2003-01-05 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
dfe01d39 28#include "objfiles.h"
c906108c
SS
29#include "target.h"
30#include "floatformat.h"
c0d1d883 31#include "symfile.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbcmd.h"
34#include "command.h"
b4a20239 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
d16aafd8 37#include "doublest.h"
fd0407d6 38#include "value.h"
3d261580 39#include "gdb_assert.h"
38c968cf 40#include "reggroups.h"
5a4d6ff4 41#include "dummy-frame.h"
4be87837 42#include "osabi.h"
3d261580 43
d2a7c97a 44#include "i386-tdep.h"
61113f8b 45#include "i387-tdep.h"
d2a7c97a 46
fc633446
MK
47/* Names of the registers. The first 10 registers match the register
48 numbering scheme used by GCC for stabs and DWARF. */
49static char *i386_register_names[] =
50{
51 "eax", "ecx", "edx", "ebx",
52 "esp", "ebp", "esi", "edi",
53 "eip", "eflags", "cs", "ss",
54 "ds", "es", "fs", "gs",
55 "st0", "st1", "st2", "st3",
56 "st4", "st5", "st6", "st7",
57 "fctrl", "fstat", "ftag", "fiseg",
58 "fioff", "foseg", "fooff", "fop",
59 "xmm0", "xmm1", "xmm2", "xmm3",
60 "xmm4", "xmm5", "xmm6", "xmm7",
61 "mxcsr"
62};
63
28fc6740
AC
64/* MMX registers. */
65
66static char *i386_mmx_names[] =
67{
68 "mm0", "mm1", "mm2", "mm3",
69 "mm4", "mm5", "mm6", "mm7"
70};
71static const int mmx_num_regs = (sizeof (i386_mmx_names)
72 / sizeof (i386_mmx_names[0]));
73#define MM0_REGNUM (NUM_REGS)
74
75static int
23a34459 76i386_mmx_regnum_p (int reg)
28fc6740
AC
77{
78 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
79}
80
23a34459
AC
81/* FP register? */
82
83int
84i386_fp_regnum_p (int regnum)
85{
86 return (regnum < NUM_REGS
87 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
88}
89
90int
91i386_fpc_regnum_p (int regnum)
92{
93 return (regnum < NUM_REGS
94 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
95}
96
97/* SSE register? */
98
99int
100i386_sse_regnum_p (int regnum)
101{
102 return (regnum < NUM_REGS
103 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
104}
105
106int
107i386_mxcsr_regnum_p (int regnum)
108{
109 return (regnum < NUM_REGS
110 && (regnum == MXCSR_REGNUM));
111}
112
fc633446
MK
113/* Return the name of register REG. */
114
fa88f677 115const char *
fc633446
MK
116i386_register_name (int reg)
117{
118 if (reg < 0)
119 return NULL;
23a34459 120 if (i386_mmx_regnum_p (reg))
28fc6740 121 return i386_mmx_names[reg - MM0_REGNUM];
fc633446
MK
122 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
123 return NULL;
124
125 return i386_register_names[reg];
126}
127
85540d8c
MK
128/* Convert stabs register number REG to the appropriate register
129 number used by GDB. */
130
8201327c 131static int
85540d8c
MK
132i386_stab_reg_to_regnum (int reg)
133{
134 /* This implements what GCC calls the "default" register map. */
135 if (reg >= 0 && reg <= 7)
136 {
137 /* General registers. */
138 return reg;
139 }
140 else if (reg >= 12 && reg <= 19)
141 {
142 /* Floating-point registers. */
143 return reg - 12 + FP0_REGNUM;
144 }
145 else if (reg >= 21 && reg <= 28)
146 {
147 /* SSE registers. */
148 return reg - 21 + XMM0_REGNUM;
149 }
150 else if (reg >= 29 && reg <= 36)
151 {
152 /* MMX registers. */
7d12f766 153 return reg - 29 + MM0_REGNUM;
85540d8c
MK
154 }
155
156 /* This will hopefully provoke a warning. */
157 return NUM_REGS + NUM_PSEUDO_REGS;
158}
159
8201327c 160/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
161 number used by GDB. */
162
8201327c 163static int
85540d8c
MK
164i386_dwarf_reg_to_regnum (int reg)
165{
166 /* The DWARF register numbering includes %eip and %eflags, and
167 numbers the floating point registers differently. */
168 if (reg >= 0 && reg <= 9)
169 {
170 /* General registers. */
171 return reg;
172 }
173 else if (reg >= 11 && reg <= 18)
174 {
175 /* Floating-point registers. */
176 return reg - 11 + FP0_REGNUM;
177 }
178 else if (reg >= 21)
179 {
180 /* The SSE and MMX registers have identical numbers as in stabs. */
181 return i386_stab_reg_to_regnum (reg);
182 }
183
184 /* This will hopefully provoke a warning. */
185 return NUM_REGS + NUM_PSEUDO_REGS;
186}
fc338970 187\f
917317f4 188
fc338970
MK
189/* This is the variable that is set with "set disassembly-flavor", and
190 its legitimate values. */
53904c9e
AC
191static const char att_flavor[] = "att";
192static const char intel_flavor[] = "intel";
193static const char *valid_flavors[] =
c5aa993b 194{
c906108c
SS
195 att_flavor,
196 intel_flavor,
197 NULL
198};
53904c9e 199static const char *disassembly_flavor = att_flavor;
c906108c 200
fc338970
MK
201/* Stdio style buffering was used to minimize calls to ptrace, but
202 this buffering did not take into account that the code section
203 being accessed may not be an even number of buffers long (even if
204 the buffer is only sizeof(int) long). In cases where the code
205 section size happened to be a non-integral number of buffers long,
206 attempting to read the last buffer would fail. Simply using
207 target_read_memory and ignoring errors, rather than read_memory, is
208 not the correct solution, since legitimate access errors would then
209 be totally ignored. To properly handle this situation and continue
210 to use buffering would require that this code be able to determine
211 the minimum code section size granularity (not the alignment of the
212 section itself, since the actual failing case that pointed out this
213 problem had a section alignment of 4 but was not a multiple of 4
214 bytes long), on a target by target basis, and then adjust it's
215 buffer size accordingly. This is messy, but potentially feasible.
