbx_register_map[]). */
468
85540d8c
MK
469 if (reg >= 0 && reg <= 7)
470 {
9872ad24
JB
471 /* General-purpose registers. The debug info calls %ebp
472 register 4, and %esp register 5. */
473 if (reg == 4)
474 return 5;
475 else if (reg == 5)
476 return 4;
477 else return reg;
85540d8c
MK
478 }
479 else if (reg >= 12 && reg <= 19)
480 {
481 /* Floating-point registers. */
20a6ec49 482 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
483 }
484 else if (reg >= 21 && reg <= 28)
485 {
486 /* SSE registers. */
c131fcee
L
487 int ymm0_regnum = tdep->ymm0_regnum;
488
489 if (ymm0_regnum >= 0
490 && i386_xmm_regnum_p (gdbarch, reg))
491 return reg - 21 + ymm0_regnum;
492 else
493 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
494 }
495 else if (reg >= 29 && reg <= 36)
496 {
497 /* MMX registers. */
20a6ec49 498 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
499 }
500
501 /* This will hopefully provoke a warning. */
d3f73121 502 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
503}
504
0fde2c53 505/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 506 used by GDB. */
85540d8c 507
8201327c 508static int
0fde2c53 509i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 510{
20a6ec49
MD
511 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
512
c4fc7f1b
MK
513 /* This implements the GCC register map that tries to be compatible
514 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
515
516 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
517 numbers the floating point registers differently. */
518 if (reg >= 0 && reg <= 9)
519 {
acd5c798 520 /* General-purpose registers. */
85540d8c
MK
521 return reg;
522 }
523 else if (reg >= 11 && reg <= 18)
524 {
525 /* Floating-point registers. */
20a6ec49 526 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 527 }
c6f4c129 528 else if (reg >= 21 && reg <= 36)
85540d8c 529 {
c4fc7f1b 530 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 531 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
532 }
533
c6f4c129
JB
534 switch (reg)
535 {
20a6ec49
MD
536 case 37: return I387_FCTRL_REGNUM (tdep);
537 case 38: return I387_FSTAT_REGNUM (tdep);
538 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
539 case 40: return I386_ES_REGNUM;
540 case 41: return I386_CS_REGNUM;
541 case 42: return I386_SS_REGNUM;
542 case 43: return I386_DS_REGNUM;
543 case 44: return I386_FS_REGNUM;
544 case 45: return I386_GS_REGNUM;
545 }
546
0fde2c53
DE
547 return -1;
548}
549
550/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
551 num_regs + num_pseudo_regs for other debug formats. */
552
553static int
554i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
555{
556 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
557
558 if (regnum == -1)
559 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
560 return regnum;
85540d8c 561}
5716833c 562
fc338970 563\f
917317f4 564
fc338970
MK
565/* This is the variable that is set with "set disassembly-flavor", and
566 its legitimate values. */
53904c9e
AC
567static const char att_flavor[] = "att";
568static const char intel_flavor[] = "intel";
40478521 569static const char *const valid_flavors[] =
c5aa993b 570{
c906108c
SS
571 att_flavor,
572 intel_flavor,
573 NULL
574};
53904c9e 575static const char *disassembly_flavor = att_flavor;
acd5c798 576\f
c906108c 577
acd5c798
MK
578/* Use the program counter to determine the contents and size of a
579 breakpoint instruction. Return a pointer to a string of bytes that
580 encode a breakpoint instruction, store the length of the string in
581 *LEN and optionally adjust *PC to point to the correct memory
582 location for inserting the breakpoint.
c906108c 583
acd5c798
MK
584 On the i386 we have a single breakpoint that fits in a single byte
585 and can be inserted anywhere.
c906108c 586
acd5c798 587 This function is 64-bit safe. */
63c0089f
MK
588
589static const gdb_byte *
67d57894 590i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 591{
63c0089f
MK
592 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
593
acd5c798
MK
594 *len = sizeof (break_insn);
595 return break_insn;
c906108c 596}
237fc4c9
PA
597\f
598/* Displaced instruction handling. */
599
1903f0e6
DE
600/* Skip the legacy instruction prefixes in INSN.
601 Not all prefixes are valid for any particular insn
602 but we needn't care, the insn will fault if it's invalid.
603 The result is a pointer to the first opcode byte,
604 or NULL if we run off the end of the buffer. */
605
606static gdb_byte *
607i386_skip_prefixes (gdb_byte *insn, size_t max_len)
608{
609 gdb_byte *end = insn + max_len;
610
611 while (insn < end)
612 {
613 switch (*insn)
614 {
615 case DATA_PREFIX_OPCODE:
616 case ADDR_PREFIX_OPCODE:
617 case CS_PREFIX_OPCODE:
618 case DS_PREFIX_OPCODE:
619 case ES_PREFIX_OPCODE:
620 case FS_PREFIX_OPCODE:
621 case GS_PREFIX_OPCODE:
622 case SS_PREFIX_OPCODE:
623 case LOCK_PREFIX_OPCODE:
624 case REPE_PREFIX_OPCODE:
625 case REPNE_PREFIX_OPCODE:
626 ++insn;
627 continue;
628 default:
629 return insn;
630 }
631 }
632
633 return NULL;
634}
237fc4c9
PA
635
636static int
1903f0e6 637i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 638{
1777feb0 639 /* jmp far (absolute address in operand). */
237fc4c9
PA
640 if (insn[0] == 0xea)
641 return 1;
642
643 if (insn[0] == 0xff)
644 {
1777feb0 645 /* jump near, absolute indirect (/4). */
237fc4c9
PA
646 if ((insn[1] & 0x38) == 0x20)
647 return 1;
648
1777feb0 649 /* jump far, absolute indirect (/5). */
237fc4c9
PA
650 if ((insn[1] & 0x38) == 0x28)
651 return 1;
652 }
653
654 return 0;
655}
656
c2170eef
MM
657/* Return non-zero if INSN is a jump, zero otherwise. */
658
659static int
660i386_jmp_p (const gdb_byte *insn)
661{
662 /* jump short, relative. */
663 if (insn[0] == 0xeb)
664 return 1;
665
666 /* jump near, relative. */
667 if (insn[0] == 0xe9)
668 return 1;
669
670 return i386_absolute_jmp_p (insn);
671}
672
237fc4c9 673static int
1903f0e6 674i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 675{
1777feb0 676 /* call far, absolute. */
237fc4c9
PA
677 if (insn[0] == 0x9a)
678 return 1;
679
680 if (insn[0] == 0xff)
681 {
1777feb0 682 /* Call near, absolute indirect (/2). */
237fc4c9
PA
683 if ((insn[1] & 0x38) == 0x10)
684 return 1;
685
1777feb0 686 /* Call far, absolute indirect (/3). */
237fc4c9
PA
687 if ((insn[1] & 0x38) == 0x18)
688 return 1;
689 }
690
691 return 0;
692}
693
694static int
1903f0e6 695i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
696{
697 switch (insn[0])
698 {
1777feb0 699 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 700 case 0xc3: /* ret near */
1777feb0 701 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
702 case 0xcb: /* ret far */
703 case 0xcf: /* iret */
704 return 1;
705
706 default:
707 return 0;
708 }
709}
710
711static int
1903f0e6 712i386_call_p (const gdb_byte *insn)
237fc4c9
PA
713{
714 if (i386_absolute_call_p (insn))
715 return 1;
716
1777feb0 717 /* call near, relative. */
237fc4c9
PA
718 if (insn[0] == 0xe8)
719 return 1;
720
721 return 0;
722}
723
237fc4c9
PA
724/* Return non-zero if INSN is a system call, and set *LENGTHP to its
725 length in bytes. Otherwise, return zero. */
1903f0e6 726
237fc4c9 727static int
b55078be 728i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 729{
9a7f938f
JK
730 /* Is it 'int $0x80'? */
731 if ((insn[0] == 0xcd && insn[1] == 0x80)
732 /* Or is it 'sysenter'? */
733 || (insn[0] == 0x0f && insn[1] == 0x34)
734 /* Or is it 'syscall'? */
735 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
736 {
737 *lengthp = 2;
738 return 1;
739 }
740
741 return 0;
742}
743
c2170eef
MM
744/* The gdbarch insn_is_call method. */
745
746static int
747i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
748{
749 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
750
751 read_code (addr, buf, I386_MAX_INSN_LEN);
752 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
753
754 return i386_call_p (insn);
755}
756
757/* The gdbarch insn_is_ret method. */
758
759static int
760i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
761{
762 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
763
764 read_code (addr, buf, I386_MAX_INSN_LEN);
765 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
766
767 return i386_ret_p (insn);
768}
769
770/* The gdbarch insn_is_jump method. */
771
772static int
773i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
774{
775 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
776
777 read_code (addr, buf, I386_MAX_INSN_LEN);
778 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
779
780 return i386_jmp_p (insn);
781}
782
b55078be
DE
783/* Some kernels may run one past a syscall insn, so we have to cope.
784 Otherwise this is just simple_displaced_step_copy_insn. */
785
786struct displaced_step_closure *
787i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
788 CORE_ADDR from, CORE_ADDR to,
789 struct regcache *regs)
790{
791 size_t len = gdbarch_max_insn_length (gdbarch);
224c3ddb 792 gdb_byte *buf = (gdb_byte *) xmalloc (len);
b55078be
DE
793
794 read_memory (from, buf, len);
795
796 /* GDB may get control back after the insn after the syscall.
797 Presumably this is a kernel bug.
798 If this is a syscall, make sure there's a nop afterwards. */
799 {
800 int syscall_length;
801 gdb_byte *insn;
802
803 insn = i386_skip_prefixes (buf, len);
804 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
805 insn[syscall_length] = NOP_OPCODE;
806 }
807
808 write_memory (to, buf, len);
809
810 if (debug_displaced)
811 {
812 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
813 paddress (gdbarch, from), paddress (gdbarch, to));
814 displaced_step_dump_bytes (gdb_stdlog, buf, len);
815 }
816
817 return (struct displaced_step_closure *) buf;
818}
819
237fc4c9
PA
820/* Fix up the state of registers and memory after having single-stepped
821 a displaced instruction. */
1903f0e6 822
237fc4c9
PA
823void
824i386_displaced_step_fixup (struct gdbarch *gdbarch,
825 struct displaced_step_closure *closure,
826 CORE_ADDR from, CORE_ADDR to,
827 struct regcache *regs)
828{
e17a4113
UW
829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
830
237fc4c9
PA
831 /* The offset we applied to the instruction's address.
832 This could well be negative (when viewed as a signed 32-bit
833 value), but ULONGEST won't reflect that, so take care when
834 applying it. */
835 ULONGEST insn_offset = to - from;
836
837 /* Since we use simple_displaced_step_copy_insn, our closure is a
838 copy of the instruction. */
839 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
840 /* The start of the insn, needed in case we see some prefixes. */
841 gdb_byte *insn_start = insn;
237fc4c9
PA
842
843 if (debug_displaced)
844 fprintf_unfiltered (gdb_stdlog,
5af949e3 845 "displaced: fixup (%s, %s), "
237fc4c9 846 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
847 paddress (gdbarch, from), paddress (gdbarch, to),
848 insn[0], insn[1]);
237fc4c9
PA
849
850 /* The list of issues to contend with here is taken from
851 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
852 Yay for Free Software! */
853
854 /* Relocate the %eip, if necessary. */
855
1903f0e6
DE
856 /* The instruction recognizers we use assume any leading prefixes
857 have been skipped. */
858 {
859 /* This is the size of the buffer in closure. */
860 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
861 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
862 /* If there are too many prefixes, just ignore the insn.
863 It will fault when run. */
864 if (opcode != NULL)
865 insn = opcode;
866 }
867
237fc4c9
PA
868 /* Except in the case of absolute or indirect jump or call
869 instructions, or a return instruction, the new eip is relative to
870 the displaced instruction; make it relative. Well, signal
871 handler returns don't need relocation either, but we use the
872 value of %eip to recognize those; see below. */
873 if (! i386_absolute_jmp_p (insn)
874 && ! i386_absolute_call_p (insn)
875 && ! i386_ret_p (insn))
876 {
877 ULONGEST orig_eip;
b55078be 878 int insn_len;
237fc4c9
PA
879
880 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
881
882 /* A signal trampoline system call changes the %eip, resuming
883 execution of the main program after the signal handler has
884 returned. That makes them like 'return' instructions; we
885 shouldn't relocate %eip.
886
887 But most system calls don't, and we do need to relocate %eip.
888
889 Our heuristic for distinguishing these cases: if stepping
890 over the system call instruction left control directly after
891 the instruction, the we relocate --- control almost certainly
892 doesn't belong in the displaced copy. Otherwise, we assume
893 the instruction has put control where it belongs, and leave
894 it unrelocated. Goodness help us if there are PC-relative
895 system calls. */
896 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
897 && orig_eip != to + (insn - insn_start) + insn_len
898 /* GDB can get control back after the insn after the syscall.
899 Presumably this is a kernel bug.
900 i386_displaced_step_copy_insn ensures its a nop,
901 we add one to the length for it. */
902 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
903 {
904 if (debug_displaced)
905 fprintf_unfiltered (gdb_stdlog,
906 "displaced: syscall changed %%eip; "
907 "not relocating\n");
908 }
909 else
910 {
911 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
912
1903f0e6
DE
913 /* If we just stepped over a breakpoint insn, we don't backup
914 the pc on purpose; this is to match behaviour without
915 stepping. */
237fc4c9
PA
916
917 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
918
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
921 "displaced: "
5af949e3
UW
922 "relocated %%eip from %s to %s\n",
923 paddress (gdbarch, orig_eip),
924 paddress (gdbarch, eip));
237fc4c9
PA
925 }
926 }
927
928 /* If the instruction was PUSHFL, then the TF bit will be set in the
929 pushed value, and should be cleared. We'll leave this for later,
930 since GDB already messes up the TF flag when stepping over a
931 pushfl. */
932
933 /* If the instruction was a call, the return address now atop the
934 stack is the address following the copied instruction. We need
935 to make it the address following the original instruction. */
936 if (i386_call_p (insn))
937 {
938 ULONGEST esp;
939 ULONGEST retaddr;
940 const ULONGEST retaddr_len = 4;
941
942 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 943 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 944 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 945 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
946
947 if (debug_displaced)
948 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
949 "displaced: relocated return addr at %s to %s\n",
950 paddress (gdbarch, esp),
951 paddress (gdbarch, retaddr));
237fc4c9
PA
952 }
953}
dde08ee1
PA
954
955static void
956append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
957{
958 target_write_memory (*to, buf, len);
959 *to += len;
960}
961
962static void
963i386_relocate_instruction (struct gdbarch *gdbarch,
964 CORE_ADDR *to, CORE_ADDR oldloc)
965{
966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
967 gdb_byte buf[I386_MAX_INSN_LEN];
968 int offset = 0, rel32, newrel;
969 int insn_length;
970 gdb_byte *insn = buf;
971
972 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
973
974 insn_length = gdb_buffered_insn_length (gdbarch, insn,
975 I386_MAX_INSN_LEN, oldloc);
976
977 /* Get past the prefixes. */
978 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
979
980 /* Adjust calls with 32-bit relative addresses as push/jump, with
981 the address pushed being the location where the original call in
982 the user program would return to. */
983 if (insn[0] == 0xe8)
984 {
985 gdb_byte push_buf[16];
986 unsigned int ret_addr;
987
988 /* Where "ret" in the original code will return to. */
989 ret_addr = oldloc + insn_length;
1777feb0 990 push_buf[0] = 0x68; /* pushq $... */
144db827 991 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
992 /* Push the push. */
993 append_insns (to, 5, push_buf);
994
995 /* Convert the relative call to a relative jump. */
996 insn[0] = 0xe9;
997
998 /* Adjust the destination offset. */
999 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1000 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1001 store_signed_integer (insn + 1, 4, byte_order, newrel);
1002
1003 if (debug_displaced)
1004 fprintf_unfiltered (gdb_stdlog,
1005 "Adjusted insn rel32=%s at %s to"
1006 " rel32=%s at %s\n",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1009
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1012 return;
1013 }
1014
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1016 handled above. */
1017 if (insn[0] == 0xe9)
1018 offset = 1;
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1021 offset = 2;
1022
1023 if (offset)
1024 {
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
f4a1794a 1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1028 if (debug_displaced)
1029 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1030 "Adjusted insn rel32=%s at %s to"
1031 " rel32=%s at %s\n",
dde08ee1
PA
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039}
1040
fc338970 1041\f
acd5c798
MK
1042#ifdef I386_REGNO_TO_SYMMETRY
1043#error "The Sequent Symmetry is no longer supported."
1044#endif
c906108c 1045
acd5c798
MK
1046/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
c906108c 1049
acd5c798
MK
1050/* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
a3386186 1052#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1053
1054struct i386_frame_cache
c906108c 1055{
acd5c798
MK
1056 /* Base address. */
1057 CORE_ADDR base;
8fbca658 1058 int base_p;
772562f8 1059 LONGEST sp_offset;
acd5c798
MK
1060 CORE_ADDR pc;
1061
fd13a04a
AC
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1064 CORE_ADDR saved_sp;
e0c62198 1065 int saved_sp_reg;
acd5c798
MK
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070};
1071
1072/* Allocate and initialize a frame cache. */
1073
1074static struct i386_frame_cache *
fd13a04a 1075i386_alloc_frame_cache (void)
acd5c798
MK
1076{
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
8fbca658 1083 cache->base_p = 0;
acd5c798
MK
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
fd13a04a
AC
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
acd5c798 1092 cache->saved_sp = 0;
e0c62198 1093 cache->saved_sp_reg = -1;
acd5c798
MK
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100}
c906108c 1101
acd5c798
MK
1102/* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
c906108c 1104
acd5c798 1105static CORE_ADDR
e17a4113 1106i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1107{
e17a4113 1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1109 gdb_byte op;
acd5c798
MK
1110 long delta = 0;
1111 int data16 = 0;
c906108c 1112
0865b04a 1113 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1114 return pc;
1115
acd5c798 1116 if (op == 0x66)
c906108c 1117 {
c906108c 1118 data16 = 1;
0865b04a
YQ
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1121 }
1122
acd5c798 1123 switch (op)
c906108c
SS
1124 {
1125 case 0xe9:
fc338970 1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1127 if (data16)
1128 {
e17a4113 1129 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1130
fc338970
MK
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
acd5c798 1133 delta += 4;
c906108c
SS
1134 }
1135 else
1136 {
e17a4113 1137 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1138
acd5c798
MK
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
c906108c
SS
1141 }
1142 break;
1143 case 0xeb:
fc338970 1144 /* Relative jump, disp8 (ignore data16). */
e17a4113 1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1146
acd5c798 1147 delta += data16 + 2;
c906108c
SS
1148 break;
1149 }
c906108c 1150
acd5c798
MK
1151 return pc + delta;
1152}
fc338970 1153
acd5c798
MK
1154/* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
c906108c 1159
acd5c798
MK
1160static CORE_ADDR
1161i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
c906108c 1163{
acd5c798
MK
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
63c0089f
MK
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
c906108c 1178
acd5c798
MK
1179 if (current_pc <= pc)
1180 return pc;
1181
0865b04a 1182 if (target_read_code (pc, &op, 1))
3dcabaa8 1183 return pc;
c906108c 1184
acd5c798
MK
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
c906108c 1187
0865b04a 1188 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1189 return pc;
1190
acd5c798
MK
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
c906108c 1193
acd5c798 1194 if (current_pc == pc)
c906108c 1195 {
acd5c798
MK
1196 cache->sp_offset += 4;
1197 return current_pc;
c906108c
SS
1198 }
1199
acd5c798 1200 if (current_pc == pc + 1)
c906108c 1201 {
acd5c798
MK
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210}
1211
1212static CORE_ADDR
1213i386_skip_probe (CORE_ADDR pc)
1214{
1215 /* A function may start with
fc338970 1216
acd5c798
MK
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
fc338970 1220
acd5c798
MK
1221 followed by
1222
1223 pushl %ebp
fc338970 1224
acd5c798 1225 etc. */
63c0089f
MK
1226 gdb_byte buf[8];
1227 gdb_byte op;
fc338970 1228
0865b04a 1229 if (target_read_code (pc, &op, 1))
3dcabaa8 1230 return pc;
acd5c798
MK
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
c906108c 1235
acd5c798
MK
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
c906108c 1238 if (op == 0x68)
acd5c798 1239 delta = 5;
c906108c 1240 else
acd5c798 1241 delta = 2;
c906108c 1242
acd5c798
MK
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1247 pc += delta + sizeof (buf);
c906108c
SS
1248 }
1249
acd5c798
MK
1250 return pc;
1251}
1252
92dd43fa
MK
1253/* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259static CORE_ADDR
1260i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262{
e0c62198
L
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
92dd43fa 1297 };
92dd43fa 1298
0865b04a 1299 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1362 return pc;
1363
e0c62198
L
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
92dd43fa 1366
e0c62198 1367 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1368}
1369
37bdc87e 1370/* Maximum instruction length we need to handle. */
237fc4c9 1371#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1372
1373/* Instruction description. */
1374struct i386_insn
1375{
1376 size_t len;
237fc4c9
PA
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1379};
1380
a3fcb948 1381/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1382
a3fcb948
JG
1383static int
1384i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1385{
63c0089f 1386 gdb_byte op;
37bdc87e 1387
0865b04a 1388 if (target_read_code (pc, &op, 1))
a3fcb948 1389 return 0;
37bdc87e 1390
a3fcb948 1391 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1392 {
a3fcb948
JG
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
37bdc87e 1396
a3fcb948
JG
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1399
0865b04a 1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1401 return 0;
613e8135 1402
a3fcb948
JG
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
37bdc87e 1407 }
a3fcb948
JG
1408 return insn_matched;
1409 }
1410 return 0;
1411}
1412
1413/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417static struct i386_insn *
1418i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419{
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
37bdc87e
MK
1426 }
1427
1428 return NULL;
1429}
1430
a3fcb948
JG
1431/* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434static int
1435i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436{
1437 CORE_ADDR current_pc;
1438 int ix, i;
a3fcb948
JG
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
8bbdd3f4 1445 current_pc = pc;
a3fcb948
JG
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
8bbdd3f4
MK
1449 current_pc -= insn_patterns[i].len;
1450
a3fcb948
JG
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
a3fcb948
JG
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465}
1466
37bdc87e
MK
1467/* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473struct i386_insn i386_frame_setup_skip_insns[] =
1474{
1777feb0 1475 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB adressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520};
1521
e11481da
PM
1522
1523/* Check whether PC points to a no-op instruction. */
1524static CORE_ADDR
1525i386_skip_noop (CORE_ADDR pc)
1526{
1527 gdb_byte op;
1528 int check = 1;
1529
0865b04a 1530 if (target_read_code (pc, &op, 1))
3dcabaa8 1531 return pc;
e11481da
PM
1532
1533 while (check)
1534 {
1535 check = 0;
1536 /* Ignore `nop' instruction. */
1537 if (op == 0x90)
1538 {
1539 pc += 1;
0865b04a 1540 if (target_read_code (pc, &op, 1))
3dcabaa8 1541 return pc;
e11481da
PM
1542 check = 1;
1543 }
1544 /* Ignore no-op instruction `mov %edi, %edi'.
1545 Microsoft system dlls often start with
1546 a `mov %edi,%edi' instruction.
1547 The 5 bytes before the function start are
1548 filled with `nop' instructions.
1549 This pattern can be used for hot-patching:
1550 The `mov %edi, %edi' instruction can be replaced by a
1551 near jump to the location of the 5 `nop' instructions
1552 which can be replaced by a 32-bit jump to anywhere
1553 in the 32-bit address space. */
1554
1555 else if (op == 0x8b)
1556 {
0865b04a 1557 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1558 return pc;
1559
e11481da
PM
1560 if (op == 0xff)
1561 {
1562 pc += 2;
0865b04a 1563 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1564 return pc;
1565
e11481da
PM
1566 check = 1;
1567 }
1568 }
1569 }
1570 return pc;
1571}
1572
acd5c798
MK
1573/* Check whether PC points at a code that sets up a new stack frame.
1574 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1575 instruction after the sequence that sets up the frame or LIMIT,
1576 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1577
1578static CORE_ADDR
e17a4113
UW
1579i386_analyze_frame_setup (struct gdbarch *gdbarch,
1580 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1581 struct i386_frame_cache *cache)
1582{
e17a4113 1583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1584 struct i386_insn *insn;
63c0089f 1585 gdb_byte op;
26604a34 1586 int skip = 0;
acd5c798 1587
37bdc87e
MK
1588 if (limit <= pc)
1589 return limit;
acd5c798 1590
0865b04a 1591 if (target_read_code (pc, &op, 1))
3dcabaa8 1592 return pc;
acd5c798 1593
c906108c 1594 if (op == 0x55) /* pushl %ebp */
c5aa993b 1595 {
acd5c798
MK
1596 /* Take into account that we've executed the `pushl %ebp' that
1597 starts this instruction sequence. */
fd13a04a 1598 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1599 cache->sp_offset += 4;
37bdc87e 1600 pc++;
acd5c798
MK
1601
1602 /* If that's all, return now. */
37bdc87e
MK
1603 if (limit <= pc)
1604 return limit;
26604a34 1605
b4632131 1606 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1607 GCC into the prologue and skip them. At this point in the
1608 prologue, code should only touch the scratch registers %eax,
1609 %ecx and %edx, so while the number of posibilities is sheer,
1610 it is limited.
5daa5b4e 1611
26604a34
MK
1612 Make sure we only skip these instructions if we later see the
1613 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1614 while (pc + skip < limit)
26604a34 1615 {
37bdc87e
MK
1616 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1617 if (insn == NULL)
1618 break;
b4632131 1619
37bdc87e 1620 skip += insn->len;
26604a34
MK
1621 }
1622
37bdc87e
MK
1623 /* If that's all, return now. */
1624 if (limit <= pc + skip)
1625 return limit;
1626
0865b04a 1627 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1628 return pc + skip;
37bdc87e 1629
30f8135b
YQ
1630 /* The i386 prologue looks like
1631
1632 push %ebp
1633 mov %esp,%ebp
1634 sub $0x10,%esp
1635
1636 and a different prologue can be generated for atom.
1637
1638 push %ebp
1639 lea (%esp),%ebp
1640 lea -0x10(%esp),%esp
1641
1642 We handle both of them here. */
1643
acd5c798 1644 switch (op)
c906108c 1645 {
30f8135b 1646 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1647 case 0x8b:
0865b04a 1648 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1649 != 0xec)
37bdc87e 1650 return pc;
30f8135b 1651 pc += (skip + 2);
c906108c
SS
1652 break;
1653 case 0x89:
0865b04a 1654 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1655 != 0xe5)
37bdc87e 1656 return pc;
30f8135b
YQ
1657 pc += (skip + 2);
1658 break;
1659 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1660 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1661 != 0x242c)
1662 return pc;
1663 pc += (skip + 3);
c906108c
SS
1664 break;
1665 default:
37bdc87e 1666 return pc;
c906108c 1667 }
acd5c798 1668
26604a34
MK
1669 /* OK, we actually have a frame. We just don't know how large
1670 it is yet. Set its size to zero. We'll adjust it if
1671 necessary. We also now commit to skipping the special
1672 instructions mentioned before. */
acd5c798
MK
1673 cache->locals = 0;
1674
1675 /* If that's all, return now. */
37bdc87e
MK
1676 if (limit <= pc)
1677 return limit;
acd5c798 1678
fc338970
MK
1679 /* Check for stack adjustment
1680
acd5c798 1681 subl $XXX, %esp
30f8135b
YQ
1682 or
1683 lea -XXX(%esp),%esp
fc338970 1684
fd35795f 1685 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1686 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1687 if (target_read_code (pc, &op, 1))
3dcabaa8 1688 return pc;
c906108c
SS
1689 if (op == 0x83)
1690 {
fd35795f 1691 /* `subl' with 8-bit immediate. */
0865b04a 1692 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1693 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1694 return pc;
acd5c798 1695
37bdc87e
MK
1696 /* `subl' with signed 8-bit immediate (though it wouldn't
1697 make sense to be negative). */
0865b04a 1698 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1699 return pc + 3;
c906108c
SS
1700 }
1701 else if (op == 0x81)
1702 {
fd35795f 1703 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1704 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1705 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1706 return pc;
acd5c798 1707
fd35795f 1708 /* It is `subl' with a 32-bit immediate. */
0865b04a 1709 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1710 return pc + 6;
c906108c 1711 }
30f8135b
YQ
1712 else if (op == 0x8d)
1713 {
1714 /* The ModR/M byte is 0x64. */
0865b04a 1715 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1716 return pc;
1717 /* 'lea' with 8-bit displacement. */
0865b04a 1718 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1719 return pc + 4;
1720 }
c906108c
SS
1721 else
1722 {
30f8135b 1723 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1724 return pc;
c906108c
SS
1725 }
1726 }
37bdc87e 1727 else if (op == 0xc8) /* enter */
c906108c 1728 {
0865b04a 1729 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1730 return pc + 4;
c906108c 1731 }
21d0e8a4 1732
acd5c798 1733 return pc;
21d0e8a4
MK
1734}
1735
acd5c798
MK
1736/* Check whether PC points at code that saves registers on the stack.
1737 If so, it updates CACHE and returns the address of the first
1738 instruction after the register saves or CURRENT_PC, whichever is
1739 smaller. Otherwise, return PC. */
6bff26de
MK
1740
1741static CORE_ADDR
acd5c798
MK
1742i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1743 struct i386_frame_cache *cache)
6bff26de 1744{
99ab4326 1745 CORE_ADDR offset = 0;
63c0089f 1746 gdb_byte op;
99ab4326 1747 int i;
c0d1d883 1748
99ab4326
MK
1749 if (cache->locals > 0)
1750 offset -= cache->locals;
1751 for (i = 0; i < 8 && pc < current_pc; i++)
1752 {
0865b04a 1753 if (target_read_code (pc, &op, 1))
3dcabaa8 1754 return pc;
99ab4326
MK
1755 if (op < 0x50 || op > 0x57)
1756 break;
0d17c81d 1757
99ab4326
MK
1758 offset -= 4;
1759 cache->saved_regs[op - 0x50] = offset;
1760 cache->sp_offset += 4;
1761 pc++;
6bff26de
MK
1762 }
1763
acd5c798 1764 return pc;
22797942
AC
1765}
1766
acd5c798
MK
1767/* Do a full analysis of the prologue at PC and update CACHE
1768 accordingly. Bail out early if CURRENT_PC is reached. Return the
1769 address where the analysis stopped.
ed84f6c1 1770
fc338970
MK
1771 We handle these cases:
1772
1773 The startup sequence can be at the start of the function, or the
1774 function can start with a branch to startup code at the end.
1775
1776 %ebp can be set up with either the 'enter' instruction, or "pushl
1777 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1778 once used in the System V compiler).
1779
1780 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1781 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1782 16-bit unsigned argument for space to allocate, and the 'addl'
1783 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1784
1785 Next, the registers used by this function are pushed. With the
1786 System V compiler they will always be in the order: %edi, %esi,
1787 %ebx (and sometimes a harmless bug causes it to also save but not
1788 restore %eax); however, the code below is willing to see the pushes
1789 in any order, and will handle up to 8 of them.
