*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
197e01b6 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
5ae96ec1
MK
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c 227 }
c6f4c129 228 else if (reg >= 21 && reg <= 36)
85540d8c 229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
c6f4c129
JB
234 switch (reg)
235 {
236 case 37: return I387_FCTRL_REGNUM;
237 case 38: return I387_FSTAT_REGNUM;
238 case 39: return I387_MXCSR_REGNUM;
239 case 40: return I386_ES_REGNUM;
240 case 41: return I386_CS_REGNUM;
241 case 42: return I386_SS_REGNUM;
242 case 43: return I386_DS_REGNUM;
243 case 44: return I386_FS_REGNUM;
244 case 45: return I386_GS_REGNUM;
245 }
246
85540d8c
MK
247 /* This will hopefully provoke a warning. */
248 return NUM_REGS + NUM_PSEUDO_REGS;
249}
5716833c
MK
250
251#undef I387_ST0_REGNUM
252#undef I387_MM0_REGNUM
253#undef I387_NUM_XMM_REGS
fc338970 254\f
917317f4 255
fc338970
MK
256/* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
53904c9e
AC
258static const char att_flavor[] = "att";
259static const char intel_flavor[] = "intel";
260static const char *valid_flavors[] =
c5aa993b 261{
c906108c
SS
262 att_flavor,
263 intel_flavor,
264 NULL
265};
53904c9e 266static const char *disassembly_flavor = att_flavor;
acd5c798 267\f
c906108c 268
acd5c798
MK
269/* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
c906108c 274
acd5c798
MK
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
c906108c 277
acd5c798 278 This function is 64-bit safe. */
63c0089f
MK
279
280static const gdb_byte *
acd5c798 281i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 282{
63c0089f
MK
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
acd5c798
MK
285 *len = sizeof (break_insn);
286 return break_insn;
c906108c 287}
fc338970 288\f
acd5c798
MK
289#ifdef I386_REGNO_TO_SYMMETRY
290#error "The Sequent Symmetry is no longer supported."
291#endif
c906108c 292
acd5c798
MK
293/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
c906108c 296
acd5c798
MK
297/* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
a3386186 299#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
300
301struct i386_frame_cache
c906108c 302{
acd5c798
MK
303 /* Base address. */
304 CORE_ADDR base;
772562f8 305 LONGEST sp_offset;
acd5c798
MK
306 CORE_ADDR pc;
307
fd13a04a
AC
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 310 CORE_ADDR saved_sp;
92dd43fa 311 int stack_align;
acd5c798
MK
312 int pc_in_eax;
313
314 /* Stack space reserved for local variables. */
315 long locals;
316};
317
318/* Allocate and initialize a frame cache. */
319
320static struct i386_frame_cache *
fd13a04a 321i386_alloc_frame_cache (void)
acd5c798
MK
322{
323 struct i386_frame_cache *cache;
324 int i;
325
326 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
327
328 /* Base address. */
329 cache->base = 0;
330 cache->sp_offset = -4;
331 cache->pc = 0;
332
fd13a04a
AC
333 /* Saved registers. We initialize these to -1 since zero is a valid
334 offset (that's where %ebp is supposed to be stored). */
335 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
336 cache->saved_regs[i] = -1;
acd5c798 337 cache->saved_sp = 0;
92dd43fa 338 cache->stack_align = 0;
acd5c798
MK
339 cache->pc_in_eax = 0;
340
341 /* Frameless until proven otherwise. */
342 cache->locals = -1;
343
344 return cache;
345}
c906108c 346
acd5c798
MK
347/* If the instruction at PC is a jump, return the address of its
348 target. Otherwise, return PC. */
c906108c 349
acd5c798
MK
350static CORE_ADDR
351i386_follow_jump (CORE_ADDR pc)
352{
63c0089f 353 gdb_byte op;
acd5c798
MK
354 long delta = 0;
355 int data16 = 0;
c906108c 356
acd5c798
MK
357 op = read_memory_unsigned_integer (pc, 1);
358 if (op == 0x66)
c906108c 359 {
c906108c 360 data16 = 1;
acd5c798 361 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
362 }
363
acd5c798 364 switch (op)
c906108c
SS
365 {
366 case 0xe9:
fc338970 367 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
368 if (data16)
369 {
acd5c798 370 delta = read_memory_integer (pc + 2, 2);
c906108c 371
fc338970
MK
372 /* Include the size of the jmp instruction (including the
373 0x66 prefix). */
acd5c798 374 delta += 4;
c906108c
SS
375 }
376 else
377 {
acd5c798 378 delta = read_memory_integer (pc + 1, 4);
c906108c 379
acd5c798
MK
380 /* Include the size of the jmp instruction. */
381 delta += 5;
c906108c
SS
382 }
383 break;
384 case 0xeb:
fc338970 385 /* Relative jump, disp8 (ignore data16). */
acd5c798 386 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 387
acd5c798 388 delta += data16 + 2;
c906108c
SS
389 break;
390 }
c906108c 391
acd5c798
MK
392 return pc + delta;
393}
fc338970 394
acd5c798
MK
395/* Check whether PC points at a prologue for a function returning a
396 structure or union. If so, it updates CACHE and returns the
397 address of the first instruction after the code sequence that
398 removes the "hidden" argument from the stack or CURRENT_PC,
399 whichever is smaller. Otherwise, return PC. */
c906108c 400
acd5c798
MK
401static CORE_ADDR
402i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
403 struct i386_frame_cache *cache)
c906108c 404{
acd5c798
MK
405 /* Functions that return a structure or union start with:
406
407 popl %eax 0x58
408 xchgl %eax, (%esp) 0x87 0x04 0x24
409 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
410
411 (the System V compiler puts out the second `xchg' instruction,
412 and the assembler doesn't try to optimize it, so the 'sib' form
413 gets generated). This sequence is used to get the address of the
414 return buffer for a function that returns a structure. */
63c0089f
MK
415 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
416 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
417 gdb_byte buf[4];
418 gdb_byte op;
c906108c 419
acd5c798
MK
420 if (current_pc <= pc)
421 return pc;
422
423 op = read_memory_unsigned_integer (pc, 1);
c906108c 424
acd5c798
MK
425 if (op != 0x58) /* popl %eax */
426 return pc;
c906108c 427
acd5c798
MK
428 read_memory (pc + 1, buf, 4);
429 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
430 return pc;
c906108c 431
acd5c798 432 if (current_pc == pc)
c906108c 433 {
acd5c798
MK
434 cache->sp_offset += 4;
435 return current_pc;
c906108c
SS
436 }
437
acd5c798 438 if (current_pc == pc + 1)
c906108c 439 {
acd5c798
MK
440 cache->pc_in_eax = 1;
441 return current_pc;
442 }
443
444 if (buf[1] == proto1[1])
445 return pc + 4;
446 else
447 return pc + 5;
448}
449
450static CORE_ADDR
451i386_skip_probe (CORE_ADDR pc)
452{
453 /* A function may start with
fc338970 454
acd5c798
MK
455 pushl constant
456 call _probe
457 addl $4, %esp
fc338970 458
acd5c798
MK
459 followed by
460
461 pushl %ebp
fc338970 462
acd5c798 463 etc. */
63c0089f
MK
464 gdb_byte buf[8];
465 gdb_byte op;
fc338970 466
acd5c798
MK
467 op = read_memory_unsigned_integer (pc, 1);
468
469 if (op == 0x68 || op == 0x6a)
470 {
471 int delta;
c906108c 472
acd5c798
MK
473 /* Skip past the `pushl' instruction; it has either a one-byte or a
474 four-byte operand, depending on the opcode. */
c906108c 475 if (op == 0x68)
acd5c798 476 delta = 5;
c906108c 477 else
acd5c798 478 delta = 2;
c906108c 479
acd5c798
MK
480 /* Read the following 8 bytes, which should be `call _probe' (6
481 bytes) followed by `addl $4,%esp' (2 bytes). */
482 read_memory (pc + delta, buf, sizeof (buf));
c906108c 483 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 484 pc += delta + sizeof (buf);
c906108c
SS
485 }
486
acd5c798
MK
487 return pc;
488}
489
92dd43fa
MK
490/* GCC 4.1 and later, can put code in the prologue to realign the
491 stack pointer. Check whether PC points to such code, and update
492 CACHE accordingly. Return the first instruction after the code
493 sequence or CURRENT_PC, whichever is smaller. If we don't
494 recognize the code, return PC. */
495
496static CORE_ADDR
497i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
498 struct i386_frame_cache *cache)
499{
500 static const gdb_byte insns[10] = {
501 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
502 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
503 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
504 };
505 gdb_byte buf[10];
506
507 if (target_read_memory (pc, buf, sizeof buf)
508 || memcmp (buf, insns, sizeof buf) != 0)
509 return pc;
510
511 if (current_pc > pc + 4)
512 cache->stack_align = 1;
513
514 return min (pc + 10, current_pc);
515}
516
37bdc87e
MK
517/* Maximum instruction length we need to handle. */
518#define I386_MAX_INSN_LEN 6
519
520/* Instruction description. */
521struct i386_insn
522{
523 size_t len;
63c0089f
MK
524 gdb_byte insn[I386_MAX_INSN_LEN];
525 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
526};
527
528/* Search for the instruction at PC in the list SKIP_INSNS. Return
529 the first instruction description that matches. Otherwise, return
530 NULL. */
531
532static struct i386_insn *
533i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
534{
535 struct i386_insn *insn;
63c0089f 536 gdb_byte op;
37bdc87e
MK
537
538 op = read_memory_unsigned_integer (pc, 1);
539
540 for (insn = skip_insns; insn->len > 0; insn++)
541 {
542 if ((op & insn->mask[0]) == insn->insn[0])
543 {
613e8135
MK
544 gdb_byte buf[I386_MAX_INSN_LEN - 1];
545 int insn_matched = 1;
37bdc87e
MK
546 size_t i;
547
548 gdb_assert (insn->len > 1);
549 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
550
551 read_memory (pc + 1, buf, insn->len - 1);
552 for (i = 1; i < insn->len; i++)
553 {
554 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 555 insn_matched = 0;
37bdc87e 556 }
613e8135
MK
557
558 if (insn_matched)
559 return insn;
37bdc87e
MK
560 }
561 }
562
563 return NULL;
564}
565
566/* Some special instructions that might be migrated by GCC into the
567 part of the prologue that sets up the new stack frame. Because the
568 stack frame hasn't been setup yet, no registers have been saved
569 yet, and only the scratch registers %eax, %ecx and %edx can be
570 touched. */
571
572struct i386_insn i386_frame_setup_skip_insns[] =
573{
574 /* Check for `movb imm8, r' and `movl imm32, r'.