216 It probably needs the bfd library's help and support. For now, the
217 buffer size is set to 1. (FIXME -fnf) */
218
219#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
220static CORE_ADDR codestream_next_addr;
221static CORE_ADDR codestream_addr;
222static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
223static int codestream_off;
224static int codestream_cnt;
225
226#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
227#define codestream_peek() \
228 (codestream_cnt == 0 ? \
229 codestream_fill(1) : codestream_buf[codestream_off])
230#define codestream_get() \
231 (codestream_cnt-- == 0 ? \
232 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 233
c5aa993b 234static unsigned char
fba45db2 235codestream_fill (int peek_flag)
c906108c
SS
236{
237 codestream_addr = codestream_next_addr;
238 codestream_next_addr += CODESTREAM_BUFSIZ;
239 codestream_off = 0;
240 codestream_cnt = CODESTREAM_BUFSIZ;
241 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 242
c906108c 243 if (peek_flag)
c5aa993b 244 return (codestream_peek ());
c906108c 245 else
c5aa993b 246 return (codestream_get ());
c906108c
SS
247}
248
249static void
fba45db2 250codestream_seek (CORE_ADDR place)
c906108c
SS
251{
252 codestream_next_addr = place / CODESTREAM_BUFSIZ;
253 codestream_next_addr *= CODESTREAM_BUFSIZ;
254 codestream_cnt = 0;
255 codestream_fill (1);
c5aa993b 256 while (codestream_tell () != place)
c906108c
SS
257 codestream_get ();
258}
259
260static void
fba45db2 261codestream_read (unsigned char *buf, int count)
c906108c
SS
262{
263 unsigned char *p;
264 int i;
265 p = buf;
266 for (i = 0; i < count; i++)
267 *p++ = codestream_get ();
268}
fc338970 269\f
c906108c 270
fc338970 271/* If the next instruction is a jump, move to its target. */
c906108c
SS
272
273static void
fba45db2 274i386_follow_jump (void)
c906108c
SS
275{
276 unsigned char buf[4];
277 long delta;
278
279 int data16;
280 CORE_ADDR pos;
281
282 pos = codestream_tell ();
283
284 data16 = 0;
285 if (codestream_peek () == 0x66)
286 {
287 codestream_get ();
288 data16 = 1;
289 }
290
291 switch (codestream_get ())
292 {
293 case 0xe9:
fc338970 294 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
295 if (data16)
296 {
297 codestream_read (buf, 2);
298 delta = extract_signed_integer (buf, 2);
299
fc338970
MK
300 /* Include the size of the jmp instruction (including the
301 0x66 prefix). */
c5aa993b 302 pos += delta + 4;
c906108c
SS
303 }
304 else
305 {
306 codestream_read (buf, 4);
307 delta = extract_signed_integer (buf, 4);
308
309 pos += delta + 5;
310 }
311 break;
312 case 0xeb:
fc338970 313 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
314 codestream_read (buf, 1);
315 /* Sign-extend it. */
316 delta = extract_signed_integer (buf, 1);
317
318 pos += delta + 2;
319 break;
320 }
321 codestream_seek (pos);
322}
323
fc338970
MK
324/* Find & return the amount a local space allocated, and advance the
325 codestream to the first register push (if any).
326
327 If the entry sequence doesn't make sense, return -1, and leave
328 codestream pointer at a random spot. */
c906108c
SS
329
330static long
fba45db2 331i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
332{
333 unsigned char op;
334
335 codestream_seek (pc);
336
337 i386_follow_jump ();
338
339 op = codestream_get ();
340
341 if (op == 0x58) /* popl %eax */
342 {
fc338970
MK
343 /* This function must start with
344
345 popl %eax 0x58
346 xchgl %eax, (%esp) 0x87 0x04 0x24
347 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
348
349 (the System V compiler puts out the second `xchg'
350 instruction, and the assembler doesn't try to optimize it, so
351 the 'sib' form gets generated). This sequence is used to get
352 the address of the return buffer for a function that returns
353 a structure. */
c906108c
SS
354 int pos;
355 unsigned char buf[4];
fc338970
MK
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358
c906108c
SS
359 pos = codestream_tell ();
360 codestream_read (buf, 4);
361 if (memcmp (buf, proto1, 3) == 0)
362 pos += 3;
363 else if (memcmp (buf, proto2, 4) == 0)
364 pos += 4;
365
366 codestream_seek (pos);
fc338970 367 op = codestream_get (); /* Update next opcode. */
c906108c
SS
368 }
369
370 if (op == 0x68 || op == 0x6a)
371 {
fc338970
MK
372 /* This function may start with
373
374 pushl constant
375 call _probe
376 addl $4, %esp
377
378 followed by
379
380 pushl %ebp
381
382 etc. */
c906108c
SS
383 int pos;
384 unsigned char buf[8];
385
fc338970 386 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
387 or a four-byte operand, depending on the opcode. */
388 pos = codestream_tell ();
389 if (op == 0x68)
390 pos += 4;
391 else
392 pos += 1;
393 codestream_seek (pos);
394
fc338970
MK
395 /* Read the following 8 bytes, which should be "call _probe" (6
396 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
397 codestream_read (buf, sizeof (buf));
398 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
399 pos += sizeof (buf);
400 codestream_seek (pos);
fc338970 401 op = codestream_get (); /* Update next opcode. */
c906108c
SS
402 }
403
404 if (op == 0x55) /* pushl %ebp */
c5aa993b 405 {
fc338970 406 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
407 switch (codestream_get ())
408 {
409 case 0x8b:
410 if (codestream_get () != 0xec)
fc338970 411 return -1;
c906108c
SS
412 break;
413 case 0x89:
414 if (codestream_get () != 0xe5)
fc338970 415 return -1;
c906108c
SS
416 break;
417 default:
fc338970 418 return -1;
c906108c 419 }
fc338970
MK
420 /* Check for stack adjustment
421
422 subl $XXX, %esp
423
424 NOTE: You can't subtract a 16 bit immediate from a 32 bit
425 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
426 op = codestream_peek ();
427 if (op == 0x83)
428 {
fc338970 429 /* `subl' with 8 bit immediate. */
c906108c
SS
430 codestream_get ();
431 if (codestream_get () != 0xec)
fc338970 432 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
433 {
434 codestream_seek (codestream_tell () - 2);
435 return 0;
436 }
fc338970
MK
437 /* `subl' with signed byte immediate (though it wouldn't
438 make sense to be negative). */
c5aa993b 439 return (codestream_get ());
c906108c
SS
440 }
441 else if (op == 0x81)
442 {
443 char buf[4];
fc338970 444 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 445 codestream_get ();
c906108c 446 if (codestream_get () != 0xec)
fc338970 447 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
448 {
449 codestream_seek (codestream_tell () - 2);
450 return 0;
451 }
fc338970 452 /* It is `subl' with a 32 bit immediate. */
c5aa993b 453 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
454 return extract_signed_integer (buf, 4);
455 }
456 else
457 {
fc338970 458 return 0;
c906108c
SS
459 }
460 }
461 else if (op == 0xc8)
462 {
463 char buf[2];
fc338970 464 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 465 codestream_read ((unsigned char *) buf, 2);
fc338970 466 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
467 return extract_unsigned_integer (buf, 2);
468 }
469 return (-1);
470}
471
6bff26de
MK
472/* Signal trampolines don't have a meaningful frame. The frame
473 pointer value we use is actually the frame pointer of the calling
474 frame -- that is, the frame which was in progress when the signal
475 trampoline was entered. GDB mostly treats this frame pointer value
476 as a magic cookie. We detect the case of a signal trampoline by
5a203e44
AC
477 testing for get_frame_type() == SIGTRAMP_FRAME, which is set based
478 on PC_IN_SIGTRAMP.