1790
1791 If the setup sequence is at the end of the function, then the next
1792 instruction will be a branch back to the start. */
c906108c 1793
acd5c798 1794static CORE_ADDR
e17a4113
UW
1795i386_analyze_prologue (struct gdbarch *gdbarch,
1796 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1797 struct i386_frame_cache *cache)
c906108c 1798{
e11481da 1799 pc = i386_skip_noop (pc);
e17a4113 1800 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1801 pc = i386_analyze_struct_return (pc, current_pc, cache);
1802 pc = i386_skip_probe (pc);
92dd43fa 1803 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1804 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1805 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1806}
1807
fc338970 1808/* Return PC of first real instruction. */
c906108c 1809
3a1e71e3 1810static CORE_ADDR
6093d2eb 1811i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1812{
e17a4113
UW
1813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1814
63c0089f 1815 static gdb_byte pic_pat[6] =
acd5c798
MK
1816 {
1817 0xe8, 0, 0, 0, 0, /* call 0x0 */
1818 0x5b, /* popl %ebx */
c5aa993b 1819 };
acd5c798
MK
1820 struct i386_frame_cache cache;
1821 CORE_ADDR pc;
63c0089f 1822 gdb_byte op;
acd5c798 1823 int i;
56bf0743 1824 CORE_ADDR func_addr;
4e879fc2 1825
56bf0743
KB
1826 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1827 {
1828 CORE_ADDR post_prologue_pc
1829 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1830 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1831
1832 /* Clang always emits a line note before the prologue and another
1833 one after. We trust clang to emit usable line notes. */
1834 if (post_prologue_pc
43f3e411
DE
1835 && (cust != NULL
1836 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 1837 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
56bf0743
KB
1838 return max (start_pc, post_prologue_pc);
1839 }
1840
e0f33b1f 1841 cache.locals = -1;
e17a4113 1842 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1843 if (cache.locals < 0)
1844 return start_pc;
c5aa993b 1845
acd5c798 1846 /* Found valid frame setup. */
c906108c 1847
fc338970
MK
1848 /* The native cc on SVR4 in -K PIC mode inserts the following code
1849 to get the address of the global offset table (GOT) into register
acd5c798
MK
1850 %ebx:
1851
fc338970
MK
1852 call 0x0
1853 popl %ebx
1854 movl %ebx,x(%ebp) (optional)
1855 addl y,%ebx
1856
c906108c
SS
1857 This code is with the rest of the prologue (at the end of the
1858 function), so we have to skip it to get to the first real
1859 instruction at the start of the function. */
c5aa993b 1860
c906108c
SS
1861 for (i = 0; i < 6; i++)
1862 {
0865b04a 1863 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1864 return pc;
1865
c5aa993b 1866 if (pic_pat[i] != op)
c906108c
SS
1867 break;
1868 }
1869 if (i == 6)
1870 {
acd5c798
MK
1871 int delta = 6;
1872
0865b04a 1873 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1874 return pc;
c906108c 1875
c5aa993b 1876 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1877 {
0865b04a 1878 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1879
fc338970 1880 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1881 delta += 3;
fc338970 1882 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1883 delta += 6;
fc338970 1884 else /* Unexpected instruction. */
acd5c798
MK
1885 delta = 0;
1886
0865b04a 1887 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1888 return pc;
c906108c 1889 }
acd5c798 1890
c5aa993b 1891 /* addl y,%ebx */
acd5c798 1892 if (delta > 0 && op == 0x81
0865b04a 1893 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1894 == 0xc3)
c906108c 1895 {
acd5c798 1896 pc += delta + 6;
c906108c
SS
1897 }
1898 }
c5aa993b 1899
e63bbc88
MK
1900 /* If the function starts with a branch (to startup code at the end)
1901 the last instruction should bring us back to the first
1902 instruction of the real code. */
e17a4113
UW
1903 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1904 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1905
1906 return pc;
c906108c
SS
1907}
1908
4309257c
PM
1909/* Check that the code pointed to by PC corresponds to a call to
1910 __main, skip it if so. Return PC otherwise. */
1911
1912CORE_ADDR
1913i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1914{
e17a4113 1915 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1916 gdb_byte op;
1917
0865b04a 1918 if (target_read_code (pc, &op, 1))
3dcabaa8 1919 return pc;
4309257c
PM
1920 if (op == 0xe8)
1921 {
1922 gdb_byte buf[4];
1923
0865b04a 1924 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1925 {
1926 /* Make sure address is computed correctly as a 32bit
1927 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1928 struct bound_minimal_symbol s;
e17a4113 1929 CORE_ADDR call_dest;
4309257c 1930
e17a4113 1931 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1932 call_dest = call_dest & 0xffffffffU;
1933 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1934 if (s.minsym != NULL
efd66ac6
TT
1935 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1936 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1937 pc += 5;
1938 }
1939 }
1940
1941 return pc;
1942}
1943
acd5c798 1944/* This function is 64-bit safe. */
93924b6b 1945
acd5c798
MK
1946static CORE_ADDR
1947i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1948{
63c0089f 1949 gdb_byte buf[8];
acd5c798 1950
875f8d0e 1951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1952 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1953}
acd5c798 1954\f
93924b6b 1955
acd5c798 1956/* Normal frames. */
c5aa993b 1957
8fbca658
PA
1958static void
1959i386_frame_cache_1 (struct frame_info *this_frame,
1960 struct i386_frame_cache *cache)
a7769679 1961{
e17a4113
UW
1962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1963 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1964 gdb_byte buf[4];
acd5c798
MK
1965 int i;
1966
8fbca658 1967 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1968
1969 /* In principle, for normal frames, %ebp holds the frame pointer,
1970 which holds the base address for the current stack frame.
1971 However, for functions that don't need it, the frame pointer is
1972 optional. For these "frameless" functions the frame pointer is
1973 actually the frame pointer of the calling frame. Signal
1974 trampolines are just a special case of a "frameless" function.
1975 They (usually) share their frame pointer with the frame that was
1976 in progress when the signal occurred. */
1977
10458914 1978 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1979 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1980 if (cache->base == 0)
620fa63a
PA
1981 {
1982 cache->base_p = 1;
1983 return;
1984 }
acd5c798
MK
1985
1986 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1987 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1988
acd5c798 1989 if (cache->pc != 0)
e17a4113
UW
1990 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1991 cache);
acd5c798
MK
1992
1993 if (cache->locals < 0)
1994 {
1995 /* We didn't find a valid frame, which means that CACHE->base
1996 currently holds the frame pointer for our calling frame. If
1997 we're at the start of a function, or somewhere half-way its
1998 prologue, the function's frame probably hasn't been fully
1999 setup yet. Try to reconstruct the base address for the stack
2000 frame by looking at the stack pointer. For truly "frameless"
2001 functions this might work too. */
2002
e0c62198 2003 if (cache->saved_sp_reg != -1)
92dd43fa 2004 {
8fbca658
PA
2005 /* Saved stack pointer has been saved. */
2006 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2007 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2008
92dd43fa
MK
2009 /* We're halfway aligning the stack. */
2010 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2011 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2012
2013 /* This will be added back below. */
2014 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2015 }
7618e12b 2016 else if (cache->pc != 0
0865b04a 2017 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2018 {
7618e12b
DJ
2019 /* We're in a known function, but did not find a frame
2020 setup. Assume that the function does not use %ebp.
2021 Alternatively, we may have jumped to an invalid
2022 address; in that case there is definitely no new
2023 frame in %ebp. */
10458914 2024 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2025 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2026 + cache->sp_offset;
92dd43fa 2027 }
7618e12b
DJ
2028 else
2029 /* We're in an unknown function. We could not find the start
2030 of the function to analyze the prologue; our best option is
2031 to assume a typical frame layout with the caller's %ebp
2032 saved. */
2033 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2034 }
2035
8fbca658
PA
2036 if (cache->saved_sp_reg != -1)
2037 {
2038 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2039 register may be unavailable). */
2040 if (cache->saved_sp == 0
ca9d61b9
JB
2041 && deprecated_frame_register_read (this_frame,
2042 cache->saved_sp_reg, buf))
8fbca658
PA
2043 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2044 }
acd5c798
MK
2045 /* Now that we have the base address for the stack frame we can
2046 calculate the value of %esp in the calling frame. */
8fbca658 2047 else if (cache->saved_sp == 0)
92dd43fa 2048 cache->saved_sp = cache->base + 8;
a7769679 2049
acd5c798
MK
2050 /* Adjust all the saved registers such that they contain addresses
2051 instead of offsets. */
2052 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2053 if (cache->saved_regs[i] != -1)
2054 cache->saved_regs[i] += cache->base;
acd5c798 2055
8fbca658
PA
2056 cache->base_p = 1;
2057}
2058
2059static struct i386_frame_cache *
2060i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2061{
8fbca658
PA
2062 struct i386_frame_cache *cache;
2063
2064 if (*this_cache)
9a3c8263 2065 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2066
2067 cache = i386_alloc_frame_cache ();
2068 *this_cache = cache;
2069
492d29ea 2070 TRY
8fbca658
PA
2071 {
2072 i386_frame_cache_1 (this_frame, cache);
2073 }
492d29ea 2074 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2075 {
2076 if (ex.error != NOT_AVAILABLE_ERROR)
2077 throw_exception (ex);
2078 }
492d29ea 2079 END_CATCH
8fbca658 2080
acd5c798 2081 return cache;
a7769679
MK
2082}
2083
3a1e71e3 2084static void
10458914 2085i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2086 struct frame_id *this_id)
c906108c 2087{
10458914 2088 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2089
5ce0145d
PA
2090 if (!cache->base_p)
2091 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2092 else if (cache->base == 0)
2093 {
2094 /* This marks the outermost frame. */
2095 }
2096 else
2097 {
2098 /* See the end of i386_push_dummy_call. */
2099 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2100 }
acd5c798
MK
2101}
2102
8fbca658
PA
2103static enum unwind_stop_reason
2104i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2105 void **this_cache)
2106{
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 return UNWIND_UNAVAILABLE;
2111
2112 /* This marks the outermost frame. */
2113 if (cache->base == 0)
2114 return UNWIND_OUTERMOST;
2115
2116 return UNWIND_NO_REASON;
2117}
2118
10458914
DJ
2119static struct value *
2120i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2121 int regnum)
acd5c798 2122{
10458914 2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2124
2125 gdb_assert (regnum >= 0);
2126
2127 /* The System V ABI says that:
2128
2129 "The flags register contains the system flags, such as the
2130 direction flag and the carry flag. The direction flag must be
2131 set to the forward (that is, zero) direction before entry and
2132 upon exit from a function. Other user flags have no specified
2133 role in the standard calling sequence and are not preserved."
2134
2135 To guarantee the "upon exit" part of that statement we fake a
2136 saved flags register that has its direction flag cleared.
2137
2138 Note that GCC doesn't seem to rely on the fact that the direction
2139 flag is cleared after a function return; it always explicitly
2140 clears the flag before operations where it matters.
2141
2142 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2143 right thing to do. The way we fake the flags register here makes
2144 it impossible to change it. */
2145
2146 if (regnum == I386_EFLAGS_REGNUM)
2147 {
10458914 2148 ULONGEST val;
c5aa993b 2149
10458914
DJ
2150 val = get_frame_register_unsigned (this_frame, regnum);
2151 val &= ~(1 << 10);
2152 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2153 }
1211c4e4 2154
acd5c798 2155 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2156 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2157
fcf250e2
UW
2158 if (regnum == I386_ESP_REGNUM
2159 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2160 {
2161 /* If the SP has been saved, but we don't know where, then this
2162 means that SAVED_SP_REG register was found unavailable back
2163 when we built the cache. */
fcf250e2 2164 if (cache->saved_sp == 0)
8fbca658
PA
2165 return frame_unwind_got_register (this_frame, regnum,
2166 cache->saved_sp_reg);
2167 else
2168 return frame_unwind_got_constant (this_frame, regnum,
2169 cache->saved_sp);
2170 }
acd5c798 2171
fd13a04a 2172 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2173 return frame_unwind_got_memory (this_frame, regnum,
2174 cache->saved_regs[regnum]);
fd13a04a 2175
10458914 2176 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2177}
2178
2179static const struct frame_unwind i386_frame_unwind =
2180{
2181 NORMAL_FRAME,
8fbca658 2182 i386_frame_unwind_stop_reason,
acd5c798 2183 i386_frame_this_id,
10458914
DJ
2184 i386_frame_prev_register,
2185 NULL,
2186 default_frame_sniffer
acd5c798 2187};
06da04c6
MS
2188
2189/* Normal frames, but in a function epilogue. */
2190
c9cf6e20
MG
2191/* Implement the stack_frame_destroyed_p gdbarch method.
2192
2193 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2194 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2195 the function's stack frame. */
2196
2197static int
c9cf6e20 2198i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2199{
2200 gdb_byte insn;
43f3e411 2201 struct compunit_symtab *cust;
e0d00bc7 2202
43f3e411
DE
2203 cust = find_pc_compunit_symtab (pc);
2204 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2205 return 0;
06da04c6
MS
2206
2207 if (target_read_memory (pc, &insn, 1))
2208 return 0; /* Can't read memory at pc. */
2209
2210 if (insn != 0xc3) /* 'ret' instruction. */
2211 return 0;
2212
2213 return 1;
2214}
2215
2216static int
2217i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2218 struct frame_info *this_frame,
2219 void **this_prologue_cache)
2220{
2221 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2222 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2223 get_frame_pc (this_frame));
06da04c6
MS
2224 else
2225 return 0;
2226}
2227
2228static struct i386_frame_cache *
2229i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2230{
06da04c6 2231 struct i386_frame_cache *cache;
0d6c2135 2232 CORE_ADDR sp;
06da04c6
MS
2233
2234 if (*this_cache)
9a3c8263 2235 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2236
2237 cache = i386_alloc_frame_cache ();
2238 *this_cache = cache;
2239
492d29ea 2240 TRY
8fbca658 2241 {
0d6c2135 2242 cache->pc = get_frame_func (this_frame);
06da04c6 2243
0d6c2135
MK
2244 /* At this point the stack looks as if we just entered the
2245 function, with the return address at the top of the
2246 stack. */
2247 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2248 cache->base = sp + cache->sp_offset;
8fbca658 2249 cache->saved_sp = cache->base + 8;
8fbca658 2250 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2251
8fbca658
PA
2252 cache->base_p = 1;
2253 }
492d29ea 2254 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2255 {
2256 if (ex.error != NOT_AVAILABLE_ERROR)
2257 throw_exception (ex);
2258 }
492d29ea 2259 END_CATCH
06da04c6
MS
2260
2261 return cache;
2262}
2263
8fbca658
PA
2264static enum unwind_stop_reason
2265i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2266 void **this_cache)
2267{
0d6c2135
MK
2268 struct i386_frame_cache *cache =
2269 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2270
2271 if (!cache->base_p)
2272 return UNWIND_UNAVAILABLE;
2273
2274 return UNWIND_NO_REASON;
2275}
2276
06da04c6
MS
2277static void
2278i386_epilogue_frame_this_id (struct frame_info *this_frame,
2279 void **this_cache,
2280 struct frame_id *this_id)
2281{
0d6c2135
MK
2282 struct i386_frame_cache *cache =
2283 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2284
8fbca658 2285 if (!cache->base_p)
5ce0145d
PA
2286 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2287 else
2288 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2289}
2290
0d6c2135
MK
2291static struct value *
2292i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2293 void **this_cache, int regnum)
2294{
2295 /* Make sure we've initialized the cache. */
2296 i386_epilogue_frame_cache (this_frame, this_cache);
2297
2298 return i386_frame_prev_register (this_frame, this_cache, regnum);
2299}
2300
06da04c6
MS
2301static const struct frame_unwind i386_epilogue_frame_unwind =
2302{
2303 NORMAL_FRAME,
8fbca658 2304 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2305 i386_epilogue_frame_this_id,
0d6c2135 2306 i386_epilogue_frame_prev_register,
06da04c6
MS
2307 NULL,
2308 i386_epilogue_frame_sniffer
2309};
acd5c798
MK
2310\f
2311
a3fcb948
JG
2312/* Stack-based trampolines. */
2313
2314/* These trampolines are used on cross x86 targets, when taking the
2315 address of a nested function. When executing these trampolines,
2316 no stack frame is set up, so we are in a similar situation as in
2317 epilogues and i386_epilogue_frame_this_id can be re-used. */
2318
2319/* Static chain passed in register. */
2320
2321struct i386_insn i386_tramp_chain_in_reg_insns[] =
2322{
2323 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2324 { 5, { 0xb8 }, { 0xfe } },
2325
2326 /* `jmp imm32' */
2327 { 5, { 0xe9 }, { 0xff } },
2328
2329 {0}
2330};
2331
2332/* Static chain passed on stack (when regparm=3). */
2333
2334struct i386_insn i386_tramp_chain_on_stack_insns[] =
2335{
2336 /* `push imm32' */
2337 { 5, { 0x68 }, { 0xff } },
2338
2339 /* `jmp imm32' */
2340 { 5, { 0xe9 }, { 0xff } },
2341
2342 {0}
2343};
2344
2345/* Return whether PC points inside a stack trampoline. */
2346
2347static int
6df81a63 2348i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2349{
2350 gdb_byte insn;
2c02bd72 2351 const char *name;
a3fcb948
JG
2352
2353 /* A stack trampoline is detected if no name is associated
2354 to the current pc and if it points inside a trampoline
2355 sequence. */
2356
2357 find_pc_partial_function (pc, &name, NULL, NULL);
2358 if (name)
2359 return 0;
2360
2361 if (target_read_memory (pc, &insn, 1))
2362 return 0;
2363
2364 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2365 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2366 return 0;
2367
2368 return 1;
2369}
2370
2371static int
2372i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2373 struct frame_info *this_frame,
2374 void **this_cache)
a3fcb948
JG
2375{
2376 if (frame_relative_level (this_frame) == 0)
6df81a63 2377 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2378 else
2379 return 0;
2380}
2381
2382static const struct frame_unwind i386_stack_tramp_frame_unwind =
2383{
2384 NORMAL_FRAME,
2385 i386_epilogue_frame_unwind_stop_reason,
2386 i386_epilogue_frame_this_id,
0d6c2135 2387 i386_epilogue_frame_prev_register,
a3fcb948
JG
2388 NULL,
2389 i386_stack_tramp_frame_sniffer
2390};
2391\f
6710bf39
SS
2392/* Generate a bytecode expression to get the value of the saved PC. */
2393
2394static void
2395i386_gen_return_address (struct gdbarch *gdbarch,
2396 struct agent_expr *ax, struct axs_value *value,
2397 CORE_ADDR scope)
2398{
2399 /* The following sequence assumes the traditional use of the base
2400 register. */
2401 ax_reg (ax, I386_EBP_REGNUM);
2402 ax_const_l (ax, 4);
2403 ax_simple (ax, aop_add);
2404 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2405 value->kind = axs_lvalue_memory;
2406}
2407\f
a3fcb948 2408
acd5c798
MK
2409/* Signal trampolines. */
2410
2411static struct i386_frame_cache *
10458914 2412i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2413{
e17a4113
UW
2414 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2417 struct i386_frame_cache *cache;
acd5c798 2418 CORE_ADDR addr;
63c0089f 2419 gdb_byte buf[4];
acd5c798
MK
2420
2421 if (*this_cache)
9a3c8263 2422 return (struct i386_frame_cache *) *this_cache;
acd5c798 2423
fd13a04a 2424 cache = i386_alloc_frame_cache ();
acd5c798 2425
492d29ea 2426 TRY
a3386186 2427 {
8fbca658
PA
2428 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2429 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2430
8fbca658
PA
2431 addr = tdep->sigcontext_addr (this_frame);
2432 if (tdep->sc_reg_offset)
2433 {
2434 int i;
a3386186 2435
8fbca658
PA
2436 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2437
2438 for (i = 0; i < tdep->sc_num_regs; i++)
2439 if (tdep->sc_reg_offset[i] != -1)
2440 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2441 }
2442 else
2443 {
2444 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2445 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2446 }
2447
2448 cache->base_p = 1;
a3386186 2449 }
492d29ea 2450 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2451 {
2452 if (ex.error != NOT_AVAILABLE_ERROR)
2453 throw_exception (ex);
2454 }
492d29ea 2455 END_CATCH
acd5c798
MK
2456
2457 *this_cache = cache;
2458 return cache;
2459}
2460
8fbca658
PA
2461static enum unwind_stop_reason
2462i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2463 void **this_cache)
2464{
2465 struct i386_frame_cache *cache =
2466 i386_sigtramp_frame_cache (this_frame, this_cache);
2467
2468 if (!cache->base_p)
2469 return UNWIND_UNAVAILABLE;
2470
2471 return UNWIND_NO_REASON;
2472}
2473
acd5c798 2474static void
10458914 2475i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2476 struct frame_id *this_id)
2477{
2478 struct i386_frame_cache *cache =
10458914 2479 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2480
8fbca658 2481 if (!cache->base_p)
5ce0145d
PA
2482 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2483 else
2484 {
2485 /* See the end of i386_push_dummy_call. */
2486 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2487 }
acd5c798
MK
2488}
2489
10458914
DJ
2490static struct value *
2491i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2492 void **this_cache, int regnum)
acd5c798
MK
2493{
2494 /* Make sure we've initialized the cache. */
10458914 2495 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2496
10458914 2497 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2498}
c0d1d883 2499
10458914
DJ
2500static int
2501i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2502 struct frame_info *this_frame,
2503 void **this_prologue_cache)
acd5c798 2504{
10458914 2505 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2506
911bc6ee
MK
2507 /* We shouldn't even bother if we don't have a sigcontext_addr
2508 handler. */
2509 if (tdep->sigcontext_addr == NULL)
10458914 2510 return 0;
1c3545ae 2511
911bc6ee
MK
2512 if (tdep->sigtramp_p != NULL)
2513 {
10458914
DJ
2514 if (tdep->sigtramp_p (this_frame))
2515 return 1;
911bc6ee
MK
2516 }
2517
2518 if (tdep->sigtramp_start != 0)
2519 {
10458914 2520 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2521
2522 gdb_assert (tdep->sigtramp_end != 0);
2523 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2524 return 1;
911bc6ee 2525 }
acd5c798 2526
10458914 2527 return 0;
acd5c798 2528}
10458914
DJ
2529
2530static const struct frame_unwind i386_sigtramp_frame_unwind =
2531{
2532 SIGTRAMP_FRAME,
8fbca658 2533 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2534 i386_sigtramp_frame_this_id,
2535 i386_sigtramp_frame_prev_register,
2536 NULL,
2537 i386_sigtramp_frame_sniffer
2538};
acd5c798
MK
2539\f
2540
2541static CORE_ADDR
10458914 2542i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2543{
10458914 2544 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2545
2546 return cache->base;
2547}
2548
2549static const struct frame_base i386_frame_base =
2550{
2551 &i386_frame_unwind,
2552 i386_frame_base_address,
2553 i386_frame_base_address,
2554 i386_frame_base_address
2555};
2556
acd5c798 2557static struct frame_id
10458914 2558i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2559{
acd5c798
MK
2560 CORE_ADDR fp;
2561
10458914 2562 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2563
3e210248 2564 /* See the end of i386_push_dummy_call. */
10458914 2565 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2566}
e04e5beb
JM
2567
2568/* _Decimal128 function return values need 16-byte alignment on the
2569 stack. */
2570
2571static CORE_ADDR
2572i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2573{
2574 return sp & -(CORE_ADDR)16;
2575}
fc338970 2576\f
c906108c 2577
fc338970
MK
2578/* Figure out where the longjmp will land. Slurp the args out of the
2579 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2580 structure from which we extract the address that we will land at.
28bcfd30 2581 This address is copied into PC. This routine returns non-zero on
436675d3 2582 success. */
c906108c 2583
8201327c 2584static int
60ade65d 2585i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2586{
436675d3 2587 gdb_byte buf[4];
c906108c 2588 CORE_ADDR sp, jb_addr;
20a6ec49 2589 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2590 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2591 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2592
8201327c
MK
2593 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2594 longjmp will land. */
2595 if (jb_pc_offset == -1)
c906108c
SS
2596 return 0;
2597
436675d3 2598 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2599 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2600 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2601 return 0;
2602
e17a4113 2603 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2604 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2605 return 0;
c906108c 2606
e17a4113 2607 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2608 return 1;
2609}
fc338970 2610\f
c906108c 2611
7ccc1c74
JM
2612/* Check whether TYPE must be 16-byte-aligned when passed as a
2613 function argument. 16-byte vectors, _Decimal128 and structures or
2614 unions containing such types must be 16-byte-aligned; other
2615 arguments are 4-byte-aligned. */
2616
2617static int
2618i386_16_byte_align_p (struct type *type)
2619{
2620 type = check_typedef (type);
2621 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2622 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2623 && TYPE_LENGTH (type) == 16)
2624 return 1;
2625 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2626 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2627 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2628 || TYPE_CODE (type) == TYPE_CODE_UNION)
2629 {
2630 int i;
2631 for (i = 0; i < TYPE_NFIELDS (type); i++)
2632 {
2633 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2634 return 1;
2635 }
2636 }
2637 return 0;
2638}
2639
a9b8d892
JK
2640/* Implementation for set_gdbarch_push_dummy_code. */
2641
2642static CORE_ADDR
2643i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2644 struct value **args, int nargs, struct type *value_type,
2645 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2646 struct regcache *regcache)
2647{
2648 /* Use 0xcc breakpoint - 1 byte. */
2649 *bp_addr = sp - 1;
2650 *real_pc = funaddr;
2651
2652 /* Keep the stack aligned. */
2653 return sp - 16;
2654}
2655
3a1e71e3 2656static CORE_ADDR
7d9b040b 2657i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2658 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2659 struct value **args, CORE_ADDR sp, int struct_return,
2660 CORE_ADDR struct_addr)
22f8ba57 2661{
e17a4113 2662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2663 gdb_byte buf[4];
acd5c798 2664 int i;
7ccc1c74
JM
2665 int write_pass;
2666 int args_space = 0;
acd5c798 2667
7ccc1c74
JM
2668 /* Determine the total space required for arguments and struct
2669 return address in a first pass (allowing for 16-byte-aligned
2670 arguments), then push arguments in a second pass. */
2671
2672 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2673 {
7ccc1c74 2674 int args_space_used = 0;
7ccc1c74
JM
2675
2676 if (struct_return)
2677 {
2678 if (write_pass)
2679 {
2680 /* Push value address. */
e17a4113 2681 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2682 write_memory (sp, buf, 4);
2683 args_space_used += 4;
2684 }
2685 else
2686 args_space += 4;
2687 }
2688
2689 for (i = 0; i < nargs; i++)
2690 {
2691 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2692
7ccc1c74
JM
2693 if (write_pass)
2694 {
2695 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2696 args_space_used = align_up (args_space_used, 16);
acd5c798 2697
7ccc1c74
JM
2698 write_memory (sp + args_space_used,
2699 value_contents_all (args[i]), len);
2700 /* The System V ABI says that:
acd5c798 2701
7ccc1c74
JM
2702 "An argument's size is increased, if necessary, to make it a
2703 multiple of [32-bit] words. This may require tail padding,
2704 depending on the size of the argument."
22f8ba57 2705
7ccc1c74
JM
2706 This makes sure the stack stays word-aligned. */
2707 args_space_used += align_up (len, 4);
2708 }
2709 else
2710 {
2711 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2712 args_space = align_up (args_space, 16);
7ccc1c74
JM
2713 args_space += align_up (len, 4);
2714 }
2715 }
2716
2717 if (!write_pass)
2718 {
7ccc1c74 2719 sp -= args_space;
284c5a60
MK
2720
2721 /* The original System V ABI only requires word alignment,
2722 but modern incarnations need 16-byte alignment in order
2723 to support SSE. Since wasting a few bytes here isn't
2724 harmful we unconditionally enforce 16-byte alignment. */
2725 sp &= ~0xf;
7ccc1c74 2726 }
22f8ba57
MK
2727 }
2728
acd5c798
MK
2729 /* Store return address. */
2730 sp -= 4;
e17a4113 2731 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2732 write_memory (sp, buf, 4);
2733
2734 /* Finally, update the stack pointer... */
e17a4113 2735 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2736 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2737
2738 /* ...and fake a frame pointer. */
2739 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2740
3e210248
AC
2741 /* MarkK wrote: This "+ 8" is all over the place:
2742 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2743 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2744 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2745 definition of the stack address of a frame. Otherwise frame id
2746 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2747 stack address *before* the function call as a frame's CFA. On
2748 the i386, when %ebp is used as a frame pointer, the offset
2749 between the contents %ebp and the CFA as defined by GCC. */
2750 return sp + 8;
22f8ba57
MK
2751}
2752
1a309862
MK
2753/* These registers are used for returning integers (and on some
2754 targets also for returning `struct' and `union' values when their
ef9dff19 2755 size and alignment match an integer type). */
acd5c798
MK
2756#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2757#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2758
c5e656c1
MK
2759/* Read, for architecture GDBARCH, a function return value of TYPE
2760 from REGCACHE, and copy that into VALBUF. */
1a309862 2761
3a1e71e3 2762static void
c5e656c1 2763i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2764 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2765{
c5e656c1 2766 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2767 int len = TYPE_LENGTH (type);
63c0089f 2768 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2769
1e8d0a7b 2770 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2771 {
5716833c 2772 if (tdep->st0_regnum < 0)
1a309862 2773 {
8a3fe4f8 2774 warning (_("Cannot find floating-point return value."));
1a309862 2775 memset (valbuf, 0, len);
ef9dff19 2776 return;
1a309862
MK
2777 }
2778
c6ba6f0d
MK
2779 /* Floating-point return values can be found in %st(0). Convert
2780 its contents to the desired type. This is probably not
2781 exactly how it would happen on the target itself, but it is
2782 the best we can do. */
acd5c798 2783 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2784 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2785 }
2786 else
c5aa993b 2787 {
875f8d0e
UW
2788 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2789 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2790
2791 if (len <= low_size)
00f8375e 2792 {
0818c12a 2793 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2794 memcpy (valbuf, buf, len);
2795 }
d4f3574e
SS
2796 else if (len <= (low_size + high_size))
2797 {
0818c12a 2798 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2799 memcpy (valbuf, buf, low_size);
0818c12a 2800 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2801 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2802 }
2803 else
8e65ff28 2804 internal_error (__FILE__, __LINE__,
1777feb0
MS
2805 _("Cannot extract return value of %d bytes long."),
2806 len);
c906108c
SS
2807 }
2808}
2809
c5e656c1
MK
2810/* Write, for architecture GDBARCH, a function return value of TYPE
2811 from VALBUF into REGCACHE. */
ef9dff19 2812
3a1e71e3 2813static void
c5e656c1 2814i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2815 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2816{
c5e656c1 2817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2818 int len = TYPE_LENGTH (type);
2819
1e8d0a7b 2820 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2821 {
3d7f4f49 2822 ULONGEST fstat;
63c0089f 2823 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2824
5716833c 2825 if (tdep->st0_regnum < 0)
ef9dff19 2826 {
8a3fe4f8 2827 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2828 return;
2829 }
2830
635b0cc1
MK
2831 /* Returning floating-point values is a bit tricky. Apart from
2832 storing the return value in %st(0), we have to simulate the
2833 state of the FPU at function return point. */
2834
c6ba6f0d
MK
2835 /* Convert the value found in VALBUF to the extended
2836 floating-point format used by the FPU. This is probably
2837 not exactly how it would happen on the target itself, but
2838 it is the best we can do. */
27067745 2839 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2840 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2841
635b0cc1
MK
2842 /* Set the top of the floating-point register stack to 7. The
2843 actual value doesn't really matter, but 7 is what a normal
2844 function return would end up with if the program started out
2845 with a freshly initialized FPU. */
20a6ec49 2846 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2847 fstat |= (7 << 11);
20a6ec49 2848 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2849
635b0cc1
MK
2850 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2851 the floating-point register stack to 7, the appropriate value
2852 for the tag word is 0x3fff. */
20a6ec49 2853 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2854 }
2855 else
2856 {
875f8d0e
UW
2857 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2858 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2859
2860 if (len <= low_size)
3d7f4f49 2861 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2862 else if (len <= (low_size + high_size))
2863 {
3d7f4f49
MK
2864 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2865 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2866 len - low_size, valbuf + low_size);
ef9dff19
MK
2867 }
2868 else
8e65ff28 2869 internal_error (__FILE__, __LINE__,
e2e0b3e5 2870 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2871 }
2872}
fc338970 2873\f
ef9dff19 2874
8201327c
MK
2875/* This is the variable that is set with "set struct-convention", and
2876 its legitimate values. */
2877static const char default_struct_convention[] = "default";
2878static const char pcc_struct_convention[] = "pcc";
2879static const char reg_struct_convention[] = "reg";
40478521 2880static const char *const valid_conventions[] =
8201327c
MK
2881{
2882 default_struct_convention,
2883 pcc_struct_convention,
2884 reg_struct_convention,
2885 NULL
2886};
2887static const char *struct_convention = default_struct_convention;
2888
0e4377e1
JB
2889/* Return non-zero if TYPE, which is assumed to be a structure,
2890 a union type, or an array type, should be returned in registers
2891 for architecture GDBARCH. */
c5e656c1 2892
8201327c 2893static int
c5e656c1 2894i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2895{
c5e656c1
MK
2896 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2897 enum type_code code = TYPE_CODE (type);
2898 int len = TYPE_LENGTH (type);
8201327c 2899
0e4377e1
JB
2900 gdb_assert (code == TYPE_CODE_STRUCT
2901 || code == TYPE_CODE_UNION
2902 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2903
2904 if (struct_convention == pcc_struct_convention
2905 || (struct_convention == default_struct_convention
2906 && tdep->struct_return == pcc_struct_return))
2907 return 0;
2908
9edde48e
MK
2909 /* Structures consisting of a single `float', `double' or 'long
2910 double' member are returned in %st(0). */
2911 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2912 {
2913 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2914 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2915 return (len == 4 || len == 8 || len == 12);
2916 }
2917
c5e656c1
MK
2918 return (len == 1 || len == 2 || len == 4 || len == 8);
2919}
2920
2921/* Determine, for architecture GDBARCH, how a return value of TYPE
2922 should be returned. If it is supposed to be returned in registers,
2923 and READBUF is non-zero, read the appropriate value from REGCACHE,
2924 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2925 from WRITEBUF into REGCACHE. */
2926
2927static enum return_value_convention
6a3a010b 2928i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2929 struct type *type, struct regcache *regcache,
2930 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2931{
2932 enum type_code code = TYPE_CODE (type);
2933
5daa78cc
TJB
2934 if (((code == TYPE_CODE_STRUCT
2935 || code == TYPE_CODE_UNION
2936 || code == TYPE_CODE_ARRAY)
2937 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2938 /* Complex double and long double uses the struct return covention. */
2939 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2940 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2941 /* 128-bit decimal float uses the struct return convention. */
2942 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2943 {
2944 /* The System V ABI says that:
2945
2946 "A function that returns a structure or union also sets %eax
2947 to the value of the original address of the caller's area
2948 before it returns. Thus when the caller receives control
2949 again, the address of the returned object resides in register
2950 %eax and can be used to access the object."
