* breakpoint.c (insert_catchpoint): Make static.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798
MK
28#include "doublest.h"
29#include "floatformat.h"
c906108c 30#include "frame.h"
acd5c798
MK
31#include "frame-base.h"
32#include "frame-unwind.h"
c906108c 33#include "inferior.h"
acd5c798 34#include "gdbcmd.h"
c906108c 35#include "gdbcore.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
3b3850e8 44#include "trad-frame.h"
acd5c798 45
3d261580 46#include "gdb_assert.h"
acd5c798 47#include "gdb_string.h"
3d261580 48
d2a7c97a 49#include "i386-tdep.h"
61113f8b 50#include "i387-tdep.h"
d2a7c97a 51
fc633446
MK
52/* Names of the registers. The first 10 registers match the register
53 numbering scheme used by GCC for stabs and DWARF. */
c40e1eab 54
fc633446
MK
55static char *i386_register_names[] =
56{
57 "eax", "ecx", "edx", "ebx",
58 "esp", "ebp", "esi", "edi",
59 "eip", "eflags", "cs", "ss",
60 "ds", "es", "fs", "gs",
61 "st0", "st1", "st2", "st3",
62 "st4", "st5", "st6", "st7",
63 "fctrl", "fstat", "ftag", "fiseg",
64 "fioff", "foseg", "fooff", "fop",
65 "xmm0", "xmm1", "xmm2", "xmm3",
66 "xmm4", "xmm5", "xmm6", "xmm7",
67 "mxcsr"
68};
69
c40e1eab
MK
70static const int i386_num_register_names =
71 (sizeof (i386_register_names) / sizeof (*i386_register_names));
72
28fc6740
AC
73/* MMX registers. */
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab
MK
80
81static const int i386_num_mmx_regs =
82 (sizeof (i386_mmx_names) / sizeof (i386_mmx_names[0]));
83
84#define MM0_REGNUM NUM_REGS
28fc6740
AC
85
86static int
c40e1eab 87i386_mmx_regnum_p (int regnum)
28fc6740 88{
c40e1eab
MK
89 return (regnum >= MM0_REGNUM
90 && regnum < MM0_REGNUM + i386_num_mmx_regs);
28fc6740
AC
91}
92
23a34459
AC
93/* FP register? */
94
95int
96i386_fp_regnum_p (int regnum)
97{
98 return (regnum < NUM_REGS
c40e1eab 99 && (FP0_REGNUM && FP0_REGNUM <= regnum && regnum < FPC_REGNUM));
23a34459
AC
100}
101
102int
103i386_fpc_regnum_p (int regnum)
104{
105 return (regnum < NUM_REGS
c40e1eab 106 && (FPC_REGNUM <= regnum && regnum < XMM0_REGNUM));
23a34459
AC
107}
108
109/* SSE register? */
110
111int
112i386_sse_regnum_p (int regnum)
113{
114 return (regnum < NUM_REGS
c40e1eab 115 && (XMM0_REGNUM <= regnum && regnum < MXCSR_REGNUM));
23a34459
AC
116}
117
118int
119i386_mxcsr_regnum_p (int regnum)
120{
121 return (regnum < NUM_REGS
c40e1eab 122 && regnum == MXCSR_REGNUM);
23a34459
AC
123}
124
fc633446
MK
125/* Return the name of register REG. */
126
fa88f677 127const char *
fc633446
MK
128i386_register_name (int reg)
129{
23a34459 130 if (i386_mmx_regnum_p (reg))
28fc6740 131 return i386_mmx_names[reg - MM0_REGNUM];
fc633446 132
70913449
MK
133 if (reg >= 0 && reg < i386_num_register_names)
134 return i386_register_names[reg];
135
c40e1eab 136 return NULL;
fc633446
MK
137}
138
85540d8c
MK
139/* Convert stabs register number REG to the appropriate register
140 number used by GDB. */
141
8201327c 142static int
85540d8c
MK
143i386_stab_reg_to_regnum (int reg)
144{
145 /* This implements what GCC calls the "default" register map. */
146 if (reg >= 0 && reg <= 7)
147 {
acd5c798 148 /* General-purpose registers. */
85540d8c
MK
149 return reg;
150 }
151 else if (reg >= 12 && reg <= 19)
152 {
153 /* Floating-point registers. */
154 return reg - 12 + FP0_REGNUM;
155 }
156 else if (reg >= 21 && reg <= 28)
157 {
158 /* SSE registers. */
159 return reg - 21 + XMM0_REGNUM;
160 }
161 else if (reg >= 29 && reg <= 36)
162 {
163 /* MMX registers. */
7d12f766 164 return reg - 29 + MM0_REGNUM;
85540d8c
MK
165 }
166
167 /* This will hopefully provoke a warning. */
168 return NUM_REGS + NUM_PSEUDO_REGS;
169}
170
8201327c 171/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
172 number used by GDB. */
173
8201327c 174static int
85540d8c
MK
175i386_dwarf_reg_to_regnum (int reg)
176{
177 /* The DWARF register numbering includes %eip and %eflags, and
178 numbers the floating point registers differently. */
179 if (reg >= 0 && reg <= 9)
180 {
acd5c798 181 /* General-purpose registers. */
85540d8c
MK
182 return reg;
183 }
184 else if (reg >= 11 && reg <= 18)
185 {
186 /* Floating-point registers. */
187 return reg - 11 + FP0_REGNUM;
188 }
189 else if (reg >= 21)
190 {
191 /* The SSE and MMX registers have identical numbers as in stabs. */
192 return i386_stab_reg_to_regnum (reg);
193 }
194
195 /* This will hopefully provoke a warning. */
196 return NUM_REGS + NUM_PSEUDO_REGS;
197}
fc338970 198\f
917317f4 199
fc338970
MK
200/* This is the variable that is set with "set disassembly-flavor", and
201 its legitimate values. */
53904c9e
AC
202static const char att_flavor[] = "att";
203static const char intel_flavor[] = "intel";
204static const char *valid_flavors[] =
c5aa993b 205{
c906108c
SS
206 att_flavor,
207 intel_flavor,
208 NULL
209};
53904c9e 210static const char *disassembly_flavor = att_flavor;
acd5c798 211\f
c906108c 212
acd5c798
MK
213/* Use the program counter to determine the contents and size of a
214 breakpoint instruction. Return a pointer to a string of bytes that
215 encode a breakpoint instruction, store the length of the string in
216 *LEN and optionally adjust *PC to point to the correct memory
217 location for inserting the breakpoint.
c906108c 218
acd5c798
MK
219 On the i386 we have a single breakpoint that fits in a single byte
220 and can be inserted anywhere.
c906108c 221
acd5c798
MK
222 This function is 64-bit safe. */
223
224static const unsigned char *
225i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 226{
acd5c798
MK
227 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
228
229 *len = sizeof (break_insn);
230 return break_insn;
c906108c 231}
fc338970 232\f
acd5c798
MK
233#ifdef I386_REGNO_TO_SYMMETRY
234#error "The Sequent Symmetry is no longer supported."