6bff26de
MK
479
480 When a signal trampoline is invoked from a frameless function, we
481 essentially have two frameless functions in a row. In this case,
482 we use the same magic cookie for three frames in a row. We detect
5a203e44
AC
483 this case by seeing whether the next frame is a SIGTRAMP_FRAME,
484 and, if it does, checking whether the current frame is actually
485 frameless. In this case, we need to get the PC by looking at the
486 SP register value stored in the signal context.
6bff26de
MK
487
488 This should work in most cases except in horrible situations where
489 a signal occurs just as we enter a function but before the frame
c0d1d883
MK
490 has been set up. Incidentally, that's just what happens when we
491 call a function from GDB with a signal pending (there's a test in
492 the testsuite that makes this happen). Therefore we pretend that
493 we have a frameless function if we're stopped at the start of a
494 function. */
6bff26de
MK
495
496/* Return non-zero if we're dealing with a frameless signal, that is,
497 a signal trampoline invoked from a frameless function. */
498
5512c44a 499int
6bff26de
MK
500i386_frameless_signal_p (struct frame_info *frame)
501{
5a203e44 502 return (frame->next && get_frame_type (frame->next) == SIGTRAMP_FRAME
c0d1d883 503 && (frameless_look_for_prologue (frame)
50abf9e5 504 || get_frame_pc (frame) == get_pc_function_start (get_frame_pc (frame))));
6bff26de
MK
505}
506
c833a37e
MK
507/* Return the chain-pointer for FRAME. In the case of the i386, the
508 frame's nominal address is the address of a 4-byte word containing
509 the calling frame's address. */
510
8201327c 511static CORE_ADDR
c833a37e
MK
512i386_frame_chain (struct frame_info *frame)
513{
50abf9e5 514 if (pc_in_dummy_frame (get_frame_pc (frame)))
c0d1d883
MK
515 return frame->frame;
516
5a203e44 517 if (get_frame_type (frame) == SIGTRAMP_FRAME
6bff26de 518 || i386_frameless_signal_p (frame))
c833a37e
MK
519 return frame->frame;
520
50abf9e5 521 if (! inside_entry_file (get_frame_pc (frame)))
c833a37e
MK
522 return read_memory_unsigned_integer (frame->frame, 4);
523
524 return 0;
525}
526
539ffe0b
MK
527/* Determine whether the function invocation represented by FRAME does
528 not have a from on the stack associated with it. If it does not,
529 return non-zero, otherwise return zero. */
530
3a1e71e3 531static int
539ffe0b
MK
532i386_frameless_function_invocation (struct frame_info *frame)
533{
5a203e44 534 if (get_frame_type (frame) == SIGTRAMP_FRAME)
539ffe0b
MK
535 return 0;
536
537 return frameless_look_for_prologue (frame);
538}
539
21d0e8a4
MK
540/* Assuming FRAME is for a sigtramp routine, return the saved program
541 counter. */
542
543static CORE_ADDR
544i386_sigtramp_saved_pc (struct frame_info *frame)
545{
546 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
547 CORE_ADDR addr;
548
549 addr = tdep->sigcontext_addr (frame);
550 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
551}
552
6bff26de
MK
553/* Assuming FRAME is for a sigtramp routine, return the saved stack
554 pointer. */
555
556static CORE_ADDR
557i386_sigtramp_saved_sp (struct frame_info *frame)
558{
559 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
560 CORE_ADDR addr;
561
562 addr = tdep->sigcontext_addr (frame);
563 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
564}
565
0d17c81d
MK
566/* Return the saved program counter for FRAME. */
567
8201327c 568static CORE_ADDR
0d17c81d
MK
569i386_frame_saved_pc (struct frame_info *frame)
570{
50abf9e5 571 if (pc_in_dummy_frame (get_frame_pc (frame)))
267bf4bb
MK
572 {
573 ULONGEST pc;
574
575 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
576 return pc;
577 }
c0d1d883 578
5a203e44 579 if (get_frame_type (frame) == SIGTRAMP_FRAME)
21d0e8a4 580 return i386_sigtramp_saved_pc (frame);
0d17c81d 581
6bff26de
MK
582 if (i386_frameless_signal_p (frame))
583 {
584 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
585 return read_memory_unsigned_integer (sp, 4);
586 }
587
8201327c 588 return read_memory_unsigned_integer (frame->frame + 4, 4);
22797942
AC
589}
590
ed84f6c1
MK
591/* Immediately after a function call, return the saved pc. */
592
8201327c 593static CORE_ADDR
ed84f6c1
MK
594i386_saved_pc_after_call (struct frame_info *frame)
595{
5a203e44 596 if (get_frame_type (frame) == SIGTRAMP_FRAME)
6bff26de
MK
597 return i386_sigtramp_saved_pc (frame);
598
ed84f6c1
MK
599 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
600}
601
c906108c
SS
602/* Return number of args passed to a frame.
603 Can return -1, meaning no way to tell. */
604
3a1e71e3 605static int
fba45db2 606i386_frame_num_args (struct frame_info *fi)
c906108c
SS
607{
608#if 1
609 return -1;
610#else
611 /* This loses because not only might the compiler not be popping the
fc338970
MK
612 args right after the function call, it might be popping args from
613 both this call and a previous one, and we would say there are
614 more args than there really are. */
c906108c 615
c5aa993b
JM
616 int retpc;
617 unsigned char op;
c906108c
SS
618 struct frame_info *pfi;
619
fc338970 620 /* On the i386, the instruction following the call could be:
c906108c
SS
621 popl %ecx - one arg
622 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 623 anything else - zero args. */
c906108c
SS
624
625 int frameless;
626
392a587b 627 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 628 if (frameless)
fc338970
MK
629 /* In the absence of a frame pointer, GDB doesn't get correct
630 values for nameless arguments. Return -1, so it doesn't print
631 any nameless arguments. */
c906108c
SS
632 return -1;
633
c5aa993b 634 pfi = get_prev_frame (fi);
c906108c
SS
635 if (pfi == 0)
636 {
fc338970
MK
637 /* NOTE: This can happen if we are looking at the frame for
638 main, because FRAME_CHAIN_VALID won't let us go into start.