2951
2952 So the ABI guarantees that we can always find the return
2953 value just after the function has returned. */
2954
0e4377e1
JB
2955 /* Note that the ABI doesn't mention functions returning arrays,
2956 which is something possible in certain languages such as Ada.
2957 In this case, the value is returned as if it was wrapped in
2958 a record, so the convention applied to records also applies
2959 to arrays. */
2960
31db7b6c
MK
2961 if (readbuf)
2962 {
2963 ULONGEST addr;
2964
2965 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2966 read_memory (addr, readbuf, TYPE_LENGTH (type));
2967 }
2968
2969 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2970 }
c5e656c1
MK
2971
2972 /* This special case is for structures consisting of a single
9edde48e
MK
2973 `float', `double' or 'long double' member. These structures are
2974 returned in %st(0). For these structures, we call ourselves
2975 recursively, changing TYPE into the type of the first member of
2976 the structure. Since that should work for all structures that
2977 have only one member, we don't bother to check the member's type
2978 here. */
c5e656c1
MK
2979 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2980 {
2981 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2982 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2983 readbuf, writebuf);
c5e656c1
MK
2984 }
2985
2986 if (readbuf)
2987 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2988 if (writebuf)
2989 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2990
c5e656c1 2991 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2992}
2993\f
2994
27067745
UW
2995struct type *
2996i387_ext_type (struct gdbarch *gdbarch)
2997{
2998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2999
3000 if (!tdep->i387_ext_type)
90884b2b
L
3001 {
3002 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3003 gdb_assert (tdep->i387_ext_type != NULL);
3004 }
27067745
UW
3005
3006 return tdep->i387_ext_type;
3007}
3008
1dbcd68c
WT
3009/* Construct type for pseudo BND registers. We can't use
3010 tdesc_find_type since a complement of one value has to be used
3011 to describe the upper bound. */
3012
3013static struct type *
3014i386_bnd_type (struct gdbarch *gdbarch)
3015{
3016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3017
3018
3019 if (!tdep->i386_bnd_type)
3020 {
3021 struct type *t, *bound_t;
3022 const struct builtin_type *bt = builtin_type (gdbarch);
3023
3024 /* The type we're building is described bellow: */
3025#if 0
3026 struct __bound128
3027 {
3028 void *lbound;
3029 void *ubound; /* One complement of raw ubound field. */
3030 };
3031#endif
3032
3033 t = arch_composite_type (gdbarch,
3034 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3035
3036 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3037 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3038
3039 TYPE_NAME (t) = "builtin_type_bound128";
3040 tdep->i386_bnd_type = t;
3041 }
3042
3043 return tdep->i386_bnd_type;
3044}
3045
01f9f808
MS
3046/* Construct vector type for pseudo ZMM registers. We can't use
3047 tdesc_find_type since ZMM isn't described in target description. */
3048
3049static struct type *
3050i386_zmm_type (struct gdbarch *gdbarch)
3051{
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053
3054 if (!tdep->i386_zmm_type)
3055 {
3056 const struct builtin_type *bt = builtin_type (gdbarch);
3057
3058 /* The type we're building is this: */
3059#if 0
3060 union __gdb_builtin_type_vec512i
3061 {
3062 int128_t uint128[4];
3063 int64_t v4_int64[8];
3064 int32_t v8_int32[16];
3065 int16_t v16_int16[32];
3066 int8_t v32_int8[64];
3067 double v4_double[8];
3068 float v8_float[16];
3069 };
3070#endif
3071
3072 struct type *t;
3073
3074 t = arch_composite_type (gdbarch,
3075 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3076 append_composite_type_field (t, "v16_float",
3077 init_vector_type (bt->builtin_float, 16));
3078 append_composite_type_field (t, "v8_double",
3079 init_vector_type (bt->builtin_double, 8));
3080 append_composite_type_field (t, "v64_int8",
3081 init_vector_type (bt->builtin_int8, 64));
3082 append_composite_type_field (t, "v32_int16",
3083 init_vector_type (bt->builtin_int16, 32));
3084 append_composite_type_field (t, "v16_int32",
3085 init_vector_type (bt->builtin_int32, 16));
3086 append_composite_type_field (t, "v8_int64",
3087 init_vector_type (bt->builtin_int64, 8));
3088 append_composite_type_field (t, "v4_int128",
3089 init_vector_type (bt->builtin_int128, 4));
3090
3091 TYPE_VECTOR (t) = 1;
3092 TYPE_NAME (t) = "builtin_type_vec512i";
3093 tdep->i386_zmm_type = t;
3094 }
3095
3096 return tdep->i386_zmm_type;
3097}
3098
c131fcee
L
3099/* Construct vector type for pseudo YMM registers. We can't use
3100 tdesc_find_type since YMM isn't described in target description. */
3101
3102static struct type *
3103i386_ymm_type (struct gdbarch *gdbarch)
3104{
3105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3106
3107 if (!tdep->i386_ymm_type)
3108 {
3109 const struct builtin_type *bt = builtin_type (gdbarch);
3110
3111 /* The type we're building is this: */
3112#if 0
3113 union __gdb_builtin_type_vec256i
3114 {
3115 int128_t uint128[2];
3116 int64_t v2_int64[4];
3117 int32_t v4_int32[8];
3118 int16_t v8_int16[16];
3119 int8_t v16_int8[32];
3120 double v2_double[4];
3121 float v4_float[8];
3122 };
3123#endif
3124
3125 struct type *t;
3126
3127 t = arch_composite_type (gdbarch,
3128 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3129 append_composite_type_field (t, "v8_float",
3130 init_vector_type (bt->builtin_float, 8));
3131 append_composite_type_field (t, "v4_double",
3132 init_vector_type (bt->builtin_double, 4));
3133 append_composite_type_field (t, "v32_int8",
3134 init_vector_type (bt->builtin_int8, 32));
3135 append_composite_type_field (t, "v16_int16",
3136 init_vector_type (bt->builtin_int16, 16));
3137 append_composite_type_field (t, "v8_int32",
3138 init_vector_type (bt->builtin_int32, 8));
3139 append_composite_type_field (t, "v4_int64",
3140 init_vector_type (bt->builtin_int64, 4));
3141 append_composite_type_field (t, "v2_int128",
3142 init_vector_type (bt->builtin_int128, 2));
3143
3144 TYPE_VECTOR (t) = 1;
0c5acf93 3145 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3146 tdep->i386_ymm_type = t;
3147 }
3148
3149 return tdep->i386_ymm_type;
3150}
3151
794ac428 3152/* Construct vector type for MMX registers. */
90884b2b 3153static struct type *
794ac428
UW
3154i386_mmx_type (struct gdbarch *gdbarch)
3155{
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3157
3158 if (!tdep->i386_mmx_type)
3159 {
df4df182
UW
3160 const struct builtin_type *bt = builtin_type (gdbarch);
3161
794ac428
UW
3162 /* The type we're building is this: */
3163#if 0
3164 union __gdb_builtin_type_vec64i
3165 {
3166 int64_t uint64;
3167 int32_t v2_int32[2];
3168 int16_t v4_int16[4];
3169 int8_t v8_int8[8];
3170 };
3171#endif
3172
3173 struct type *t;
3174
e9bb382b
UW
3175 t = arch_composite_type (gdbarch,
3176 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3177
3178 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3179 append_composite_type_field (t, "v2_int32",
df4df182 3180 init_vector_type (bt->builtin_int32, 2));
794ac428 3181 append_composite_type_field (t, "v4_int16",
df4df182 3182 init_vector_type (bt->builtin_int16, 4));
794ac428 3183 append_composite_type_field (t, "v8_int8",
df4df182 3184 init_vector_type (bt->builtin_int8, 8));
794ac428 3185
876cecd0 3186 TYPE_VECTOR (t) = 1;
794ac428
UW
3187 TYPE_NAME (t) = "builtin_type_vec64i";
3188 tdep->i386_mmx_type = t;
3189 }
3190
3191 return tdep->i386_mmx_type;
3192}
3193
d7a0d72c 3194/* Return the GDB type object for the "standard" data type of data in
1777feb0 3195 register REGNUM. */
d7a0d72c 3196
fff4548b 3197struct type *
90884b2b 3198i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3199{
1dbcd68c
WT
3200 if (i386_bnd_regnum_p (gdbarch, regnum))
3201 return i386_bnd_type (gdbarch);
1ba53b71
L
3202 if (i386_mmx_regnum_p (gdbarch, regnum))
3203 return i386_mmx_type (gdbarch);
c131fcee
L
3204 else if (i386_ymm_regnum_p (gdbarch, regnum))
3205 return i386_ymm_type (gdbarch);
01f9f808
MS
3206 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3207 return i386_ymm_type (gdbarch);
3208 else if (i386_zmm_regnum_p (gdbarch, regnum))
3209 return i386_zmm_type (gdbarch);
1ba53b71
L
3210 else
3211 {
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213 if (i386_byte_regnum_p (gdbarch, regnum))
3214 return bt->builtin_int8;
3215 else if (i386_word_regnum_p (gdbarch, regnum))
3216 return bt->builtin_int16;
3217 else if (i386_dword_regnum_p (gdbarch, regnum))
3218 return bt->builtin_int32;
01f9f808
MS
3219 else if (i386_k_regnum_p (gdbarch, regnum))
3220 return bt->builtin_int64;
1ba53b71
L
3221 }
3222
3223 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3224}
3225
28fc6740 3226/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3227 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3228
3229static int
c86c27af 3230i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3231{
5716833c
MK
3232 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3233 int mmxreg, fpreg;
28fc6740
AC
3234 ULONGEST fstat;
3235 int tos;
c86c27af 3236
5716833c 3237 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3238 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3239 tos = (fstat >> 11) & 0x7;
5716833c
MK
3240 fpreg = (mmxreg + tos) % 8;
3241
20a6ec49 3242 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3243}
3244
3543a589
TT
3245/* A helper function for us by i386_pseudo_register_read_value and
3246 amd64_pseudo_register_read_value. It does all the work but reads
3247 the data into an already-allocated value. */
3248
3249void
3250i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3251 struct regcache *regcache,
3252 int regnum,
3253 struct value *result_value)
28fc6740 3254{
1ba53b71 3255 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3256 enum register_status status;
3543a589 3257 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3258
5716833c 3259 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3260 {
c86c27af
MK
3261 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3262
28fc6740 3263 /* Extract (always little endian). */
05d1431c
PA
3264 status = regcache_raw_read (regcache, fpnum, raw_buf);
3265 if (status != REG_VALID)
3543a589
TT
3266 mark_value_bytes_unavailable (result_value, 0,
3267 TYPE_LENGTH (value_type (result_value)));
3268 else
3269 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3270 }
3271 else
1ba53b71
L
3272 {
3273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3274 if (i386_bnd_regnum_p (gdbarch, regnum))
3275 {
3276 regnum -= tdep->bnd0_regnum;
1ba53b71 3277
1dbcd68c
WT
3278 /* Extract (always little endian). Read lower 128bits. */
3279 status = regcache_raw_read (regcache,
3280 I387_BND0R_REGNUM (tdep) + regnum,
3281 raw_buf);
3282 if (status != REG_VALID)
3283 mark_value_bytes_unavailable (result_value, 0, 16);
3284 else
3285 {
3286 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3287 LONGEST upper, lower;
3288 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3289
3290 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3291 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3292 upper = ~upper;
3293
3294 memcpy (buf, &lower, size);
3295 memcpy (buf + size, &upper, size);
3296 }
3297 }
01f9f808
MS
3298 else if (i386_k_regnum_p (gdbarch, regnum))
3299 {
3300 regnum -= tdep->k0_regnum;
3301
3302 /* Extract (always little endian). */
3303 status = regcache_raw_read (regcache,
3304 tdep->k0_regnum + regnum,
3305 raw_buf);
3306 if (status != REG_VALID)
3307 mark_value_bytes_unavailable (result_value, 0, 8);
3308 else
3309 memcpy (buf, raw_buf, 8);
3310 }
3311 else if (i386_zmm_regnum_p (gdbarch, regnum))
3312 {
3313 regnum -= tdep->zmm0_regnum;
3314
3315 if (regnum < num_lower_zmm_regs)
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM0_REGNUM (tdep) + regnum,
3320 raw_buf);
3321 if (status != REG_VALID)
3322 mark_value_bytes_unavailable (result_value, 0, 16);
3323 else
3324 memcpy (buf, raw_buf, 16);
3325
3326 /* Extract (always little endian). Read upper 128bits. */
3327 status = regcache_raw_read (regcache,
3328 tdep->ymm0h_regnum + regnum,
3329 raw_buf);
3330 if (status != REG_VALID)
3331 mark_value_bytes_unavailable (result_value, 16, 16);
3332 else
3333 memcpy (buf + 16, raw_buf, 16);
3334 }
3335 else
3336 {
3337 /* Extract (always little endian). Read lower 128bits. */
3338 status = regcache_raw_read (regcache,
3339 I387_XMM16_REGNUM (tdep) + regnum
3340 - num_lower_zmm_regs,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 0, 16);
3344 else
3345 memcpy (buf, raw_buf, 16);
3346
3347 /* Extract (always little endian). Read upper 128bits. */
3348 status = regcache_raw_read (regcache,
3349 I387_YMM16H_REGNUM (tdep) + regnum
3350 - num_lower_zmm_regs,
3351 raw_buf);
3352 if (status != REG_VALID)
3353 mark_value_bytes_unavailable (result_value, 16, 16);
3354 else
3355 memcpy (buf + 16, raw_buf, 16);
3356 }
3357
3358 /* Read upper 256bits. */
3359 status = regcache_raw_read (regcache,
3360 tdep->zmm0h_regnum + regnum,
3361 raw_buf);
3362 if (status != REG_VALID)
3363 mark_value_bytes_unavailable (result_value, 32, 32);
3364 else
3365 memcpy (buf + 32, raw_buf, 32);
3366 }
1dbcd68c 3367 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3368 {
3369 regnum -= tdep->ymm0_regnum;
3370
1777feb0 3371 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3372 status = regcache_raw_read (regcache,
3373 I387_XMM0_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3543a589
TT
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
c131fcee 3379 /* Read upper 128bits. */
05d1431c
PA
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm0h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3543a589
TT
3384 mark_value_bytes_unavailable (result_value, 16, 32);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
c131fcee 3387 }
01f9f808
MS
3388 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3389 {
3390 regnum -= tdep->ymm16_regnum;
3391 /* Extract (always little endian). Read lower 128bits. */
3392 status = regcache_raw_read (regcache,
3393 I387_XMM16_REGNUM (tdep) + regnum,
3394 raw_buf);
3395 if (status != REG_VALID)
3396 mark_value_bytes_unavailable (result_value, 0, 16);
3397 else
3398 memcpy (buf, raw_buf, 16);
3399 /* Read upper 128bits. */
3400 status = regcache_raw_read (regcache,
3401 tdep->ymm16h_regnum + regnum,
3402 raw_buf);
3403 if (status != REG_VALID)
3404 mark_value_bytes_unavailable (result_value, 16, 16);
3405 else
3406 memcpy (buf + 16, raw_buf, 16);
3407 }
c131fcee 3408 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3409 {
3410 int gpnum = regnum - tdep->ax_regnum;
3411
3412 /* Extract (always little endian). */
05d1431c
PA
3413 status = regcache_raw_read (regcache, gpnum, raw_buf);
3414 if (status != REG_VALID)
3543a589
TT
3415 mark_value_bytes_unavailable (result_value, 0,
3416 TYPE_LENGTH (value_type (result_value)));
3417 else
3418 memcpy (buf, raw_buf, 2);
1ba53b71
L
3419 }
3420 else if (i386_byte_regnum_p (gdbarch, regnum))
3421 {
3422 /* Check byte pseudo registers last since this function will
3423 be called from amd64_pseudo_register_read, which handles
3424 byte pseudo registers differently. */
3425 int gpnum = regnum - tdep->al_regnum;
3426
3427 /* Extract (always little endian). We read both lower and
3428 upper registers. */
05d1431c
PA
3429 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3430 if (status != REG_VALID)
3543a589
TT
3431 mark_value_bytes_unavailable (result_value, 0,
3432 TYPE_LENGTH (value_type (result_value)));
3433 else if (gpnum >= 4)
1ba53b71
L
3434 memcpy (buf, raw_buf + 1, 1);
3435 else
3436 memcpy (buf, raw_buf, 1);
3437 }
3438 else
3439 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3440 }
3543a589
TT
3441}
3442
3443static struct value *
3444i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3445 struct regcache *regcache,
3446 int regnum)
3447{
3448 struct value *result;
3449
3450 result = allocate_value (register_type (gdbarch, regnum));
3451 VALUE_LVAL (result) = lval_register;
3452 VALUE_REGNUM (result) = regnum;
3453
3454 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3455
3543a589 3456 return result;
28fc6740
AC
3457}
3458
1ba53b71 3459void
28fc6740 3460i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3461 int regnum, const gdb_byte *buf)
28fc6740 3462{
1ba53b71
L
3463 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3464
5716833c 3465 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3466 {
c86c27af
MK
3467 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3468
28fc6740 3469 /* Read ... */
1ba53b71 3470 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3471 /* ... Modify ... (always little endian). */
1ba53b71 3472 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3473 /* ... Write. */
1ba53b71 3474 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3475 }
3476 else
1ba53b71
L
3477 {
3478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3479
1dbcd68c
WT
3480 if (i386_bnd_regnum_p (gdbarch, regnum))
3481 {
3482 ULONGEST upper, lower;
3483 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3484 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3485
3486 /* New values from input value. */
3487 regnum -= tdep->bnd0_regnum;
3488 lower = extract_unsigned_integer (buf, size, byte_order);
3489 upper = extract_unsigned_integer (buf + size, size, byte_order);
3490
3491 /* Fetching register buffer. */
3492 regcache_raw_read (regcache,
3493 I387_BND0R_REGNUM (tdep) + regnum,
3494 raw_buf);
3495
3496 upper = ~upper;
3497
3498 /* Set register bits. */
3499 memcpy (raw_buf, &lower, 8);
3500 memcpy (raw_buf + 8, &upper, 8);
3501
3502
3503 regcache_raw_write (regcache,
3504 I387_BND0R_REGNUM (tdep) + regnum,
3505 raw_buf);
3506 }
01f9f808
MS
3507 else if (i386_k_regnum_p (gdbarch, regnum))
3508 {
3509 regnum -= tdep->k0_regnum;
3510
3511 regcache_raw_write (regcache,
3512 tdep->k0_regnum + regnum,
3513 buf);
3514 }
3515 else if (i386_zmm_regnum_p (gdbarch, regnum))
3516 {
3517 regnum -= tdep->zmm0_regnum;
3518
3519 if (regnum < num_lower_zmm_regs)
3520 {
3521 /* Write lower 128bits. */
3522 regcache_raw_write (regcache,
3523 I387_XMM0_REGNUM (tdep) + regnum,
3524 buf);
3525 /* Write upper 128bits. */
3526 regcache_raw_write (regcache,
3527 I387_YMM0_REGNUM (tdep) + regnum,
3528 buf + 16);
3529 }
3530 else
3531 {
3532 /* Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM16_REGNUM (tdep) + regnum
3535 - num_lower_zmm_regs,
3536 buf);
3537 /* Write upper 128bits. */
3538 regcache_raw_write (regcache,
3539 I387_YMM16H_REGNUM (tdep) + regnum
3540 - num_lower_zmm_regs,
3541 buf + 16);
3542 }
3543 /* Write upper 256bits. */
3544 regcache_raw_write (regcache,
3545 tdep->zmm0h_regnum + regnum,
3546 buf + 32);
3547 }
1dbcd68c 3548 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3549 {
3550 regnum -= tdep->ymm0_regnum;
3551
3552 /* ... Write lower 128bits. */
3553 regcache_raw_write (regcache,
3554 I387_XMM0_REGNUM (tdep) + regnum,
3555 buf);
3556 /* ... Write upper 128bits. */
3557 regcache_raw_write (regcache,
3558 tdep->ymm0h_regnum + regnum,
3559 buf + 16);
3560 }
01f9f808
MS
3561 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3562 {
3563 regnum -= tdep->ymm16_regnum;
3564
3565 /* ... Write lower 128bits. */
3566 regcache_raw_write (regcache,
3567 I387_XMM16_REGNUM (tdep) + regnum,
3568 buf);
3569 /* ... Write upper 128bits. */
3570 regcache_raw_write (regcache,
3571 tdep->ymm16h_regnum + regnum,
3572 buf + 16);
3573 }
c131fcee 3574 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3575 {
3576 int gpnum = regnum - tdep->ax_regnum;
3577
3578 /* Read ... */
3579 regcache_raw_read (regcache, gpnum, raw_buf);
3580 /* ... Modify ... (always little endian). */
3581 memcpy (raw_buf, buf, 2);
3582 /* ... Write. */
3583 regcache_raw_write (regcache, gpnum, raw_buf);
3584 }
3585 else if (i386_byte_regnum_p (gdbarch, regnum))
3586 {
3587 /* Check byte pseudo registers last since this function will
3588 be called from amd64_pseudo_register_read, which handles
3589 byte pseudo registers differently. */
3590 int gpnum = regnum - tdep->al_regnum;
3591
3592 /* Read ... We read both lower and upper registers. */
3593 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3594 /* ... Modify ... (always little endian). */
3595 if (gpnum >= 4)
3596 memcpy (raw_buf + 1, buf, 1);
3597 else
3598 memcpy (raw_buf, buf, 1);
3599 /* ... Write. */
3600 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3601 }
3602 else
3603 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3604 }
28fc6740 3605}
ff2e87ac
AC
3606\f
3607
ff2e87ac
AC
3608/* Return the register number of the register allocated by GCC after
3609 REGNUM, or -1 if there is no such register. */
3610
3611static int
3612i386_next_regnum (int regnum)
3613{
3614 /* GCC allocates the registers in the order:
3615
3616 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3617
3618 Since storing a variable in %esp doesn't make any sense we return
3619 -1 for %ebp and for %esp itself. */
3620 static int next_regnum[] =
3621 {
3622 I386_EDX_REGNUM, /* Slot for %eax. */
3623 I386_EBX_REGNUM, /* Slot for %ecx. */
3624 I386_ECX_REGNUM, /* Slot for %edx. */
3625 I386_ESI_REGNUM, /* Slot for %ebx. */
3626 -1, -1, /* Slots for %esp and %ebp. */
3627 I386_EDI_REGNUM, /* Slot for %esi. */
3628 I386_EBP_REGNUM /* Slot for %edi. */
3629 };
3630
de5b9bb9 3631 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3632 return next_regnum[regnum];
28fc6740 3633
ff2e87ac
AC
3634 return -1;
3635}
3636
3637/* Return nonzero if a value of type TYPE stored in register REGNUM
3638 needs any special handling. */
d7a0d72c 3639
3a1e71e3 3640static int
1777feb0
MS
3641i386_convert_register_p (struct gdbarch *gdbarch,
3642 int regnum, struct type *type)
d7a0d72c 3643{
de5b9bb9
MK
3644 int len = TYPE_LENGTH (type);
3645
ff2e87ac
AC
3646 /* Values may be spread across multiple registers. Most debugging
3647 formats aren't expressive enough to specify the locations, so
3648 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3649 have a length that is a multiple of the word size, since GCC
3650 doesn't seem to put any other types into registers. */
3651 if (len > 4 && len % 4 == 0)
3652 {
3653 int last_regnum = regnum;
3654
3655 while (len > 4)
3656 {
3657 last_regnum = i386_next_regnum (last_regnum);
3658 len -= 4;
3659 }
3660
3661 if (last_regnum != -1)
3662 return 1;
3663 }
ff2e87ac 3664
0abe36f5 3665 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3666}
3667
ff2e87ac
AC
3668/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3669 return its contents in TO. */
ac27f131 3670
8dccd430 3671static int
ff2e87ac 3672i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3673 struct type *type, gdb_byte *to,
3674 int *optimizedp, int *unavailablep)
ac27f131 3675{
20a6ec49 3676 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3677 int len = TYPE_LENGTH (type);
de5b9bb9 3678
20a6ec49 3679 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3680 return i387_register_to_value (frame, regnum, type, to,
3681 optimizedp, unavailablep);
ff2e87ac 3682
fd35795f 3683 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3684
3685 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3686
de5b9bb9
MK
3687 while (len > 0)
3688 {
3689 gdb_assert (regnum != -1);
20a6ec49 3690 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3691
8dccd430
PA
3692 if (!get_frame_register_bytes (frame, regnum, 0,
3693 register_size (gdbarch, regnum),
3694 to, optimizedp, unavailablep))
3695 return 0;
3696
de5b9bb9
MK
3697 regnum = i386_next_regnum (regnum);
3698 len -= 4;
42835c2b 3699 to += 4;
de5b9bb9 3700 }
8dccd430
PA
3701
3702 *optimizedp = *unavailablep = 0;
3703 return 1;
ac27f131
MK
3704}
3705
ff2e87ac
AC
3706/* Write the contents FROM of a value of type TYPE into register
3707 REGNUM in frame FRAME. */
ac27f131 3708
3a1e71e3 3709static void
ff2e87ac 3710i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3711 struct type *type, const gdb_byte *from)
ac27f131 3712{
de5b9bb9 3713 int len = TYPE_LENGTH (type);
de5b9bb9 3714
20a6ec49 3715 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3716 {
d532c08f
MK
3717 i387_value_to_register (frame, regnum, type, from);
3718 return;
3719 }
3d261580 3720
fd35795f 3721 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3722
3723 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3724
de5b9bb9
MK
3725 while (len > 0)
3726 {
3727 gdb_assert (regnum != -1);
875f8d0e 3728 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3729
42835c2b 3730 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3731 regnum = i386_next_regnum (regnum);
3732 len -= 4;
42835c2b 3733 from += 4;
de5b9bb9 3734 }
ac27f131 3735}
ff2e87ac 3736\f
7fdafb5a
MK
3737/* Supply register REGNUM from the buffer specified by GREGS and LEN
3738 in the general-purpose register set REGSET to register cache
3739 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3740
20187ed5 3741void
473f17b0
MK
3742i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3743 int regnum, const void *gregs, size_t len)
3744{
09424cff
AA
3745 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3746 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3747 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3748 int i;
3749
1528345d 3750 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3751
3752 for (i = 0; i < tdep->gregset_num_regs; i++)
3753 {
3754 if ((regnum == i || regnum == -1)
3755 && tdep->gregset_reg_offset[i] != -1)
3756 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3757 }
3758}
3759
7fdafb5a
MK
3760/* Collect register REGNUM from the register cache REGCACHE and store
3761 it in the buffer specified by GREGS and LEN as described by the
3762 general-purpose register set REGSET. If REGNUM is -1, do this for
3763 all registers in REGSET. */
3764
ecc37a5a 3765static void
7fdafb5a
MK
3766i386_collect_gregset (const struct regset *regset,
3767 const struct regcache *regcache,
3768 int regnum, void *gregs, size_t len)
3769{
09424cff
AA
3770 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3771 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3772 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3773 int i;
3774
1528345d 3775 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3776
3777 for (i = 0; i < tdep->gregset_num_regs; i++)
3778 {
3779 if ((regnum == i || regnum == -1)
3780 && tdep->gregset_reg_offset[i] != -1)
3781 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3782 }
3783}
3784
3785/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3786 in the floating-point register set REGSET to register cache
3787 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3788
3789static void
3790i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3791 int regnum, const void *fpregs, size_t len)
3792{
09424cff
AA
3793 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3794 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3795
66a72d25
MK
3796 if (len == I387_SIZEOF_FXSAVE)
3797 {
3798 i387_supply_fxsave (regcache, regnum, fpregs);
3799 return;
3800 }
3801
1528345d 3802 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3803 i387_supply_fsave (regcache, regnum, fpregs);
3804}
8446b36a 3805
2f305df1
MK
3806/* Collect register REGNUM from the register cache REGCACHE and store
3807 it in the buffer specified by FPREGS and LEN as described by the
3808 floating-point register set REGSET. If REGNUM is -1, do this for
3809 all registers in REGSET. */
7fdafb5a
MK
3810
3811static void
3812i386_collect_fpregset (const struct regset *regset,
3813 const struct regcache *regcache,
3814 int regnum, void *fpregs, size_t len)
3815{
09424cff
AA
3816 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3817 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3818
3819 if (len == I387_SIZEOF_FXSAVE)
3820 {
3821 i387_collect_fxsave (regcache, regnum, fpregs);
3822 return;
3823 }
3824
1528345d 3825 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3826 i387_collect_fsave (regcache, regnum, fpregs);
3827}
3828
ecc37a5a
AA
3829/* Register set definitions. */
3830
3831const struct regset i386_gregset =
3832 {
3833 NULL, i386_supply_gregset, i386_collect_gregset
3834 };
3835
8f0435f7 3836const struct regset i386_fpregset =
ecc37a5a
AA
3837 {
3838 NULL, i386_supply_fpregset, i386_collect_fpregset
3839 };
3840
490496c3 3841/* Default iterator over core file register note sections. */
8446b36a 3842
490496c3
AA
3843void
3844i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3845 iterate_over_regset_sections_cb *cb,
3846 void *cb_data,
3847 const struct regcache *regcache)
8446b36a
MK
3848{
3849 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3850
490496c3
AA
3851 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3852 if (tdep->sizeof_fpregset)
3853 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3854}
473f17b0 3855\f
fc338970 3856
fc338970 3857/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3858
3859CORE_ADDR
e17a4113
UW
3860i386_pe_skip_trampoline_code (struct frame_info *frame,
3861 CORE_ADDR pc, char *name)
c906108c 3862{
e17a4113
UW
3863 struct gdbarch *gdbarch = get_frame_arch (frame);
3864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3865
3866 /* jmp *(dest) */
3867 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3868 {
e17a4113
UW
3869 unsigned long indirect =
3870 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3871 struct minimal_symbol *indsym =
7cbd4a93 3872 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3873 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3874
c5aa993b 3875 if (symname)
c906108c 3876 {
61012eef
GB
3877 if (startswith (symname, "__imp_")
3878 || startswith (symname, "_imp_"))
e17a4113
UW
3879 return name ? 1 :
3880 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3881 }
3882 }
fc338970 3883 return 0; /* Not a trampoline. */
c906108c 3884}
fc338970
MK
3885\f
3886
10458914
DJ
3887/* Return whether the THIS_FRAME corresponds to a sigtramp
3888 routine. */
8201327c 3889
4bd207ef 3890int
10458914 3891i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3892{
10458914 3893 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3894 const char *name;
911bc6ee
MK
3895
3896 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3897 return (name && strcmp ("_sigtramp", name) == 0);
3898}
3899\f
3900
fc338970
MK
3901/* We have two flavours of disassembly. The machinery on this page
3902 deals with switching between those. */
c906108c
SS
3903
3904static int
a89aa300 3905i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3906{
5e3397bb
MK
3907 gdb_assert (disassembly_flavor == att_flavor
3908 || disassembly_flavor == intel_flavor);
3909
3910 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3911 constified, cast to prevent a compiler warning. */
3912 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3913
3914 return print_insn_i386 (pc, info);
7a292a7a 3915}
fc338970 3916\f
3ce1502b 3917
8201327c
MK
3918/* There are a few i386 architecture variants that differ only
3919 slightly from the generic i386 target. For now, we don't give them
3920 their own source file, but include them here. As a consequence,
3921 they'll always be included. */
3ce1502b 3922
8201327c 3923/* System V Release 4 (SVR4). */
3ce1502b 3924
10458914
DJ
3925/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3926 routine. */
911bc6ee 3927
8201327c 3928static int
10458914 3929i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3930{
10458914 3931 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3932 const char *name;
911bc6ee 3933
05b4bd79 3934 /* The origin of these symbols is currently unknown. */
911bc6ee 3935 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3936 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3937 || strcmp ("sigvechandler", name) == 0));
3938}
d2a7c97a 3939
10458914
DJ
3940/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3941 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3942
3a1e71e3 3943static CORE_ADDR
10458914 3944i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3945{
e17a4113
UW
3946 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3947 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3948 gdb_byte buf[4];
acd5c798 3949 CORE_ADDR sp;
3ce1502b 3950
10458914 3951 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3952 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3953
e17a4113 3954 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3955}
55aa24fb
SDJ
3956
3957\f
3958
3959/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3960 gdbarch.h. */
3961
3962int
3963i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3964{
3965 return (*s == '$' /* Literal number. */
3966 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3967 || (*s == '(' && s[1] == '%') /* Register indirection. */
3968 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3969}
3970
5acfdbae
SDJ
3971/* Helper function for i386_stap_parse_special_token.
