Teach GDB that wchar_t is a built-in type in C++ mode
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
61baf725 3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
90884b2b 53#include "features/i386/i386.c"
c131fcee 54#include "features/i386/i386-avx.c"
1dbcd68c 55#include "features/i386/i386-mpx.c"
2b863f51 56#include "features/i386/i386-avx-mpx.c"
a1fa17ee 57#include "features/i386/i386-avx-avx512.c"
51547df6 58#include "features/i386/i386-avx-mpx-avx512-pku.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
325fac50 70#include <algorithm>
55aa24fb 71
c4fc7f1b 72/* Register names. */
c40e1eab 73
90884b2b 74static const char *i386_register_names[] =
fc633446
MK
75{
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87};
88
01f9f808
MS
89static const char *i386_zmm_names[] =
90{
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93};
94
95static const char *i386_zmmh_names[] =
96{
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99};
100
101static const char *i386_k_names[] =
102{
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105};
106
c131fcee
L
107static const char *i386_ymm_names[] =
108{
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111};
112
113static const char *i386_ymmh_names[] =
114{
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117};
118
1dbcd68c
WT
119static const char *i386_mpx_names[] =
120{
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122};
123
51547df6
MS
124static const char* i386_pkeys_names[] =
125{
126 "pkru"
127};
128
1dbcd68c
WT
129/* Register names for MPX pseudo-registers. */
130
131static const char *i386_bnd_names[] =
132{
133 "bnd0", "bnd1", "bnd2", "bnd3"
134};
135
c4fc7f1b 136/* Register names for MMX pseudo-registers. */
28fc6740 137
90884b2b 138static const char *i386_mmx_names[] =
28fc6740
AC
139{
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
142};
c40e1eab 143
1ba53b71
L
144/* Register names for byte pseudo-registers. */
145
146static const char *i386_byte_names[] =
147{
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
150};
151
152/* Register names for word pseudo-registers. */
153
154static const char *i386_word_names[] =
155{
156 "ax", "cx", "dx", "bx",
9cad29ac 157 "", "bp", "si", "di"
1ba53b71
L
158};
159
01f9f808
MS
160/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
163
164const int num_lower_zmm_regs = 16;
165
1ba53b71 166/* MMX register? */
c40e1eab 167
28fc6740 168static int
5716833c 169i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 170{
1ba53b71
L
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
173
174 if (mm0_regnum < 0)
175 return 0;
176
1ba53b71
L
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
179}
180
181/* Byte register? */
182
183int
184i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
190}
191
192/* Word register? */
193
194int
195i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
196{
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
201}
202
203/* Dword register? */
204
205int
206i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
207{
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
210
211 if (eax_regnum < 0)
212 return 0;
213
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
216}
217
01f9f808
MS
218/* AVX512 register? */
219
220int
221i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
222{
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
225
226 if (zmm0h_regnum < 0)
227 return 0;
228
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231}
232
233int
234i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
235{
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
238
239 if (zmm0_regnum < 0)
240 return 0;
241
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244}
245
246int
247i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
248{
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
251
252 if (k0_regnum < 0)
253 return 0;
254
255 regnum -= k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257}
258
9191d390 259static int
c131fcee
L
260i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
261{
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
264
265 if (ymm0h_regnum < 0)
266 return 0;
267
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
270}
271
272/* AVX register? */
273
274int
275i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
276{
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
279
280 if (ymm0_regnum < 0)
281 return 0;
282
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285}
286
01f9f808
MS
287static int
288i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
289{
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
292
293 if (ymm16h_regnum < 0)
294 return 0;
295
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298}
299
300int
301i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
302{
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
305
306 if (ymm16_regnum < 0)
307 return 0;
308
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
311}
312
1dbcd68c
WT
313/* BND register? */
314
315int
316i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
317{
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
320
321 if (bnd0_regnum < 0)
322 return 0;
323
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
326}
327
5716833c 328/* SSE register? */
23a34459 329
c131fcee
L
330int
331i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 332{
5716833c 333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 335
c131fcee 336 if (num_xmm_regs == 0)
5716833c
MK
337 return 0;
338
c131fcee
L
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
341}
342
01f9f808
MS
343/* XMM_512 register? */
344
345int
346i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
347{
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
350
351 if (num_xmm_avx512_regs == 0)
352 return 0;
353
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356}
357
5716833c
MK
358static int
359i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 360{
5716833c
MK
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
20a6ec49 363 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
364 return 0;
365
20a6ec49 366 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
367}
368
5716833c 369/* FP register? */
23a34459
AC
370
371int
20a6ec49 372i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 373{
20a6ec49
MD
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
377 return 0;
378
20a6ec49
MD
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
381}
382
383int
20a6ec49 384i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 385{
20a6ec49
MD
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
389 return 0;
390
20a6ec49
MD
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
393}
394
1dbcd68c
WT
395/* BNDr (raw) register? */
396
397static int
398i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
399{
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 if (I387_BND0R_REGNUM (tdep) < 0)
403 return 0;
404
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
407}
408
409/* BND control register? */
410
411static int
412i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
413{
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
417 return 0;
418
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
421}
422
51547df6
MS
423/* PKRU register? */
424
425bool
426i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
427{
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
430
431 if (pkru_regnum < 0)
432 return false;
433
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
436}
437
c131fcee
L
438/* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
440
441static const char *
442i386_register_name (struct gdbarch *gdbarch, int regnum)
443{
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
446 return "";
447
01f9f808
MS
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
450 return "";
451
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
454 return "";
455
c131fcee
L
456 return tdesc_register_name (gdbarch, regnum);
457}
458
30b0e2d8 459/* Return the name of register REGNUM. */
fc633446 460
1ba53b71 461const char *
90884b2b 462i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 463{
1ba53b71 464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
477
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
479}
480
c4fc7f1b 481/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
482 number used by GDB. */
483
8201327c 484static int
d3f73121 485i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 486{
20a6ec49
MD
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488
c4fc7f1b
MK
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
491
85540d8c
MK
492 if (reg >= 0 && reg <= 7)
493 {
9872ad24
JB
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
496 if (reg == 4)
497 return 5;
498 else if (reg == 5)
499 return 4;
500 else return reg;
85540d8c
MK
501 }
502 else if (reg >= 12 && reg <= 19)
503 {
504 /* Floating-point registers. */
20a6ec49 505 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
506 }
507 else if (reg >= 21 && reg <= 28)
508 {
509 /* SSE registers. */
c131fcee
L
510 int ymm0_regnum = tdep->ymm0_regnum;
511
512 if (ymm0_regnum >= 0
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
515 else
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
517 }
518 else if (reg >= 29 && reg <= 36)
519 {
520 /* MMX registers. */
20a6ec49 521 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
522 }
523
524 /* This will hopefully provoke a warning. */
d3f73121 525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
526}
527
0fde2c53 528/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 529 used by GDB. */
85540d8c 530
8201327c 531static int
0fde2c53 532i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 533{
20a6ec49
MD
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
535
c4fc7f1b
MK
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
538
539 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
542 {
acd5c798 543 /* General-purpose registers. */
85540d8c
MK
544 return reg;
545 }
546 else if (reg >= 11 && reg <= 18)
547 {
548 /* Floating-point registers. */
20a6ec49 549 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 550 }
c6f4c129 551 else if (reg >= 21 && reg <= 36)
85540d8c 552 {
c4fc7f1b 553 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 554 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
555 }
556
c6f4c129
JB
557 switch (reg)
558 {
20a6ec49
MD
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
568 }
569
0fde2c53
DE
570 return -1;
571}
572
573/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
575
576static int
577i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
578{
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
580
581 if (regnum == -1)
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
583 return regnum;
85540d8c 584}
5716833c 585
fc338970 586\f
917317f4 587
fc338970
MK
588/* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
53904c9e
AC
590static const char att_flavor[] = "att";
591static const char intel_flavor[] = "intel";
40478521 592static const char *const valid_flavors[] =
c5aa993b 593{
c906108c
SS
594 att_flavor,
595 intel_flavor,
596 NULL
597};
53904c9e 598static const char *disassembly_flavor = att_flavor;
acd5c798 599\f
c906108c 600
acd5c798
MK
601/* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
c906108c 606
acd5c798
MK
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
c906108c 609
acd5c798 610 This function is 64-bit safe. */
63c0089f 611
04180708
YQ
612constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
613
614typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 615
237fc4c9
PA
616\f
617/* Displaced instruction handling. */
618
1903f0e6
DE
619/* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
624
625static gdb_byte *
626i386_skip_prefixes (gdb_byte *insn, size_t max_len)
627{
628 gdb_byte *end = insn + max_len;
629
630 while (insn < end)
631 {
632 switch (*insn)
633 {
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
645 ++insn;
646 continue;
647 default:
648 return insn;
649 }
650 }
651
652 return NULL;
653}
237fc4c9
PA
654
655static int
1903f0e6 656i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 657{
1777feb0 658 /* jmp far (absolute address in operand). */
237fc4c9
PA
659 if (insn[0] == 0xea)
660 return 1;
661
662 if (insn[0] == 0xff)
663 {
1777feb0 664 /* jump near, absolute indirect (/4). */
237fc4c9
PA
665 if ((insn[1] & 0x38) == 0x20)
666 return 1;
667
1777feb0 668 /* jump far, absolute indirect (/5). */
237fc4c9
PA
669 if ((insn[1] & 0x38) == 0x28)
670 return 1;
671 }
672
673 return 0;
674}
675
c2170eef
MM
676/* Return non-zero if INSN is a jump, zero otherwise. */
677
678static int
679i386_jmp_p (const gdb_byte *insn)
680{
681 /* jump short, relative. */
682 if (insn[0] == 0xeb)
683 return 1;
684
685 /* jump near, relative. */
686 if (insn[0] == 0xe9)
687 return 1;
688
689 return i386_absolute_jmp_p (insn);
690}
691
237fc4c9 692static int
1903f0e6 693i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 694{
1777feb0 695 /* call far, absolute. */
237fc4c9
PA
696 if (insn[0] == 0x9a)
697 return 1;
698
699 if (insn[0] == 0xff)
700 {
1777feb0 701 /* Call near, absolute indirect (/2). */
237fc4c9
PA
702 if ((insn[1] & 0x38) == 0x10)
703 return 1;
704
1777feb0 705 /* Call far, absolute indirect (/3). */
237fc4c9
PA
706 if ((insn[1] & 0x38) == 0x18)
707 return 1;
708 }
709
710 return 0;
711}
712
713static int
1903f0e6 714i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
715{
716 switch (insn[0])
717 {
1777feb0 718 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 719 case 0xc3: /* ret near */
1777feb0 720 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
723 return 1;
724
725 default:
726 return 0;
727 }
728}
729
730static int
1903f0e6 731i386_call_p (const gdb_byte *insn)
237fc4c9
PA
732{
733 if (i386_absolute_call_p (insn))
734 return 1;
735
1777feb0 736 /* call near, relative. */
237fc4c9
PA
737 if (insn[0] == 0xe8)
738 return 1;
739
740 return 0;
741}
742
237fc4c9
PA
743/* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
1903f0e6 745
237fc4c9 746static int
b55078be 747i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 748{
9a7f938f
JK
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
755 {
756 *lengthp = 2;
757 return 1;
758 }
759
760 return 0;
761}
762
c2170eef
MM
763/* The gdbarch insn_is_call method. */
764
765static int
766i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
767{
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_call_p (insn);
774}
775
776/* The gdbarch insn_is_ret method. */
777
778static int
779i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
780{
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
782
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
785
786 return i386_ret_p (insn);
787}
788
789/* The gdbarch insn_is_jump method. */
790
791static int
792i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
793{
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
795
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
798
799 return i386_jmp_p (insn);
800}
801
b55078be
DE
802/* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
804
805struct displaced_step_closure *
806i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809{
810 size_t len = gdbarch_max_insn_length (gdbarch);
224c3ddb 811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
b55078be
DE
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 if (debug_displaced)
830 {
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
834 }
835
836 return (struct displaced_step_closure *) buf;
837}
838
237fc4c9
PA
839/* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
1903f0e6 841
237fc4c9
PA
842void
843i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847{
e17a4113
UW
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
237fc4c9
PA
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
237fc4c9
PA
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
5af949e3 864 "displaced: fixup (%s, %s), "
237fc4c9 865 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
237fc4c9
PA
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
1903f0e6
DE
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
237fc4c9
PA
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
b55078be 897 int insn_len;
237fc4c9
PA
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
1903f0e6
DE
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
237fc4c9
PA
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
5af949e3
UW
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
237fc4c9
PA
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
237fc4c9
PA
971 }
972}
dde08ee1
PA
973
974static void
975append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976{
977 target_write_memory (*to, buf, len);
978 *to += len;
979}
980
981static void
982i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984{
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1777feb0 1009 push_buf[0] = 0x68; /* pushq $... */
144db827 1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
f4a1794a 1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
dde08ee1
PA
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058}
1059
fc338970 1060\f
acd5c798
MK
1061#ifdef I386_REGNO_TO_SYMMETRY
1062#error "The Sequent Symmetry is no longer supported."
1063#endif
c906108c 1064
acd5c798
MK
1065/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
c906108c 1068
acd5c798
MK
1069/* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
a3386186 1071#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1072
1073struct i386_frame_cache
c906108c 1074{
acd5c798
MK
1075 /* Base address. */
1076 CORE_ADDR base;
8fbca658 1077 int base_p;
772562f8 1078 LONGEST sp_offset;
acd5c798
MK
1079 CORE_ADDR pc;
1080
fd13a04a
AC
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1083 CORE_ADDR saved_sp;
e0c62198 1084 int saved_sp_reg;
acd5c798
MK
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089};
1090
1091/* Allocate and initialize a frame cache. */
1092
1093static struct i386_frame_cache *
fd13a04a 1094i386_alloc_frame_cache (void)
acd5c798
MK
1095{
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
8fbca658 1102 cache->base_p = 0;
acd5c798
MK
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
fd13a04a
AC
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
acd5c798 1111 cache->saved_sp = 0;
e0c62198 1112 cache->saved_sp_reg = -1;
acd5c798
MK
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119}
c906108c 1120
acd5c798
MK
1121/* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
c906108c 1123
acd5c798 1124static CORE_ADDR
e17a4113 1125i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1126{
e17a4113 1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1128 gdb_byte op;
acd5c798
MK
1129 long delta = 0;
1130 int data16 = 0;
c906108c 1131
0865b04a 1132 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1133 return pc;
1134
acd5c798 1135 if (op == 0x66)
c906108c 1136 {
c906108c 1137 data16 = 1;
0865b04a
YQ
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1140 }
1141
acd5c798 1142 switch (op)
c906108c
SS
1143 {
1144 case 0xe9:
fc338970 1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1146 if (data16)
1147 {
e17a4113 1148 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1149
fc338970
MK
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
acd5c798 1152 delta += 4;
c906108c
SS
1153 }
1154 else
1155 {
e17a4113 1156 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1157
acd5c798
MK
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
c906108c
SS
1160 }
1161 break;
1162 case 0xeb:
fc338970 1163 /* Relative jump, disp8 (ignore data16). */
e17a4113 1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1165
acd5c798 1166 delta += data16 + 2;
c906108c
SS
1167 break;
1168 }
c906108c 1169
acd5c798
MK
1170 return pc + delta;
1171}
fc338970 1172
acd5c798
MK
1173/* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
c906108c 1178
acd5c798
MK
1179static CORE_ADDR
1180i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
c906108c 1182{
acd5c798
MK
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
63c0089f
MK
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
c906108c 1197
acd5c798
MK
1198 if (current_pc <= pc)
1199 return pc;
1200
0865b04a 1201 if (target_read_code (pc, &op, 1))
3dcabaa8 1202 return pc;
c906108c 1203
acd5c798
MK
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
c906108c 1206
0865b04a 1207 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1208 return pc;
1209
acd5c798
MK
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
c906108c 1212
acd5c798 1213 if (current_pc == pc)
c906108c 1214 {
acd5c798
MK
1215 cache->sp_offset += 4;
1216 return current_pc;
c906108c
SS
1217 }
1218
acd5c798 1219 if (current_pc == pc + 1)
c906108c 1220 {
acd5c798
MK
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229}
1230
1231static CORE_ADDR
1232i386_skip_probe (CORE_ADDR pc)
1233{
1234 /* A function may start with
fc338970 1235
acd5c798
MK
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
fc338970 1239
acd5c798
MK
1240 followed by
1241
1242 pushl %ebp
fc338970 1243
acd5c798 1244 etc. */
63c0089f
MK
1245 gdb_byte buf[8];
1246 gdb_byte op;
fc338970 1247
0865b04a 1248 if (target_read_code (pc, &op, 1))
3dcabaa8 1249 return pc;
acd5c798
MK
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
c906108c 1254
acd5c798
MK
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
c906108c 1257 if (op == 0x68)
acd5c798 1258 delta = 5;
c906108c 1259 else
acd5c798 1260 delta = 2;
c906108c 1261
acd5c798
MK
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1266 pc += delta + sizeof (buf);
c906108c
SS
1267 }
1268
acd5c798
MK
1269 return pc;
1270}
1271
92dd43fa
MK
1272/* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278static CORE_ADDR
1279i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281{
e0c62198
L
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
92dd43fa 1316 };
92dd43fa 1317
0865b04a 1318 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1381 return pc;
1382
e0c62198
L
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
92dd43fa 1385
325fac50 1386 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1387}
1388
37bdc87e 1389/* Maximum instruction length we need to handle. */
237fc4c9 1390#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1391
1392/* Instruction description. */
1393struct i386_insn
1394{
1395 size_t len;
237fc4c9
PA
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1398};
1399
a3fcb948 1400/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1401
a3fcb948
JG
1402static int
1403i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1404{
63c0089f 1405 gdb_byte op;
37bdc87e 1406
0865b04a 1407 if (target_read_code (pc, &op, 1))
a3fcb948 1408 return 0;
37bdc87e 1409
a3fcb948 1410 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1411 {
a3fcb948
JG
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
37bdc87e 1415
a3fcb948
JG
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1418
0865b04a 1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1420 return 0;
613e8135 1421
a3fcb948
JG
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
37bdc87e 1426 }
a3fcb948
JG
1427 return insn_matched;
1428 }
1429 return 0;
1430}
1431
1432/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436static struct i386_insn *
1437i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438{
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
37bdc87e
MK
1445 }
1446
1447 return NULL;
1448}
1449
a3fcb948
JG
1450/* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453static int
1454i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455{
1456 CORE_ADDR current_pc;
1457 int ix, i;
a3fcb948
JG
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
8bbdd3f4 1464 current_pc = pc;
a3fcb948
JG
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
8bbdd3f4
MK
1468 current_pc -= insn_patterns[i].len;
1469
a3fcb948
JG
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
a3fcb948
JG
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484}
1485
37bdc87e
MK
1486/* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492struct i386_insn i386_frame_setup_skip_insns[] =
1493{
1777feb0 1494 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539};
1540
e11481da
PM
1541
1542/* Check whether PC points to a no-op instruction. */
1543static CORE_ADDR
1544i386_skip_noop (CORE_ADDR pc)
1545{
1546 gdb_byte op;
1547 int check = 1;
1548
0865b04a 1549 if (target_read_code (pc, &op, 1))
3dcabaa8 1550 return pc;
e11481da
PM
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
0865b04a 1559 if (target_read_code (pc, &op, 1))
3dcabaa8 1560 return pc;
e11481da
PM
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
0865b04a 1576 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1577 return pc;
1578
e11481da
PM
1579 if (op == 0xff)
1580 {
1581 pc += 2;
0865b04a 1582 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1583 return pc;
1584
e11481da
PM
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590}
1591
acd5c798
MK
1592/* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1596
1597static CORE_ADDR
e17a4113
UW
1598i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1600 struct i386_frame_cache *cache)
1601{
e17a4113 1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1603 struct i386_insn *insn;
63c0089f 1604 gdb_byte op;
26604a34 1605 int skip = 0;
acd5c798 1606
37bdc87e
MK
1607 if (limit <= pc)
1608 return limit;
acd5c798 1609
0865b04a 1610 if (target_read_code (pc, &op, 1))
3dcabaa8 1611 return pc;
acd5c798 1612
c906108c 1613 if (op == 0x55) /* pushl %ebp */
c5aa993b 1614 {
acd5c798
MK
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
fd13a04a 1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1618 cache->sp_offset += 4;
37bdc87e 1619 pc++;
acd5c798
MK
1620
1621 /* If that's all, return now. */
37bdc87e
MK
1622 if (limit <= pc)
1623 return limit;
26604a34 1624
b4632131 1625 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1629 it is limited.