575
576 ??? Should we handle 16-bit operand-sizes here? */
577
578 /* `movb imm8, %al' and `movb imm8, %ah' */
579 /* `movb imm8, %cl' and `movb imm8, %ch' */
580 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
581 /* `movb imm8, %dl' and `movb imm8, %dh' */
582 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
583 /* `movl imm32, %eax' and `movl imm32, %ecx' */
584 { 5, { 0xb8 }, { 0xfe } },
585 /* `movl imm32, %edx' */
586 { 5, { 0xba }, { 0xff } },
587
588 /* Check for `mov imm32, r32'. Note that there is an alternative
589 encoding for `mov m32, %eax'.
590
591 ??? Should we handle SIB adressing here?
592 ??? Should we handle 16-bit operand-sizes here? */
593
594 /* `movl m32, %eax' */
595 { 5, { 0xa1 }, { 0xff } },
596 /* `movl m32, %eax' and `mov; m32, %ecx' */
597 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
598 /* `movl m32, %edx' */
599 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
600
601 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
602 Because of the symmetry, there are actually two ways to encode
603 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
604 opcode bytes 0x31 and 0x33 for `xorl'. */
605
606 /* `subl %eax, %eax' */
607 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
608 /* `subl %ecx, %ecx' */
609 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
610 /* `subl %edx, %edx' */
611 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
612 /* `xorl %eax, %eax' */
613 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
614 /* `xorl %ecx, %ecx' */
615 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
616 /* `xorl %edx, %edx' */
617 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
618 { 0 }
619};
620
acd5c798
MK
621/* Check whether PC points at a code that sets up a new stack frame.
622 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
623 instruction after the sequence that sets up the frame or LIMIT,
624 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
625
626static CORE_ADDR
37bdc87e 627i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
628 struct i386_frame_cache *cache)
629{
37bdc87e 630 struct i386_insn *insn;
63c0089f 631 gdb_byte op;
26604a34 632 int skip = 0;
acd5c798 633
37bdc87e
MK
634 if (limit <= pc)
635 return limit;
acd5c798
MK
636
637 op = read_memory_unsigned_integer (pc, 1);
638
c906108c 639 if (op == 0x55) /* pushl %ebp */
c5aa993b 640 {
acd5c798
MK
641 /* Take into account that we've executed the `pushl %ebp' that
642 starts this instruction sequence. */
fd13a04a 643 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 644 cache->sp_offset += 4;
37bdc87e 645 pc++;
acd5c798
MK
646
647 /* If that's all, return now. */
37bdc87e
MK
648 if (limit <= pc)
649 return limit;
26604a34 650
b4632131 651 /* Check for some special instructions that might be migrated by
37bdc87e
MK
652 GCC into the prologue and skip them. At this point in the
653 prologue, code should only touch the scratch registers %eax,
654 %ecx and %edx, so while the number of posibilities is sheer,
655 it is limited.
5daa5b4e 656
26604a34
MK
657 Make sure we only skip these instructions if we later see the
658 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 659 while (pc + skip < limit)
26604a34 660 {
37bdc87e
MK
661 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
662 if (insn == NULL)
663 break;
b4632131 664
37bdc87e 665 skip += insn->len;
26604a34
MK
666 }
667
37bdc87e
MK
668 /* If that's all, return now. */
669 if (limit <= pc + skip)
670 return limit;
671
672 op = read_memory_unsigned_integer (pc + skip, 1);
673
26604a34 674 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 675 switch (op)
c906108c
SS
676 {
677 case 0x8b:
37bdc87e
MK
678 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
679 return pc;
c906108c
SS
680 break;
681 case 0x89:
37bdc87e
MK
682 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
683 return pc;
c906108c
SS
684 break;
685 default:
37bdc87e 686 return pc;
c906108c 687 }
acd5c798 688
26604a34
MK
689 /* OK, we actually have a frame. We just don't know how large
690 it is yet. Set its size to zero. We'll adjust it if
691 necessary. We also now commit to skipping the special
692 instructions mentioned before. */
acd5c798 693 cache->locals = 0;
37bdc87e 694 pc += (skip + 2);
acd5c798
MK
695
696 /* If that's all, return now. */
37bdc87e
MK
697 if (limit <= pc)
698 return limit;
acd5c798 699
fc338970
MK
700 /* Check for stack adjustment
701
acd5c798 702 subl $XXX, %esp
fc338970 703
fd35795f 704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 705 reg, so we don't have to worry about a data16 prefix. */
37bdc87e 706 op = read_memory_unsigned_integer (pc, 1);
c906108c
SS
707 if (op == 0x83)
708 {
fd35795f 709 /* `subl' with 8-bit immediate. */
37bdc87e 710 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 711 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 712 return pc;
acd5c798 713
37bdc87e
MK
714 /* `subl' with signed 8-bit immediate (though it wouldn't
715 make sense to be negative). */
716 cache->locals = read_memory_integer (pc + 2, 1);
717 return pc + 3;
c906108c
SS
718 }
719 else if (op == 0x81)
720 {
fd35795f 721 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 722 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 723 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 724 return pc;
acd5c798 725
fd35795f 726 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
727 cache->locals = read_memory_integer (pc + 2, 4);
728 return pc + 6;
c906108c
SS
729 }
730 else
731 {
acd5c798 732 /* Some instruction other than `subl'. */
37bdc87e 733 return pc;
c906108c
SS
734 }
735 }
37bdc87e 736 else if (op == 0xc8) /* enter */
c906108c 737 {
acd5c798
MK
738 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
739 return pc + 4;
c906108c 740 }
21d0e8a4 741
acd5c798 742 return pc;
21d0e8a4
MK
743}
744
acd5c798
MK
745/* Check whether PC points at code that saves registers on the stack.
746 If so, it updates CACHE and returns the address of the first
747 instruction after the register saves or CURRENT_PC, whichever is
748 smaller. Otherwise, return PC. */
6bff26de
MK
749
750static CORE_ADDR
acd5c798
MK
751i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
752 struct i386_frame_cache *cache)
6bff26de 753{
99ab4326 754 CORE_ADDR offset = 0;
63c0089f 755 gdb_byte op;
99ab4326 756 int i;
c0d1d883 757
99ab4326
MK
758 if (cache->locals > 0)
759 offset -= cache->locals;
760 for (i = 0; i < 8 && pc < current_pc; i++)
761 {
762 op = read_memory_unsigned_integer (pc, 1);
763 if (op < 0x50 || op > 0x57)
764 break;
0d17c81d 765
99ab4326
MK
766 offset -= 4;
767 cache->saved_regs[op - 0x50] = offset;
768 cache->sp_offset += 4;
769 pc++;
6bff26de
MK
770 }
771
acd5c798 772 return pc;
22797942
AC
773}
774
acd5c798
MK
775/* Do a full analysis of the prologue at PC and update CACHE
776 accordingly. Bail out early if CURRENT_PC is reached. Return the
777 address where the analysis stopped.
ed84f6c1 778
fc338970
MK
779 We handle these cases:
780
781 The startup sequence can be at the start of the function, or the
782 function can start with a branch to startup code at the end.
783
784 %ebp can be set up with either the 'enter' instruction, or "pushl
785 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
786 once used in the System V compiler).
787
788 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
789 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
790 16-bit unsigned argument for space to allocate, and the 'addl'
791 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
792
793 Next, the registers used by this function are pushed. With the
794 System V compiler they will always be in the order: %edi, %esi,
795 %ebx (and sometimes a harmless bug causes it to also save but not
796 restore %eax); however, the code below is willing to see the pushes
797 in any order, and will handle up to 8 of them.