3972
3973 This function parses operands of the form `-8+3+1(%rbp)', which
3974 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3975
3976 Return 1 if the operand was parsed successfully, zero
3977 otherwise. */
3978
3979static int
3980i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3981 struct stap_parse_info *p)
3982{
3983 const char *s = p->arg;
3984
3985 if (isdigit (*s) || *s == '-' || *s == '+')
3986 {
3987 int got_minus[3];
3988 int i;
3989 long displacements[3];
3990 const char *start;
3991 char *regname;
3992 int len;
3993 struct stoken str;
3994 char *endp;
3995
3996 got_minus[0] = 0;
3997 if (*s == '+')
3998 ++s;
3999 else if (*s == '-')
4000 {
4001 ++s;
4002 got_minus[0] = 1;
4003 }
4004
d7b30f67
SDJ
4005 if (!isdigit ((unsigned char) *s))
4006 return 0;
4007
5acfdbae
SDJ
4008 displacements[0] = strtol (s, &endp, 10);
4009 s = endp;
4010
4011 if (*s != '+' && *s != '-')
4012 {
4013 /* We are not dealing with a triplet. */
4014 return 0;
4015 }
4016
4017 got_minus[1] = 0;
4018 if (*s == '+')
4019 ++s;
4020 else
4021 {
4022 ++s;
4023 got_minus[1] = 1;
4024 }
4025
d7b30f67
SDJ
4026 if (!isdigit ((unsigned char) *s))
4027 return 0;
4028
5acfdbae
SDJ
4029 displacements[1] = strtol (s, &endp, 10);
4030 s = endp;
4031
4032 if (*s != '+' && *s != '-')
4033 {
4034 /* We are not dealing with a triplet. */
4035 return 0;
4036 }
4037
4038 got_minus[2] = 0;
4039 if (*s == '+')
4040 ++s;
4041 else
4042 {
4043 ++s;
4044 got_minus[2] = 1;
4045 }
4046
d7b30f67
SDJ
4047 if (!isdigit ((unsigned char) *s))
4048 return 0;
4049
5acfdbae
SDJ
4050 displacements[2] = strtol (s, &endp, 10);
4051 s = endp;
4052
4053 if (*s != '(' || s[1] != '%')
4054 return 0;
4055
4056 s += 2;
4057 start = s;
4058
4059 while (isalnum (*s))
4060 ++s;
4061
4062 if (*s++ != ')')
4063 return 0;
4064
d7b30f67 4065 len = s - start - 1;
224c3ddb 4066 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4067
4068 strncpy (regname, start, len);
4069 regname[len] = '\0';
4070
4071 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4072 error (_("Invalid register name `%s' on expression `%s'."),
4073 regname, p->saved_arg);
4074
4075 for (i = 0; i < 3; i++)
4076 {
410a0ff2
SDJ
4077 write_exp_elt_opcode (&p->pstate, OP_LONG);
4078 write_exp_elt_type
4079 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4080 write_exp_elt_longcst (&p->pstate, displacements[i]);
4081 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4082 if (got_minus[i])
410a0ff2 4083 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4084 }
4085
410a0ff2 4086 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4087 str.ptr = regname;
4088 str.length = len;
410a0ff2
SDJ
4089 write_exp_string (&p->pstate, str);
4090 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4091
410a0ff2
SDJ
4092 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4093 write_exp_elt_type (&p->pstate,
4094 builtin_type (gdbarch)->builtin_data_ptr);
4095 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4096
410a0ff2
SDJ
4097 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4098 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4099 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4100
410a0ff2
SDJ
4101 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4102 write_exp_elt_type (&p->pstate,
4103 lookup_pointer_type (p->arg_type));
4104 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4105
410a0ff2 4106 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4107
4108 p->arg = s;
4109
4110 return 1;
4111 }
4112
4113 return 0;
4114}
4115
4116/* Helper function for i386_stap_parse_special_token.
4117
4118 This function parses operands of the form `register base +
4119 (register index * size) + offset', as represented in
4120 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4121
4122 Return 1 if the operand was parsed successfully, zero
4123 otherwise. */
4124
4125static int
4126i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4127 struct stap_parse_info *p)
4128{
4129 const char *s = p->arg;
4130
4131 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4132 {
4133 int offset_minus = 0;
4134 long offset = 0;
4135 int size_minus = 0;
4136 long size = 0;
4137 const char *start;
4138 char *base;
4139 int len_base;
4140 char *index;
4141 int len_index;
4142 struct stoken base_token, index_token;
4143
4144 if (*s == '+')
4145 ++s;
4146 else if (*s == '-')
4147 {
4148 ++s;
4149 offset_minus = 1;
4150 }
4151
4152 if (offset_minus && !isdigit (*s))
4153 return 0;
4154
4155 if (isdigit (*s))
4156 {
4157 char *endp;
4158
4159 offset = strtol (s, &endp, 10);
4160 s = endp;
4161 }
4162
4163 if (*s != '(' || s[1] != '%')
4164 return 0;
4165
4166 s += 2;
4167 start = s;
4168
4169 while (isalnum (*s))
4170 ++s;
4171
4172 if (*s != ',' || s[1] != '%')
4173 return 0;
4174
4175 len_base = s - start;
224c3ddb 4176 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4177 strncpy (base, start, len_base);
4178 base[len_base] = '\0';
4179
4180 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4181 error (_("Invalid register name `%s' on expression `%s'."),
4182 base, p->saved_arg);
4183
4184 s += 2;
4185 start = s;
4186
4187 while (isalnum (*s))
4188 ++s;
4189
4190 len_index = s - start;
224c3ddb 4191 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4192 strncpy (index, start, len_index);
4193 index[len_index] = '\0';
4194
4195 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4196 error (_("Invalid register name `%s' on expression `%s'."),
4197 index, p->saved_arg);
4198
4199 if (*s != ',' && *s != ')')
4200 return 0;
4201
4202 if (*s == ',')
4203 {
4204 char *endp;
4205
4206 ++s;
4207 if (*s == '+')
4208 ++s;
4209 else if (*s == '-')
4210 {
4211 ++s;
4212 size_minus = 1;
4213 }
4214
4215 size = strtol (s, &endp, 10);
4216 s = endp;
4217
4218 if (*s != ')')
4219 return 0;
4220 }
4221
4222 ++s;
4223
4224 if (offset)
4225 {
410a0ff2
SDJ
4226 write_exp_elt_opcode (&p->pstate, OP_LONG);
4227 write_exp_elt_type (&p->pstate,
4228 builtin_type (gdbarch)->builtin_long);
4229 write_exp_elt_longcst (&p->pstate, offset);
4230 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4231 if (offset_minus)
410a0ff2 4232 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4233 }
4234
410a0ff2 4235 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4236 base_token.ptr = base;
4237 base_token.length = len_base;
410a0ff2
SDJ
4238 write_exp_string (&p->pstate, base_token);
4239 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4240
4241 if (offset)
410a0ff2 4242 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4243
410a0ff2 4244 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4245 index_token.ptr = index;
4246 index_token.length = len_index;
410a0ff2
SDJ
4247 write_exp_string (&p->pstate, index_token);
4248 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4249
4250 if (size)
4251 {
410a0ff2
SDJ
4252 write_exp_elt_opcode (&p->pstate, OP_LONG);
4253 write_exp_elt_type (&p->pstate,
4254 builtin_type (gdbarch)->builtin_long);
4255 write_exp_elt_longcst (&p->pstate, size);
4256 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4257 if (size_minus)
410a0ff2
SDJ
4258 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4259 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4260 }
4261
410a0ff2 4262 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4263
410a0ff2
SDJ
4264 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4265 write_exp_elt_type (&p->pstate,
4266 lookup_pointer_type (p->arg_type));
4267 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4268
410a0ff2 4269 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4270
4271 p->arg = s;
4272
4273 return 1;
4274 }
4275
4276 return 0;
4277}
4278
55aa24fb
SDJ
4279/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4280 gdbarch.h. */
4281
4282int
4283i386_stap_parse_special_token (struct gdbarch *gdbarch,
4284 struct stap_parse_info *p)
4285{
55aa24fb
SDJ
4286 /* In order to parse special tokens, we use a state-machine that go
4287 through every known token and try to get a match. */
4288 enum
4289 {
4290 TRIPLET,
4291 THREE_ARG_DISPLACEMENT,
4292 DONE
570dc176
TT
4293 };
4294 int current_state;
55aa24fb
SDJ
4295
4296 current_state = TRIPLET;
4297
4298 /* The special tokens to be parsed here are:
4299
4300 - `register base + (register index * size) + offset', as represented
4301 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4302
4303 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4304 `*(-8 + 3 - 1 + (void *) $eax)'. */
4305
4306 while (current_state != DONE)
4307 {
55aa24fb
SDJ
4308 switch (current_state)
4309 {
4310 case TRIPLET:
5acfdbae
SDJ
4311 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4312 return 1;
4313 break;
4314
55aa24fb 4315 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4316 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4317 return 1;
4318 break;
55aa24fb
SDJ
4319 }
4320
4321 /* Advancing to the next state. */
4322 ++current_state;
4323 }
4324
4325 return 0;
4326}
4327
8201327c 4328\f
3ce1502b 4329
ac04f72b
TT
4330/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4331 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4332
4333static const char *
4334i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4335{
4336 return "(x86_64|i.86)";
4337}
4338
4339\f
4340
8201327c 4341/* Generic ELF. */
d2a7c97a 4342
8201327c
MK
4343void
4344i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4345{
05c0465e
SDJ
4346 static const char *const stap_integer_prefixes[] = { "$", NULL };
4347 static const char *const stap_register_prefixes[] = { "%", NULL };
4348 static const char *const stap_register_indirection_prefixes[] = { "(",
4349 NULL };
4350 static const char *const stap_register_indirection_suffixes[] = { ")",
4351 NULL };
4352
c4fc7f1b
MK
4353 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4354 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4355
4356 /* Registering SystemTap handlers. */
05c0465e
SDJ
4357 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4358 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4359 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4360 stap_register_indirection_prefixes);
4361 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4362 stap_register_indirection_suffixes);
55aa24fb
SDJ
4363 set_gdbarch_stap_is_single_operand (gdbarch,
4364 i386_stap_is_single_operand);
4365 set_gdbarch_stap_parse_special_token (gdbarch,
4366 i386_stap_parse_special_token);
ac04f72b
TT
4367
4368 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8201327c 4369}
3ce1502b 4370
8201327c 4371/* System V Release 4 (SVR4). */
3ce1502b 4372
8201327c
MK
4373void
4374i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4375{
4376 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4377
8201327c
MK
4378 /* System V Release 4 uses ELF. */
4379 i386_elf_init_abi (info, gdbarch);
3ce1502b 4380
dfe01d39 4381 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4382 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4383
911bc6ee 4384 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4385 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4386 tdep->sc_pc_offset = 36 + 14 * 4;
4387 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4388
8201327c 4389 tdep->jb_pc_offset = 20;
3ce1502b
MK
4390}
4391
8201327c 4392/* DJGPP. */
3ce1502b 4393
3a1e71e3 4394static void
8201327c 4395i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4396{
8201327c 4397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4398
911bc6ee
MK
4399 /* DJGPP doesn't have any special frames for signal handlers. */
4400 tdep->sigtramp_p = NULL;
3ce1502b 4401
8201327c 4402 tdep->jb_pc_offset = 36;
15430fc0
EZ
4403
4404 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4405 if (! tdesc_has_registers (info.target_desc))
4406 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4407
4408 /* Native compiler is GCC, which uses the SVR4 register numbering
4409 even in COFF and STABS. See the comment in i386_gdbarch_init,
4410 before the calls to set_gdbarch_stab_reg_to_regnum and
4411 set_gdbarch_sdb_reg_to_regnum. */
4412 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4413 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4414
4415 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
ac04f72b
TT
4416
4417 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
3ce1502b 4418}
8201327c 4419\f
2acceee2 4420
38c968cf
AC
4421/* i386 register groups. In addition to the normal groups, add "mmx"
4422 and "sse". */
4423
4424static struct reggroup *i386_sse_reggroup;
4425static struct reggroup *i386_mmx_reggroup;
4426
4427static void
4428i386_init_reggroups (void)
4429{
4430 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4431 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4432}
4433
4434static void
4435i386_add_reggroups (struct gdbarch *gdbarch)
4436{
4437 reggroup_add (gdbarch, i386_sse_reggroup);
4438 reggroup_add (gdbarch, i386_mmx_reggroup);
4439 reggroup_add (gdbarch, general_reggroup);
4440 reggroup_add (gdbarch, float_reggroup);
4441 reggroup_add (gdbarch, all_reggroup);
4442 reggroup_add (gdbarch, save_reggroup);
4443 reggroup_add (gdbarch, restore_reggroup);
4444 reggroup_add (gdbarch, vector_reggroup);
4445 reggroup_add (gdbarch, system_reggroup);
4446}
4447
4448int
4449i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4450 struct reggroup *group)
4451{
c131fcee
L
4452 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4453 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4454 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4455 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4456 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4457 avx512_p, avx_p, sse_p;
acd5c798 4458
1ba53b71
L
4459 /* Don't include pseudo registers, except for MMX, in any register
4460 groups. */
c131fcee 4461 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4462 return 0;
4463
c131fcee 4464 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4465 return 0;
4466
c131fcee 4467 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4468 return 0;
4469
4470 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4471 if (group == i386_mmx_reggroup)
4472 return mmx_regnum_p;
1ba53b71 4473
c131fcee 4474 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4475 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4476 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4477 if (group == i386_sse_reggroup)
01f9f808 4478 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4479
4480 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4481 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4482 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4483
df7e5265
GB
4484 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4485 == X86_XSTATE_AVX512_MASK);
4486 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4487 == X86_XSTATE_AVX_MASK) && !avx512_p;
4488 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4489 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4490
38c968cf 4491 if (group == vector_reggroup)
c131fcee 4492 return (mmx_regnum_p
01f9f808
MS
4493 || (zmm_regnum_p && avx512_p)
4494 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4495 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4496 || mxcsr_regnum_p);
1ba53b71
L
4497
4498 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4499 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4500 if (group == float_reggroup)
4501 return fp_regnum_p;
1ba53b71 4502
c131fcee
L
4503 /* For "info reg all", don't include upper YMM registers nor XMM
4504 registers when AVX is supported. */
4505 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4506 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4507 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4508 if (group == all_reggroup
01f9f808
MS
4509 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4510 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4511 || ymmh_regnum_p
4512 || ymmh_avx512_regnum_p
4513 || zmmh_regnum_p))
c131fcee
L
4514 return 0;
4515
1dbcd68c
WT
4516 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4517 if (group == all_reggroup
df7e5265 4518 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4519 return bnd_regnum_p;
4520
4521 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4522 if (group == all_reggroup
df7e5265 4523 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4524 return 0;
4525
4526 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4527 if (group == all_reggroup
df7e5265 4528 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4529 return mpx_ctrl_regnum_p;
4530
38c968cf 4531 if (group == general_reggroup)
1ba53b71
L
4532 return (!fp_regnum_p
4533 && !mmx_regnum_p
c131fcee
L
4534 && !mxcsr_regnum_p
4535 && !xmm_regnum_p
01f9f808 4536 && !xmm_avx512_regnum_p
c131fcee 4537 && !ymm_regnum_p
1dbcd68c 4538 && !ymmh_regnum_p
01f9f808
MS
4539 && !ymm_avx512_regnum_p
4540 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4541 && !bndr_regnum_p
4542 && !bnd_regnum_p
01f9f808
MS
4543 && !mpx_ctrl_regnum_p
4544 && !zmm_regnum_p
4545 && !zmmh_regnum_p);
acd5c798 4546
38c968cf
AC
4547 return default_register_reggroup_p (gdbarch, regnum, group);
4548}
38c968cf 4549\f
acd5c798 4550
f837910f
MK
4551/* Get the ARGIth function argument for the current function. */
4552
42c466d7 4553static CORE_ADDR
143985b7
AF
4554i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4555 struct type *type)
4556{
e17a4113
UW
4557 struct gdbarch *gdbarch = get_frame_arch (frame);
4558 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4559 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4560 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4561}
4562
7ad10968
HZ
4563#define PREFIX_REPZ 0x01
4564#define PREFIX_REPNZ 0x02
4565#define PREFIX_LOCK 0x04
4566#define PREFIX_DATA 0x08
4567#define PREFIX_ADDR 0x10
473f17b0 4568
7ad10968
HZ
4569/* operand size */
4570enum
4571{
4572 OT_BYTE = 0,
4573 OT_WORD,
4574 OT_LONG,
cf648174 4575 OT_QUAD,
a3c4230a 4576 OT_DQUAD,
7ad10968 4577};
473f17b0 4578
7ad10968
HZ
4579/* i386 arith/logic operations */
4580enum
4581{
4582 OP_ADDL,
4583 OP_ORL,
4584 OP_ADCL,
4585 OP_SBBL,
4586 OP_ANDL,
4587 OP_SUBL,
4588 OP_XORL,
4589 OP_CMPL,
4590};
5716833c 4591
7ad10968
HZ
4592struct i386_record_s
4593{
cf648174 4594 struct gdbarch *gdbarch;
7ad10968 4595 struct regcache *regcache;
df61f520 4596 CORE_ADDR orig_addr;
7ad10968
HZ
4597 CORE_ADDR addr;
4598 int aflag;
4599 int dflag;
4600 int override;
4601 uint8_t modrm;
4602 uint8_t mod, reg, rm;
4603 int ot;
cf648174
HZ
4604 uint8_t rex_x;
4605 uint8_t rex_b;
4606 int rip_offset;
4607 int popl_esp_hack;
4608 const int *regmap;
7ad10968 4609};
5716833c 4610
99c1624c
PA
4611/* Parse the "modrm" part of the memory address irp->addr points at.