5daa5b4e 1630
26604a34
MK
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1633 while (pc + skip < limit)
26604a34 1634 {
37bdc87e
MK
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
b4632131 1638
37bdc87e 1639 skip += insn->len;
26604a34
MK
1640 }
1641
37bdc87e
MK
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
0865b04a 1646 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1647 return pc + skip;
37bdc87e 1648
30f8135b
YQ
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
acd5c798 1663 switch (op)
c906108c 1664 {
30f8135b 1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1666 case 0x8b:
0865b04a 1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1668 != 0xec)
37bdc87e 1669 return pc;
30f8135b 1670 pc += (skip + 2);
c906108c
SS
1671 break;
1672 case 0x89:
0865b04a 1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1674 != 0xe5)
37bdc87e 1675 return pc;
30f8135b
YQ
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
c906108c
SS
1683 break;
1684 default:
37bdc87e 1685 return pc;
c906108c 1686 }
acd5c798 1687
26604a34
MK
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
acd5c798
MK
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
37bdc87e
MK
1695 if (limit <= pc)
1696 return limit;
acd5c798 1697
fc338970
MK
1698 /* Check for stack adjustment
1699
acd5c798 1700 subl $XXX, %esp
30f8135b
YQ
1701 or
1702 lea -XXX(%esp),%esp
fc338970 1703
fd35795f 1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1705 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1706 if (target_read_code (pc, &op, 1))
3dcabaa8 1707 return pc;
c906108c
SS
1708 if (op == 0x83)
1709 {
fd35795f 1710 /* `subl' with 8-bit immediate. */
0865b04a 1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1712 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1713 return pc;
acd5c798 1714
37bdc87e
MK
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
0865b04a 1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1718 return pc + 3;
c906108c
SS
1719 }
1720 else if (op == 0x81)
1721 {
fd35795f 1722 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1724 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1725 return pc;
acd5c798 1726
fd35795f 1727 /* It is `subl' with a 32-bit immediate. */
0865b04a 1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1729 return pc + 6;
c906108c 1730 }
30f8135b
YQ
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
0865b04a 1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
0865b04a 1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1738 return pc + 4;
1739 }
c906108c
SS
1740 else
1741 {
30f8135b 1742 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1743 return pc;
c906108c
SS
1744 }
1745 }
37bdc87e 1746 else if (op == 0xc8) /* enter */
c906108c 1747 {
0865b04a 1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1749 return pc + 4;
c906108c 1750 }
21d0e8a4 1751
acd5c798 1752 return pc;
21d0e8a4
MK
1753}
1754
acd5c798
MK
1755/* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
6bff26de
MK
1759
1760static CORE_ADDR
acd5c798
MK
1761i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
6bff26de 1763{
99ab4326 1764 CORE_ADDR offset = 0;
63c0089f 1765 gdb_byte op;
99ab4326 1766 int i;
c0d1d883 1767
99ab4326
MK
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
0865b04a 1772 if (target_read_code (pc, &op, 1))
3dcabaa8 1773 return pc;
99ab4326
MK
1774 if (op < 0x50 || op > 0x57)
1775 break;
0d17c81d 1776
99ab4326
MK
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
6bff26de
MK
1781 }
1782
acd5c798 1783 return pc;
22797942
AC
1784}
1785
acd5c798
MK
1786/* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
ed84f6c1 1789
fc338970
MK
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
c906108c 1812
acd5c798 1813static CORE_ADDR
e17a4113
UW
1814i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1816 struct i386_frame_cache *cache)
c906108c 1817{
e11481da 1818 pc = i386_skip_noop (pc);
e17a4113 1819 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
92dd43fa 1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1824 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1825}
1826
fc338970 1827/* Return PC of first real instruction. */
c906108c 1828
3a1e71e3 1829static CORE_ADDR
6093d2eb 1830i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1831{
e17a4113
UW
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
63c0089f 1834 static gdb_byte pic_pat[6] =
acd5c798
MK
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
c5aa993b 1838 };
acd5c798
MK
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
63c0089f 1841 gdb_byte op;
acd5c798 1842 int i;
56bf0743 1843 CORE_ADDR func_addr;
4e879fc2 1844
56bf0743
KB
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1850
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
43f3e411
DE
1854 && (cust != NULL
1855 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 1857 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1858 }
1859
e0f33b1f 1860 cache.locals = -1;
e17a4113 1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1862 if (cache.locals < 0)
1863 return start_pc;
c5aa993b 1864
acd5c798 1865 /* Found valid frame setup. */
c906108c 1866
fc338970
MK
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
acd5c798
MK
1869 %ebx:
1870
fc338970
MK
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
c906108c
SS
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
c5aa993b 1879
c906108c
SS
1880 for (i = 0; i < 6; i++)
1881 {
0865b04a 1882 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1883 return pc;
1884
c5aa993b 1885 if (pic_pat[i] != op)
c906108c
SS
1886 break;
1887 }
1888 if (i == 6)
1889 {
acd5c798
MK
1890 int delta = 6;
1891
0865b04a 1892 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1893 return pc;
c906108c 1894
c5aa993b 1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1896 {
0865b04a 1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1898
fc338970 1899 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1900 delta += 3;
fc338970 1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1902 delta += 6;
fc338970 1903 else /* Unexpected instruction. */
acd5c798
MK
1904 delta = 0;
1905
0865b04a 1906 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1907 return pc;
c906108c 1908 }
acd5c798 1909
c5aa993b 1910 /* addl y,%ebx */
acd5c798 1911 if (delta > 0 && op == 0x81
0865b04a 1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1913 == 0xc3)
c906108c 1914 {
acd5c798 1915 pc += delta + 6;
c906108c
SS
1916 }
1917 }
c5aa993b 1918
e63bbc88
MK
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
e17a4113
UW
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1924
1925 return pc;
c906108c
SS
1926}
1927
4309257c
PM
1928/* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931CORE_ADDR
1932i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933{
e17a4113 1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1935 gdb_byte op;
1936
0865b04a 1937 if (target_read_code (pc, &op, 1))
3dcabaa8 1938 return pc;
4309257c
PM
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
0865b04a 1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1947 struct bound_minimal_symbol s;
e17a4113 1948 CORE_ADDR call_dest;
4309257c 1949
e17a4113 1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1953 if (s.minsym != NULL
efd66ac6
TT
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961}
1962
acd5c798 1963/* This function is 64-bit safe. */
93924b6b 1964
acd5c798
MK
1965static CORE_ADDR
1966i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1967{
63c0089f 1968 gdb_byte buf[8];
acd5c798 1969
875f8d0e 1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1972}
acd5c798 1973\f
93924b6b 1974
acd5c798 1975/* Normal frames. */
c5aa993b 1976
8fbca658
PA
1977static void
1978i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
a7769679 1980{
e17a4113
UW
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1983 gdb_byte buf[4];
acd5c798
MK
1984 int i;
1985
8fbca658 1986 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
10458914 1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1999 if (cache->base == 0)
620fa63a
PA
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
acd5c798
MK
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2007
acd5c798 2008 if (cache->pc != 0)
e17a4113
UW
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
acd5c798
MK
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
e0c62198 2022 if (cache->saved_sp_reg != -1)
92dd43fa 2023 {
8fbca658
PA
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
92dd43fa
MK
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
7618e12b 2035 else if (cache->pc != 0
0865b04a 2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2037 {
7618e12b
DJ
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
10458914 2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
92dd43fa 2046 }
7618e12b
DJ
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2053 }
2054
8fbca658
PA
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
ca9d61b9
JB
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
8fbca658
PA
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
acd5c798
MK
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
8fbca658 2066 else if (cache->saved_sp == 0)
92dd43fa 2067 cache->saved_sp = cache->base + 8;
a7769679 2068
acd5c798
MK
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
acd5c798 2074
8fbca658
PA
2075 cache->base_p = 1;
2076}
2077
2078static struct i386_frame_cache *
2079i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080{
8fbca658
PA
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
9a3c8263 2084 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
492d29ea 2089 TRY
8fbca658
PA
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
492d29ea 2093 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2097 }
492d29ea 2098 END_CATCH
8fbca658 2099
acd5c798 2100 return cache;
a7769679
MK
2101}
2102
3a1e71e3 2103static void
10458914 2104i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2105 struct frame_id *this_id)
c906108c 2106{
10458914 2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2108
5ce0145d
PA
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
acd5c798
MK
2120}
2121
8fbca658
PA
2122static enum unwind_stop_reason
2123i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125{
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136}
2137
10458914
DJ
2138static struct value *
2139i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
acd5c798 2141{
10458914 2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
10458914 2167 ULONGEST val;
c5aa993b 2168
10458914
DJ
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2172 }
1211c4e4 2173
acd5c798 2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2176
fcf250e2
UW
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
fcf250e2 2183 if (cache->saved_sp == 0)
8fbca658
PA
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
acd5c798 2190
fd13a04a 2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
fd13a04a 2194
10458914 2195 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2196}
2197
2198static const struct frame_unwind i386_frame_unwind =
2199{
2200 NORMAL_FRAME,
8fbca658 2201 i386_frame_unwind_stop_reason,
acd5c798 2202 i386_frame_this_id,
10458914
DJ
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
acd5c798 2206};
06da04c6
MS
2207
2208/* Normal frames, but in a function epilogue. */
2209
c9cf6e20
MG
2210/* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216static int
c9cf6e20 2217i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2218{
2219 gdb_byte insn;
43f3e411 2220 struct compunit_symtab *cust;
e0d00bc7 2221
43f3e411
DE
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2224 return 0;
06da04c6
MS
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233}
2234
2235static int
2236i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239{
2240 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
06da04c6
MS
2243 else
2244 return 0;
2245}
2246
2247static struct i386_frame_cache *
2248i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249{
06da04c6 2250 struct i386_frame_cache *cache;
0d6c2135 2251 CORE_ADDR sp;
06da04c6
MS
2252
2253 if (*this_cache)
9a3c8263 2254 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
492d29ea 2259 TRY
8fbca658 2260 {
0d6c2135 2261 cache->pc = get_frame_func (this_frame);
06da04c6 2262
0d6c2135
MK
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
8fbca658 2268 cache->saved_sp = cache->base + 8;
8fbca658 2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2270
8fbca658
PA
2271 cache->base_p = 1;
2272 }
492d29ea 2273 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2277 }
492d29ea 2278 END_CATCH
06da04c6
MS
2279
2280 return cache;
2281}
2282
8fbca658
PA
2283static enum unwind_stop_reason
2284i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2285 void **this_cache)
2286{
0d6c2135
MK
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2289
2290 if (!cache->base_p)
2291 return UNWIND_UNAVAILABLE;
2292
2293 return UNWIND_NO_REASON;
2294}
2295
06da04c6
MS
2296static void
2297i386_epilogue_frame_this_id (struct frame_info *this_frame,
2298 void **this_cache,
2299 struct frame_id *this_id)
2300{
0d6c2135
MK
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2303
8fbca658 2304 if (!cache->base_p)
5ce0145d
PA
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2306 else
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2308}
2309
0d6c2135
MK
2310static struct value *
2311i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2313{
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2316
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2318}
2319
06da04c6
MS
2320static const struct frame_unwind i386_epilogue_frame_unwind =
2321{
2322 NORMAL_FRAME,
8fbca658 2323 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2324 i386_epilogue_frame_this_id,
0d6c2135 2325 i386_epilogue_frame_prev_register,
06da04c6
MS
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328};
acd5c798
MK
2329\f
2330
a3fcb948
JG
2331/* Stack-based trampolines. */
2332
2333/* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338/* Static chain passed in register. */
2339
2340struct i386_insn i386_tramp_chain_in_reg_insns[] =
2341{
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349};
2350
2351/* Static chain passed on stack (when regparm=3). */
2352
2353struct i386_insn i386_tramp_chain_on_stack_insns[] =
2354{
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362};
2363
2364/* Return whether PC points inside a stack trampoline. */
2365
2366static int
6df81a63 2367i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2368{
2369 gdb_byte insn;
2c02bd72 2370 const char *name;
a3fcb948
JG
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388}
2389
2390static int
2391i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2392 struct frame_info *this_frame,
2393 void **this_cache)
a3fcb948
JG
2394{
2395 if (frame_relative_level (this_frame) == 0)
6df81a63 2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2397 else
2398 return 0;
2399}
2400
2401static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402{
2403 NORMAL_FRAME,
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
0d6c2135 2406 i386_epilogue_frame_prev_register,
a3fcb948
JG
2407 NULL,
2408 i386_stack_tramp_frame_sniffer
2409};
2410\f
6710bf39
SS
2411/* Generate a bytecode expression to get the value of the saved PC. */
2412
2413static void
2414i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2416 CORE_ADDR scope)
2417{
2418 /* The following sequence assumes the traditional use of the base
2419 register. */
2420 ax_reg (ax, I386_EBP_REGNUM);
2421 ax_const_l (ax, 4);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2425}
2426\f
a3fcb948 2427
acd5c798
MK
2428/* Signal trampolines. */
2429
2430static struct i386_frame_cache *
10458914 2431i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2432{
e17a4113
UW
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2436 struct i386_frame_cache *cache;
acd5c798 2437 CORE_ADDR addr;
63c0089f 2438 gdb_byte buf[4];
acd5c798
MK
2439
2440 if (*this_cache)
9a3c8263 2441 return (struct i386_frame_cache *) *this_cache;
acd5c798 2442
fd13a04a 2443 cache = i386_alloc_frame_cache ();
acd5c798 2444
492d29ea 2445 TRY
a3386186 2446 {
8fbca658
PA
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2449
8fbca658
PA
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2452 {
2453 int i;
a3386186 2454
8fbca658
PA
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2456
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2460 }
2461 else
2462 {
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 }
2466
2467 cache->base_p = 1;
a3386186 2468 }
492d29ea 2469 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2470 {
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2473 }
492d29ea 2474 END_CATCH
acd5c798
MK
2475
2476 *this_cache = cache;
2477 return cache;
2478}
2479
8fbca658
PA
2480static enum unwind_stop_reason
2481i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483{
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491}
2492
acd5c798 2493static void
10458914 2494i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2495 struct frame_id *this_id)
2496{
2497 struct i386_frame_cache *cache =
10458914 2498 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2499
8fbca658 2500 if (!cache->base_p)
5ce0145d
PA
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
acd5c798
MK
2507}
2508
10458914
DJ
2509static struct value *
2510i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
acd5c798
MK
2512{
2513 /* Make sure we've initialized the cache. */
10458914 2514 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2515
10458914 2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2517}
c0d1d883 2518
10458914
DJ
2519static int
2520i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
acd5c798 2523{
10458914 2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2525
911bc6ee
MK
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
10458914 2529 return 0;
1c3545ae 2530
911bc6ee
MK
2531 if (tdep->sigtramp_p != NULL)
2532 {
10458914
DJ
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
911bc6ee
MK
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
10458914 2539 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2543 return 1;
911bc6ee 2544 }
acd5c798 2545
10458914 2546 return 0;
acd5c798 2547}
10458914
DJ
2548
2549static const struct frame_unwind i386_sigtramp_frame_unwind =
2550{
2551 SIGTRAMP_FRAME,
8fbca658 2552 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2555 NULL,
2556 i386_sigtramp_frame_sniffer
2557};
acd5c798
MK
2558\f
2559
2560static CORE_ADDR
10458914 2561i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2562{
10458914 2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2564
2565 return cache->base;
2566}
2567
2568static const struct frame_base i386_frame_base =
2569{
2570 &i386_frame_unwind,
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2574};
2575
acd5c798 2576static struct frame_id
10458914 2577i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2578{
acd5c798
MK
2579 CORE_ADDR fp;
2580
10458914 2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2582
3e210248 2583 /* See the end of i386_push_dummy_call. */
10458914 2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2585}
e04e5beb
JM
2586
2587/* _Decimal128 function return values need 16-byte alignment on the
2588 stack. */
2589
2590static CORE_ADDR
2591i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2592{
2593 return sp & -(CORE_ADDR)16;
2594}
fc338970 2595\f
c906108c 2596
fc338970
MK
2597/* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2599 structure from which we extract the address that we will land at.
28bcfd30 2600 This address is copied into PC. This routine returns non-zero on
436675d3 2601 success. */
c906108c 2602
8201327c 2603static int
60ade65d 2604i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2605{
436675d3 2606 gdb_byte buf[4];
c906108c 2607 CORE_ADDR sp, jb_addr;
20a6ec49 2608 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2611
8201327c
MK
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
c906108c
SS
2615 return 0;
2616
436675d3 2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2618 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2619 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2620 return 0;
2621
e17a4113 2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2624 return 0;
c906108c 2625
e17a4113 2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2627 return 1;
2628}
fc338970 2629\f
c906108c 2630
7ccc1c74
JM
2631/* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2635
2636static int
2637i386_16_byte_align_p (struct type *type)
2638{
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2643 return 1;
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2648 {
2649 int i;
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2651 {
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 return 1;
2654 }
2655 }
2656 return 0;
2657}
2658
a9b8d892
JK
2659/* Implementation for set_gdbarch_push_dummy_code. */
2660
2661static CORE_ADDR
2662i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2666{
2667 /* Use 0xcc breakpoint - 1 byte. */
2668 *bp_addr = sp - 1;
2669 *real_pc = funaddr;
2670
2671 /* Keep the stack aligned. */
2672 return sp - 16;
2673}
2674
3a1e71e3 2675static CORE_ADDR
7d9b040b 2676i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
22f8ba57 2680{
e17a4113 2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2682 gdb_byte buf[4];
acd5c798 2683 int i;
7ccc1c74
JM
2684 int write_pass;
2685 int args_space = 0;
acd5c798 2686
4a612d6f
WT
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2693
7ccc1c74
JM
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2697
2698 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2699 {
7ccc1c74 2700 int args_space_used = 0;
7ccc1c74
JM
2701
2702 if (struct_return)
2703 {
2704 if (write_pass)
2705 {
2706 /* Push value address. */
e17a4113 2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2710 }
2711 else
2712 args_space += 4;
2713 }
2714
2715 for (i = 0; i < nargs; i++)
2716 {
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2718
7ccc1c74
JM
2719 if (write_pass)
2720 {
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
acd5c798 2723
7ccc1c74
JM
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
acd5c798 2727
7ccc1c74
JM
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
22f8ba57 2731
7ccc1c74
JM
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2734 }
2735 else
2736 {
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2738 args_space = align_up (args_space, 16);
7ccc1c74
JM
2739 args_space += align_up (len, 4);
2740 }
2741 }
2742
2743 if (!write_pass)
2744 {
7ccc1c74 2745 sp -= args_space;
284c5a60
MK
2746
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2751 sp &= ~0xf;
7ccc1c74 2752 }
22f8ba57
MK
2753 }
2754
acd5c798
MK
2755 /* Store return address. */
2756 sp -= 4;
e17a4113 2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2758 write_memory (sp, buf, 4);
2759
2760 /* Finally, update the stack pointer... */
e17a4113 2761 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2762 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2763
2764 /* ...and fake a frame pointer. */
2765 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2766
3e210248
AC
2767 /* MarkK wrote: This "+ 8" is all over the place:
2768 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2769 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2770 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2771 definition of the stack address of a frame. Otherwise frame id
2772 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2773 stack address *before* the function call as a frame's CFA. On
2774 the i386, when %ebp is used as a frame pointer, the offset
2775 between the contents %ebp and the CFA as defined by GCC. */
2776 return sp + 8;
22f8ba57
MK
2777}
2778
1a309862
MK
2779/* These registers are used for returning integers (and on some
2780 targets also for returning `struct' and `union' values when their
ef9dff19 2781 size and alignment match an integer type). */
acd5c798
MK
2782#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2783#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2784
c5e656c1
MK
2785/* Read, for architecture GDBARCH, a function return value of TYPE
2786 from REGCACHE, and copy that into VALBUF. */
1a309862 2787
3a1e71e3 2788static void
c5e656c1 2789i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2790 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2791{
c5e656c1 2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2793 int len = TYPE_LENGTH (type);
63c0089f 2794 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2795
1e8d0a7b 2796 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2797 {
5716833c 2798 if (tdep->st0_regnum < 0)
1a309862 2799 {
8a3fe4f8 2800 warning (_("Cannot find floating-point return value."));
1a309862 2801 memset (valbuf, 0, len);
ef9dff19 2802 return;
1a309862
MK
2803 }
2804
c6ba6f0d
MK
2805 /* Floating-point return values can be found in %st(0). Convert
2806 its contents to the desired type. This is probably not
2807 exactly how it would happen on the target itself, but it is
2808 the best we can do. */
acd5c798 2809 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2810 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2811 }
2812 else
c5aa993b 2813 {
875f8d0e
UW
2814 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2815 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2816
2817 if (len <= low_size)
00f8375e 2818 {
0818c12a 2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2820 memcpy (valbuf, buf, len);
2821 }
d4f3574e
SS
2822 else if (len <= (low_size + high_size))
2823 {
0818c12a 2824 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2825 memcpy (valbuf, buf, low_size);
0818c12a 2826 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2827 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2828 }
2829 else
8e65ff28 2830 internal_error (__FILE__, __LINE__,
1777feb0
MS
2831 _("Cannot extract return value of %d bytes long."),
2832 len);
c906108c
SS
2833 }
2834}
2835
c5e656c1
MK
2836/* Write, for architecture GDBARCH, a function return value of TYPE
2837 from VALBUF into REGCACHE. */
ef9dff19 2838
3a1e71e3 2839static void
c5e656c1 2840i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2841 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2842{
c5e656c1 2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2844 int len = TYPE_LENGTH (type);
2845
1e8d0a7b 2846 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2847 {
3d7f4f49 2848 ULONGEST fstat;
63c0089f 2849 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2850
5716833c 2851 if (tdep->st0_regnum < 0)
ef9dff19 2852 {
8a3fe4f8 2853 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2854 return;
2855 }
2856
635b0cc1
MK
2857 /* Returning floating-point values is a bit tricky. Apart from
2858 storing the return value in %st(0), we have to simulate the
2859 state of the FPU at function return point. */
2860
c6ba6f0d
MK
2861 /* Convert the value found in VALBUF to the extended
2862 floating-point format used by the FPU. This is probably
2863 not exactly how it would happen on the target itself, but
2864 it is the best we can do. */
27067745 2865 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2866 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2867
635b0cc1
MK
2868 /* Set the top of the floating-point register stack to 7. The
2869 actual value doesn't really matter, but 7 is what a normal
2870 function return would end up with if the program started out
2871 with a freshly initialized FPU. */
20a6ec49 2872 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2873 fstat |= (7 << 11);
20a6ec49 2874 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2875
635b0cc1
MK
2876 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2877 the floating-point register stack to 7, the appropriate value
2878 for the tag word is 0x3fff. */
20a6ec49 2879 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2880 }
2881 else
2882 {
875f8d0e
UW
2883 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2884 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2885
2886 if (len <= low_size)
3d7f4f49 2887 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2888 else if (len <= (low_size + high_size))
2889 {
3d7f4f49
MK
2890 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2891 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2892 len - low_size, valbuf + low_size);
ef9dff19
MK
2893 }
2894 else
8e65ff28 2895 internal_error (__FILE__, __LINE__,
e2e0b3e5 2896 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2897 }
2898}
fc338970 2899\f
ef9dff19 2900
8201327c
MK
2901/* This is the variable that is set with "set struct-convention", and
2902 its legitimate values. */
2903static const char default_struct_convention[] = "default";
2904static const char pcc_struct_convention[] = "pcc";
2905static const char reg_struct_convention[] = "reg";
40478521 2906static const char *const valid_conventions[] =
8201327c
MK
2907{
2908 default_struct_convention,
2909 pcc_struct_convention,
2910 reg_struct_convention,
2911 NULL
2912};
2913static const char *struct_convention = default_struct_convention;
2914
0e4377e1
JB
2915/* Return non-zero if TYPE, which is assumed to be a structure,
2916 a union type, or an array type, should be returned in registers
2917 for architecture GDBARCH. */
c5e656c1 2918
8201327c 2919static int
c5e656c1 2920i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2921{
c5e656c1
MK
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
8201327c 2925
0e4377e1
JB
2926 gdb_assert (code == TYPE_CODE_STRUCT
2927 || code == TYPE_CODE_UNION
2928 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2929
2930 if (struct_convention == pcc_struct_convention
2931 || (struct_convention == default_struct_convention
2932 && tdep->struct_return == pcc_struct_return))
2933 return 0;
2934
9edde48e
MK
2935 /* Structures consisting of a single `float', `double' or 'long
2936 double' member are returned in %st(0). */
2937 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2938 {
2939 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2940 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2941 return (len == 4 || len == 8 || len == 12);
2942 }
2943
c5e656c1
MK
2944 return (len == 1 || len == 2 || len == 4 || len == 8);
2945}
2946
2947/* Determine, for architecture GDBARCH, how a return value of TYPE
2948 should be returned. If it is supposed to be returned in registers,
2949 and READBUF is non-zero, read the appropriate value from REGCACHE,
2950 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2951 from WRITEBUF into REGCACHE. */
2952
2953static enum return_value_convention
6a3a010b 2954i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2955 struct type *type, struct regcache *regcache,
2956 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2957{
2958 enum type_code code = TYPE_CODE (type);
2959
5daa78cc
TJB
2960 if (((code == TYPE_CODE_STRUCT
2961 || code == TYPE_CODE_UNION
2962 || code == TYPE_CODE_ARRAY)
2963 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2964 /* Complex double and long double uses the struct return covention. */
2965 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2966 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2967 /* 128-bit decimal float uses the struct return convention. */
2968 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2969 {
2970 /* The System V ABI says that:
2971
2972 "A function that returns a structure or union also sets %eax
2973 to the value of the original address of the caller's area
2974 before it returns. Thus when the caller receives control
2975 again, the address of the returned object resides in register
2976 %eax and can be used to access the object."
2977
2978 So the ABI guarantees that we can always find the return
2979 value just after the function has returned. */
2980
0e4377e1
JB
2981 /* Note that the ABI doesn't mention functions returning arrays,
2982 which is something possible in certain languages such as Ada.
