Update i386 and amd64 ports for unwinder changes.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
9b254dd1 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
acd5c798
MK
23#include "arch-utils.h"
24#include "command.h"
25#include "dummy-frame.h"
6405b0a6 26#include "dwarf2-frame.h"
acd5c798 27#include "doublest.h"
c906108c 28#include "frame.h"
acd5c798
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
c906108c 31#include "inferior.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
acd5c798 45
3d261580 46#include "gdb_assert.h"
acd5c798 47#include "gdb_string.h"
3d261580 48
d2a7c97a 49#include "i386-tdep.h"
61113f8b 50#include "i387-tdep.h"
d2a7c97a 51
c4fc7f1b 52/* Register names. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
1cb97e17 69static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 70
c4fc7f1b 71/* Register names for MMX pseudo-registers. */
28fc6740
AC
72
73static char *i386_mmx_names[] =
74{
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77};
c40e1eab 78
1cb97e17 79static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 80
28fc6740 81static int
5716833c 82i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 83{
5716833c
MK
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
90}
91
5716833c 92/* SSE register? */
23a34459 93
5716833c
MK
94static int
95i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 96{
5716833c
MK
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
20a6ec49 99 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
100 return 0;
101
20a6ec49
MD
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
23a34459
AC
104}
105
5716833c
MK
106static int
107i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 108{
5716833c
MK
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
20a6ec49 111 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
112 return 0;
113
20a6ec49 114 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
115}
116
5716833c 117/* FP register? */
23a34459
AC
118
119int
20a6ec49 120i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 121{
20a6ec49
MD
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
125 return 0;
126
20a6ec49
MD
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
129}
130
131int
20a6ec49 132i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 133{
20a6ec49
MD
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
137 return 0;
138
20a6ec49
MD
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
141}
142
30b0e2d8 143/* Return the name of register REGNUM. */
fc633446 144
fa88f677 145const char *
d93859e2 146i386_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 147{
d93859e2 148 if (i386_mmx_regnum_p (gdbarch, regnum))
20a6ec49 149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
fc633446 150
30b0e2d8
MK
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
70913449 153
c40e1eab 154 return NULL;
fc633446
MK
155}
156
c4fc7f1b 157/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
158 number used by GDB. */
159
8201327c 160static int
d3f73121 161i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 162{
20a6ec49
MD
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
c4fc7f1b
MK
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
85540d8c
MK
168 if (reg >= 0 && reg <= 7)
169 {
9872ad24
JB
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
85540d8c
MK
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
20a6ec49 181 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
20a6ec49 186 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
20a6ec49 191 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
192 }
193
194 /* This will hopefully provoke a warning. */
d3f73121 195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
196}
197
c4fc7f1b
MK
198/* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
85540d8c 200
8201327c 201static int
d3f73121 202i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 203{
20a6ec49
MD
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
c4fc7f1b
MK
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
acd5c798 213 /* General-purpose registers. */
85540d8c
MK
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
20a6ec49 219 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 220 }
c6f4c129 221 else if (reg >= 21 && reg <= 36)
85540d8c 222 {
c4fc7f1b 223 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 224 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
225 }
226
c6f4c129
JB
227 switch (reg)
228 {
20a6ec49
MD
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
85540d8c 240 /* This will hopefully provoke a warning. */
d3f73121 241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 242}
5716833c 243
fc338970 244\f
917317f4 245
fc338970
MK
246/* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
53904c9e
AC
248static const char att_flavor[] = "att";
249static const char intel_flavor[] = "intel";
250static const char *valid_flavors[] =
c5aa993b 251{
c906108c
SS
252 att_flavor,
253 intel_flavor,
254 NULL
255};
53904c9e 256static const char *disassembly_flavor = att_flavor;
acd5c798 257\f
c906108c 258
acd5c798
MK
259/* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
c906108c 264
acd5c798
MK
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
c906108c 267
acd5c798 268 This function is 64-bit safe. */
63c0089f
MK
269
270static const gdb_byte *
67d57894 271i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 272{
63c0089f
MK
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
acd5c798
MK
275 *len = sizeof (break_insn);
276 return break_insn;
c906108c 277}
fc338970 278\f
acd5c798
MK
279#ifdef I386_REGNO_TO_SYMMETRY
280#error "The Sequent Symmetry is no longer supported."
281#endif
c906108c 282
acd5c798
MK
283/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
284 and %esp "belong" to the calling function. Therefore these
285 registers should be saved if they're going to be modified. */
c906108c 286
acd5c798
MK
287/* The maximum number of saved registers. This should include all
288 registers mentioned above, and %eip. */
a3386186 289#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
290
291struct i386_frame_cache
c906108c 292{
acd5c798
MK
293 /* Base address. */
294 CORE_ADDR base;
772562f8 295 LONGEST sp_offset;
acd5c798
MK
296 CORE_ADDR pc;
297
fd13a04a
AC
298 /* Saved registers. */
299 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 300 CORE_ADDR saved_sp;
92dd43fa 301 int stack_align;
acd5c798
MK
302 int pc_in_eax;
303
304 /* Stack space reserved for local variables. */
305 long locals;
306};
307
308/* Allocate and initialize a frame cache. */
309
310static struct i386_frame_cache *
fd13a04a 311i386_alloc_frame_cache (void)
acd5c798
MK
312{
313 struct i386_frame_cache *cache;
314 int i;
315
316 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
317
318 /* Base address. */
319 cache->base = 0;
320 cache->sp_offset = -4;
321 cache->pc = 0;
322
fd13a04a
AC
323 /* Saved registers. We initialize these to -1 since zero is a valid
324 offset (that's where %ebp is supposed to be stored). */
325 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
326 cache->saved_regs[i] = -1;
acd5c798 327 cache->saved_sp = 0;
92dd43fa 328 cache->stack_align = 0;
acd5c798
MK
329 cache->pc_in_eax = 0;
330
331 /* Frameless until proven otherwise. */
332 cache->locals = -1;
333
334 return cache;
335}
c906108c 336
acd5c798
MK
337/* If the instruction at PC is a jump, return the address of its
338 target. Otherwise, return PC. */
c906108c 339
acd5c798
MK
340static CORE_ADDR
341i386_follow_jump (CORE_ADDR pc)
342{
63c0089f 343 gdb_byte op;
acd5c798
MK
344 long delta = 0;
345 int data16 = 0;
c906108c 346
8defab1a 347 target_read_memory (pc, &op, 1);
acd5c798 348 if (op == 0x66)
c906108c 349 {
c906108c 350 data16 = 1;
acd5c798 351 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
352 }
353
acd5c798 354 switch (op)
c906108c
SS
355 {
356 case 0xe9:
fc338970 357 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
358 if (data16)
359 {
acd5c798 360 delta = read_memory_integer (pc + 2, 2);
c906108c 361
fc338970
MK
362 /* Include the size of the jmp instruction (including the
363 0x66 prefix). */
acd5c798 364 delta += 4;
c906108c
SS
365 }
366 else
367 {
acd5c798 368 delta = read_memory_integer (pc + 1, 4);
c906108c 369
acd5c798
MK
370 /* Include the size of the jmp instruction. */
371 delta += 5;
c906108c
SS
372 }
373 break;
374 case 0xeb:
fc338970 375 /* Relative jump, disp8 (ignore data16). */
acd5c798 376 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 377
acd5c798 378 delta += data16 + 2;
c906108c
SS
379 break;
380 }
c906108c 381
acd5c798
MK
382 return pc + delta;
383}
fc338970 384
acd5c798
MK
385/* Check whether PC points at a prologue for a function returning a
386 structure or union. If so, it updates CACHE and returns the
387 address of the first instruction after the code sequence that
388 removes the "hidden" argument from the stack or CURRENT_PC,
389 whichever is smaller. Otherwise, return PC. */
c906108c 390
acd5c798
MK
391static CORE_ADDR
392i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
393 struct i386_frame_cache *cache)
c906108c 394{
acd5c798
MK
395 /* Functions that return a structure or union start with:
396
397 popl %eax 0x58
398 xchgl %eax, (%esp) 0x87 0x04 0x24
399 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
400
401 (the System V compiler puts out the second `xchg' instruction,
402 and the assembler doesn't try to optimize it, so the 'sib' form
403 gets generated). This sequence is used to get the address of the