235#endif
c906108c 236
acd5c798
MK
237/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
238 and %esp "belong" to the calling function. Therefore these
239 registers should be saved if they're going to be modified. */
c906108c 240
acd5c798
MK
241/* The maximum number of saved registers. This should include all
242 registers mentioned above, and %eip. */
a3386186 243#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
244
245struct i386_frame_cache
c906108c 246{
acd5c798
MK
247 /* Base address. */
248 CORE_ADDR base;
249 CORE_ADDR sp_offset;
250 CORE_ADDR pc;
251
3b3850e8
AC
252 /* Saved registers. While trad-frame allocates space for the full
253 NUM_REGS + NUM_PSEUDOREGS, some of the code below cheats and
254 allocates space for only I386_NUM_SAVED_REGS. */
255 struct trad_frame_saved_reg *saved_regs;
acd5c798
MK
256 CORE_ADDR saved_sp;
257 int pc_in_eax;
258
259 /* Stack space reserved for local variables. */
260 long locals;
261};
262
263/* Allocate and initialize a frame cache. */
264
265static struct i386_frame_cache *
3b3850e8 266i386_alloc_frame_cache (struct frame_info *next_frame)
acd5c798
MK
267{
268 struct i386_frame_cache *cache;
269 int i;
270
271 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
272
273 /* Base address. */
274 cache->base = 0;
275 cache->sp_offset = -4;
276 cache->pc = 0;
277
3b3850e8 278 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
acd5c798
MK
279 cache->saved_sp = 0;
280 cache->pc_in_eax = 0;
281
282 /* Frameless until proven otherwise. */
283 cache->locals = -1;
284
285 return cache;
286}
c906108c 287
acd5c798
MK
288/* If the instruction at PC is a jump, return the address of its
289 target. Otherwise, return PC. */
c906108c 290
acd5c798
MK
291static CORE_ADDR
292i386_follow_jump (CORE_ADDR pc)
293{
294 unsigned char op;
295 long delta = 0;
296 int data16 = 0;
c906108c 297
acd5c798
MK
298 op = read_memory_unsigned_integer (pc, 1);
299 if (op == 0x66)
c906108c 300 {
c906108c 301 data16 = 1;
acd5c798 302 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
303 }
304
acd5c798 305 switch (op)
c906108c
SS
306 {
307 case 0xe9:
fc338970 308 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
309 if (data16)
310 {
acd5c798 311 delta = read_memory_integer (pc + 2, 2);
c906108c 312
fc338970
MK
313 /* Include the size of the jmp instruction (including the
314 0x66 prefix). */
acd5c798 315 delta += 4;
c906108c
SS
316 }
317 else
318 {
acd5c798 319 delta = read_memory_integer (pc + 1, 4);
c906108c 320
acd5c798
MK
321 /* Include the size of the jmp instruction. */
322 delta += 5;
c906108c
SS
323 }
324 break;
325 case 0xeb:
fc338970 326 /* Relative jump, disp8 (ignore data16). */
acd5c798 327 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 328
acd5c798 329 delta += data16 + 2;
c906108c
SS
330 break;
331 }
c906108c 332
acd5c798
MK
333 return pc + delta;
334}
fc338970 335
acd5c798
MK
336/* Check whether PC points at a prologue for a function returning a
337 structure or union. If so, it updates CACHE and returns the
338 address of the first instruction after the code sequence that
339 removes the "hidden" argument from the stack or CURRENT_PC,
340 whichever is smaller. Otherwise, return PC. */
c906108c 341
acd5c798
MK
342static CORE_ADDR
343i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
344 struct i386_frame_cache *cache)
c906108c 345{
acd5c798
MK
346 /* Functions that return a structure or union start with:
347
348 popl %eax 0x58
349 xchgl %eax, (%esp) 0x87 0x04 0x24
350 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
351
352 (the System V compiler puts out the second `xchg' instruction,
353 and the assembler doesn't try to optimize it, so the 'sib' form
354 gets generated). This sequence is used to get the address of the
355 return buffer for a function that returns a structure. */
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358 unsigned char buf[4];
c906108c
SS
359 unsigned char op;
360
acd5c798
MK
361 if (current_pc <= pc)
362 return pc;
363
364 op = read_memory_unsigned_integer (pc, 1);
c906108c 365
acd5c798
MK
366 if (op != 0x58) /* popl %eax */
367 return pc;
c906108c 368
acd5c798
MK
369 read_memory (pc + 1, buf, 4);
370 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
371 return pc;
c906108c 372
acd5c798 373 if (current_pc == pc)
c906108c 374 {
acd5c798
MK
375 cache->sp_offset += 4;
376 return current_pc;
c906108c
SS
377 }
378
acd5c798 379 if (current_pc == pc + 1)
c906108c 380 {
acd5c798
MK
381 cache->pc_in_eax = 1;
382 return current_pc;
383 }
384
385 if (buf[1] == proto1[1])
386 return pc + 4;
387 else
388 return pc + 5;
389}
390
391static CORE_ADDR
392i386_skip_probe (CORE_ADDR pc)
393{
394 /* A function may start with
fc338970 395
acd5c798
MK
396 pushl constant
397 call _probe
398 addl $4, %esp
fc338970 399
acd5c798
MK
400 followed by
401
402 pushl %ebp
fc338970 403
acd5c798
MK
404 etc. */
405 unsigned char buf[8];
406 unsigned char op;
fc338970 407
acd5c798
MK
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op == 0x68 || op == 0x6a)
411 {
412 int delta;
c906108c 413
acd5c798
MK
414 /* Skip past the `pushl' instruction; it has either a one-byte or a
415 four-byte operand, depending on the opcode. */
c906108c 416 if (op == 0x68)
acd5c798 417 delta = 5;
c906108c 418 else
acd5c798 419 delta = 2;
c906108c 420
acd5c798
MK
421 /* Read the following 8 bytes, which should be `call _probe' (6
422 bytes) followed by `addl $4,%esp' (2 bytes). */
423 read_memory (pc + delta, buf, sizeof (buf));
c906108c 424 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 425 pc += delta + sizeof (buf);
c906108c
SS
426 }
427
acd5c798
MK
428 return pc;
429}
430
431/* Check whether PC points at a code that sets up a new stack frame.
432 If so, it updates CACHE and returns the address of the first
433 instruction after the sequence that sets removes the "hidden"
434 argument from the stack or CURRENT_PC, whichever is smaller.