2983 In this case, the value is returned as if it was wrapped in
2984 a record, so the convention applied to records also applies
2985 to arrays. */
2986
31db7b6c
MK
2987 if (readbuf)
2988 {
2989 ULONGEST addr;
2990
2991 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2992 read_memory (addr, readbuf, TYPE_LENGTH (type));
2993 }
2994
2995 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2996 }
c5e656c1
MK
2997
2998 /* This special case is for structures consisting of a single
9edde48e
MK
2999 `float', `double' or 'long double' member. These structures are
3000 returned in %st(0). For these structures, we call ourselves
3001 recursively, changing TYPE into the type of the first member of
3002 the structure. Since that should work for all structures that
3003 have only one member, we don't bother to check the member's type
3004 here. */
c5e656c1
MK
3005 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3006 {
3007 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 3008 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3009 readbuf, writebuf);
c5e656c1
MK
3010 }
3011
3012 if (readbuf)
3013 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3014 if (writebuf)
3015 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3016
c5e656c1 3017 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3018}
3019\f
3020
27067745
UW
3021struct type *
3022i387_ext_type (struct gdbarch *gdbarch)
3023{
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025
3026 if (!tdep->i387_ext_type)
90884b2b
L
3027 {
3028 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3029 gdb_assert (tdep->i387_ext_type != NULL);
3030 }
27067745
UW
3031
3032 return tdep->i387_ext_type;
3033}
3034
1dbcd68c
WT
3035/* Construct type for pseudo BND registers. We can't use
3036 tdesc_find_type since a complement of one value has to be used
3037 to describe the upper bound. */
3038
3039static struct type *
3040i386_bnd_type (struct gdbarch *gdbarch)
3041{
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044
3045 if (!tdep->i386_bnd_type)
3046 {
870f88f7 3047 struct type *t;
1dbcd68c
WT
3048 const struct builtin_type *bt = builtin_type (gdbarch);
3049
3050 /* The type we're building is described bellow: */
3051#if 0
3052 struct __bound128
3053 {
3054 void *lbound;
3055 void *ubound; /* One complement of raw ubound field. */
3056 };
3057#endif
3058
3059 t = arch_composite_type (gdbarch,
3060 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3061
3062 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3063 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3064
3065 TYPE_NAME (t) = "builtin_type_bound128";
3066 tdep->i386_bnd_type = t;
3067 }
3068
3069 return tdep->i386_bnd_type;
3070}
3071
01f9f808
MS
3072/* Construct vector type for pseudo ZMM registers. We can't use
3073 tdesc_find_type since ZMM isn't described in target description. */
3074
3075static struct type *
3076i386_zmm_type (struct gdbarch *gdbarch)
3077{
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3079
3080 if (!tdep->i386_zmm_type)
3081 {
3082 const struct builtin_type *bt = builtin_type (gdbarch);
3083
3084 /* The type we're building is this: */
3085#if 0
3086 union __gdb_builtin_type_vec512i
3087 {
3088 int128_t uint128[4];
3089 int64_t v4_int64[8];
3090 int32_t v8_int32[16];
3091 int16_t v16_int16[32];
3092 int8_t v32_int8[64];
3093 double v4_double[8];
3094 float v8_float[16];
3095 };
3096#endif
3097
3098 struct type *t;
3099
3100 t = arch_composite_type (gdbarch,
3101 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3102 append_composite_type_field (t, "v16_float",
3103 init_vector_type (bt->builtin_float, 16));
3104 append_composite_type_field (t, "v8_double",
3105 init_vector_type (bt->builtin_double, 8));
3106 append_composite_type_field (t, "v64_int8",
3107 init_vector_type (bt->builtin_int8, 64));
3108 append_composite_type_field (t, "v32_int16",
3109 init_vector_type (bt->builtin_int16, 32));
3110 append_composite_type_field (t, "v16_int32",
3111 init_vector_type (bt->builtin_int32, 16));
3112 append_composite_type_field (t, "v8_int64",
3113 init_vector_type (bt->builtin_int64, 8));
3114 append_composite_type_field (t, "v4_int128",
3115 init_vector_type (bt->builtin_int128, 4));
3116
3117 TYPE_VECTOR (t) = 1;
3118 TYPE_NAME (t) = "builtin_type_vec512i";
3119 tdep->i386_zmm_type = t;
3120 }
3121
3122 return tdep->i386_zmm_type;
3123}
3124
c131fcee
L
3125/* Construct vector type for pseudo YMM registers. We can't use
3126 tdesc_find_type since YMM isn't described in target description. */
3127
3128static struct type *
3129i386_ymm_type (struct gdbarch *gdbarch)
3130{
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3132
3133 if (!tdep->i386_ymm_type)
3134 {
3135 const struct builtin_type *bt = builtin_type (gdbarch);
3136
3137 /* The type we're building is this: */
3138#if 0
3139 union __gdb_builtin_type_vec256i
3140 {
3141 int128_t uint128[2];
3142 int64_t v2_int64[4];
3143 int32_t v4_int32[8];
3144 int16_t v8_int16[16];
3145 int8_t v16_int8[32];
3146 double v2_double[4];
3147 float v4_float[8];
3148 };
3149#endif
3150
3151 struct type *t;
3152
3153 t = arch_composite_type (gdbarch,
3154 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3155 append_composite_type_field (t, "v8_float",
3156 init_vector_type (bt->builtin_float, 8));
3157 append_composite_type_field (t, "v4_double",
3158 init_vector_type (bt->builtin_double, 4));
3159 append_composite_type_field (t, "v32_int8",
3160 init_vector_type (bt->builtin_int8, 32));
3161 append_composite_type_field (t, "v16_int16",
3162 init_vector_type (bt->builtin_int16, 16));
3163 append_composite_type_field (t, "v8_int32",
3164 init_vector_type (bt->builtin_int32, 8));
3165 append_composite_type_field (t, "v4_int64",
3166 init_vector_type (bt->builtin_int64, 4));
3167 append_composite_type_field (t, "v2_int128",
3168 init_vector_type (bt->builtin_int128, 2));
3169
3170 TYPE_VECTOR (t) = 1;
0c5acf93 3171 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3172 tdep->i386_ymm_type = t;
3173 }
3174
3175 return tdep->i386_ymm_type;
3176}
3177
794ac428 3178/* Construct vector type for MMX registers. */
90884b2b 3179static struct type *
794ac428
UW
3180i386_mmx_type (struct gdbarch *gdbarch)
3181{
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3183
3184 if (!tdep->i386_mmx_type)
3185 {
df4df182
UW
3186 const struct builtin_type *bt = builtin_type (gdbarch);
3187
794ac428
UW
3188 /* The type we're building is this: */
3189#if 0
3190 union __gdb_builtin_type_vec64i
3191 {
3192 int64_t uint64;
3193 int32_t v2_int32[2];
3194 int16_t v4_int16[4];
3195 int8_t v8_int8[8];
3196 };
3197#endif
3198
3199 struct type *t;
3200
e9bb382b
UW
3201 t = arch_composite_type (gdbarch,
3202 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3203
3204 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3205 append_composite_type_field (t, "v2_int32",
df4df182 3206 init_vector_type (bt->builtin_int32, 2));
794ac428 3207 append_composite_type_field (t, "v4_int16",
df4df182 3208 init_vector_type (bt->builtin_int16, 4));
794ac428 3209 append_composite_type_field (t, "v8_int8",
df4df182 3210 init_vector_type (bt->builtin_int8, 8));
794ac428 3211
876cecd0 3212 TYPE_VECTOR (t) = 1;
794ac428
UW
3213 TYPE_NAME (t) = "builtin_type_vec64i";
3214 tdep->i386_mmx_type = t;
3215 }
3216
3217 return tdep->i386_mmx_type;
3218}
3219
d7a0d72c 3220/* Return the GDB type object for the "standard" data type of data in
1777feb0 3221 register REGNUM. */
d7a0d72c 3222
fff4548b 3223struct type *
90884b2b 3224i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3225{
1dbcd68c
WT
3226 if (i386_bnd_regnum_p (gdbarch, regnum))
3227 return i386_bnd_type (gdbarch);
1ba53b71
L
3228 if (i386_mmx_regnum_p (gdbarch, regnum))
3229 return i386_mmx_type (gdbarch);
c131fcee
L
3230 else if (i386_ymm_regnum_p (gdbarch, regnum))
3231 return i386_ymm_type (gdbarch);
01f9f808
MS
3232 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3233 return i386_ymm_type (gdbarch);
3234 else if (i386_zmm_regnum_p (gdbarch, regnum))
3235 return i386_zmm_type (gdbarch);
1ba53b71
L
3236 else
3237 {
3238 const struct builtin_type *bt = builtin_type (gdbarch);
3239 if (i386_byte_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int8;
3241 else if (i386_word_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int16;
3243 else if (i386_dword_regnum_p (gdbarch, regnum))
3244 return bt->builtin_int32;
01f9f808
MS
3245 else if (i386_k_regnum_p (gdbarch, regnum))
3246 return bt->builtin_int64;
1ba53b71
L
3247 }
3248
3249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3250}
3251
28fc6740 3252/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3253 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3254
3255static int
c86c27af 3256i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3257{
5716833c
MK
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3259 int mmxreg, fpreg;
28fc6740
AC
3260 ULONGEST fstat;
3261 int tos;
c86c27af 3262
5716833c 3263 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3264 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3265 tos = (fstat >> 11) & 0x7;
5716833c
MK
3266 fpreg = (mmxreg + tos) % 8;
3267
20a6ec49 3268 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3269}
3270
3543a589
TT
3271/* A helper function for us by i386_pseudo_register_read_value and
3272 amd64_pseudo_register_read_value. It does all the work but reads
3273 the data into an already-allocated value. */
3274
3275void
3276i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3277 struct regcache *regcache,
3278 int regnum,
3279 struct value *result_value)
28fc6740 3280{
975c21ab 3281 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3282 enum register_status status;
3543a589 3283 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3284
5716833c 3285 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3286 {
c86c27af
MK
3287 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3288
28fc6740 3289 /* Extract (always little endian). */
05d1431c
PA
3290 status = regcache_raw_read (regcache, fpnum, raw_buf);
3291 if (status != REG_VALID)
3543a589
TT
3292 mark_value_bytes_unavailable (result_value, 0,
3293 TYPE_LENGTH (value_type (result_value)));
3294 else
3295 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3296 }
3297 else
1ba53b71
L
3298 {
3299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3300 if (i386_bnd_regnum_p (gdbarch, regnum))
3301 {
3302 regnum -= tdep->bnd0_regnum;
1ba53b71 3303
1dbcd68c
WT
3304 /* Extract (always little endian). Read lower 128bits. */
3305 status = regcache_raw_read (regcache,
3306 I387_BND0R_REGNUM (tdep) + regnum,
3307 raw_buf);
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 16);
3310 else
3311 {
3312 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3313 LONGEST upper, lower;
3314 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3315
3316 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3317 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3318 upper = ~upper;
3319
3320 memcpy (buf, &lower, size);
3321 memcpy (buf + size, &upper, size);
3322 }
3323 }
01f9f808
MS
3324 else if (i386_k_regnum_p (gdbarch, regnum))
3325 {
3326 regnum -= tdep->k0_regnum;
3327
3328 /* Extract (always little endian). */
3329 status = regcache_raw_read (regcache,
3330 tdep->k0_regnum + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 8);
3334 else
3335 memcpy (buf, raw_buf, 8);
3336 }
3337 else if (i386_zmm_regnum_p (gdbarch, regnum))
3338 {
3339 regnum -= tdep->zmm0_regnum;
3340
3341 if (regnum < num_lower_zmm_regs)
3342 {
3343 /* Extract (always little endian). Read lower 128bits. */
3344 status = regcache_raw_read (regcache,
3345 I387_XMM0_REGNUM (tdep) + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 16);
3349 else
3350 memcpy (buf, raw_buf, 16);
3351
3352 /* Extract (always little endian). Read upper 128bits. */
3353 status = regcache_raw_read (regcache,
3354 tdep->ymm0h_regnum + regnum,
3355 raw_buf);
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 16, 16);
3358 else
3359 memcpy (buf + 16, raw_buf, 16);
3360 }
3361 else
3362 {
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache_raw_read (regcache,
3365 I387_XMM16_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_YMM16H_REGNUM (tdep) + regnum
3376 - num_lower_zmm_regs,
3377 raw_buf);
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3380 else
3381 memcpy (buf + 16, raw_buf, 16);
3382 }
3383
3384 /* Read upper 256bits. */
3385 status = regcache_raw_read (regcache,
3386 tdep->zmm0h_regnum + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 32, 32);
3390 else
3391 memcpy (buf + 32, raw_buf, 32);
3392 }
1dbcd68c 3393 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3394 {
3395 regnum -= tdep->ymm0_regnum;
3396
1777feb0 3397 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3398 status = regcache_raw_read (regcache,
3399 I387_XMM0_REGNUM (tdep) + regnum,
3400 raw_buf);
3401 if (status != REG_VALID)
3543a589
TT
3402 mark_value_bytes_unavailable (result_value, 0, 16);
3403 else
3404 memcpy (buf, raw_buf, 16);
c131fcee 3405 /* Read upper 128bits. */
05d1431c
PA
3406 status = regcache_raw_read (regcache,
3407 tdep->ymm0h_regnum + regnum,
3408 raw_buf);
3409 if (status != REG_VALID)
3543a589
TT
3410 mark_value_bytes_unavailable (result_value, 16, 32);
3411 else
3412 memcpy (buf + 16, raw_buf, 16);
c131fcee 3413 }
01f9f808
MS
3414 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3415 {
3416 regnum -= tdep->ymm16_regnum;
3417 /* Extract (always little endian). Read lower 128bits. */
3418 status = regcache_raw_read (regcache,
3419 I387_XMM16_REGNUM (tdep) + regnum,
3420 raw_buf);
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 16);
3423 else
3424 memcpy (buf, raw_buf, 16);
3425 /* Read upper 128bits. */
3426 status = regcache_raw_read (regcache,
3427 tdep->ymm16h_regnum + regnum,
3428 raw_buf);
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 16, 16);
3431 else
3432 memcpy (buf + 16, raw_buf, 16);
3433 }
c131fcee 3434 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3435 {
3436 int gpnum = regnum - tdep->ax_regnum;
3437
3438 /* Extract (always little endian). */
05d1431c
PA
3439 status = regcache_raw_read (regcache, gpnum, raw_buf);
3440 if (status != REG_VALID)
3543a589
TT
3441 mark_value_bytes_unavailable (result_value, 0,
3442 TYPE_LENGTH (value_type (result_value)));
3443 else
3444 memcpy (buf, raw_buf, 2);
1ba53b71
L
3445 }
3446 else if (i386_byte_regnum_p (gdbarch, regnum))
3447 {
1ba53b71
L
3448 int gpnum = regnum - tdep->al_regnum;
3449
3450 /* Extract (always little endian). We read both lower and
3451 upper registers. */
05d1431c
PA
3452 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3453 if (status != REG_VALID)
3543a589
TT
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else if (gpnum >= 4)
1ba53b71
L
3457 memcpy (buf, raw_buf + 1, 1);
3458 else
3459 memcpy (buf, raw_buf, 1);
3460 }
3461 else
3462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3463 }
3543a589
TT
3464}
3465
3466static struct value *
3467i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3468 struct regcache *regcache,
3469 int regnum)
3470{
3471 struct value *result;
3472
3473 result = allocate_value (register_type (gdbarch, regnum));
3474 VALUE_LVAL (result) = lval_register;
3475 VALUE_REGNUM (result) = regnum;
3476
3477 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3478
3543a589 3479 return result;
28fc6740
AC
3480}
3481
1ba53b71 3482void
28fc6740 3483i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3484 int regnum, const gdb_byte *buf)
28fc6740 3485{
975c21ab 3486 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3487
5716833c 3488 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3489 {
c86c27af
MK
3490 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3491
28fc6740 3492 /* Read ... */
1ba53b71 3493 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3494 /* ... Modify ... (always little endian). */
1ba53b71 3495 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3496 /* ... Write. */
1ba53b71 3497 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3498 }
3499 else
1ba53b71
L
3500 {
3501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3502
1dbcd68c
WT
3503 if (i386_bnd_regnum_p (gdbarch, regnum))
3504 {
3505 ULONGEST upper, lower;
3506 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3508
3509 /* New values from input value. */
3510 regnum -= tdep->bnd0_regnum;
3511 lower = extract_unsigned_integer (buf, size, byte_order);
3512 upper = extract_unsigned_integer (buf + size, size, byte_order);
3513
3514 /* Fetching register buffer. */
3515 regcache_raw_read (regcache,
3516 I387_BND0R_REGNUM (tdep) + regnum,
3517 raw_buf);
3518
3519 upper = ~upper;
3520
3521 /* Set register bits. */
3522 memcpy (raw_buf, &lower, 8);
3523 memcpy (raw_buf + 8, &upper, 8);
3524
3525
3526 regcache_raw_write (regcache,
3527 I387_BND0R_REGNUM (tdep) + regnum,
3528 raw_buf);
3529 }
01f9f808
MS
3530 else if (i386_k_regnum_p (gdbarch, regnum))
3531 {
3532 regnum -= tdep->k0_regnum;
3533
3534 regcache_raw_write (regcache,
3535 tdep->k0_regnum + regnum,
3536 buf);
3537 }
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->zmm0_regnum;
3541
3542 if (regnum < num_lower_zmm_regs)
3543 {
3544 /* Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM0_REGNUM (tdep) + regnum,
3547 buf);
3548 /* Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_YMM0_REGNUM (tdep) + regnum,
3551 buf + 16);
3552 }
3553 else
3554 {
3555 /* Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs,
3559 buf);
3560 /* Write upper 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs,
3564 buf + 16);
3565 }
3566 /* Write upper 256bits. */
3567 regcache_raw_write (regcache,
3568 tdep->zmm0h_regnum + regnum,
3569 buf + 32);
3570 }
1dbcd68c 3571 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3572 {
3573 regnum -= tdep->ymm0_regnum;
3574
3575 /* ... Write lower 128bits. */
3576 regcache_raw_write (regcache,
3577 I387_XMM0_REGNUM (tdep) + regnum,
3578 buf);
3579 /* ... Write upper 128bits. */
3580 regcache_raw_write (regcache,
3581 tdep->ymm0h_regnum + regnum,
3582 buf + 16);
3583 }
01f9f808
MS
3584 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3585 {
3586 regnum -= tdep->ymm16_regnum;
3587
3588 /* ... Write lower 128bits. */
3589 regcache_raw_write (regcache,
3590 I387_XMM16_REGNUM (tdep) + regnum,
3591 buf);
3592 /* ... Write upper 128bits. */
3593 regcache_raw_write (regcache,
3594 tdep->ymm16h_regnum + regnum,
3595 buf + 16);
3596 }
c131fcee 3597 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3598 {
3599 int gpnum = regnum - tdep->ax_regnum;
3600
3601 /* Read ... */
3602 regcache_raw_read (regcache, gpnum, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 memcpy (raw_buf, buf, 2);
3605 /* ... Write. */
3606 regcache_raw_write (regcache, gpnum, raw_buf);
3607 }
3608 else if (i386_byte_regnum_p (gdbarch, regnum))
3609 {
1ba53b71
L
3610 int gpnum = regnum - tdep->al_regnum;
3611
3612 /* Read ... We read both lower and upper registers. */
3613 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3614 /* ... Modify ... (always little endian). */
3615 if (gpnum >= 4)
3616 memcpy (raw_buf + 1, buf, 1);
3617 else
3618 memcpy (raw_buf, buf, 1);
3619 /* ... Write. */
3620 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3621 }
3622 else
3623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3624 }
28fc6740 3625}
62e5fd57
MK
3626
3627/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3628
3629int
3630i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3631 struct agent_expr *ax, int regnum)
3632{
3633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3634
3635 if (i386_mmx_regnum_p (gdbarch, regnum))
3636 {
3637 /* MMX to FPU register mapping depends on current TOS. Let's just
3638 not care and collect everything... */
3639 int i;
3640
3641 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3642 for (i = 0; i < 8; i++)
3643 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3644 return 0;
3645 }
3646 else if (i386_bnd_regnum_p (gdbarch, regnum))
3647 {
3648 regnum -= tdep->bnd0_regnum;
3649 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3650 return 0;
3651 }
3652 else if (i386_k_regnum_p (gdbarch, regnum))
3653 {
3654 regnum -= tdep->k0_regnum;
3655 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3656 return 0;
3657 }
3658 else if (i386_zmm_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->zmm0_regnum;
3661 if (regnum < num_lower_zmm_regs)
3662 {
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3665 }
3666 else
3667 {
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3669 - num_lower_zmm_regs);
3670 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3671 - num_lower_zmm_regs);
3672 }
3673 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm0_regnum;
3679 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3684 {
3685 regnum -= tdep->ymm16_regnum;
3686 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3687 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3688 return 0;
3689 }
3690 else if (i386_word_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->ax_regnum;
3693
3694 ax_reg_mask (ax, gpnum);
3695 return 0;
3696 }
3697 else if (i386_byte_regnum_p (gdbarch, regnum))
3698 {
3699 int gpnum = regnum - tdep->al_regnum;
3700
3701 ax_reg_mask (ax, gpnum % 4);
3702 return 0;
3703 }
3704 else
3705 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3706 return 1;
3707}
ff2e87ac
AC
3708\f
3709
ff2e87ac
AC
3710/* Return the register number of the register allocated by GCC after
3711 REGNUM, or -1 if there is no such register. */
3712
3713static int
3714i386_next_regnum (int regnum)
3715{
3716 /* GCC allocates the registers in the order:
3717
3718 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3719
3720 Since storing a variable in %esp doesn't make any sense we return
3721 -1 for %ebp and for %esp itself. */
3722 static int next_regnum[] =
3723 {
3724 I386_EDX_REGNUM, /* Slot for %eax. */
3725 I386_EBX_REGNUM, /* Slot for %ecx. */
3726 I386_ECX_REGNUM, /* Slot for %edx. */
3727 I386_ESI_REGNUM, /* Slot for %ebx. */
3728 -1, -1, /* Slots for %esp and %ebp. */
3729 I386_EDI_REGNUM, /* Slot for %esi. */
3730 I386_EBP_REGNUM /* Slot for %edi. */
3731 };
3732
de5b9bb9 3733 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3734 return next_regnum[regnum];
28fc6740 3735
ff2e87ac
AC
3736 return -1;
3737}
3738
3739/* Return nonzero if a value of type TYPE stored in register REGNUM
3740 needs any special handling. */
d7a0d72c 3741
3a1e71e3 3742static int
1777feb0
MS
3743i386_convert_register_p (struct gdbarch *gdbarch,
3744 int regnum, struct type *type)
d7a0d72c 3745{
de5b9bb9
MK
3746 int len = TYPE_LENGTH (type);
3747
ff2e87ac
AC
3748 /* Values may be spread across multiple registers. Most debugging
3749 formats aren't expressive enough to specify the locations, so
3750 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3751 have a length that is a multiple of the word size, since GCC
3752 doesn't seem to put any other types into registers. */
3753 if (len > 4 && len % 4 == 0)
3754 {
3755 int last_regnum = regnum;
3756
3757 while (len > 4)
3758 {
3759 last_regnum = i386_next_regnum (last_regnum);
3760 len -= 4;
3761 }
3762
3763 if (last_regnum != -1)
3764 return 1;
3765 }
ff2e87ac 3766
0abe36f5 3767 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3768}
3769
ff2e87ac
AC
3770/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3771 return its contents in TO. */
ac27f131 3772
8dccd430 3773static int
ff2e87ac 3774i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3775 struct type *type, gdb_byte *to,
3776 int *optimizedp, int *unavailablep)
ac27f131 3777{
20a6ec49 3778 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3779 int len = TYPE_LENGTH (type);
de5b9bb9 3780
20a6ec49 3781 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3782 return i387_register_to_value (frame, regnum, type, to,
3783 optimizedp, unavailablep);
ff2e87ac 3784
fd35795f 3785 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3786
3787 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3788
de5b9bb9
MK
3789 while (len > 0)
3790 {
3791 gdb_assert (regnum != -1);
20a6ec49 3792 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3793
8dccd430
PA
3794 if (!get_frame_register_bytes (frame, regnum, 0,
3795 register_size (gdbarch, regnum),
3796 to, optimizedp, unavailablep))
3797 return 0;
3798
de5b9bb9
MK
3799 regnum = i386_next_regnum (regnum);
3800 len -= 4;
42835c2b 3801 to += 4;
de5b9bb9 3802 }
8dccd430
PA
3803
3804 *optimizedp = *unavailablep = 0;
3805 return 1;
ac27f131
MK
3806}
3807
ff2e87ac
AC
3808/* Write the contents FROM of a value of type TYPE into register
3809 REGNUM in frame FRAME. */
ac27f131 3810
3a1e71e3 3811static void
ff2e87ac 3812i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3813 struct type *type, const gdb_byte *from)
ac27f131 3814{
de5b9bb9 3815 int len = TYPE_LENGTH (type);
de5b9bb9 3816
20a6ec49 3817 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3818 {
d532c08f
MK
3819 i387_value_to_register (frame, regnum, type, from);
3820 return;
3821 }
3d261580 3822
fd35795f 3823 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3824
3825 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3826
de5b9bb9
MK
3827 while (len > 0)
3828 {
3829 gdb_assert (regnum != -1);
875f8d0e 3830 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3831
42835c2b 3832 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3833 regnum = i386_next_regnum (regnum);
3834 len -= 4;
42835c2b 3835 from += 4;
de5b9bb9 3836 }
ac27f131 3837}
ff2e87ac 3838\f
7fdafb5a
MK
3839/* Supply register REGNUM from the buffer specified by GREGS and LEN
3840 in the general-purpose register set REGSET to register cache
3841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3842
20187ed5 3843void
473f17b0
MK
3844i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3845 int regnum, const void *gregs, size_t len)
3846{
09424cff
AA
3847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3849 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3850 int i;
3851
1528345d 3852 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3853
3854 for (i = 0; i < tdep->gregset_num_regs; i++)
3855 {
3856 if ((regnum == i || regnum == -1)
3857 && tdep->gregset_reg_offset[i] != -1)
3858 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3859 }
3860}
3861
7fdafb5a
MK
3862/* Collect register REGNUM from the register cache REGCACHE and store
3863 it in the buffer specified by GREGS and LEN as described by the
3864 general-purpose register set REGSET. If REGNUM is -1, do this for
3865 all registers in REGSET. */
3866
ecc37a5a 3867static void
7fdafb5a
MK
3868i386_collect_gregset (const struct regset *regset,
3869 const struct regcache *regcache,
3870 int regnum, void *gregs, size_t len)
3871{
09424cff
AA
3872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3873 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3874 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3875 int i;
3876
1528345d 3877 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3878
3879 for (i = 0; i < tdep->gregset_num_regs; i++)
3880 {
3881 if ((regnum == i || regnum == -1)
3882 && tdep->gregset_reg_offset[i] != -1)
3883 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3884 }
3885}
3886
3887/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3888 in the floating-point register set REGSET to register cache
3889 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3890
3891static void
3892i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3893 int regnum, const void *fpregs, size_t len)
3894{
09424cff
AA
3895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3896 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3897
66a72d25
MK
3898 if (len == I387_SIZEOF_FXSAVE)
3899 {
3900 i387_supply_fxsave (regcache, regnum, fpregs);
3901 return;
3902 }
3903
1528345d 3904 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3905 i387_supply_fsave (regcache, regnum, fpregs);
3906}
8446b36a 3907
2f305df1
MK
3908/* Collect register REGNUM from the register cache REGCACHE and store
3909 it in the buffer specified by FPREGS and LEN as described by the
3910 floating-point register set REGSET. If REGNUM is -1, do this for
3911 all registers in REGSET. */
7fdafb5a
MK
3912
3913static void
3914i386_collect_fpregset (const struct regset *regset,
3915 const struct regcache *regcache,
3916 int regnum, void *fpregs, size_t len)
3917{
09424cff
AA
3918 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3919 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3920
3921 if (len == I387_SIZEOF_FXSAVE)
3922 {
3923 i387_collect_fxsave (regcache, regnum, fpregs);
3924 return;
3925 }
3926
1528345d 3927 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3928 i387_collect_fsave (regcache, regnum, fpregs);
3929}
3930
ecc37a5a
AA
3931/* Register set definitions. */
3932
3933const struct regset i386_gregset =
3934 {
3935 NULL, i386_supply_gregset, i386_collect_gregset
3936 };
3937
8f0435f7 3938const struct regset i386_fpregset =
ecc37a5a
AA
3939 {
3940 NULL, i386_supply_fpregset, i386_collect_fpregset
3941 };
3942
490496c3 3943/* Default iterator over core file register note sections. */
8446b36a 3944
490496c3
AA
3945void
3946i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3947 iterate_over_regset_sections_cb *cb,
3948 void *cb_data,
3949 const struct regcache *regcache)
8446b36a
MK
3950{
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3952
490496c3
AA
3953 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3954 if (tdep->sizeof_fpregset)
3955 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3956}
473f17b0 3957\f
fc338970 3958
fc338970 3959/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3960
3961CORE_ADDR
e17a4113
UW
3962i386_pe_skip_trampoline_code (struct frame_info *frame,
3963 CORE_ADDR pc, char *name)
c906108c 3964{
e17a4113
UW
3965 struct gdbarch *gdbarch = get_frame_arch (frame);
3966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3967
3968 /* jmp *(dest) */
3969 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3970 {
e17a4113
UW
3971 unsigned long indirect =
3972 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3973 struct minimal_symbol *indsym =
7cbd4a93 3974 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3975 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3976
c5aa993b 3977 if (symname)
c906108c 3978 {
61012eef
GB
3979 if (startswith (symname, "__imp_")
3980 || startswith (symname, "_imp_"))
e17a4113
UW
3981 return name ? 1 :
3982 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3983 }
3984 }
fc338970 3985 return 0; /* Not a trampoline. */
c906108c 3986}
fc338970
MK
3987\f
3988
10458914
DJ
3989/* Return whether the THIS_FRAME corresponds to a sigtramp
3990 routine. */
8201327c 3991
4bd207ef 3992int
10458914 3993i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3994{
10458914 3995 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3996 const char *name;
911bc6ee
MK
3997
3998 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3999 return (name && strcmp ("_sigtramp", name) == 0);
4000}
4001\f
4002
fc338970
MK
4003/* We have two flavours of disassembly. The machinery on this page
4004 deals with switching between those. */
c906108c
SS
4005
4006static int
a89aa300 4007i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 4008{
5e3397bb
MK
4009 gdb_assert (disassembly_flavor == att_flavor
4010 || disassembly_flavor == intel_flavor);
4011
f995bbe8 4012 info->disassembler_options = disassembly_flavor;
5e3397bb
MK
4013
4014 return print_insn_i386 (pc, info);
7a292a7a 4015}
fc338970 4016\f
3ce1502b 4017
8201327c
MK
4018/* There are a few i386 architecture variants that differ only
4019 slightly from the generic i386 target. For now, we don't give them
4020 their own source file, but include them here. As a consequence,
4021 they'll always be included. */
3ce1502b 4022
8201327c 4023/* System V Release 4 (SVR4). */
3ce1502b 4024
10458914
DJ
4025/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4026 routine. */
911bc6ee 4027
8201327c 4028static int
10458914 4029i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4030{
10458914 4031 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4032 const char *name;
911bc6ee 4033
05b4bd79 4034 /* The origin of these symbols is currently unknown. */
911bc6ee 4035 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4036 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4037 || strcmp ("sigvechandler", name) == 0));
4038}
d2a7c97a 4039
10458914
DJ
4040/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4041 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4042
3a1e71e3 4043static CORE_ADDR
10458914 4044i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4045{
e17a4113
UW
4046 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4048 gdb_byte buf[4];
acd5c798 4049 CORE_ADDR sp;
3ce1502b 4050
10458914 4051 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4052 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4053
e17a4113 4054 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4055}
55aa24fb
SDJ
4056
4057\f
4058
4059/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4060 gdbarch.h. */
4061
4062int
4063i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4064{
4065 return (*s == '$' /* Literal number. */
4066 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4067 || (*s == '(' && s[1] == '%') /* Register indirection. */
4068 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4069}
4070
5acfdbae
SDJ
4071/* Helper function for i386_stap_parse_special_token.