404 return buffer for a function that returns a structure. */
63c0089f
MK
405 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
406 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
407 gdb_byte buf[4];
408 gdb_byte op;
c906108c 409
acd5c798
MK
410 if (current_pc <= pc)
411 return pc;
412
8defab1a 413 target_read_memory (pc, &op, 1);
c906108c 414
acd5c798
MK
415 if (op != 0x58) /* popl %eax */
416 return pc;
c906108c 417
8defab1a 418 target_read_memory (pc + 1, buf, 4);
acd5c798
MK
419 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
420 return pc;
c906108c 421
acd5c798 422 if (current_pc == pc)
c906108c 423 {
acd5c798
MK
424 cache->sp_offset += 4;
425 return current_pc;
c906108c
SS
426 }
427
acd5c798 428 if (current_pc == pc + 1)
c906108c 429 {
acd5c798
MK
430 cache->pc_in_eax = 1;
431 return current_pc;
432 }
433
434 if (buf[1] == proto1[1])
435 return pc + 4;
436 else
437 return pc + 5;
438}
439
440static CORE_ADDR
441i386_skip_probe (CORE_ADDR pc)
442{
443 /* A function may start with
fc338970 444
acd5c798
MK
445 pushl constant
446 call _probe
447 addl $4, %esp
fc338970 448
acd5c798
MK
449 followed by
450
451 pushl %ebp
fc338970 452
acd5c798 453 etc. */
63c0089f
MK
454 gdb_byte buf[8];
455 gdb_byte op;
fc338970 456
8defab1a 457 target_read_memory (pc, &op, 1);
acd5c798
MK
458
459 if (op == 0x68 || op == 0x6a)
460 {
461 int delta;
c906108c 462
acd5c798
MK
463 /* Skip past the `pushl' instruction; it has either a one-byte or a
464 four-byte operand, depending on the opcode. */
c906108c 465 if (op == 0x68)
acd5c798 466 delta = 5;
c906108c 467 else
acd5c798 468 delta = 2;
c906108c 469
acd5c798
MK
470 /* Read the following 8 bytes, which should be `call _probe' (6
471 bytes) followed by `addl $4,%esp' (2 bytes). */
472 read_memory (pc + delta, buf, sizeof (buf));
c906108c 473 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 474 pc += delta + sizeof (buf);
c906108c
SS
475 }
476
acd5c798
MK
477 return pc;
478}
479
92dd43fa
MK
480/* GCC 4.1 and later, can put code in the prologue to realign the
481 stack pointer. Check whether PC points to such code, and update
482 CACHE accordingly. Return the first instruction after the code
483 sequence or CURRENT_PC, whichever is smaller. If we don't
484 recognize the code, return PC. */
485
486static CORE_ADDR
487i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
488 struct i386_frame_cache *cache)
489{
92a56b20
JB
490 /* The register used by the compiler to perform the stack re-alignment
491 is, in order of preference, either %ecx, %edx, or %eax. GCC should
492 never use %ebx as it always treats it as callee-saved, whereas
493 the compiler can only use caller-saved registers. */
ade52156 494 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
495 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
496 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
497 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
498 };
ade52156
JB
499 static const gdb_byte insns_edx[10] = {
500 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
501 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
502 0xff, 0x72, 0xfc /* pushl -4(%edx) */
503 };
504 static const gdb_byte insns_eax[10] = {
505 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x70, 0xfc /* pushl -4(%eax) */
508 };
92dd43fa
MK
509 gdb_byte buf[10];
510
511 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
512 || (memcmp (buf, insns_ecx, sizeof buf) != 0
513 && memcmp (buf, insns_edx, sizeof buf) != 0
514 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
515 return pc;
516
517 if (current_pc > pc + 4)
518 cache->stack_align = 1;
519
520 return min (pc + 10, current_pc);
521}
522
37bdc87e
MK
523/* Maximum instruction length we need to handle. */
524#define I386_MAX_INSN_LEN 6
525
526/* Instruction description. */
527struct i386_insn
528{
529 size_t len;
63c0089f
MK
530 gdb_byte insn[I386_MAX_INSN_LEN];
531 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
532};
533
534/* Search for the instruction at PC in the list SKIP_INSNS. Return
535 the first instruction description that matches. Otherwise, return
536 NULL. */
537
538static struct i386_insn *
539i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
540{
541 struct i386_insn *insn;
63c0089f 542 gdb_byte op;
37bdc87e 543
8defab1a 544 target_read_memory (pc, &op, 1);
37bdc87e
MK
545
546 for (insn = skip_insns; insn->len > 0; insn++)
547 {
548 if ((op & insn->mask[0]) == insn->insn[0])
549 {
613e8135
MK
550 gdb_byte buf[I386_MAX_INSN_LEN - 1];
551 int insn_matched = 1;
37bdc87e
MK
552 size_t i;
553
554 gdb_assert (insn->len > 1);
555 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
556
8defab1a 557 target_read_memory (pc + 1, buf, insn->len - 1);
37bdc87e
MK
558 for (i = 1; i < insn->len; i++)
559 {
560 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 561 insn_matched = 0;
37bdc87e 562 }
613e8135
MK
563
564 if (insn_matched)
565 return insn;
37bdc87e
MK
566 }
567 }
568
569 return NULL;
570}
571
572/* Some special instructions that might be migrated by GCC into the
573 part of the prologue that sets up the new stack frame. Because the
574 stack frame hasn't been setup yet, no registers have been saved
575 yet, and only the scratch registers %eax, %ecx and %edx can be
576 touched. */
577
578struct i386_insn i386_frame_setup_skip_insns[] =
579{
580 /* Check for `movb imm8, r' and `movl imm32, r'.
581
582 ??? Should we handle 16-bit operand-sizes here? */
583
584 /* `movb imm8, %al' and `movb imm8, %ah' */
585 /* `movb imm8, %cl' and `movb imm8, %ch' */
586 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
587 /* `movb imm8, %dl' and `movb imm8, %dh' */
588 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
589 /* `movl imm32, %eax' and `movl imm32, %ecx' */
590 { 5, { 0xb8 }, { 0xfe } },
591 /* `movl imm32, %edx' */
592 { 5, { 0xba }, { 0xff } },
593
594 /* Check for `mov imm32, r32'. Note that there is an alternative
595 encoding for `mov m32, %eax'.
596
597 ??? Should we handle SIB adressing here?
598 ??? Should we handle 16-bit operand-sizes here? */
599
600 /* `movl m32, %eax' */
601 { 5, { 0xa1 }, { 0xff } },
602 /* `movl m32, %eax' and `mov; m32, %ecx' */
603 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
604 /* `movl m32, %edx' */
605 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
606
607 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
608 Because of the symmetry, there are actually two ways to encode
609 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
610 opcode bytes 0x31 and 0x33 for `xorl'. */
611
612 /* `subl %eax, %eax' */
613 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
614 /* `subl %ecx, %ecx' */
615 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
616 /* `subl %edx, %edx' */
617 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
618 /* `xorl %eax, %eax' */
619 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
620 /* `xorl %ecx, %ecx' */
621 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
622 /* `xorl %edx, %edx' */
623 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
624 { 0 }
625};
626
e11481da
PM
627
628/* Check whether PC points to a no-op instruction. */
629static CORE_ADDR
630i386_skip_noop (CORE_ADDR pc)
631{
632 gdb_byte op;
633 int check = 1;
634
8defab1a 635 target_read_memory (pc, &op, 1);
e11481da
PM
636
637 while (check)
638 {
639 check = 0;
640 /* Ignore `nop' instruction. */
641 if (op == 0x90)
642 {
643 pc += 1;
8defab1a 644 target_read_memory (pc, &op, 1);
e11481da
PM
645 check = 1;
646 }
647 /* Ignore no-op instruction `mov %edi, %edi'.
648 Microsoft system dlls often start with
649 a `mov %edi,%edi' instruction.
650 The 5 bytes before the function start are
651 filled with `nop' instructions.
652 This pattern can be used for hot-patching:
653 The `mov %edi, %edi' instruction can be replaced by a
654 near jump to the location of the 5 `nop' instructions
655 which can be replaced by a 32-bit jump to anywhere
656 in the 32-bit address space. */
657
658 else if (op == 0x8b)
659 {
8defab1a 660 target_read_memory (pc + 1, &op, 1);
e11481da
PM
661 if (op == 0xff)
662 {
663 pc += 2;
8defab1a 664 target_read_memory (pc, &op, 1);
e11481da
PM
665 check = 1;
666 }
667 }
668 }
669 return pc;
670}
671
acd5c798
MK
672/* Check whether PC points at a code that sets up a new stack frame.
673 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
674 instruction after the sequence that sets up the frame or LIMIT,
675 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
676
677static CORE_ADDR
37bdc87e 678i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
679 struct i386_frame_cache *cache)
680{
37bdc87e 681 struct i386_insn *insn;
63c0089f 682 gdb_byte op;
26604a34 683 int skip = 0;
acd5c798 684
37bdc87e
MK
685 if (limit <= pc)
686 return limit;
acd5c798 687
8defab1a 688 target_read_memory (pc, &op, 1);
acd5c798 689
c906108c 690 if (op == 0x55) /* pushl %ebp */
c5aa993b 691 {
acd5c798
MK
692 /* Take into account that we've executed the `pushl %ebp' that
693 starts this instruction sequence. */
fd13a04a 694 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 695 cache->sp_offset += 4;
37bdc87e 696 pc++;
acd5c798
MK
697
698 /* If that's all, return now. */
37bdc87e
MK
699 if (limit <= pc)
700 return limit;
26604a34 701
b4632131 702 /* Check for some special instructions that might be migrated by
37bdc87e
MK
703 GCC into the prologue and skip them. At this point in the
704 prologue, code should only touch the scratch registers %eax,
705 %ecx and %edx, so while the number of posibilities is sheer,
706 it is limited.