435 Otherwise, return PC. */
436
437static CORE_ADDR
438i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
439 struct i386_frame_cache *cache)
440{
441 unsigned char op;
442
443 if (current_pc <= pc)
444 return current_pc;
445
446 op = read_memory_unsigned_integer (pc, 1);
447
c906108c 448 if (op == 0x55) /* pushl %ebp */
c5aa993b 449 {
acd5c798
MK
450 /* Take into account that we've executed the `pushl %ebp' that
451 starts this instruction sequence. */
3b3850e8 452 cache->saved_regs[I386_EBP_REGNUM].addr = 0;
acd5c798
MK
453 cache->sp_offset += 4;
454
455 /* If that's all, return now. */
456 if (current_pc <= pc + 1)
457 return current_pc;
458
459 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
460 op = read_memory_unsigned_integer (pc + 1, 1);
461 switch (op)
c906108c
SS
462 {
463 case 0x8b:
acd5c798
MK
464 if (read_memory_unsigned_integer (pc + 2, 1) != 0xec)
465 return pc + 1;
c906108c
SS
466 break;
467 case 0x89:
acd5c798
MK
468 if (read_memory_unsigned_integer (pc + 2, 1) != 0xe5)
469 return pc + 1;
c906108c
SS
470 break;
471 default:
acd5c798 472 return pc + 1;
c906108c 473 }
acd5c798
MK
474
475 /* OK, we actually have a frame. We just don't know how large it is
476 yet. Set its size to zero. We'll adjust it if necessary. */
477 cache->locals = 0;
478
479 /* If that's all, return now. */
480 if (current_pc <= pc + 3)
481 return current_pc;
482
fc338970
MK
483 /* Check for stack adjustment
484
acd5c798 485 subl $XXX, %esp
fc338970
MK
486
487 NOTE: You can't subtract a 16 bit immediate from a 32 bit
488 reg, so we don't have to worry about a data16 prefix. */
acd5c798 489 op = read_memory_unsigned_integer (pc + 3, 1);
c906108c
SS
490 if (op == 0x83)
491 {
fc338970 492 /* `subl' with 8 bit immediate. */
acd5c798 493 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 494 /* Some instruction starting with 0x83 other than `subl'. */
acd5c798
MK
495 return pc + 3;
496
497 /* `subl' with signed byte immediate (though it wouldn't make
498 sense to be negative). */
499 cache->locals = read_memory_integer (pc + 5, 1);
500 return pc + 6;
c906108c
SS
501 }
502 else if (op == 0x81)
503 {
fc338970 504 /* Maybe it is `subl' with a 32 bit immedediate. */
acd5c798 505 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 506 /* Some instruction starting with 0x81 other than `subl'. */
acd5c798
MK
507 return pc + 3;
508
fc338970 509 /* It is `subl' with a 32 bit immediate. */
acd5c798
MK
510 cache->locals = read_memory_integer (pc + 5, 4);
511 return pc + 9;
c906108c
SS
512 }
513 else
514 {
acd5c798
MK
515 /* Some instruction other than `subl'. */
516 return pc + 3;
c906108c
SS
517 }
518 }
acd5c798 519 else if (op == 0xc8) /* enter $XXX */
c906108c 520 {
acd5c798
MK
521 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
522 return pc + 4;
c906108c 523 }
21d0e8a4 524
acd5c798 525 return pc;
21d0e8a4
MK
526}
527
acd5c798
MK
528/* Check whether PC points at code that saves registers on the stack.
529 If so, it updates CACHE and returns the address of the first
530 instruction after the register saves or CURRENT_PC, whichever is
531 smaller. Otherwise, return PC. */
6bff26de
MK
532
533static CORE_ADDR
acd5c798
MK
534i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
535 struct i386_frame_cache *cache)
6bff26de 536{
acd5c798 537 if (cache->locals >= 0)
267bf4bb 538 {
acd5c798
MK
539 CORE_ADDR offset;
540 unsigned char op;
541 int i;
c0d1d883 542
acd5c798
MK
543 offset = - 4 - cache->locals;
544 for (i = 0; i < 8 && pc < current_pc; i++)
545 {
546 op = read_memory_unsigned_integer (pc, 1);
547 if (op < 0x50 || op > 0x57)
548 break;
0d17c81d 549
3b3850e8 550 cache->saved_regs[op - 0x50].addr = offset;
acd5c798
MK
551 offset -= 4;
552 pc++;
553 }
6bff26de
MK
554 }
555
acd5c798 556 return pc;
22797942
AC
557}
558
acd5c798
MK
559/* Do a full analysis of the prologue at PC and update CACHE
560 accordingly. Bail out early if CURRENT_PC is reached. Return the
561 address where the analysis stopped.
ed84f6c1 562
fc338970
MK
563 We handle these cases:
564
565 The startup sequence can be at the start of the function, or the
566 function can start with a branch to startup code at the end.
567
568 %ebp can be set up with either the 'enter' instruction, or "pushl
569 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
570 once used in the System V compiler).
571
572 Local space is allocated just below the saved %ebp by either the
573 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
574 bit unsigned argument for space to allocate, and the 'addl'
575 instruction could have either a signed byte, or 32 bit immediate.
576
577 Next, the registers used by this function are pushed. With the
578 System V compiler they will always be in the order: %edi, %esi,
579 %ebx (and sometimes a harmless bug causes it to also save but not
580 restore %eax); however, the code below is willing to see the pushes
581 in any order, and will handle up to 8 of them.
582
583 If the setup sequence is at the end of the function, then the next
584 instruction will be a branch back to the start. */
c906108c 585
acd5c798
MK
586static CORE_ADDR
587i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
588 struct i386_frame_cache *cache)
c906108c 589{
acd5c798
MK
590 pc = i386_follow_jump (pc);
591 pc = i386_analyze_struct_return (pc, current_pc, cache);
592 pc = i386_skip_probe (pc);
593 pc = i386_analyze_frame_setup (pc, current_pc, cache);
594 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
595}
596
fc338970 597/* Return PC of first real instruction. */
c906108c 598
3a1e71e3 599static CORE_ADDR
acd5c798 600i386_skip_prologue (CORE_ADDR start_pc)
c906108c 601{
c5aa993b 602 static unsigned char pic_pat[6] =
acd5c798
MK
603 {
604 0xe8, 0, 0, 0, 0, /* call 0x0 */
605 0x5b, /* popl %ebx */
c5aa993b 606 };
acd5c798
MK
607 struct i386_frame_cache cache;
608 CORE_ADDR pc;
609 unsigned char op;
610 int i;
c5aa993b 611
3b3850e8
AC
612 /* Allocate space for the maximum number of saved registers. This
613 should include all registers mentioned above, and %eip. */
614 cache.saved_regs = alloca (I386_NUM_SAVED_REGS
615 * sizeof (cache.saved_regs[0]));
616
acd5c798
MK
617 cache.locals = -1;
618 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
619 if (cache.locals < 0)
620 return start_pc;
c5aa993b 621
acd5c798 622 /* Found valid frame setup. */
c906108c 623
fc338970
MK
624 /* The native cc on SVR4 in -K PIC mode inserts the following code
625 to get the address of the global offset table (GOT) into register
acd5c798
MK
626 %ebx:
627
fc338970
MK
628 call 0x0
629 popl %ebx
630 movl %ebx,x(%ebp) (optional)
631 addl y,%ebx
632
c906108c
SS
633 This code is with the rest of the prologue (at the end of the
634 function), so we have to skip it to get to the first real
635 instruction at the start of the function. */
c5aa993b 636
c906108c
SS
637 for (i = 0; i < 6; i++)
638 {
acd5c798 639 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 640 if (pic_pat[i] != op)
c906108c
SS
641 break;
642 }
643 if (i == 6)
644 {
acd5c798
MK
645 int delta = 6;
646
647 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 648
c5aa993b 649 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 650 {
acd5c798
MK
651 op = read_memory_unsigned_integer (pc + delta + 1, 1);
652
fc338970 653 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 654 delta += 3;
fc338970 655 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 656 delta += 6;
fc338970 657 else /* Unexpected instruction. */
acd5c798
MK
658 delta = 0;
659
660 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 661 }
acd5c798 662
c5aa993b 663 /* addl y,%ebx */
acd5c798
MK
664 if (delta > 0 && op == 0x81
665 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 666 {
acd5c798 667 pc += delta + 6;
c906108c
SS
668 }
669 }
c5aa993b 670
acd5c798 671 return i386_follow_jump (pc);
c906108c
SS
672}
673
acd5c798 674/* This function is 64-bit safe. */
93924b6b 675
acd5c798
MK
676static CORE_ADDR
677i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 678{
acd5c798
MK
679 char buf[8];
680
681 frame_unwind_register (next_frame, PC_REGNUM, buf);
682 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 683}
acd5c798 684\f
93924b6b 685
acd5c798 686/* Normal frames. */
c5aa993b 687
acd5c798
MK
688static struct i386_frame_cache *
689i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 690{
acd5c798 691 struct i386_frame_cache *cache;
c0d1d883 692 char buf[4];
acd5c798
MK
693 int i;
694
695 if (*this_cache)
696 return *this_cache;
697
3b3850e8 698 cache = i386_alloc_frame_cache (next_frame);
acd5c798
MK
699 *this_cache = cache;
700
701 /* In principle, for normal frames, %ebp holds the frame pointer,
702 which holds the base address for the current stack frame.