4072
4073 This function parses operands of the form `-8+3+1(%rbp)', which
4074 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4075
4076 Return 1 if the operand was parsed successfully, zero
4077 otherwise. */
4078
4079static int
4080i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4081 struct stap_parse_info *p)
4082{
4083 const char *s = p->arg;
4084
4085 if (isdigit (*s) || *s == '-' || *s == '+')
4086 {
4087 int got_minus[3];
4088 int i;
4089 long displacements[3];
4090 const char *start;
4091 char *regname;
4092 int len;
4093 struct stoken str;
4094 char *endp;
4095
4096 got_minus[0] = 0;
4097 if (*s == '+')
4098 ++s;
4099 else if (*s == '-')
4100 {
4101 ++s;
4102 got_minus[0] = 1;
4103 }
4104
d7b30f67
SDJ
4105 if (!isdigit ((unsigned char) *s))
4106 return 0;
4107
5acfdbae
SDJ
4108 displacements[0] = strtol (s, &endp, 10);
4109 s = endp;
4110
4111 if (*s != '+' && *s != '-')
4112 {
4113 /* We are not dealing with a triplet. */
4114 return 0;
4115 }
4116
4117 got_minus[1] = 0;
4118 if (*s == '+')
4119 ++s;
4120 else
4121 {
4122 ++s;
4123 got_minus[1] = 1;
4124 }
4125
d7b30f67
SDJ
4126 if (!isdigit ((unsigned char) *s))
4127 return 0;
4128
5acfdbae
SDJ
4129 displacements[1] = strtol (s, &endp, 10);
4130 s = endp;
4131
4132 if (*s != '+' && *s != '-')
4133 {
4134 /* We are not dealing with a triplet. */
4135 return 0;
4136 }
4137
4138 got_minus[2] = 0;
4139 if (*s == '+')
4140 ++s;
4141 else
4142 {
4143 ++s;
4144 got_minus[2] = 1;
4145 }
4146
d7b30f67
SDJ
4147 if (!isdigit ((unsigned char) *s))
4148 return 0;
4149
5acfdbae
SDJ
4150 displacements[2] = strtol (s, &endp, 10);
4151 s = endp;
4152
4153 if (*s != '(' || s[1] != '%')
4154 return 0;
4155
4156 s += 2;
4157 start = s;
4158
4159 while (isalnum (*s))
4160 ++s;
4161
4162 if (*s++ != ')')
4163 return 0;
4164
d7b30f67 4165 len = s - start - 1;
224c3ddb 4166 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4167
4168 strncpy (regname, start, len);
4169 regname[len] = '\0';
4170
4171 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4172 error (_("Invalid register name `%s' on expression `%s'."),
4173 regname, p->saved_arg);
4174
4175 for (i = 0; i < 3; i++)
4176 {
410a0ff2
SDJ
4177 write_exp_elt_opcode (&p->pstate, OP_LONG);
4178 write_exp_elt_type
4179 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4180 write_exp_elt_longcst (&p->pstate, displacements[i]);
4181 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4182 if (got_minus[i])
410a0ff2 4183 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4184 }
4185
410a0ff2 4186 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4187 str.ptr = regname;
4188 str.length = len;
410a0ff2
SDJ
4189 write_exp_string (&p->pstate, str);
4190 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4191
410a0ff2
SDJ
4192 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4193 write_exp_elt_type (&p->pstate,
4194 builtin_type (gdbarch)->builtin_data_ptr);
4195 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4196
410a0ff2
SDJ
4197 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4198 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4199 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4200
410a0ff2
SDJ
4201 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4202 write_exp_elt_type (&p->pstate,
4203 lookup_pointer_type (p->arg_type));
4204 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4205
410a0ff2 4206 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4207
4208 p->arg = s;
4209
4210 return 1;
4211 }
4212
4213 return 0;
4214}
4215
4216/* Helper function for i386_stap_parse_special_token.
4217
4218 This function parses operands of the form `register base +
4219 (register index * size) + offset', as represented in
4220 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4221
4222 Return 1 if the operand was parsed successfully, zero
4223 otherwise. */
4224
4225static int
4226i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4227 struct stap_parse_info *p)
4228{
4229 const char *s = p->arg;
4230
4231 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4232 {
4233 int offset_minus = 0;
4234 long offset = 0;
4235 int size_minus = 0;
4236 long size = 0;
4237 const char *start;
4238 char *base;
4239 int len_base;
4240 char *index;
4241 int len_index;
4242 struct stoken base_token, index_token;
4243
4244 if (*s == '+')
4245 ++s;
4246 else if (*s == '-')
4247 {
4248 ++s;
4249 offset_minus = 1;
4250 }
4251
4252 if (offset_minus && !isdigit (*s))
4253 return 0;
4254
4255 if (isdigit (*s))
4256 {
4257 char *endp;
4258
4259 offset = strtol (s, &endp, 10);
4260 s = endp;
4261 }
4262
4263 if (*s != '(' || s[1] != '%')
4264 return 0;
4265
4266 s += 2;
4267 start = s;
4268
4269 while (isalnum (*s))
4270 ++s;
4271
4272 if (*s != ',' || s[1] != '%')
4273 return 0;
4274
4275 len_base = s - start;
224c3ddb 4276 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4277 strncpy (base, start, len_base);
4278 base[len_base] = '\0';
4279
4280 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4281 error (_("Invalid register name `%s' on expression `%s'."),
4282 base, p->saved_arg);
4283
4284 s += 2;
4285 start = s;
4286
4287 while (isalnum (*s))
4288 ++s;
4289
4290 len_index = s - start;
224c3ddb 4291 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4292 strncpy (index, start, len_index);
4293 index[len_index] = '\0';
4294
4295 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4296 error (_("Invalid register name `%s' on expression `%s'."),
4297 index, p->saved_arg);
4298
4299 if (*s != ',' && *s != ')')
4300 return 0;
4301
4302 if (*s == ',')
4303 {
4304 char *endp;
4305
4306 ++s;
4307 if (*s == '+')
4308 ++s;
4309 else if (*s == '-')
4310 {
4311 ++s;
4312 size_minus = 1;
4313 }
4314
4315 size = strtol (s, &endp, 10);
4316 s = endp;
4317
4318 if (*s != ')')
4319 return 0;
4320 }
4321
4322 ++s;
4323
4324 if (offset)
4325 {
410a0ff2
SDJ
4326 write_exp_elt_opcode (&p->pstate, OP_LONG);
4327 write_exp_elt_type (&p->pstate,
4328 builtin_type (gdbarch)->builtin_long);
4329 write_exp_elt_longcst (&p->pstate, offset);
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4331 if (offset_minus)
410a0ff2 4332 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4333 }
4334
410a0ff2 4335 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4336 base_token.ptr = base;
4337 base_token.length = len_base;
410a0ff2
SDJ
4338 write_exp_string (&p->pstate, base_token);
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4340
4341 if (offset)
410a0ff2 4342 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4343
410a0ff2 4344 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4345 index_token.ptr = index;
4346 index_token.length = len_index;
410a0ff2
SDJ
4347 write_exp_string (&p->pstate, index_token);
4348 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4349
4350 if (size)
4351 {
410a0ff2
SDJ
4352 write_exp_elt_opcode (&p->pstate, OP_LONG);
4353 write_exp_elt_type (&p->pstate,
4354 builtin_type (gdbarch)->builtin_long);
4355 write_exp_elt_longcst (&p->pstate, size);
4356 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4357 if (size_minus)
410a0ff2
SDJ
4358 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4359 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4360 }
4361
410a0ff2 4362 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4363
410a0ff2
SDJ
4364 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4365 write_exp_elt_type (&p->pstate,
4366 lookup_pointer_type (p->arg_type));
4367 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4368
410a0ff2 4369 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4370
4371 p->arg = s;
4372
4373 return 1;
4374 }
4375
4376 return 0;
4377}
4378
55aa24fb
SDJ
4379/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4380 gdbarch.h. */
4381
4382int
4383i386_stap_parse_special_token (struct gdbarch *gdbarch,
4384 struct stap_parse_info *p)
4385{
55aa24fb
SDJ
4386 /* In order to parse special tokens, we use a state-machine that go
4387 through every known token and try to get a match. */
4388 enum
4389 {
4390 TRIPLET,
4391 THREE_ARG_DISPLACEMENT,
4392 DONE
570dc176
TT
4393 };
4394 int current_state;
55aa24fb
SDJ
4395
4396 current_state = TRIPLET;
4397
4398 /* The special tokens to be parsed here are:
4399
4400 - `register base + (register index * size) + offset', as represented
4401 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4402
4403 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4404 `*(-8 + 3 - 1 + (void *) $eax)'. */
4405
4406 while (current_state != DONE)
4407 {
55aa24fb
SDJ
4408 switch (current_state)
4409 {
4410 case TRIPLET:
5acfdbae
SDJ
4411 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4412 return 1;
4413 break;
4414
55aa24fb 4415 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4416 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4417 return 1;
4418 break;
55aa24fb
SDJ
4419 }
4420
4421 /* Advancing to the next state. */
4422 ++current_state;
4423 }
4424
4425 return 0;
4426}
4427
8201327c 4428\f
3ce1502b 4429
ac04f72b
TT
4430/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4431 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4432
4433static const char *
4434i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4435{
4436 return "(x86_64|i.86)";
4437}
4438
4439\f
4440
8201327c 4441/* Generic ELF. */
d2a7c97a 4442
8201327c
MK
4443void
4444i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4445{
05c0465e
SDJ
4446 static const char *const stap_integer_prefixes[] = { "$", NULL };
4447 static const char *const stap_register_prefixes[] = { "%", NULL };
4448 static const char *const stap_register_indirection_prefixes[] = { "(",
4449 NULL };
4450 static const char *const stap_register_indirection_suffixes[] = { ")",
4451 NULL };
4452
c4fc7f1b
MK
4453 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4454 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4455
4456 /* Registering SystemTap handlers. */
05c0465e
SDJ
4457 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4458 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4459 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4460 stap_register_indirection_prefixes);
4461 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4462 stap_register_indirection_suffixes);
55aa24fb
SDJ
4463 set_gdbarch_stap_is_single_operand (gdbarch,
4464 i386_stap_is_single_operand);
4465 set_gdbarch_stap_parse_special_token (gdbarch,
4466 i386_stap_parse_special_token);
ac04f72b
TT
4467
4468 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8201327c 4469}
3ce1502b 4470
8201327c 4471/* System V Release 4 (SVR4). */
3ce1502b 4472
8201327c
MK
4473void
4474i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4475{
4476 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4477
8201327c
MK
4478 /* System V Release 4 uses ELF. */
4479 i386_elf_init_abi (info, gdbarch);
3ce1502b 4480
dfe01d39 4481 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4482 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4483
911bc6ee 4484 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4485 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4486 tdep->sc_pc_offset = 36 + 14 * 4;
4487 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4488
8201327c 4489 tdep->jb_pc_offset = 20;
3ce1502b
MK
4490}
4491
8201327c 4492/* DJGPP. */
3ce1502b 4493
3a1e71e3 4494static void
8201327c 4495i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4496{
8201327c 4497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4498
911bc6ee
MK
4499 /* DJGPP doesn't have any special frames for signal handlers. */
4500 tdep->sigtramp_p = NULL;
3ce1502b 4501
8201327c 4502 tdep->jb_pc_offset = 36;
15430fc0
EZ
4503
4504 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4505 if (! tdesc_has_registers (info.target_desc))
4506 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4507
4508 /* Native compiler is GCC, which uses the SVR4 register numbering
4509 even in COFF and STABS. See the comment in i386_gdbarch_init,
4510 before the calls to set_gdbarch_stab_reg_to_regnum and
4511 set_gdbarch_sdb_reg_to_regnum. */
4512 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4513 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4514
4515 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
ac04f72b
TT
4516
4517 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
53375380
PA
4518
4519 set_gdbarch_wchar_bit (gdbarch, 16);
4520 set_gdbarch_wchar_signed (gdbarch, 0);
3ce1502b 4521}
8201327c 4522\f
2acceee2 4523
38c968cf
AC
4524/* i386 register groups. In addition to the normal groups, add "mmx"
4525 and "sse". */
4526
4527static struct reggroup *i386_sse_reggroup;
4528static struct reggroup *i386_mmx_reggroup;
4529
4530static void
4531i386_init_reggroups (void)
4532{
4533 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4534 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4535}
4536
4537static void
4538i386_add_reggroups (struct gdbarch *gdbarch)
4539{
4540 reggroup_add (gdbarch, i386_sse_reggroup);
4541 reggroup_add (gdbarch, i386_mmx_reggroup);
4542 reggroup_add (gdbarch, general_reggroup);
4543 reggroup_add (gdbarch, float_reggroup);
4544 reggroup_add (gdbarch, all_reggroup);
4545 reggroup_add (gdbarch, save_reggroup);
4546 reggroup_add (gdbarch, restore_reggroup);
4547 reggroup_add (gdbarch, vector_reggroup);
4548 reggroup_add (gdbarch, system_reggroup);
4549}
4550
4551int
4552i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4553 struct reggroup *group)
4554{
c131fcee
L
4555 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4556 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4557 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4558 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4559 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4560 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4561
1ba53b71
L
4562 /* Don't include pseudo registers, except for MMX, in any register
4563 groups. */
c131fcee 4564 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4565 return 0;
4566
c131fcee 4567 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4568 return 0;
4569
c131fcee 4570 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4571 return 0;
4572
4573 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4574 if (group == i386_mmx_reggroup)
4575 return mmx_regnum_p;
1ba53b71 4576
51547df6 4577 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4578 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4579 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4580 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4581 if (group == i386_sse_reggroup)
01f9f808 4582 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4583
4584 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4585 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4586 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4587
22049425
MS
4588 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4589 == X86_XSTATE_AVX_AVX512_MASK);
4590 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4591 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4592 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4593 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4594
38c968cf 4595 if (group == vector_reggroup)
c131fcee 4596 return (mmx_regnum_p
01f9f808
MS
4597 || (zmm_regnum_p && avx512_p)
4598 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4599 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4600 || mxcsr_regnum_p);
1ba53b71
L
4601
4602 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4603 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4604 if (group == float_reggroup)
4605 return fp_regnum_p;
1ba53b71 4606
c131fcee
L
4607 /* For "info reg all", don't include upper YMM registers nor XMM
4608 registers when AVX is supported. */
4609 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4610 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4611 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4612 if (group == all_reggroup
01f9f808
MS
4613 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4614 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4615 || ymmh_regnum_p
4616 || ymmh_avx512_regnum_p
4617 || zmmh_regnum_p))
c131fcee
L
4618 return 0;
4619
1dbcd68c
WT
4620 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4621 if (group == all_reggroup
df7e5265 4622 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4623 return bnd_regnum_p;
4624
4625 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4626 if (group == all_reggroup
df7e5265 4627 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4628 return 0;
4629
4630 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4631 if (group == all_reggroup
df7e5265 4632 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4633 return mpx_ctrl_regnum_p;
4634
38c968cf 4635 if (group == general_reggroup)
1ba53b71
L
4636 return (!fp_regnum_p
4637 && !mmx_regnum_p
c131fcee
L
4638 && !mxcsr_regnum_p
4639 && !xmm_regnum_p
01f9f808 4640 && !xmm_avx512_regnum_p
c131fcee 4641 && !ymm_regnum_p
1dbcd68c 4642 && !ymmh_regnum_p
01f9f808
MS
4643 && !ymm_avx512_regnum_p
4644 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4645 && !bndr_regnum_p
4646 && !bnd_regnum_p
01f9f808
MS
4647 && !mpx_ctrl_regnum_p
4648 && !zmm_regnum_p
51547df6
MS
4649 && !zmmh_regnum_p
4650 && !pkru_regnum_p);
acd5c798 4651
38c968cf
AC
4652 return default_register_reggroup_p (gdbarch, regnum, group);
4653}
38c968cf 4654\f
acd5c798 4655
f837910f
MK
4656/* Get the ARGIth function argument for the current function. */
4657
42c466d7 4658static CORE_ADDR
143985b7
AF
4659i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4660 struct type *type)
4661{
e17a4113
UW
4662 struct gdbarch *gdbarch = get_frame_arch (frame);
4663 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4664 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4665 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4666}
4667
7ad10968
HZ
4668#define PREFIX_REPZ 0x01
4669#define PREFIX_REPNZ 0x02
4670#define PREFIX_LOCK 0x04
4671#define PREFIX_DATA 0x08
4672#define PREFIX_ADDR 0x10
473f17b0 4673
7ad10968
HZ
4674/* operand size */
4675enum
4676{
4677 OT_BYTE = 0,
4678 OT_WORD,
4679 OT_LONG,
cf648174 4680 OT_QUAD,
a3c4230a 4681 OT_DQUAD,
7ad10968 4682};
473f17b0 4683
7ad10968
HZ
4684/* i386 arith/logic operations */
4685enum
4686{
4687 OP_ADDL,
4688 OP_ORL,
4689 OP_ADCL,
4690 OP_SBBL,
4691 OP_ANDL,
4692 OP_SUBL,
4693 OP_XORL,
4694 OP_CMPL,
4695};
5716833c 4696
7ad10968
HZ
4697struct i386_record_s
4698{
cf648174 4699 struct gdbarch *gdbarch;
7ad10968 4700 struct regcache *regcache;
df61f520 4701 CORE_ADDR orig_addr;
7ad10968
HZ
4702 CORE_ADDR addr;
4703 int aflag;
4704 int dflag;
4705 int override;
4706 uint8_t modrm;
4707 uint8_t mod, reg, rm;
4708 int ot;
cf648174
HZ
4709 uint8_t rex_x;
4710 uint8_t rex_b;
4711 int rip_offset;
4712 int popl_esp_hack;
4713 const int *regmap;
7ad10968 4714};
5716833c 4715
99c1624c
PA
4716/* Parse the "modrm" part of the memory address irp->addr points at.