639 If we have debugging symbols, that's not really a big deal;
640 it just means it will only show as many arguments to main as
641 are declared. */
c906108c
SS
642 return -1;
643 }
644 else
645 {
c5aa993b
JM
646 retpc = pfi->pc;
647 op = read_memory_integer (retpc, 1);
fc338970 648 if (op == 0x59) /* pop %ecx */
c5aa993b 649 return 1;
c906108c
SS
650 else if (op == 0x83)
651 {
c5aa993b
JM
652 op = read_memory_integer (retpc + 1, 1);
653 if (op == 0xc4)
654 /* addl $<signed imm 8 bits>, %esp */
655 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
656 else
657 return 0;
658 }
fc338970
MK
659 else if (op == 0x81) /* `add' with 32 bit immediate. */
660 {
c5aa993b
JM
661 op = read_memory_integer (retpc + 1, 1);
662 if (op == 0xc4)
663 /* addl $<imm 32>, %esp */
664 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
665 else
666 return 0;
667 }
668 else
669 {
670 return 0;
671 }
672 }
673#endif
674}
675
fc338970
MK
676/* Parse the first few instructions the function to see what registers
677 were stored.
678
679 We handle these cases:
680
681 The startup sequence can be at the start of the function, or the
682 function can start with a branch to startup code at the end.
683
684 %ebp can be set up with either the 'enter' instruction, or "pushl
685 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
686 once used in the System V compiler).
687
688 Local space is allocated just below the saved %ebp by either the
689 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
690 bit unsigned argument for space to allocate, and the 'addl'
691 instruction could have either a signed byte, or 32 bit immediate.
692
693 Next, the registers used by this function are pushed. With the
694 System V compiler they will always be in the order: %edi, %esi,
695 %ebx (and sometimes a harmless bug causes it to also save but not
696 restore %eax); however, the code below is willing to see the pushes
697 in any order, and will handle up to 8 of them.
698
699 If the setup sequence is at the end of the function, then the next
700 instruction will be a branch back to the start. */
c906108c 701
3a1e71e3 702static void
fba45db2 703i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
704{
705 long locals = -1;
706 unsigned char op;
fc338970 707 CORE_ADDR addr;
c906108c
SS
708 CORE_ADDR pc;
709 int i;
c5aa993b 710
b2fb4676 711 if (get_frame_saved_regs (fip))
1211c4e4
AC
712 return;
713
714 frame_saved_regs_zalloc (fip);
c5aa993b 715
50abf9e5 716 pc = get_pc_function_start (get_frame_pc (fip));
c906108c
SS
717 if (pc != 0)
718 locals = i386_get_frame_setup (pc);
c5aa993b
JM
719
720 if (locals >= 0)
c906108c 721 {
fc338970 722 addr = fip->frame - 4 - locals;
c5aa993b 723 for (i = 0; i < 8; i++)
c906108c
SS
724 {
725 op = codestream_get ();
726 if (op < 0x50 || op > 0x57)
727 break;
728#ifdef I386_REGNO_TO_SYMMETRY
729 /* Dynix uses different internal numbering. Ick. */
b2fb4676 730 get_frame_saved_regs (fip)[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 731#else
b2fb4676 732 get_frame_saved_regs (fip)[op - 0x50] = addr;
c906108c 733#endif
fc338970 734 addr -= 4;
c906108c
SS
735 }
736 }
c5aa993b 737
b2fb4676
AC
738 get_frame_saved_regs (fip)[PC_REGNUM] = fip->frame + 4;
739 get_frame_saved_regs (fip)[FP_REGNUM] = fip->frame;
c906108c
SS
740}
741
fc338970 742/* Return PC of first real instruction. */
c906108c 743
3a1e71e3 744static CORE_ADDR
93924b6b 745i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
746{
747 unsigned char op;
748 int i;
c5aa993b 749 static unsigned char pic_pat[6] =
fc338970
MK
750 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
751 0x5b, /* popl %ebx */
c5aa993b 752 };
c906108c 753 CORE_ADDR pos;
c5aa993b 754
c906108c
SS
755 if (i386_get_frame_setup (pc) < 0)
756 return (pc);
c5aa993b 757
fc338970
MK
758 /* Found valid frame setup -- codestream now points to start of push
759 instructions for saving registers. */
c5aa993b 760
fc338970 761 /* Skip over register saves. */
c906108c
SS
762 for (i = 0; i < 8; i++)
763 {
764 op = codestream_peek ();
fc338970 765 /* Break if not `pushl' instrunction. */
c5aa993b 766 if (op < 0x50 || op > 0x57)
c906108c
SS
767 break;
768 codestream_get ();
769 }
770
fc338970
MK
771 /* The native cc on SVR4 in -K PIC mode inserts the following code
772 to get the address of the global offset table (GOT) into register
773 %ebx
774
775 call 0x0
776 popl %ebx
777 movl %ebx,x(%ebp) (optional)
778 addl y,%ebx
779
c906108c
SS
780 This code is with the rest of the prologue (at the end of the
781 function), so we have to skip it to get to the first real
782 instruction at the start of the function. */
c5aa993b 783
c906108c
SS
784 pos = codestream_tell ();
785 for (i = 0; i < 6; i++)
786 {
787 op = codestream_get ();
c5aa993b 788 if (pic_pat[i] != op)
c906108c
SS
789 break;
790 }
791 if (i == 6)
792 {
793 unsigned char buf[4];
794 long delta = 6;
795
796 op = codestream_get ();
c5aa993b 797 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
798 {
799 op = codestream_get ();
fc338970 800 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
801 {
802 delta += 3;
803 codestream_read (buf, 1);
804 }
fc338970 805 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
806 {
807 delta += 6;
808 codestream_read (buf, 4);
809 }
fc338970 810 else /* Unexpected instruction. */
c5aa993b
JM
811 delta = -1;
812 op = codestream_get ();
c906108c 813 }
c5aa993b
JM
814 /* addl y,%ebx */
815 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 816 {
c5aa993b 817 pos += delta + 6;
c906108c
SS
818 }
819 }
820 codestream_seek (pos);
c5aa993b 821
c906108c 822 i386_follow_jump ();
c5aa993b 823
c906108c
SS
824 return (codestream_tell ());
825}
826
93924b6b
MK
827/* Use the program counter to determine the contents and size of a
828 breakpoint instruction. Return a pointer to a string of bytes that
829 encode a breakpoint instruction, store the length of the string in
830 *LEN and optionally adjust *PC to point to the correct memory
831 location for inserting the breakpoint.