703 However, for functions that don't need it, the frame pointer is
704 optional. For these "frameless" functions the frame pointer is
705 actually the frame pointer of the calling frame. Signal
706 trampolines are just a special case of a "frameless" function.
707 They (usually) share their frame pointer with the frame that was
708 in progress when the signal occurred. */
709
710 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
711 cache->base = extract_unsigned_integer (buf, 4);
712 if (cache->base == 0)
713 return cache;
714
715 /* For normal frames, %eip is stored at 4(%ebp). */
3b3850e8 716 cache->saved_regs[I386_EIP_REGNUM].addr = 4;
acd5c798
MK
717
718 cache->pc = frame_func_unwind (next_frame);
719 if (cache->pc != 0)
720 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
721
722 if (cache->locals < 0)
723 {
724 /* We didn't find a valid frame, which means that CACHE->base
725 currently holds the frame pointer for our calling frame. If
726 we're at the start of a function, or somewhere half-way its
727 prologue, the function's frame probably hasn't been fully
728 setup yet. Try to reconstruct the base address for the stack
729 frame by looking at the stack pointer. For truly "frameless"
730 functions this might work too. */
731
732 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
733 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
734 }
735
736 /* Now that we have the base address for the stack frame we can
737 calculate the value of %esp in the calling frame. */
738 cache->saved_sp = cache->base + 8;
a7769679 739
acd5c798
MK
740 /* Adjust all the saved registers such that they contain addresses
741 instead of offsets. */
742 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
3b3850e8
AC
743 if (cache->saved_regs[i].realnum >= 0
744 && cache->saved_regs[i].addr != -1)
745 cache->saved_regs[i].addr += cache->base;
acd5c798
MK
746
747 return cache;
a7769679
MK
748}
749
3a1e71e3 750static void
acd5c798
MK
751i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
752 struct frame_id *this_id)
c906108c 753{
acd5c798
MK
754 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
755
756 /* This marks the outermost frame. */
757 if (cache->base == 0)
758 return;
759
3e210248 760 /* See the end of i386_push_dummy_call. */
acd5c798
MK
761 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
762}
763
764static void
765i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
766 int regnum, int *optimizedp,
767 enum lval_type *lvalp, CORE_ADDR *addrp,
768 int *realnump, void *valuep)
769{
770 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
771
772 gdb_assert (regnum >= 0);
773
774 /* The System V ABI says that:
775
776 "The flags register contains the system flags, such as the
777 direction flag and the carry flag. The direction flag must be
778 set to the forward (that is, zero) direction before entry and
779 upon exit from a function. Other user flags have no specified
780 role in the standard calling sequence and are not preserved."
781
782 To guarantee the "upon exit" part of that statement we fake a
783 saved flags register that has its direction flag cleared.
784
785 Note that GCC doesn't seem to rely on the fact that the direction
786 flag is cleared after a function return; it always explicitly
787 clears the flag before operations where it matters.
788
789 FIXME: kettenis/20030316: I'm not quite sure whether this is the
790 right thing to do. The way we fake the flags register here makes
791 it impossible to change it. */
792
793 if (regnum == I386_EFLAGS_REGNUM)
794 {
795 *optimizedp = 0;
796 *lvalp = not_lval;
797 *addrp = 0;
798 *realnump = -1;
799 if (valuep)
800 {
801 ULONGEST val;
c5aa993b 802
acd5c798
MK
803 /* Clear the direction flag. */
804 frame_unwind_unsigned_register (next_frame, PS_REGNUM, &val);
805 val &= ~(1 << 10);
806 store_unsigned_integer (valuep, 4, val);
807 }
808
809 return;
810 }
1211c4e4 811
acd5c798 812 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 813 {
acd5c798
MK
814 frame_register_unwind (next_frame, I386_EAX_REGNUM,
815 optimizedp, lvalp, addrp, realnump, valuep);
816 return;
817 }
818
819 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
820 {
821 *optimizedp = 0;
822 *lvalp = not_lval;
823 *addrp = 0;
824 *realnump = -1;
825 if (valuep)
c906108c 826 {
acd5c798
MK
827 /* Store the value. */
828 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 829 }
acd5c798 830 return;
c906108c 831 }
acd5c798 832
3b3850e8
AC
833 trad_frame_prev_register (next_frame, cache->saved_regs, regnum,
834 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
835}
836
837static const struct frame_unwind i386_frame_unwind =
838{
839 NORMAL_FRAME,
840 i386_frame_this_id,
841 i386_frame_prev_register
842};
843
844static const struct frame_unwind *
845i386_frame_p (CORE_ADDR pc)
846{
847 return &i386_frame_unwind;
848}
849\f
850
851/* Signal trampolines. */
852
853static struct i386_frame_cache *
854i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
855{
856 struct i386_frame_cache *cache;
857 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
858 CORE_ADDR addr;
859 char buf[4];
860
861 if (*this_cache)
862 return *this_cache;
863
3b3850e8 864 cache = i386_alloc_frame_cache (next_frame);
acd5c798
MK
865
866 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
867 cache->base = extract_unsigned_integer (buf, 4) - 4;
868
869 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
870 if (tdep->sc_reg_offset)
871 {
872 int i;
873
874 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
875
876 for (i = 0; i < tdep->sc_num_regs; i++)
877 if (tdep->sc_reg_offset[i] != -1)
3b3850e8 878 cache->saved_regs[i].addr = addr + tdep->sc_reg_offset[i];
a3386186
MK
879 }
880 else
881 {
3b3850e8
AC
882 cache->saved_regs[I386_EIP_REGNUM].addr = addr + tdep->sc_pc_offset;
883 cache->saved_regs[I386_ESP_REGNUM].addr = addr + tdep->sc_sp_offset;
a3386186 884 }
acd5c798
MK
885
886 *this_cache = cache;
887 return cache;
888}
889
890static void
891i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
892 struct frame_id *this_id)
893{
894 struct i386_frame_cache *cache =
895 i386_sigtramp_frame_cache (next_frame, this_cache);
896
3e210248 897 /* See the end of i386_push_dummy_call. */
acd5c798
MK
898 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
899}
900
901static void
902i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
903 void **this_cache,
904 int regnum, int *optimizedp,
905 enum lval_type *lvalp, CORE_ADDR *addrp,
906 int *realnump, void *valuep)
907{
908 /* Make sure we've initialized the cache. */
909 i386_sigtramp_frame_cache (next_frame, this_cache);
910
911 i386_frame_prev_register (next_frame, this_cache, regnum,
912 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 913}
c0d1d883 914
acd5c798
MK
915static const struct frame_unwind i386_sigtramp_frame_unwind =
916{
917 SIGTRAMP_FRAME,
918 i386_sigtramp_frame_this_id,
919 i386_sigtramp_frame_prev_register
920};
921
922static const struct frame_unwind *
923i386_sigtramp_frame_p (CORE_ADDR pc)
924{
925 char *name;
926
1c3545ae
MK
927 /* We shouldn't even bother to try if the OSABI didn't register
928 a sigcontext_addr handler. */
929 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
930 return NULL;
931
acd5c798
MK
932 find_pc_partial_function (pc, &name, NULL, NULL);
933 if (PC_IN_SIGTRAMP (pc, name))
934 return &i386_sigtramp_frame_unwind;
935
936 return NULL;
937}
938\f
939
940static CORE_ADDR
941i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
942{
943 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
944
945 return cache->base;
946}
947
948static const struct frame_base i386_frame_base =
949{
950 &i386_frame_unwind,
951 i386_frame_base_address,
952 i386_frame_base_address,
953 i386_frame_base_address
954};
955
acd5c798
MK
956static struct frame_id
957i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
958{
959 char buf[4];
960 CORE_ADDR fp;
961
962 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
963 fp = extract_unsigned_integer (buf, 4);
964
3e210248 965 /* See the end of i386_push_dummy_call. */
acd5c798 966 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 967}
fc338970 968\f
c906108c 969
fc338970
MK
970/* Figure out where the longjmp will land. Slurp the args out of the
971 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 972 structure from which we extract the address that we will land at.