5daa5b4e 707
26604a34
MK
708 Make sure we only skip these instructions if we later see the
709 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 710 while (pc + skip < limit)
26604a34 711 {
37bdc87e
MK
712 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
713 if (insn == NULL)
714 break;
b4632131 715
37bdc87e 716 skip += insn->len;
26604a34
MK
717 }
718
37bdc87e
MK
719 /* If that's all, return now. */
720 if (limit <= pc + skip)
721 return limit;
722
8defab1a 723 target_read_memory (pc + skip, &op, 1);
37bdc87e 724
26604a34 725 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 726 switch (op)
c906108c
SS
727 {
728 case 0x8b:
37bdc87e
MK
729 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
730 return pc;
c906108c
SS
731 break;
732 case 0x89:
37bdc87e
MK
733 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
734 return pc;
c906108c
SS
735 break;
736 default:
37bdc87e 737 return pc;
c906108c 738 }
acd5c798 739
26604a34
MK
740 /* OK, we actually have a frame. We just don't know how large
741 it is yet. Set its size to zero. We'll adjust it if
742 necessary. We also now commit to skipping the special
743 instructions mentioned before. */
acd5c798 744 cache->locals = 0;
37bdc87e 745 pc += (skip + 2);
acd5c798
MK
746
747 /* If that's all, return now. */
37bdc87e
MK
748 if (limit <= pc)
749 return limit;
acd5c798 750
fc338970
MK
751 /* Check for stack adjustment
752
acd5c798 753 subl $XXX, %esp
fc338970 754
fd35795f 755 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 756 reg, so we don't have to worry about a data16 prefix. */
8defab1a 757 target_read_memory (pc, &op, 1);
c906108c
SS
758 if (op == 0x83)
759 {
fd35795f 760 /* `subl' with 8-bit immediate. */
37bdc87e 761 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 762 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 763 return pc;
acd5c798 764
37bdc87e
MK
765 /* `subl' with signed 8-bit immediate (though it wouldn't
766 make sense to be negative). */
767 cache->locals = read_memory_integer (pc + 2, 1);
768 return pc + 3;
c906108c
SS
769 }
770 else if (op == 0x81)
771 {
fd35795f 772 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 773 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 774 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 775 return pc;
acd5c798 776
fd35795f 777 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
778 cache->locals = read_memory_integer (pc + 2, 4);
779 return pc + 6;
c906108c
SS
780 }
781 else
782 {
acd5c798 783 /* Some instruction other than `subl'. */
37bdc87e 784 return pc;
c906108c
SS
785 }
786 }
37bdc87e 787 else if (op == 0xc8) /* enter */
c906108c 788 {
acd5c798
MK
789 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
790 return pc + 4;
c906108c 791 }
21d0e8a4 792
acd5c798 793 return pc;
21d0e8a4
MK
794}
795
acd5c798
MK
796/* Check whether PC points at code that saves registers on the stack.
797 If so, it updates CACHE and returns the address of the first
798 instruction after the register saves or CURRENT_PC, whichever is
799 smaller. Otherwise, return PC. */
6bff26de
MK
800
801static CORE_ADDR
acd5c798
MK
802i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
803 struct i386_frame_cache *cache)
6bff26de 804{
99ab4326 805 CORE_ADDR offset = 0;
63c0089f 806 gdb_byte op;
99ab4326 807 int i;
c0d1d883 808
99ab4326
MK
809 if (cache->locals > 0)
810 offset -= cache->locals;
811 for (i = 0; i < 8 && pc < current_pc; i++)
812 {
8defab1a 813 target_read_memory (pc, &op, 1);
99ab4326
MK
814 if (op < 0x50 || op > 0x57)
815 break;
0d17c81d 816
99ab4326
MK
817 offset -= 4;
818 cache->saved_regs[op - 0x50] = offset;
819 cache->sp_offset += 4;
820 pc++;
6bff26de
MK
821 }
822
acd5c798 823 return pc;
22797942
AC
824}
825
acd5c798
MK
826/* Do a full analysis of the prologue at PC and update CACHE
827 accordingly. Bail out early if CURRENT_PC is reached. Return the
828 address where the analysis stopped.
ed84f6c1 829
fc338970
MK
830 We handle these cases:
831
832 The startup sequence can be at the start of the function, or the
833 function can start with a branch to startup code at the end.
834
835 %ebp can be set up with either the 'enter' instruction, or "pushl
836 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
837 once used in the System V compiler).
838
839 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
840 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
841 16-bit unsigned argument for space to allocate, and the 'addl'
842 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
843
844 Next, the registers used by this function are pushed. With the
845 System V compiler they will always be in the order: %edi, %esi,
846 %ebx (and sometimes a harmless bug causes it to also save but not
847 restore %eax); however, the code below is willing to see the pushes
848 in any order, and will handle up to 8 of them.
849
850 If the setup sequence is at the end of the function, then the next
851 instruction will be a branch back to the start. */
c906108c 852
acd5c798
MK
853static CORE_ADDR
854i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
855 struct i386_frame_cache *cache)
c906108c 856{
e11481da 857 pc = i386_skip_noop (pc);
acd5c798
MK
858 pc = i386_follow_jump (pc);
859 pc = i386_analyze_struct_return (pc, current_pc, cache);
860 pc = i386_skip_probe (pc);
92dd43fa 861 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
862 pc = i386_analyze_frame_setup (pc, current_pc, cache);
863 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
864}
865
fc338970 866/* Return PC of first real instruction. */
c906108c 867
3a1e71e3 868static CORE_ADDR
6093d2eb 869i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 870{
63c0089f 871 static gdb_byte pic_pat[6] =
acd5c798
MK
872 {
873 0xe8, 0, 0, 0, 0, /* call 0x0 */
874 0x5b, /* popl %ebx */
c5aa993b 875 };
acd5c798
MK
876 struct i386_frame_cache cache;
877 CORE_ADDR pc;
63c0089f 878 gdb_byte op;
acd5c798 879 int i;
c5aa993b 880
acd5c798
MK
881 cache.locals = -1;
882 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
883 if (cache.locals < 0)
884 return start_pc;
c5aa993b 885
acd5c798 886 /* Found valid frame setup. */
c906108c 887
fc338970
MK
888 /* The native cc on SVR4 in -K PIC mode inserts the following code
889 to get the address of the global offset table (GOT) into register
acd5c798
MK
890 %ebx:
891
fc338970
MK
892 call 0x0
893 popl %ebx
894 movl %ebx,x(%ebp) (optional)
895 addl y,%ebx
896
c906108c
SS
897 This code is with the rest of the prologue (at the end of the
898 function), so we have to skip it to get to the first real
899 instruction at the start of the function. */
c5aa993b 900
c906108c
SS
901 for (i = 0; i < 6; i++)
902 {
8defab1a 903 target_read_memory (pc + i, &op, 1);
c5aa993b 904 if (pic_pat[i] != op)
c906108c
SS
905 break;
906 }
907 if (i == 6)
908 {
acd5c798
MK
909 int delta = 6;
910
8defab1a 911 target_read_memory (pc + delta, &op, 1);
c906108c 912
c5aa993b 913 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 914 {
acd5c798
MK
915 op = read_memory_unsigned_integer (pc + delta + 1, 1);
916
fc338970 917 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 918 delta += 3;
fc338970 919 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 920 delta += 6;
fc338970 921 else /* Unexpected instruction. */
acd5c798
MK
922 delta = 0;
923
8defab1a 924 target_read_memory (pc + delta, &op, 1);
c906108c 925 }
acd5c798 926
c5aa993b 927 /* addl y,%ebx */
acd5c798 928 if (delta > 0 && op == 0x81
d5d6fca5 929 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 930 {
acd5c798 931 pc += delta + 6;
c906108c
SS
932 }
933 }
c5aa993b 934
e63bbc88
MK
935 /* If the function starts with a branch (to startup code at the end)
936 the last instruction should bring us back to the first
937 instruction of the real code. */
938 if (i386_follow_jump (start_pc) != start_pc)
939 pc = i386_follow_jump (pc);
940
941 return pc;
c906108c
SS
942}
943
acd5c798 944/* This function is 64-bit safe. */
93924b6b 945
acd5c798
MK
946static CORE_ADDR
947i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 948{
63c0089f 949 gdb_byte buf[8];
acd5c798 950
875f8d0e 951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
acd5c798 952 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 953}
acd5c798 954\f
93924b6b 955
acd5c798 956/* Normal frames. */
c5aa993b 957
acd5c798 958static struct i386_frame_cache *
10458914 959i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 960{
acd5c798 961 struct i386_frame_cache *cache;
63c0089f 962 gdb_byte buf[4];
acd5c798
MK
963 int i;
964
965 if (*this_cache)
966 return *this_cache;
967
fd13a04a 968 cache = i386_alloc_frame_cache ();
acd5c798
MK
969 *this_cache = cache;
970
971 /* In principle, for normal frames, %ebp holds the frame pointer,
972 which holds the base address for the current stack frame.
973 However, for functions that don't need it, the frame pointer is
974 optional. For these "frameless" functions the frame pointer is
975 actually the frame pointer of the calling frame. Signal
976 trampolines are just a special case of a "frameless" function.