798
799 If the setup sequence is at the end of the function, then the next
800 instruction will be a branch back to the start. */
c906108c 801
acd5c798
MK
802static CORE_ADDR
803i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
804 struct i386_frame_cache *cache)
c906108c 805{
acd5c798
MK
806 pc = i386_follow_jump (pc);
807 pc = i386_analyze_struct_return (pc, current_pc, cache);
808 pc = i386_skip_probe (pc);
92dd43fa 809 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
810 pc = i386_analyze_frame_setup (pc, current_pc, cache);
811 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
812}
813
fc338970 814/* Return PC of first real instruction. */
c906108c 815
3a1e71e3 816static CORE_ADDR
acd5c798 817i386_skip_prologue (CORE_ADDR start_pc)
c906108c 818{
63c0089f 819 static gdb_byte pic_pat[6] =
acd5c798
MK
820 {
821 0xe8, 0, 0, 0, 0, /* call 0x0 */
822 0x5b, /* popl %ebx */
c5aa993b 823 };
acd5c798
MK
824 struct i386_frame_cache cache;
825 CORE_ADDR pc;
63c0089f 826 gdb_byte op;
acd5c798 827 int i;
c5aa993b 828
acd5c798
MK
829 cache.locals = -1;
830 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
831 if (cache.locals < 0)
832 return start_pc;
c5aa993b 833
acd5c798 834 /* Found valid frame setup. */
c906108c 835
fc338970
MK
836 /* The native cc on SVR4 in -K PIC mode inserts the following code
837 to get the address of the global offset table (GOT) into register
acd5c798
MK
838 %ebx:
839
fc338970
MK
840 call 0x0
841 popl %ebx
842 movl %ebx,x(%ebp) (optional)
843 addl y,%ebx
844
c906108c
SS
845 This code is with the rest of the prologue (at the end of the
846 function), so we have to skip it to get to the first real
847 instruction at the start of the function. */
c5aa993b 848
c906108c
SS
849 for (i = 0; i < 6; i++)
850 {
acd5c798 851 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 852 if (pic_pat[i] != op)
c906108c
SS
853 break;
854 }
855 if (i == 6)
856 {
acd5c798
MK
857 int delta = 6;
858
859 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 860
c5aa993b 861 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 862 {
acd5c798
MK
863 op = read_memory_unsigned_integer (pc + delta + 1, 1);
864
fc338970 865 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 866 delta += 3;
fc338970 867 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 868 delta += 6;
fc338970 869 else /* Unexpected instruction. */
acd5c798
MK
870 delta = 0;
871
872 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 873 }
acd5c798 874
c5aa993b 875 /* addl y,%ebx */
acd5c798
MK
876 if (delta > 0 && op == 0x81
877 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 878 {
acd5c798 879 pc += delta + 6;
c906108c
SS
880 }
881 }
c5aa993b 882
e63bbc88
MK
883 /* If the function starts with a branch (to startup code at the end)
884 the last instruction should bring us back to the first
885 instruction of the real code. */
886 if (i386_follow_jump (start_pc) != start_pc)
887 pc = i386_follow_jump (pc);
888
889 return pc;
c906108c
SS
890}
891
acd5c798 892/* This function is 64-bit safe. */
93924b6b 893
acd5c798
MK
894static CORE_ADDR
895i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 896{
63c0089f 897 gdb_byte buf[8];
acd5c798
MK
898
899 frame_unwind_register (next_frame, PC_REGNUM, buf);
900 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 901}
acd5c798 902\f
93924b6b 903
acd5c798 904/* Normal frames. */
c5aa993b 905
acd5c798
MK
906static struct i386_frame_cache *
907i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 908{
acd5c798 909 struct i386_frame_cache *cache;
63c0089f 910 gdb_byte buf[4];
acd5c798
MK
911 int i;
912
913 if (*this_cache)
914 return *this_cache;
915
fd13a04a 916 cache = i386_alloc_frame_cache ();
acd5c798
MK
917 *this_cache = cache;
918
919 /* In principle, for normal frames, %ebp holds the frame pointer,
920 which holds the base address for the current stack frame.
921 However, for functions that don't need it, the frame pointer is
922 optional. For these "frameless" functions the frame pointer is
923 actually the frame pointer of the calling frame. Signal
924 trampolines are just a special case of a "frameless" function.
925 They (usually) share their frame pointer with the frame that was
926 in progress when the signal occurred. */
927
928 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
929 cache->base = extract_unsigned_integer (buf, 4);
930 if (cache->base == 0)
931 return cache;
932
933 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 934 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
935
936 cache->pc = frame_func_unwind (next_frame);
937 if (cache->pc != 0)
938 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
939
92dd43fa
MK
940 if (cache->stack_align)
941 {
942 /* Saved stack pointer has been saved in %ecx. */
943 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
944 cache->saved_sp = extract_unsigned_integer(buf, 4);
945 }
946
acd5c798
MK
947 if (cache->locals < 0)
948 {
949 /* We didn't find a valid frame, which means that CACHE->base
950 currently holds the frame pointer for our calling frame. If
951 we're at the start of a function, or somewhere half-way its
952 prologue, the function's frame probably hasn't been fully
953 setup yet. Try to reconstruct the base address for the stack
954 frame by looking at the stack pointer. For truly "frameless"
955 functions this might work too. */
956
92dd43fa
MK
957 if (cache->stack_align)
958 {
959 /* We're halfway aligning the stack. */
960 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
961 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
962
963 /* This will be added back below. */
964 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
965 }
966 else
967 {
968 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
969 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
970 }
acd5c798
MK
971 }
972
973 /* Now that we have the base address for the stack frame we can
974 calculate the value of %esp in the calling frame. */
92dd43fa
MK
975 if (cache->saved_sp == 0)
976 cache->saved_sp = cache->base + 8;
a7769679 977
acd5c798
MK
978 /* Adjust all the saved registers such that they contain addresses
979 instead of offsets. */
980 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
981 if (cache->saved_regs[i] != -1)
982 cache->saved_regs[i] += cache->base;
acd5c798
MK
983
984 return cache;
a7769679
MK
985}
986
3a1e71e3 987static void
acd5c798
MK
988i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
989 struct frame_id *this_id)
c906108c 990{
acd5c798
MK
991 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
992
993 /* This marks the outermost frame. */
994 if (cache->base == 0)
995 return;
996
3e210248 997 /* See the end of i386_push_dummy_call. */
acd5c798
MK
998 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
999}
1000
1001static void
1002i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1003 int regnum, int *optimizedp,
1004 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1005 int *realnump, gdb_byte *valuep)
acd5c798
MK
1006{
1007 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1008
1009 gdb_assert (regnum >= 0);
1010
1011 /* The System V ABI says that:
1012
1013 "The flags register contains the system flags, such as the
1014 direction flag and the carry flag. The direction flag must be
1015 set to the forward (that is, zero) direction before entry and
1016 upon exit from a function. Other user flags have no specified
1017 role in the standard calling sequence and are not preserved."
1018
1019 To guarantee the "upon exit" part of that statement we fake a
1020 saved flags register that has its direction flag cleared.
1021
1022 Note that GCC doesn't seem to rely on the fact that the direction
1023 flag is cleared after a function return; it always explicitly
1024 clears the flag before operations where it matters.