28bcfd30 973 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
974 success.
975
976 This function is 64-bit safe. */
c906108c 977
8201327c
MK
978static int
979i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 980{
28bcfd30 981 char buf[8];
c906108c 982 CORE_ADDR sp, jb_addr;
8201327c 983 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 984 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 985
8201327c
MK
986 /* If JB_PC_OFFSET is -1, we have no way to find out where the
987 longjmp will land. */
988 if (jb_pc_offset == -1)
c906108c
SS
989 return 0;
990
8201327c 991 sp = read_register (SP_REGNUM);
28bcfd30 992 if (target_read_memory (sp + len, buf, len))
c906108c
SS
993 return 0;
994
f9d3c2a8 995 jb_addr = extract_typed_address (buf, builtin_type_void_func_ptr);
28bcfd30 996 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 997 return 0;
c906108c 998
f9d3c2a8 999 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1000 return 1;
1001}
fc338970 1002\f
c906108c 1003
3a1e71e3 1004static CORE_ADDR
6a65450a
AC
1005i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1006 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1007 struct value **args, CORE_ADDR sp, int struct_return,
1008 CORE_ADDR struct_addr)
22f8ba57 1009{
acd5c798
MK
1010 char buf[4];
1011 int i;
1012
1013 /* Push arguments in reverse order. */
1014 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1015 {
acd5c798
MK
1016 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1017
1018 /* The System V ABI says that:
1019
1020 "An argument's size is increased, if necessary, to make it a
1021 multiple of [32-bit] words. This may require tail padding,
1022 depending on the size of the argument."
1023
1024 This makes sure the stack says word-aligned. */
1025 sp -= (len + 3) & ~3;
1026 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1027 }
22f8ba57 1028
acd5c798
MK
1029 /* Push value address. */
1030 if (struct_return)
1031 {
22f8ba57 1032 sp -= 4;
fbd9dcd3 1033 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1034 write_memory (sp, buf, 4);
1035 }
1036
acd5c798
MK
1037 /* Store return address. */
1038 sp -= 4;
6a65450a 1039 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1040 write_memory (sp, buf, 4);
1041
1042 /* Finally, update the stack pointer... */
1043 store_unsigned_integer (buf, 4, sp);
1044 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1045
1046 /* ...and fake a frame pointer. */
1047 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1048
3e210248
AC
1049 /* MarkK wrote: This "+ 8" is all over the place:
1050 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1051 i386_unwind_dummy_id). It's there, since all frame unwinders for
1052 a given target have to agree (within a certain margin) on the
1053 defenition of the stack address of a frame. Otherwise
1054 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1055 stack address *before* the function call as a frame's CFA. On
1056 the i386, when %ebp is used as a frame pointer, the offset
1057 between the contents %ebp and the CFA as defined by GCC. */
1058 return sp + 8;
22f8ba57
MK
1059}
1060
1a309862
MK
1061/* These registers are used for returning integers (and on some
1062 targets also for returning `struct' and `union' values when their
ef9dff19 1063 size and alignment match an integer type). */
acd5c798
MK
1064#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1065#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862
MK
1066
1067/* Extract from an array REGBUF containing the (raw) register state, a
1068 function return value of TYPE, and copy that, in virtual format,
1069 into VALBUF. */
1070
3a1e71e3 1071static void
00f8375e 1072i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 1073 void *dst)
c906108c 1074{
ebba8386 1075 bfd_byte *valbuf = dst;
1a309862 1076 int len = TYPE_LENGTH (type);
00f8375e 1077 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1078
1e8d0a7b
MK
1079 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1080 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1081 {
00f8375e 1082 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1083 return;
1084 }
1e8d0a7b
MK
1085
1086 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1087 {
94ea66b3 1088 if (FP0_REGNUM < 0)
1a309862
MK
1089 {
1090 warning ("Cannot find floating-point return value.");
1091 memset (valbuf, 0, len);
ef9dff19 1092 return;
1a309862
MK
1093 }
1094
c6ba6f0d
MK
1095 /* Floating-point return values can be found in %st(0). Convert
1096 its contents to the desired type. This is probably not
1097 exactly how it would happen on the target itself, but it is
1098 the best we can do. */
acd5c798 1099 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1100 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1101 }
1102 else
c5aa993b 1103 {
d4f3574e
SS
1104 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1105 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1106
1107 if (len <= low_size)
00f8375e 1108 {
0818c12a 1109 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1110 memcpy (valbuf, buf, len);
1111 }
d4f3574e
SS
1112 else if (len <= (low_size + high_size))
1113 {
0818c12a 1114 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1115 memcpy (valbuf, buf, low_size);
0818c12a 1116 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 1117 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1118 }
1119 else
8e65ff28
AC
1120 internal_error (__FILE__, __LINE__,
1121 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1122 }
1123}
1124
ef9dff19
MK
1125/* Write into the appropriate registers a function return value stored
1126 in VALBUF of type TYPE, given in virtual format. */
1127
3a1e71e3 1128static void
3d7f4f49
MK
1129i386_store_return_value (struct type *type, struct regcache *regcache,
1130 const void *valbuf)
ef9dff19
MK
1131{
1132 int len = TYPE_LENGTH (type);
1133
1e8d0a7b
MK
1134 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1135 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1136 {
3d7f4f49 1137 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1138 return;
1139 }
1e8d0a7b
MK
1140
1141 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1142 {
3d7f4f49 1143 ULONGEST fstat;
c6ba6f0d 1144 char buf[FPU_REG_RAW_SIZE];
ccb945b8 1145
94ea66b3 1146 if (FP0_REGNUM < 0)
ef9dff19
MK
1147 {
1148 warning ("Cannot set floating-point return value.");
1149 return;
1150 }
1151
635b0cc1
MK
1152 /* Returning floating-point values is a bit tricky. Apart from
1153 storing the return value in %st(0), we have to simulate the
1154 state of the FPU at function return point. */
1155
c6ba6f0d
MK
1156 /* Convert the value found in VALBUF to the extended
1157 floating-point format used by the FPU. This is probably
1158 not exactly how it would happen on the target itself, but
1159 it is the best we can do. */
1160 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1161 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1162
635b0cc1
MK
1163 /* Set the top of the floating-point register stack to 7. The
1164 actual value doesn't really matter, but 7 is what a normal
1165 function return would end up with if the program started out
1166 with a freshly initialized FPU. */
3d7f4f49 1167 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
ccb945b8 1168 fstat |= (7 << 11);
3d7f4f49 1169 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
ccb945b8 1170
635b0cc1
MK
1171 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1172 the floating-point register stack to 7, the appropriate value
1173 for the tag word is 0x3fff. */
3d7f4f49 1174 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1175 }
1176 else
1177 {
1178 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1179 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1180
1181 if (len <= low_size)
3d7f4f49 1182 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1183 else if (len <= (low_size + high_size))
1184 {
3d7f4f49
MK
1185 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1186 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1187 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1188 }