977 They (usually) share their frame pointer with the frame that was
978 in progress when the signal occurred. */
979
10458914 980 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
acd5c798
MK
981 cache->base = extract_unsigned_integer (buf, 4);
982 if (cache->base == 0)
983 return cache;
984
985 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 986 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 987
10458914 988 cache->pc = get_frame_func (this_frame);
acd5c798 989 if (cache->pc != 0)
10458914 990 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
acd5c798 991
92dd43fa
MK
992 if (cache->stack_align)
993 {
994 /* Saved stack pointer has been saved in %ecx. */
10458914 995 get_frame_register (this_frame, I386_ECX_REGNUM, buf);
92dd43fa
MK
996 cache->saved_sp = extract_unsigned_integer(buf, 4);
997 }
998
acd5c798
MK
999 if (cache->locals < 0)
1000 {
1001 /* We didn't find a valid frame, which means that CACHE->base
1002 currently holds the frame pointer for our calling frame. If
1003 we're at the start of a function, or somewhere half-way its
1004 prologue, the function's frame probably hasn't been fully
1005 setup yet. Try to reconstruct the base address for the stack
1006 frame by looking at the stack pointer. For truly "frameless"
1007 functions this might work too. */
1008
92dd43fa
MK
1009 if (cache->stack_align)
1010 {
1011 /* We're halfway aligning the stack. */
1012 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1013 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1014
1015 /* This will be added back below. */
1016 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1017 }
1018 else
1019 {
10458914 1020 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
92dd43fa
MK
1021 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1022 }
acd5c798
MK
1023 }
1024
1025 /* Now that we have the base address for the stack frame we can
1026 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1027 if (cache->saved_sp == 0)
1028 cache->saved_sp = cache->base + 8;
a7769679 1029
acd5c798
MK
1030 /* Adjust all the saved registers such that they contain addresses
1031 instead of offsets. */
1032 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1033 if (cache->saved_regs[i] != -1)
1034 cache->saved_regs[i] += cache->base;
acd5c798
MK
1035
1036 return cache;
a7769679
MK
1037}
1038
3a1e71e3 1039static void
10458914 1040i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1041 struct frame_id *this_id)
c906108c 1042{
10458914 1043 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1044
1045 /* This marks the outermost frame. */
1046 if (cache->base == 0)
1047 return;
1048
3e210248 1049 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1050 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1051}
1052
10458914
DJ
1053static struct value *
1054i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1055 int regnum)
acd5c798 1056{
10458914 1057 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1058
1059 gdb_assert (regnum >= 0);
1060
1061 /* The System V ABI says that:
1062
1063 "The flags register contains the system flags, such as the
1064 direction flag and the carry flag. The direction flag must be
1065 set to the forward (that is, zero) direction before entry and
1066 upon exit from a function. Other user flags have no specified
1067 role in the standard calling sequence and are not preserved."
1068
1069 To guarantee the "upon exit" part of that statement we fake a
1070 saved flags register that has its direction flag cleared.
1071
1072 Note that GCC doesn't seem to rely on the fact that the direction
1073 flag is cleared after a function return; it always explicitly
1074 clears the flag before operations where it matters.
1075
1076 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1077 right thing to do. The way we fake the flags register here makes
1078 it impossible to change it. */
1079
1080 if (regnum == I386_EFLAGS_REGNUM)
1081 {
10458914 1082 ULONGEST val;
c5aa993b 1083
10458914
DJ
1084 val = get_frame_register_unsigned (this_frame, regnum);
1085 val &= ~(1 << 10);
1086 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1087 }
1211c4e4 1088
acd5c798 1089 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1090 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1091
1092 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1093 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1094
fd13a04a 1095 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1096 return frame_unwind_got_memory (this_frame, regnum,
1097 cache->saved_regs[regnum]);
fd13a04a 1098
10458914 1099 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1100}
1101
1102static const struct frame_unwind i386_frame_unwind =
1103{
1104 NORMAL_FRAME,
1105 i386_frame_this_id,
10458914
DJ
1106 i386_frame_prev_register,
1107 NULL,
1108 default_frame_sniffer
acd5c798 1109};
acd5c798
MK
1110\f
1111
1112/* Signal trampolines. */
1113
1114static struct i386_frame_cache *
10458914 1115i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798
MK
1116{
1117 struct i386_frame_cache *cache;
10458914 1118 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1119 CORE_ADDR addr;
63c0089f 1120 gdb_byte buf[4];
acd5c798
MK
1121
1122 if (*this_cache)
1123 return *this_cache;
1124
fd13a04a 1125 cache = i386_alloc_frame_cache ();
acd5c798 1126
10458914 1127 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
acd5c798
MK
1128 cache->base = extract_unsigned_integer (buf, 4) - 4;
1129
10458914 1130 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1131 if (tdep->sc_reg_offset)
1132 {
1133 int i;
1134
1135 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1136
1137 for (i = 0; i < tdep->sc_num_regs; i++)
1138 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1139 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1140 }
1141 else
1142 {
fd13a04a
AC
1143 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1144 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1145 }
acd5c798
MK
1146
1147 *this_cache = cache;
1148 return cache;
1149}
1150
1151static void
10458914 1152i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1153 struct frame_id *this_id)
1154{
1155 struct i386_frame_cache *cache =
10458914 1156 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1157
3e210248 1158 /* See the end of i386_push_dummy_call. */
10458914 1159 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1160}
1161
10458914
DJ
1162static struct value *
1163i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1164 void **this_cache, int regnum)
acd5c798
MK
1165{
1166 /* Make sure we've initialized the cache. */
10458914 1167 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1168
10458914 1169 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1170}
c0d1d883 1171
10458914
DJ
1172static int
1173i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1174 struct frame_info *this_frame,
1175 void **this_prologue_cache)
acd5c798 1176{
10458914 1177 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1178
911bc6ee
MK
1179 /* We shouldn't even bother if we don't have a sigcontext_addr
1180 handler. */
1181 if (tdep->sigcontext_addr == NULL)
10458914 1182 return 0;
1c3545ae 1183
911bc6ee
MK
1184 if (tdep->sigtramp_p != NULL)
1185 {
10458914
DJ
1186 if (tdep->sigtramp_p (this_frame))
1187 return 1;
911bc6ee
MK
1188 }
1189
1190 if (tdep->sigtramp_start != 0)
1191 {
10458914 1192 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1193
1194 gdb_assert (tdep->sigtramp_end != 0);
1195 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1196 return 1;
911bc6ee 1197 }
acd5c798 1198
10458914 1199 return 0;
acd5c798 1200}
10458914
DJ
1201
1202static const struct frame_unwind i386_sigtramp_frame_unwind =
1203{
1204 SIGTRAMP_FRAME,
1205 i386_sigtramp_frame_this_id,
1206 i386_sigtramp_frame_prev_register,
1207 NULL,
1208 i386_sigtramp_frame_sniffer
1209};
acd5c798
MK
1210\f
1211
1212static CORE_ADDR
10458914 1213i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1214{
10458914 1215 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1216
1217 return cache->base;
1218}
1219
1220static const struct frame_base i386_frame_base =
1221{
1222 &i386_frame_unwind,
1223 i386_frame_base_address,
1224 i386_frame_base_address,
1225 i386_frame_base_address
1226};
1227
acd5c798 1228static struct frame_id
10458914 1229i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1230{
acd5c798
MK
1231 CORE_ADDR fp;
1232
10458914 1233 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1234
3e210248 1235 /* See the end of i386_push_dummy_call. */
10458914 1236 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1237}
fc338970 1238\f
c906108c 1239
fc338970
MK
1240/* Figure out where the longjmp will land. Slurp the args out of the
1241 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1242 structure from which we extract the address that we will land at.
28bcfd30 1243 This address is copied into PC. This routine returns non-zero on
436675d3 1244 success. */
c906108c 1245
8201327c 1246static int
60ade65d 1247i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1248{
436675d3 1249 gdb_byte buf[4];
c906108c 1250 CORE_ADDR sp, jb_addr;
20a6ec49
MD
1251 struct gdbarch *gdbarch = get_frame_arch (frame);
1252 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 1253
8201327c
MK
1254 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1255 longjmp will land. */
1256 if (jb_pc_offset == -1)
c906108c
SS
1257 return 0;
1258
436675d3
PA
1259 get_frame_register (frame, I386_ESP_REGNUM, buf);
1260 sp = extract_unsigned_integer (buf, 4);
1261 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
1262 return 0;
1263
436675d3
PA
1264 jb_addr = extract_unsigned_integer (buf, 4);
1265 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 1266 return 0;
c906108c 1267
436675d3 1268 *pc = extract_unsigned_integer (buf, 4);
c906108c
SS
1269 return 1;
1270}
fc338970 1271\f
c906108c 1272
3a1e71e3 1273static CORE_ADDR
7d9b040b 1274i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1275 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1276 struct value **args, CORE_ADDR sp, int struct_return,
1277 CORE_ADDR struct_addr)
22f8ba57 1278{
63c0089f 1279 gdb_byte buf[4];
acd5c798
MK
1280 int i;
1281
1282 /* Push arguments in reverse order. */
1283 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1284 {
4754a64e 1285 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1286
1287 /* The System V ABI says that:
1288
1289 "An argument's size is increased, if necessary, to make it a
1290 multiple of [32-bit] words. This may require tail padding,
1291 depending on the size of the argument."