832
833 On the i386 we have a single breakpoint that fits in a single byte
834 and can be inserted anywhere. */
835
836static const unsigned char *
837i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
838{
839 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
840
841 *len = sizeof (break_insn);
842 return break_insn;
843}
844
c0d1d883
MK
845/* Push the return address (pointing to the call dummy) onto the stack
846 and return the new value for the stack pointer. */
c5aa993b 847
c0d1d883
MK
848static CORE_ADDR
849i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
a7769679 850{
c0d1d883 851 char buf[4];
a7769679 852
c0d1d883
MK
853 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
854 write_memory (sp - 4, buf, 4);
855 return sp - 4;
a7769679
MK
856}
857
3a1e71e3 858static void
c0d1d883 859i386_do_pop_frame (struct frame_info *frame)
c906108c 860{
c906108c
SS
861 CORE_ADDR fp;
862 int regnum;
00f8375e 863 char regbuf[I386_MAX_REGISTER_SIZE];
c5aa993b 864
c193f6ac 865 fp = get_frame_base (frame);
1211c4e4
AC
866 i386_frame_init_saved_regs (frame);
867
c5aa993b 868 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 869 {
fc338970 870 CORE_ADDR addr;
b2fb4676 871 addr = get_frame_saved_regs (frame)[regnum];
fc338970 872 if (addr)
c906108c 873 {
fc338970 874 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
4caf0990 875 deprecated_write_register_gen (regnum, regbuf);
c906108c
SS
876 }
877 }
878 write_register (FP_REGNUM, read_memory_integer (fp, 4));
879 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
880 write_register (SP_REGNUM, fp + 8);
881 flush_cached_frames ();
882}
c0d1d883
MK
883
884static void
885i386_pop_frame (void)
886{
887 generic_pop_current_frame (i386_do_pop_frame);
888}
fc338970 889\f
c906108c 890
fc338970
MK
891/* Figure out where the longjmp will land. Slurp the args out of the
892 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c
MK
893 structure from which we extract the address that we will land at.
894 This address is copied into PC. This routine returns true on
fc338970 895 success. */
c906108c 896
8201327c
MK
897static int
898i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 899{
8201327c 900 char buf[4];
c906108c 901 CORE_ADDR sp, jb_addr;
8201327c 902 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
c906108c 903
8201327c
MK
904 /* If JB_PC_OFFSET is -1, we have no way to find out where the
905 longjmp will land. */
906 if (jb_pc_offset == -1)
c906108c
SS
907 return 0;
908
8201327c
MK
909 sp = read_register (SP_REGNUM);
910 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
911 return 0;
912
8201327c
MK
913 jb_addr = extract_address (buf, 4);
914 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
915 return 0;
c906108c 916
8201327c 917 *pc = extract_address (buf, 4);
c906108c
SS
918 return 1;
919}
fc338970 920\f
c906108c 921
3a1e71e3 922static CORE_ADDR
ea7c478f 923i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
924 int struct_return, CORE_ADDR struct_addr)
925{
926 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
927
928 if (struct_return)
929 {
930 char buf[4];
931
932 sp -= 4;
933 store_address (buf, 4, struct_addr);
934 write_memory (sp, buf, 4);
935 }
936
937 return sp;
938}
939
3a1e71e3 940static void
22f8ba57
MK
941i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
942{
943 /* Do nothing. Everything was already done by i386_push_arguments. */
944}
945
1a309862
MK
946/* These registers are used for returning integers (and on some
947 targets also for returning `struct' and `union' values when their
ef9dff19 948 size and alignment match an integer type). */
1a309862
MK
949#define LOW_RETURN_REGNUM 0 /* %eax */
950#define HIGH_RETURN_REGNUM 2 /* %edx */
951
952/* Extract from an array REGBUF containing the (raw) register state, a
953 function return value of TYPE, and copy that, in virtual format,
954 into VALBUF. */
955
3a1e71e3 956static void
00f8375e 957i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 958 void *dst)
c906108c 959{
ebba8386 960 bfd_byte *valbuf = dst;
1a309862 961 int len = TYPE_LENGTH (type);
00f8375e 962 char buf[I386_MAX_REGISTER_SIZE];
1a309862 963
1e8d0a7b
MK
964 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
965 && TYPE_NFIELDS (type) == 1)
3df1b9b4 966 {
00f8375e 967 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
968 return;
969 }
1e8d0a7b
MK
970
971 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 972 {
356a6b3e 973 if (FP0_REGNUM == 0)
1a309862
MK
974 {
975 warning ("Cannot find floating-point return value.");
976 memset (valbuf, 0, len);
ef9dff19 977 return;
1a309862
MK
978 }
979
c6ba6f0d
MK
980 /* Floating-point return values can be found in %st(0). Convert
981 its contents to the desired type. This is probably not
982 exactly how it would happen on the target itself, but it is
983 the best we can do. */
0818c12a 984 regcache_raw_read (regcache, FP0_REGNUM, buf);
00f8375e 985 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
986 }
987 else
c5aa993b 988 {
d4f3574e
SS
989 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
990 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
991
992 if (len <= low_size)
00f8375e 993 {
0818c12a 994 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
995 memcpy (valbuf, buf, len);
996 }
d4f3574e
SS
997 else if (len <= (low_size + high_size))
998 {
0818c12a 999 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1000 memcpy (valbuf, buf, low_size);
0818c12a 1001 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 1002 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1003 }
1004 else
8e65ff28
AC
1005 internal_error (__FILE__, __LINE__,
1006 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1007 }
1008}
1009
ef9dff19
MK
1010/* Write into the appropriate registers a function return value stored
1011 in VALBUF of type TYPE, given in virtual format. */
1012
3a1e71e3 1013static void
3d7f4f49
MK
1014i386_store_return_value (struct type *type, struct regcache *regcache,
1015 const void *valbuf)
ef9dff19
MK
1016{
1017 int len = TYPE_LENGTH (type);
1018
1e8d0a7b
MK
1019 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1020 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1021 {
3d7f4f49 1022 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1023 return;
1024 }
1e8d0a7b
MK
1025
1026 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1027 {
3d7f4f49 1028 ULONGEST fstat;
c6ba6f0d 1029 char buf[FPU_REG_RAW_SIZE];
ccb945b8 1030
356a6b3e 1031 if (FP0_REGNUM == 0)
ef9dff19
MK
1032 {
1033 warning ("Cannot set floating-point return value.");
1034 return;
1035 }
1036
635b0cc1
MK
1037 /* Returning floating-point values is a bit tricky. Apart from
1038 storing the return value in %st(0), we have to simulate the
1039 state of the FPU at function return point. */
1040
c6ba6f0d
MK
1041 /* Convert the value found in VALBUF to the extended
1042 floating-point format used by the FPU. This is probably
1043 not exactly how it would happen on the target itself, but
1044 it is the best we can do. */
1045 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
3d7f4f49 1046 regcache_raw_write (regcache, FP0_REGNUM, buf);
ccb945b8 1047
635b0cc1
MK
1048 /* Set the top of the floating-point register stack to 7. The
1049 actual value doesn't really matter, but 7 is what a normal
1050 function return would end up with if the program started out
1051 with a freshly initialized FPU. */
3d7f4f49 1052 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
ccb945b8 1053 fstat |= (7 << 11);
3d7f4f49 1054 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
ccb945b8 1055
635b0cc1
MK
1056 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1057 the floating-point register stack to 7, the appropriate value
1058 for the tag word is 0x3fff. */
3d7f4f49 1059 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1060 }
1061 else
1062 {
1063 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1064 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1065