1189 else
8e65ff28
AC
1190 internal_error (__FILE__, __LINE__,
1191 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1192 }
1193}
f7af9647 1194
751f1375
MK
1195/* Extract from REGCACHE, which contains the (raw) register state, the
1196 address in which a function should return its structure value, as a
1197 CORE_ADDR. */
f7af9647 1198
3a1e71e3 1199static CORE_ADDR
00f8375e 1200i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1201{
acd5c798 1202 char buf[4];
751f1375 1203
acd5c798
MK
1204 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1205 return extract_unsigned_integer (buf, 4);
f7af9647 1206}
fc338970 1207\f
ef9dff19 1208
8201327c
MK
1209/* This is the variable that is set with "set struct-convention", and
1210 its legitimate values. */
1211static const char default_struct_convention[] = "default";
1212static const char pcc_struct_convention[] = "pcc";
1213static const char reg_struct_convention[] = "reg";
1214static const char *valid_conventions[] =
1215{
1216 default_struct_convention,
1217 pcc_struct_convention,
1218 reg_struct_convention,
1219 NULL
1220};
1221static const char *struct_convention = default_struct_convention;
1222
1223static int
1224i386_use_struct_convention (int gcc_p, struct type *type)
1225{
1226 enum struct_return struct_return;
1227
1228 if (struct_convention == default_struct_convention)
1229 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1230 else if (struct_convention == pcc_struct_convention)
1231 struct_return = pcc_struct_return;
1232 else
1233 struct_return = reg_struct_return;
1234
1235 return generic_use_struct_convention (struct_return == reg_struct_return,
1236 type);
1237}
1238\f
1239
d7a0d72c
MK
1240/* Return the GDB type object for the "standard" data type of data in
1241 register REGNUM. Perhaps %esi and %edi should go here, but
1242 potentially they could be used for things other than address. */
1243
3a1e71e3 1244static struct type *
4e259f09 1245i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1246{
acd5c798
MK
1247 if (regnum == I386_EIP_REGNUM
1248 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1249 return lookup_pointer_type (builtin_type_void);
1250
23a34459 1251 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1252 return builtin_type_i387_ext;
d7a0d72c 1253
23a34459 1254 if (i386_sse_regnum_p (regnum))
3139facc 1255 return builtin_type_vec128i;
d7a0d72c 1256
23a34459 1257 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1258 return builtin_type_vec64i;
1259
d7a0d72c
MK
1260 return builtin_type_int;
1261}
1262
28fc6740 1263/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1264 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1265
1266static int
c86c27af 1267i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740
AC
1268{
1269 int mmxi;
1270 ULONGEST fstat;
1271 int tos;
1272 int fpi;
c86c27af 1273
28fc6740
AC
1274 mmxi = regnum - MM0_REGNUM;
1275 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1276 tos = (fstat >> 11) & 0x7;
1277 fpi = (mmxi + tos) % 8;
c86c27af 1278
28fc6740
AC
1279 return (FP0_REGNUM + fpi);
1280}
1281
1282static void
1283i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1284 int regnum, void *buf)
1285{
23a34459 1286 if (i386_mmx_regnum_p (regnum))
28fc6740 1287 {
d9d9c31f 1288 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1289 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1290
28fc6740 1291 /* Extract (always little endian). */
c86c27af 1292 regcache_raw_read (regcache, fpnum, mmx_buf);
28fc6740
AC
1293 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1294 }
1295 else
1296 regcache_raw_read (regcache, regnum, buf);
1297}
1298
1299static void
1300i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1301 int regnum, const void *buf)
1302{
23a34459 1303 if (i386_mmx_regnum_p (regnum))
28fc6740 1304 {
d9d9c31f 1305 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1306 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1307
28fc6740
AC
1308 /* Read ... */
1309 regcache_raw_read (regcache, fpnum, mmx_buf);
1310 /* ... Modify ... (always little endian). */
1311 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1312 /* ... Write. */
1313 regcache_raw_write (regcache, fpnum, mmx_buf);
1314 }
1315 else
1316 regcache_raw_write (regcache, regnum, buf);
1317}
ff2e87ac
AC
1318\f
1319
1320/* These registers don't have pervasive standard uses. Move them to
1321 i386-tdep.h if necessary. */
1322
1323#define I386_EBX_REGNUM 3 /* %ebx */
1324#define I386_ECX_REGNUM 1 /* %ecx */
1325#define I386_ESI_REGNUM 6 /* %esi */
1326#define I386_EDI_REGNUM 7 /* %edi */
1327
1328/* Return the register number of the register allocated by GCC after
1329 REGNUM, or -1 if there is no such register. */
1330
1331static int
1332i386_next_regnum (int regnum)
1333{
1334 /* GCC allocates the registers in the order:
1335
1336 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1337
1338 Since storing a variable in %esp doesn't make any sense we return
1339 -1 for %ebp and for %esp itself. */
1340 static int next_regnum[] =
1341 {
1342 I386_EDX_REGNUM, /* Slot for %eax. */
1343 I386_EBX_REGNUM, /* Slot for %ecx. */
1344 I386_ECX_REGNUM, /* Slot for %edx. */
1345 I386_ESI_REGNUM, /* Slot for %ebx. */
1346 -1, -1, /* Slots for %esp and %ebp. */
1347 I386_EDI_REGNUM, /* Slot for %esi. */
1348 I386_EBP_REGNUM /* Slot for %edi. */
1349 };
1350
de5b9bb9 1351 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1352 return next_regnum[regnum];
28fc6740 1353
ff2e87ac
AC
1354 return -1;
1355}
1356
1357/* Return nonzero if a value of type TYPE stored in register REGNUM
1358 needs any special handling. */
d7a0d72c 1359
3a1e71e3 1360static int
ff2e87ac 1361i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1362{
de5b9bb9
MK
1363 int len = TYPE_LENGTH (type);
1364
ff2e87ac
AC
1365 /* Values may be spread across multiple registers. Most debugging
1366 formats aren't expressive enough to specify the locations, so
1367 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1368 have a length that is a multiple of the word size, since GCC
1369 doesn't seem to put any other types into registers. */
1370 if (len > 4 && len % 4 == 0)
1371 {
1372 int last_regnum = regnum;
1373
1374 while (len > 4)
1375 {
1376 last_regnum = i386_next_regnum (last_regnum);
1377 len -= 4;
1378 }
1379
1380 if (last_regnum != -1)
1381 return 1;
1382 }
ff2e87ac 1383
23a34459 1384 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1385}
1386
ff2e87ac
AC
1387/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1388 return its contents in TO. */
ac27f131 1389
3a1e71e3 1390static void
ff2e87ac
AC
1391i386_register_to_value (struct frame_info *frame, int regnum,
1392 struct type *type, void *to)
ac27f131 1393{
de5b9bb9
MK
1394 int len = TYPE_LENGTH (type);
1395 char *buf = to;
1396
ff2e87ac
AC
1397 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1398 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1399
ff2e87ac 1400 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1401 {
d532c08f
MK
1402 i387_register_to_value (frame, regnum, type, to);
1403 return;
8d7f6b4a 1404 }
ff2e87ac 1405
de5b9bb9
MK
1406 /* Read a value spread accross multiple registers. */
1407
1408 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1409
de5b9bb9
MK
1410 while (len > 0)
1411 {
1412 gdb_assert (regnum != -1);
1413 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1414
de5b9bb9
MK
1415 frame_read_register (frame, regnum, buf);
1416 regnum = i386_next_regnum (regnum);
1417 len -= 4;
1418 buf += 4;
1419 }
ac27f131
MK
1420}
1421
ff2e87ac
AC
1422/* Write the contents FROM of a value of type TYPE into register
1423 REGNUM in frame FRAME. */
ac27f131 1424
3a1e71e3 1425static void
ff2e87ac
AC
1426i386_value_to_register (struct frame_info *frame, int regnum,
1427 struct type *type, const void *from)
ac27f131 1428{
de5b9bb9
MK
1429 int len = TYPE_LENGTH (type);
1430 const char *buf = from;
1431
ff2e87ac 1432 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1433 {
d532c08f
MK