1025
1026 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1027 right thing to do. The way we fake the flags register here makes
1028 it impossible to change it. */
1029
1030 if (regnum == I386_EFLAGS_REGNUM)
1031 {
1032 *optimizedp = 0;
1033 *lvalp = not_lval;
1034 *addrp = 0;
1035 *realnump = -1;
1036 if (valuep)
1037 {
1038 ULONGEST val;
c5aa993b 1039
acd5c798 1040 /* Clear the direction flag. */
f837910f
MK
1041 val = frame_unwind_register_unsigned (next_frame,
1042 I386_EFLAGS_REGNUM);
acd5c798
MK
1043 val &= ~(1 << 10);
1044 store_unsigned_integer (valuep, 4, val);
1045 }
1046
1047 return;
1048 }
1211c4e4 1049
acd5c798 1050 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1051 {
00b25ff3
AC
1052 *optimizedp = 0;
1053 *lvalp = lval_register;
1054 *addrp = 0;
1055 *realnump = I386_EAX_REGNUM;
1056 if (valuep)
1057 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1058 return;
1059 }
1060
1061 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1062 {
1063 *optimizedp = 0;
1064 *lvalp = not_lval;
1065 *addrp = 0;
1066 *realnump = -1;
1067 if (valuep)
c906108c 1068 {
acd5c798
MK
1069 /* Store the value. */
1070 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1071 }
acd5c798 1072 return;
c906108c 1073 }
acd5c798 1074
fd13a04a
AC
1075 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1076 {
1077 *optimizedp = 0;
1078 *lvalp = lval_memory;
1079 *addrp = cache->saved_regs[regnum];
1080 *realnump = -1;
1081 if (valuep)
1082 {
1083 /* Read the value in from memory. */
1084 read_memory (*addrp, valuep,
1085 register_size (current_gdbarch, regnum));
1086 }
1087 return;
1088 }
1089
00b25ff3
AC
1090 *optimizedp = 0;
1091 *lvalp = lval_register;
1092 *addrp = 0;
1093 *realnump = regnum;
1094 if (valuep)
1095 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1096}
1097
1098static const struct frame_unwind i386_frame_unwind =
1099{
1100 NORMAL_FRAME,
1101 i386_frame_this_id,
1102 i386_frame_prev_register
1103};
1104
1105static const struct frame_unwind *
336d1bba 1106i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1107{
1108 return &i386_frame_unwind;
1109}
1110\f
1111
1112/* Signal trampolines. */
1113
1114static struct i386_frame_cache *
1115i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1116{
1117 struct i386_frame_cache *cache;
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1119 CORE_ADDR addr;
63c0089f 1120 gdb_byte buf[4];
acd5c798
MK
1121
1122 if (*this_cache)
1123 return *this_cache;
1124
fd13a04a 1125 cache = i386_alloc_frame_cache ();
acd5c798
MK
1126
1127 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1128 cache->base = extract_unsigned_integer (buf, 4) - 4;
1129
1130 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1131 if (tdep->sc_reg_offset)
1132 {
1133 int i;
1134
1135 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1136
1137 for (i = 0; i < tdep->sc_num_regs; i++)
1138 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1139 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1140 }
1141 else
1142 {
fd13a04a
AC
1143 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1144 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1145 }
acd5c798
MK
1146
1147 *this_cache = cache;
1148 return cache;
1149}
1150
1151static void
1152i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1153 struct frame_id *this_id)
1154{
1155 struct i386_frame_cache *cache =
1156 i386_sigtramp_frame_cache (next_frame, this_cache);
1157
3e210248 1158 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1159 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1160}
1161
1162static void
1163i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1164 void **this_cache,
1165 int regnum, int *optimizedp,
1166 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1167 int *realnump, gdb_byte *valuep)
acd5c798
MK
1168{
1169 /* Make sure we've initialized the cache. */
1170 i386_sigtramp_frame_cache (next_frame, this_cache);
1171
1172 i386_frame_prev_register (next_frame, this_cache, regnum,
1173 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1174}
c0d1d883 1175
acd5c798
MK
1176static const struct frame_unwind i386_sigtramp_frame_unwind =
1177{
1178 SIGTRAMP_FRAME,
1179 i386_sigtramp_frame_this_id,
1180 i386_sigtramp_frame_prev_register
1181};
1182
1183static const struct frame_unwind *
336d1bba 1184i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1185{
911bc6ee 1186 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1187
911bc6ee
MK
1188 /* We shouldn't even bother if we don't have a sigcontext_addr
1189 handler. */
1190 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1191 return NULL;
1192
911bc6ee
MK
1193 if (tdep->sigtramp_p != NULL)
1194 {
1195 if (tdep->sigtramp_p (next_frame))
1196 return &i386_sigtramp_frame_unwind;
1197 }
1198
1199 if (tdep->sigtramp_start != 0)
1200 {
1201 CORE_ADDR pc = frame_pc_unwind (next_frame);
1202
1203 gdb_assert (tdep->sigtramp_end != 0);
1204 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1205 return &i386_sigtramp_frame_unwind;
1206 }
acd5c798
MK
1207
1208 return NULL;
1209}
1210\f
1211
1212static CORE_ADDR
1213i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1214{
1215 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1216
1217 return cache->base;
1218}
1219
1220static const struct frame_base i386_frame_base =
1221{
1222 &i386_frame_unwind,
1223 i386_frame_base_address,
1224 i386_frame_base_address,
1225 i386_frame_base_address
1226};
1227
acd5c798
MK
1228static struct frame_id
1229i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1230{
63c0089f 1231 gdb_byte buf[4];
acd5c798
MK
1232 CORE_ADDR fp;
1233
1234 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1235 fp = extract_unsigned_integer (buf, 4);
1236
3e210248 1237 /* See the end of i386_push_dummy_call. */
acd5c798 1238 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1239}
fc338970 1240\f
c906108c 1241
fc338970
MK
1242/* Figure out where the longjmp will land. Slurp the args out of the
1243 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1244 structure from which we extract the address that we will land at.
28bcfd30 1245 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1246 success.
1247
1248 This function is 64-bit safe. */
c906108c 1249
8201327c
MK
1250static int
1251i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1252{
63c0089f 1253 gdb_byte buf[8];
c906108c 1254 CORE_ADDR sp, jb_addr;
8201327c 1255 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1256 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1257
8201327c
MK
1258 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1259 longjmp will land. */
1260 if (jb_pc_offset == -1)
c906108c
SS
1261 return 0;
1262
f837910f
MK
1263 /* Don't use I386_ESP_REGNUM here, since this function is also used
1264 for AMD64. */
1265 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1266 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1267 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1268 return 0;
1269
f837910f 1270 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1271 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1272 return 0;
c906108c 1273
f9d3c2a8 1274 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1275 return 1;
1276}
fc338970 1277\f
c906108c 1278
3a1e71e3 1279static CORE_ADDR
7d9b040b 1280i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1281 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1282 struct value **args, CORE_ADDR sp, int struct_return,
1283 CORE_ADDR struct_addr)
22f8ba57 1284{
63c0089f 1285 gdb_byte buf[4];
acd5c798
MK
1286 int i;
1287
1288 /* Push arguments in reverse order. */
1289 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1290 {
4754a64e 1291 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1292
1293 /* The System V ABI says that:
1294
1295 "An argument's size is increased, if necessary, to make it a
1296 multiple of [32-bit] words. This may require tail padding,
1297 depending on the size of the argument."
1298
1299 This makes sure the stack says word-aligned. */
1300 sp -= (len + 3) & ~3;
46615f07 1301 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1302 }
22f8ba57 1303
acd5c798
MK
1304 /* Push value address. */
1305 if (struct_return)
1306 {
22f8ba57 1307 sp -= 4;
fbd9dcd3 1308 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1309 write_memory (sp, buf, 4);
1310 }
1311
acd5c798
MK
1312 /* Store return address. */
1313 sp -= 4;
6a65450a 1314 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1315 write_memory (sp, buf, 4);
1316
1317 /* Finally, update the stack pointer... */
1318 store_unsigned_integer (buf, 4, sp);
1319 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1320
1321 /* ...and fake a frame pointer. */
1322 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1323
3e210248
AC
1324 /* MarkK wrote: This "+ 8" is all over the place:
1325 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1326 i386_unwind_dummy_id). It's there, since all frame unwinders for
1327 a given target have to agree (within a certain margin) on the
fd35795f 1328 definition of the stack address of a frame. Otherwise
3e210248
AC
1329 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1330 stack address *before* the function call as a frame's CFA. On
1331 the i386, when %ebp is used as a frame pointer, the offset
1332 between the contents %ebp and the CFA as defined by GCC. */
1333 return sp + 8;
22f8ba57
MK
1334}
1335
1a309862
MK
1336/* These registers are used for returning integers (and on some
1337 targets also for returning `struct' and `union' values when their
ef9dff19 1338 size and alignment match an integer type). */
acd5c798
MK
1339#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1340#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1341
c5e656c1
MK
1342/* Read, for architecture GDBARCH, a function return value of TYPE
1343 from REGCACHE, and copy that into VALBUF. */
1a309862 1344
3a1e71e3 1345static void
c5e656c1 1346i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1347 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1348{
c5e656c1 1349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1350 int len = TYPE_LENGTH (type);
63c0089f 1351 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1352
1e8d0a7b 1353 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1354 {
5716833c 1355 if (tdep->st0_regnum < 0)
1a309862 1356 {
8a3fe4f8 1357 warning (_("Cannot find floating-point return value."));
1a309862 1358 memset (valbuf, 0, len);
ef9dff19 1359 return;
1a309862
MK
1360 }
1361
c6ba6f0d
MK
1362 /* Floating-point return values can be found in %st(0). Convert
1363 its contents to the desired type. This is probably not
1364 exactly how it would happen on the target itself, but it is
1365 the best we can do. */
acd5c798 1366 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1367 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1368 }