4717 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4718
7ad10968
HZ
4719static int
4720i386_record_modrm (struct i386_record_s *irp)
4721{
cf648174 4722 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4723
4ffa4fc7
PA
4724 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4725 return -1;
4726
7ad10968
HZ
4727 irp->addr++;
4728 irp->mod = (irp->modrm >> 6) & 3;
4729 irp->reg = (irp->modrm >> 3) & 7;
4730 irp->rm = irp->modrm & 7;
5716833c 4731
7ad10968
HZ
4732 return 0;
4733}
d2a7c97a 4734
99c1624c
PA
4735/* Extract the memory address that the current instruction writes to,
4736 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4737
7ad10968 4738static int
cf648174 4739i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4740{
cf648174 4741 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4742 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4743 gdb_byte buf[4];
4744 ULONGEST offset64;
21d0e8a4 4745
7ad10968 4746 *addr = 0;
1e87984a 4747 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4748 {
1e87984a 4749 /* 32/64 bits */
7ad10968
HZ
4750 int havesib = 0;
4751 uint8_t scale = 0;
648d0c8b 4752 uint8_t byte;
7ad10968
HZ
4753 uint8_t index = 0;
4754 uint8_t base = irp->rm;
896fb97d 4755
7ad10968
HZ
4756 if (base == 4)
4757 {
4758 havesib = 1;
4ffa4fc7
PA
4759 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4760 return -1;
7ad10968 4761 irp->addr++;
648d0c8b
MS
4762 scale = (byte >> 6) & 3;
4763 index = ((byte >> 3) & 7) | irp->rex_x;
4764 base = (byte & 7);
7ad10968 4765 }
cf648174 4766 base |= irp->rex_b;
21d0e8a4 4767
7ad10968
HZ
4768 switch (irp->mod)
4769 {
4770 case 0:
4771 if ((base & 7) == 5)
4772 {
4773 base = 0xff;
4ffa4fc7
PA
4774 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4775 return -1;
7ad10968 4776 irp->addr += 4;
60a1502a 4777 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4778 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4779 *addr += irp->addr + irp->rip_offset;
7ad10968 4780 }
7ad10968
HZ
4781 break;
4782 case 1:
4ffa4fc7
PA
4783 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4784 return -1;
7ad10968 4785 irp->addr++;
60a1502a 4786 *addr = (int8_t) buf[0];
7ad10968
HZ
4787 break;
4788 case 2:
4ffa4fc7
PA
4789 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4790 return -1;
60a1502a 4791 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4792 irp->addr += 4;
4793 break;
4794 }
356a6b3e 4795
60a1502a 4796 offset64 = 0;
7ad10968 4797 if (base != 0xff)
cf648174
HZ
4798 {
4799 if (base == 4 && irp->popl_esp_hack)
4800 *addr += irp->popl_esp_hack;
4801 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4802 &offset64);
7ad10968 4803 }
cf648174
HZ
4804 if (irp->aflag == 2)
4805 {
60a1502a 4806 *addr += offset64;
cf648174
HZ
4807 }
4808 else
60a1502a 4809 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4810
7ad10968
HZ
4811 if (havesib && (index != 4 || scale != 0))
4812 {
cf648174 4813 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4814 &offset64);
cf648174 4815 if (irp->aflag == 2)
60a1502a 4816 *addr += offset64 << scale;
cf648174 4817 else
60a1502a 4818 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4819 }
e85596e0
L
4820
4821 if (!irp->aflag)
4822 {
4823 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4824 address from 32-bit to 64-bit. */
4825 *addr = (uint32_t) *addr;
4826 }
7ad10968
HZ
4827 }
4828 else
4829 {
4830 /* 16 bits */
4831 switch (irp->mod)
4832 {
4833 case 0:
4834 if (irp->rm == 6)
4835 {
4ffa4fc7
PA
4836 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4837 return -1;
7ad10968 4838 irp->addr += 2;
60a1502a 4839 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4840 irp->rm = 0;
4841 goto no_rm;
4842 }
7ad10968
HZ
4843 break;
4844 case 1:
4ffa4fc7
PA
4845 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4846 return -1;
7ad10968 4847 irp->addr++;
60a1502a 4848 *addr = (int8_t) buf[0];
7ad10968
HZ
4849 break;
4850 case 2:
4ffa4fc7
PA
4851 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4852 return -1;
7ad10968 4853 irp->addr += 2;
60a1502a 4854 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4855 break;
4856 }
c4fc7f1b 4857
7ad10968
HZ
4858 switch (irp->rm)
4859 {
4860 case 0:
cf648174
HZ
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4863 &offset64);
4864 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4867 &offset64);
4868 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4869 break;
4870 case 1:
cf648174
HZ
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4873 &offset64);
4874 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4879 break;
4880 case 2:
cf648174
HZ
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4885 regcache_raw_read_unsigned (irp->regcache,
4886 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4887 &offset64);
4888 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4889 break;
4890 case 3:
cf648174
HZ
4891 regcache_raw_read_unsigned (irp->regcache,
4892 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4893 &offset64);
4894 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4895 regcache_raw_read_unsigned (irp->regcache,
4896 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4897 &offset64);
4898 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4899 break;
4900 case 4:
cf648174
HZ
4901 regcache_raw_read_unsigned (irp->regcache,
4902 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4903 &offset64);
4904 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4905 break;
4906 case 5:
cf648174
HZ
4907 regcache_raw_read_unsigned (irp->regcache,
4908 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4909 &offset64);
4910 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4911 break;
4912 case 6:
cf648174
HZ
4913 regcache_raw_read_unsigned (irp->regcache,
4914 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4915 &offset64);
4916 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4917 break;
4918 case 7:
cf648174
HZ
4919 regcache_raw_read_unsigned (irp->regcache,
4920 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4921 &offset64);
4922 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4923 break;
4924 }
4925 *addr &= 0xffff;
4926 }
c4fc7f1b 4927
01fe1b41 4928 no_rm:
7ad10968
HZ
4929 return 0;
4930}
c4fc7f1b 4931
99c1624c
PA
4932/* Record the address and contents of the memory that will be changed
4933 by the current instruction. Return -1 if something goes wrong, 0
4934 otherwise. */
356a6b3e 4935
7ad10968
HZ
4936static int
4937i386_record_lea_modrm (struct i386_record_s *irp)
4938{
cf648174
HZ
4939 struct gdbarch *gdbarch = irp->gdbarch;
4940 uint64_t addr;
356a6b3e 4941
d7877f7e 4942 if (irp->override >= 0)
7ad10968 4943 {
25ea693b 4944 if (record_full_memory_query)
bb08c432 4945 {
651ce16a 4946 if (yquery (_("\
bb08c432
HZ
4947Process record ignores the memory change of instruction at address %s\n\
4948because it can't get the value of the segment register.\n\
4949Do you want to stop the program?"),
651ce16a
PA
4950 paddress (gdbarch, irp->orig_addr)))
4951 return -1;
bb08c432
HZ
4952 }
4953
7ad10968
HZ
4954 return 0;
4955 }
61113f8b 4956
7ad10968
HZ
4957 if (i386_record_lea_modrm_addr (irp, &addr))
4958 return -1;
96297dab 4959
25ea693b 4960 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4961 return -1;
a62cc96e 4962
7ad10968
HZ
4963 return 0;
4964}
b6197528 4965
99c1624c
PA
4966/* Record the effects of a push operation. Return -1 if something
4967 goes wrong, 0 otherwise. */
cf648174
HZ
4968
4969static int
4970i386_record_push (struct i386_record_s *irp, int size)
4971{
648d0c8b 4972 ULONGEST addr;
cf648174 4973
25ea693b
MM
4974 if (record_full_arch_list_add_reg (irp->regcache,
4975 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4976 return -1;
4977 regcache_raw_read_unsigned (irp->regcache,
4978 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4979 &addr);
25ea693b 4980 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4981 return -1;
4982
4983 return 0;
4984}
4985
0289bdd7
MS
4986
4987/* Defines contents to record. */
4988#define I386_SAVE_FPU_REGS 0xfffd
4989#define I386_SAVE_FPU_ENV 0xfffe
4990#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4991
99c1624c
PA
4992/* Record the values of the floating point registers which will be
4993 changed by the current instruction. Returns -1 if something is
4994 wrong, 0 otherwise. */
0289bdd7
MS
4995
4996static int i386_record_floats (struct gdbarch *gdbarch,
4997 struct i386_record_s *ir,
4998 uint32_t iregnum)
4999{
5000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5001 int i;
5002
5003 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5004 happen. Currently we store st0-st7 registers, but we need not store all
5005 registers all the time, in future we use ftag register and record only
5006 those who are not marked as an empty. */
5007
5008 if (I386_SAVE_FPU_REGS == iregnum)
5009 {
5010 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5011 {
25ea693b 5012 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5013 return -1;
5014 }
5015 }
5016 else if (I386_SAVE_FPU_ENV == iregnum)
5017 {
5018 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5019 {
25ea693b 5020 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5021 return -1;
5022 }
5023 }
5024 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5025 {
5026 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5027 {
25ea693b 5028 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5029 return -1;
5030 }
5031 }
5032 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5033 (iregnum <= I387_FOP_REGNUM (tdep)))
5034 {
25ea693b 5035 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
5036 return -1;
5037 }
5038 else
5039 {
5040 /* Parameter error. */
5041 return -1;
5042 }
5043 if(I386_SAVE_FPU_ENV != iregnum)
5044 {
5045 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5046 {
25ea693b 5047 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5048 return -1;
5049 }
5050 }
5051 return 0;
5052}
5053
99c1624c
PA
5054/* Parse the current instruction, and record the values of the
5055 registers and memory that will be changed by the current
5056 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5057
25ea693b
MM
5058#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5059 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5060
a6b808b4 5061int
7ad10968 5062i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5063 CORE_ADDR input_addr)
7ad10968 5064{
60a1502a 5065 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5066 int prefixes = 0;
580879fc 5067 int regnum = 0;
425b824a 5068 uint32_t opcode;
f4644a3f 5069 uint8_t opcode8;
648d0c8b 5070 ULONGEST addr;
975c21ab 5071 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5072 struct i386_record_s ir;
0289bdd7 5073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5074 uint8_t rex_w = -1;
5075 uint8_t rex_r = 0;
7ad10968 5076
8408d274 5077 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5078 ir.regcache = regcache;
648d0c8b
MS
5079 ir.addr = input_addr;
5080 ir.orig_addr = input_addr;
7ad10968
HZ
5081 ir.aflag = 1;
5082 ir.dflag = 1;
cf648174
HZ
5083 ir.override = -1;
5084 ir.popl_esp_hack = 0;
a3c4230a 5085 ir.regmap = tdep->record_regmap;
cf648174 5086 ir.gdbarch = gdbarch;
7ad10968
HZ
5087
5088 if (record_debug > 1)
5089 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
5090 "addr = %s\n",
5091 paddress (gdbarch, ir.addr));
7ad10968
HZ
5092
5093 /* prefixes */
5094 while (1)
5095 {
4ffa4fc7
PA
5096 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5097 return -1;
7ad10968 5098 ir.addr++;
425b824a 5099 switch (opcode8) /* Instruction prefixes */
7ad10968 5100 {
01fe1b41 5101 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5102 prefixes |= PREFIX_REPZ;
5103 break;
01fe1b41 5104 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5105 prefixes |= PREFIX_REPNZ;
5106 break;
01fe1b41 5107 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5108 prefixes |= PREFIX_LOCK;
5109 break;
01fe1b41 5110 case CS_PREFIX_OPCODE:
cf648174 5111 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5112 break;
01fe1b41 5113 case SS_PREFIX_OPCODE:
cf648174 5114 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5115 break;
01fe1b41 5116 case DS_PREFIX_OPCODE:
cf648174 5117 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5118 break;
01fe1b41 5119 case ES_PREFIX_OPCODE:
cf648174 5120 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5121 break;
01fe1b41 5122 case FS_PREFIX_OPCODE:
cf648174 5123 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5124 break;
01fe1b41 5125 case GS_PREFIX_OPCODE:
cf648174 5126 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5127 break;
01fe1b41 5128 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5129 prefixes |= PREFIX_DATA;
5130 break;
01fe1b41 5131 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5132 prefixes |= PREFIX_ADDR;
5133 break;
d691bec7
MS
5134 case 0x40: /* i386 inc %eax */
5135 case 0x41: /* i386 inc %ecx */
5136 case 0x42: /* i386 inc %edx */
5137 case 0x43: /* i386 inc %ebx */
5138 case 0x44: /* i386 inc %esp */
5139 case 0x45: /* i386 inc %ebp */
5140 case 0x46: /* i386 inc %esi */
5141 case 0x47: /* i386 inc %edi */
5142 case 0x48: /* i386 dec %eax */
5143 case 0x49: /* i386 dec %ecx */
5144 case 0x4a: /* i386 dec %edx */
5145 case 0x4b: /* i386 dec %ebx */
5146 case 0x4c: /* i386 dec %esp */
5147 case 0x4d: /* i386 dec %ebp */
5148 case 0x4e: /* i386 dec %esi */
5149 case 0x4f: /* i386 dec %edi */
5150 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5151 {
5152 /* REX */
425b824a
MS
5153 rex_w = (opcode8 >> 3) & 1;
5154 rex_r = (opcode8 & 0x4) << 1;
5155 ir.rex_x = (opcode8 & 0x2) << 2;
5156 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5157 }
d691bec7
MS
5158 else /* 32 bit target */
5159 goto out_prefixes;
cf648174 5160 break;
7ad10968
HZ
5161 default:
5162 goto out_prefixes;
5163 break;
5164 }
5165 }
01fe1b41 5166 out_prefixes:
cf648174
HZ
5167 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5168 {
5169 ir.dflag = 2;
5170 }
5171 else
5172 {
5173 if (prefixes & PREFIX_DATA)
5174 ir.dflag ^= 1;
5175 }
7ad10968
HZ
5176 if (prefixes & PREFIX_ADDR)
5177 ir.aflag ^= 1;
cf648174
HZ
5178 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5179 ir.aflag = 2;
7ad10968 5180
1777feb0 5181 /* Now check op code. */
425b824a 5182 opcode = (uint32_t) opcode8;
01fe1b41 5183 reswitch:
7ad10968
HZ
5184 switch (opcode)
5185 {
5186 case 0x0f:
4ffa4fc7
PA
5187 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5188 return -1;
7ad10968 5189 ir.addr++;
a3c4230a 5190 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5191 goto reswitch;
5192 break;
93924b6b 5193
a38bba38 5194 case 0x00: /* arith & logic */
7ad10968
HZ
5195 case 0x01:
5196 case 0x02:
5197 case 0x03:
5198 case 0x04:
5199 case 0x05:
5200 case 0x08:
5201 case 0x09:
5202 case 0x0a:
5203 case 0x0b:
5204 case 0x0c:
5205 case 0x0d:
5206 case 0x10:
5207 case 0x11:
5208 case 0x12:
5209 case 0x13:
5210 case 0x14:
5211 case 0x15:
5212 case 0x18:
5213 case 0x19:
5214 case 0x1a:
5215 case 0x1b:
5216 case 0x1c:
5217 case 0x1d:
5218 case 0x20:
5219 case 0x21:
5220 case 0x22:
5221 case 0x23:
5222 case 0x24:
5223 case 0x25:
5224 case 0x28:
5225 case 0x29:
5226 case 0x2a:
5227 case 0x2b:
5228 case 0x2c:
5229 case 0x2d:
5230 case 0x30:
5231 case 0x31:
5232 case 0x32:
5233 case 0x33:
5234 case 0x34:
5235 case 0x35:
5236 case 0x38:
5237 case 0x39:
5238 case 0x3a:
5239 case 0x3b:
5240 case 0x3c:
5241 case 0x3d:
5242 if (((opcode >> 3) & 7) != OP_CMPL)
5243 {
5244 if ((opcode & 1) == 0)
5245 ir.ot = OT_BYTE;
5246 else
5247 ir.ot = ir.dflag + OT_WORD;
93924b6b 5248
7ad10968
HZ
5249 switch ((opcode >> 1) & 3)
5250 {
a38bba38 5251 case 0: /* OP Ev, Gv */
7ad10968
HZ
5252 if (i386_record_modrm (&ir))
5253 return -1;
5254 if (ir.mod != 3)
5255 {
5256 if (i386_record_lea_modrm (&ir))
5257 return -1;
5258 }
5259 else
5260 {
cf648174
HZ
5261 ir.rm |= ir.rex_b;
5262 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5263 ir.rm &= 0x3;
25ea693b 5264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5265 }
5266 break;
a38bba38 5267 case 1: /* OP Gv, Ev */
7ad10968
HZ
5268 if (i386_record_modrm (&ir))
5269 return -1;
cf648174
HZ
5270 ir.reg |= rex_r;
5271 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5272 ir.reg &= 0x3;
25ea693b 5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5274 break;
a38bba38 5275 case 2: /* OP A, Iv */
25ea693b 5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5277 break;
5278 }
5279 }
25ea693b 5280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5281 break;
42fdc8df 5282
a38bba38 5283 case 0x80: /* GRP1 */
7ad10968
HZ
5284 case 0x81:
5285 case 0x82:
5286 case 0x83:
5287 if (i386_record_modrm (&ir))
5288 return -1;
8201327c 5289
7ad10968
HZ
5290 if (ir.reg != OP_CMPL)
5291 {
5292 if ((opcode & 1) == 0)
5293 ir.ot = OT_BYTE;
5294 else
5295 ir.ot = ir.dflag + OT_WORD;
28fc6740 5296
7ad10968
HZ
5297 if (ir.mod != 3)
5298 {
cf648174
HZ
5299 if (opcode == 0x83)
5300 ir.rip_offset = 1;
5301 else
5302 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5303 if (i386_record_lea_modrm (&ir))
5304 return -1;
5305 }
5306 else
25ea693b 5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5308 }
25ea693b 5309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5310 break;
5e3397bb 5311
a38bba38 5312 case 0x40: /* inc */
7ad10968
HZ
5313 case 0x41:
5314 case 0x42:
5315 case 0x43:
5316 case 0x44:
5317 case 0x45:
5318 case 0x46:
5319 case 0x47:
a38bba38
MS
5320
5321 case 0x48: /* dec */
7ad10968
HZ
5322 case 0x49:
5323 case 0x4a:
5324 case 0x4b:
5325 case 0x4c:
5326 case 0x4d:
5327 case 0x4e:
5328 case 0x4f:
a38bba38 5329
25ea693b
MM
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5332 break;
acd5c798 5333
a38bba38 5334 case 0xf6: /* GRP3 */
7ad10968
HZ
5335 case 0xf7:
5336 if ((opcode & 1) == 0)
5337 ir.ot = OT_BYTE;
5338 else
5339 ir.ot = ir.dflag + OT_WORD;
5340 if (i386_record_modrm (&ir))
5341 return -1;
acd5c798 5342
cf648174
HZ
5343 if (ir.mod != 3 && ir.reg == 0)
5344 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5345
7ad10968
HZ
5346 switch (ir.reg)
5347 {
a38bba38 5348 case 0: /* test */
25ea693b 5349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5350 break;
a38bba38
MS
5351 case 2: /* not */
5352 case 3: /* neg */
7ad10968
HZ
5353 if (ir.mod != 3)
5354 {
5355 if (i386_record_lea_modrm (&ir))
5356 return -1;
5357 }
5358 else
5359 {
cf648174
HZ
5360 ir.rm |= ir.rex_b;
5361 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5362 ir.rm &= 0x3;
25ea693b 5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5364 }
a38bba38 5365 if (ir.reg == 3) /* neg */
25ea693b 5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5367 break;
a38bba38
MS
5368 case 4: /* mul */
5369 case 5: /* imul */
5370 case 6: /* div */
5371 case 7: /* idiv */
25ea693b 5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5373 if (ir.ot != OT_BYTE)
25ea693b
MM
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5376 break;
5377 default:
5378 ir.addr -= 2;
5379 opcode = opcode << 8 | ir.modrm;
5380 goto no_support;
5381 break;
5382 }
5383 break;
5384
a38bba38
MS
5385 case 0xfe: /* GRP4 */
5386 case 0xff: /* GRP5 */
7ad10968
HZ
5387 if (i386_record_modrm (&ir))
5388 return -1;
5389 if (ir.reg >= 2 && opcode == 0xfe)
5390 {
5391 ir.addr -= 2;
5392 opcode = opcode << 8 | ir.modrm;
5393 goto no_support;
5394 }
7ad10968
HZ
5395 switch (ir.reg)
5396 {
a38bba38
MS
5397 case 0: /* inc */
5398 case 1: /* dec */
cf648174
HZ
5399 if ((opcode & 1) == 0)
5400 ir.ot = OT_BYTE;
5401 else
5402 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5403 if (ir.mod != 3)
5404 {
5405 if (i386_record_lea_modrm (&ir))
5406 return -1;
5407 }
5408 else
5409 {
cf648174
HZ
5410 ir.rm |= ir.rex_b;
5411 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5412 ir.rm &= 0x3;
25ea693b 5413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5414 }
25ea693b 5415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5416 break;
a38bba38 5417 case 2: /* call */
cf648174
HZ
5418 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5419 ir.dflag = 2;
5420 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5421 return -1;
25ea693b 5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5423 break;
a38bba38 5424 case 3: /* lcall */
25ea693b 5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5426 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5427 return -1;
25ea693b 5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5429 break;
a38bba38
MS
5430 case 4: /* jmp */
5431 case 5: /* ljmp */
25ea693b 5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5433 break;
a38bba38 5434 case 6: /* push */
cf648174
HZ
5435 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5436 ir.dflag = 2;
5437 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5438 return -1;
7ad10968
HZ
5439 break;
5440 default:
5441 ir.addr -= 2;
5442 opcode = opcode << 8 | ir.modrm;
5443 goto no_support;
5444 break;
5445 }
5446 break;
5447
a38bba38 5448 case 0x84: /* test */
7ad10968
HZ
5449 case 0x85:
5450 case 0xa8:
5451 case 0xa9:
25ea693b 5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5453 break;
5454
a38bba38 5455 case 0x98: /* CWDE/CBW */
25ea693b 5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5457 break;
5458
a38bba38 5459 case 0x99: /* CDQ/CWD */
25ea693b
MM
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5462 break;
5463
a38bba38 5464 case 0x0faf: /* imul */
7ad10968
HZ
5465 case 0x69:
5466 case 0x6b:
5467 ir.ot = ir.dflag + OT_WORD;
5468 if (i386_record_modrm (&ir))
5469 return -1;
cf648174
HZ
5470 if (opcode == 0x69)
5471 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5472 else if (opcode == 0x6b)
5473 ir.rip_offset = 1;
5474 ir.reg |= rex_r;
5475 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5476 ir.reg &= 0x3;
25ea693b
MM
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5478 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5479 break;
5480
a38bba38 5481 case 0x0fc0: /* xadd */
7ad10968
HZ
5482 case 0x0fc1:
5483 if ((opcode & 1) == 0)
5484 ir.ot = OT_BYTE;
5485 else
5486 ir.ot = ir.dflag + OT_WORD;
5487 if (i386_record_modrm (&ir))
5488 return -1;
cf648174 5489 ir.reg |= rex_r;
7ad10968
HZ
5490 if (ir.mod == 3)
5491 {
cf648174 5492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5493 ir.reg &= 0x3;
25ea693b 5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5495 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5496 ir.rm &= 0x3;
25ea693b 5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5498 }
5499 else
5500 {
5501 if (i386_record_lea_modrm (&ir))
5502 return -1;
cf648174 5503 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5504 ir.reg &= 0x3;
25ea693b 5505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5506 }
25ea693b 5507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5508 break;
5509
a38bba38 5510 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5511 case 0x0fb1:
5512 if ((opcode & 1) == 0)
5513 ir.ot = OT_BYTE;
5514 else
5515 ir.ot = ir.dflag + OT_WORD;
5516 if (i386_record_modrm (&ir))
5517 return -1;
5518 if (ir.mod == 3)
5519 {
cf648174 5520 ir.reg |= rex_r;
25ea693b 5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5522 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5523 ir.reg &= 0x3;
25ea693b 5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5525 }
5526 else
5527 {
25ea693b 5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5529 if (i386_record_lea_modrm (&ir))
5530 return -1;
5531 }
25ea693b 5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5533 break;
5534
20b477a7 5535 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5536 if (i386_record_modrm (&ir))
5537 return -1;
5538 if (ir.mod == 3)
5539 {
20b477a7
LM
5540 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5541 an extended opcode. rdrand has bits 110 (/6) and rdseed
5542 has bits 111 (/7). */
5543 if (ir.reg == 6 || ir.reg == 7)
5544 {
5545 /* The storage register is described by the 3 R/M bits, but the
5546 REX.B prefix may be used to give access to registers
5547 R8~R15. In this case ir.rex_b + R/M will give us the register
5548 in the range R8~R15.
5549
5550 REX.W may also be used to access 64-bit registers, but we
5551 already record entire registers and not just partial bits
5552 of them. */
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5554 /* These instructions also set conditional bits. */
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5556 break;
5557 }
5558 else
5559 {
5560 /* We don't handle this particular instruction yet. */
5561 ir.addr -= 2;
5562 opcode = opcode << 8 | ir.modrm;
5563 goto no_support;
5564 }
7ad10968 5565 }
25ea693b
MM
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5568 if (i386_record_lea_modrm (&ir))
5569 return -1;