1292
cf913f37 1293 This makes sure the stack stays word-aligned. */
acd5c798 1294 sp -= (len + 3) & ~3;
46615f07 1295 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1296 }
22f8ba57 1297
acd5c798
MK
1298 /* Push value address. */
1299 if (struct_return)
1300 {
22f8ba57 1301 sp -= 4;
fbd9dcd3 1302 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1303 write_memory (sp, buf, 4);
1304 }
1305
acd5c798
MK
1306 /* Store return address. */
1307 sp -= 4;
6a65450a 1308 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1309 write_memory (sp, buf, 4);
1310
1311 /* Finally, update the stack pointer... */
1312 store_unsigned_integer (buf, 4, sp);
1313 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1314
1315 /* ...and fake a frame pointer. */
1316 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1317
3e210248
AC
1318 /* MarkK wrote: This "+ 8" is all over the place:
1319 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 1320 i386_dummy_id). It's there, since all frame unwinders for
3e210248 1321 a given target have to agree (within a certain margin) on the
fd35795f 1322 definition of the stack address of a frame. Otherwise
3e210248
AC
1323 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1324 stack address *before* the function call as a frame's CFA. On
1325 the i386, when %ebp is used as a frame pointer, the offset
1326 between the contents %ebp and the CFA as defined by GCC. */
1327 return sp + 8;
22f8ba57
MK
1328}
1329
1a309862
MK
1330/* These registers are used for returning integers (and on some
1331 targets also for returning `struct' and `union' values when their
ef9dff19 1332 size and alignment match an integer type). */
acd5c798
MK
1333#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1334#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1335
c5e656c1
MK
1336/* Read, for architecture GDBARCH, a function return value of TYPE
1337 from REGCACHE, and copy that into VALBUF. */
1a309862 1338
3a1e71e3 1339static void
c5e656c1 1340i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1341 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1342{
c5e656c1 1343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1344 int len = TYPE_LENGTH (type);
63c0089f 1345 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1346
1e8d0a7b 1347 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1348 {
5716833c 1349 if (tdep->st0_regnum < 0)
1a309862 1350 {
8a3fe4f8 1351 warning (_("Cannot find floating-point return value."));
1a309862 1352 memset (valbuf, 0, len);
ef9dff19 1353 return;
1a309862
MK
1354 }
1355
c6ba6f0d
MK
1356 /* Floating-point return values can be found in %st(0). Convert
1357 its contents to the desired type. This is probably not
1358 exactly how it would happen on the target itself, but it is
1359 the best we can do. */
acd5c798 1360 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1361 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1362 }
1363 else
c5aa993b 1364 {
875f8d0e
UW
1365 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1366 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1367
1368 if (len <= low_size)
00f8375e 1369 {
0818c12a 1370 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1371 memcpy (valbuf, buf, len);
1372 }
d4f3574e
SS
1373 else if (len <= (low_size + high_size))
1374 {
0818c12a 1375 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1376 memcpy (valbuf, buf, low_size);
0818c12a 1377 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1378 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1379 }
1380 else
8e65ff28 1381 internal_error (__FILE__, __LINE__,
e2e0b3e5 1382 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1383 }
1384}
1385
c5e656c1
MK
1386/* Write, for architecture GDBARCH, a function return value of TYPE
1387 from VALBUF into REGCACHE. */
ef9dff19 1388
3a1e71e3 1389static void
c5e656c1 1390i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1391 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1392{
c5e656c1 1393 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1394 int len = TYPE_LENGTH (type);
1395
1e8d0a7b 1396 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1397 {
3d7f4f49 1398 ULONGEST fstat;
63c0089f 1399 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1400
5716833c 1401 if (tdep->st0_regnum < 0)
ef9dff19 1402 {
8a3fe4f8 1403 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1404 return;
1405 }
1406
635b0cc1
MK
1407 /* Returning floating-point values is a bit tricky. Apart from
1408 storing the return value in %st(0), we have to simulate the
1409 state of the FPU at function return point. */
1410
c6ba6f0d
MK
1411 /* Convert the value found in VALBUF to the extended
1412 floating-point format used by the FPU. This is probably
1413 not exactly how it would happen on the target itself, but
1414 it is the best we can do. */
1415 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1416 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1417
635b0cc1
MK
1418 /* Set the top of the floating-point register stack to 7. The
1419 actual value doesn't really matter, but 7 is what a normal
1420 function return would end up with if the program started out
1421 with a freshly initialized FPU. */
20a6ec49 1422 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 1423 fstat |= (7 << 11);
20a6ec49 1424 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 1425
635b0cc1
MK
1426 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1427 the floating-point register stack to 7, the appropriate value
1428 for the tag word is 0x3fff. */
20a6ec49 1429 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
1430 }
1431 else
1432 {
875f8d0e
UW
1433 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1434 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1435
1436 if (len <= low_size)
3d7f4f49 1437 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1438 else if (len <= (low_size + high_size))
1439 {
3d7f4f49
MK
1440 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1441 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1442 len - low_size, valbuf + low_size);
ef9dff19
MK
1443 }
1444 else
8e65ff28 1445 internal_error (__FILE__, __LINE__,
e2e0b3e5 1446 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
1447 }
1448}
fc338970 1449\f
ef9dff19 1450
8201327c
MK
1451/* This is the variable that is set with "set struct-convention", and
1452 its legitimate values. */
1453static const char default_struct_convention[] = "default";
1454static const char pcc_struct_convention[] = "pcc";
1455static const char reg_struct_convention[] = "reg";
1456static const char *valid_conventions[] =
1457{
1458 default_struct_convention,
1459 pcc_struct_convention,
1460 reg_struct_convention,
1461 NULL
1462};
1463static const char *struct_convention = default_struct_convention;
1464
0e4377e1
JB
1465/* Return non-zero if TYPE, which is assumed to be a structure,
1466 a union type, or an array type, should be returned in registers
1467 for architecture GDBARCH. */
c5e656c1 1468
8201327c 1469static int
c5e656c1 1470i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1471{
c5e656c1
MK
1472 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1473 enum type_code code = TYPE_CODE (type);
1474 int len = TYPE_LENGTH (type);
8201327c 1475
0e4377e1
JB
1476 gdb_assert (code == TYPE_CODE_STRUCT
1477 || code == TYPE_CODE_UNION
1478 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1479
1480 if (struct_convention == pcc_struct_convention
1481 || (struct_convention == default_struct_convention
1482 && tdep->struct_return == pcc_struct_return))
1483 return 0;
1484
9edde48e
MK
1485 /* Structures consisting of a single `float', `double' or 'long
1486 double' member are returned in %st(0). */
1487 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1488 {
1489 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1490 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1491 return (len == 4 || len == 8 || len == 12);
1492 }
1493
c5e656c1
MK
1494 return (len == 1 || len == 2 || len == 4 || len == 8);
1495}
1496
1497/* Determine, for architecture GDBARCH, how a return value of TYPE
1498 should be returned. If it is supposed to be returned in registers,
1499 and READBUF is non-zero, read the appropriate value from REGCACHE,
1500 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1501 from WRITEBUF into REGCACHE. */
1502
1503static enum return_value_convention
c055b101
CV
1504i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1505 struct type *type, struct regcache *regcache,
1506 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
1507{
1508 enum type_code code = TYPE_CODE (type);
1509
5daa78cc
TJB
1510 if (((code == TYPE_CODE_STRUCT
1511 || code == TYPE_CODE_UNION
1512 || code == TYPE_CODE_ARRAY)
1513 && !i386_reg_struct_return_p (gdbarch, type))
1514 /* 128-bit decimal float uses the struct return convention. */
1515 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
1516 {
1517 /* The System V ABI says that:
1518
1519 "A function that returns a structure or union also sets %eax
1520 to the value of the original address of the caller's area
1521 before it returns. Thus when the caller receives control
1522 again, the address of the returned object resides in register
1523 %eax and can be used to access the object."
1524
1525 So the ABI guarantees that we can always find the return
1526 value just after the function has returned. */
1527
0e4377e1
JB
1528 /* Note that the ABI doesn't mention functions returning arrays,
1529 which is something possible in certain languages such as Ada.