1066 if (len <= low_size)
3d7f4f49 1067 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1068 else if (len <= (low_size + high_size))
1069 {
3d7f4f49
MK
1070 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1071 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1072 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1073 }
1074 else
8e65ff28
AC
1075 internal_error (__FILE__, __LINE__,
1076 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1077 }
1078}
f7af9647 1079
751f1375
MK
1080/* Extract from REGCACHE, which contains the (raw) register state, the
1081 address in which a function should return its structure value, as a
1082 CORE_ADDR. */
f7af9647 1083
3a1e71e3 1084static CORE_ADDR
00f8375e 1085i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1086{
751f1375
MK
1087 ULONGEST addr;
1088
1089 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1090 return addr;
f7af9647 1091}
fc338970 1092\f
ef9dff19 1093
8201327c
MK
1094/* This is the variable that is set with "set struct-convention", and
1095 its legitimate values. */
1096static const char default_struct_convention[] = "default";
1097static const char pcc_struct_convention[] = "pcc";
1098static const char reg_struct_convention[] = "reg";
1099static const char *valid_conventions[] =
1100{
1101 default_struct_convention,
1102 pcc_struct_convention,
1103 reg_struct_convention,
1104 NULL
1105};
1106static const char *struct_convention = default_struct_convention;
1107
1108static int
1109i386_use_struct_convention (int gcc_p, struct type *type)
1110{
1111 enum struct_return struct_return;
1112
1113 if (struct_convention == default_struct_convention)
1114 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1115 else if (struct_convention == pcc_struct_convention)
1116 struct_return = pcc_struct_return;
1117 else
1118 struct_return = reg_struct_return;
1119
1120 return generic_use_struct_convention (struct_return == reg_struct_return,
1121 type);
1122}
1123\f
1124
d7a0d72c
MK
1125/* Return the GDB type object for the "standard" data type of data in
1126 register REGNUM. Perhaps %esi and %edi should go here, but
1127 potentially they could be used for things other than address. */
1128
3a1e71e3 1129static struct type *
d7a0d72c
MK
1130i386_register_virtual_type (int regnum)
1131{
1132 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1133 return lookup_pointer_type (builtin_type_void);
1134
23a34459 1135 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1136 return builtin_type_i387_ext;
d7a0d72c 1137
23a34459 1138 if (i386_sse_regnum_p (regnum))
3139facc 1139 return builtin_type_vec128i;
d7a0d72c 1140
23a34459 1141 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1142 return builtin_type_vec64i;
1143
d7a0d72c
MK
1144 return builtin_type_int;
1145}
1146
28fc6740
AC
1147/* Map a cooked register onto a raw register or memory. For the i386,
1148 the MMX registers need to be mapped onto floating point registers. */
1149
1150static int
1151mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1152{
1153 int mmxi;
1154 ULONGEST fstat;
1155 int tos;
1156 int fpi;
1157 mmxi = regnum - MM0_REGNUM;
1158 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1159 tos = (fstat >> 11) & 0x7;
1160 fpi = (mmxi + tos) % 8;
1161 return (FP0_REGNUM + fpi);
1162}
1163
1164static void
1165i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1166 int regnum, void *buf)
1167{
23a34459 1168 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1169 {
1170 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1171 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1172 regcache_raw_read (regcache, fpnum, mmx_buf);
1173 /* Extract (always little endian). */
1174 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1175 }
1176 else
1177 regcache_raw_read (regcache, regnum, buf);
1178}
1179
1180static void
1181i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1182 int regnum, const void *buf)
1183{
23a34459 1184 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1185 {
1186 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1187 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1188 /* Read ... */
1189 regcache_raw_read (regcache, fpnum, mmx_buf);
1190 /* ... Modify ... (always little endian). */
1191 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1192 /* ... Write. */
1193 regcache_raw_write (regcache, fpnum, mmx_buf);
1194 }
1195 else
1196 regcache_raw_write (regcache, regnum, buf);
1197}
1198
d7a0d72c
MK
1199/* Return true iff register REGNUM's virtual format is different from
1200 its raw format. Note that this definition assumes that the host
1201 supports IEEE 32-bit floats, since it doesn't say that SSE
1202 registers need conversion. Even if we can't find a counterexample,
1203 this is still sloppy. */
1204
3a1e71e3 1205static int
d7a0d72c
MK
1206i386_register_convertible (int regnum)
1207{
23a34459 1208 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1209}
1210
ac27f131 1211/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1212 virtual format with type TYPE in buffer TO. */
ac27f131 1213
3a1e71e3 1214static void
ac27f131
MK
1215i386_register_convert_to_virtual (int regnum, struct type *type,
1216 char *from, char *to)
1217{
23a34459 1218 gdb_assert (i386_fp_regnum_p (regnum));
3d261580
MK
1219
1220 /* We only support floating-point values. */
8d7f6b4a
MK
1221 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1222 {
1223 warning ("Cannot convert floating-point register value "
1224 "to non-floating-point type.");
1225 memset (to, 0, TYPE_LENGTH (type));
1226 return;
1227 }
3d261580 1228
c6ba6f0d
MK
1229 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1230 the extended floating-point format used by the FPU. */
1231 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1232}
1233
1234/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1235 raw format for register REGNUM in buffer TO. */
ac27f131 1236
3a1e71e3 1237static void
ac27f131
MK
1238i386_register_convert_to_raw (struct type *type, int regnum,
1239 char *from, char *to)
1240{
23a34459 1241 gdb_assert (i386_fp_regnum_p (regnum));
c6ba6f0d
MK
1242
1243 /* We only support floating-point values. */
1244 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1245 {
1246 warning ("Cannot convert non-floating-point type "
1247 "to floating-point register value.");
1248 memset (to, 0, TYPE_LENGTH (type));
1249 return;
1250 }
3d261580 1251
c6ba6f0d
MK
1252 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1253 to the extended floating-point format used by the FPU. */
1254 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1255}
ac27f131 1256\f
fc338970 1257
c906108c 1258#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1259/* SunPRO encodes the static variables. This is not related to C++
1260 mangling, it is done for C too. */
c906108c
SS
1261
1262char *
fba45db2 1263sunpro_static_transform_name (char *name)
c906108c
SS
1264{
1265 char *p;
1266 if (IS_STATIC_TRANSFORM_NAME (name))
1267 {
fc338970
MK
1268 /* For file-local statics there will be a period, a bunch of
1269 junk (the contents of which match a string given in the
c5aa993b
JM
1270 N_OPT), a period and the name. For function-local statics
1271 there will be a bunch of junk (which seems to change the
1272 second character from 'A' to 'B'), a period, the name of the
1273 function, and the name. So just skip everything before the
1274 last period. */
c906108c
SS
1275 p = strrchr (name, '.');
1276 if (p != NULL)
1277 name = p + 1;
1278 }
1279 return name;
1280}
1281#endif /* STATIC_TRANSFORM_NAME */
fc338970 1282\f
c906108c 1283
fc338970 1284/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1285
1286CORE_ADDR
1cce71eb 1287i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1288{
fc338970 1289 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1290 {
c5aa993b 1291 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1292 struct minimal_symbol *indsym =