4612 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4613
7ad10968
HZ
4614static int
4615i386_record_modrm (struct i386_record_s *irp)
4616{
cf648174 4617 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4618
4ffa4fc7
PA
4619 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4620 return -1;
4621
7ad10968
HZ
4622 irp->addr++;
4623 irp->mod = (irp->modrm >> 6) & 3;
4624 irp->reg = (irp->modrm >> 3) & 7;
4625 irp->rm = irp->modrm & 7;
5716833c 4626
7ad10968
HZ
4627 return 0;
4628}
d2a7c97a 4629
99c1624c
PA
4630/* Extract the memory address that the current instruction writes to,
4631 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4632
7ad10968 4633static int
cf648174 4634i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4635{
cf648174 4636 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4637 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4638 gdb_byte buf[4];
4639 ULONGEST offset64;
21d0e8a4 4640
7ad10968 4641 *addr = 0;
1e87984a 4642 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4643 {
1e87984a 4644 /* 32/64 bits */
7ad10968
HZ
4645 int havesib = 0;
4646 uint8_t scale = 0;
648d0c8b 4647 uint8_t byte;
7ad10968
HZ
4648 uint8_t index = 0;
4649 uint8_t base = irp->rm;
896fb97d 4650
7ad10968
HZ
4651 if (base == 4)
4652 {
4653 havesib = 1;
4ffa4fc7
PA
4654 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4655 return -1;
7ad10968 4656 irp->addr++;
648d0c8b
MS
4657 scale = (byte >> 6) & 3;
4658 index = ((byte >> 3) & 7) | irp->rex_x;
4659 base = (byte & 7);
7ad10968 4660 }
cf648174 4661 base |= irp->rex_b;
21d0e8a4 4662
7ad10968
HZ
4663 switch (irp->mod)
4664 {
4665 case 0:
4666 if ((base & 7) == 5)
4667 {
4668 base = 0xff;
4ffa4fc7
PA
4669 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4670 return -1;
7ad10968 4671 irp->addr += 4;
60a1502a 4672 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4673 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4674 *addr += irp->addr + irp->rip_offset;
7ad10968 4675 }
7ad10968
HZ
4676 break;
4677 case 1:
4ffa4fc7
PA
4678 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4679 return -1;
7ad10968 4680 irp->addr++;
60a1502a 4681 *addr = (int8_t) buf[0];
7ad10968
HZ
4682 break;
4683 case 2:
4ffa4fc7
PA
4684 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4685 return -1;
60a1502a 4686 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4687 irp->addr += 4;
4688 break;
4689 }
356a6b3e 4690
60a1502a 4691 offset64 = 0;
7ad10968 4692 if (base != 0xff)
cf648174
HZ
4693 {
4694 if (base == 4 && irp->popl_esp_hack)
4695 *addr += irp->popl_esp_hack;
4696 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4697 &offset64);
7ad10968 4698 }
cf648174
HZ
4699 if (irp->aflag == 2)
4700 {
60a1502a 4701 *addr += offset64;
cf648174
HZ
4702 }
4703 else
60a1502a 4704 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4705
7ad10968
HZ
4706 if (havesib && (index != 4 || scale != 0))
4707 {
cf648174 4708 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4709 &offset64);
cf648174 4710 if (irp->aflag == 2)
60a1502a 4711 *addr += offset64 << scale;
cf648174 4712 else
60a1502a 4713 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4714 }
e85596e0
L
4715
4716 if (!irp->aflag)
4717 {
4718 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4719 address from 32-bit to 64-bit. */
4720 *addr = (uint32_t) *addr;
4721 }
7ad10968
HZ
4722 }
4723 else
4724 {
4725 /* 16 bits */
4726 switch (irp->mod)
4727 {
4728 case 0:
4729 if (irp->rm == 6)
4730 {
4ffa4fc7
PA
4731 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4732 return -1;
7ad10968 4733 irp->addr += 2;
60a1502a 4734 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4735 irp->rm = 0;
4736 goto no_rm;
4737 }
7ad10968
HZ
4738 break;
4739 case 1:
4ffa4fc7
PA
4740 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4741 return -1;
7ad10968 4742 irp->addr++;
60a1502a 4743 *addr = (int8_t) buf[0];
7ad10968
HZ
4744 break;
4745 case 2:
4ffa4fc7
PA
4746 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4747 return -1;
7ad10968 4748 irp->addr += 2;
60a1502a 4749 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4750 break;
4751 }
c4fc7f1b 4752
7ad10968
HZ
4753 switch (irp->rm)
4754 {
4755 case 0:
cf648174
HZ
4756 regcache_raw_read_unsigned (irp->regcache,
4757 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4758 &offset64);
4759 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4760 regcache_raw_read_unsigned (irp->regcache,
4761 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4762 &offset64);
4763 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4764 break;
4765 case 1:
cf648174
HZ
4766 regcache_raw_read_unsigned (irp->regcache,
4767 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4768 &offset64);
4769 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4770 regcache_raw_read_unsigned (irp->regcache,
4771 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4772 &offset64);
4773 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4774 break;
4775 case 2:
cf648174
HZ
4776 regcache_raw_read_unsigned (irp->regcache,
4777 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4778 &offset64);
4779 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4780 regcache_raw_read_unsigned (irp->regcache,
4781 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4782 &offset64);
4783 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4784 break;
4785 case 3:
cf648174
HZ
4786 regcache_raw_read_unsigned (irp->regcache,
4787 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4788 &offset64);
4789 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4790 regcache_raw_read_unsigned (irp->regcache,
4791 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4792 &offset64);
4793 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4794 break;
4795 case 4:
cf648174
HZ
4796 regcache_raw_read_unsigned (irp->regcache,
4797 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4798 &offset64);
4799 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4800 break;
4801 case 5:
cf648174
HZ
4802 regcache_raw_read_unsigned (irp->regcache,
4803 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4804 &offset64);
4805 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4806 break;
4807 case 6:
cf648174
HZ
4808 regcache_raw_read_unsigned (irp->regcache,
4809 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4810 &offset64);
4811 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4812 break;
4813 case 7:
cf648174
HZ
4814 regcache_raw_read_unsigned (irp->regcache,
4815 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4816 &offset64);
4817 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4818 break;
4819 }
4820 *addr &= 0xffff;
4821 }
c4fc7f1b 4822
01fe1b41 4823 no_rm:
7ad10968
HZ
4824 return 0;
4825}
c4fc7f1b 4826
99c1624c
PA
4827/* Record the address and contents of the memory that will be changed
4828 by the current instruction. Return -1 if something goes wrong, 0
4829 otherwise. */
356a6b3e 4830
7ad10968
HZ
4831static int
4832i386_record_lea_modrm (struct i386_record_s *irp)
4833{
cf648174
HZ
4834 struct gdbarch *gdbarch = irp->gdbarch;
4835 uint64_t addr;
356a6b3e 4836
d7877f7e 4837 if (irp->override >= 0)
7ad10968 4838 {
25ea693b 4839 if (record_full_memory_query)
bb08c432
HZ
4840 {
4841 int q;
4842
4843 target_terminal_ours ();
4844 q = yquery (_("\
4845Process record ignores the memory change of instruction at address %s\n\
4846because it can't get the value of the segment register.\n\
4847Do you want to stop the program?"),
4848 paddress (gdbarch, irp->orig_addr));
4849 target_terminal_inferior ();
4850 if (q)
4851 return -1;
4852 }
4853
7ad10968
HZ
4854 return 0;
4855 }
61113f8b 4856
7ad10968
HZ
4857 if (i386_record_lea_modrm_addr (irp, &addr))
4858 return -1;
96297dab 4859
25ea693b 4860 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4861 return -1;
a62cc96e 4862
7ad10968
HZ
4863 return 0;
4864}
b6197528 4865
99c1624c
PA
4866/* Record the effects of a push operation. Return -1 if something
4867 goes wrong, 0 otherwise. */
cf648174
HZ
4868
4869static int
4870i386_record_push (struct i386_record_s *irp, int size)
4871{
648d0c8b 4872 ULONGEST addr;
cf648174 4873
25ea693b
MM
4874 if (record_full_arch_list_add_reg (irp->regcache,
4875 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4876 return -1;
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4879 &addr);
25ea693b 4880 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4881 return -1;
4882
4883 return 0;
4884}
4885
0289bdd7
MS
4886
4887/* Defines contents to record. */
4888#define I386_SAVE_FPU_REGS 0xfffd
4889#define I386_SAVE_FPU_ENV 0xfffe
4890#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4891
99c1624c
PA
4892/* Record the values of the floating point registers which will be
4893 changed by the current instruction. Returns -1 if something is
4894 wrong, 0 otherwise. */
0289bdd7
MS
4895
4896static int i386_record_floats (struct gdbarch *gdbarch,
4897 struct i386_record_s *ir,
4898 uint32_t iregnum)
4899{
4900 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4901 int i;
4902
4903 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4904 happen. Currently we store st0-st7 registers, but we need not store all
4905 registers all the time, in future we use ftag register and record only
4906 those who are not marked as an empty. */
4907
4908 if (I386_SAVE_FPU_REGS == iregnum)
4909 {
4910 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4911 {
25ea693b 4912 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4913 return -1;
4914 }
4915 }
4916 else if (I386_SAVE_FPU_ENV == iregnum)
4917 {
4918 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4919 {
25ea693b 4920 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4921 return -1;
4922 }
4923 }
4924 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4925 {
4926 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4927 {
25ea693b 4928 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4929 return -1;
4930 }
4931 }
4932 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4933 (iregnum <= I387_FOP_REGNUM (tdep)))
4934 {
25ea693b 4935 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4936 return -1;
4937 }
4938 else
4939 {
4940 /* Parameter error. */
4941 return -1;
4942 }
4943 if(I386_SAVE_FPU_ENV != iregnum)
4944 {
4945 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4946 {
25ea693b 4947 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4948 return -1;
4949 }
4950 }
4951 return 0;
4952}
4953
99c1624c
PA
4954/* Parse the current instruction, and record the values of the
4955 registers and memory that will be changed by the current
4956 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4957
25ea693b
MM
4958#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4959 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4960
a6b808b4 4961int
7ad10968 4962i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4963 CORE_ADDR input_addr)
7ad10968 4964{
60a1502a 4965 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4966 int prefixes = 0;
580879fc 4967 int regnum = 0;
425b824a 4968 uint32_t opcode;
f4644a3f 4969 uint8_t opcode8;
648d0c8b 4970 ULONGEST addr;
60a1502a 4971 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4972 struct i386_record_s ir;
0289bdd7 4973 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4974 uint8_t rex_w = -1;
4975 uint8_t rex_r = 0;
7ad10968 4976
8408d274 4977 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4978 ir.regcache = regcache;
648d0c8b
MS
4979 ir.addr = input_addr;
4980 ir.orig_addr = input_addr;
7ad10968
HZ
4981 ir.aflag = 1;
4982 ir.dflag = 1;
cf648174
HZ
4983 ir.override = -1;
4984 ir.popl_esp_hack = 0;
a3c4230a 4985 ir.regmap = tdep->record_regmap;
cf648174 4986 ir.gdbarch = gdbarch;
7ad10968
HZ
4987
4988 if (record_debug > 1)
4989 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4990 "addr = %s\n",
4991 paddress (gdbarch, ir.addr));
7ad10968
HZ
4992
4993 /* prefixes */
4994 while (1)
4995 {
4ffa4fc7
PA
4996 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4997 return -1;
7ad10968 4998 ir.addr++;
425b824a 4999 switch (opcode8) /* Instruction prefixes */
7ad10968 5000 {
01fe1b41 5001 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5002 prefixes |= PREFIX_REPZ;
5003 break;
01fe1b41 5004 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5005 prefixes |= PREFIX_REPNZ;
5006 break;
01fe1b41 5007 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5008 prefixes |= PREFIX_LOCK;
5009 break;
01fe1b41 5010 case CS_PREFIX_OPCODE:
cf648174 5011 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5012 break;
01fe1b41 5013 case SS_PREFIX_OPCODE:
cf648174 5014 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5015 break;
01fe1b41 5016 case DS_PREFIX_OPCODE:
cf648174 5017 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5018 break;
01fe1b41 5019 case ES_PREFIX_OPCODE:
cf648174 5020 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5021 break;
01fe1b41 5022 case FS_PREFIX_OPCODE:
cf648174 5023 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5024 break;
01fe1b41 5025 case GS_PREFIX_OPCODE:
cf648174 5026 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5027 break;
01fe1b41 5028 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5029 prefixes |= PREFIX_DATA;
5030 break;
01fe1b41 5031 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5032 prefixes |= PREFIX_ADDR;
5033 break;
d691bec7
MS
5034 case 0x40: /* i386 inc %eax */
5035 case 0x41: /* i386 inc %ecx */
5036 case 0x42: /* i386 inc %edx */
5037 case 0x43: /* i386 inc %ebx */
5038 case 0x44: /* i386 inc %esp */
5039 case 0x45: /* i386 inc %ebp */
5040 case 0x46: /* i386 inc %esi */
5041 case 0x47: /* i386 inc %edi */
5042 case 0x48: /* i386 dec %eax */
5043 case 0x49: /* i386 dec %ecx */
5044 case 0x4a: /* i386 dec %edx */
5045 case 0x4b: /* i386 dec %ebx */
5046 case 0x4c: /* i386 dec %esp */
5047 case 0x4d: /* i386 dec %ebp */
5048 case 0x4e: /* i386 dec %esi */
5049 case 0x4f: /* i386 dec %edi */
5050 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5051 {
5052 /* REX */
425b824a
MS
5053 rex_w = (opcode8 >> 3) & 1;
5054 rex_r = (opcode8 & 0x4) << 1;
5055 ir.rex_x = (opcode8 & 0x2) << 2;
5056 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5057 }
d691bec7
MS
5058 else /* 32 bit target */
5059 goto out_prefixes;
cf648174 5060 break;
7ad10968
HZ
5061 default:
5062 goto out_prefixes;
5063 break;
5064 }
5065 }
01fe1b41 5066 out_prefixes:
cf648174
HZ
5067 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5068 {
5069 ir.dflag = 2;
5070 }
5071 else
5072 {
5073 if (prefixes & PREFIX_DATA)
5074 ir.dflag ^= 1;
5075 }
7ad10968
HZ
5076 if (prefixes & PREFIX_ADDR)
5077 ir.aflag ^= 1;
cf648174
HZ
5078 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5079 ir.aflag = 2;
7ad10968 5080
1777feb0 5081 /* Now check op code. */
425b824a 5082 opcode = (uint32_t) opcode8;
01fe1b41 5083 reswitch:
7ad10968
HZ
5084 switch (opcode)
5085 {
5086 case 0x0f:
4ffa4fc7
PA
5087 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5088 return -1;
7ad10968 5089 ir.addr++;
a3c4230a 5090 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5091 goto reswitch;
5092 break;
93924b6b 5093
a38bba38 5094 case 0x00: /* arith & logic */
7ad10968
HZ
5095 case 0x01:
5096 case 0x02:
5097 case 0x03:
5098 case 0x04:
5099 case 0x05:
5100 case 0x08:
5101 case 0x09:
5102 case 0x0a:
5103 case 0x0b:
5104 case 0x0c:
5105 case 0x0d:
5106 case 0x10:
5107 case 0x11:
5108 case 0x12:
5109 case 0x13:
5110 case 0x14:
5111 case 0x15:
5112 case 0x18:
5113 case 0x19:
5114 case 0x1a:
5115 case 0x1b:
5116 case 0x1c:
5117 case 0x1d:
5118 case 0x20:
5119 case 0x21:
5120 case 0x22:
5121 case 0x23:
5122 case 0x24:
5123 case 0x25:
5124 case 0x28:
5125 case 0x29:
5126 case 0x2a:
5127 case 0x2b:
5128 case 0x2c:
5129 case 0x2d:
5130 case 0x30:
5131 case 0x31:
5132 case 0x32:
5133 case 0x33:
5134 case 0x34:
5135 case 0x35:
5136 case 0x38:
5137 case 0x39:
5138 case 0x3a:
5139 case 0x3b:
5140 case 0x3c:
5141 case 0x3d:
5142 if (((opcode >> 3) & 7) != OP_CMPL)
5143 {
5144 if ((opcode & 1) == 0)
5145 ir.ot = OT_BYTE;
5146 else
5147 ir.ot = ir.dflag + OT_WORD;
93924b6b 5148
7ad10968
HZ
5149 switch ((opcode >> 1) & 3)
5150 {
a38bba38 5151 case 0: /* OP Ev, Gv */
7ad10968
HZ
5152 if (i386_record_modrm (&ir))
5153 return -1;
5154 if (ir.mod != 3)
5155 {
5156 if (i386_record_lea_modrm (&ir))
5157 return -1;
5158 }
5159 else
5160 {
cf648174
HZ
5161 ir.rm |= ir.rex_b;
5162 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5163 ir.rm &= 0x3;
25ea693b 5164 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5165 }
5166 break;
a38bba38 5167 case 1: /* OP Gv, Ev */
7ad10968
HZ
5168 if (i386_record_modrm (&ir))
5169 return -1;
cf648174
HZ
5170 ir.reg |= rex_r;
5171 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5172 ir.reg &= 0x3;
25ea693b 5173 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5174 break;
a38bba38 5175 case 2: /* OP A, Iv */
25ea693b 5176 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5177 break;
5178 }
5179 }
25ea693b 5180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5181 break;
42fdc8df 5182
a38bba38 5183 case 0x80: /* GRP1 */
7ad10968
HZ
5184 case 0x81:
5185 case 0x82:
5186 case 0x83:
5187 if (i386_record_modrm (&ir))
5188 return -1;
8201327c 5189
7ad10968
HZ
5190 if (ir.reg != OP_CMPL)
5191 {
5192 if ((opcode & 1) == 0)
5193 ir.ot = OT_BYTE;
5194 else
5195 ir.ot = ir.dflag + OT_WORD;
28fc6740 5196
7ad10968
HZ
5197 if (ir.mod != 3)
5198 {
cf648174
HZ
5199 if (opcode == 0x83)
5200 ir.rip_offset = 1;
5201 else
5202 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5203 if (i386_record_lea_modrm (&ir))
5204 return -1;
5205 }
5206 else
25ea693b 5207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5208 }
25ea693b 5209 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5210 break;
5e3397bb 5211
a38bba38 5212 case 0x40: /* inc */
7ad10968
HZ
5213 case 0x41:
5214 case 0x42:
5215 case 0x43:
5216 case 0x44:
5217 case 0x45:
5218 case 0x46:
5219 case 0x47:
a38bba38
MS
5220
5221 case 0x48: /* dec */
7ad10968
HZ
5222 case 0x49:
5223 case 0x4a:
5224 case 0x4b:
5225 case 0x4c:
5226 case 0x4d:
5227 case 0x4e:
5228 case 0x4f:
a38bba38 5229
25ea693b
MM
5230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5232 break;
acd5c798 5233
a38bba38 5234 case 0xf6: /* GRP3 */
7ad10968
HZ
5235 case 0xf7:
5236 if ((opcode & 1) == 0)
5237 ir.ot = OT_BYTE;
5238 else
5239 ir.ot = ir.dflag + OT_WORD;
5240 if (i386_record_modrm (&ir))
5241 return -1;
acd5c798 5242
cf648174
HZ
5243 if (ir.mod != 3 && ir.reg == 0)
5244 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5245
7ad10968
HZ
5246 switch (ir.reg)
5247 {
a38bba38 5248 case 0: /* test */
25ea693b 5249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5250 break;
a38bba38
MS
5251 case 2: /* not */
5252 case 3: /* neg */
7ad10968
HZ
5253 if (ir.mod != 3)
5254 {
5255 if (i386_record_lea_modrm (&ir))
5256 return -1;
5257 }
5258 else
5259 {
cf648174
HZ
5260 ir.rm |= ir.rex_b;
5261 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5262 ir.rm &= 0x3;
25ea693b 5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5264 }
a38bba38 5265 if (ir.reg == 3) /* neg */
25ea693b 5266 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5267 break;
a38bba38
MS
5268 case 4: /* mul */
5269 case 5: /* imul */
5270 case 6: /* div */
5271 case 7: /* idiv */
25ea693b 5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5273 if (ir.ot != OT_BYTE)
25ea693b
MM
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5276 break;
5277 default:
5278 ir.addr -= 2;
5279 opcode = opcode << 8 | ir.modrm;
5280 goto no_support;
5281 break;
5282 }
5283 break;
5284
a38bba38
MS
5285 case 0xfe: /* GRP4 */
5286 case 0xff: /* GRP5 */
7ad10968
HZ
5287 if (i386_record_modrm (&ir))
5288 return -1;
5289 if (ir.reg >= 2 && opcode == 0xfe)
5290 {
5291 ir.addr -= 2;
5292 opcode = opcode << 8 | ir.modrm;
5293 goto no_support;
5294 }
7ad10968
HZ
5295 switch (ir.reg)
5296 {
a38bba38
MS
5297 case 0: /* inc */
5298 case 1: /* dec */
cf648174
HZ
5299 if ((opcode & 1) == 0)
5300 ir.ot = OT_BYTE;
5301 else
5302 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5303 if (ir.mod != 3)
5304 {
5305 if (i386_record_lea_modrm (&ir))
5306 return -1;
5307 }
5308 else
5309 {
cf648174
HZ
5310 ir.rm |= ir.rex_b;
5311 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5312 ir.rm &= 0x3;
25ea693b 5313 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5314 }
25ea693b 5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5316 break;
a38bba38 5317 case 2: /* call */
cf648174
HZ
5318 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5319 ir.dflag = 2;
5320 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5321 return -1;
25ea693b 5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5323 break;
a38bba38 5324 case 3: /* lcall */
25ea693b 5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5326 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5327 return -1;
25ea693b 5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5329 break;
a38bba38
MS
5330 case 4: /* jmp */
5331 case 5: /* ljmp */
25ea693b 5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5333 break;
a38bba38 5334 case 6: /* push */
cf648174
HZ
5335 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5336 ir.dflag = 2;
5337 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5338 return -1;
7ad10968
HZ
5339 break;
5340 default:
5341 ir.addr -= 2;
5342 opcode = opcode << 8 | ir.modrm;
5343 goto no_support;
5344 break;
5345 }
5346 break;
5347
a38bba38 5348 case 0x84: /* test */
7ad10968
HZ
5349 case 0x85:
5350 case 0xa8:
5351 case 0xa9:
25ea693b 5352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5353 break;
5354
a38bba38 5355 case 0x98: /* CWDE/CBW */
25ea693b 5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5357 break;
5358
a38bba38 5359 case 0x99: /* CDQ/CWD */
25ea693b
MM
5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5362 break;
5363
a38bba38 5364 case 0x0faf: /* imul */
7ad10968
HZ
5365 case 0x69:
5366 case 0x6b:
5367 ir.ot = ir.dflag + OT_WORD;
5368 if (i386_record_modrm (&ir))
5369 return -1;
cf648174
HZ
5370 if (opcode == 0x69)
5371 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5372 else if (opcode == 0x6b)
5373 ir.rip_offset = 1;
5374 ir.reg |= rex_r;
5375 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5376 ir.reg &= 0x3;
25ea693b
MM
5377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5379 break;
5380
a38bba38 5381 case 0x0fc0: /* xadd */
7ad10968
HZ
5382 case 0x0fc1:
5383 if ((opcode & 1) == 0)
5384 ir.ot = OT_BYTE;
5385 else
5386 ir.ot = ir.dflag + OT_WORD;
5387 if (i386_record_modrm (&ir))
5388 return -1;
cf648174 5389 ir.reg |= rex_r;
7ad10968
HZ
5390 if (ir.mod == 3)
5391 {
cf648174 5392 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5393 ir.reg &= 0x3;
25ea693b 5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5395 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5396 ir.rm &= 0x3;
25ea693b 5397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5398 }
5399 else
5400 {
5401 if (i386_record_lea_modrm (&ir))
5402 return -1;
cf648174 5403 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5404 ir.reg &= 0x3;
25ea693b 5405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5406 }
25ea693b 5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5408 break;
5409
a38bba38 5410 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5411 case 0x0fb1:
5412 if ((opcode & 1) == 0)
5413 ir.ot = OT_BYTE;
5414 else
5415 ir.ot = ir.dflag + OT_WORD;
5416 if (i386_record_modrm (&ir))
5417 return -1;
5418 if (ir.mod == 3)
5419 {
cf648174 5420 ir.reg |= rex_r;
25ea693b 5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5422 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5423 ir.reg &= 0x3;
25ea693b 5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5425 }
5426 else
5427 {
25ea693b 5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5429 if (i386_record_lea_modrm (&ir))
5430 return -1;
5431 }
25ea693b 5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5433 break;
5434
a38bba38 5435 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5436 if (i386_record_modrm (&ir))
5437 return -1;
5438 if (ir.mod == 3)
5439 {
5440 ir.addr -= 2;
5441 opcode = opcode << 8 | ir.modrm;
5442 goto no_support;
5443 }
25ea693b
MM
5444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5446 if (i386_record_lea_modrm (&ir))
5447 return -1;
25ea693b 5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5449 break;
5450
a38bba38 5451 case 0x50: /* push */
7ad10968
HZ
5452 case 0x51:
5453 case 0x52:
5454 case 0x53:
5455 case 0x54:
5456 case 0x55:
5457 case 0x56:
5458 case 0x57:
5459 case 0x68:
5460 case 0x6a:
cf648174
HZ
5461 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5462 ir.dflag = 2;
5463 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5464 return -1;
5465 break;
5466
a38bba38
MS
5467 case 0x06: /* push es */
5468 case 0x0e: /* push cs */
5469 case 0x16: /* push ss */
5470 case 0x1e: /* push ds */
cf648174
HZ
5471 if (ir.regmap[X86_RECORD_R8_REGNUM])
5472 {
5473 ir.addr -= 1;
5474 goto no_support;
5475 }
5476 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5477 return -1;
5478 break;
5479
a38bba38
MS
5480 case 0x0fa0: /* push fs */
5481 case 0x0fa8: /* push gs */
cf648174
HZ
5482 if (ir.regmap[X86_RECORD_R8_REGNUM])
5483 {
5484 ir.addr -= 2;
5485 goto no_support;
5486 }
5487 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5488 return -1;
cf648174
HZ
5489 break;
5490
a38bba38 5491 case 0x60: /* pusha */
cf648174
HZ
5492 if (ir.regmap[X86_RECORD_R8_REGNUM])
5493 {
5494 ir.addr -= 1;
5495 goto no_support;
5496 }
5497 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5498 return -1;
5499 break;
5500
a38bba38 5501 case 0x58: /* pop */
7ad10968
HZ
5502 case 0x59:
5503 case 0x5a:
5504 case 0x5b:
5505 case 0x5c:
5506 case 0x5d:
5507 case 0x5e:
5508 case 0x5f:
25ea693b
MM
5509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5511 break;
5512
a38bba38 5513 case 0x61: /* popa */
cf648174
HZ
5514 if (ir.regmap[X86_RECORD_R8_REGNUM])
5515 {
5516 ir.addr -= 1;
5517 goto no_support;
7ad10968 5518 }
425b824a
MS
5519 for (regnum = X86_RECORD_REAX_REGNUM;
5520 regnum <= X86_RECORD_REDI_REGNUM;
5521 regnum++)
25ea693b 5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5523 break;
5524
a38bba38 5525 case 0x8f: /* pop */
cf648174
HZ
5526 if (ir.regmap[X86_RECORD_R8_REGNUM])
5527 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5528 else
5529 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5530 if (i386_record_modrm (&ir))
5531 return -1;
5532 if (ir.mod == 3)
25ea693b 5533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5534 else
5535 {
cf648174 5536 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5537 if (i386_record_lea_modrm (&ir))
5538 return -1;
5539 }
25ea693b 5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5541 break;
5542
a38bba38 5543 case 0xc8: /* enter */
25ea693b 5544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5545 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5546 ir.dflag = 2;
5547 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5548 return -1;
5549 break;
5550
a38bba38 5551 case 0xc9: /* leave */
25ea693b
MM
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5554 break;
5555
a38bba38 5556 case 0x07: /* pop es */
cf648174
HZ
5557 if (ir.regmap[X86_RECORD_R8_REGNUM])
5558 {
5559 ir.addr -= 1;
5560 goto no_support;
5561 }
25ea693b
MM
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5565 break;
5566
a38bba38 5567 case 0x17: /* pop ss */
cf648174
HZ
5568 if (ir.regmap[X86_RECORD_R8_REGNUM])
5569 {
5570 ir.addr -= 1;
5571 goto no_support;
5572 }
25ea693b
MM
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5576 break;
5577
a38bba38 5578 case 0x1f: /* pop ds */
cf648174
HZ
5579 if (ir.regmap[X86_RECORD_R8_REGNUM])
5580 {
5581 ir.addr -= 1;
5582 goto no_support;
5583 }
25ea693b
MM
5584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5585 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5587 break;
5588
a38bba38 5589 case 0x0fa1: /* pop fs */
25ea693b
MM
5590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5593 break;
5594
a38bba38 5595 case 0x0fa9: /* pop gs */
25ea693b
MM
5596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5599 break;
5600
a38bba38 5601 case 0x88: /* mov */
7ad10968
HZ
5602 case 0x89:
5603 case 0xc6:
5604 case 0xc7:
5605 if ((opcode & 1) == 0)
5606 ir.ot = OT_BYTE;
5607 else
5608 ir.ot = ir.dflag + OT_WORD;
5609
5610 if (i386_record_modrm (&ir))
5611 return -1;
5612
5613 if (ir.mod != 3)
5614 {
cf648174
HZ
5615 if (opcode == 0xc6 || opcode == 0xc7)
5616 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5617 if (i386_record_lea_modrm (&ir))
5618 return -1;
5619 }
5620 else
5621 {
cf648174
HZ
5622 if (opcode == 0xc6 || opcode == 0xc7)
5623 ir.rm |= ir.rex_b;
5624 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5625 ir.rm &= 0x3;
25ea693b 5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5627 }
7ad10968 5628 break;
cf648174 5629
a38bba38 5630 case 0x8a: /* mov */
7ad10968
HZ
5631 case 0x8b:
5632 if ((opcode & 1) == 0)
5633 ir.ot = OT_BYTE;
5634 else
5635 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5636 if (i386_record_modrm (&ir))
5637 return -1;
cf648174
HZ
5638 ir.reg |= rex_r;
5639 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5640 ir.reg &= 0x3;
25ea693b 5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5642 break;
7ad10968 5643
a38bba38 5644 case 0x8c: /* mov seg */
cf648174 5645 if (i386_record_modrm (&ir))
7ad10968 5646 return -1;
cf648174
HZ
5647 if (ir.reg > 5)
5648 {
5649 ir.addr -= 2;
5650 opcode = opcode << 8 | ir.modrm;
5651 goto no_support;
5652 }
5653
5654 if (ir.mod == 3)
25ea693b 5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5656 else
5657 {
5658 ir.ot = OT_WORD;
5659 if (i386_record_lea_modrm (&ir))
5660 return -1;
5661 }
7ad10968
HZ
5662 break;
5663
a38bba38 5664 case 0x8e: /* mov seg */
7ad10968
HZ
5665 if (i386_record_modrm (&ir))
5666 return -1;
7ad10968
HZ
5667 switch (ir.reg)
5668 {
5669 case 0:
425b824a 5670 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5671 break;
5672 case 2:
425b824a 5673 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5674 break;
5675 case 3:
425b824a 5676 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5677 break;
5678 case 4:
425b824a 5679 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5680 break;
5681 case 5:
425b824a 5682 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5683 break;
5684 default:
5685 ir.addr -= 2;
5686 opcode = opcode << 8 | ir.modrm;
5687 goto no_support;
5688 break;
5689 }
25ea693b
MM
5690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5692 break;
5693
a38bba38
MS
5694 case 0x0fb6: /* movzbS */
5695 case 0x0fb7: /* movzwS */
5696 case 0x0fbe: /* movsbS */
5697 case 0x0fbf: /* movswS */
7ad10968
HZ
5698 if (i386_record_modrm (&ir))
5699 return -1;
25ea693b 5700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5701 break;
5702
a38bba38 5703 case 0x8d: /* lea */
7ad10968
HZ
5704 if (i386_record_modrm (&ir))
5705 return -1;