1530 In this case, the value is returned as if it was wrapped in
1531 a record, so the convention applied to records also applies
1532 to arrays. */
1533
31db7b6c
MK
1534 if (readbuf)
1535 {
1536 ULONGEST addr;
1537
1538 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1539 read_memory (addr, readbuf, TYPE_LENGTH (type));
1540 }
1541
1542 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1543 }
c5e656c1
MK
1544
1545 /* This special case is for structures consisting of a single
9edde48e
MK
1546 `float', `double' or 'long double' member. These structures are
1547 returned in %st(0). For these structures, we call ourselves
1548 recursively, changing TYPE into the type of the first member of
1549 the structure. Since that should work for all structures that
1550 have only one member, we don't bother to check the member's type
1551 here. */
c5e656c1
MK
1552 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1553 {
1554 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
1555 return i386_return_value (gdbarch, func_type, type, regcache,
1556 readbuf, writebuf);
c5e656c1
MK
1557 }
1558
1559 if (readbuf)
1560 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1561 if (writebuf)
1562 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1563
c5e656c1 1564 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1565}
1566\f
1567
5ae96ec1
MK
1568/* Type for %eflags. */
1569struct type *i386_eflags_type;
1570
794ac428 1571/* Type for %mxcsr. */
878d9193 1572struct type *i386_mxcsr_type;
5ae96ec1
MK
1573
1574/* Construct types for ISA-specific registers. */
1575static void
1576i386_init_types (void)
1577{
1578 struct type *type;
1579
1580 type = init_flags_type ("builtin_type_i386_eflags", 4);
1581 append_flags_type_flag (type, 0, "CF");
1582 append_flags_type_flag (type, 1, NULL);
1583 append_flags_type_flag (type, 2, "PF");
1584 append_flags_type_flag (type, 4, "AF");
1585 append_flags_type_flag (type, 6, "ZF");
1586 append_flags_type_flag (type, 7, "SF");
1587 append_flags_type_flag (type, 8, "TF");
1588 append_flags_type_flag (type, 9, "IF");
1589 append_flags_type_flag (type, 10, "DF");
1590 append_flags_type_flag (type, 11, "OF");
1591 append_flags_type_flag (type, 14, "NT");
1592 append_flags_type_flag (type, 16, "RF");
1593 append_flags_type_flag (type, 17, "VM");
1594 append_flags_type_flag (type, 18, "AC");
1595 append_flags_type_flag (type, 19, "VIF");
1596 append_flags_type_flag (type, 20, "VIP");
1597 append_flags_type_flag (type, 21, "ID");
1598 i386_eflags_type = type;
21b4b2f2 1599
878d9193
MK
1600 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1601 append_flags_type_flag (type, 0, "IE");
1602 append_flags_type_flag (type, 1, "DE");
1603 append_flags_type_flag (type, 2, "ZE");
1604 append_flags_type_flag (type, 3, "OE");
1605 append_flags_type_flag (type, 4, "UE");
1606 append_flags_type_flag (type, 5, "PE");
1607 append_flags_type_flag (type, 6, "DAZ");
1608 append_flags_type_flag (type, 7, "IM");
1609 append_flags_type_flag (type, 8, "DM");
1610 append_flags_type_flag (type, 9, "ZM");
1611 append_flags_type_flag (type, 10, "OM");
1612 append_flags_type_flag (type, 11, "UM");
1613 append_flags_type_flag (type, 12, "PM");
1614 append_flags_type_flag (type, 15, "FZ");
1615 i386_mxcsr_type = type;
21b4b2f2
JB
1616}
1617
794ac428
UW
1618/* Construct vector type for MMX registers. */
1619struct type *
1620i386_mmx_type (struct gdbarch *gdbarch)
1621{
1622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1623
1624 if (!tdep->i386_mmx_type)
1625 {
1626 /* The type we're building is this: */
1627#if 0
1628 union __gdb_builtin_type_vec64i
1629 {
1630 int64_t uint64;
1631 int32_t v2_int32[2];
1632 int16_t v4_int16[4];
1633 int8_t v8_int8[8];
1634 };
1635#endif
1636
1637 struct type *t;
1638
1639 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1640 append_composite_type_field (t, "uint64", builtin_type_int64);
1641 append_composite_type_field (t, "v2_int32",
1642 init_vector_type (builtin_type_int32, 2));
1643 append_composite_type_field (t, "v4_int16",
1644 init_vector_type (builtin_type_int16, 4));
1645 append_composite_type_field (t, "v8_int8",
1646 init_vector_type (builtin_type_int8, 8));
1647
1648 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1649 TYPE_NAME (t) = "builtin_type_vec64i";
1650 tdep->i386_mmx_type = t;
1651 }
1652
1653 return tdep->i386_mmx_type;
1654}
1655
1656struct type *
1657i386_sse_type (struct gdbarch *gdbarch)
1658{
1659 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1660
1661 if (!tdep->i386_sse_type)
1662 {
1663 /* The type we're building is this: */
1664#if 0
1665 union __gdb_builtin_type_vec128i
1666 {
1667 int128_t uint128;
1668 int64_t v2_int64[2];
1669 int32_t v4_int32[4];
1670 int16_t v8_int16[8];
1671 int8_t v16_int8[16];
1672 double v2_double[2];
1673 float v4_float[4];
1674 };
1675#endif
1676
1677 struct type *t;
1678
1679 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1680 append_composite_type_field (t, "v4_float",
1681 init_vector_type (builtin_type_float, 4));
1682 append_composite_type_field (t, "v2_double",
1683 init_vector_type (builtin_type_double, 2));
1684 append_composite_type_field (t, "v16_int8",
1685 init_vector_type (builtin_type_int8, 16));
1686 append_composite_type_field (t, "v8_int16",
1687 init_vector_type (builtin_type_int16, 8));
1688 append_composite_type_field (t, "v4_int32",
1689 init_vector_type (builtin_type_int32, 4));
1690 append_composite_type_field (t, "v2_int64",
1691 init_vector_type (builtin_type_int64, 2));
1692 append_composite_type_field (t, "uint128", builtin_type_int128);
1693
1694 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1695 TYPE_NAME (t) = "builtin_type_vec128i";
1696 tdep->i386_sse_type = t;
1697 }
1698
1699 return tdep->i386_sse_type;
1700}
1701
d7a0d72c
MK
1702/* Return the GDB type object for the "standard" data type of data in
1703 register REGNUM. Perhaps %esi and %edi should go here, but
1704 potentially they could be used for things other than address. */
1705
3a1e71e3 1706static struct type *
4e259f09 1707i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1708{
ab533587
MK
1709 if (regnum == I386_EIP_REGNUM)
1710 return builtin_type_void_func_ptr;
1711
5ae96ec1
MK
1712 if (regnum == I386_EFLAGS_REGNUM)
1713 return i386_eflags_type;
1714
ab533587
MK
1715 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1716 return builtin_type_void_data_ptr;
d7a0d72c 1717
20a6ec49 1718 if (i386_fp_regnum_p (gdbarch, regnum))
c6ba6f0d 1719 return builtin_type_i387_ext;
d7a0d72c 1720
878d9193 1721 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 1722 return i386_mmx_type (gdbarch);
878d9193 1723
5716833c 1724 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 1725 return i386_sse_type (gdbarch);
d7a0d72c 1726
20a6ec49 1727 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
878d9193
MK
1728 return i386_mxcsr_type;
1729
d7a0d72c
MK
1730 return builtin_type_int;
1731}
1732
28fc6740 1733/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1734 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1735
1736static int
c86c27af 1737i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1738{
5716833c
MK
1739 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1740 int mmxreg, fpreg;
28fc6740
AC
1741 ULONGEST fstat;
1742 int tos;
c86c27af 1743
5716833c 1744 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 1745 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 1746 tos = (fstat >> 11) & 0x7;
5716833c
MK
1747 fpreg = (mmxreg + tos) % 8;
1748
20a6ec49 1749 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
1750}
1751
1752static void
1753i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1754 int regnum, gdb_byte *buf)
28fc6740 1755{
5716833c 1756 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1757 {
63c0089f 1758 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1759 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1760
28fc6740 1761 /* Extract (always little endian). */
c86c27af 1762 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1763 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1764 }
1765 else
1766 regcache_raw_read (regcache, regnum, buf);
1767}
1768
1769static void
1770i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1771 int regnum, const gdb_byte *buf)
28fc6740 1772{
5716833c 1773 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1774 {
63c0089f 1775 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1776 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1777
28fc6740
AC
1778 /* Read ... */
1779 regcache_raw_read (regcache, fpnum, mmx_buf);
1780 /* ... Modify ... (always little endian). */
f837910f 1781 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1782 /* ... Write. */
1783 regcache_raw_write (regcache, fpnum, mmx_buf);
1784 }
1785 else
1786 regcache_raw_write (regcache, regnum, buf);
1787}
ff2e87ac
AC
1788\f
1789
ff2e87ac
AC
1790/* Return the register number of the register allocated by GCC after
1791 REGNUM, or -1 if there is no such register. */
1792
1793static int
1794i386_next_regnum (int regnum)
1795{
1796 /* GCC allocates the registers in the order:
1797
1798 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1799
1800 Since storing a variable in %esp doesn't make any sense we return
1801 -1 for %ebp and for %esp itself. */
1802 static int next_regnum[] =
1803 {
1804 I386_EDX_REGNUM, /* Slot for %eax. */
1805 I386_EBX_REGNUM, /* Slot for %ecx. */
1806 I386_ECX_REGNUM, /* Slot for %edx. */
1807 I386_ESI_REGNUM, /* Slot for %ebx. */
1808 -1, -1, /* Slots for %esp and %ebp. */
1809 I386_EDI_REGNUM, /* Slot for %esi. */
1810 I386_EBP_REGNUM /* Slot for %edi. */
1811 };
1812
de5b9bb9 1813 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1814 return next_regnum[regnum];
28fc6740 1815
ff2e87ac
AC
1816 return -1;
1817}
1818
1819/* Return nonzero if a value of type TYPE stored in register REGNUM
1820 needs any special handling. */
d7a0d72c 1821
3a1e71e3 1822static int
0abe36f5 1823i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 1824{
de5b9bb9
MK
1825 int len = TYPE_LENGTH (type);
1826
ff2e87ac
AC
1827 /* Values may be spread across multiple registers. Most debugging
1828 formats aren't expressive enough to specify the locations, so
1829 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1830 have a length that is a multiple of the word size, since GCC
1831 doesn't seem to put any other types into registers. */
1832 if (len > 4 && len % 4 == 0)
1833 {
1834 int last_regnum = regnum;
1835
1836 while (len > 4)
1837 {
1838 last_regnum = i386_next_regnum (last_regnum);
1839 len -= 4;
1840 }
1841
1842 if (last_regnum != -1)
1843 return 1;
1844 }
ff2e87ac 1845
0abe36f5 1846 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
1847}
1848
ff2e87ac
AC
1849/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1850 return its contents in TO. */
ac27f131 1851
3a1e71e3 1852static void
ff2e87ac 1853i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1854 struct type *type, gdb_byte *to)
ac27f131 1855{
20a6ec49 1856 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 1857 int len = TYPE_LENGTH (type);
de5b9bb9 1858
ff2e87ac
AC
1859 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1860 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1861
20a6ec49 1862 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 1863 {
d532c08f
MK
1864 i387_register_to_value (frame, regnum, type, to);
1865 return;
8d7f6b4a 1866 }
ff2e87ac 1867
fd35795f 1868 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1869
1870 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1871
de5b9bb9
MK
1872 while (len > 0)
1873 {
1874 gdb_assert (regnum != -1);
20a6ec49 1875 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 1876
42835c2b 1877 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1878 regnum = i386_next_regnum (regnum);
1879 len -= 4;
42835c2b 1880 to += 4;
de5b9bb9 1881 }
ac27f131
MK
1882}
1883
ff2e87ac
AC
1884/* Write the contents FROM of a value of type TYPE into register
1885 REGNUM in frame FRAME. */
ac27f131 1886
3a1e71e3 1887static void
ff2e87ac 1888i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1889 struct type *type, const gdb_byte *from)
ac27f131 1890{
de5b9bb9 1891 int len = TYPE_LENGTH (type);
de5b9bb9 1892
20a6ec49 1893 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 1894 {
d532c08f
MK
1895 i387_value_to_register (frame, regnum, type, from);
1896 return;
1897 }
3d261580 1898
fd35795f 1899 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1900
1901 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1902