fc338970 1293 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1294 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1295
c5aa993b 1296 if (symname)
c906108c 1297 {
c5aa993b
JM
1298 if (strncmp (symname, "__imp_", 6) == 0
1299 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1300 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1301 }
1302 }
fc338970 1303 return 0; /* Not a trampoline. */
c906108c 1304}
fc338970
MK
1305\f
1306
8201327c
MK
1307/* Return non-zero if PC and NAME show that we are in a signal
1308 trampoline. */
1309
1310static int
1311i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1312{
1313 return (name && strcmp ("_sigtramp", name) == 0);
1314}
1315\f
1316
fc338970
MK
1317/* We have two flavours of disassembly. The machinery on this page
1318 deals with switching between those. */
c906108c
SS
1319
1320static int
5e3397bb 1321i386_print_insn (bfd_vma pc, disassemble_info *info)
c906108c 1322{
5e3397bb
MK
1323 gdb_assert (disassembly_flavor == att_flavor
1324 || disassembly_flavor == intel_flavor);
1325
1326 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1327 constified, cast to prevent a compiler warning. */
1328 info->disassembler_options = (char *) disassembly_flavor;
1329 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1330
1331 return print_insn_i386 (pc, info);
7a292a7a 1332}
fc338970 1333\f
3ce1502b 1334
8201327c
MK
1335/* There are a few i386 architecture variants that differ only
1336 slightly from the generic i386 target. For now, we don't give them
1337 their own source file, but include them here. As a consequence,
1338 they'll always be included. */
3ce1502b 1339
8201327c 1340/* System V Release 4 (SVR4). */
3ce1502b 1341
8201327c
MK
1342static int
1343i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1344{
8201327c
MK
1345 return (name && (strcmp ("_sigreturn", name) == 0
1346 || strcmp ("_sigacthandler", name) == 0
1347 || strcmp ("sigvechandler", name) == 0));
1348}
d2a7c97a 1349
21d0e8a4
MK
1350/* Get address of the pushed ucontext (sigcontext) on the stack for
1351 all three variants of SVR4 sigtramps. */
3ce1502b 1352
3a1e71e3 1353static CORE_ADDR
21d0e8a4 1354i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1355{
21d0e8a4 1356 int sigcontext_offset = -1;
8201327c
MK
1357 char *name = NULL;
1358
50abf9e5 1359 find_pc_partial_function (get_frame_pc (frame), &name, NULL, NULL);
8201327c 1360 if (name)
d2a7c97a 1361 {
8201327c 1362 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1363 sigcontext_offset = 132;
8201327c 1364 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1365 sigcontext_offset = 80;
8201327c 1366 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1367 sigcontext_offset = 120;
8201327c 1368 }
3ce1502b 1369
21d0e8a4
MK
1370 gdb_assert (sigcontext_offset != -1);
1371
8201327c 1372 if (frame->next)
21d0e8a4
MK
1373 return frame->next->frame + sigcontext_offset;
1374 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1375}
1376\f
3ce1502b 1377
8201327c 1378/* DJGPP. */
d2a7c97a 1379
8201327c
MK
1380static int
1381i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1382{
1383 /* DJGPP doesn't have any special frames for signal handlers. */
1384 return 0;
1385}
1386\f
d2a7c97a 1387
8201327c 1388/* Generic ELF. */
d2a7c97a 1389
8201327c
MK
1390void
1391i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1392{
1393 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1394 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1395}
3ce1502b 1396
8201327c 1397/* System V Release 4 (SVR4). */
3ce1502b 1398
8201327c
MK
1399void
1400i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1401{
1402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1403
8201327c
MK
1404 /* System V Release 4 uses ELF. */
1405 i386_elf_init_abi (info, gdbarch);
3ce1502b 1406
dfe01d39
MK
1407 /* System V Release 4 has shared libraries. */
1408 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1409 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1410
8201327c 1411 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1412 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1413 tdep->sc_pc_offset = 14 * 4;
1414 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1415
8201327c 1416 tdep->jb_pc_offset = 20;
3ce1502b
MK
1417}
1418
8201327c 1419/* DJGPP. */
3ce1502b 1420
3a1e71e3 1421static void
8201327c 1422i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1423{
8201327c 1424 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1425
8201327c 1426 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1427
8201327c 1428 tdep->jb_pc_offset = 36;
3ce1502b
MK
1429}
1430
8201327c 1431/* NetWare. */
3ce1502b 1432
3a1e71e3 1433static void
8201327c 1434i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1435{
8201327c 1436 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1437
8201327c 1438 tdep->jb_pc_offset = 24;
d2a7c97a 1439}
8201327c 1440\f
2acceee2 1441
38c968cf
AC
1442/* i386 register groups. In addition to the normal groups, add "mmx"
1443 and "sse". */
1444
1445static struct reggroup *i386_sse_reggroup;
1446static struct reggroup *i386_mmx_reggroup;
1447
1448static void
1449i386_init_reggroups (void)
1450{
1451 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1452 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1453}
1454
1455static void
1456i386_add_reggroups (struct gdbarch *gdbarch)
1457{
1458 reggroup_add (gdbarch, i386_sse_reggroup);
1459 reggroup_add (gdbarch, i386_mmx_reggroup);
1460 reggroup_add (gdbarch, general_reggroup);
1461 reggroup_add (gdbarch, float_reggroup);
1462 reggroup_add (gdbarch, all_reggroup);
1463 reggroup_add (gdbarch, save_reggroup);
1464 reggroup_add (gdbarch, restore_reggroup);
1465 reggroup_add (gdbarch, vector_reggroup);
1466 reggroup_add (gdbarch, system_reggroup);
1467}
1468
1469int
1470i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1471 struct reggroup *group)
1472{
1473 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1474 || i386_mxcsr_regnum_p (regnum));
1475 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1476 || i386_fpc_regnum_p (regnum));
1477 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1478 if (group == i386_mmx_reggroup)
1479 return mmx_regnum_p;
1480 if (group == i386_sse_reggroup)
1481 return sse_regnum_p;
1482 if (group == vector_reggroup)
1483 return (mmx_regnum_p || sse_regnum_p);
1484 if (group == float_reggroup)
1485 return fp_regnum_p;
1486 if (group == general_reggroup)
1487 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1488 return default_register_reggroup_p (gdbarch, regnum, group);
1489}
1490
1491\f
3a1e71e3 1492static struct gdbarch *
a62cc96e
AC
1493i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1494{
cd3c07fc 1495 struct gdbarch_tdep *tdep;
a62cc96e
AC
1496 struct gdbarch *gdbarch;
1497
4be87837
DJ
1498 /* If there is already a candidate, use it. */
1499 arches = gdbarch_list_lookup_by_info (arches, &info);
1500 if (arches != NULL)
1501 return arches->gdbarch;
a62cc96e
AC
1502
1503 /* Allocate space for the new architecture. */
1504 tdep = XMALLOC (struct gdbarch_tdep);
1505 gdbarch = gdbarch_alloc (&info, tdep);
1506
a5afb99f
AC
1507 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1508 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1509 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1510
8201327c 1511 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1512 FIXME: kettenis/20020614: They do include the FPU registers for
1513 now, which probably is not quite right. */
8201327c 1514 tdep->num_xmm_regs = 0;
d2a7c97a 1515
8201327c
MK
1516 tdep->jb_pc_offset = -1;
1517 tdep->struct_return = pcc_struct_return;
8201327c
MK
1518 tdep->sigtramp_start = 0;
1519 tdep->sigtramp_end = 0;
21d0e8a4 1520 tdep->sigcontext_addr = NULL;
8201327c 1521 tdep->sc_pc_offset = -1;
21d0e8a4 1522 tdep->sc_sp_offset = -1;
8201327c 1523
896fb97d
MK