5706 if (ir.mod == 3)
5707 {
5708 ir.addr -= 2;
5709 opcode = opcode << 8 | ir.modrm;
5710 goto no_support;
5711 }
7ad10968 5712 ir.ot = ir.dflag;
cf648174
HZ
5713 ir.reg |= rex_r;
5714 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5715 ir.reg &= 0x3;
25ea693b 5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5717 break;
5718
a38bba38 5719 case 0xa0: /* mov EAX */
7ad10968 5720 case 0xa1:
a38bba38
MS
5721
5722 case 0xd7: /* xlat */
25ea693b 5723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5724 break;
5725
a38bba38 5726 case 0xa2: /* mov EAX */
7ad10968 5727 case 0xa3:
d7877f7e 5728 if (ir.override >= 0)
cf648174 5729 {
25ea693b 5730 if (record_full_memory_query)
bb08c432
HZ
5731 {
5732 int q;
5733
5734 target_terminal_ours ();
5735 q = yquery (_("\
5736Process record ignores the memory change of instruction at address %s\n\
5737because it can't get the value of the segment register.\n\
5738Do you want to stop the program?"),
5739 paddress (gdbarch, ir.orig_addr));
5740 target_terminal_inferior ();
5741 if (q)
5742 return -1;
5743 }
cf648174
HZ
5744 }
5745 else
5746 {
5747 if ((opcode & 1) == 0)
5748 ir.ot = OT_BYTE;
5749 else
5750 ir.ot = ir.dflag + OT_WORD;
5751 if (ir.aflag == 2)
5752 {
4ffa4fc7
PA
5753 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5754 return -1;
cf648174 5755 ir.addr += 8;
60a1502a 5756 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5757 }
5758 else if (ir.aflag)
5759 {
4ffa4fc7
PA
5760 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5761 return -1;
cf648174 5762 ir.addr += 4;
60a1502a 5763 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5764 }
5765 else
5766 {
4ffa4fc7
PA
5767 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5768 return -1;
cf648174 5769 ir.addr += 2;
60a1502a 5770 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5771 }
25ea693b 5772 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5773 return -1;
5774 }
7ad10968
HZ
5775 break;
5776
a38bba38 5777 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5778 case 0xb1:
5779 case 0xb2:
5780 case 0xb3:
5781 case 0xb4:
5782 case 0xb5:
5783 case 0xb6:
5784 case 0xb7:
25ea693b
MM
5785 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5786 ? ((opcode & 0x7) | ir.rex_b)
5787 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5788 break;
5789
a38bba38 5790 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5791 case 0xb9:
5792 case 0xba:
5793 case 0xbb:
5794 case 0xbc:
5795 case 0xbd:
5796 case 0xbe:
5797 case 0xbf:
25ea693b 5798 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5799 break;
5800
a38bba38 5801 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5802 case 0x92:
5803 case 0x93:
5804 case 0x94:
5805 case 0x95:
5806 case 0x96:
5807 case 0x97:
25ea693b
MM
5808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5810 break;
5811
a38bba38 5812 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5813 case 0x87:
5814 if ((opcode & 1) == 0)
5815 ir.ot = OT_BYTE;
5816 else
5817 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5818 if (i386_record_modrm (&ir))
5819 return -1;
7ad10968
HZ
5820 if (ir.mod == 3)
5821 {
86839d38 5822 ir.rm |= ir.rex_b;
cf648174
HZ
5823 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5824 ir.rm &= 0x3;
25ea693b 5825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5826 }
5827 else
5828 {
5829 if (i386_record_lea_modrm (&ir))
5830 return -1;
5831 }
cf648174
HZ
5832 ir.reg |= rex_r;
5833 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5834 ir.reg &= 0x3;
25ea693b 5835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5836 break;
5837
a38bba38
MS
5838 case 0xc4: /* les Gv */
5839 case 0xc5: /* lds Gv */
cf648174
HZ
5840 if (ir.regmap[X86_RECORD_R8_REGNUM])
5841 {
5842 ir.addr -= 1;
5843 goto no_support;
5844 }
d3f323f3 5845 /* FALLTHROUGH */
a38bba38
MS
5846 case 0x0fb2: /* lss Gv */
5847 case 0x0fb4: /* lfs Gv */
5848 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5849 if (i386_record_modrm (&ir))
5850 return -1;
5851 if (ir.mod == 3)
5852 {
5853 if (opcode > 0xff)
5854 ir.addr -= 3;
5855 else
5856 ir.addr -= 2;
5857 opcode = opcode << 8 | ir.modrm;
5858 goto no_support;
5859 }
7ad10968
HZ
5860 switch (opcode)
5861 {
a38bba38 5862 case 0xc4: /* les Gv */
425b824a 5863 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5864 break;
a38bba38 5865 case 0xc5: /* lds Gv */
425b824a 5866 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5867 break;
a38bba38 5868 case 0x0fb2: /* lss Gv */
425b824a 5869 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5870 break;
a38bba38 5871 case 0x0fb4: /* lfs Gv */
425b824a 5872 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5873 break;
a38bba38 5874 case 0x0fb5: /* lgs Gv */
425b824a 5875 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5876 break;
5877 }
25ea693b
MM
5878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5880 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5881 break;
5882
a38bba38 5883 case 0xc0: /* shifts */
7ad10968
HZ
5884 case 0xc1:
5885 case 0xd0:
5886 case 0xd1:
5887 case 0xd2:
5888 case 0xd3:
5889 if ((opcode & 1) == 0)
5890 ir.ot = OT_BYTE;
5891 else
5892 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5893 if (i386_record_modrm (&ir))
5894 return -1;
7ad10968
HZ
5895 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5896 {
5897 if (i386_record_lea_modrm (&ir))
5898 return -1;
5899 }
5900 else
5901 {
cf648174
HZ
5902 ir.rm |= ir.rex_b;
5903 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5904 ir.rm &= 0x3;
25ea693b 5905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5906 }
25ea693b 5907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5908 break;
5909
5910 case 0x0fa4:
5911 case 0x0fa5:
5912 case 0x0fac:
5913 case 0x0fad:
5914 if (i386_record_modrm (&ir))
5915 return -1;
5916 if (ir.mod == 3)
5917 {
25ea693b 5918 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5919 return -1;
5920 }
5921 else
5922 {
5923 if (i386_record_lea_modrm (&ir))
5924 return -1;
5925 }
5926 break;
5927
a38bba38 5928 case 0xd8: /* Floats. */
7ad10968
HZ
5929 case 0xd9:
5930 case 0xda:
5931 case 0xdb:
5932 case 0xdc:
5933 case 0xdd:
5934 case 0xde:
5935 case 0xdf:
5936 if (i386_record_modrm (&ir))
5937 return -1;
5938 ir.reg |= ((opcode & 7) << 3);
5939 if (ir.mod != 3)
5940 {
1777feb0 5941 /* Memory. */
955db0c0 5942 uint64_t addr64;
7ad10968 5943
955db0c0 5944 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5945 return -1;
5946 switch (ir.reg)
5947 {
7ad10968 5948 case 0x02:
0289bdd7
MS
5949 case 0x12:
5950 case 0x22:
5951 case 0x32:
5952 /* For fcom, ficom nothing to do. */
5953 break;
7ad10968 5954 case 0x03:
0289bdd7
MS
5955 case 0x13:
5956 case 0x23:
5957 case 0x33:
5958 /* For fcomp, ficomp pop FPU stack, store all. */
5959 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5960 return -1;
5961 break;
5962 case 0x00:
5963 case 0x01:
7ad10968
HZ
5964 case 0x04:
5965 case 0x05:
5966 case 0x06:
5967 case 0x07:
5968 case 0x10:
5969 case 0x11:
7ad10968
HZ
5970 case 0x14:
5971 case 0x15:
5972 case 0x16:
5973 case 0x17:
5974 case 0x20:
5975 case 0x21:
7ad10968
HZ
5976 case 0x24:
5977 case 0x25:
5978 case 0x26:
5979 case 0x27:
5980 case 0x30:
5981 case 0x31:
7ad10968
HZ
5982 case 0x34:
5983 case 0x35:
5984 case 0x36:
5985 case 0x37:
0289bdd7
MS
5986 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5987 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5988 of code, always affects st(0) register. */
5989 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5990 return -1;
7ad10968
HZ
5991 break;
5992 case 0x08:
5993 case 0x0a:
5994 case 0x0b:
5995 case 0x18:
5996 case 0x19:
5997 case 0x1a:
5998 case 0x1b:
0289bdd7 5999 case 0x1d:
7ad10968
HZ
6000 case 0x28:
6001 case 0x29:
6002 case 0x2a:
6003 case 0x2b:
6004 case 0x38:
6005 case 0x39:
6006 case 0x3a:
6007 case 0x3b:
0289bdd7
MS
6008 case 0x3c:
6009 case 0x3d:
7ad10968
HZ
6010 switch (ir.reg & 7)
6011 {
6012 case 0:
0289bdd7
MS
6013 /* Handling fld, fild. */
6014 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6015 return -1;
7ad10968
HZ
6016 break;
6017 case 1:
6018 switch (ir.reg >> 4)
6019 {
6020 case 0:
25ea693b 6021 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6022 return -1;
6023 break;
6024 case 2:
25ea693b 6025 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6026 return -1;
6027 break;
6028 case 3:
0289bdd7 6029 break;
7ad10968 6030 default:
25ea693b 6031 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6032 return -1;
6033 break;
6034 }
6035 break;
6036 default:
6037 switch (ir.reg >> 4)
6038 {
6039 case 0:
25ea693b 6040 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6041 return -1;
6042 if (3 == (ir.reg & 7))
6043 {
6044 /* For fstp m32fp. */
6045 if (i386_record_floats (gdbarch, &ir,
6046 I386_SAVE_FPU_REGS))
6047 return -1;
6048 }
6049 break;
7ad10968 6050 case 1:
25ea693b 6051 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6052 return -1;
0289bdd7
MS
6053 if ((3 == (ir.reg & 7))
6054 || (5 == (ir.reg & 7))
6055 || (7 == (ir.reg & 7)))
6056 {
6057 /* For fstp insn. */
6058 if (i386_record_floats (gdbarch, &ir,
6059 I386_SAVE_FPU_REGS))
6060 return -1;
6061 }
7ad10968
HZ
6062 break;
6063 case 2:
25ea693b 6064 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6065 return -1;
0289bdd7
MS
6066 if (3 == (ir.reg & 7))
6067 {
6068 /* For fstp m64fp. */
6069 if (i386_record_floats (gdbarch, &ir,
6070 I386_SAVE_FPU_REGS))
6071 return -1;
6072 }
7ad10968
HZ
6073 break;
6074 case 3:
0289bdd7
MS
6075 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6076 {
6077 /* For fistp, fbld, fild, fbstp. */
6078 if (i386_record_floats (gdbarch, &ir,
6079 I386_SAVE_FPU_REGS))
6080 return -1;
6081 }
6082 /* Fall through */
7ad10968 6083 default:
25ea693b 6084 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6085 return -1;
6086 break;
6087 }
6088 break;
6089 }
6090 break;
6091 case 0x0c:
0289bdd7
MS
6092 /* Insn fldenv. */
6093 if (i386_record_floats (gdbarch, &ir,
6094 I386_SAVE_FPU_ENV_REG_STACK))
6095 return -1;
6096 break;
7ad10968 6097 case 0x0d:
0289bdd7
MS
6098 /* Insn fldcw. */
6099 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6100 return -1;
6101 break;
7ad10968 6102 case 0x2c:
0289bdd7
MS
6103 /* Insn frstor. */
6104 if (i386_record_floats (gdbarch, &ir,
6105 I386_SAVE_FPU_ENV_REG_STACK))
6106 return -1;
7ad10968
HZ
6107 break;
6108 case 0x0e:
6109 if (ir.dflag)
6110 {
25ea693b 6111 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6112 return -1;
6113 }
6114 else
6115 {
25ea693b 6116 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6117 return -1;
6118 }
6119 break;
6120 case 0x0f:
6121 case 0x2f:
25ea693b 6122 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6123 return -1;
0289bdd7
MS
6124 /* Insn fstp, fbstp. */
6125 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6126 return -1;
7ad10968
HZ
6127 break;
6128 case 0x1f:
6129 case 0x3e:
25ea693b 6130 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6131 return -1;
6132 break;
6133 case 0x2e:
6134 if (ir.dflag)
6135 {
25ea693b 6136 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6137 return -1;
955db0c0 6138 addr64 += 28;
7ad10968
HZ
6139 }
6140 else
6141 {
25ea693b 6142 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6143 return -1;
955db0c0 6144 addr64 += 14;
7ad10968 6145 }
25ea693b 6146 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6147 return -1;
0289bdd7
MS
6148 /* Insn fsave. */
6149 if (i386_record_floats (gdbarch, &ir,
6150 I386_SAVE_FPU_ENV_REG_STACK))
6151 return -1;
7ad10968
HZ
6152 break;
6153 case 0x3f:
25ea693b 6154 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6155 return -1;
0289bdd7
MS
6156 /* Insn fistp. */
6157 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6158 return -1;
7ad10968
HZ
6159 break;
6160 default:
6161 ir.addr -= 2;
6162 opcode = opcode << 8 | ir.modrm;
6163 goto no_support;
6164 break;
6165 }
6166 }
0289bdd7
MS
6167 /* Opcode is an extension of modR/M byte. */
6168 else
6169 {
6170 switch (opcode)
6171 {
6172 case 0xd8:
6173 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6174 return -1;
6175 break;
6176 case 0xd9:
6177 if (0x0c == (ir.modrm >> 4))
6178 {
6179 if ((ir.modrm & 0x0f) <= 7)
6180 {
6181 if (i386_record_floats (gdbarch, &ir,
6182 I386_SAVE_FPU_REGS))
6183 return -1;
6184 }
6185 else
6186 {
6187 if (i386_record_floats (gdbarch, &ir,
6188 I387_ST0_REGNUM (tdep)))
6189 return -1;
6190 /* If only st(0) is changing, then we have already
6191 recorded. */
6192 if ((ir.modrm & 0x0f) - 0x08)
6193 {
6194 if (i386_record_floats (gdbarch, &ir,
6195 I387_ST0_REGNUM (tdep) +
6196 ((ir.modrm & 0x0f) - 0x08)))
6197 return -1;
6198 }
6199 }
6200 }
6201 else
6202 {
6203 switch (ir.modrm)
6204 {
6205 case 0xe0:
6206 case 0xe1:
6207 case 0xf0:
6208 case 0xf5:
6209 case 0xf8:
6210 case 0xfa:
6211 case 0xfc:
6212 case 0xfe:
6213 case 0xff:
6214 if (i386_record_floats (gdbarch, &ir,
6215 I387_ST0_REGNUM (tdep)))
6216 return -1;
6217 break;
6218 case 0xf1:
6219 case 0xf2:
6220 case 0xf3:
6221 case 0xf4:
6222 case 0xf6:
6223 case 0xf7:
6224 case 0xe8:
6225 case 0xe9:
6226 case 0xea:
6227 case 0xeb:
6228 case 0xec:
6229 case 0xed:
6230 case 0xee:
6231 case 0xf9:
6232 case 0xfb:
6233 if (i386_record_floats (gdbarch, &ir,
6234 I386_SAVE_FPU_REGS))
6235 return -1;
6236 break;
6237 case 0xfd:
6238 if (i386_record_floats (gdbarch, &ir,
6239 I387_ST0_REGNUM (tdep)))
6240 return -1;
6241 if (i386_record_floats (gdbarch, &ir,
6242 I387_ST0_REGNUM (tdep) + 1))
6243 return -1;
6244 break;
6245 }
6246 }
6247 break;
6248 case 0xda:
6249 if (0xe9 == ir.modrm)
6250 {
6251 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6252 return -1;
6253 }
6254 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6255 {
6256 if (i386_record_floats (gdbarch, &ir,
6257 I387_ST0_REGNUM (tdep)))
6258 return -1;
6259 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6260 {
6261 if (i386_record_floats (gdbarch, &ir,
6262 I387_ST0_REGNUM (tdep) +
6263 (ir.modrm & 0x0f)))
6264 return -1;
6265 }
6266 else if ((ir.modrm & 0x0f) - 0x08)
6267 {
6268 if (i386_record_floats (gdbarch, &ir,
6269 I387_ST0_REGNUM (tdep) +
6270 ((ir.modrm & 0x0f) - 0x08)))
6271 return -1;
6272 }
6273 }
6274 break;
6275 case 0xdb:
6276 if (0xe3 == ir.modrm)
6277 {
6278 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6279 return -1;
6280 }
6281 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6282 {
6283 if (i386_record_floats (gdbarch, &ir,
6284 I387_ST0_REGNUM (tdep)))
6285 return -1;
6286 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6287 {
6288 if (i386_record_floats (gdbarch, &ir,
6289 I387_ST0_REGNUM (tdep) +
6290 (ir.modrm & 0x0f)))
6291 return -1;
6292 }
6293 else if ((ir.modrm & 0x0f) - 0x08)
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep) +
6297 ((ir.modrm & 0x0f) - 0x08)))
6298 return -1;
6299 }
6300 }
6301 break;
6302 case 0xdc:
6303 if ((0x0c == ir.modrm >> 4)
6304 || (0x0d == ir.modrm >> 4)
6305 || (0x0f == ir.modrm >> 4))
6306 {
6307 if ((ir.modrm & 0x0f) <= 7)
6308 {
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) +
6311 (ir.modrm & 0x0f)))
6312 return -1;
6313 }
6314 else
6315 {
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_ST0_REGNUM (tdep) +
6318 ((ir.modrm & 0x0f) - 0x08)))
6319 return -1;
6320 }
6321 }
6322 break;
6323 case 0xdd:
6324 if (0x0c == ir.modrm >> 4)
6325 {
6326 if (i386_record_floats (gdbarch, &ir,
6327 I387_FTAG_REGNUM (tdep)))
6328 return -1;
6329 }
6330 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6331 {
6332 if ((ir.modrm & 0x0f) <= 7)
6333 {
6334 if (i386_record_floats (gdbarch, &ir,
6335 I387_ST0_REGNUM (tdep) +
6336 (ir.modrm & 0x0f)))
6337 return -1;
6338 }
6339 else
6340 {
6341 if (i386_record_floats (gdbarch, &ir,
6342 I386_SAVE_FPU_REGS))
6343 return -1;
6344 }
6345 }
6346 break;
6347 case 0xde:
6348 if ((0x0c == ir.modrm >> 4)
6349 || (0x0e == ir.modrm >> 4)
6350 || (0x0f == ir.modrm >> 4)
6351 || (0xd9 == ir.modrm))
6352 {
6353 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6354 return -1;
6355 }
6356 break;
6357 case 0xdf:
6358 if (0xe0 == ir.modrm)
6359 {
25ea693b
MM
6360 if (record_full_arch_list_add_reg (ir.regcache,
6361 I386_EAX_REGNUM))
0289bdd7
MS
6362 return -1;
6363 }
6364 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6365 {
6366 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6367 return -1;
6368 }
6369 break;
6370 }
6371 }
7ad10968 6372 break;
7ad10968 6373 /* string ops */
a38bba38 6374 case 0xa4: /* movsS */
7ad10968 6375 case 0xa5:
a38bba38 6376 case 0xaa: /* stosS */
7ad10968 6377 case 0xab:
a38bba38 6378 case 0x6c: /* insS */
7ad10968 6379 case 0x6d:
cf648174 6380 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6381 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6382 &addr);
6383 if (addr)
cf648174 6384 {
77d7dc92
HZ
6385 ULONGEST es, ds;
6386
6387 if ((opcode & 1) == 0)
6388 ir.ot = OT_BYTE;
6389 else
6390 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6391 regcache_raw_read_unsigned (ir.regcache,
6392 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6393 &addr);
77d7dc92 6394
d7877f7e
HZ
6395 regcache_raw_read_unsigned (ir.regcache,
6396 ir.regmap[X86_RECORD_ES_REGNUM],
6397 &es);
6398 regcache_raw_read_unsigned (ir.regcache,
6399 ir.regmap[X86_RECORD_DS_REGNUM],
6400 &ds);
6401 if (ir.aflag && (es != ds))
77d7dc92
HZ
6402 {
6403 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6404 if (record_full_memory_query)
bb08c432
HZ
6405 {
6406 int q;
6407
6408 target_terminal_ours ();
6409 q = yquery (_("\
6410Process record ignores the memory change of instruction at address %s\n\
6411because it can't get the value of the segment register.\n\
6412Do you want to stop the program?"),
6413 paddress (gdbarch, ir.orig_addr));
6414 target_terminal_inferior ();
6415 if (q)
6416 return -1;
6417 }
df61f520
HZ
6418 }
6419 else
6420 {
25ea693b 6421 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6422 return -1;
77d7dc92
HZ
6423 }
6424
6425 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6427 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6431 }
cf648174 6432 break;
7ad10968 6433
a38bba38 6434 case 0xa6: /* cmpsS */
cf648174 6435 case 0xa7:
25ea693b
MM
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6438 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6441 break;
6442
a38bba38 6443 case 0xac: /* lodsS */
7ad10968 6444 case 0xad:
25ea693b
MM
6445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6447 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6450 break;
6451
a38bba38 6452 case 0xae: /* scasS */
7ad10968 6453 case 0xaf:
25ea693b 6454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6455 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6458 break;
6459
a38bba38 6460 case 0x6e: /* outsS */
cf648174 6461 case 0x6f:
25ea693b 6462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6463 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6466 break;
6467
a38bba38 6468 case 0xe4: /* port I/O */
7ad10968
HZ
6469 case 0xe5:
6470 case 0xec:
6471 case 0xed:
25ea693b
MM
6472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6474 break;
6475
6476 case 0xe6:
6477 case 0xe7:
6478 case 0xee:
6479 case 0xef:
6480 break;
6481
6482 /* control */
a38bba38
MS
6483 case 0xc2: /* ret im */
6484 case 0xc3: /* ret */
25ea693b
MM
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6487 break;
6488
a38bba38
MS
6489 case 0xca: /* lret im */
6490 case 0xcb: /* lret */
6491 case 0xcf: /* iret */
25ea693b
MM
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6495 break;
6496
a38bba38 6497 case 0xe8: /* call im */
cf648174
HZ
6498 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6499 ir.dflag = 2;
6500 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6501 return -1;
7ad10968
HZ
6502 break;
6503
a38bba38 6504 case 0x9a: /* lcall im */
cf648174
HZ
6505 if (ir.regmap[X86_RECORD_R8_REGNUM])
6506 {
6507 ir.addr -= 1;
6508 goto no_support;
6509 }
25ea693b 6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6511 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6512 return -1;
7ad10968
HZ
6513 break;
6514
a38bba38
MS
6515 case 0xe9: /* jmp im */
6516 case 0xea: /* ljmp im */
6517 case 0xeb: /* jmp Jb */
6518 case 0x70: /* jcc Jb */
7ad10968
HZ
6519 case 0x71:
6520 case 0x72:
6521 case 0x73:
6522 case 0x74:
6523 case 0x75:
6524 case 0x76:
6525 case 0x77:
6526 case 0x78:
6527 case 0x79:
6528 case 0x7a:
6529 case 0x7b:
6530 case 0x7c:
6531 case 0x7d:
6532 case 0x7e:
6533 case 0x7f:
a38bba38 6534 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6535 case 0x0f81:
6536 case 0x0f82:
6537 case 0x0f83:
6538 case 0x0f84:
6539 case 0x0f85:
6540 case 0x0f86:
6541 case 0x0f87:
6542 case 0x0f88:
6543 case 0x0f89:
6544 case 0x0f8a:
6545 case 0x0f8b:
6546 case 0x0f8c:
6547 case 0x0f8d:
6548 case 0x0f8e:
6549 case 0x0f8f:
6550 break;
6551
a38bba38 6552 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6553 case 0x0f91:
6554 case 0x0f92:
6555 case 0x0f93:
6556 case 0x0f94:
6557 case 0x0f95:
6558 case 0x0f96:
6559 case 0x0f97:
6560 case 0x0f98:
6561 case 0x0f99:
6562 case 0x0f9a:
6563 case 0x0f9b:
6564 case 0x0f9c:
6565 case 0x0f9d:
6566 case 0x0f9e:
6567 case 0x0f9f:
25ea693b 6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6569 ir.ot = OT_BYTE;
6570 if (i386_record_modrm (&ir))
6571 return -1;
6572 if (ir.mod == 3)
25ea693b
MM
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6574 : (ir.rm & 0x3));
7ad10968
HZ
6575 else
6576 {
6577 if (i386_record_lea_modrm (&ir))
6578 return -1;
6579 }
6580 break;
6581
a38bba38 6582 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6583 case 0x0f41:
6584 case 0x0f42:
6585 case 0x0f43:
6586 case 0x0f44:
6587 case 0x0f45:
6588 case 0x0f46:
6589 case 0x0f47:
6590 case 0x0f48:
6591 case 0x0f49:
6592 case 0x0f4a:
6593 case 0x0f4b:
6594 case 0x0f4c:
6595 case 0x0f4d:
6596 case 0x0f4e:
6597 case 0x0f4f:
6598 if (i386_record_modrm (&ir))
6599 return -1;
cf648174 6600 ir.reg |= rex_r;
7ad10968
HZ
6601 if (ir.dflag == OT_BYTE)
6602 ir.reg &= 0x3;
25ea693b 6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6604 break;
6605
6606 /* flags */
a38bba38 6607 case 0x9c: /* pushf */
25ea693b 6608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6609 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6610 ir.dflag = 2;
6611 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6612 return -1;
7ad10968
HZ
6613 break;
6614
a38bba38 6615 case 0x9d: /* popf */
25ea693b
MM
6616 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6618 break;
6619
a38bba38 6620 case 0x9e: /* sahf */
cf648174
HZ
6621 if (ir.regmap[X86_RECORD_R8_REGNUM])
6622 {
6623 ir.addr -= 1;
6624 goto no_support;
6625 }
d3f323f3 6626 /* FALLTHROUGH */
a38bba38
MS
6627 case 0xf5: /* cmc */
6628 case 0xf8: /* clc */
6629 case 0xf9: /* stc */
6630 case 0xfc: /* cld */
6631 case 0xfd: /* std */
25ea693b 6632 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6633 break;
6634
a38bba38 6635 case 0x9f: /* lahf */
cf648174
HZ
6636 if (ir.regmap[X86_RECORD_R8_REGNUM])
6637 {
6638 ir.addr -= 1;
6639 goto no_support;
6640 }
25ea693b
MM
6641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6643 break;
6644
6645 /* bit operations */
a38bba38 6646 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6647 ir.ot = ir.dflag + OT_WORD;
6648 if (i386_record_modrm (&ir))
6649 return -1;
6650 if (ir.reg < 4)
6651 {
cf648174 6652 ir.addr -= 2;
7ad10968
HZ
6653 opcode = opcode << 8 | ir.modrm;
6654 goto no_support;
6655 }
cf648174 6656 if (ir.reg != 4)
7ad10968 6657 {
cf648174 6658 if (ir.mod == 3)
25ea693b 6659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6660 else
6661 {
cf648174 6662 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6663 return -1;
6664 }
6665 }
25ea693b 6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6667 break;
6668
a38bba38 6669 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6671 break;
6672
a38bba38
MS
6673 case 0x0fab: /* bts */
6674 case 0x0fb3: /* btr */
6675 case 0x0fbb: /* btc */
cf648174
HZ
6676 ir.ot = ir.dflag + OT_WORD;
6677 if (i386_record_modrm (&ir))
6678 return -1;
6679 if (ir.mod == 3)
25ea693b 6680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6681 else
6682 {
955db0c0
MS
6683 uint64_t addr64;
6684 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6685 return -1;
6686 regcache_raw_read_unsigned (ir.regcache,
6687 ir.regmap[ir.reg | rex_r],
648d0c8b 6688 &addr);
cf648174
HZ
6689 switch (ir.dflag)
6690 {
6691 case 0:
648d0c8b 6692 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6693 break;
6694 case 1:
648d0c8b 6695 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6696 break;
6697 case 2:
648d0c8b 6698 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6699 break;
6700 }
25ea693b 6701 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6702 return -1;
6703 if (i386_record_lea_modrm (&ir))
6704 return -1;
6705 }
25ea693b 6706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6707 break;
6708
a38bba38
MS
6709 case 0x0fbc: /* bsf */
6710 case 0x0fbd: /* bsr */
25ea693b
MM
6711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6713 break;
6714
6715 /* bcd */
a38bba38
MS
6716 case 0x27: /* daa */
6717 case 0x2f: /* das */
6718 case 0x37: /* aaa */
6719 case 0x3f: /* aas */
6720 case 0xd4: /* aam */
6721 case 0xd5: /* aad */
cf648174
HZ
6722 if (ir.regmap[X86_RECORD_R8_REGNUM])
6723 {
6724 ir.addr -= 1;
6725 goto no_support;
6726 }
25ea693b
MM
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6729 break;
6730
6731 /* misc */
a38bba38 6732 case 0x90: /* nop */
7ad10968
HZ
6733 if (prefixes & PREFIX_LOCK)
6734 {
6735 ir.addr -= 1;
6736 goto no_support;
6737 }
6738 break;
6739
a38bba38 6740 case 0x9b: /* fwait */
4ffa4fc7
PA
6741 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6742 return -1;
425b824a 6743 opcode = (uint32_t) opcode8;
0289bdd7
MS
6744 ir.addr++;
6745 goto reswitch;
7ad10968
HZ
6746 break;
6747
7ad10968 6748 /* XXX */
a38bba38 6749 case 0xcc: /* int3 */
a3c4230a 6750 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6751 "int3.\n"));
6752 ir.addr -= 1;
6753 goto no_support;
6754 break;
6755
7ad10968 6756 /* XXX */
a38bba38 6757 case 0xcd: /* int */
7ad10968
HZ
6758 {
6759 int ret;
425b824a 6760 uint8_t interrupt;
4ffa4fc7
PA
6761 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6762 return -1;
7ad10968 6763 ir.addr++;
425b824a 6764 if (interrupt != 0x80
a3c4230a 6765 || tdep->i386_intx80_record == NULL)
7ad10968 6766 {
a3c4230a 6767 printf_unfiltered (_("Process record does not support "
7ad10968 6768 "instruction int 0x%02x.\n"),
425b824a 6769 interrupt);
7ad10968
HZ
6770 ir.addr -= 2;
6771 goto no_support;
6772 }
a3c4230a 6773 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6774 if (ret)
6775 return ret;
6776 }
6777 break;
6778
7ad10968 6779 /* XXX */
a38bba38 6780 case 0xce: /* into */
a3c4230a 6781 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6782 "instruction into.\n"));
6783 ir.addr -= 1;
6784 goto no_support;
6785 break;
6786
a38bba38
MS
6787 case 0xfa: /* cli */
6788 case 0xfb: /* sti */
7ad10968
HZ
6789 break;
6790
a38bba38 6791 case 0x62: /* bound */
a3c4230a 6792 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6793 "instruction bound.\n"));
6794 ir.addr -= 1;
6795 goto no_support;
6796 break;
6797
a38bba38 6798 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6799 case 0x0fc9:
6800 case 0x0fca:
6801 case 0x0fcb:
6802 case 0x0fcc:
6803 case 0x0fcd:
6804 case 0x0fce:
6805 case 0x0fcf:
25ea693b 6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6807 break;
6808
a38bba38 6809 case 0xd6: /* salc */
cf648174
HZ
6810 if (ir.regmap[X86_RECORD_R8_REGNUM])
6811 {
6812 ir.addr -= 1;
6813 goto no_support;
6814 }
25ea693b
MM
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6817 break;
6818
a38bba38
MS
6819 case 0xe0: /* loopnz */
6820 case 0xe1: /* loopz */
6821 case 0xe2: /* loop */
6822 case 0xe3: /* jecxz */
25ea693b
MM
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6824 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6825 break;
6826
a38bba38 6827 case 0x0f30: /* wrmsr */
a3c4230a 6828 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6829 "instruction wrmsr.\n"));
6830 ir.addr -= 2;
6831 goto no_support;
6832 break;
6833
a38bba38 6834 case 0x0f32: /* rdmsr */
a3c4230a 6835 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6836 "instruction rdmsr.\n"));
6837 ir.addr -= 2;
6838 goto no_support;
6839 break;
6840
a38bba38 6841 case 0x0f31: /* rdtsc */
25ea693b
MM
6842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6844 break;
6845
a38bba38 6846 case 0x0f34: /* sysenter */
7ad10968
HZ
6847 {
6848 int ret;
cf648174
HZ
6849 if (ir.regmap[X86_RECORD_R8_REGNUM])
6850 {
6851 ir.addr -= 2;
6852 goto no_support;
6853 }
a3c4230a 6854 if (tdep->i386_sysenter_record == NULL)
7ad10968 6855 {
a3c4230a 6856 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6857 "instruction sysenter.\n"));
6858 ir.addr -= 2;
6859 goto no_support;
6860 }
a3c4230a 6861 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6862 if (ret)
6863 return ret;
6864 }
6865 break;
6866
a38bba38 6867 case 0x0f35: /* sysexit */
a3c4230a 6868 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6869 "instruction sysexit.\n"));
6870 ir.addr -= 2;
6871 goto no_support;
6872 break;
6873
a38bba38 6874 case 0x0f05: /* syscall */
cf648174
HZ
6875 {
6876 int ret;
a3c4230a 6877 if (tdep->i386_syscall_record == NULL)
cf648174 6878 {
a3c4230a 6879 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6880 "instruction syscall.\n"));
6881 ir.addr -= 2;
6882 goto no_support;
6883 }
a3c4230a 6884 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6885 if (ret)
6886 return ret;
6887 }
6888 break;
6889
a38bba38 6890 case 0x0f07: /* sysret */
a3c4230a 6891 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6892 "instruction sysret.\n"));
6893 ir.addr -= 2;
6894 goto no_support;
6895 break;
6896
a38bba38 6897 case 0x0fa2: /* cpuid */
25ea693b
MM
6898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6900 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6902 break;
6903
a38bba38 6904 case 0xf4: /* hlt */
a3c4230a 6905 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6906 "instruction hlt.\n"));
6907 ir.addr -= 1;
6908 goto no_support;
6909 break;
6910
6911 case 0x0f00:
6912 if (i386_record_modrm (&ir))
6913 return -1;
6914 switch (ir.reg)
6915 {
a38bba38
MS
6916 case 0: /* sldt */
6917 case 1: /* str */
7ad10968 6918 if (ir.mod == 3)
25ea693b 6919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6920 else
6921 {
6922 ir.ot = OT_WORD;
6923 if (i386_record_lea_modrm (&ir))
6924 return -1;
6925 }
6926 break;
a38bba38
MS
6927 case 2: /* lldt */
6928 case 3: /* ltr */
7ad10968 6929 break;
a38bba38
MS
6930 case 4: /* verr */
6931 case 5: /* verw */
25ea693b 6932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6933 break;
6934 default:
6935 ir.addr -= 3;
6936 opcode = opcode << 8 | ir.modrm;
6937 goto no_support;
6938 break;
6939 }
6940 break;
6941
6942 case 0x0f01:
6943 if (i386_record_modrm (&ir))
6944 return -1;
6945 switch (ir.reg)
6946 {
a38bba38 6947 case 0: /* sgdt */
7ad10968 6948 {
955db0c0 6949 uint64_t addr64;
7ad10968
HZ
6950