1434 i387_value_to_register (frame, regnum, type, from);
1435 return;
1436 }
3d261580 1437
de5b9bb9
MK
1438 /* Write a value spread accross multiple registers. */
1439
1440 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1441
de5b9bb9
MK
1442 while (len > 0)
1443 {
1444 gdb_assert (regnum != -1);
1445 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1446
de5b9bb9
MK
1447 put_frame_register (frame, regnum, buf);
1448 regnum = i386_next_regnum (regnum);
1449 len -= 4;
1450 buf += 4;
1451 }
ac27f131 1452}
ff2e87ac
AC
1453\f
1454
fc338970 1455
c906108c 1456#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1457/* SunPRO encodes the static variables. This is not related to C++
1458 mangling, it is done for C too. */
c906108c
SS
1459
1460char *
fba45db2 1461sunpro_static_transform_name (char *name)
c906108c
SS
1462{
1463 char *p;
1464 if (IS_STATIC_TRANSFORM_NAME (name))
1465 {
fc338970
MK
1466 /* For file-local statics there will be a period, a bunch of
1467 junk (the contents of which match a string given in the
c5aa993b
JM
1468 N_OPT), a period and the name. For function-local statics
1469 there will be a bunch of junk (which seems to change the
1470 second character from 'A' to 'B'), a period, the name of the
1471 function, and the name. So just skip everything before the
1472 last period. */
c906108c
SS
1473 p = strrchr (name, '.');
1474 if (p != NULL)
1475 name = p + 1;
1476 }
1477 return name;
1478}
1479#endif /* STATIC_TRANSFORM_NAME */
fc338970 1480\f
c906108c 1481
fc338970 1482/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1483
1484CORE_ADDR
1cce71eb 1485i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1486{
fc338970 1487 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1488 {
c5aa993b 1489 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1490 struct minimal_symbol *indsym =
fc338970 1491 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1492 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1493
c5aa993b 1494 if (symname)
c906108c 1495 {
c5aa993b
JM
1496 if (strncmp (symname, "__imp_", 6) == 0
1497 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1498 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1499 }
1500 }
fc338970 1501 return 0; /* Not a trampoline. */
c906108c 1502}
fc338970
MK
1503\f
1504
8201327c
MK
1505/* Return non-zero if PC and NAME show that we are in a signal
1506 trampoline. */
1507
1508static int
1509i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1510{
1511 return (name && strcmp ("_sigtramp", name) == 0);
1512}
1513\f
1514
fc338970
MK
1515/* We have two flavours of disassembly. The machinery on this page
1516 deals with switching between those. */
c906108c
SS
1517
1518static int
5e3397bb 1519i386_print_insn (bfd_vma pc, disassemble_info *info)
c906108c 1520{
5e3397bb
MK
1521 gdb_assert (disassembly_flavor == att_flavor
1522 || disassembly_flavor == intel_flavor);
1523
1524 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1525 constified, cast to prevent a compiler warning. */
1526 info->disassembler_options = (char *) disassembly_flavor;
1527 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1528
1529 return print_insn_i386 (pc, info);
7a292a7a 1530}
fc338970 1531\f
3ce1502b 1532
8201327c
MK
1533/* There are a few i386 architecture variants that differ only
1534 slightly from the generic i386 target. For now, we don't give them
1535 their own source file, but include them here. As a consequence,
1536 they'll always be included. */
3ce1502b 1537
8201327c 1538/* System V Release 4 (SVR4). */
3ce1502b 1539
8201327c
MK
1540static int
1541i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1542{
acd5c798
MK
1543 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1544 currently unknown. */
8201327c
MK
1545 return (name && (strcmp ("_sigreturn", name) == 0
1546 || strcmp ("_sigacthandler", name) == 0
1547 || strcmp ("sigvechandler", name) == 0));
1548}
d2a7c97a 1549
acd5c798
MK
1550/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1551 routine, return the address of the associated sigcontext (ucontext)
1552 structure. */
3ce1502b 1553
3a1e71e3 1554static CORE_ADDR
acd5c798 1555i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1556{
acd5c798
MK
1557 char buf[4];
1558 CORE_ADDR sp;
3ce1502b 1559
acd5c798
MK
1560 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1561 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1562
acd5c798 1563 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1564}
1565\f
3ce1502b 1566
8201327c 1567/* DJGPP. */
d2a7c97a 1568
8201327c
MK
1569static int
1570i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1571{
1572 /* DJGPP doesn't have any special frames for signal handlers. */
1573 return 0;
1574}
1575\f
d2a7c97a 1576
8201327c 1577/* Generic ELF. */
d2a7c97a 1578
8201327c
MK
1579void
1580i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1581{
1582 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1583 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1584}
3ce1502b 1585
8201327c 1586/* System V Release 4 (SVR4). */
3ce1502b 1587
8201327c
MK
1588void
1589i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1590{
1591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1592
8201327c
MK
1593 /* System V Release 4 uses ELF. */
1594 i386_elf_init_abi (info, gdbarch);
3ce1502b 1595
dfe01d39
MK
1596 /* System V Release 4 has shared libraries. */
1597 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1598 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1599
8201327c 1600 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4 1601 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1602 tdep->sc_pc_offset = 36 + 14 * 4;
1603 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1604
8201327c 1605 tdep->jb_pc_offset = 20;
3ce1502b
MK
1606}
1607
8201327c 1608/* DJGPP. */
3ce1502b 1609
3a1e71e3 1610static void
8201327c 1611i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1612{
8201327c 1613 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1614
8201327c 1615 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1616
8201327c 1617 tdep->jb_pc_offset = 36;
3ce1502b
MK
1618}
1619
8201327c 1620/* NetWare. */
3ce1502b 1621
3a1e71e3 1622static void
8201327c 1623i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1624{
8201327c 1625 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1626
8201327c 1627 tdep->jb_pc_offset = 24;
d2a7c97a 1628}
8201327c 1629\f
2acceee2 1630
38c968cf
AC
1631/* i386 register groups. In addition to the normal groups, add "mmx"
1632 and "sse". */
1633
1634static struct reggroup *i386_sse_reggroup;
1635static struct reggroup *i386_mmx_reggroup;
1636
1637static void
1638i386_init_reggroups (void)
1639{
1640 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1641 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1642}
1643
1644static void
1645i386_add_reggroups (struct gdbarch *gdbarch)
1646{
1647 reggroup_add (gdbarch, i386_sse_reggroup);
1648 reggroup_add (gdbarch, i386_mmx_reggroup);
1649 reggroup_add (gdbarch, general_reggroup);
1650 reggroup_add (gdbarch, float_reggroup);
1651 reggroup_add (gdbarch, all_reggroup);
1652 reggroup_add (gdbarch, save_reggroup);
1653 reggroup_add (gdbarch, restore_reggroup);
1654 reggroup_add (gdbarch, vector_reggroup);
1655 reggroup_add (gdbarch, system_reggroup);
1656}
1657
1658int
1659i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1660 struct reggroup *group)
1661{
1662 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1663 || i386_mxcsr_regnum_p (regnum));
1664 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1665 || i386_fpc_regnum_p (regnum));
1666 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
acd5c798 1667
38c968cf
AC
1668 if (group == i386_mmx_reggroup)
1669 return mmx_regnum_p;
1670 if (group == i386_sse_reggroup)
1671 return sse_regnum_p;
1672 if (group == vector_reggroup)
1673 return (mmx_regnum_p || sse_regnum_p);
1674 if (group == float_reggroup)
1675 return fp_regnum_p;
1676 if (group == general_reggroup)
1677 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 1678
38c968cf