1369 else
c5aa993b 1370 {
f837910f
MK
1371 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1372 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1373
1374 if (len <= low_size)
00f8375e 1375 {
0818c12a 1376 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1377 memcpy (valbuf, buf, len);
1378 }
d4f3574e
SS
1379 else if (len <= (low_size + high_size))
1380 {
0818c12a 1381 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1382 memcpy (valbuf, buf, low_size);
0818c12a 1383 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1384 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1385 }
1386 else
8e65ff28 1387 internal_error (__FILE__, __LINE__,
e2e0b3e5 1388 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1389 }
1390}
1391
c5e656c1
MK
1392/* Write, for architecture GDBARCH, a function return value of TYPE
1393 from VALBUF into REGCACHE. */
ef9dff19 1394
3a1e71e3 1395static void
c5e656c1 1396i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1397 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1398{
c5e656c1 1399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1400 int len = TYPE_LENGTH (type);
1401
5716833c
MK
1402 /* Define I387_ST0_REGNUM such that we use the proper definitions
1403 for the architecture. */
1404#define I387_ST0_REGNUM I386_ST0_REGNUM
1405
1e8d0a7b 1406 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1407 {
3d7f4f49 1408 ULONGEST fstat;
63c0089f 1409 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1410
5716833c 1411 if (tdep->st0_regnum < 0)
ef9dff19 1412 {
8a3fe4f8 1413 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1414 return;
1415 }
1416
635b0cc1
MK
1417 /* Returning floating-point values is a bit tricky. Apart from
1418 storing the return value in %st(0), we have to simulate the
1419 state of the FPU at function return point. */
1420
c6ba6f0d
MK
1421 /* Convert the value found in VALBUF to the extended
1422 floating-point format used by the FPU. This is probably
1423 not exactly how it would happen on the target itself, but
1424 it is the best we can do. */
1425 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1426 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1427
635b0cc1
MK
1428 /* Set the top of the floating-point register stack to 7. The
1429 actual value doesn't really matter, but 7 is what a normal
1430 function return would end up with if the program started out
1431 with a freshly initialized FPU. */
5716833c 1432 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1433 fstat |= (7 << 11);
5716833c 1434 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1435
635b0cc1
MK
1436 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1437 the floating-point register stack to 7, the appropriate value
1438 for the tag word is 0x3fff. */
5716833c 1439 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1440 }
1441 else
1442 {
f837910f
MK
1443 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1444 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1445
1446 if (len <= low_size)
3d7f4f49 1447 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1448 else if (len <= (low_size + high_size))
1449 {
3d7f4f49
MK
1450 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1451 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1452 len - low_size, valbuf + low_size);
ef9dff19
MK
1453 }
1454 else
8e65ff28 1455 internal_error (__FILE__, __LINE__,
e2e0b3e5 1456 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1457 }
5716833c
MK
1458
1459#undef I387_ST0_REGNUM
ef9dff19 1460}
fc338970 1461\f
ef9dff19 1462
8201327c
MK
1463/* This is the variable that is set with "set struct-convention", and
1464 its legitimate values. */
1465static const char default_struct_convention[] = "default";
1466static const char pcc_struct_convention[] = "pcc";
1467static const char reg_struct_convention[] = "reg";
1468static const char *valid_conventions[] =
1469{
1470 default_struct_convention,
1471 pcc_struct_convention,
1472 reg_struct_convention,
1473 NULL
1474};
1475static const char *struct_convention = default_struct_convention;
1476
0e4377e1
JB
1477/* Return non-zero if TYPE, which is assumed to be a structure,
1478 a union type, or an array type, should be returned in registers
1479 for architecture GDBARCH. */
c5e656c1 1480
8201327c 1481static int
c5e656c1 1482i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1483{
c5e656c1
MK
1484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1485 enum type_code code = TYPE_CODE (type);
1486 int len = TYPE_LENGTH (type);
8201327c 1487
0e4377e1
JB
1488 gdb_assert (code == TYPE_CODE_STRUCT
1489 || code == TYPE_CODE_UNION
1490 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1491
1492 if (struct_convention == pcc_struct_convention
1493 || (struct_convention == default_struct_convention
1494 && tdep->struct_return == pcc_struct_return))
1495 return 0;
1496
9edde48e
MK
1497 /* Structures consisting of a single `float', `double' or 'long
1498 double' member are returned in %st(0). */
1499 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1500 {
1501 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1502 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1503 return (len == 4 || len == 8 || len == 12);
1504 }
1505
c5e656c1
MK
1506 return (len == 1 || len == 2 || len == 4 || len == 8);
1507}
1508
1509/* Determine, for architecture GDBARCH, how a return value of TYPE
1510 should be returned. If it is supposed to be returned in registers,
1511 and READBUF is non-zero, read the appropriate value from REGCACHE,
1512 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1513 from WRITEBUF into REGCACHE. */
1514
1515static enum return_value_convention
1516i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1517 struct regcache *regcache, gdb_byte *readbuf,
1518 const gdb_byte *writebuf)
c5e656c1
MK
1519{
1520 enum type_code code = TYPE_CODE (type);
1521
0e4377e1
JB
1522 if ((code == TYPE_CODE_STRUCT
1523 || code == TYPE_CODE_UNION
1524 || code == TYPE_CODE_ARRAY)
c5e656c1 1525 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1526 {
1527 /* The System V ABI says that:
1528
1529 "A function that returns a structure or union also sets %eax
1530 to the value of the original address of the caller's area
1531 before it returns. Thus when the caller receives control
1532 again, the address of the returned object resides in register
1533 %eax and can be used to access the object."
1534
1535 So the ABI guarantees that we can always find the return
1536 value just after the function has returned. */
1537
0e4377e1
JB
1538 /* Note that the ABI doesn't mention functions returning arrays,
1539 which is something possible in certain languages such as Ada.
1540 In this case, the value is returned as if it was wrapped in
1541 a record, so the convention applied to records also applies
1542 to arrays. */
1543
31db7b6c
MK
1544 if (readbuf)
1545 {
1546 ULONGEST addr;
1547
1548 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1549 read_memory (addr, readbuf, TYPE_LENGTH (type));
1550 }
1551
1552 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1553 }
c5e656c1
MK
1554
1555 /* This special case is for structures consisting of a single
9edde48e
MK
1556 `float', `double' or 'long double' member. These structures are
1557 returned in %st(0). For these structures, we call ourselves
1558 recursively, changing TYPE into the type of the first member of
1559 the structure. Since that should work for all structures that
1560 have only one member, we don't bother to check the member's type
1561 here. */
c5e656c1
MK
1562 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1563 {
1564 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1565 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1566 }
1567
1568 if (readbuf)
1569 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1570 if (writebuf)
1571 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1572
c5e656c1 1573 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1574}
1575\f
1576
5ae96ec1
MK
1577/* Type for %eflags. */
1578struct type *i386_eflags_type;
1579
21b4b2f2 1580/* Types for the MMX and SSE registers. */
5ae96ec1
MK
1581struct type *i386_mmx_type;
1582struct type *i386_sse_type;
878d9193 1583struct type *i386_mxcsr_type;
5ae96ec1
MK
1584
1585/* Construct types for ISA-specific registers. */
1586static void
1587i386_init_types (void)
1588{
1589 struct type *type;
1590
1591 type = init_flags_type ("builtin_type_i386_eflags", 4);
1592 append_flags_type_flag (type, 0, "CF");
1593 append_flags_type_flag (type, 1, NULL);
1594 append_flags_type_flag (type, 2, "PF");
1595 append_flags_type_flag (type, 4, "AF");
1596 append_flags_type_flag (type, 6, "ZF");
1597 append_flags_type_flag (type, 7, "SF");
1598 append_flags_type_flag (type, 8, "TF");
1599 append_flags_type_flag (type, 9, "IF");
1600 append_flags_type_flag (type, 10, "DF");
1601 append_flags_type_flag (type, 11, "OF");
1602 append_flags_type_flag (type, 14, "NT");
1603 append_flags_type_flag (type, 16, "RF");
1604 append_flags_type_flag (type, 17, "VM");
1605 append_flags_type_flag (type, 18, "AC");
1606 append_flags_type_flag (type, 19, "VIF");
1607 append_flags_type_flag (type, 20, "VIP");
1608 append_flags_type_flag (type, 21, "ID");
1609 i386_eflags_type = type;
21b4b2f2 1610
21b4b2f2
JB
1611 /* The type we're building is this: */
1612#if 0
5ae96ec1 1613 union __gdb_builtin_type_vec64i
21b4b2f2
JB
1614 {
1615 int64_t uint64;
1616 int32_t v2_int32[2];
1617 int16_t v4_int16[4];
1618 int8_t v8_int8[8];
1619 };
1620#endif
1621
5ae96ec1
MK
1622 type = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1623 append_composite_type_field (type, "uint64", builtin_type_int64);
1624 append_composite_type_field (type, "v2_int32", builtin_type_v2_int32);
1625 append_composite_type_field (type, "v4_int16", builtin_type_v4_int16);
1626 append_composite_type_field (type, "v8_int8", builtin_type_v8_int8);
1627 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1628 TYPE_NAME (type) = "builtin_type_vec64i";
1629 i386_mmx_type = type;
21b4b2f2 1630
5ae96ec1
MK
1631 /* The type we're building is this: */
1632#if 0
1633 union __gdb_builtin_type_vec128i
1634 {
1635 int128_t uint128;
1636 int64_t v2_int64[2];
1637 int32_t v4_int32[4];
1638 int16_t v8_int16[8];
1639 int8_t v16_int8[16];
1640 double v2_double[2];
1641 float v4_float[4];
1642 };
1643#endif
21b4b2f2 1644
5ae96ec1
MK
1645 type = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1646 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1647 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1648 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1649 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1650 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1651 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1652 append_composite_type_field (type, "uint128", builtin_type_int128);