6951 if (ir.mod == 3)
6952 {
6953 ir.addr -= 3;
6954 opcode = opcode << 8 | ir.modrm;
6955 goto no_support;
6956 }
d7877f7e 6957 if (ir.override >= 0)
7ad10968 6958 {
25ea693b 6959 if (record_full_memory_query)
bb08c432
HZ
6960 {
6961 int q;
6962
6963 target_terminal_ours ();
6964 q = yquery (_("\
6965Process record ignores the memory change of instruction at address %s\n\
6966because it can't get the value of the segment register.\n\
6967Do you want to stop the program?"),
6968 paddress (gdbarch, ir.orig_addr));
6969 target_terminal_inferior ();
6970 if (q)
6971 return -1;
6972 }
7ad10968
HZ
6973 }
6974 else
6975 {
955db0c0 6976 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6977 return -1;
25ea693b 6978 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6979 return -1;
955db0c0 6980 addr64 += 2;
cf648174
HZ
6981 if (ir.regmap[X86_RECORD_R8_REGNUM])
6982 {
25ea693b 6983 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6984 return -1;
6985 }
6986 else
6987 {
25ea693b 6988 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6989 return -1;
6990 }
7ad10968
HZ
6991 }
6992 }
6993 break;
6994 case 1:
6995 if (ir.mod == 3)
6996 {
6997 switch (ir.rm)
6998 {
a38bba38 6999 case 0: /* monitor */
7ad10968 7000 break;
a38bba38 7001 case 1: /* mwait */
25ea693b 7002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7003 break;
7004 default:
7005 ir.addr -= 3;
7006 opcode = opcode << 8 | ir.modrm;
7007 goto no_support;
7008 break;
7009 }
7010 }
7011 else
7012 {
7013 /* sidt */
d7877f7e 7014 if (ir.override >= 0)
7ad10968 7015 {
25ea693b 7016 if (record_full_memory_query)
bb08c432
HZ
7017 {
7018 int q;
7019
7020 target_terminal_ours ();
7021 q = yquery (_("\
7022Process record ignores the memory change of instruction at address %s\n\
7023because it can't get the value of the segment register.\n\
7024Do you want to stop the program?"),
7025 paddress (gdbarch, ir.orig_addr));
7026 target_terminal_inferior ();
7027 if (q)
7028 return -1;
7029 }
7ad10968
HZ
7030 }
7031 else
7032 {
955db0c0 7033 uint64_t addr64;
7ad10968 7034
955db0c0 7035 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7036 return -1;
25ea693b 7037 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7038 return -1;
955db0c0 7039 addr64 += 2;
cf648174
HZ
7040 if (ir.regmap[X86_RECORD_R8_REGNUM])
7041 {
25ea693b 7042 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7043 return -1;
7044 }
7045 else
7046 {
25ea693b 7047 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7048 return -1;
7049 }
7ad10968
HZ
7050 }
7051 }
7052 break;
a38bba38 7053 case 2: /* lgdt */
3800e645
MS
7054 if (ir.mod == 3)
7055 {
7056 /* xgetbv */
7057 if (ir.rm == 0)
7058 {
25ea693b
MM
7059 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7061 break;
7062 }
7063 /* xsetbv */
7064 else if (ir.rm == 1)
7065 break;
7066 }
a38bba38 7067 case 3: /* lidt */
7ad10968
HZ
7068 if (ir.mod == 3)
7069 {
7070 ir.addr -= 3;
7071 opcode = opcode << 8 | ir.modrm;
7072 goto no_support;
7073 }
7074 break;
a38bba38 7075 case 4: /* smsw */
7ad10968
HZ
7076 if (ir.mod == 3)
7077 {
25ea693b 7078 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7079 return -1;
7080 }
7081 else
7082 {
7083 ir.ot = OT_WORD;
7084 if (i386_record_lea_modrm (&ir))
7085 return -1;
7086 }
25ea693b 7087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7088 break;
a38bba38 7089 case 6: /* lmsw */
25ea693b 7090 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7091 break;
a38bba38 7092 case 7: /* invlpg */
cf648174
HZ
7093 if (ir.mod == 3)
7094 {
7095 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7097 else
7098 {
7099 ir.addr -= 3;
7100 opcode = opcode << 8 | ir.modrm;
7101 goto no_support;
7102 }
7103 }
7104 else
25ea693b 7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7106 break;
7107 default:
7108 ir.addr -= 3;
7109 opcode = opcode << 8 | ir.modrm;
7110 goto no_support;
7ad10968
HZ
7111 break;
7112 }
7113 break;
7114
a38bba38
MS
7115 case 0x0f08: /* invd */
7116 case 0x0f09: /* wbinvd */
7ad10968
HZ
7117 break;
7118
a38bba38 7119 case 0x63: /* arpl */
7ad10968
HZ
7120 if (i386_record_modrm (&ir))
7121 return -1;
cf648174
HZ
7122 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7123 {
25ea693b
MM
7124 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7125 ? (ir.reg | rex_r) : ir.rm);
cf648174 7126 }
7ad10968 7127 else
cf648174
HZ
7128 {
7129 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7130 if (i386_record_lea_modrm (&ir))
7131 return -1;
7132 }
7133 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7134 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7135 break;
7136
a38bba38
MS
7137 case 0x0f02: /* lar */
7138 case 0x0f03: /* lsl */
7ad10968
HZ
7139 if (i386_record_modrm (&ir))
7140 return -1;
25ea693b
MM
7141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7142 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7143 break;
7144
7145 case 0x0f18:
cf648174
HZ
7146 if (i386_record_modrm (&ir))
7147 return -1;
7148 if (ir.mod == 3 && ir.reg == 3)
7149 {
7150 ir.addr -= 3;
7151 opcode = opcode << 8 | ir.modrm;
7152 goto no_support;
7153 }
7ad10968
HZ
7154 break;
7155
7ad10968
HZ
7156 case 0x0f19:
7157 case 0x0f1a:
7158 case 0x0f1b:
7159 case 0x0f1c:
7160 case 0x0f1d:
7161 case 0x0f1e:
7162 case 0x0f1f:
a38bba38 7163 /* nop (multi byte) */
7ad10968
HZ
7164 break;
7165
a38bba38
MS
7166 case 0x0f20: /* mov reg, crN */
7167 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7168 if (i386_record_modrm (&ir))
7169 return -1;
7170 if ((ir.modrm & 0xc0) != 0xc0)
7171 {
cf648174 7172 ir.addr -= 3;
7ad10968
HZ
7173 opcode = opcode << 8 | ir.modrm;
7174 goto no_support;
7175 }
7176 switch (ir.reg)
7177 {
7178 case 0:
7179 case 2:
7180 case 3:
7181 case 4:
7182 case 8:
7183 if (opcode & 2)
25ea693b 7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7185 else
25ea693b 7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7187 break;
7188 default:
cf648174 7189 ir.addr -= 3;
7ad10968
HZ
7190 opcode = opcode << 8 | ir.modrm;
7191 goto no_support;
7192 break;
7193 }
7194 break;
7195
a38bba38
MS
7196 case 0x0f21: /* mov reg, drN */
7197 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7198 if (i386_record_modrm (&ir))
7199 return -1;
7200 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7201 || ir.reg == 5 || ir.reg >= 8)
7202 {
cf648174 7203 ir.addr -= 3;
7ad10968
HZ
7204 opcode = opcode << 8 | ir.modrm;
7205 goto no_support;
7206 }
7207 if (opcode & 2)
25ea693b 7208 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7209 else
25ea693b 7210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7211 break;
7212
a38bba38 7213 case 0x0f06: /* clts */
25ea693b 7214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7215 break;
7216
a3c4230a
HZ
7217 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7218
7219 case 0x0f0d: /* 3DNow! prefetch */
7220 break;
7221
7222 case 0x0f0e: /* 3DNow! femms */
7223 case 0x0f77: /* emms */
7224 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7225 goto no_support;
25ea693b 7226 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7227 break;
7228
7229 case 0x0f0f: /* 3DNow! data */
7230 if (i386_record_modrm (&ir))
7231 return -1;
4ffa4fc7
PA
7232 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7233 return -1;
a3c4230a
HZ
7234 ir.addr++;
7235 switch (opcode8)
7236 {
7237 case 0x0c: /* 3DNow! pi2fw */
7238 case 0x0d: /* 3DNow! pi2fd */
7239 case 0x1c: /* 3DNow! pf2iw */
7240 case 0x1d: /* 3DNow! pf2id */
7241 case 0x8a: /* 3DNow! pfnacc */
7242 case 0x8e: /* 3DNow! pfpnacc */
7243 case 0x90: /* 3DNow! pfcmpge */
7244 case 0x94: /* 3DNow! pfmin */
7245 case 0x96: /* 3DNow! pfrcp */
7246 case 0x97: /* 3DNow! pfrsqrt */
7247 case 0x9a: /* 3DNow! pfsub */
7248 case 0x9e: /* 3DNow! pfadd */
7249 case 0xa0: /* 3DNow! pfcmpgt */
7250 case 0xa4: /* 3DNow! pfmax */
7251 case 0xa6: /* 3DNow! pfrcpit1 */
7252 case 0xa7: /* 3DNow! pfrsqit1 */
7253 case 0xaa: /* 3DNow! pfsubr */
7254 case 0xae: /* 3DNow! pfacc */
7255 case 0xb0: /* 3DNow! pfcmpeq */
7256 case 0xb4: /* 3DNow! pfmul */
7257 case 0xb6: /* 3DNow! pfrcpit2 */
7258 case 0xb7: /* 3DNow! pmulhrw */
7259 case 0xbb: /* 3DNow! pswapd */
7260 case 0xbf: /* 3DNow! pavgusb */
7261 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7262 goto no_support_3dnow_data;
25ea693b 7263 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7264 break;
7265
7266 default:
7267no_support_3dnow_data:
7268 opcode = (opcode << 8) | opcode8;
7269 goto no_support;
7270 break;
7271 }
7272 break;
7273
7274 case 0x0faa: /* rsm */
25ea693b
MM
7275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7284 break;
7285
7286 case 0x0fae:
7287 if (i386_record_modrm (&ir))
7288 return -1;
7289 switch(ir.reg)
7290 {
7291 case 0: /* fxsave */
7292 {
7293 uint64_t tmpu64;
7294
25ea693b 7295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7296 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7297 return -1;
25ea693b 7298 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7299 return -1;
7300 }
7301 break;
7302
7303 case 1: /* fxrstor */
7304 {
7305 int i;
7306
25ea693b 7307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7308
7309 for (i = I387_MM0_REGNUM (tdep);
7310 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7311 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7312
7313 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7314 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7315 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7316
7317 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7318 record_full_arch_list_add_reg (ir.regcache,
7319 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7320
7321 for (i = I387_ST0_REGNUM (tdep);
7322 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7323 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7324
7325 for (i = I387_FCTRL_REGNUM (tdep);
7326 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7327 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7328 }
7329 break;
7330
7331 case 2: /* ldmxcsr */
7332 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7333 goto no_support;
25ea693b 7334 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7335 break;
7336
7337 case 3: /* stmxcsr */
7338 ir.ot = OT_LONG;
7339 if (i386_record_lea_modrm (&ir))
7340 return -1;
7341 break;
7342
7343 case 5: /* lfence */
7344 case 6: /* mfence */
7345 case 7: /* sfence clflush */
7346 break;
7347
7348 default:
7349 opcode = (opcode << 8) | ir.modrm;
7350 goto no_support;
7351 break;
7352 }
7353 break;
7354
7355 case 0x0fc3: /* movnti */
7356 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7357 if (i386_record_modrm (&ir))
7358 return -1;
7359 if (ir.mod == 3)
7360 goto no_support;
7361 ir.reg |= rex_r;
7362 if (i386_record_lea_modrm (&ir))
7363 return -1;
7364 break;
7365
7366 /* Add prefix to opcode. */
7367 case 0x0f10:
7368 case 0x0f11:
7369 case 0x0f12:
7370 case 0x0f13:
7371 case 0x0f14:
7372 case 0x0f15:
7373 case 0x0f16:
7374 case 0x0f17:
7375 case 0x0f28:
7376 case 0x0f29:
7377 case 0x0f2a:
7378 case 0x0f2b:
7379 case 0x0f2c:
7380 case 0x0f2d:
7381 case 0x0f2e:
7382 case 0x0f2f:
7383 case 0x0f38:
7384 case 0x0f39:
7385 case 0x0f3a:
7386 case 0x0f50:
7387 case 0x0f51:
7388 case 0x0f52:
7389 case 0x0f53:
7390 case 0x0f54:
7391 case 0x0f55:
7392 case 0x0f56:
7393 case 0x0f57:
7394 case 0x0f58:
7395 case 0x0f59:
7396 case 0x0f5a:
7397 case 0x0f5b:
7398 case 0x0f5c:
7399 case 0x0f5d:
7400 case 0x0f5e:
7401 case 0x0f5f:
7402 case 0x0f60:
7403 case 0x0f61:
7404 case 0x0f62:
7405 case 0x0f63:
7406 case 0x0f64:
7407 case 0x0f65:
7408 case 0x0f66:
7409 case 0x0f67:
7410 case 0x0f68:
7411 case 0x0f69:
7412 case 0x0f6a:
7413 case 0x0f6b:
7414 case 0x0f6c:
7415 case 0x0f6d:
7416 case 0x0f6e:
7417 case 0x0f6f:
7418 case 0x0f70:
7419 case 0x0f71:
7420 case 0x0f72:
7421 case 0x0f73:
7422 case 0x0f74:
7423 case 0x0f75:
7424 case 0x0f76:
7425 case 0x0f7c:
7426 case 0x0f7d:
7427 case 0x0f7e:
7428 case 0x0f7f:
7429 case 0x0fb8:
7430 case 0x0fc2:
7431 case 0x0fc4:
7432 case 0x0fc5:
7433 case 0x0fc6:
7434 case 0x0fd0:
7435 case 0x0fd1:
7436 case 0x0fd2:
7437 case 0x0fd3:
7438 case 0x0fd4:
7439 case 0x0fd5:
7440 case 0x0fd6:
7441 case 0x0fd7:
7442 case 0x0fd8:
7443 case 0x0fd9:
7444 case 0x0fda:
7445 case 0x0fdb:
7446 case 0x0fdc:
7447 case 0x0fdd:
7448 case 0x0fde:
7449 case 0x0fdf:
7450 case 0x0fe0:
7451 case 0x0fe1:
7452 case 0x0fe2:
7453 case 0x0fe3:
7454 case 0x0fe4:
7455 case 0x0fe5:
7456 case 0x0fe6:
7457 case 0x0fe7:
7458 case 0x0fe8:
7459 case 0x0fe9:
7460 case 0x0fea:
7461 case 0x0feb:
7462 case 0x0fec:
7463 case 0x0fed:
7464 case 0x0fee:
7465 case 0x0fef:
7466 case 0x0ff0:
7467 case 0x0ff1:
7468 case 0x0ff2:
7469 case 0x0ff3:
7470 case 0x0ff4:
7471 case 0x0ff5:
7472 case 0x0ff6:
7473 case 0x0ff7:
7474 case 0x0ff8:
7475 case 0x0ff9:
7476 case 0x0ffa:
7477 case 0x0ffb:
7478 case 0x0ffc:
7479 case 0x0ffd:
7480 case 0x0ffe:
f9fda3f5
L
7481 /* Mask out PREFIX_ADDR. */
7482 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7483 {
7484 case PREFIX_REPNZ:
7485 opcode |= 0xf20000;
7486 break;
7487 case PREFIX_DATA:
7488 opcode |= 0x660000;
7489 break;
7490 case PREFIX_REPZ:
7491 opcode |= 0xf30000;
7492 break;
7493 }
7494reswitch_prefix_add:
7495 switch (opcode)
7496 {
7497 case 0x0f38:
7498 case 0x660f38:
7499 case 0xf20f38:
7500 case 0x0f3a:
7501 case 0x660f3a:
4ffa4fc7
PA
7502 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7503 return -1;
a3c4230a
HZ
7504 ir.addr++;
7505 opcode = (uint32_t) opcode8 | opcode << 8;
7506 goto reswitch_prefix_add;
7507 break;
7508
7509 case 0x0f10: /* movups */
7510 case 0x660f10: /* movupd */
7511 case 0xf30f10: /* movss */
7512 case 0xf20f10: /* movsd */
7513 case 0x0f12: /* movlps */
7514 case 0x660f12: /* movlpd */
7515 case 0xf30f12: /* movsldup */
7516 case 0xf20f12: /* movddup */
7517 case 0x0f14: /* unpcklps */
7518 case 0x660f14: /* unpcklpd */
7519 case 0x0f15: /* unpckhps */
7520 case 0x660f15: /* unpckhpd */
7521 case 0x0f16: /* movhps */
7522 case 0x660f16: /* movhpd */
7523 case 0xf30f16: /* movshdup */
7524 case 0x0f28: /* movaps */
7525 case 0x660f28: /* movapd */
7526 case 0x0f2a: /* cvtpi2ps */
7527 case 0x660f2a: /* cvtpi2pd */
7528 case 0xf30f2a: /* cvtsi2ss */
7529 case 0xf20f2a: /* cvtsi2sd */
7530 case 0x0f2c: /* cvttps2pi */
7531 case 0x660f2c: /* cvttpd2pi */
7532 case 0x0f2d: /* cvtps2pi */
7533 case 0x660f2d: /* cvtpd2pi */
7534 case 0x660f3800: /* pshufb */
7535 case 0x660f3801: /* phaddw */
7536 case 0x660f3802: /* phaddd */
7537 case 0x660f3803: /* phaddsw */
7538 case 0x660f3804: /* pmaddubsw */
7539 case 0x660f3805: /* phsubw */
7540 case 0x660f3806: /* phsubd */
4f7d61a8 7541 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7542 case 0x660f3808: /* psignb */
7543 case 0x660f3809: /* psignw */
7544 case 0x660f380a: /* psignd */
7545 case 0x660f380b: /* pmulhrsw */
7546 case 0x660f3810: /* pblendvb */
7547 case 0x660f3814: /* blendvps */
7548 case 0x660f3815: /* blendvpd */
7549 case 0x660f381c: /* pabsb */
7550 case 0x660f381d: /* pabsw */
7551 case 0x660f381e: /* pabsd */
7552 case 0x660f3820: /* pmovsxbw */
7553 case 0x660f3821: /* pmovsxbd */
7554 case 0x660f3822: /* pmovsxbq */
7555 case 0x660f3823: /* pmovsxwd */
7556 case 0x660f3824: /* pmovsxwq */
7557 case 0x660f3825: /* pmovsxdq */
7558 case 0x660f3828: /* pmuldq */
7559 case 0x660f3829: /* pcmpeqq */
7560 case 0x660f382a: /* movntdqa */
7561 case 0x660f3a08: /* roundps */
7562 case 0x660f3a09: /* roundpd */
7563 case 0x660f3a0a: /* roundss */
7564 case 0x660f3a0b: /* roundsd */
7565 case 0x660f3a0c: /* blendps */
7566 case 0x660f3a0d: /* blendpd */
7567 case 0x660f3a0e: /* pblendw */
7568 case 0x660f3a0f: /* palignr */
7569 case 0x660f3a20: /* pinsrb */
7570 case 0x660f3a21: /* insertps */
7571 case 0x660f3a22: /* pinsrd pinsrq */
7572 case 0x660f3a40: /* dpps */
7573 case 0x660f3a41: /* dppd */
7574 case 0x660f3a42: /* mpsadbw */
7575 case 0x660f3a60: /* pcmpestrm */
7576 case 0x660f3a61: /* pcmpestri */
7577 case 0x660f3a62: /* pcmpistrm */
7578 case 0x660f3a63: /* pcmpistri */
7579 case 0x0f51: /* sqrtps */
7580 case 0x660f51: /* sqrtpd */
7581 case 0xf20f51: /* sqrtsd */
7582 case 0xf30f51: /* sqrtss */
7583 case 0x0f52: /* rsqrtps */
7584 case 0xf30f52: /* rsqrtss */
7585 case 0x0f53: /* rcpps */
7586 case 0xf30f53: /* rcpss */
7587 case 0x0f54: /* andps */
7588 case 0x660f54: /* andpd */
7589 case 0x0f55: /* andnps */
7590 case 0x660f55: /* andnpd */
7591 case 0x0f56: /* orps */
7592 case 0x660f56: /* orpd */
7593 case 0x0f57: /* xorps */
7594 case 0x660f57: /* xorpd */
7595 case 0x0f58: /* addps */
7596 case 0x660f58: /* addpd */
7597 case 0xf20f58: /* addsd */
7598 case 0xf30f58: /* addss */
7599 case 0x0f59: /* mulps */
7600 case 0x660f59: /* mulpd */
7601 case 0xf20f59: /* mulsd */
7602 case 0xf30f59: /* mulss */
7603 case 0x0f5a: /* cvtps2pd */
7604 case 0x660f5a: /* cvtpd2ps */
7605 case 0xf20f5a: /* cvtsd2ss */
7606 case 0xf30f5a: /* cvtss2sd */
7607 case 0x0f5b: /* cvtdq2ps */
7608 case 0x660f5b: /* cvtps2dq */
7609 case 0xf30f5b: /* cvttps2dq */
7610 case 0x0f5c: /* subps */
7611 case 0x660f5c: /* subpd */
7612 case 0xf20f5c: /* subsd */
7613 case 0xf30f5c: /* subss */
7614 case 0x0f5d: /* minps */
7615 case 0x660f5d: /* minpd */
7616 case 0xf20f5d: /* minsd */
7617 case 0xf30f5d: /* minss */
7618 case 0x0f5e: /* divps */
7619 case 0x660f5e: /* divpd */
7620 case 0xf20f5e: /* divsd */
7621 case 0xf30f5e: /* divss */
7622 case 0x0f5f: /* maxps */
7623 case 0x660f5f: /* maxpd */
7624 case 0xf20f5f: /* maxsd */
7625 case 0xf30f5f: /* maxss */
7626 case 0x660f60: /* punpcklbw */
7627 case 0x660f61: /* punpcklwd */
7628 case 0x660f62: /* punpckldq */
7629 case 0x660f63: /* packsswb */
7630 case 0x660f64: /* pcmpgtb */
7631 case 0x660f65: /* pcmpgtw */
56d2815c 7632 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7633 case 0x660f67: /* packuswb */
7634 case 0x660f68: /* punpckhbw */
7635 case 0x660f69: /* punpckhwd */
7636 case 0x660f6a: /* punpckhdq */
7637 case 0x660f6b: /* packssdw */
7638 case 0x660f6c: /* punpcklqdq */
7639 case 0x660f6d: /* punpckhqdq */
7640 case 0x660f6e: /* movd */
7641 case 0x660f6f: /* movdqa */
7642 case 0xf30f6f: /* movdqu */
7643 case 0x660f70: /* pshufd */
7644 case 0xf20f70: /* pshuflw */
7645 case 0xf30f70: /* pshufhw */
7646 case 0x660f74: /* pcmpeqb */
7647 case 0x660f75: /* pcmpeqw */
56d2815c 7648 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7649 case 0x660f7c: /* haddpd */
7650 case 0xf20f7c: /* haddps */
7651 case 0x660f7d: /* hsubpd */
7652 case 0xf20f7d: /* hsubps */
7653 case 0xf30f7e: /* movq */
7654 case 0x0fc2: /* cmpps */
7655 case 0x660fc2: /* cmppd */
7656 case 0xf20fc2: /* cmpsd */
7657 case 0xf30fc2: /* cmpss */
7658 case 0x660fc4: /* pinsrw */
7659 case 0x0fc6: /* shufps */
7660 case 0x660fc6: /* shufpd */
7661 case 0x660fd0: /* addsubpd */
7662 case 0xf20fd0: /* addsubps */
7663 case 0x660fd1: /* psrlw */
7664 case 0x660fd2: /* psrld */
7665 case 0x660fd3: /* psrlq */
7666 case 0x660fd4: /* paddq */
7667 case 0x660fd5: /* pmullw */
7668 case 0xf30fd6: /* movq2dq */
7669 case 0x660fd8: /* psubusb */
7670 case 0x660fd9: /* psubusw */
7671 case 0x660fda: /* pminub */
7672 case 0x660fdb: /* pand */
7673 case 0x660fdc: /* paddusb */
7674 case 0x660fdd: /* paddusw */
7675 case 0x660fde: /* pmaxub */
7676 case 0x660fdf: /* pandn */
7677 case 0x660fe0: /* pavgb */
7678 case 0x660fe1: /* psraw */
7679 case 0x660fe2: /* psrad */
7680 case 0x660fe3: /* pavgw */
7681 case 0x660fe4: /* pmulhuw */
7682 case 0x660fe5: /* pmulhw */
7683 case 0x660fe6: /* cvttpd2dq */
7684 case 0xf20fe6: /* cvtpd2dq */
7685 case 0xf30fe6: /* cvtdq2pd */
7686 case 0x660fe8: /* psubsb */
7687 case 0x660fe9: /* psubsw */
7688 case 0x660fea: /* pminsw */
7689 case 0x660feb: /* por */
7690 case 0x660fec: /* paddsb */
7691 case 0x660fed: /* paddsw */
7692 case 0x660fee: /* pmaxsw */
7693 case 0x660fef: /* pxor */
4f7d61a8 7694 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7695 case 0x660ff1: /* psllw */
7696 case 0x660ff2: /* pslld */
7697 case 0x660ff3: /* psllq */
7698 case 0x660ff4: /* pmuludq */
7699 case 0x660ff5: /* pmaddwd */
7700 case 0x660ff6: /* psadbw */
7701 case 0x660ff8: /* psubb */
7702 case 0x660ff9: /* psubw */
56d2815c 7703 case 0x660ffa: /* psubd */
a3c4230a
HZ
7704 case 0x660ffb: /* psubq */
7705 case 0x660ffc: /* paddb */
7706 case 0x660ffd: /* paddw */
56d2815c 7707 case 0x660ffe: /* paddd */
a3c4230a
HZ
7708 if (i386_record_modrm (&ir))
7709 return -1;
7710 ir.reg |= rex_r;
c131fcee 7711 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7712 goto no_support;
25ea693b
MM
7713 record_full_arch_list_add_reg (ir.regcache,
7714 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7715 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7717 break;
7718
7719 case 0x0f11: /* movups */
7720 case 0x660f11: /* movupd */
7721 case 0xf30f11: /* movss */
7722 case 0xf20f11: /* movsd */
7723 case 0x0f13: /* movlps */
7724 case 0x660f13: /* movlpd */
7725 case 0x0f17: /* movhps */
7726 case 0x660f17: /* movhpd */
7727 case 0x0f29: /* movaps */
7728 case 0x660f29: /* movapd */
7729 case 0x660f3a14: /* pextrb */
7730 case 0x660f3a15: /* pextrw */
7731 case 0x660f3a16: /* pextrd pextrq */
7732 case 0x660f3a17: /* extractps */
7733 case 0x660f7f: /* movdqa */
7734 case 0xf30f7f: /* movdqu */
7735 if (i386_record_modrm (&ir))
7736 return -1;
7737 if (ir.mod == 3)
7738 {
7739 if (opcode == 0x0f13 || opcode == 0x660f13
7740 || opcode == 0x0f17 || opcode == 0x660f17)
7741 goto no_support;
7742 ir.rm |= ir.rex_b;
1777feb0
MS
7743 if (!i386_xmm_regnum_p (gdbarch,
7744 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7745 goto no_support;
25ea693b
MM
7746 record_full_arch_list_add_reg (ir.regcache,
7747 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7748 }
7749 else
7750 {
7751 switch (opcode)
7752 {
7753 case 0x660f3a14:
7754 ir.ot = OT_BYTE;
7755 break;
7756 case 0x660f3a15:
7757 ir.ot = OT_WORD;
7758 break;
7759 case 0x660f3a16:
7760 ir.ot = OT_LONG;
7761 break;
7762 case 0x660f3a17:
7763 ir.ot = OT_QUAD;
7764 break;
7765 default:
7766 ir.ot = OT_DQUAD;
7767 break;
7768 }
7769 if (i386_record_lea_modrm (&ir))
7770 return -1;
7771 }
7772 break;
7773
7774 case 0x0f2b: /* movntps */
7775 case 0x660f2b: /* movntpd */
7776 case 0x0fe7: /* movntq */
7777 case 0x660fe7: /* movntdq */
7778 if (ir.mod == 3)
7779 goto no_support;
7780 if (opcode == 0x0fe7)
7781 ir.ot = OT_QUAD;
7782 else
7783 ir.ot = OT_DQUAD;
7784 if (i386_record_lea_modrm (&ir))
7785 return -1;
7786 break;
7787
7788 case 0xf30f2c: /* cvttss2si */
7789 case 0xf20f2c: /* cvttsd2si */
7790 case 0xf30f2d: /* cvtss2si */
7791 case 0xf20f2d: /* cvtsd2si */
7792 case 0xf20f38f0: /* crc32 */
7793 case 0xf20f38f1: /* crc32 */
7794 case 0x0f50: /* movmskps */
7795 case 0x660f50: /* movmskpd */
7796 case 0x0fc5: /* pextrw */
7797 case 0x660fc5: /* pextrw */
7798 case 0x0fd7: /* pmovmskb */
7799 case 0x660fd7: /* pmovmskb */
25ea693b 7800 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7801 break;
7802
7803 case 0x0f3800: /* pshufb */
7804 case 0x0f3801: /* phaddw */
7805 case 0x0f3802: /* phaddd */
7806 case 0x0f3803: /* phaddsw */
7807 case 0x0f3804: /* pmaddubsw */
7808 case 0x0f3805: /* phsubw */
7809 case 0x0f3806: /* phsubd */
4f7d61a8 7810 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7811 case 0x0f3808: /* psignb */
7812 case 0x0f3809: /* psignw */
7813 case 0x0f380a: /* psignd */
7814 case 0x0f380b: /* pmulhrsw */
7815 case 0x0f381c: /* pabsb */
7816 case 0x0f381d: /* pabsw */
7817 case 0x0f381e: /* pabsd */
7818 case 0x0f382b: /* packusdw */
7819 case 0x0f3830: /* pmovzxbw */
7820 case 0x0f3831: /* pmovzxbd */
7821 case 0x0f3832: /* pmovzxbq */
7822 case 0x0f3833: /* pmovzxwd */
7823 case 0x0f3834: /* pmovzxwq */
7824 case 0x0f3835: /* pmovzxdq */
7825 case 0x0f3837: /* pcmpgtq */
7826 case 0x0f3838: /* pminsb */
7827 case 0x0f3839: /* pminsd */
7828 case 0x0f383a: /* pminuw */
7829 case 0x0f383b: /* pminud */
7830 case 0x0f383c: /* pmaxsb */
7831 case 0x0f383d: /* pmaxsd */
7832 case 0x0f383e: /* pmaxuw */
7833 case 0x0f383f: /* pmaxud */
7834 case 0x0f3840: /* pmulld */
7835 case 0x0f3841: /* phminposuw */
7836 case 0x0f3a0f: /* palignr */
7837 case 0x0f60: /* punpcklbw */
7838 case 0x0f61: /* punpcklwd */
7839 case 0x0f62: /* punpckldq */
7840 case 0x0f63: /* packsswb */
7841 case 0x0f64: /* pcmpgtb */
7842 case 0x0f65: /* pcmpgtw */
56d2815c 7843 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7844 case 0x0f67: /* packuswb */
7845 case 0x0f68: /* punpckhbw */
7846 case 0x0f69: /* punpckhwd */
7847 case 0x0f6a: /* punpckhdq */
7848 case 0x0f6b: /* packssdw */
7849 case 0x0f6e: /* movd */
7850 case 0x0f6f: /* movq */
7851 case 0x0f70: /* pshufw */
7852 case 0x0f74: /* pcmpeqb */
7853 case 0x0f75: /* pcmpeqw */
56d2815c 7854 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7855 case 0x0fc4: /* pinsrw */
7856 case 0x0fd1: /* psrlw */
7857 case 0x0fd2: /* psrld */
7858 case 0x0fd3: /* psrlq */
7859 case 0x0fd4: /* paddq */
7860 case 0x0fd5: /* pmullw */
7861 case 0xf20fd6: /* movdq2q */
7862 case 0x0fd8: /* psubusb */
7863 case 0x0fd9: /* psubusw */
7864 case 0x0fda: /* pminub */
7865 case 0x0fdb: /* pand */
7866 case 0x0fdc: /* paddusb */
7867 case 0x0fdd: /* paddusw */
7868 case 0x0fde: /* pmaxub */
7869 case 0x0fdf: /* pandn */
7870 case 0x0fe0: /* pavgb */
7871 case 0x0fe1: /* psraw */
7872 case 0x0fe2: /* psrad */
7873 case 0x0fe3: /* pavgw */
7874 case 0x0fe4: /* pmulhuw */
7875 case 0x0fe5: /* pmulhw */
7876 case 0x0fe8: /* psubsb */
7877 case 0x0fe9: /* psubsw */
7878 case 0x0fea: /* pminsw */
7879 case 0x0feb: /* por */
7880 case 0x0fec: /* paddsb */
7881 case 0x0fed: /* paddsw */
7882 case 0x0fee: /* pmaxsw */
7883 case 0x0fef: /* pxor */
7884 case 0x0ff1: /* psllw */
7885 case 0x0ff2: /* pslld */
7886 case 0x0ff3: /* psllq */
7887 case 0x0ff4: /* pmuludq */
7888 case 0x0ff5: /* pmaddwd */
7889 case 0x0ff6: /* psadbw */
7890 case 0x0ff8: /* psubb */
7891 case 0x0ff9: /* psubw */
56d2815c 7892 case 0x0ffa: /* psubd */
a3c4230a
HZ
7893 case 0x0ffb: /* psubq */
7894 case 0x0ffc: /* paddb */
7895 case 0x0ffd: /* paddw */
56d2815c 7896 case 0x0ffe: /* paddd */
a3c4230a
HZ
7897 if (i386_record_modrm (&ir))
7898 return -1;
7899 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7900 goto no_support;
25ea693b
MM
7901 record_full_arch_list_add_reg (ir.regcache,
7902 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7903 break;
7904
7905 case 0x0f71: /* psllw */
7906 case 0x0f72: /* pslld */
7907 case 0x0f73: /* psllq */
7908 if (i386_record_modrm (&ir))
7909 return -1;
7910 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7911 goto no_support;
25ea693b
MM
7912 record_full_arch_list_add_reg (ir.regcache,
7913 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7914 break;
7915
7916 case 0x660f71: /* psllw */
7917 case 0x660f72: /* pslld */
7918 case 0x660f73: /* psllq */
7919 if (i386_record_modrm (&ir))
7920 return -1;
7921 ir.rm |= ir.rex_b;
c131fcee 7922 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7923 goto no_support;
25ea693b
MM
7924 record_full_arch_list_add_reg (ir.regcache,
7925 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7926 break;
7927
7928 case 0x0f7e: /* movd */
7929 case 0x660f7e: /* movd */
7930 if (i386_record_modrm (&ir))
7931 return -1;
7932 if (ir.mod == 3)
25ea693b 7933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7934 else
7935 {
7936 if (ir.dflag == 2)
7937 ir.ot = OT_QUAD;
7938 else
7939 ir.ot = OT_LONG;
7940 if (i386_record_lea_modrm (&ir))
7941 return -1;
7942 }
7943 break;
7944
7945 case 0x0f7f: /* movq */
7946 if (i386_record_modrm (&ir))
7947 return -1;
7948 if (ir.mod == 3)
7949 {
7950 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7951 goto no_support;
25ea693b
MM
7952 record_full_arch_list_add_reg (ir.regcache,
7953 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7954 }
7955 else
7956 {
7957 ir.ot = OT_QUAD;
7958 if (i386_record_lea_modrm (&ir))
7959 return -1;
7960 }
7961 break;
7962
7963 case 0xf30fb8: /* popcnt */
7964 if (i386_record_modrm (&ir))
7965 return -1;
25ea693b
MM
7966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7968 break;
7969
7970 case 0x660fd6: /* movq */
7971 if (i386_record_modrm (&ir))
7972 return -1;
7973 if (ir.mod == 3)
7974 {
7975 ir.rm |= ir.rex_b;
1777feb0
MS
7976 if (!i386_xmm_regnum_p (gdbarch,
7977 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7978 goto no_support;
25ea693b
MM
7979 record_full_arch_list_add_reg (ir.regcache,
7980 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7981 }
7982 else
7983 {
7984 ir.ot = OT_QUAD;
7985 if (i386_record_lea_modrm (&ir))
7986 return -1;
7987 }
7988 break;
7989
7990 case 0x660f3817: /* ptest */
7991 case 0x0f2e: /* ucomiss */
7992 case 0x660f2e: /* ucomisd */
7993 case 0x0f2f: /* comiss */
7994 case 0x660f2f: /* comisd */
25ea693b 7995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7996 break;
7997
7998 case 0x0ff7: /* maskmovq */
7999 regcache_raw_read_unsigned (ir.regcache,
8000 ir.regmap[X86_RECORD_REDI_REGNUM],
8001 &addr);
25ea693b 8002 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8003 return -1;
8004 break;
8005
8006 case 0x660ff7: /* maskmovdqu */
8007 regcache_raw_read_unsigned (ir.regcache,
8008 ir.regmap[X86_RECORD_REDI_REGNUM],
8009 &addr);
25ea693b 8010 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8011 return -1;
8012 break;
8013
8014 default:
8015 goto no_support;
8016 break;
8017 }
8018 break;
7ad10968
HZ
8019
8020 default:
7ad10968
HZ
8021 goto no_support;
8022 break;
8023 }
8024
cf648174 8025 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8026 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8027 if (record_full_arch_list_add_end ())
7ad10968
HZ
8028 return -1;
8029
8030 return 0;
8031
01fe1b41 8032 no_support:
a3c4230a
HZ
8033 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8034 "at address %s.\n"),
8035 (unsigned int) (opcode),
8036 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8037 return -1;
8038}
8039
cf648174
HZ
8040static const int i386_record_regmap[] =
8041{
8042 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8043 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8044 0, 0, 0, 0, 0, 0, 0, 0,
8045 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8046 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8047};
8048
7a697b8d 8049/* Check that the given address appears suitable for a fast
405f8e94 8050 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8051 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8052 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8053 middle of the tracepoint jump. On x86, it may be possible to use
8054 4-byte jumps with a 2-byte offset to a trampoline located in the
8055 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8056 of instruction to replace, and 0 if not, plus an explanatory
8057 string. */
8058
8059static int
6b940e6a
PL
8060i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8061 char **msg)
7a697b8d
SS
8062{
8063 int len, jumplen;
8064 static struct ui_file *gdb_null = NULL;
8065
405f8e94
SS