1524 /* The format used for `long double' on almost all i386 targets is
1525 the i387 extended floating-point format. In fact, of all targets
1526 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1527 on having a `long double' that's not `long' at all. */
1528 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1529
66da5fd8 1530 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1531 bits, a `long double' actually takes up 96, probably to enforce
1532 alignment. */
1533 set_gdbarch_long_double_bit (gdbarch, 96);
1534
356a6b3e
MK
1535 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1536 tm-symmetry.h currently override this. Sigh. */
1537 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1538
66da5fd8
MK
1539 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1540 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1541 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1542 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1543 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
356a6b3e
MK
1544
1545 /* Use the "default" register numbering scheme for stabs and COFF. */
1546 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1547 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1548
1549 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1550 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1551 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1552
1553 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1554 be in use on any of the supported i386 targets. */
1555
1556 set_gdbarch_register_name (gdbarch, i386_register_name);
1557 set_gdbarch_register_size (gdbarch, 4);
1558 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
00f8375e
MK
1559 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1560 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
b6197528 1561 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
356a6b3e 1562
61113f8b
MK
1563 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1564
8201327c 1565 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1566
a62cc96e 1567 /* Call dummy code. */
c0d1d883 1568 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
8758dec1 1569 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
c0d1d883 1570 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
a62cc96e 1571 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
c0d1d883 1572 set_gdbarch_call_dummy_length (gdbarch, 0);
a62cc96e 1573 set_gdbarch_call_dummy_p (gdbarch, 1);
c0d1d883
MK
1574 set_gdbarch_call_dummy_words (gdbarch, NULL);
1575 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
a62cc96e 1576 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
c0d1d883 1577 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
a62cc96e 1578
b6197528
MK
1579 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1580 set_gdbarch_register_convert_to_virtual (gdbarch,
1581 i386_register_convert_to_virtual);
1582 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1583
8758dec1
MK
1584 /* "An argument's size is increased, if necessary, to make it a
1585 multiple of [32-bit] words. This may require tail padding,
1586 depending on the size of the argument" -- from the x86 ABI. */
1587 set_gdbarch_parm_boundary (gdbarch, 32);
1588
00f8375e 1589 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
fc08ec52 1590 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
c0d1d883
MK
1591 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1592 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
fc08ec52
MK
1593 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1594 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
3d7f4f49 1595 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1596 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1597 i386_extract_struct_value_address);
8201327c
MK
1598 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1599
42fdc8df 1600 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1601 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1602
1603 /* Stack grows downward. */
1604 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1605
1606 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1607 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1608 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1609
8201327c
MK
1610 /* The following redefines make backtracing through sigtramp work.
1611 They manufacture a fake sigtramp frame and obtain the saved pc in
1612 sigtramp from the sigcontext structure which is pushed by the
1613 kernel on the user stack, along with a pointer to it. */
1614
42fdc8df
MK
1615 set_gdbarch_frame_args_skip (gdbarch, 8);
1616 set_gdbarch_frameless_function_invocation (gdbarch,
1617 i386_frameless_function_invocation);
8201327c 1618 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
8201327c
MK
1619 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1620 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1621 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1622 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1623
28fc6740
AC
1624 /* Wire in the MMX registers. */
1625 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1626 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1627 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1628
5e3397bb
MK
1629 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1630
38c968cf
AC
1631 /* Add the i386 register groups. */
1632 i386_add_reggroups (gdbarch);
1633 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1634
3ce1502b 1635 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1636 gdbarch_init_osabi (info, gdbarch);
3ce1502b 1637
a62cc96e
AC
1638 return gdbarch;
1639}
1640
8201327c
MK
1641static enum gdb_osabi
1642i386_coff_osabi_sniffer (bfd *abfd)
1643{
762c5349
MK
1644 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1645 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1646 return GDB_OSABI_GO32;
1647
1648 return GDB_OSABI_UNKNOWN;
1649}
1650
1651static enum gdb_osabi
1652i386_nlm_osabi_sniffer (bfd *abfd)
1653{
1654 return GDB_OSABI_NETWARE;
1655}
1656\f
1657
28e9e0f0
MK
1658/* Provide a prototype to silence -Wmissing-prototypes. */
1659void _initialize_i386_tdep (void);
1660
c906108c 1661void
fba45db2 1662_initialize_i386_tdep (void)
c906108c 1663{
a62cc96e
AC
1664 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1665
fc338970 1666 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1667 {
1668 struct cmd_list_element *new_cmd;
7a292a7a 1669
917317f4
JM
1670 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1671 valid_flavors,
1ed2a135 1672 &disassembly_flavor,
fc338970
MK
1673 "\
1674Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1675and the default value is \"att\".",
917317f4 1676 &setlist);
917317f4
JM
1677 add_show_from_set (new_cmd, &showlist);
1678 }
8201327c
MK
1679
1680 /* Add the variable that controls the convention for returning
1681 structs. */
1682 {
1683 struct cmd_list_element *new_cmd;
1684
1685 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 1686 valid_conventions,
8201327c
MK
1687 &struct_convention, "\
1688Set the convention for returning small structs, valid values \
1689are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1690 &setlist);
1691 add_show_from_set (new_cmd, &showlist);
1692 }
1693
1694 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1695 i386_coff_osabi_sniffer);
1696 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1697 i386_nlm_osabi_sniffer);
1698
05816f70 1699 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 1700 i386_svr4_init_abi);
05816f70 1701 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 1702 i386_go32_init_abi);
05816f70 1703 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 1704 i386_nw_init_abi);
38c968cf
AC
1705
1706 /* Initialize the i386 specific register groups. */
1707 i386_init_reggroups ();
c906108c 1708}
This page took 0.354696 seconds and 4 git commands to generate.