1653 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1654 TYPE_NAME (type) = "builtin_type_vec128i";
1655 i386_sse_type = type;
878d9193
MK
1656
1657 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1658 append_flags_type_flag (type, 0, "IE");
1659 append_flags_type_flag (type, 1, "DE");
1660 append_flags_type_flag (type, 2, "ZE");
1661 append_flags_type_flag (type, 3, "OE");
1662 append_flags_type_flag (type, 4, "UE");
1663 append_flags_type_flag (type, 5, "PE");
1664 append_flags_type_flag (type, 6, "DAZ");
1665 append_flags_type_flag (type, 7, "IM");
1666 append_flags_type_flag (type, 8, "DM");
1667 append_flags_type_flag (type, 9, "ZM");
1668 append_flags_type_flag (type, 10, "OM");
1669 append_flags_type_flag (type, 11, "UM");
1670 append_flags_type_flag (type, 12, "PM");
1671 append_flags_type_flag (type, 15, "FZ");
1672 i386_mxcsr_type = type;
21b4b2f2
JB
1673}
1674
d7a0d72c
MK
1675/* Return the GDB type object for the "standard" data type of data in
1676 register REGNUM. Perhaps %esi and %edi should go here, but
1677 potentially they could be used for things other than address. */
1678
3a1e71e3 1679static struct type *
4e259f09 1680i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1681{
ab533587
MK
1682 if (regnum == I386_EIP_REGNUM)
1683 return builtin_type_void_func_ptr;
1684
5ae96ec1
MK
1685 if (regnum == I386_EFLAGS_REGNUM)
1686 return i386_eflags_type;
1687
ab533587
MK
1688 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1689 return builtin_type_void_data_ptr;
d7a0d72c 1690
23a34459 1691 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1692 return builtin_type_i387_ext;
d7a0d72c 1693
878d9193
MK
1694 if (i386_mmx_regnum_p (gdbarch, regnum))
1695 return i386_mmx_type;
1696
5716833c 1697 if (i386_sse_regnum_p (gdbarch, regnum))
5ae96ec1 1698 return i386_sse_type;
d7a0d72c 1699
878d9193
MK
1700#define I387_ST0_REGNUM I386_ST0_REGNUM
1701#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
1702
1703 if (regnum == I387_MXCSR_REGNUM)
1704 return i386_mxcsr_type;
1705
1706#undef I387_ST0_REGNUM
1707#undef I387_NUM_XMM_REGS
28fc6740 1708
d7a0d72c
MK
1709 return builtin_type_int;
1710}
1711
28fc6740 1712/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1713 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1714
1715static int
c86c27af 1716i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1717{
5716833c
MK
1718 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1719 int mmxreg, fpreg;
28fc6740
AC
1720 ULONGEST fstat;
1721 int tos;
c86c27af 1722
5716833c
MK
1723 /* Define I387_ST0_REGNUM such that we use the proper definitions
1724 for REGCACHE's architecture. */
1725#define I387_ST0_REGNUM tdep->st0_regnum
1726
1727 mmxreg = regnum - tdep->mm0_regnum;
1728 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1729 tos = (fstat >> 11) & 0x7;
5716833c
MK
1730 fpreg = (mmxreg + tos) % 8;
1731
1732 return (I387_ST0_REGNUM + fpreg);
c86c27af 1733
5716833c 1734#undef I387_ST0_REGNUM
28fc6740
AC
1735}
1736
1737static void
1738i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1739 int regnum, gdb_byte *buf)
28fc6740 1740{
5716833c 1741 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1742 {
63c0089f 1743 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1744 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1745
28fc6740 1746 /* Extract (always little endian). */
c86c27af 1747 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1748 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1749 }
1750 else
1751 regcache_raw_read (regcache, regnum, buf);
1752}
1753
1754static void
1755i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1756 int regnum, const gdb_byte *buf)
28fc6740 1757{
5716833c 1758 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1759 {
63c0089f 1760 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1761 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1762
28fc6740
AC
1763 /* Read ... */
1764 regcache_raw_read (regcache, fpnum, mmx_buf);
1765 /* ... Modify ... (always little endian). */
f837910f 1766 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1767 /* ... Write. */
1768 regcache_raw_write (regcache, fpnum, mmx_buf);
1769 }
1770 else
1771 regcache_raw_write (regcache, regnum, buf);
1772}
ff2e87ac
AC
1773\f
1774
ff2e87ac
AC
1775/* Return the register number of the register allocated by GCC after
1776 REGNUM, or -1 if there is no such register. */
1777
1778static int
1779i386_next_regnum (int regnum)
1780{
1781 /* GCC allocates the registers in the order:
1782
1783 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1784
1785 Since storing a variable in %esp doesn't make any sense we return
1786 -1 for %ebp and for %esp itself. */
1787 static int next_regnum[] =
1788 {
1789 I386_EDX_REGNUM, /* Slot for %eax. */
1790 I386_EBX_REGNUM, /* Slot for %ecx. */
1791 I386_ECX_REGNUM, /* Slot for %edx. */
1792 I386_ESI_REGNUM, /* Slot for %ebx. */
1793 -1, -1, /* Slots for %esp and %ebp. */
1794 I386_EDI_REGNUM, /* Slot for %esi. */
1795 I386_EBP_REGNUM /* Slot for %edi. */
1796 };
1797
de5b9bb9 1798 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1799 return next_regnum[regnum];
28fc6740 1800
ff2e87ac
AC
1801 return -1;
1802}
1803
1804/* Return nonzero if a value of type TYPE stored in register REGNUM
1805 needs any special handling. */
d7a0d72c 1806
3a1e71e3 1807static int
ff2e87ac 1808i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1809{
de5b9bb9
MK
1810 int len = TYPE_LENGTH (type);
1811
ff2e87ac
AC
1812 /* Values may be spread across multiple registers. Most debugging
1813 formats aren't expressive enough to specify the locations, so
1814 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1815 have a length that is a multiple of the word size, since GCC
1816 doesn't seem to put any other types into registers. */
1817 if (len > 4 && len % 4 == 0)
1818 {
1819 int last_regnum = regnum;
1820
1821 while (len > 4)
1822 {
1823 last_regnum = i386_next_regnum (last_regnum);
1824 len -= 4;
1825 }
1826
1827 if (last_regnum != -1)
1828 return 1;
1829 }
ff2e87ac 1830
23a34459 1831 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1832}
1833
ff2e87ac
AC
1834/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1835 return its contents in TO. */
ac27f131 1836
3a1e71e3 1837static void
ff2e87ac 1838i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1839 struct type *type, gdb_byte *to)
ac27f131 1840{
de5b9bb9 1841 int len = TYPE_LENGTH (type);
de5b9bb9 1842
ff2e87ac
AC
1843 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1844 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1845
ff2e87ac 1846 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1847 {
d532c08f
MK
1848 i387_register_to_value (frame, regnum, type, to);
1849 return;
8d7f6b4a 1850 }
ff2e87ac 1851
fd35795f 1852 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1853
1854 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1855
de5b9bb9
MK
1856 while (len > 0)
1857 {
1858 gdb_assert (regnum != -1);
1859 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1860
42835c2b 1861 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1862 regnum = i386_next_regnum (regnum);
1863 len -= 4;
42835c2b 1864 to += 4;
de5b9bb9 1865 }
ac27f131
MK
1866}
1867
ff2e87ac
AC
1868/* Write the contents FROM of a value of type TYPE into register
1869 REGNUM in frame FRAME. */
ac27f131 1870
3a1e71e3 1871static void
ff2e87ac 1872i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1873 struct type *type, const gdb_byte *from)
ac27f131 1874{
de5b9bb9 1875 int len = TYPE_LENGTH (type);
de5b9bb9 1876
ff2e87ac 1877 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1878 {
d532c08f
MK
1879 i387_value_to_register (frame, regnum, type, from);
1880 return;
1881 }
3d261580 1882
fd35795f 1883 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1884
1885 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1886
de5b9bb9
MK
1887 while (len > 0)
1888 {
1889 gdb_assert (regnum != -1);
1890 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1891
42835c2b 1892 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1893 regnum = i386_next_regnum (regnum);
1894 len -= 4;
42835c2b 1895 from += 4;
de5b9bb9 1896 }
ac27f131 1897}
ff2e87ac 1898\f
7fdafb5a
MK
1899/* Supply register REGNUM from the buffer specified by GREGS and LEN
1900 in the general-purpose register set REGSET to register cache
1901 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1902
20187ed5 1903void
473f17b0
MK
1904i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1905 int regnum, const void *gregs, size_t len)
1906{
9ea75c57 1907 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1908 const gdb_byte *regs = gregs;
473f17b0
MK
1909 int i;
1910
1911 gdb_assert (len == tdep->sizeof_gregset);
1912
1913 for (i = 0; i < tdep->gregset_num_regs; i++)
1914 {
1915 if ((regnum == i || regnum == -1)
1916 && tdep->gregset_reg_offset[i] != -1)
1917 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1918 }
1919}
1920
7fdafb5a
MK
1921/* Collect register REGNUM from the register cache REGCACHE and store
1922 it in the buffer specified by GREGS and LEN as described by the
1923 general-purpose register set REGSET. If REGNUM is -1, do this for
1924 all registers in REGSET. */
1925
1926void
1927i386_collect_gregset (const struct regset *regset,
1928 const struct regcache *regcache,
1929 int regnum, void *gregs, size_t len)
1930{
1931 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1932 gdb_byte *regs = gregs;
7fdafb5a
MK
1933 int i;
1934
1935 gdb_assert (len == tdep->sizeof_gregset);
1936
1937 for (i = 0; i < tdep->gregset_num_regs; i++)
1938 {
1939 if ((regnum == i || regnum == -1)
1940 && tdep->gregset_reg_offset[i] != -1)
1941 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1942 }
1943}
1944
1945/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1946 in the floating-point register set REGSET to register cache
1947 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1948
1949static void
1950i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1951 int regnum, const void *fpregs, size_t len)
1952{
9ea75c57 1953 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1954
66a72d25
MK
1955 if (len == I387_SIZEOF_FXSAVE)
1956 {
1957 i387_supply_fxsave (regcache, regnum, fpregs);
1958 return;
1959 }
1960
473f17b0
MK
1961 gdb_assert (len == tdep->sizeof_fpregset);
1962 i387_supply_fsave (regcache, regnum, fpregs);
1963}
8446b36a 1964
2f305df1
MK
1965/* Collect register REGNUM from the register cache REGCACHE and store
1966 it in the buffer specified by FPREGS and LEN as described by the
1967 floating-point register set REGSET. If REGNUM is -1, do this for
1968 all registers in REGSET. */
7fdafb5a
MK
1969
1970static void
1971i386_collect_fpregset (const struct regset *regset,
1972 const struct regcache *regcache,
1973 int regnum, void *fpregs, size_t len)