de5b9bb9
MK
1903 while (len > 0)
1904 {
1905 gdb_assert (regnum != -1);
875f8d0e 1906 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 1907
42835c2b 1908 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1909 regnum = i386_next_regnum (regnum);
1910 len -= 4;
42835c2b 1911 from += 4;
de5b9bb9 1912 }
ac27f131 1913}
ff2e87ac 1914\f
7fdafb5a
MK
1915/* Supply register REGNUM from the buffer specified by GREGS and LEN
1916 in the general-purpose register set REGSET to register cache
1917 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1918
20187ed5 1919void
473f17b0
MK
1920i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1921 int regnum, const void *gregs, size_t len)
1922{
9ea75c57 1923 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1924 const gdb_byte *regs = gregs;
473f17b0
MK
1925 int i;
1926
1927 gdb_assert (len == tdep->sizeof_gregset);
1928
1929 for (i = 0; i < tdep->gregset_num_regs; i++)
1930 {
1931 if ((regnum == i || regnum == -1)
1932 && tdep->gregset_reg_offset[i] != -1)
1933 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1934 }
1935}
1936
7fdafb5a
MK
1937/* Collect register REGNUM from the register cache REGCACHE and store
1938 it in the buffer specified by GREGS and LEN as described by the
1939 general-purpose register set REGSET. If REGNUM is -1, do this for
1940 all registers in REGSET. */
1941
1942void
1943i386_collect_gregset (const struct regset *regset,
1944 const struct regcache *regcache,
1945 int regnum, void *gregs, size_t len)
1946{
1947 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1948 gdb_byte *regs = gregs;
7fdafb5a
MK
1949 int i;
1950
1951 gdb_assert (len == tdep->sizeof_gregset);
1952
1953 for (i = 0; i < tdep->gregset_num_regs; i++)
1954 {
1955 if ((regnum == i || regnum == -1)
1956 && tdep->gregset_reg_offset[i] != -1)
1957 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1958 }
1959}
1960
1961/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1962 in the floating-point register set REGSET to register cache
1963 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1964
1965static void
1966i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1967 int regnum, const void *fpregs, size_t len)
1968{
9ea75c57 1969 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1970
66a72d25
MK
1971 if (len == I387_SIZEOF_FXSAVE)
1972 {
1973 i387_supply_fxsave (regcache, regnum, fpregs);
1974 return;
1975 }
1976
473f17b0
MK
1977 gdb_assert (len == tdep->sizeof_fpregset);
1978 i387_supply_fsave (regcache, regnum, fpregs);
1979}
8446b36a 1980
2f305df1
MK
1981/* Collect register REGNUM from the register cache REGCACHE and store
1982 it in the buffer specified by FPREGS and LEN as described by the
1983 floating-point register set REGSET. If REGNUM is -1, do this for
1984 all registers in REGSET. */
7fdafb5a
MK
1985
1986static void
1987i386_collect_fpregset (const struct regset *regset,
1988 const struct regcache *regcache,
1989 int regnum, void *fpregs, size_t len)
1990{
1991 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1992
1993 if (len == I387_SIZEOF_FXSAVE)
1994 {
1995 i387_collect_fxsave (regcache, regnum, fpregs);
1996 return;
1997 }
1998
1999 gdb_assert (len == tdep->sizeof_fpregset);
2000 i387_collect_fsave (regcache, regnum, fpregs);
2001}
2002
8446b36a
MK
2003/* Return the appropriate register set for the core section identified
2004 by SECT_NAME and SECT_SIZE. */
2005
2006const struct regset *
2007i386_regset_from_core_section (struct gdbarch *gdbarch,
2008 const char *sect_name, size_t sect_size)
2009{
2010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2011
2012 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2013 {
2014 if (tdep->gregset == NULL)
7fdafb5a
MK
2015 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2016 i386_collect_gregset);
8446b36a
MK
2017 return tdep->gregset;
2018 }
2019
66a72d25
MK
2020 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2021 || (strcmp (sect_name, ".reg-xfp") == 0
2022 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2023 {
2024 if (tdep->fpregset == NULL)
7fdafb5a
MK
2025 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2026 i386_collect_fpregset);
8446b36a
MK
2027 return tdep->fpregset;
2028 }
2029
2030 return NULL;
2031}
473f17b0 2032\f
fc338970 2033
fc338970 2034/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2035
2036CORE_ADDR
1cce71eb 2037i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2038{
fc338970 2039 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2040 {
c5aa993b 2041 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2042 struct minimal_symbol *indsym =
fc338970 2043 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2044 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2045
c5aa993b 2046 if (symname)
c906108c 2047 {
c5aa993b
JM
2048 if (strncmp (symname, "__imp_", 6) == 0
2049 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2050 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2051 }
2052 }
fc338970 2053 return 0; /* Not a trampoline. */
c906108c 2054}
fc338970
MK
2055\f
2056
10458914
DJ
2057/* Return whether the THIS_FRAME corresponds to a sigtramp
2058 routine. */
8201327c
MK
2059
2060static int
10458914 2061i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2062{
10458914 2063 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2064 char *name;
2065
2066 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2067 return (name && strcmp ("_sigtramp", name) == 0);
2068}
2069\f
2070
fc338970
MK
2071/* We have two flavours of disassembly. The machinery on this page
2072 deals with switching between those. */
c906108c
SS
2073
2074static int
a89aa300 2075i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2076{
5e3397bb
MK
2077 gdb_assert (disassembly_flavor == att_flavor
2078 || disassembly_flavor == intel_flavor);
2079
2080 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2081 constified, cast to prevent a compiler warning. */
2082 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2083
2084 return print_insn_i386 (pc, info);
7a292a7a 2085}
fc338970 2086\f
3ce1502b 2087
8201327c
MK
2088/* There are a few i386 architecture variants that differ only
2089 slightly from the generic i386 target. For now, we don't give them
2090 their own source file, but include them here. As a consequence,
2091 they'll always be included. */
3ce1502b 2092
8201327c 2093/* System V Release 4 (SVR4). */
3ce1502b 2094
10458914
DJ
2095/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2096 routine. */
911bc6ee 2097
8201327c 2098static int
10458914 2099i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 2100{
10458914 2101 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2102 char *name;
2103
acd5c798
MK
2104 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2105 currently unknown. */
911bc6ee 2106 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2107 return (name && (strcmp ("_sigreturn", name) == 0
2108 || strcmp ("_sigacthandler", name) == 0
2109 || strcmp ("sigvechandler", name) == 0));
2110}
d2a7c97a 2111
10458914
DJ
2112/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2113 address of the associated sigcontext (ucontext) structure. */
3ce1502b 2114
3a1e71e3 2115static CORE_ADDR
10458914 2116i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 2117{
63c0089f 2118 gdb_byte buf[4];
acd5c798 2119 CORE_ADDR sp;
3ce1502b 2120
10458914 2121 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
acd5c798 2122 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2123
acd5c798 2124 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2125}
2126\f
3ce1502b 2127
8201327c 2128/* Generic ELF. */
d2a7c97a 2129
8201327c
MK
2130void
2131i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2132{
c4fc7f1b
MK
2133 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2134 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2135}
3ce1502b 2136
8201327c 2137/* System V Release 4 (SVR4). */
3ce1502b 2138
8201327c
MK
2139void
2140i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2141{
2142 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2143
8201327c
MK
2144 /* System V Release 4 uses ELF. */
2145 i386_elf_init_abi (info, gdbarch);
3ce1502b 2146
dfe01d39 2147 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2148 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2149
911bc6ee 2150 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2151 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2152 tdep->sc_pc_offset = 36 + 14 * 4;
2153 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2154
8201327c 2155 tdep->jb_pc_offset = 20;
3ce1502b
MK
2156}
2157
8201327c 2158/* DJGPP. */
3ce1502b 2159
3a1e71e3 2160static void
8201327c 2161i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2162{
8201327c 2163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2164
911bc6ee
MK
2165 /* DJGPP doesn't have any special frames for signal handlers. */
2166 tdep->sigtramp_p = NULL;
3ce1502b 2167
8201327c 2168 tdep->jb_pc_offset = 36;
3ce1502b 2169}
8201327c 2170\f
2acceee2 2171
38c968cf
AC
2172/* i386 register groups. In addition to the normal groups, add "mmx"
2173 and "sse". */
2174
2175static struct reggroup *i386_sse_reggroup;
2176static struct reggroup *i386_mmx_reggroup;
2177
2178static void
2179i386_init_reggroups (void)
2180{
2181 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2182 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2183}
2184
2185static void
2186i386_add_reggroups (struct gdbarch *gdbarch)
2187{
2188 reggroup_add (gdbarch, i386_sse_reggroup);
2189 reggroup_add (gdbarch, i386_mmx_reggroup);
2190 reggroup_add (gdbarch, general_reggroup);
2191 reggroup_add (gdbarch, float_reggroup);
2192 reggroup_add (gdbarch, all_reggroup);
2193 reggroup_add (gdbarch, save_reggroup);
2194 reggroup_add (gdbarch, restore_reggroup);
2195 reggroup_add (gdbarch, vector_reggroup);
2196 reggroup_add (gdbarch, system_reggroup);
2197}
2198
2199int
2200i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2201 struct reggroup *group)
2202{
5716833c
MK
2203 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2204 || i386_mxcsr_regnum_p (gdbarch, regnum));
20a6ec49
MD
2205 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2206 || i386_fpc_regnum_p (gdbarch, regnum));
5716833c 2207 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2208
38c968cf
AC
2209 if (group == i386_mmx_reggroup)
2210 return mmx_regnum_p;
2211 if (group == i386_sse_reggroup)
2212 return sse_regnum_p;
2213 if (group == vector_reggroup)
2214 return (mmx_regnum_p || sse_regnum_p);
2215 if (group == float_reggroup)
2216 return fp_regnum_p;
2217 if (group == general_reggroup)
2218 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2219
38c968cf
AC
2220 return default_register_reggroup_p (gdbarch, regnum, group);
2221}
38c968cf 2222\f
acd5c798 2223
f837910f
MK
2224/* Get the ARGIth function argument for the current function. */
2225
42c466d7 2226static CORE_ADDR
143985b7
AF
2227i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2228 struct type *type)
2229{
f837910f
MK
2230 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2231 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2232}
2233
2234\f
3a1e71e3 2235static struct gdbarch *
a62cc96e
AC
2236i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2237{
cd3c07fc 2238 struct gdbarch_tdep *tdep;
a62cc96e
AC
2239 struct gdbarch *gdbarch;
2240
4be87837
DJ
2241 /* If there is already a candidate, use it. */
2242 arches = gdbarch_list_lookup_by_info (arches, &info);
2243 if (arches != NULL)
2244 return arches->gdbarch;
a62cc96e
AC
2245
2246 /* Allocate space for the new architecture. */
794ac428 2247 tdep = XCALLOC (1, struct gdbarch_tdep);
a62cc96e
AC
2248 gdbarch = gdbarch_alloc (&info, tdep);
2249
473f17b0
MK
2250 /* General-purpose registers. */
2251 tdep->gregset = NULL;
2252 tdep->gregset_reg_offset = NULL;
2253 tdep->gregset_num_regs = I386_NUM_GREGS;
2254 tdep->sizeof_gregset = 0;
2255
2256 /* Floating-point registers. */
2257 tdep->fpregset = NULL;
2258 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2259
5716833c 2260 /* The default settings include the FPU registers, the MMX registers
fd35795f 2261 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2262 by adjusting the members `st0_regnum', `mm0_regnum' and
2263 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2264 will show up in the output of "info all-registers". Ideally we
2265 should try to autodetect whether they are available, such that we
2266 can prevent "info all-registers" from displaying registers that
2267 aren't available.