AC
1679 return default_register_reggroup_p (gdbarch, regnum, group);
1680}
38c968cf 1681\f
acd5c798 1682
143985b7 1683/* Get the ith function argument for the current function. */
42c466d7 1684static CORE_ADDR
143985b7
AF
1685i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1686 struct type *type)
1687{
1688 CORE_ADDR stack;
1689 frame_read_register (frame, SP_REGNUM, &stack);
1690 return read_memory_unsigned_integer (stack + (4 * (argi + 1)), 4);
1691}
1692
1693\f
3a1e71e3 1694static struct gdbarch *
a62cc96e
AC
1695i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1696{
cd3c07fc 1697 struct gdbarch_tdep *tdep;
a62cc96e
AC
1698 struct gdbarch *gdbarch;
1699
4be87837
DJ
1700 /* If there is already a candidate, use it. */
1701 arches = gdbarch_list_lookup_by_info (arches, &info);
1702 if (arches != NULL)
1703 return arches->gdbarch;
a62cc96e
AC
1704
1705 /* Allocate space for the new architecture. */
1706 tdep = XMALLOC (struct gdbarch_tdep);
1707 gdbarch = gdbarch_alloc (&info, tdep);
1708
8201327c 1709 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1710 FIXME: kettenis/20020614: They do include the FPU registers for
1711 now, which probably is not quite right. */
8201327c 1712 tdep->num_xmm_regs = 0;
d2a7c97a 1713
8201327c
MK
1714 tdep->jb_pc_offset = -1;
1715 tdep->struct_return = pcc_struct_return;
8201327c
MK
1716 tdep->sigtramp_start = 0;
1717 tdep->sigtramp_end = 0;
21d0e8a4 1718 tdep->sigcontext_addr = NULL;
a3386186 1719 tdep->sc_reg_offset = NULL;
8201327c 1720 tdep->sc_pc_offset = -1;
21d0e8a4 1721 tdep->sc_sp_offset = -1;
8201327c 1722
896fb97d
MK
1723 /* The format used for `long double' on almost all i386 targets is
1724 the i387 extended floating-point format. In fact, of all targets
1725 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1726 on having a `long double' that's not `long' at all. */
1727 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1728
66da5fd8 1729 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1730 bits, a `long double' actually takes up 96, probably to enforce
1731 alignment. */
1732 set_gdbarch_long_double_bit (gdbarch, 96);
1733
acd5c798
MK
1734 /* The default ABI includes general-purpose registers and
1735 floating-point registers. */
356a6b3e 1736 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
acd5c798
MK
1737 set_gdbarch_register_name (gdbarch, i386_register_name);
1738 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 1739
acd5c798
MK
1740 /* Register numbers of various important registers. */
1741 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1742 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1743 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1744 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e
MK
1745
1746 /* Use the "default" register numbering scheme for stabs and COFF. */
1747 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1748 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1749
1750 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1751 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1752 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1753
1754 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1755 be in use on any of the supported i386 targets. */
1756
61113f8b
MK
1757 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1758
8201327c 1759 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1760
a62cc96e 1761 /* Call dummy code. */
acd5c798 1762 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 1763
ff2e87ac
AC
1764 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1765 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1766 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 1767
00f8375e 1768 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
3d7f4f49 1769 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1770 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1771 i386_extract_struct_value_address);
8201327c
MK
1772 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1773
93924b6b
MK
1774 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1775
1776 /* Stack grows downward. */
1777 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1778
1779 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1780 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1781 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1782
42fdc8df 1783 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c
MK
1784 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1785
28fc6740 1786 /* Wire in the MMX registers. */
0f751ff2 1787 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
1788 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1789 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1790
5e3397bb
MK
1791 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1792
acd5c798 1793 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
1794
1795 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1796
38c968cf
AC
1797 /* Add the i386 register groups. */
1798 i386_add_reggroups (gdbarch);
1799 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1800
143985b7
AF
1801 /* Helper for function argument information. */
1802 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
1803
6405b0a6
MK
1804 /* Hook in the DWARF CFI frame unwinder. */
1805 frame_unwind_append_predicate (gdbarch, dwarf2_frame_p);
1806 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1807
acd5c798 1808 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 1809
3ce1502b 1810 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1811 gdbarch_init_osabi (info, gdbarch);
3ce1502b 1812
acd5c798
MK
1813 frame_unwind_append_predicate (gdbarch, i386_sigtramp_frame_p);
1814 frame_unwind_append_predicate (gdbarch, i386_frame_p);
1815
a62cc96e
AC
1816 return gdbarch;
1817}
1818
8201327c
MK
1819static enum gdb_osabi
1820i386_coff_osabi_sniffer (bfd *abfd)
1821{
762c5349
MK
1822 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1823 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1824 return GDB_OSABI_GO32;
1825
1826 return GDB_OSABI_UNKNOWN;
1827}
1828
1829static enum gdb_osabi
1830i386_nlm_osabi_sniffer (bfd *abfd)
1831{
1832 return GDB_OSABI_NETWARE;
1833}
1834\f
1835
28e9e0f0
MK
1836/* Provide a prototype to silence -Wmissing-prototypes. */
1837void _initialize_i386_tdep (void);
1838
c906108c 1839void
fba45db2 1840_initialize_i386_tdep (void)
c906108c 1841{
a62cc96e
AC
1842 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1843
fc338970 1844 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1845 {
1846 struct cmd_list_element *new_cmd;
7a292a7a 1847
917317f4
JM
1848 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1849 valid_flavors,
1ed2a135 1850 &disassembly_flavor,
fc338970
MK
1851 "\
1852Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1853and the default value is \"att\".",
917317f4 1854 &setlist);
917317f4
JM
1855 add_show_from_set (new_cmd, &showlist);
1856 }
8201327c
MK
1857
1858 /* Add the variable that controls the convention for returning
1859 structs. */
1860 {
1861 struct cmd_list_element *new_cmd;
1862
1863 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 1864 valid_conventions,
8201327c
MK
1865 &struct_convention, "\
1866Set the convention for returning small structs, valid values \
1867are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1868 &setlist);
1869 add_show_from_set (new_cmd, &showlist);
1870 }
1871
1872 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1873 i386_coff_osabi_sniffer);
1874 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1875 i386_nlm_osabi_sniffer);
1876
05816f70 1877 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 1878 i386_svr4_init_abi);
05816f70 1879 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 1880 i386_go32_init_abi);
05816f70 1881 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 1882 i386_nw_init_abi);
38c968cf
AC
1883
1884 /* Initialize the i386 specific register groups. */
1885 i386_init_reggroups ();
c906108c 1886}
This page took 0.417075 seconds and 4 git commands to generate.