1974{
1975 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1976
1977 if (len == I387_SIZEOF_FXSAVE)
1978 {
1979 i387_collect_fxsave (regcache, regnum, fpregs);
1980 return;
1981 }
1982
1983 gdb_assert (len == tdep->sizeof_fpregset);
1984 i387_collect_fsave (regcache, regnum, fpregs);
1985}
1986
8446b36a
MK
1987/* Return the appropriate register set for the core section identified
1988 by SECT_NAME and SECT_SIZE. */
1989
1990const struct regset *
1991i386_regset_from_core_section (struct gdbarch *gdbarch,
1992 const char *sect_name, size_t sect_size)
1993{
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1995
1996 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1997 {
1998 if (tdep->gregset == NULL)
7fdafb5a
MK
1999 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2000 i386_collect_gregset);
8446b36a
MK
2001 return tdep->gregset;
2002 }
2003
66a72d25
MK
2004 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2005 || (strcmp (sect_name, ".reg-xfp") == 0
2006 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2007 {
2008 if (tdep->fpregset == NULL)
7fdafb5a
MK
2009 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2010 i386_collect_fpregset);
8446b36a
MK
2011 return tdep->fpregset;
2012 }
2013
2014 return NULL;
2015}
473f17b0 2016\f
fc338970 2017
c906108c 2018#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
2019/* SunPRO encodes the static variables. This is not related to C++
2020 mangling, it is done for C too. */
c906108c
SS
2021
2022char *
fba45db2 2023sunpro_static_transform_name (char *name)
c906108c
SS
2024{
2025 char *p;
2026 if (IS_STATIC_TRANSFORM_NAME (name))
2027 {
fc338970
MK
2028 /* For file-local statics there will be a period, a bunch of
2029 junk (the contents of which match a string given in the
c5aa993b
JM
2030 N_OPT), a period and the name. For function-local statics
2031 there will be a bunch of junk (which seems to change the
2032 second character from 'A' to 'B'), a period, the name of the
2033 function, and the name. So just skip everything before the
2034 last period. */
c906108c
SS
2035 p = strrchr (name, '.');
2036 if (p != NULL)
2037 name = p + 1;
2038 }
2039 return name;
2040}
2041#endif /* STATIC_TRANSFORM_NAME */
fc338970 2042\f
c906108c 2043
fc338970 2044/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2045
2046CORE_ADDR
1cce71eb 2047i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2048{
fc338970 2049 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2050 {
c5aa993b 2051 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2052 struct minimal_symbol *indsym =
fc338970 2053 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2054 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2055
c5aa993b 2056 if (symname)
c906108c 2057 {
c5aa993b
JM
2058 if (strncmp (symname, "__imp_", 6) == 0
2059 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2060 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2061 }
2062 }
fc338970 2063 return 0; /* Not a trampoline. */
c906108c 2064}
fc338970
MK
2065\f
2066
377d9ebd 2067/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 2068 sigtramp routine. */
8201327c
MK
2069
2070static int
911bc6ee 2071i386_sigtramp_p (struct frame_info *next_frame)
8201327c 2072{
911bc6ee
MK
2073 CORE_ADDR pc = frame_pc_unwind (next_frame);
2074 char *name;
2075
2076 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2077 return (name && strcmp ("_sigtramp", name) == 0);
2078}
2079\f
2080
fc338970
MK
2081/* We have two flavours of disassembly. The machinery on this page
2082 deals with switching between those. */
c906108c
SS
2083
2084static int
a89aa300 2085i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2086{
5e3397bb
MK
2087 gdb_assert (disassembly_flavor == att_flavor
2088 || disassembly_flavor == intel_flavor);
2089
2090 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2091 constified, cast to prevent a compiler warning. */
2092 info->disassembler_options = (char *) disassembly_flavor;
2093 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2094
2095 return print_insn_i386 (pc, info);
7a292a7a 2096}
fc338970 2097\f
3ce1502b 2098
8201327c
MK
2099/* There are a few i386 architecture variants that differ only
2100 slightly from the generic i386 target. For now, we don't give them
2101 their own source file, but include them here. As a consequence,
2102 they'll always be included. */
3ce1502b 2103
8201327c 2104/* System V Release 4 (SVR4). */
3ce1502b 2105
377d9ebd 2106/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2107 sigtramp routine. */
2108
8201327c 2109static int
911bc6ee 2110i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2111{
911bc6ee
MK
2112 CORE_ADDR pc = frame_pc_unwind (next_frame);
2113 char *name;
2114
acd5c798
MK
2115 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2116 currently unknown. */
911bc6ee 2117 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2118 return (name && (strcmp ("_sigreturn", name) == 0
2119 || strcmp ("_sigacthandler", name) == 0
2120 || strcmp ("sigvechandler", name) == 0));
2121}
d2a7c97a 2122
acd5c798
MK
2123/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2124 routine, return the address of the associated sigcontext (ucontext)
2125 structure. */
3ce1502b 2126
3a1e71e3 2127static CORE_ADDR
acd5c798 2128i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2129{
63c0089f 2130 gdb_byte buf[4];
acd5c798 2131 CORE_ADDR sp;
3ce1502b 2132
acd5c798
MK
2133 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2134 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2135
acd5c798 2136 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2137}
2138\f
3ce1502b 2139
8201327c 2140/* Generic ELF. */
d2a7c97a 2141
8201327c
MK
2142void
2143i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2144{
c4fc7f1b
MK
2145 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2146 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2147}
3ce1502b 2148
8201327c 2149/* System V Release 4 (SVR4). */
3ce1502b 2150
8201327c
MK
2151void
2152i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2153{
2154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2155
8201327c
MK
2156 /* System V Release 4 uses ELF. */
2157 i386_elf_init_abi (info, gdbarch);
3ce1502b 2158
dfe01d39 2159 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2160 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2161
911bc6ee 2162 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2163 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2164 tdep->sc_pc_offset = 36 + 14 * 4;
2165 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2166
8201327c 2167 tdep->jb_pc_offset = 20;
3ce1502b
MK
2168}
2169
8201327c 2170/* DJGPP. */
3ce1502b 2171
3a1e71e3 2172static void
8201327c 2173i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2174{
8201327c 2175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2176
911bc6ee
MK
2177 /* DJGPP doesn't have any special frames for signal handlers. */
2178 tdep->sigtramp_p = NULL;
3ce1502b 2179
8201327c 2180 tdep->jb_pc_offset = 36;
3ce1502b
MK
2181}
2182
8201327c 2183/* NetWare. */
3ce1502b 2184
3a1e71e3 2185static void
8201327c 2186i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2187{
8201327c 2188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2189
8201327c 2190 tdep->jb_pc_offset = 24;
d2a7c97a 2191}
8201327c 2192\f
2acceee2 2193
38c968cf
AC
2194/* i386 register groups. In addition to the normal groups, add "mmx"
2195 and "sse". */
2196
2197static struct reggroup *i386_sse_reggroup;
2198static struct reggroup *i386_mmx_reggroup;
2199
2200static void
2201i386_init_reggroups (void)
2202{
2203 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2204 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2205}
2206
2207static void
2208i386_add_reggroups (struct gdbarch *gdbarch)
2209{
2210 reggroup_add (gdbarch, i386_sse_reggroup);
2211 reggroup_add (gdbarch, i386_mmx_reggroup);
2212 reggroup_add (gdbarch, general_reggroup);
2213 reggroup_add (gdbarch, float_reggroup);
2214 reggroup_add (gdbarch, all_reggroup);
2215 reggroup_add (gdbarch, save_reggroup);
2216 reggroup_add (gdbarch, restore_reggroup);
2217 reggroup_add (gdbarch, vector_reggroup);
2218 reggroup_add (gdbarch, system_reggroup);
2219}
2220
2221int
2222i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2223 struct reggroup *group)
2224{
5716833c
MK
2225 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2226 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2227 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2228 || i386_fpc_regnum_p (regnum));
5716833c 2229 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2230
38c968cf
AC
2231 if (group == i386_mmx_reggroup)
2232 return mmx_regnum_p;
2233 if (group == i386_sse_reggroup)
2234 return sse_regnum_p;
2235 if (group == vector_reggroup)
2236 return (mmx_regnum_p || sse_regnum_p);
2237 if (group == float_reggroup)
2238 return fp_regnum_p;
2239 if (group == general_reggroup)
2240 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2241
38c968cf
AC
2242 return default_register_reggroup_p (gdbarch, regnum, group);
2243}
38c968cf 2244\f
acd5c798 2245
f837910f
MK
2246/* Get the ARGIth function argument for the current function. */
2247
42c466d7 2248static CORE_ADDR
143985b7
AF
2249i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2250 struct type *type)
2251{
f837910f
MK
2252 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2253 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2254}
2255
2256\f
3a1e71e3 2257static struct gdbarch *
a62cc96e
AC
2258i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2259{
cd3c07fc 2260 struct gdbarch_tdep *tdep;
a62cc96e
AC
2261 struct gdbarch *gdbarch;
2262
4be87837
DJ
2263 /* If there is already a candidate, use it. */
2264 arches = gdbarch_list_lookup_by_info (arches, &info);
2265 if (arches != NULL)
2266 return arches->gdbarch;
a62cc96e
AC
2267
2268 /* Allocate space for the new architecture. */
2269 tdep = XMALLOC (struct gdbarch_tdep);
2270 gdbarch = gdbarch_alloc (&info, tdep);
2271
473f17b0
MK
2272 /* General-purpose registers. */
2273 tdep->gregset = NULL;
2274 tdep->gregset_reg_offset = NULL;
2275 tdep->gregset_num_regs = I386_NUM_GREGS;
2276 tdep->sizeof_gregset = 0;
2277
2278 /* Floating-point registers. */
2279 tdep->fpregset = NULL;
2280 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2281
5716833c 2282 /* The default settings include the FPU registers, the MMX registers
fd35795f 2283 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2284 by adjusting the members `st0_regnum', `mm0_regnum' and
2285 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2286 will show up in the output of "info all-registers". Ideally we
2287 should try to autodetect whether they are available, such that we
2288 can prevent "info all-registers" from displaying registers that
2289 aren't available.