2268
2269 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2270 [the SSE registers] always (even when they don't exist) or never
2271 showing them to the user (even when they do exist), I prefer the
2272 former over the latter. */
2273
2274 tdep->st0_regnum = I386_ST0_REGNUM;
2275
2276 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2277 calculating the register number for %mm0 until we know the number
5716833c
MK
2278 of raw registers. */
2279 tdep->mm0_regnum = 0;
2280
2281 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2282 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2283
8201327c
MK
2284 tdep->jb_pc_offset = -1;
2285 tdep->struct_return = pcc_struct_return;
8201327c
MK
2286 tdep->sigtramp_start = 0;
2287 tdep->sigtramp_end = 0;
911bc6ee 2288 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2289 tdep->sigcontext_addr = NULL;
a3386186 2290 tdep->sc_reg_offset = NULL;
8201327c 2291 tdep->sc_pc_offset = -1;
21d0e8a4 2292 tdep->sc_sp_offset = -1;
8201327c 2293
896fb97d
MK
2294 /* The format used for `long double' on almost all i386 targets is
2295 the i387 extended floating-point format. In fact, of all targets
2296 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2297 on having a `long double' that's not `long' at all. */
8da61cc4 2298 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
21d0e8a4 2299
66da5fd8 2300 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2301 bits, a `long double' actually takes up 96, probably to enforce
2302 alignment. */
2303 set_gdbarch_long_double_bit (gdbarch, 96);
2304
49ed40de
KB
2305 /* The default ABI includes general-purpose registers,
2306 floating-point registers, and the SSE registers. */
2307 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2308 set_gdbarch_register_name (gdbarch, i386_register_name);
2309 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2310
acd5c798
MK
2311 /* Register numbers of various important registers. */
2312 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2313 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2314 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2315 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2316
c4fc7f1b
MK
2317 /* NOTE: kettenis/20040418: GCC does have two possible register
2318 numbering schemes on the i386: dbx and SVR4. These schemes
2319 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2320 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2321 dbx_register_map[] and svr4_dbx_register_map in
2322 gcc/config/i386.c. GCC also defines a third numbering scheme in
2323 gcc/config/i386.c, which it designates as the "default" register
2324 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2325 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2326 amd64-tdep.c.
2327
2328 Currently, each GCC i386 target always uses the same register
2329 numbering scheme across all its supported debugging formats
2330 i.e. SDB (COFF), stabs and DWARF 2. This is because
2331 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2332 DBX_REGISTER_NUMBER macro which is defined by each target's
2333 respective config header in a manner independent of the requested
2334 output debugging format.
2335
2336 This does not match the arrangement below, which presumes that
2337 the SDB and stabs numbering schemes differ from the DWARF and
2338 DWARF 2 ones. The reason for this arrangement is that it is
2339 likely to get the numbering scheme for the target's
2340 default/native debug format right. For targets where GCC is the
2341 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2342 targets where the native toolchain uses a different numbering
2343 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2344 the defaults below will have to be overridden, like
2345 i386_elf_init_abi() does. */
c4fc7f1b
MK
2346
2347 /* Use the dbx register numbering scheme for stabs and COFF. */
2348 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2349 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2350
2351 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2352 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2353 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e 2354
055d23b8 2355 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
356a6b3e
MK
2356 be in use on any of the supported i386 targets. */
2357
61113f8b
MK
2358 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2359
8201327c 2360 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2361
a62cc96e 2362 /* Call dummy code. */
acd5c798 2363 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2364
ff2e87ac
AC
2365 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2366 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2367 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2368
c5e656c1 2369 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2370
93924b6b
MK
2371 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2372
2373 /* Stack grows downward. */
2374 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2375
2376 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2377 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2378
42fdc8df 2379 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2380
28fc6740 2381 /* Wire in the MMX registers. */
0f751ff2 2382 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2383 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2384 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2385
5e3397bb
MK
2386 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2387
10458914 2388 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
acd5c798
MK
2389
2390 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2391
38c968cf
AC
2392 /* Add the i386 register groups. */
2393 i386_add_reggroups (gdbarch);
2394 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2395
143985b7
AF
2396 /* Helper for function argument information. */
2397 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2398
6405b0a6 2399 /* Hook in the DWARF CFI frame unwinder. */
10458914 2400 dwarf2_append_unwinders (gdbarch);
6405b0a6 2401
acd5c798 2402 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2403
3ce1502b 2404 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2405 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2406
10458914
DJ
2407 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
2408 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 2409
8446b36a
MK
2410 /* If we have a register mapping, enable the generic core file
2411 support, unless it has already been enabled. */
2412 if (tdep->gregset_reg_offset
2413 && !gdbarch_regset_from_core_section_p (gdbarch))
2414 set_gdbarch_regset_from_core_section (gdbarch,
2415 i386_regset_from_core_section);
2416
5716833c
MK
2417 /* Unless support for MMX has been disabled, make %mm0 the first
2418 pseudo-register. */
2419 if (tdep->mm0_regnum == 0)
2420 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2421
a62cc96e
AC
2422 return gdbarch;
2423}
2424
8201327c
MK
2425static enum gdb_osabi
2426i386_coff_osabi_sniffer (bfd *abfd)
2427{
762c5349
MK
2428 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2429 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2430 return GDB_OSABI_GO32;
2431
2432 return GDB_OSABI_UNKNOWN;
2433}
8201327c
MK
2434\f
2435
28e9e0f0
MK
2436/* Provide a prototype to silence -Wmissing-prototypes. */
2437void _initialize_i386_tdep (void);
2438
c906108c 2439void
fba45db2 2440_initialize_i386_tdep (void)
c906108c 2441{
a62cc96e
AC
2442 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2443
fc338970 2444 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2445 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2446 &disassembly_flavor, _("\
2447Set the disassembly flavor."), _("\
2448Show the disassembly flavor."), _("\
2449The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2450 NULL,
2451 NULL, /* FIXME: i18n: */
2452 &setlist, &showlist);
8201327c
MK
2453
2454 /* Add the variable that controls the convention for returning
2455 structs. */
7ab04401
AC
2456 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2457 &struct_convention, _("\
2458Set the convention for returning small structs."), _("\
2459Show the convention for returning small structs."), _("\
2460Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2461is \"default\"."),
2462 NULL,
2463 NULL, /* FIXME: i18n: */
2464 &setlist, &showlist);
8201327c
MK
2465
2466 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2467 i386_coff_osabi_sniffer);
8201327c 2468
05816f70 2469 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2470 i386_svr4_init_abi);
05816f70 2471 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2472 i386_go32_init_abi);
38c968cf 2473
5ae96ec1 2474 /* Initialize the i386-specific register groups & types. */
38c968cf 2475 i386_init_reggroups ();
5ae96ec1 2476 i386_init_types();
c906108c 2477}
This page took 0.986016 seconds and 4 git commands to generate.