8066 /* Ask the target for the minimum instruction length supported. */
8067 jumplen = target_get_min_fast_tracepoint_insn_len ();
8068
8069 if (jumplen < 0)
8070 {
8071 /* If the target does not support the get_min_fast_tracepoint_insn_len
8072 operation, assume that fast tracepoints will always be implemented
8073 using 4-byte relative jumps on both x86 and x86-64. */
8074 jumplen = 5;
8075 }
8076 else if (jumplen == 0)
8077 {
8078 /* If the target does support get_min_fast_tracepoint_insn_len but
8079 returns zero, then the IPA has not loaded yet. In this case,
8080 we optimistically assume that truncated 2-byte relative jumps
8081 will be available on x86, and compensate later if this assumption
8082 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8083 jumps will always be used. */
8084 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8085 }
7a697b8d
SS
8086
8087 /* Dummy file descriptor for the disassembler. */
8088 if (!gdb_null)
8089 gdb_null = ui_file_new ();
8090
8091 /* Check for fit. */
8092 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94 8093
7a697b8d
SS
8094 if (len < jumplen)
8095 {
8096 /* Return a bit of target-specific detail to add to the caller's
8097 generic failure message. */
8098 if (msg)
1777feb0
MS
8099 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8100 "need at least %d bytes for the jump"),
7a697b8d
SS
8101 len, jumplen);
8102 return 0;
8103 }
405f8e94
SS
8104 else
8105 {
8106 if (msg)
8107 *msg = NULL;
8108 return 1;
8109 }
7a697b8d
SS
8110}
8111
90884b2b
L
8112static int
8113i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8114 struct tdesc_arch_data *tdesc_data)
8115{
8116 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8117 const struct tdesc_feature *feature_core;
01f9f808
MS
8118
8119 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8120 *feature_avx512;
90884b2b
L
8121 int i, num_regs, valid_p;
8122
8123 if (! tdesc_has_registers (tdesc))
8124 return 0;
8125
8126 /* Get core registers. */
8127 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8128 if (feature_core == NULL)
8129 return 0;
90884b2b
L
8130
8131 /* Get SSE registers. */
c131fcee 8132 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8133
c131fcee
L
8134 /* Try AVX registers. */
8135 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8136
1dbcd68c
WT
8137 /* Try MPX registers. */
8138 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8139
01f9f808
MS
8140 /* Try AVX512 registers. */
8141 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8142
90884b2b
L
8143 valid_p = 1;
8144
c131fcee 8145 /* The XCR0 bits. */
01f9f808
MS
8146 if (feature_avx512)
8147 {
8148 /* AVX512 register description requires AVX register description. */
8149 if (!feature_avx)
8150 return 0;
8151
df7e5265 8152 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
01f9f808
MS
8153
8154 /* It may have been set by OSABI initialization function. */
8155 if (tdep->k0_regnum < 0)
8156 {
8157 tdep->k_register_names = i386_k_names;
8158 tdep->k0_regnum = I386_K0_REGNUM;
8159 }
8160
8161 for (i = 0; i < I387_NUM_K_REGS; i++)
8162 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8163 tdep->k0_regnum + i,
8164 i386_k_names[i]);
8165
8166 if (tdep->num_zmm_regs == 0)
8167 {
8168 tdep->zmmh_register_names = i386_zmmh_names;
8169 tdep->num_zmm_regs = 8;
8170 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8171 }
8172
8173 for (i = 0; i < tdep->num_zmm_regs; i++)
8174 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8175 tdep->zmm0h_regnum + i,
8176 tdep->zmmh_register_names[i]);
8177
8178 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8179 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8180 tdep->xmm16_regnum + i,
8181 tdep->xmm_avx512_register_names[i]);
8182
8183 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8184 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8185 tdep->ymm16h_regnum + i,
8186 tdep->ymm16h_register_names[i]);
8187 }
c131fcee
L
8188 if (feature_avx)
8189 {
3a13a53b
L
8190 /* AVX register description requires SSE register description. */
8191 if (!feature_sse)
8192 return 0;
8193
01f9f808 8194 if (!feature_avx512)
df7e5265 8195 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8196
8197 /* It may have been set by OSABI initialization function. */
8198 if (tdep->num_ymm_regs == 0)
8199 {
8200 tdep->ymmh_register_names = i386_ymmh_names;
8201 tdep->num_ymm_regs = 8;
8202 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8203 }
8204
8205 for (i = 0; i < tdep->num_ymm_regs; i++)
8206 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8207 tdep->ymm0h_regnum + i,
8208 tdep->ymmh_register_names[i]);
8209 }
3a13a53b 8210 else if (feature_sse)
df7e5265 8211 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8212 else
8213 {
df7e5265 8214 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8215 tdep->num_xmm_regs = 0;
8216 }
c131fcee 8217
90884b2b
L
8218 num_regs = tdep->num_core_regs;
8219 for (i = 0; i < num_regs; i++)
8220 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8221 tdep->register_names[i]);
8222
3a13a53b
L
8223 if (feature_sse)
8224 {
8225 /* Need to include %mxcsr, so add one. */
8226 num_regs += tdep->num_xmm_regs + 1;
8227 for (; i < num_regs; i++)
8228 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8229 tdep->register_names[i]);
8230 }
90884b2b 8231
1dbcd68c
WT
8232 if (feature_mpx)
8233 {
df7e5265 8234 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8235
8236 if (tdep->bnd0r_regnum < 0)
8237 {
8238 tdep->mpx_register_names = i386_mpx_names;
8239 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8240 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8241 }
8242
8243 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8244 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8245 I387_BND0R_REGNUM (tdep) + i,
8246 tdep->mpx_register_names[i]);
8247 }
8248
90884b2b
L
8249 return valid_p;
8250}
8251
7ad10968
HZ
8252\f
8253static struct gdbarch *
8254i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8255{
8256 struct gdbarch_tdep *tdep;
8257 struct gdbarch *gdbarch;
90884b2b
L
8258 struct tdesc_arch_data *tdesc_data;
8259 const struct target_desc *tdesc;
1ba53b71 8260 int mm0_regnum;
c131fcee 8261 int ymm0_regnum;
1dbcd68c
WT
8262 int bnd0_regnum;
8263 int num_bnd_cooked;
01f9f808
MS
8264 int k0_regnum;
8265 int zmm0_regnum;
7ad10968
HZ
8266
8267 /* If there is already a candidate, use it. */
8268 arches = gdbarch_list_lookup_by_info (arches, &info);
8269 if (arches != NULL)
8270 return arches->gdbarch;
8271
8272 /* Allocate space for the new architecture. */
fc270c35 8273 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8274 gdbarch = gdbarch_alloc (&info, tdep);
8275
8276 /* General-purpose registers. */
7ad10968
HZ
8277 tdep->gregset_reg_offset = NULL;
8278 tdep->gregset_num_regs = I386_NUM_GREGS;
8279 tdep->sizeof_gregset = 0;
8280
8281 /* Floating-point registers. */
7ad10968 8282 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8283 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8284
8285 /* The default settings include the FPU registers, the MMX registers
8286 and the SSE registers. This can be overridden for a specific ABI
8287 by adjusting the members `st0_regnum', `mm0_regnum' and
8288 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8289 will show up in the output of "info all-registers". */
7ad10968
HZ
8290
8291 tdep->st0_regnum = I386_ST0_REGNUM;
8292
7ad10968
HZ
8293 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8294 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8295
8296 tdep->jb_pc_offset = -1;
8297 tdep->struct_return = pcc_struct_return;
8298 tdep->sigtramp_start = 0;
8299 tdep->sigtramp_end = 0;
8300 tdep->sigtramp_p = i386_sigtramp_p;
8301 tdep->sigcontext_addr = NULL;
8302 tdep->sc_reg_offset = NULL;
8303 tdep->sc_pc_offset = -1;
8304 tdep->sc_sp_offset = -1;
8305
c131fcee
L
8306 tdep->xsave_xcr0_offset = -1;
8307
cf648174
HZ
8308 tdep->record_regmap = i386_record_regmap;
8309
205c306f
DM
8310 set_gdbarch_long_long_align_bit (gdbarch, 32);
8311
7ad10968
HZ
8312 /* The format used for `long double' on almost all i386 targets is
8313 the i387 extended floating-point format. In fact, of all targets
8314 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8315 on having a `long double' that's not `long' at all. */
8316 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8317
8318 /* Although the i387 extended floating-point has only 80 significant
8319 bits, a `long double' actually takes up 96, probably to enforce
8320 alignment. */
8321 set_gdbarch_long_double_bit (gdbarch, 96);
8322
7ad10968
HZ
8323 /* Register numbers of various important registers. */
8324 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8325 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8326 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8327 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8328
8329 /* NOTE: kettenis/20040418: GCC does have two possible register
8330 numbering schemes on the i386: dbx and SVR4. These schemes
8331 differ in how they number %ebp, %esp, %eflags, and the
8332 floating-point registers, and are implemented by the arrays
8333 dbx_register_map[] and svr4_dbx_register_map in
8334 gcc/config/i386.c. GCC also defines a third numbering scheme in
8335 gcc/config/i386.c, which it designates as the "default" register
8336 map used in 64bit mode. This last register numbering scheme is
8337 implemented in dbx64_register_map, and is used for AMD64; see
8338 amd64-tdep.c.
8339
8340 Currently, each GCC i386 target always uses the same register
8341 numbering scheme across all its supported debugging formats
8342 i.e. SDB (COFF), stabs and DWARF 2. This is because
8343 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8344 DBX_REGISTER_NUMBER macro which is defined by each target's
8345 respective config header in a manner independent of the requested
8346 output debugging format.
8347
8348 This does not match the arrangement below, which presumes that
8349 the SDB and stabs numbering schemes differ from the DWARF and
8350 DWARF 2 ones. The reason for this arrangement is that it is
8351 likely to get the numbering scheme for the target's
8352 default/native debug format right. For targets where GCC is the
8353 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8354 targets where the native toolchain uses a different numbering
8355 scheme for a particular debug format (stabs-in-ELF on Solaris)
8356 the defaults below will have to be overridden, like
8357 i386_elf_init_abi() does. */
8358
8359 /* Use the dbx register numbering scheme for stabs and COFF. */
8360 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8361 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8362
8363 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8364 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8365
8366 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8367 be in use on any of the supported i386 targets. */
8368
8369 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8370
8371 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8372
8373 /* Call dummy code. */
a9b8d892
JK
8374 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8375 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8376 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8377 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8378
8379 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8380 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8381 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8382
8383 set_gdbarch_return_value (gdbarch, i386_return_value);
8384
8385 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8386
8387 /* Stack grows downward. */
8388 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8389
8390 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8391 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8392 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8393
8394 set_gdbarch_frame_args_skip (gdbarch, 8);
8395
7ad10968
HZ
8396 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8397
8398 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8399
8400 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8401
8402 /* Add the i386 register groups. */
8403 i386_add_reggroups (gdbarch);
90884b2b 8404 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8405
143985b7
AF
8406 /* Helper for function argument information. */
8407 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8408
06da04c6 8409 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8410 appended to the list first, so that it supercedes the DWARF
8411 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8412 currently fails). */
8413 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8414
8415 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8416 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8417 CFI info will be used if it is available. */
10458914 8418 dwarf2_append_unwinders (gdbarch);
6405b0a6 8419
acd5c798 8420 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8421
1ba53b71 8422 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8423 set_gdbarch_pseudo_register_read_value (gdbarch,
8424 i386_pseudo_register_read_value);
90884b2b
L
8425 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8426
8427 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8428 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8429
c131fcee
L
8430 /* Override the normal target description method to make the AVX
8431 upper halves anonymous. */
8432 set_gdbarch_register_name (gdbarch, i386_register_name);
8433
8434 /* Even though the default ABI only includes general-purpose registers,
8435 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8436 gap for the upper AVX, MPX and AVX512 registers. */
8437 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b 8438
ac04f72b
TT
8439 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8440
90884b2b
L
8441 /* Get the x86 target description from INFO. */
8442 tdesc = info.target_desc;
8443 if (! tdesc_has_registers (tdesc))
8444 tdesc = tdesc_i386;
8445 tdep->tdesc = tdesc;
8446
8447 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8448 tdep->register_names = i386_register_names;
8449
c131fcee
L
8450 /* No upper YMM registers. */
8451 tdep->ymmh_register_names = NULL;
8452 tdep->ymm0h_regnum = -1;
8453
01f9f808
MS
8454 /* No upper ZMM registers. */
8455 tdep->zmmh_register_names = NULL;
8456 tdep->zmm0h_regnum = -1;
8457
8458 /* No high XMM registers. */
8459 tdep->xmm_avx512_register_names = NULL;
8460 tdep->xmm16_regnum = -1;
8461
8462 /* No upper YMM16-31 registers. */
8463 tdep->ymm16h_register_names = NULL;
8464 tdep->ymm16h_regnum = -1;
8465
1ba53b71
L
8466 tdep->num_byte_regs = 8;
8467 tdep->num_word_regs = 8;
8468 tdep->num_dword_regs = 0;
8469 tdep->num_mmx_regs = 8;
c131fcee 8470 tdep->num_ymm_regs = 0;
1ba53b71 8471
1dbcd68c
WT
8472 /* No MPX registers. */
8473 tdep->bnd0r_regnum = -1;
8474 tdep->bndcfgu_regnum = -1;
8475
01f9f808
MS
8476 /* No AVX512 registers. */
8477 tdep->k0_regnum = -1;
8478 tdep->num_zmm_regs = 0;
8479 tdep->num_ymm_avx512_regs = 0;
8480 tdep->num_xmm_avx512_regs = 0;
8481
90884b2b
L
8482 tdesc_data = tdesc_data_alloc ();
8483
dde08ee1
PA
8484 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8485
6710bf39
SS
8486 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8487
c2170eef
MM
8488 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8489 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8490 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8491
3ce1502b 8492 /* Hook in ABI-specific overrides, if they have been registered. */
ede5f151 8493 info.tdep_info = tdesc_data;
4be87837 8494 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8495
c131fcee
L
8496 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8497 {
8498 tdesc_data_cleanup (tdesc_data);
8499 xfree (tdep);
8500 gdbarch_free (gdbarch);
8501 return NULL;
8502 }
8503
1dbcd68c
WT
8504 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8505
1ba53b71
L
8506 /* Wire in pseudo registers. Number of pseudo registers may be
8507 changed. */
8508 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8509 + tdep->num_word_regs
8510 + tdep->num_dword_regs
c131fcee 8511 + tdep->num_mmx_regs
1dbcd68c 8512 + tdep->num_ymm_regs
01f9f808
MS
8513 + num_bnd_cooked
8514 + tdep->num_ymm_avx512_regs
8515 + tdep->num_zmm_regs));
1ba53b71 8516
90884b2b
L
8517 /* Target description may be changed. */
8518 tdesc = tdep->tdesc;
8519
90884b2b
L
8520 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8521
8522 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8523 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8524
1ba53b71
L
8525 /* Make %al the first pseudo-register. */
8526 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8527 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8528
c131fcee 8529 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8530 if (tdep->num_dword_regs)
8531 {
1c6272a6 8532 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8533 tdep->eax_regnum = ymm0_regnum;
8534 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8535 }
8536 else
8537 tdep->eax_regnum = -1;
8538
c131fcee
L
8539 mm0_regnum = ymm0_regnum;
8540 if (tdep->num_ymm_regs)
8541 {
1c6272a6 8542 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8543 tdep->ymm0_regnum = ymm0_regnum;
8544 mm0_regnum += tdep->num_ymm_regs;
8545 }
8546 else
8547 tdep->ymm0_regnum = -1;
8548
01f9f808
MS
8549 if (tdep->num_ymm_avx512_regs)
8550 {
8551 /* Support YMM16-31 pseudo registers if available. */
8552 tdep->ymm16_regnum = mm0_regnum;
8553 mm0_regnum += tdep->num_ymm_avx512_regs;
8554 }
8555 else
8556 tdep->ymm16_regnum = -1;
8557
8558 if (tdep->num_zmm_regs)
8559 {
8560 /* Support ZMM pseudo-register if it is available. */
8561 tdep->zmm0_regnum = mm0_regnum;
8562 mm0_regnum += tdep->num_zmm_regs;
8563 }
8564 else
8565 tdep->zmm0_regnum = -1;
8566
1dbcd68c 8567 bnd0_regnum = mm0_regnum;
1ba53b71
L
8568 if (tdep->num_mmx_regs != 0)
8569 {
1c6272a6 8570 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8571 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8572 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8573 }
8574 else
8575 tdep->mm0_regnum = -1;
8576
1dbcd68c
WT
8577 if (tdep->bnd0r_regnum > 0)
8578 tdep->bnd0_regnum = bnd0_regnum;
8579 else
8580 tdep-> bnd0_regnum = -1;
8581
06da04c6 8582 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8583 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8584 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8585 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8586
8446b36a
MK
8587 /* If we have a register mapping, enable the generic core file
8588 support, unless it has already been enabled. */
8589 if (tdep->gregset_reg_offset
8f0435f7 8590 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8591 set_gdbarch_iterate_over_regset_sections
8592 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8593
7a697b8d
SS
8594 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8595 i386_fast_tracepoint_valid_at);
8596
a62cc96e
AC
8597 return gdbarch;
8598}
8599
8201327c
MK
8600static enum gdb_osabi
8601i386_coff_osabi_sniffer (bfd *abfd)
8602{
762c5349
MK
8603 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8604 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8605 return GDB_OSABI_GO32;
8606
8607 return GDB_OSABI_UNKNOWN;
8608}
8201327c
MK
8609\f
8610
97de3545
JB
8611/* Return the target description for a specified XSAVE feature mask. */
8612
8613const struct target_desc *
8614i386_target_description (uint64_t xcr0)
8615{
8616 switch (xcr0 & X86_XSTATE_ALL_MASK)
8617 {
8618 case X86_XSTATE_MPX_AVX512_MASK:
8619 case X86_XSTATE_AVX512_MASK:
8620 return tdesc_i386_avx512;
8621 case X86_XSTATE_MPX_MASK:
8622 return tdesc_i386_mpx;
8623 case X86_XSTATE_AVX_MASK:
8624 return tdesc_i386_avx;
8625 default:
8626 return tdesc_i386;
8627 }
8628}
8629
29c1c244
WT
8630#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8631
8632/* Find the bound directory base address. */
8633
8634static unsigned long
8635i386_mpx_bd_base (void)
8636{
8637 struct regcache *rcache;
8638 struct gdbarch_tdep *tdep;
8639 ULONGEST ret;
8640 enum register_status regstatus;
8641 struct gdb_exception except;
8642
8643 rcache = get_current_regcache ();
8644 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8645
8646 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8647
8648 if (regstatus != REG_VALID)
8649 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8650
8651 return ret & MPX_BASE_MASK;
8652}
8653
8654/* Check if the current target is MPX enabled. */
8655
8656static int
8657i386_mpx_enabled (void)
8658{
8659 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8660 const struct target_desc *tdesc = tdep->tdesc;
8661
8662 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8663}
8664
8665#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8666#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8667#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8668#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8669
8670/* Find the bound table entry given the pointer location and the base
8671 address of the table. */
8672
8673static CORE_ADDR
8674i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8675{
8676 CORE_ADDR offset1;
8677 CORE_ADDR offset2;
8678 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8679 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8680 CORE_ADDR bd_entry_addr;
8681 CORE_ADDR bt_addr;
8682 CORE_ADDR bd_entry;
8683 struct gdbarch *gdbarch = get_current_arch ();
8684 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8685
8686
8687 if (gdbarch_ptr_bit (gdbarch) == 64)
8688 {
966f0aef 8689 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8690 bd_ptr_r_shift = 20;
8691 bd_ptr_l_shift = 3;
8692 bt_select_r_shift = 3;
8693 bt_select_l_shift = 5;
966f0aef
WT
8694 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8695
8696 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8697 error (_("bound table examination not supported\
8698 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8699 }
8700 else
8701 {
8702 mpx_bd_mask = MPX_BD_MASK_32;
8703 bd_ptr_r_shift = 12;
8704 bd_ptr_l_shift = 2;
8705 bt_select_r_shift = 2;
8706 bt_select_l_shift = 4;
8707 bt_mask = MPX_BT_MASK_32;
8708 }
8709
8710 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8711 bd_entry_addr = bd_base + offset1;
8712 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8713
8714 if ((bd_entry & 0x1) == 0)
8715 error (_("Invalid bounds directory entry at %s."),
8716 paddress (get_current_arch (), bd_entry_addr));
8717
8718 /* Clearing status bit. */
8719 bd_entry--;
8720 bt_addr = bd_entry & ~bt_select_r_shift;
8721 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8722
8723 return bt_addr + offset2;
8724}
8725
8726/* Print routine for the mpx bounds. */
8727
8728static void
8729i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8730{
8731 struct ui_out *uiout = current_uiout;
34f8ac9f 8732 LONGEST size;
29c1c244
WT
8733 struct gdbarch *gdbarch = get_current_arch ();
8734 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8735 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8736
8737 if (bounds_in_map == 1)
8738 {
8739 ui_out_text (uiout, "Null bounds on map:");
8740 ui_out_text (uiout, " pointer value = ");
8741 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8742 ui_out_text (uiout, ".");
8743 ui_out_text (uiout, "\n");
8744 }
8745 else
8746 {
8747 ui_out_text (uiout, "{lbound = ");
8748 ui_out_field_core_addr (uiout, "lower-bound", gdbarch, bt_entry[0]);
8749 ui_out_text (uiout, ", ubound = ");
8750
8751 /* The upper bound is stored in 1's complement. */
8752 ui_out_field_core_addr (uiout, "upper-bound", gdbarch, ~bt_entry[1]);
8753 ui_out_text (uiout, "}: pointer value = ");
8754 ui_out_field_core_addr (uiout, "pointer-value", gdbarch, bt_entry[2]);
8755
8756 if (gdbarch_ptr_bit (gdbarch) == 64)
8757 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8758 else
8759 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8760
8761 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8762 -1 represents in this sense full memory access, and there is no need
8763 one to the size. */
8764
8765 size = (size > -1 ? size + 1 : size);
8766 ui_out_text (uiout, ", size = ");
34f8ac9f 8767 ui_out_field_fmt (uiout, "size", "%s", plongest (size));
29c1c244
WT
8768
8769 ui_out_text (uiout, ", metadata = ");
8770 ui_out_field_core_addr (uiout, "metadata", gdbarch, bt_entry[3]);
8771 ui_out_text (uiout, "\n");
8772 }
8773}
8774
8775/* Implement the command "show mpx bound". */
8776
8777static void
8778i386_mpx_info_bounds (char *args, int from_tty)
8779{
8780 CORE_ADDR bd_base = 0;
8781 CORE_ADDR addr;
8782 CORE_ADDR bt_entry_addr = 0;
8783 CORE_ADDR bt_entry[4];
8784 int i;
8785 struct gdbarch *gdbarch = get_current_arch ();
8786 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8787
8788 if (!i386_mpx_enabled ())
118ca224
PP
8789 {
8790 printf_unfiltered (_("Intel(R) Memory Protection Extensions not "
8791 "supported on this target.\n"));
8792 return;
8793 }
29c1c244
WT
8794
8795 if (args == NULL)
118ca224
PP
8796 {
8797 printf_unfiltered (_("Address of pointer variable expected.\n"));
8798 return;
8799 }
29c1c244
WT
8800
8801 addr = parse_and_eval_address (args);
8802
8803 bd_base = i386_mpx_bd_base ();
8804 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8805
8806 memset (bt_entry, 0, sizeof (bt_entry));
8807
8808 for (i = 0; i < 4; i++)
8809 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8810 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8811 data_ptr_type);
8812
8813 i386_mpx_print_bounds (bt_entry);
8814}
8815
8816/* Implement the command "set mpx bound". */
8817
8818static void
8819i386_mpx_set_bounds (char *args, int from_tty)
8820{
8821 CORE_ADDR bd_base = 0;
8822 CORE_ADDR addr, lower, upper;
8823 CORE_ADDR bt_entry_addr = 0;
8824 CORE_ADDR bt_entry[2];
8825 const char *input = args;
8826 int i;
8827 struct gdbarch *gdbarch = get_current_arch ();
8828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8829 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8830
8831 if (!i386_mpx_enabled ())
8832 error (_("Intel(R) Memory Protection Extensions not supported\
8833 on this target."));
8834
8835 if (args == NULL)
8836 error (_("Pointer value expected."));
8837
8838 addr = value_as_address (parse_to_comma_and_eval (&input));
8839
8840 if (input[0] == ',')
8841 ++input;
8842 if (input[0] == '\0')
8843 error (_("wrong number of arguments: missing lower and upper bound."));
8844 lower = value_as_address (parse_to_comma_and_eval (&input));
8845
8846 if (input[0] == ',')
8847 ++input;
8848 if (input[0] == '\0')
8849 error (_("Wrong number of arguments; Missing upper bound."));
8850 upper = value_as_address (parse_to_comma_and_eval (&input));
8851
8852 bd_base = i386_mpx_bd_base ();
8853 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8854 for (i = 0; i < 2; i++)
8855 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8856 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8857 data_ptr_type);
8858 bt_entry[0] = (uint64_t) lower;
8859 bt_entry[1] = ~(uint64_t) upper;
8860
8861 for (i = 0; i < 2; i++)
132874d7
AB
8862 write_memory_unsigned_integer (bt_entry_addr
8863 + i * TYPE_LENGTH (data_ptr_type),
8864 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
8865 bt_entry[i]);
8866}
8867
8868static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8869
8870/* Helper function for the CLI commands. */
8871
8872static void
8873set_mpx_cmd (char *args, int from_tty)
8874{
118ca224 8875 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
29c1c244
WT
8876}
8877
8878/* Helper function for the CLI commands. */
8879
8880static void
8881show_mpx_cmd (char *args, int from_tty)
8882{
8883 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8884}
8885
28e9e0f0
MK
8886/* Provide a prototype to silence -Wmissing-prototypes. */
8887void _initialize_i386_tdep (void);
8888
c906108c 8889void
fba45db2 8890_initialize_i386_tdep (void)
c906108c 8891{
a62cc96e
AC
8892 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8893
fc338970 8894 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8895 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8896 &disassembly_flavor, _("\
8897Set the disassembly flavor."), _("\
8898Show the disassembly flavor."), _("\
8899The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8900 NULL,
8901 NULL, /* FIXME: i18n: */
8902 &setlist, &showlist);
8201327c
MK
8903
8904 /* Add the variable that controls the convention for returning
8905 structs. */
7ab04401
AC
8906 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8907 &struct_convention, _("\
8908Set the convention for returning small structs."), _("\
8909Show the convention for returning small structs."), _("\
8910Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8911is \"default\"."),
8912 NULL,
8913 NULL, /* FIXME: i18n: */
8914 &setlist, &showlist);
8201327c 8915
29c1c244
WT
8916 /* Add "mpx" prefix for the set commands. */
8917
8918 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
8919Set Intel(R) Memory Protection Extensions specific variables."),
118ca224 8920 &mpx_set_cmdlist, "set mpx ",
29c1c244
WT
8921 0 /* allow-unknown */, &setlist);
8922
8923 /* Add "mpx" prefix for the show commands. */
8924
8925 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
8926Show Intel(R) Memory Protection Extensions specific variables."),
8927 &mpx_show_cmdlist, "show mpx ",
8928 0 /* allow-unknown */, &showlist);
8929
8930 /* Add "bound" command for the show mpx commands list. */
8931
8932 add_cmd ("bound", no_class, i386_mpx_info_bounds,
8933 "Show the memory bounds for a given array/pointer storage\
8934 in the bound table.",
8935 &mpx_show_cmdlist);
8936
8937 /* Add "bound" command for the set mpx commands list. */
8938
8939 add_cmd ("bound", no_class, i386_mpx_set_bounds,
8940 "Set the memory bounds for a given array/pointer storage\
8941 in the bound table.",
8942 &mpx_set_cmdlist);
8943
8201327c
MK
8944 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8945 i386_coff_osabi_sniffer);
8201327c 8946
05816f70 8947 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8948 i386_svr4_init_abi);
05816f70 8949 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8950 i386_go32_init_abi);
38c968cf 8951
209bd28e 8952 /* Initialize the i386-specific register groups. */
38c968cf 8953 i386_init_reggroups ();
90884b2b
L
8954
8955 /* Initialize the standard target descriptions. */
8956 initialize_tdesc_i386 ();
3a13a53b 8957 initialize_tdesc_i386_mmx ();
c131fcee 8958 initialize_tdesc_i386_avx ();
1dbcd68c 8959 initialize_tdesc_i386_mpx ();
01f9f808 8960 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8961
8962 /* Tell remote stub that we support XML target description. */
8963 register_remote_support_xml ("i386");
c906108c 8964}
This page took 1.877656 seconds and 4 git commands to generate.