2290
2291 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2292 [the SSE registers] always (even when they don't exist) or never
2293 showing them to the user (even when they do exist), I prefer the
2294 former over the latter. */
2295
2296 tdep->st0_regnum = I386_ST0_REGNUM;
2297
2298 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2299 calculating the register number for %mm0 until we know the number
5716833c
MK
2300 of raw registers. */
2301 tdep->mm0_regnum = 0;
2302
2303 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2304 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2305
8201327c
MK
2306 tdep->jb_pc_offset = -1;
2307 tdep->struct_return = pcc_struct_return;
8201327c
MK
2308 tdep->sigtramp_start = 0;
2309 tdep->sigtramp_end = 0;
911bc6ee 2310 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2311 tdep->sigcontext_addr = NULL;
a3386186 2312 tdep->sc_reg_offset = NULL;
8201327c 2313 tdep->sc_pc_offset = -1;
21d0e8a4 2314 tdep->sc_sp_offset = -1;
8201327c 2315
896fb97d
MK
2316 /* The format used for `long double' on almost all i386 targets is
2317 the i387 extended floating-point format. In fact, of all targets
2318 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2319 on having a `long double' that's not `long' at all. */
2320 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2321
66da5fd8 2322 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2323 bits, a `long double' actually takes up 96, probably to enforce
2324 alignment. */
2325 set_gdbarch_long_double_bit (gdbarch, 96);
2326
49ed40de
KB
2327 /* The default ABI includes general-purpose registers,
2328 floating-point registers, and the SSE registers. */
2329 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2330 set_gdbarch_register_name (gdbarch, i386_register_name);
2331 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2332
acd5c798
MK
2333 /* Register numbers of various important registers. */
2334 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2335 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2336 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2337 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2338
c4fc7f1b
MK
2339 /* NOTE: kettenis/20040418: GCC does have two possible register
2340 numbering schemes on the i386: dbx and SVR4. These schemes
2341 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2342 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2343 dbx_register_map[] and svr4_dbx_register_map in
2344 gcc/config/i386.c. GCC also defines a third numbering scheme in
2345 gcc/config/i386.c, which it designates as the "default" register
2346 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2347 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2348 amd64-tdep.c.
2349
2350 Currently, each GCC i386 target always uses the same register
2351 numbering scheme across all its supported debugging formats
2352 i.e. SDB (COFF), stabs and DWARF 2. This is because
2353 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2354 DBX_REGISTER_NUMBER macro which is defined by each target's
2355 respective config header in a manner independent of the requested
2356 output debugging format.
2357
2358 This does not match the arrangement below, which presumes that
2359 the SDB and stabs numbering schemes differ from the DWARF and
2360 DWARF 2 ones. The reason for this arrangement is that it is
2361 likely to get the numbering scheme for the target's
2362 default/native debug format right. For targets where GCC is the
2363 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2364 targets where the native toolchain uses a different numbering
2365 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2366 the defaults below will have to be overridden, like
2367 i386_elf_init_abi() does. */
c4fc7f1b
MK
2368
2369 /* Use the dbx register numbering scheme for stabs and COFF. */
2370 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2371 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2372
2373 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2374 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2375 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2376
2377 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2378 be in use on any of the supported i386 targets. */
2379
61113f8b
MK
2380 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2381
8201327c 2382 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2383
a62cc96e 2384 /* Call dummy code. */
acd5c798 2385 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2386
ff2e87ac
AC
2387 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2388 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2389 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2390
c5e656c1 2391 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2392
93924b6b
MK
2393 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2394
2395 /* Stack grows downward. */
2396 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2397
2398 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2399 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2400
42fdc8df 2401 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2402
28fc6740 2403 /* Wire in the MMX registers. */
0f751ff2 2404 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2405 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2406 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2407
5e3397bb
MK
2408 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2409
acd5c798 2410 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2411
2412 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2413
38c968cf
AC
2414 /* Add the i386 register groups. */
2415 i386_add_reggroups (gdbarch);
2416 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2417
143985b7
AF
2418 /* Helper for function argument information. */
2419 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2420
6405b0a6 2421 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2422 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2423
acd5c798 2424 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2425
3ce1502b 2426 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2427 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2428
336d1bba
AC
2429 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2430 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2431
8446b36a
MK
2432 /* If we have a register mapping, enable the generic core file
2433 support, unless it has already been enabled. */
2434 if (tdep->gregset_reg_offset
2435 && !gdbarch_regset_from_core_section_p (gdbarch))
2436 set_gdbarch_regset_from_core_section (gdbarch,
2437 i386_regset_from_core_section);
2438
5716833c
MK
2439 /* Unless support for MMX has been disabled, make %mm0 the first
2440 pseudo-register. */
2441 if (tdep->mm0_regnum == 0)
2442 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2443
a62cc96e
AC
2444 return gdbarch;
2445}
2446
8201327c
MK
2447static enum gdb_osabi
2448i386_coff_osabi_sniffer (bfd *abfd)
2449{
762c5349
MK
2450 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2451 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2452 return GDB_OSABI_GO32;
2453
2454 return GDB_OSABI_UNKNOWN;
2455}
2456
2457static enum gdb_osabi
2458i386_nlm_osabi_sniffer (bfd *abfd)
2459{
2460 return GDB_OSABI_NETWARE;
2461}
2462\f
2463
28e9e0f0
MK
2464/* Provide a prototype to silence -Wmissing-prototypes. */
2465void _initialize_i386_tdep (void);
2466
c906108c 2467void
fba45db2 2468_initialize_i386_tdep (void)
c906108c 2469{
a62cc96e
AC
2470 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2471
fc338970 2472 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2473 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2474 &disassembly_flavor, _("\
2475Set the disassembly flavor."), _("\
2476Show the disassembly flavor."), _("\
2477The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2478 NULL,
2479 NULL, /* FIXME: i18n: */
2480 &setlist, &showlist);
8201327c
MK
2481
2482 /* Add the variable that controls the convention for returning
2483 structs. */
7ab04401
AC
2484 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2485 &struct_convention, _("\
2486Set the convention for returning small structs."), _("\
2487Show the convention for returning small structs."), _("\
2488Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2489is \"default\"."),
2490 NULL,
2491 NULL, /* FIXME: i18n: */
2492 &setlist, &showlist);
8201327c
MK
2493
2494 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2495 i386_coff_osabi_sniffer);
2496 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2497 i386_nlm_osabi_sniffer);
2498
05816f70 2499 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2500 i386_svr4_init_abi);
05816f70 2501 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2502 i386_go32_init_abi);
05816f70 2503 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2504 i386_nw_init_abi);
38c968cf 2505
5ae96ec1 2506 /* Initialize the i386-specific register groups & types. */
38c968cf 2507 i386_init_reggroups ();
5ae96ec1 2508 i386_init_types();
c906108c 2509}
This page took 0.656207 seconds and 4 git commands to generate.