25ea693b 5570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5571 break;
5572
a38bba38 5573 case 0x50: /* push */
7ad10968
HZ
5574 case 0x51:
5575 case 0x52:
5576 case 0x53:
5577 case 0x54:
5578 case 0x55:
5579 case 0x56:
5580 case 0x57:
5581 case 0x68:
5582 case 0x6a:
cf648174
HZ
5583 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5584 ir.dflag = 2;
5585 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5586 return -1;
5587 break;
5588
a38bba38
MS
5589 case 0x06: /* push es */
5590 case 0x0e: /* push cs */
5591 case 0x16: /* push ss */
5592 case 0x1e: /* push ds */
cf648174
HZ
5593 if (ir.regmap[X86_RECORD_R8_REGNUM])
5594 {
5595 ir.addr -= 1;
5596 goto no_support;
5597 }
5598 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5599 return -1;
5600 break;
5601
a38bba38
MS
5602 case 0x0fa0: /* push fs */
5603 case 0x0fa8: /* push gs */
cf648174
HZ
5604 if (ir.regmap[X86_RECORD_R8_REGNUM])
5605 {
5606 ir.addr -= 2;
5607 goto no_support;
5608 }
5609 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5610 return -1;
cf648174
HZ
5611 break;
5612
a38bba38 5613 case 0x60: /* pusha */
cf648174
HZ
5614 if (ir.regmap[X86_RECORD_R8_REGNUM])
5615 {
5616 ir.addr -= 1;
5617 goto no_support;
5618 }
5619 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5620 return -1;
5621 break;
5622
a38bba38 5623 case 0x58: /* pop */
7ad10968
HZ
5624 case 0x59:
5625 case 0x5a:
5626 case 0x5b:
5627 case 0x5c:
5628 case 0x5d:
5629 case 0x5e:
5630 case 0x5f:
25ea693b
MM
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5632 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5633 break;
5634
a38bba38 5635 case 0x61: /* popa */
cf648174
HZ
5636 if (ir.regmap[X86_RECORD_R8_REGNUM])
5637 {
5638 ir.addr -= 1;
5639 goto no_support;
7ad10968 5640 }
425b824a
MS
5641 for (regnum = X86_RECORD_REAX_REGNUM;
5642 regnum <= X86_RECORD_REDI_REGNUM;
5643 regnum++)
25ea693b 5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5645 break;
5646
a38bba38 5647 case 0x8f: /* pop */
cf648174
HZ
5648 if (ir.regmap[X86_RECORD_R8_REGNUM])
5649 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5650 else
5651 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5652 if (i386_record_modrm (&ir))
5653 return -1;
5654 if (ir.mod == 3)
25ea693b 5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5656 else
5657 {
cf648174 5658 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5659 if (i386_record_lea_modrm (&ir))
5660 return -1;
5661 }
25ea693b 5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5663 break;
5664
a38bba38 5665 case 0xc8: /* enter */
25ea693b 5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5667 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5668 ir.dflag = 2;
5669 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5670 return -1;
5671 break;
5672
a38bba38 5673 case 0xc9: /* leave */
25ea693b
MM
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5676 break;
5677
a38bba38 5678 case 0x07: /* pop es */
cf648174
HZ
5679 if (ir.regmap[X86_RECORD_R8_REGNUM])
5680 {
5681 ir.addr -= 1;
5682 goto no_support;
5683 }
25ea693b
MM
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5687 break;
5688
a38bba38 5689 case 0x17: /* pop ss */
cf648174
HZ
5690 if (ir.regmap[X86_RECORD_R8_REGNUM])
5691 {
5692 ir.addr -= 1;
5693 goto no_support;
5694 }
25ea693b
MM
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5698 break;
5699
a38bba38 5700 case 0x1f: /* pop ds */
cf648174
HZ
5701 if (ir.regmap[X86_RECORD_R8_REGNUM])
5702 {
5703 ir.addr -= 1;
5704 goto no_support;
5705 }
25ea693b
MM
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5709 break;
5710
a38bba38 5711 case 0x0fa1: /* pop fs */
25ea693b
MM
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5715 break;
5716
a38bba38 5717 case 0x0fa9: /* pop gs */
25ea693b
MM
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5721 break;
5722
a38bba38 5723 case 0x88: /* mov */
7ad10968
HZ
5724 case 0x89:
5725 case 0xc6:
5726 case 0xc7:
5727 if ((opcode & 1) == 0)
5728 ir.ot = OT_BYTE;
5729 else
5730 ir.ot = ir.dflag + OT_WORD;
5731
5732 if (i386_record_modrm (&ir))
5733 return -1;
5734
5735 if (ir.mod != 3)
5736 {
cf648174
HZ
5737 if (opcode == 0xc6 || opcode == 0xc7)
5738 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5739 if (i386_record_lea_modrm (&ir))
5740 return -1;
5741 }
5742 else
5743 {
cf648174
HZ
5744 if (opcode == 0xc6 || opcode == 0xc7)
5745 ir.rm |= ir.rex_b;
5746 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5747 ir.rm &= 0x3;
25ea693b 5748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5749 }
7ad10968 5750 break;
cf648174 5751
a38bba38 5752 case 0x8a: /* mov */
7ad10968
HZ
5753 case 0x8b:
5754 if ((opcode & 1) == 0)
5755 ir.ot = OT_BYTE;
5756 else
5757 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5758 if (i386_record_modrm (&ir))
5759 return -1;
cf648174
HZ
5760 ir.reg |= rex_r;
5761 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5762 ir.reg &= 0x3;
25ea693b 5763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5764 break;
7ad10968 5765
a38bba38 5766 case 0x8c: /* mov seg */
cf648174 5767 if (i386_record_modrm (&ir))
7ad10968 5768 return -1;
cf648174
HZ
5769 if (ir.reg > 5)
5770 {
5771 ir.addr -= 2;
5772 opcode = opcode << 8 | ir.modrm;
5773 goto no_support;
5774 }
5775
5776 if (ir.mod == 3)
25ea693b 5777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5778 else
5779 {
5780 ir.ot = OT_WORD;
5781 if (i386_record_lea_modrm (&ir))
5782 return -1;
5783 }
7ad10968
HZ
5784 break;
5785
a38bba38 5786 case 0x8e: /* mov seg */
7ad10968
HZ
5787 if (i386_record_modrm (&ir))
5788 return -1;
7ad10968
HZ
5789 switch (ir.reg)
5790 {
5791 case 0:
425b824a 5792 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5793 break;
5794 case 2:
425b824a 5795 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5796 break;
5797 case 3:
425b824a 5798 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5799 break;
5800 case 4:
425b824a 5801 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5802 break;
5803 case 5:
425b824a 5804 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5805 break;
5806 default:
5807 ir.addr -= 2;
5808 opcode = opcode << 8 | ir.modrm;
5809 goto no_support;
5810 break;
5811 }
25ea693b
MM
5812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5814 break;
5815
a38bba38
MS
5816 case 0x0fb6: /* movzbS */
5817 case 0x0fb7: /* movzwS */
5818 case 0x0fbe: /* movsbS */
5819 case 0x0fbf: /* movswS */
7ad10968
HZ
5820 if (i386_record_modrm (&ir))
5821 return -1;
25ea693b 5822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5823 break;
5824
a38bba38 5825 case 0x8d: /* lea */
7ad10968
HZ
5826 if (i386_record_modrm (&ir))
5827 return -1;
5828 if (ir.mod == 3)
5829 {
5830 ir.addr -= 2;
5831 opcode = opcode << 8 | ir.modrm;
5832 goto no_support;
5833 }
7ad10968 5834 ir.ot = ir.dflag;
cf648174
HZ
5835 ir.reg |= rex_r;
5836 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5837 ir.reg &= 0x3;
25ea693b 5838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5839 break;
5840
a38bba38 5841 case 0xa0: /* mov EAX */
7ad10968 5842 case 0xa1:
a38bba38
MS
5843
5844 case 0xd7: /* xlat */
25ea693b 5845 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5846 break;
5847
a38bba38 5848 case 0xa2: /* mov EAX */
7ad10968 5849 case 0xa3:
d7877f7e 5850 if (ir.override >= 0)
cf648174 5851 {
25ea693b 5852 if (record_full_memory_query)
bb08c432 5853 {
651ce16a 5854 if (yquery (_("\
bb08c432
HZ
5855Process record ignores the memory change of instruction at address %s\n\
5856because it can't get the value of the segment register.\n\
5857Do you want to stop the program?"),
651ce16a 5858 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
5859 return -1;
5860 }
cf648174
HZ
5861 }
5862 else
5863 {
5864 if ((opcode & 1) == 0)
5865 ir.ot = OT_BYTE;
5866 else
5867 ir.ot = ir.dflag + OT_WORD;
5868 if (ir.aflag == 2)
5869 {
4ffa4fc7
PA
5870 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5871 return -1;
cf648174 5872 ir.addr += 8;
60a1502a 5873 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5874 }
5875 else if (ir.aflag)
5876 {
4ffa4fc7
PA
5877 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5878 return -1;
cf648174 5879 ir.addr += 4;
60a1502a 5880 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5881 }
5882 else
5883 {
4ffa4fc7
PA
5884 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5885 return -1;
cf648174 5886 ir.addr += 2;
60a1502a 5887 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5888 }
25ea693b 5889 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5890 return -1;
5891 }
7ad10968
HZ
5892 break;
5893
a38bba38 5894 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5895 case 0xb1:
5896 case 0xb2:
5897 case 0xb3:
5898 case 0xb4:
5899 case 0xb5:
5900 case 0xb6:
5901 case 0xb7:
25ea693b
MM
5902 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5903 ? ((opcode & 0x7) | ir.rex_b)
5904 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5905 break;
5906
a38bba38 5907 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5908 case 0xb9:
5909 case 0xba:
5910 case 0xbb:
5911 case 0xbc:
5912 case 0xbd:
5913 case 0xbe:
5914 case 0xbf:
25ea693b 5915 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5916 break;
5917
a38bba38 5918 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5919 case 0x92:
5920 case 0x93:
5921 case 0x94:
5922 case 0x95:
5923 case 0x96:
5924 case 0x97:
25ea693b
MM
5925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5927 break;
5928
a38bba38 5929 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5930 case 0x87:
5931 if ((opcode & 1) == 0)
5932 ir.ot = OT_BYTE;
5933 else
5934 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5935 if (i386_record_modrm (&ir))
5936 return -1;
7ad10968
HZ
5937 if (ir.mod == 3)
5938 {
86839d38 5939 ir.rm |= ir.rex_b;
cf648174
HZ
5940 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5941 ir.rm &= 0x3;
25ea693b 5942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5943 }
5944 else
5945 {
5946 if (i386_record_lea_modrm (&ir))
5947 return -1;
5948 }
cf648174
HZ
5949 ir.reg |= rex_r;
5950 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5951 ir.reg &= 0x3;
25ea693b 5952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5953 break;
5954
a38bba38
MS
5955 case 0xc4: /* les Gv */
5956 case 0xc5: /* lds Gv */
cf648174
HZ
5957 if (ir.regmap[X86_RECORD_R8_REGNUM])
5958 {
5959 ir.addr -= 1;
5960 goto no_support;
5961 }
d3f323f3 5962 /* FALLTHROUGH */
a38bba38
MS
5963 case 0x0fb2: /* lss Gv */
5964 case 0x0fb4: /* lfs Gv */
5965 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5966 if (i386_record_modrm (&ir))
5967 return -1;
5968 if (ir.mod == 3)
5969 {
5970 if (opcode > 0xff)
5971 ir.addr -= 3;
5972 else
5973 ir.addr -= 2;
5974 opcode = opcode << 8 | ir.modrm;
5975 goto no_support;
5976 }
7ad10968
HZ
5977 switch (opcode)
5978 {
a38bba38 5979 case 0xc4: /* les Gv */
425b824a 5980 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5981 break;
a38bba38 5982 case 0xc5: /* lds Gv */
425b824a 5983 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5984 break;
a38bba38 5985 case 0x0fb2: /* lss Gv */
425b824a 5986 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5987 break;
a38bba38 5988 case 0x0fb4: /* lfs Gv */
425b824a 5989 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5990 break;
a38bba38 5991 case 0x0fb5: /* lgs Gv */
425b824a 5992 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5993 break;
5994 }
25ea693b
MM
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5997 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5998 break;
5999
a38bba38 6000 case 0xc0: /* shifts */
7ad10968
HZ
6001 case 0xc1:
6002 case 0xd0:
6003 case 0xd1:
6004 case 0xd2:
6005 case 0xd3:
6006 if ((opcode & 1) == 0)
6007 ir.ot = OT_BYTE;
6008 else
6009 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
6010 if (i386_record_modrm (&ir))
6011 return -1;
7ad10968
HZ
6012 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6013 {
6014 if (i386_record_lea_modrm (&ir))
6015 return -1;
6016 }
6017 else
6018 {
cf648174
HZ
6019 ir.rm |= ir.rex_b;
6020 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 6021 ir.rm &= 0x3;
25ea693b 6022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 6023 }
25ea693b 6024 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6025 break;
6026
6027 case 0x0fa4:
6028 case 0x0fa5:
6029 case 0x0fac:
6030 case 0x0fad:
6031 if (i386_record_modrm (&ir))
6032 return -1;
6033 if (ir.mod == 3)
6034 {
25ea693b 6035 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
6036 return -1;
6037 }
6038 else
6039 {
6040 if (i386_record_lea_modrm (&ir))
6041 return -1;
6042 }
6043 break;
6044
a38bba38 6045 case 0xd8: /* Floats. */
7ad10968
HZ
6046 case 0xd9:
6047 case 0xda:
6048 case 0xdb:
6049 case 0xdc:
6050 case 0xdd:
6051 case 0xde:
6052 case 0xdf:
6053 if (i386_record_modrm (&ir))
6054 return -1;
6055 ir.reg |= ((opcode & 7) << 3);
6056 if (ir.mod != 3)
6057 {
1777feb0 6058 /* Memory. */
955db0c0 6059 uint64_t addr64;
7ad10968 6060
955db0c0 6061 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6062 return -1;
6063 switch (ir.reg)
6064 {
7ad10968 6065 case 0x02:
0289bdd7
MS
6066 case 0x12:
6067 case 0x22:
6068 case 0x32:
6069 /* For fcom, ficom nothing to do. */
6070 break;
7ad10968 6071 case 0x03:
0289bdd7
MS
6072 case 0x13:
6073 case 0x23:
6074 case 0x33:
6075 /* For fcomp, ficomp pop FPU stack, store all. */
6076 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6077 return -1;
6078 break;
6079 case 0x00:
6080 case 0x01:
7ad10968
HZ
6081 case 0x04:
6082 case 0x05:
6083 case 0x06:
6084 case 0x07:
6085 case 0x10:
6086 case 0x11:
7ad10968
HZ
6087 case 0x14:
6088 case 0x15:
6089 case 0x16:
6090 case 0x17:
6091 case 0x20:
6092 case 0x21:
7ad10968
HZ
6093 case 0x24:
6094 case 0x25:
6095 case 0x26:
6096 case 0x27:
6097 case 0x30:
6098 case 0x31:
7ad10968
HZ
6099 case 0x34:
6100 case 0x35:
6101 case 0x36:
6102 case 0x37:
0289bdd7
MS
6103 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6104 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6105 of code, always affects st(0) register. */
6106 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6107 return -1;
7ad10968
HZ
6108 break;
6109 case 0x08:
6110 case 0x0a:
6111 case 0x0b:
6112 case 0x18:
6113 case 0x19:
6114 case 0x1a:
6115 case 0x1b:
0289bdd7 6116 case 0x1d:
7ad10968
HZ
6117 case 0x28:
6118 case 0x29:
6119 case 0x2a:
6120 case 0x2b:
6121 case 0x38:
6122 case 0x39:
6123 case 0x3a:
6124 case 0x3b:
0289bdd7
MS
6125 case 0x3c:
6126 case 0x3d:
7ad10968
HZ
6127 switch (ir.reg & 7)
6128 {
6129 case 0:
0289bdd7
MS
6130 /* Handling fld, fild. */
6131 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6132 return -1;
7ad10968
HZ
6133 break;
6134 case 1:
6135 switch (ir.reg >> 4)
6136 {
6137 case 0:
25ea693b 6138 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6139 return -1;
6140 break;
6141 case 2:
25ea693b 6142 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6143 return -1;
6144 break;
6145 case 3:
0289bdd7 6146 break;
7ad10968 6147 default:
25ea693b 6148 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6149 return -1;
6150 break;
6151 }
6152 break;
6153 default:
6154 switch (ir.reg >> 4)
6155 {
6156 case 0:
25ea693b 6157 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6158 return -1;
6159 if (3 == (ir.reg & 7))
6160 {
6161 /* For fstp m32fp. */
6162 if (i386_record_floats (gdbarch, &ir,
6163 I386_SAVE_FPU_REGS))
6164 return -1;
6165 }
6166 break;
7ad10968 6167 case 1:
25ea693b 6168 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6169 return -1;
0289bdd7
MS
6170 if ((3 == (ir.reg & 7))
6171 || (5 == (ir.reg & 7))
6172 || (7 == (ir.reg & 7)))
6173 {
6174 /* For fstp insn. */
6175 if (i386_record_floats (gdbarch, &ir,
6176 I386_SAVE_FPU_REGS))
6177 return -1;
6178 }
7ad10968
HZ
6179 break;
6180 case 2:
25ea693b 6181 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6182 return -1;
0289bdd7
MS
6183 if (3 == (ir.reg & 7))
6184 {
6185 /* For fstp m64fp. */
6186 if (i386_record_floats (gdbarch, &ir,
6187 I386_SAVE_FPU_REGS))
6188 return -1;
6189 }
7ad10968
HZ
6190 break;
6191 case 3:
0289bdd7
MS
6192 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6193 {
6194 /* For fistp, fbld, fild, fbstp. */
6195 if (i386_record_floats (gdbarch, &ir,
6196 I386_SAVE_FPU_REGS))
6197 return -1;
6198 }
6199 /* Fall through */
7ad10968 6200 default:
25ea693b 6201 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6202 return -1;
6203 break;
6204 }
6205 break;
6206 }
6207 break;
6208 case 0x0c:
0289bdd7
MS
6209 /* Insn fldenv. */
6210 if (i386_record_floats (gdbarch, &ir,
6211 I386_SAVE_FPU_ENV_REG_STACK))
6212 return -1;
6213 break;
7ad10968 6214 case 0x0d:
0289bdd7
MS
6215 /* Insn fldcw. */
6216 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6217 return -1;
6218 break;
7ad10968 6219 case 0x2c:
0289bdd7
MS
6220 /* Insn frstor. */
6221 if (i386_record_floats (gdbarch, &ir,
6222 I386_SAVE_FPU_ENV_REG_STACK))
6223 return -1;
7ad10968
HZ
6224 break;
6225 case 0x0e:
6226 if (ir.dflag)
6227 {
25ea693b 6228 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6229 return -1;
6230 }
6231 else
6232 {
25ea693b 6233 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6234 return -1;
6235 }
6236 break;
6237 case 0x0f:
6238 case 0x2f:
25ea693b 6239 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6240 return -1;
0289bdd7
MS
6241 /* Insn fstp, fbstp. */
6242 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6243 return -1;
7ad10968
HZ
6244 break;
6245 case 0x1f:
6246 case 0x3e:
25ea693b 6247 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6248 return -1;
6249 break;
6250 case 0x2e:
6251 if (ir.dflag)
6252 {
25ea693b 6253 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6254 return -1;
955db0c0 6255 addr64 += 28;
7ad10968
HZ
6256 }
6257 else
6258 {
25ea693b 6259 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6260 return -1;
955db0c0 6261 addr64 += 14;
7ad10968 6262 }
25ea693b 6263 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6264 return -1;
0289bdd7
MS
6265 /* Insn fsave. */
6266 if (i386_record_floats (gdbarch, &ir,
6267 I386_SAVE_FPU_ENV_REG_STACK))
6268 return -1;
7ad10968
HZ
6269 break;
6270 case 0x3f:
25ea693b 6271 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6272 return -1;
0289bdd7
MS
6273 /* Insn fistp. */
6274 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6275 return -1;
7ad10968
HZ
6276 break;
6277 default:
6278 ir.addr -= 2;
6279 opcode = opcode << 8 | ir.modrm;
6280 goto no_support;
6281 break;
6282 }
6283 }
0289bdd7
MS
6284 /* Opcode is an extension of modR/M byte. */
6285 else
6286 {
6287 switch (opcode)
6288 {
6289 case 0xd8:
6290 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6291 return -1;
6292 break;
6293 case 0xd9:
6294 if (0x0c == (ir.modrm >> 4))
6295 {
6296 if ((ir.modrm & 0x0f) <= 7)
6297 {
6298 if (i386_record_floats (gdbarch, &ir,
6299 I386_SAVE_FPU_REGS))
6300 return -1;
6301 }
6302 else
6303 {
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep)))
6306 return -1;
6307 /* If only st(0) is changing, then we have already
6308 recorded. */
6309 if ((ir.modrm & 0x0f) - 0x08)
6310 {
6311 if (i386_record_floats (gdbarch, &ir,
6312 I387_ST0_REGNUM (tdep) +
6313 ((ir.modrm & 0x0f) - 0x08)))
6314 return -1;
6315 }
6316 }
6317 }
6318 else
6319 {
6320 switch (ir.modrm)
6321 {
6322 case 0xe0:
6323 case 0xe1:
6324 case 0xf0:
6325 case 0xf5:
6326 case 0xf8:
6327 case 0xfa:
6328 case 0xfc:
6329 case 0xfe:
6330 case 0xff:
6331 if (i386_record_floats (gdbarch, &ir,
6332 I387_ST0_REGNUM (tdep)))
6333 return -1;
6334 break;
6335 case 0xf1:
6336 case 0xf2:
6337 case 0xf3:
6338 case 0xf4:
6339 case 0xf6:
6340 case 0xf7:
6341 case 0xe8:
6342 case 0xe9:
6343 case 0xea:
6344 case 0xeb:
6345 case 0xec:
6346 case 0xed:
6347 case 0xee:
6348 case 0xf9:
6349 case 0xfb:
6350 if (i386_record_floats (gdbarch, &ir,
6351 I386_SAVE_FPU_REGS))
6352 return -1;
6353 break;
6354 case 0xfd:
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep)))
6357 return -1;
6358 if (i386_record_floats (gdbarch, &ir,
6359 I387_ST0_REGNUM (tdep) + 1))
6360 return -1;
6361 break;
6362 }
6363 }
6364 break;
6365 case 0xda:
6366 if (0xe9 == ir.modrm)
6367 {
6368 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6369 return -1;
6370 }
6371 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep)))
6375 return -1;
6376 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6377 {
6378 if (i386_record_floats (gdbarch, &ir,
6379 I387_ST0_REGNUM (tdep) +
6380 (ir.modrm & 0x0f)))
6381 return -1;
6382 }
6383 else if ((ir.modrm & 0x0f) - 0x08)
6384 {
6385 if (i386_record_floats (gdbarch, &ir,
6386 I387_ST0_REGNUM (tdep) +
6387 ((ir.modrm & 0x0f) - 0x08)))
6388 return -1;
6389 }
6390 }
6391 break;
6392 case 0xdb:
6393 if (0xe3 == ir.modrm)
6394 {
6395 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6396 return -1;
6397 }
6398 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6399 {
6400 if (i386_record_floats (gdbarch, &ir,
6401 I387_ST0_REGNUM (tdep)))
6402 return -1;
6403 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6404 {
6405 if (i386_record_floats (gdbarch, &ir,
6406 I387_ST0_REGNUM (tdep) +
6407 (ir.modrm & 0x0f)))
6408 return -1;
6409 }
6410 else if ((ir.modrm & 0x0f) - 0x08)
6411 {
6412 if (i386_record_floats (gdbarch, &ir,
6413 I387_ST0_REGNUM (tdep) +
6414 ((ir.modrm & 0x0f) - 0x08)))
6415 return -1;
6416 }
6417 }
6418 break;
6419 case 0xdc:
6420 if ((0x0c == ir.modrm >> 4)
6421 || (0x0d == ir.modrm >> 4)
6422 || (0x0f == ir.modrm >> 4))
6423 {
6424 if ((ir.modrm & 0x0f) <= 7)
6425 {
6426 if (i386_record_floats (gdbarch, &ir,
6427 I387_ST0_REGNUM (tdep) +
6428 (ir.modrm & 0x0f)))
6429 return -1;
6430 }
6431 else
6432 {
6433 if (i386_record_floats (gdbarch, &ir,
6434 I387_ST0_REGNUM (tdep) +
6435 ((ir.modrm & 0x0f) - 0x08)))
6436 return -1;
6437 }
6438 }
6439 break;
6440 case 0xdd:
6441 if (0x0c == ir.modrm >> 4)
6442 {
6443 if (i386_record_floats (gdbarch, &ir,
6444 I387_FTAG_REGNUM (tdep)))
6445 return -1;
6446 }
6447 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6448 {
6449 if ((ir.modrm & 0x0f) <= 7)
6450 {
6451 if (i386_record_floats (gdbarch, &ir,
6452 I387_ST0_REGNUM (tdep) +
6453 (ir.modrm & 0x0f)))
6454 return -1;
6455 }
6456 else
6457 {
6458 if (i386_record_floats (gdbarch, &ir,
6459 I386_SAVE_FPU_REGS))
6460 return -1;
6461 }
6462 }
6463 break;
6464 case 0xde:
6465 if ((0x0c == ir.modrm >> 4)
6466 || (0x0e == ir.modrm >> 4)
6467 || (0x0f == ir.modrm >> 4)
6468 || (0xd9 == ir.modrm))
6469 {
6470 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6471 return -1;
6472 }
6473 break;
6474 case 0xdf:
6475 if (0xe0 == ir.modrm)
6476 {
25ea693b
MM
6477 if (record_full_arch_list_add_reg (ir.regcache,
6478 I386_EAX_REGNUM))
0289bdd7
MS
6479 return -1;
6480 }
6481 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6482 {
6483 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6484 return -1;
6485 }
6486 break;
6487 }
6488 }
7ad10968 6489 break;
7ad10968 6490 /* string ops */
a38bba38 6491 case 0xa4: /* movsS */
7ad10968 6492 case 0xa5:
a38bba38 6493 case 0xaa: /* stosS */
7ad10968 6494 case 0xab:
a38bba38 6495 case 0x6c: /* insS */
7ad10968 6496 case 0x6d:
cf648174 6497 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6498 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6499 &addr);
6500 if (addr)
cf648174 6501 {
77d7dc92
HZ
6502 ULONGEST es, ds;
6503
6504 if ((opcode & 1) == 0)
6505 ir.ot = OT_BYTE;
6506 else
6507 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6508 regcache_raw_read_unsigned (ir.regcache,
6509 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6510 &addr);
77d7dc92 6511
d7877f7e
HZ
6512 regcache_raw_read_unsigned (ir.regcache,
6513 ir.regmap[X86_RECORD_ES_REGNUM],
6514 &es);
6515 regcache_raw_read_unsigned (ir.regcache,
6516 ir.regmap[X86_RECORD_DS_REGNUM],
6517 &ds);
6518 if (ir.aflag && (es != ds))
77d7dc92
HZ
6519 {
6520 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6521 if (record_full_memory_query)
bb08c432 6522 {
651ce16a 6523 if (yquery (_("\
bb08c432
HZ
6524Process record ignores the memory change of instruction at address %s\n\
6525because it can't get the value of the segment register.\n\
6526Do you want to stop the program?"),
651ce16a 6527 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
6528 return -1;
6529 }
df61f520
HZ
6530 }
6531 else
6532 {
25ea693b 6533 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6534 return -1;
77d7dc92
HZ
6535 }
6536
6537 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6539 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6543 }
cf648174 6544 break;
7ad10968 6545
a38bba38 6546 case 0xa6: /* cmpsS */
cf648174 6547 case 0xa7:
25ea693b
MM
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6550 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6553 break;
6554
a38bba38 6555 case 0xac: /* lodsS */
7ad10968 6556 case 0xad:
25ea693b
MM
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6559 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6562 break;
6563
a38bba38 6564 case 0xae: /* scasS */
7ad10968 6565 case 0xaf:
25ea693b 6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6567 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6570 break;
6571
a38bba38 6572 case 0x6e: /* outsS */
cf648174 6573 case 0x6f:
25ea693b 6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6575 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6578 break;
6579
a38bba38 6580 case 0xe4: /* port I/O */
7ad10968
HZ
6581 case 0xe5:
6582 case 0xec:
6583 case 0xed:
25ea693b
MM
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6585 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6586 break;
6587
6588 case 0xe6:
6589 case 0xe7:
6590 case 0xee:
6591 case 0xef:
6592 break;
6593
6594 /* control */
a38bba38
MS
6595 case 0xc2: /* ret im */
6596 case 0xc3: /* ret */
25ea693b
MM
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6599 break;
6600
a38bba38
MS
6601 case 0xca: /* lret im */
6602 case 0xcb: /* lret */
6603 case 0xcf: /* iret */
25ea693b
MM
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6607 break;
6608
a38bba38 6609 case 0xe8: /* call im */
cf648174
HZ
6610 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6611 ir.dflag = 2;
6612 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6613 return -1;
7ad10968
HZ
6614 break;
6615
a38bba38 6616 case 0x9a: /* lcall im */
cf648174
HZ
6617 if (ir.regmap[X86_RECORD_R8_REGNUM])
6618 {
6619 ir.addr -= 1;
6620 goto no_support;
6621 }
25ea693b 6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6623 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6624 return -1;
7ad10968
HZ
6625 break;
6626
a38bba38
MS
6627 case 0xe9: /* jmp im */
6628 case 0xea: /* ljmp im */
6629 case 0xeb: /* jmp Jb */
6630 case 0x70: /* jcc Jb */
7ad10968
HZ
6631 case 0x71:
6632 case 0x72:
6633 case 0x73:
6634 case 0x74:
6635 case 0x75:
6636 case 0x76:
6637 case 0x77:
6638 case 0x78:
6639 case 0x79:
6640 case 0x7a:
6641 case 0x7b:
6642 case 0x7c:
6643 case 0x7d:
6644 case 0x7e:
6645 case 0x7f:
a38bba38 6646 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6647 case 0x0f81:
6648 case 0x0f82:
6649 case 0x0f83:
6650 case 0x0f84:
6651 case 0x0f85:
6652 case 0x0f86:
6653 case 0x0f87:
6654 case 0x0f88:
6655 case 0x0f89:
6656 case 0x0f8a:
6657 case 0x0f8b:
6658 case 0x0f8c:
6659 case 0x0f8d:
6660 case 0x0f8e:
6661 case 0x0f8f:
6662 break;
6663
a38bba38 6664 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6665 case 0x0f91:
6666 case 0x0f92:
6667 case 0x0f93:
6668 case 0x0f94:
6669 case 0x0f95:
6670 case 0x0f96:
6671 case 0x0f97:
6672 case 0x0f98:
6673 case 0x0f99:
6674 case 0x0f9a:
6675 case 0x0f9b:
6676 case 0x0f9c:
6677 case 0x0f9d:
6678 case 0x0f9e:
6679 case 0x0f9f:
25ea693b 6680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6681 ir.ot = OT_BYTE;
6682 if (i386_record_modrm (&ir))
6683 return -1;
6684 if (ir.mod == 3)
25ea693b
MM
6685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6686 : (ir.rm & 0x3));
7ad10968
HZ
6687 else
6688 {
6689 if (i386_record_lea_modrm (&ir))
6690 return -1;
6691 }
6692 break;
6693
a38bba38 6694 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6695 case 0x0f41:
6696 case 0x0f42:
6697 case 0x0f43:
6698 case 0x0f44:
6699 case 0x0f45:
6700 case 0x0f46:
6701 case 0x0f47:
6702 case 0x0f48:
6703 case 0x0f49:
6704 case 0x0f4a:
6705 case 0x0f4b:
6706 case 0x0f4c:
6707 case 0x0f4d:
6708 case 0x0f4e:
6709 case 0x0f4f:
6710 if (i386_record_modrm (&ir))
6711 return -1;
cf648174 6712 ir.reg |= rex_r;
7ad10968
HZ
6713 if (ir.dflag == OT_BYTE)
6714 ir.reg &= 0x3;
25ea693b 6715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6716 break;
6717
6718 /* flags */
a38bba38 6719 case 0x9c: /* pushf */
25ea693b 6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6721 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6722 ir.dflag = 2;
6723 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6724 return -1;
7ad10968
HZ
6725 break;
6726
a38bba38 6727 case 0x9d: /* popf */
25ea693b
MM
6728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6730 break;
6731
a38bba38 6732 case 0x9e: /* sahf */
cf648174
HZ
6733 if (ir.regmap[X86_RECORD_R8_REGNUM])
6734 {
6735 ir.addr -= 1;
6736 goto no_support;
6737 }
d3f323f3 6738 /* FALLTHROUGH */
a38bba38
MS
6739 case 0xf5: /* cmc */
6740 case 0xf8: /* clc */
6741 case 0xf9: /* stc */
6742 case 0xfc: /* cld */
6743 case 0xfd: /* std */
25ea693b 6744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6745 break;
6746
a38bba38 6747 case 0x9f: /* lahf */
cf648174
HZ
6748 if (ir.regmap[X86_RECORD_R8_REGNUM])
6749 {
6750 ir.addr -= 1;
6751 goto no_support;
6752 }
25ea693b
MM
6753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6755 break;
6756
6757 /* bit operations */
a38bba38 6758 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6759 ir.ot = ir.dflag + OT_WORD;
6760 if (i386_record_modrm (&ir))
6761 return -1;
6762 if (ir.reg < 4)
6763 {
cf648174 6764 ir.addr -= 2;
7ad10968
HZ
6765 opcode = opcode << 8 | ir.modrm;
6766 goto no_support;
6767 }
cf648174 6768 if (ir.reg != 4)
7ad10968 6769 {
cf648174 6770 if (ir.mod == 3)
25ea693b 6771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6772 else
6773 {
cf648174 6774 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6775 return -1;
6776 }
6777 }
25ea693b 6778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6779 break;
6780
a38bba38 6781 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6783 break;
6784
a38bba38
MS
6785 case 0x0fab: /* bts */
6786 case 0x0fb3: /* btr */
6787 case 0x0fbb: /* btc */
cf648174
HZ
6788 ir.ot = ir.dflag + OT_WORD;
6789 if (i386_record_modrm (&ir))
6790 return -1;
6791 if (ir.mod == 3)
25ea693b 6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6793 else
6794 {
955db0c0
MS
6795 uint64_t addr64;
6796 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6797 return -1;
6798 regcache_raw_read_unsigned (ir.regcache,
6799 ir.regmap[ir.reg | rex_r],
648d0c8b 6800 &addr);
cf648174
HZ
6801 switch (ir.dflag)
6802 {
6803 case 0:
648d0c8b 6804 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6805 break;
6806 case 1:
648d0c8b 6807 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6808 break;
6809 case 2:
648d0c8b 6810 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6811 break;
6812 }
25ea693b 6813 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6814 return -1;
6815 if (i386_record_lea_modrm (&ir))
6816 return -1;
6817 }
25ea693b 6818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6819 break;
6820
a38bba38
MS
6821 case 0x0fbc: /* bsf */
6822 case 0x0fbd: /* bsr */
25ea693b
MM
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6824 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6825 break;
6826
6827 /* bcd */
a38bba38
MS
6828 case 0x27: /* daa */
6829 case 0x2f: /* das */
6830 case 0x37: /* aaa */
6831 case 0x3f: /* aas */
6832 case 0xd4: /* aam */
6833 case 0xd5: /* aad */
cf648174
HZ
6834 if (ir.regmap[X86_RECORD_R8_REGNUM])
6835 {
6836 ir.addr -= 1;
6837 goto no_support;
6838 }
25ea693b
MM
6839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6840 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6841 break;
6842
6843 /* misc */
a38bba38 6844 case 0x90: /* nop */
7ad10968
HZ
6845 if (prefixes & PREFIX_LOCK)
6846 {
6847 ir.addr -= 1;
6848 goto no_support;
6849 }
6850 break;
6851
a38bba38 6852 case 0x9b: /* fwait */
4ffa4fc7
PA
6853 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6854 return -1;
425b824a 6855 opcode = (uint32_t) opcode8;
0289bdd7
MS
6856 ir.addr++;
6857 goto reswitch;
7ad10968
HZ
6858 break;
6859
7ad10968 6860 /* XXX */
a38bba38 6861 case 0xcc: /* int3 */
a3c4230a 6862 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6863 "int3.\n"));
6864 ir.addr -= 1;
6865 goto no_support;
6866 break;
6867
7ad10968 6868 /* XXX */
a38bba38 6869 case 0xcd: /* int */
7ad10968
HZ
6870 {
6871 int ret;
425b824a 6872 uint8_t interrupt;
4ffa4fc7
PA
6873 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6874 return -1;
7ad10968 6875 ir.addr++;
425b824a 6876 if (interrupt != 0x80
a3c4230a 6877 || tdep->i386_intx80_record == NULL)
7ad10968 6878 {
a3c4230a 6879 printf_unfiltered (_("Process record does not support "
7ad10968 6880 "instruction int 0x%02x.\n"),
425b824a 6881 interrupt);
7ad10968
HZ
6882 ir.addr -= 2;
6883 goto no_support;
6884 }
a3c4230a 6885 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6886 if (ret)
6887 return ret;
6888 }
6889 break;
6890
7ad10968 6891 /* XXX */
a38bba38 6892 case 0xce: /* into */
a3c4230a 6893 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6894 "instruction into.\n"));
6895 ir.addr -= 1;
6896 goto no_support;
6897 break;
6898
a38bba38
MS
6899 case 0xfa: /* cli */
6900 case 0xfb: /* sti */
7ad10968
HZ
6901 break;
6902
a38bba38 6903 case 0x62: /* bound */
a3c4230a 6904 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6905 "instruction bound.\n"));
6906 ir.addr -= 1;
6907 goto no_support;
6908 break;
6909
a38bba38 6910 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6911 case 0x0fc9:
6912 case 0x0fca:
6913 case 0x0fcb:
6914 case 0x0fcc:
6915 case 0x0fcd:
6916 case 0x0fce:
6917 case 0x0fcf:
25ea693b 6918 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6919 break;
6920
a38bba38 6921 case 0xd6: /* salc */
cf648174
HZ
6922 if (ir.regmap[X86_RECORD_R8_REGNUM])
6923 {
6924 ir.addr -= 1;
6925 goto no_support;
6926 }
25ea693b
MM
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6929 break;
6930
a38bba38
MS
6931 case 0xe0: /* loopnz */
6932 case 0xe1: /* loopz */
6933 case 0xe2: /* loop */
6934 case 0xe3: /* jecxz */
25ea693b
MM
6935 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6937 break;
6938
a38bba38 6939 case 0x0f30: /* wrmsr */
a3c4230a 6940 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6941 "instruction wrmsr.\n"));
6942 ir.addr -= 2;
6943 goto no_support;
6944 break;
6945
a38bba38 6946 case 0x0f32: /* rdmsr */
a3c4230a 6947 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6948 "instruction rdmsr.\n"));
6949 ir.addr -= 2;
6950 goto no_support;
6951 break;
6952
a38bba38 6953 case 0x0f31: /* rdtsc */
25ea693b
MM
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6956 break;
6957
a38bba38 6958 case 0x0f34: /* sysenter */
7ad10968
HZ
6959 {
6960 int ret;
cf648174
HZ
6961 if (ir.regmap[X86_RECORD_R8_REGNUM])
6962 {
6963 ir.addr -= 2;
6964 goto no_support;
6965 }
a3c4230a 6966 if (tdep->i386_sysenter_record == NULL)
7ad10968 6967 {
a3c4230a 6968 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6969 "instruction sysenter.\n"));
6970 ir.addr -= 2;
6971 goto no_support;
6972 }
a3c4230a 6973 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6974 if (ret)
6975 return ret;
6976 }
6977 break;
6978
a38bba38 6979 case 0x0f35: /* sysexit */
a3c4230a 6980 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6981 "instruction sysexit.\n"));
6982 ir.addr -= 2;
6983 goto no_support;
6984 break;
6985
a38bba38 6986 case 0x0f05: /* syscall */
cf648174
HZ
6987 {
6988 int ret;
a3c4230a 6989 if (tdep->i386_syscall_record == NULL)
cf648174 6990 {
a3c4230a 6991 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6992 "instruction syscall.\n"));
6993 ir.addr -= 2;
6994 goto no_support;
6995 }
a3c4230a 6996 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6997 if (ret)
6998 return ret;
6999 }
7000 break;
7001
a38bba38 7002 case 0x0f07: /* sysret */
a3c4230a 7003 printf_unfiltered (_("Process record does not support "
cf648174
HZ
7004 "instruction sysret.\n"));
7005 ir.addr -= 2;
7006 goto no_support;
7007 break;
7008
a38bba38 7009 case 0x0fa2: /* cpuid */
25ea693b
MM
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
7014 break;
7015
a38bba38 7016 case 0xf4: /* hlt */
a3c4230a 7017 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
7018 "instruction hlt.\n"));
7019 ir.addr -= 1;
7020 goto no_support;
7021 break;
7022
7023 case 0x0f00:
7024 if (i386_record_modrm (&ir))
7025 return -1;
7026 switch (ir.reg)
7027 {
a38bba38
MS
7028 case 0: /* sldt */
7029 case 1: /* str */
7ad10968 7030 if (ir.mod == 3)
25ea693b 7031 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7032 else
7033 {
7034 ir.ot = OT_WORD;
7035 if (i386_record_lea_modrm (&ir))
7036 return -1;
7037 }
7038 break;
a38bba38
MS
7039 case 2: /* lldt */
7040 case 3: /* ltr */
7ad10968 7041 break;
a38bba38
MS
7042 case 4: /* verr */
7043 case 5: /* verw */
25ea693b 7044 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7045 break;
7046 default:
7047 ir.addr -= 3;
7048 opcode = opcode << 8 | ir.modrm;
7049 goto no_support;
7050 break;
7051 }
7052 break;
7053
7054 case 0x0f01:
7055 if (i386_record_modrm (&ir))
7056 return -1;
7057 switch (ir.reg)
7058 {
a38bba38 7059 case 0: /* sgdt */
7ad10968 7060 {
955db0c0 7061 uint64_t addr64;
7ad10968
HZ
7062
7063 if (ir.mod == 3)
7064 {
7065 ir.addr -= 3;
7066 opcode = opcode << 8 | ir.modrm;
7067 goto no_support;
7068 }
d7877f7e 7069 if (ir.override >= 0)
7ad10968 7070 {
25ea693b 7071 if (record_full_memory_query)
bb08c432 7072 {
651ce16a 7073 if (yquery (_("\
bb08c432
HZ
7074Process record ignores the memory change of instruction at address %s\n\
7075because it can't get the value of the segment register.\n\
7076Do you want to stop the program?"),
651ce16a
PA
7077 paddress (gdbarch, ir.orig_addr)))
7078 return -1;
bb08c432 7079 }
7ad10968
HZ
7080 }
7081 else
7082 {
955db0c0 7083 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7084 return -1;
25ea693b 7085 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7086 return -1;
955db0c0 7087 addr64 += 2;
cf648174
HZ
7088 if (ir.regmap[X86_RECORD_R8_REGNUM])
7089 {
25ea693b 7090 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7091 return -1;
7092 }
7093 else
7094 {
25ea693b 7095 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7096 return -1;
7097 }
7ad10968
HZ
7098 }
7099 }
7100 break;
7101 case 1:
7102 if (ir.mod == 3)
7103 {
7104 switch (ir.rm)
7105 {
a38bba38 7106 case 0: /* monitor */
7ad10968 7107 break;
a38bba38 7108 case 1: /* mwait */
25ea693b 7109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7110 break;
7111 default:
7112 ir.addr -= 3;
7113 opcode = opcode << 8 | ir.modrm;
7114 goto no_support;
7115 break;
7116 }
7117 }
7118 else
7119 {
7120 /* sidt */
d7877f7e 7121 if (ir.override >= 0)
7ad10968 7122 {
25ea693b 7123 if (record_full_memory_query)
bb08c432 7124 {
651ce16a 7125 if (yquery (_("\
bb08c432
HZ
7126Process record ignores the memory change of instruction at address %s\n\
7127because it can't get the value of the segment register.\n\
7128Do you want to stop the program?"),
651ce16a 7129 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
7130 return -1;
7131 }
7ad10968
HZ
7132 }
7133 else
7134 {
955db0c0 7135 uint64_t addr64;
7ad10968 7136
955db0c0 7137 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7138 return -1;
25ea693b 7139 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7140 return -1;
955db0c0 7141 addr64 += 2;
cf648174
HZ
7142 if (ir.regmap[X86_RECORD_R8_REGNUM])
7143 {
25ea693b 7144 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7145 return -1;
7146 }
7147 else
7148 {
25ea693b 7149 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7150 return -1;
7151 }
7ad10968
HZ
7152 }
7153 }
7154 break;
a38bba38 7155 case 2: /* lgdt */
3800e645
MS
7156 if (ir.mod == 3)
7157 {
7158 /* xgetbv */
7159 if (ir.rm == 0)
7160 {
25ea693b
MM
7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7163 break;
7164 }
7165 /* xsetbv */
7166 else if (ir.rm == 1)
7167 break;
7168 }
a38bba38 7169 case 3: /* lidt */
7ad10968
HZ
7170 if (ir.mod == 3)
7171 {
7172 ir.addr -= 3;
7173 opcode = opcode << 8 | ir.modrm;
7174 goto no_support;
7175 }
7176 break;
a38bba38 7177 case 4: /* smsw */
7ad10968
HZ
7178 if (ir.mod == 3)
7179 {
25ea693b 7180 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7181 return -1;
7182 }
7183 else
7184 {
7185 ir.ot = OT_WORD;
7186 if (i386_record_lea_modrm (&ir))
7187 return -1;
7188 }
25ea693b 7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7190 break;
a38bba38 7191 case 6: /* lmsw */
25ea693b 7192 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7193 break;
a38bba38 7194 case 7: /* invlpg */
cf648174
HZ
7195 if (ir.mod == 3)
7196 {
7197 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7198 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7199 else
7200 {
7201 ir.addr -= 3;
7202 opcode = opcode << 8 | ir.modrm;
7203 goto no_support;
7204 }
7205 }
7206 else
25ea693b 7207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7208 break;
7209 default:
7210 ir.addr -= 3;
7211 opcode = opcode << 8 | ir.modrm;
7212 goto no_support;
7ad10968
HZ
7213 break;
7214 }
7215 break;
7216
a38bba38
MS
7217 case 0x0f08: /* invd */
7218 case 0x0f09: /* wbinvd */
7ad10968
HZ
7219 break;
7220
a38bba38 7221 case 0x63: /* arpl */
7ad10968
HZ
7222 if (i386_record_modrm (&ir))
7223 return -1;
cf648174
HZ
7224 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7225 {
25ea693b
MM
7226 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7227 ? (ir.reg | rex_r) : ir.rm);
cf648174 7228 }
7ad10968 7229 else
cf648174
HZ
7230 {
7231 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7232 if (i386_record_lea_modrm (&ir))
7233 return -1;
7234 }
7235 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7237 break;
7238
a38bba38
MS
7239 case 0x0f02: /* lar */
7240 case 0x0f03: /* lsl */
7ad10968
HZ
7241 if (i386_record_modrm (&ir))
7242 return -1;
25ea693b
MM
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7245 break;
7246
7247 case 0x0f18:
cf648174
HZ
7248 if (i386_record_modrm (&ir))
7249 return -1;
7250 if (ir.mod == 3 && ir.reg == 3)
7251 {
7252 ir.addr -= 3;
7253 opcode = opcode << 8 | ir.modrm;
7254 goto no_support;
7255 }
7ad10968
HZ
7256 break;
7257
7ad10968
HZ
7258 case 0x0f19:
7259 case 0x0f1a:
7260 case 0x0f1b:
7261 case 0x0f1c:
7262 case 0x0f1d:
7263 case 0x0f1e:
7264 case 0x0f1f:
a38bba38 7265 /* nop (multi byte) */
7ad10968
HZ
7266 break;
7267
a38bba38
MS
7268 case 0x0f20: /* mov reg, crN */
7269 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7270 if (i386_record_modrm (&ir))
7271 return -1;
7272 if ((ir.modrm & 0xc0) != 0xc0)
7273 {
cf648174 7274 ir.addr -= 3;
7ad10968
HZ
7275 opcode = opcode << 8 | ir.modrm;
7276 goto no_support;
7277 }
7278 switch (ir.reg)
7279 {
7280 case 0:
7281 case 2:
7282 case 3:
7283 case 4:
7284 case 8:
7285 if (opcode & 2)
25ea693b 7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7287 else
25ea693b 7288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7289 break;
7290 default:
cf648174 7291 ir.addr -= 3;
7ad10968
HZ
7292 opcode = opcode << 8 | ir.modrm;
7293 goto no_support;
7294 break;
7295 }
7296 break;
7297
a38bba38
MS
7298 case 0x0f21: /* mov reg, drN */
7299 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7300 if (i386_record_modrm (&ir))
7301 return -1;
7302 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7303 || ir.reg == 5 || ir.reg >= 8)
7304 {
cf648174 7305 ir.addr -= 3;
7ad10968
HZ
7306 opcode = opcode << 8 | ir.modrm;
7307 goto no_support;
7308 }
7309 if (opcode & 2)
25ea693b 7310 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7311 else
25ea693b 7312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7313 break;
7314
a38bba38 7315 case 0x0f06: /* clts */
25ea693b 7316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7317 break;
7318
a3c4230a
HZ
7319 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7320
7321 case 0x0f0d: /* 3DNow! prefetch */
7322 break;
7323
7324 case 0x0f0e: /* 3DNow! femms */
7325 case 0x0f77: /* emms */
7326 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7327 goto no_support;
25ea693b 7328 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7329 break;
7330
7331 case 0x0f0f: /* 3DNow! data */
7332 if (i386_record_modrm (&ir))
7333 return -1;
4ffa4fc7
PA
7334 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7335 return -1;
a3c4230a
HZ
7336 ir.addr++;
7337 switch (opcode8)
7338 {
7339 case 0x0c: /* 3DNow! pi2fw */
7340 case 0x0d: /* 3DNow! pi2fd */
7341 case 0x1c: /* 3DNow! pf2iw */
7342 case 0x1d: /* 3DNow! pf2id */
7343 case 0x8a: /* 3DNow! pfnacc */
7344 case 0x8e: /* 3DNow! pfpnacc */
7345 case 0x90: /* 3DNow! pfcmpge */
7346 case 0x94: /* 3DNow! pfmin */
7347 case 0x96: /* 3DNow! pfrcp */
7348 case 0x97: /* 3DNow! pfrsqrt */
7349 case 0x9a: /* 3DNow! pfsub */
7350 case 0x9e: /* 3DNow! pfadd */
7351 case 0xa0: /* 3DNow! pfcmpgt */
7352 case 0xa4: /* 3DNow! pfmax */
7353 case 0xa6: /* 3DNow! pfrcpit1 */
7354 case 0xa7: /* 3DNow! pfrsqit1 */
7355 case 0xaa: /* 3DNow! pfsubr */
7356 case 0xae: /* 3DNow! pfacc */
7357 case 0xb0: /* 3DNow! pfcmpeq */
7358 case 0xb4: /* 3DNow! pfmul */
7359 case 0xb6: /* 3DNow! pfrcpit2 */
7360 case 0xb7: /* 3DNow! pmulhrw */
7361 case 0xbb: /* 3DNow! pswapd */
7362 case 0xbf: /* 3DNow! pavgusb */
7363 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7364 goto no_support_3dnow_data;
25ea693b 7365 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7366 break;
7367
7368 default:
7369no_support_3dnow_data:
7370 opcode = (opcode << 8) | opcode8;
7371 goto no_support;
7372 break;
7373 }
7374 break;
7375
7376 case 0x0faa: /* rsm */
25ea693b
MM
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7386 break;
7387
7388 case 0x0fae:
7389 if (i386_record_modrm (&ir))
7390 return -1;
7391 switch(ir.reg)
7392 {
7393 case 0: /* fxsave */
7394 {
7395 uint64_t tmpu64;
7396
25ea693b 7397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7398 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7399 return -1;
25ea693b 7400 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7401 return -1;
7402 }
7403 break;
7404
7405 case 1: /* fxrstor */
7406 {
7407 int i;
7408
25ea693b 7409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7410
7411 for (i = I387_MM0_REGNUM (tdep);
7412 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7413 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7414
7415 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7416 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7417 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7418
7419 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7420 record_full_arch_list_add_reg (ir.regcache,
7421 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7422
7423 for (i = I387_ST0_REGNUM (tdep);
7424 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7425 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7426
7427 for (i = I387_FCTRL_REGNUM (tdep);
7428 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7429 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7430 }
7431 break;
7432
7433 case 2: /* ldmxcsr */
7434 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7435 goto no_support;
25ea693b 7436 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7437 break;
7438
7439 case 3: /* stmxcsr */
7440 ir.ot = OT_LONG;
7441 if (i386_record_lea_modrm (&ir))
7442 return -1;
7443 break;
7444
7445 case 5: /* lfence */
7446 case 6: /* mfence */
7447 case 7: /* sfence clflush */
7448 break;
7449
7450 default:
7451 opcode = (opcode << 8) | ir.modrm;
7452 goto no_support;
7453 break;
7454 }
7455 break;
7456
7457 case 0x0fc3: /* movnti */
7458 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7459 if (i386_record_modrm (&ir))
7460 return -1;
7461 if (ir.mod == 3)
7462 goto no_support;
7463 ir.reg |= rex_r;
7464 if (i386_record_lea_modrm (&ir))
7465 return -1;
7466 break;
7467
7468 /* Add prefix to opcode. */
7469 case 0x0f10:
7470 case 0x0f11:
7471 case 0x0f12:
7472 case 0x0f13:
7473 case 0x0f14:
7474 case 0x0f15:
7475 case 0x0f16:
7476 case 0x0f17:
7477 case 0x0f28:
7478 case 0x0f29:
7479 case 0x0f2a:
7480 case 0x0f2b:
7481 case 0x0f2c:
7482 case 0x0f2d:
7483 case 0x0f2e:
7484 case 0x0f2f:
7485 case 0x0f38:
7486 case 0x0f39:
7487 case 0x0f3a:
7488 case 0x0f50:
7489 case 0x0f51:
7490 case 0x0f52:
7491 case 0x0f53:
7492 case 0x0f54:
7493 case 0x0f55:
7494 case 0x0f56:
7495 case 0x0f57:
7496 case 0x0f58:
7497 case 0x0f59:
7498 case 0x0f5a:
7499 case 0x0f5b:
7500 case 0x0f5c:
7501 case 0x0f5d:
7502 case 0x0f5e:
7503 case 0x0f5f:
7504 case 0x0f60:
7505 case 0x0f61:
7506 case 0x0f62:
7507 case 0x0f63:
7508 case 0x0f64:
7509 case 0x0f65:
7510 case 0x0f66:
7511 case 0x0f67:
7512 case 0x0f68:
7513 case 0x0f69:
7514 case 0x0f6a:
7515 case 0x0f6b:
7516 case 0x0f6c:
7517 case 0x0f6d:
7518 case 0x0f6e:
7519 case 0x0f6f:
7520 case 0x0f70:
7521 case 0x0f71:
7522 case 0x0f72:
7523 case 0x0f73:
7524 case 0x0f74:
7525 case 0x0f75:
7526 case 0x0f76:
7527 case 0x0f7c:
7528 case 0x0f7d:
7529 case 0x0f7e:
7530 case 0x0f7f:
7531 case 0x0fb8:
7532 case 0x0fc2:
7533 case 0x0fc4:
7534 case 0x0fc5:
7535 case 0x0fc6:
7536 case 0x0fd0:
7537 case 0x0fd1:
7538 case 0x0fd2:
7539 case 0x0fd3:
7540 case 0x0fd4:
7541 case 0x0fd5:
7542 case 0x0fd6:
7543 case 0x0fd7:
7544 case 0x0fd8:
7545 case 0x0fd9:
7546 case 0x0fda:
7547 case 0x0fdb:
7548 case 0x0fdc:
7549 case 0x0fdd:
7550 case 0x0fde:
7551 case 0x0fdf:
7552 case 0x0fe0:
7553 case 0x0fe1:
7554 case 0x0fe2:
7555 case 0x0fe3:
7556 case 0x0fe4:
7557 case 0x0fe5:
7558 case 0x0fe6:
7559 case 0x0fe7:
7560 case 0x0fe8:
7561 case 0x0fe9:
7562 case 0x0fea:
7563 case 0x0feb:
7564 case 0x0fec:
7565 case 0x0fed:
7566 case 0x0fee:
7567 case 0x0fef:
7568 case 0x0ff0:
7569 case 0x0ff1:
7570 case 0x0ff2:
7571 case 0x0ff3:
7572 case 0x0ff4:
7573 case 0x0ff5:
7574 case 0x0ff6:
7575 case 0x0ff7:
7576 case 0x0ff8:
7577 case 0x0ff9:
7578 case 0x0ffa:
7579 case 0x0ffb:
7580 case 0x0ffc:
7581 case 0x0ffd:
7582 case 0x0ffe:
f9fda3f5
L
7583 /* Mask out PREFIX_ADDR. */
7584 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7585 {
7586 case PREFIX_REPNZ:
7587 opcode |= 0xf20000;
7588 break;
7589 case PREFIX_DATA:
7590 opcode |= 0x660000;
7591 break;
7592 case PREFIX_REPZ:
7593 opcode |= 0xf30000;
7594 break;
7595 }
7596reswitch_prefix_add:
7597 switch (opcode)
7598 {
7599 case 0x0f38:
7600 case 0x660f38:
7601 case 0xf20f38:
7602 case 0x0f3a:
7603 case 0x660f3a:
4ffa4fc7
PA
7604 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7605 return -1;
a3c4230a
HZ
7606 ir.addr++;
7607 opcode = (uint32_t) opcode8 | opcode << 8;
7608 goto reswitch_prefix_add;
7609 break;
7610
7611 case 0x0f10: /* movups */
7612 case 0x660f10: /* movupd */
7613 case 0xf30f10: /* movss */
7614 case 0xf20f10: /* movsd */
7615 case 0x0f12: /* movlps */
7616 case 0x660f12: /* movlpd */
7617 case 0xf30f12: /* movsldup */
7618 case 0xf20f12: /* movddup */
7619 case 0x0f14: /* unpcklps */
7620 case 0x660f14: /* unpcklpd */
7621 case 0x0f15: /* unpckhps */
7622 case 0x660f15: /* unpckhpd */
7623 case 0x0f16: /* movhps */
7624 case 0x660f16: /* movhpd */
7625 case 0xf30f16: /* movshdup */
7626 case 0x0f28: /* movaps */
7627 case 0x660f28: /* movapd */
7628 case 0x0f2a: /* cvtpi2ps */
7629 case 0x660f2a: /* cvtpi2pd */
7630 case 0xf30f2a: /* cvtsi2ss */
7631 case 0xf20f2a: /* cvtsi2sd */
7632 case 0x0f2c: /* cvttps2pi */
7633 case 0x660f2c: /* cvttpd2pi */
7634 case 0x0f2d: /* cvtps2pi */
7635 case 0x660f2d: /* cvtpd2pi */
7636 case 0x660f3800: /* pshufb */
7637 case 0x660f3801: /* phaddw */
7638 case 0x660f3802: /* phaddd */
7639 case 0x660f3803: /* phaddsw */
7640 case 0x660f3804: /* pmaddubsw */
7641 case 0x660f3805: /* phsubw */
7642 case 0x660f3806: /* phsubd */
4f7d61a8 7643 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7644 case 0x660f3808: /* psignb */
7645 case 0x660f3809: /* psignw */
7646 case 0x660f380a: /* psignd */
7647 case 0x660f380b: /* pmulhrsw */
7648 case 0x660f3810: /* pblendvb */
7649 case 0x660f3814: /* blendvps */
7650 case 0x660f3815: /* blendvpd */
7651 case 0x660f381c: /* pabsb */
7652 case 0x660f381d: /* pabsw */
7653 case 0x660f381e: /* pabsd */
7654 case 0x660f3820: /* pmovsxbw */
7655 case 0x660f3821: /* pmovsxbd */
7656 case 0x660f3822: /* pmovsxbq */
7657 case 0x660f3823: /* pmovsxwd */
7658 case 0x660f3824: /* pmovsxwq */
7659 case 0x660f3825: /* pmovsxdq */
7660 case 0x660f3828: /* pmuldq */
7661 case 0x660f3829: /* pcmpeqq */
7662 case 0x660f382a: /* movntdqa */
7663 case 0x660f3a08: /* roundps */
7664 case 0x660f3a09: /* roundpd */
7665 case 0x660f3a0a: /* roundss */
7666 case 0x660f3a0b: /* roundsd */
7667 case 0x660f3a0c: /* blendps */
7668 case 0x660f3a0d: /* blendpd */
7669 case 0x660f3a0e: /* pblendw */
7670 case 0x660f3a0f: /* palignr */
7671 case 0x660f3a20: /* pinsrb */
7672 case 0x660f3a21: /* insertps */
7673 case 0x660f3a22: /* pinsrd pinsrq */
7674 case 0x660f3a40: /* dpps */
7675 case 0x660f3a41: /* dppd */
7676 case 0x660f3a42: /* mpsadbw */
7677 case 0x660f3a60: /* pcmpestrm */
7678 case 0x660f3a61: /* pcmpestri */
7679 case 0x660f3a62: /* pcmpistrm */
7680 case 0x660f3a63: /* pcmpistri */
7681 case 0x0f51: /* sqrtps */
7682 case 0x660f51: /* sqrtpd */
7683 case 0xf20f51: /* sqrtsd */
7684 case 0xf30f51: /* sqrtss */
7685 case 0x0f52: /* rsqrtps */
7686 case 0xf30f52: /* rsqrtss */
7687 case 0x0f53: /* rcpps */
7688 case 0xf30f53: /* rcpss */
7689 case 0x0f54: /* andps */
7690 case 0x660f54: /* andpd */
7691 case 0x0f55: /* andnps */
7692 case 0x660f55: /* andnpd */
7693 case 0x0f56: /* orps */
7694 case 0x660f56: /* orpd */
7695 case 0x0f57: /* xorps */
7696 case 0x660f57: /* xorpd */
7697 case 0x0f58: /* addps */
7698 case 0x660f58: /* addpd */
7699 case 0xf20f58: /* addsd */
7700 case 0xf30f58: /* addss */
7701 case 0x0f59: /* mulps */
7702 case 0x660f59: /* mulpd */
7703 case 0xf20f59: /* mulsd */
7704 case 0xf30f59: /* mulss */
7705 case 0x0f5a: /* cvtps2pd */
7706 case 0x660f5a: /* cvtpd2ps */
7707 case 0xf20f5a: /* cvtsd2ss */
7708 case 0xf30f5a: /* cvtss2sd */
7709 case 0x0f5b: /* cvtdq2ps */
7710 case 0x660f5b: /* cvtps2dq */
7711 case 0xf30f5b: /* cvttps2dq */
7712 case 0x0f5c: /* subps */
7713 case 0x660f5c: /* subpd */
7714 case 0xf20f5c: /* subsd */
7715 case 0xf30f5c: /* subss */
7716 case 0x0f5d: /* minps */
7717 case 0x660f5d: /* minpd */
7718 case 0xf20f5d: /* minsd */
7719 case 0xf30f5d: /* minss */
7720 case 0x0f5e: /* divps */
7721 case 0x660f5e: /* divpd */
7722 case 0xf20f5e: /* divsd */
7723 case 0xf30f5e: /* divss */
7724 case 0x0f5f: /* maxps */
7725 case 0x660f5f: /* maxpd */
7726 case 0xf20f5f: /* maxsd */
7727 case 0xf30f5f: /* maxss */
7728 case 0x660f60: /* punpcklbw */
7729 case 0x660f61: /* punpcklwd */
7730 case 0x660f62: /* punpckldq */
7731 case 0x660f63: /* packsswb */
7732 case 0x660f64: /* pcmpgtb */
7733 case 0x660f65: /* pcmpgtw */
56d2815c 7734 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7735 case 0x660f67: /* packuswb */
7736 case 0x660f68: /* punpckhbw */
7737 case 0x660f69: /* punpckhwd */
7738 case 0x660f6a: /* punpckhdq */
7739 case 0x660f6b: /* packssdw */
7740 case 0x660f6c: /* punpcklqdq */
7741 case 0x660f6d: /* punpckhqdq */
7742 case 0x660f6e: /* movd */
7743 case 0x660f6f: /* movdqa */
7744 case 0xf30f6f: /* movdqu */
7745 case 0x660f70: /* pshufd */
7746 case 0xf20f70: /* pshuflw */
7747 case 0xf30f70: /* pshufhw */
7748 case 0x660f74: /* pcmpeqb */
7749 case 0x660f75: /* pcmpeqw */
56d2815c 7750 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7751 case 0x660f7c: /* haddpd */
7752 case 0xf20f7c: /* haddps */
7753 case 0x660f7d: /* hsubpd */
7754 case 0xf20f7d: /* hsubps */
7755 case 0xf30f7e: /* movq */
7756 case 0x0fc2: /* cmpps */
7757 case 0x660fc2: /* cmppd */
7758 case 0xf20fc2: /* cmpsd */
7759 case 0xf30fc2: /* cmpss */
7760 case 0x660fc4: /* pinsrw */
7761 case 0x0fc6: /* shufps */
7762 case 0x660fc6: /* shufpd */
7763 case 0x660fd0: /* addsubpd */
7764 case 0xf20fd0: /* addsubps */
7765 case 0x660fd1: /* psrlw */
7766 case 0x660fd2: /* psrld */
7767 case 0x660fd3: /* psrlq */
7768 case 0x660fd4: /* paddq */
7769 case 0x660fd5: /* pmullw */
7770 case 0xf30fd6: /* movq2dq */
7771 case 0x660fd8: /* psubusb */
7772 case 0x660fd9: /* psubusw */
7773 case 0x660fda: /* pminub */
7774 case 0x660fdb: /* pand */
7775 case 0x660fdc: /* paddusb */
7776 case 0x660fdd: /* paddusw */
7777 case 0x660fde: /* pmaxub */
7778 case 0x660fdf: /* pandn */
7779 case 0x660fe0: /* pavgb */
7780 case 0x660fe1: /* psraw */
7781 case 0x660fe2: /* psrad */
7782 case 0x660fe3: /* pavgw */
7783 case 0x660fe4: /* pmulhuw */
7784 case 0x660fe5: /* pmulhw */
7785 case 0x660fe6: /* cvttpd2dq */
7786 case 0xf20fe6: /* cvtpd2dq */
7787 case 0xf30fe6: /* cvtdq2pd */
7788 case 0x660fe8: /* psubsb */
7789 case 0x660fe9: /* psubsw */
7790 case 0x660fea: /* pminsw */
7791 case 0x660feb: /* por */
7792 case 0x660fec: /* paddsb */
7793 case 0x660fed: /* paddsw */
7794 case 0x660fee: /* pmaxsw */
7795 case 0x660fef: /* pxor */
4f7d61a8 7796 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7797 case 0x660ff1: /* psllw */
7798 case 0x660ff2: /* pslld */
7799 case 0x660ff3: /* psllq */
7800 case 0x660ff4: /* pmuludq */
7801 case 0x660ff5: /* pmaddwd */
7802 case 0x660ff6: /* psadbw */
7803 case 0x660ff8: /* psubb */
7804 case 0x660ff9: /* psubw */
56d2815c 7805 case 0x660ffa: /* psubd */
a3c4230a
HZ
7806 case 0x660ffb: /* psubq */
7807 case 0x660ffc: /* paddb */
7808 case 0x660ffd: /* paddw */
56d2815c 7809 case 0x660ffe: /* paddd */
a3c4230a
HZ
7810 if (i386_record_modrm (&ir))
7811 return -1;
7812 ir.reg |= rex_r;
c131fcee 7813 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7814 goto no_support;
25ea693b
MM
7815 record_full_arch_list_add_reg (ir.regcache,
7816 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7817 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7819 break;
7820
7821 case 0x0f11: /* movups */
7822 case 0x660f11: /* movupd */
7823 case 0xf30f11: /* movss */
7824 case 0xf20f11: /* movsd */
7825 case 0x0f13: /* movlps */
7826 case 0x660f13: /* movlpd */
7827 case 0x0f17: /* movhps */
7828 case 0x660f17: /* movhpd */
7829 case 0x0f29: /* movaps */
7830 case 0x660f29: /* movapd */
7831 case 0x660f3a14: /* pextrb */
7832 case 0x660f3a15: /* pextrw */
7833 case 0x660f3a16: /* pextrd pextrq */
7834 case 0x660f3a17: /* extractps */
7835 case 0x660f7f: /* movdqa */
7836 case 0xf30f7f: /* movdqu */
7837 if (i386_record_modrm (&ir))
7838 return -1;
7839 if (ir.mod == 3)
7840 {
7841 if (opcode == 0x0f13 || opcode == 0x660f13
7842 || opcode == 0x0f17 || opcode == 0x660f17)
7843 goto no_support;
7844 ir.rm |= ir.rex_b;
1777feb0
MS
7845 if (!i386_xmm_regnum_p (gdbarch,
7846 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7847 goto no_support;
25ea693b
MM
7848 record_full_arch_list_add_reg (ir.regcache,
7849 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7850 }
7851 else
7852 {
7853 switch (opcode)
7854 {
7855 case 0x660f3a14:
7856 ir.ot = OT_BYTE;
7857 break;
7858 case 0x660f3a15:
7859 ir.ot = OT_WORD;
7860 break;
7861 case 0x660f3a16:
7862 ir.ot = OT_LONG;
7863 break;
7864 case 0x660f3a17:
7865 ir.ot = OT_QUAD;
7866 break;
7867 default:
7868 ir.ot = OT_DQUAD;
7869 break;
7870 }
7871 if (i386_record_lea_modrm (&ir))
7872 return -1;
7873 }
7874 break;
7875
7876 case 0x0f2b: /* movntps */
7877 case 0x660f2b: /* movntpd */
7878 case 0x0fe7: /* movntq */
7879 case 0x660fe7: /* movntdq */
7880 if (ir.mod == 3)
7881 goto no_support;
7882 if (opcode == 0x0fe7)
7883 ir.ot = OT_QUAD;
7884 else
7885 ir.ot = OT_DQUAD;
7886 if (i386_record_lea_modrm (&ir))
7887 return -1;
7888 break;
7889
7890 case 0xf30f2c: /* cvttss2si */
7891 case 0xf20f2c: /* cvttsd2si */
7892 case 0xf30f2d: /* cvtss2si */
7893 case 0xf20f2d: /* cvtsd2si */
7894 case 0xf20f38f0: /* crc32 */
7895 case 0xf20f38f1: /* crc32 */
7896 case 0x0f50: /* movmskps */
7897 case 0x660f50: /* movmskpd */
7898 case 0x0fc5: /* pextrw */
7899 case 0x660fc5: /* pextrw */
7900 case 0x0fd7: /* pmovmskb */
7901 case 0x660fd7: /* pmovmskb */
25ea693b 7902 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7903 break;
7904
7905 case 0x0f3800: /* pshufb */
7906 case 0x0f3801: /* phaddw */
7907 case 0x0f3802: /* phaddd */
7908 case 0x0f3803: /* phaddsw */
7909 case 0x0f3804: /* pmaddubsw */
7910 case 0x0f3805: /* phsubw */
7911 case 0x0f3806: /* phsubd */
4f7d61a8 7912 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7913 case 0x0f3808: /* psignb */
7914 case 0x0f3809: /* psignw */
7915 case 0x0f380a: /* psignd */
7916 case 0x0f380b: /* pmulhrsw */
7917 case 0x0f381c: /* pabsb */
7918 case 0x0f381d: /* pabsw */
7919 case 0x0f381e: /* pabsd */
7920 case 0x0f382b: /* packusdw */
7921 case 0x0f3830: /* pmovzxbw */
7922 case 0x0f3831: /* pmovzxbd */
7923 case 0x0f3832: /* pmovzxbq */
7924 case 0x0f3833: /* pmovzxwd */
7925 case 0x0f3834: /* pmovzxwq */
7926 case 0x0f3835: /* pmovzxdq */
7927 case 0x0f3837: /* pcmpgtq */
7928 case 0x0f3838: /* pminsb */
7929 case 0x0f3839: /* pminsd */
7930 case 0x0f383a: /* pminuw */
7931 case 0x0f383b: /* pminud */
7932 case 0x0f383c: /* pmaxsb */
7933 case 0x0f383d: /* pmaxsd */
7934 case 0x0f383e: /* pmaxuw */
7935 case 0x0f383f: /* pmaxud */
7936 case 0x0f3840: /* pmulld */
7937 case 0x0f3841: /* phminposuw */
7938 case 0x0f3a0f: /* palignr */
7939 case 0x0f60: /* punpcklbw */
7940 case 0x0f61: /* punpcklwd */
7941 case 0x0f62: /* punpckldq */
7942 case 0x0f63: /* packsswb */
7943 case 0x0f64: /* pcmpgtb */
7944 case 0x0f65: /* pcmpgtw */
56d2815c 7945 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7946 case 0x0f67: /* packuswb */
7947 case 0x0f68: /* punpckhbw */
7948 case 0x0f69: /* punpckhwd */
7949 case 0x0f6a: /* punpckhdq */
7950 case 0x0f6b: /* packssdw */
7951 case 0x0f6e: /* movd */
7952 case 0x0f6f: /* movq */
7953 case 0x0f70: /* pshufw */
7954 case 0x0f74: /* pcmpeqb */
7955 case 0x0f75: /* pcmpeqw */
56d2815c 7956 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7957 case 0x0fc4: /* pinsrw */
7958 case 0x0fd1: /* psrlw */
7959 case 0x0fd2: /* psrld */
7960 case 0x0fd3: /* psrlq */
7961 case 0x0fd4: /* paddq */
7962 case 0x0fd5: /* pmullw */
7963 case 0xf20fd6: /* movdq2q */
7964 case 0x0fd8: /* psubusb */
7965 case 0x0fd9: /* psubusw */
7966 case 0x0fda: /* pminub */
7967 case 0x0fdb: /* pand */
7968 case 0x0fdc: /* paddusb */
7969 case 0x0fdd: /* paddusw */
7970 case 0x0fde: /* pmaxub */
7971 case 0x0fdf: /* pandn */
7972 case 0x0fe0: /* pavgb */
7973 case 0x0fe1: /* psraw */
7974 case 0x0fe2: /* psrad */
7975 case 0x0fe3: /* pavgw */
7976 case 0x0fe4: /* pmulhuw */
7977 case 0x0fe5: /* pmulhw */
7978 case 0x0fe8: /* psubsb */
7979 case 0x0fe9: /* psubsw */
7980 case 0x0fea: /* pminsw */
7981 case 0x0feb: /* por */
7982 case 0x0fec: /* paddsb */
7983 case 0x0fed: /* paddsw */
7984 case 0x0fee: /* pmaxsw */
7985 case 0x0fef: /* pxor */
7986 case 0x0ff1: /* psllw */
7987 case 0x0ff2: /* pslld */
7988 case 0x0ff3: /* psllq */
7989 case 0x0ff4: /* pmuludq */
7990 case 0x0ff5: /* pmaddwd */
7991 case 0x0ff6: /* psadbw */
7992 case 0x0ff8: /* psubb */
7993 case 0x0ff9: /* psubw */
56d2815c 7994 case 0x0ffa: /* psubd */
a3c4230a
HZ
7995 case 0x0ffb: /* psubq */
7996 case 0x0ffc: /* paddb */
7997 case 0x0ffd: /* paddw */
56d2815c 7998 case 0x0ffe: /* paddd */
a3c4230a
HZ
7999 if (i386_record_modrm (&ir))
8000 return -1;
8001 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8002 goto no_support;
25ea693b
MM
8003 record_full_arch_list_add_reg (ir.regcache,
8004 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
8005 break;
8006
8007 case 0x0f71: /* psllw */
8008 case 0x0f72: /* pslld */
8009 case 0x0f73: /* psllq */
8010 if (i386_record_modrm (&ir))
8011 return -1;
8012 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8013 goto no_support;
25ea693b
MM
8014 record_full_arch_list_add_reg (ir.regcache,
8015 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8016 break;
8017
8018 case 0x660f71: /* psllw */
8019 case 0x660f72: /* pslld */
8020 case 0x660f73: /* psllq */
8021 if (i386_record_modrm (&ir))
8022 return -1;
8023 ir.rm |= ir.rex_b;
c131fcee 8024 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8025 goto no_support;
25ea693b
MM
8026 record_full_arch_list_add_reg (ir.regcache,
8027 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8028 break;
8029
8030 case 0x0f7e: /* movd */
8031 case 0x660f7e: /* movd */
8032 if (i386_record_modrm (&ir))
8033 return -1;
8034 if (ir.mod == 3)
25ea693b 8035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
8036 else
8037 {
8038 if (ir.dflag == 2)
8039 ir.ot = OT_QUAD;
8040 else
8041 ir.ot = OT_LONG;
8042 if (i386_record_lea_modrm (&ir))
8043 return -1;
8044 }
8045 break;
8046
8047 case 0x0f7f: /* movq */
8048 if (i386_record_modrm (&ir))
8049 return -1;
8050 if (ir.mod == 3)
8051 {
8052 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8053 goto no_support;
25ea693b
MM
8054 record_full_arch_list_add_reg (ir.regcache,
8055 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8056 }
8057 else
8058 {
8059 ir.ot = OT_QUAD;
8060 if (i386_record_lea_modrm (&ir))
8061 return -1;
8062 }
8063 break;
8064
8065 case 0xf30fb8: /* popcnt */
8066 if (i386_record_modrm (&ir))
8067 return -1;
25ea693b
MM
8068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8070 break;
8071
8072 case 0x660fd6: /* movq */
8073 if (i386_record_modrm (&ir))
8074 return -1;
8075 if (ir.mod == 3)
8076 {
8077 ir.rm |= ir.rex_b;
1777feb0
MS
8078 if (!i386_xmm_regnum_p (gdbarch,
8079 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8080 goto no_support;
25ea693b
MM
8081 record_full_arch_list_add_reg (ir.regcache,
8082 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8083 }
8084 else
8085 {
8086 ir.ot = OT_QUAD;
8087 if (i386_record_lea_modrm (&ir))
8088 return -1;
8089 }
8090 break;
8091
8092 case 0x660f3817: /* ptest */
8093 case 0x0f2e: /* ucomiss */
8094 case 0x660f2e: /* ucomisd */
8095 case 0x0f2f: /* comiss */
8096 case 0x660f2f: /* comisd */
25ea693b 8097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8098 break;
8099
8100 case 0x0ff7: /* maskmovq */
8101 regcache_raw_read_unsigned (ir.regcache,
8102 ir.regmap[X86_RECORD_REDI_REGNUM],
8103 &addr);
25ea693b 8104 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8105 return -1;
8106 break;
8107
8108 case 0x660ff7: /* maskmovdqu */
8109 regcache_raw_read_unsigned (ir.regcache,
8110 ir.regmap[X86_RECORD_REDI_REGNUM],
8111 &addr);
25ea693b 8112 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8113 return -1;
8114 break;
8115
8116 default:
8117 goto no_support;
8118 break;
8119 }
8120 break;
7ad10968
HZ
8121
8122 default:
7ad10968
HZ
8123 goto no_support;
8124 break;
8125 }
8126
cf648174 8127 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8128 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8129 if (record_full_arch_list_add_end ())
7ad10968
HZ
8130 return -1;
8131
8132 return 0;
8133
01fe1b41 8134 no_support:
a3c4230a
HZ
8135 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8136 "at address %s.\n"),
8137 (unsigned int) (opcode),
8138 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8139 return -1;
8140}
8141
cf648174
HZ
8142static const int i386_record_regmap[] =
8143{
8144 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8145 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8146 0, 0, 0, 0, 0, 0, 0, 0,
8147 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8148 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8149};
8150
7a697b8d 8151/* Check that the given address appears suitable for a fast
405f8e94 8152 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8153 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8154 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8155 middle of the tracepoint jump. On x86, it may be possible to use
8156 4-byte jumps with a 2-byte offset to a trampoline located in the
8157 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8158 of instruction to replace, and 0 if not, plus an explanatory
8159 string. */
8160
8161static int
6b940e6a
PL
8162i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8163 char **msg)
7a697b8d
SS
8164{
8165 int len, jumplen;
7a697b8d 8166
405f8e94
SS
8167 /* Ask the target for the minimum instruction length supported. */
8168 jumplen = target_get_min_fast_tracepoint_insn_len ();
8169
8170 if (jumplen < 0)
8171 {
8172 /* If the target does not support the get_min_fast_tracepoint_insn_len
8173 operation, assume that fast tracepoints will always be implemented
8174 using 4-byte relative jumps on both x86 and x86-64. */
8175 jumplen = 5;
8176 }
8177 else if (jumplen == 0)
8178 {
8179 /* If the target does support get_min_fast_tracepoint_insn_len but
8180 returns zero, then the IPA has not loaded yet. In this case,
8181 we optimistically assume that truncated 2-byte relative jumps
8182 will be available on x86, and compensate later if this assumption
8183 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8184 jumps will always be used. */
8185 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8186 }
7a697b8d 8187
7a697b8d 8188 /* Check for fit. */
be85ce7d 8189 len = gdb_insn_length (gdbarch, addr);
405f8e94 8190
7a697b8d
SS
8191 if (len < jumplen)
8192 {
8193 /* Return a bit of target-specific detail to add to the caller's
8194 generic failure message. */
8195 if (msg)
1777feb0
MS
8196 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8197 "need at least %d bytes for the jump"),
7a697b8d
SS
8198 len, jumplen);
8199 return 0;
8200 }
405f8e94
SS
8201 else
8202 {
8203 if (msg)
8204 *msg = NULL;
8205 return 1;
8206 }
7a697b8d
SS
8207}
8208
00d5215e
UW
8209/* Return a floating-point format for a floating-point variable of
8210 length LEN in bits. If non-NULL, NAME is the name of its type.
8211 If no suitable type is found, return NULL. */
8212
8213const struct floatformat **
8214i386_floatformat_for_type (struct gdbarch *gdbarch,
8215 const char *name, int len)
8216{
8217 if (len == 128 && name)
8218 if (strcmp (name, "__float128") == 0
8219 || strcmp (name, "_Float128") == 0
8220 || strcmp (name, "complex _Float128") == 0)
8221 return floatformats_ia64_quad;
8222
8223 return default_floatformat_for_type (gdbarch, name, len);
8224}
8225
90884b2b
L
8226static int
8227i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8228 struct tdesc_arch_data *tdesc_data)
8229{
8230 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8231 const struct tdesc_feature *feature_core;
01f9f808
MS
8232
8233 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
51547df6 8234 *feature_avx512, *feature_pkeys;
90884b2b
L
8235 int i, num_regs, valid_p;
8236
8237 if (! tdesc_has_registers (tdesc))
8238 return 0;
8239
8240 /* Get core registers. */
8241 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8242 if (feature_core == NULL)
8243 return 0;
90884b2b
L
8244
8245 /* Get SSE registers. */
c131fcee 8246 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8247
c131fcee
L
8248 /* Try AVX registers. */
8249 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8250
1dbcd68c
WT
8251 /* Try MPX registers. */
8252 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8253
01f9f808
MS
8254 /* Try AVX512 registers. */
8255 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8256
51547df6
MS
8257 /* Try PKEYS */
8258 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8259
90884b2b
L
8260 valid_p = 1;
8261
c131fcee 8262 /* The XCR0 bits. */
01f9f808
MS
8263 if (feature_avx512)
8264 {
8265 /* AVX512 register description requires AVX register description. */
8266 if (!feature_avx)
8267 return 0;
8268
a1fa17ee 8269 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8270
8271 /* It may have been set by OSABI initialization function. */
8272 if (tdep->k0_regnum < 0)
8273 {
8274 tdep->k_register_names = i386_k_names;
8275 tdep->k0_regnum = I386_K0_REGNUM;
8276 }
8277
8278 for (i = 0; i < I387_NUM_K_REGS; i++)
8279 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8280 tdep->k0_regnum + i,
8281 i386_k_names[i]);
8282
8283 if (tdep->num_zmm_regs == 0)
8284 {
8285 tdep->zmmh_register_names = i386_zmmh_names;
8286 tdep->num_zmm_regs = 8;
8287 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8288 }
8289
8290 for (i = 0; i < tdep->num_zmm_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8292 tdep->zmm0h_regnum + i,
8293 tdep->zmmh_register_names[i]);
8294
8295 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8297 tdep->xmm16_regnum + i,
8298 tdep->xmm_avx512_register_names[i]);
8299
8300 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8301 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8302 tdep->ymm16h_regnum + i,
8303 tdep->ymm16h_register_names[i]);
8304 }
c131fcee
L
8305 if (feature_avx)
8306 {
3a13a53b
L
8307 /* AVX register description requires SSE register description. */
8308 if (!feature_sse)
8309 return 0;
8310
01f9f808 8311 if (!feature_avx512)
df7e5265 8312 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8313
8314 /* It may have been set by OSABI initialization function. */
8315 if (tdep->num_ymm_regs == 0)
8316 {
8317 tdep->ymmh_register_names = i386_ymmh_names;
8318 tdep->num_ymm_regs = 8;
8319 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8320 }
8321
8322 for (i = 0; i < tdep->num_ymm_regs; i++)
8323 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8324 tdep->ymm0h_regnum + i,
8325 tdep->ymmh_register_names[i]);
8326 }
3a13a53b 8327 else if (feature_sse)
df7e5265 8328 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8329 else
8330 {
df7e5265 8331 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8332 tdep->num_xmm_regs = 0;
8333 }
c131fcee 8334
90884b2b
L
8335 num_regs = tdep->num_core_regs;
8336 for (i = 0; i < num_regs; i++)
8337 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8338 tdep->register_names[i]);
8339
3a13a53b
L
8340 if (feature_sse)
8341 {
8342 /* Need to include %mxcsr, so add one. */
8343 num_regs += tdep->num_xmm_regs + 1;
8344 for (; i < num_regs; i++)
8345 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8346 tdep->register_names[i]);
8347 }
90884b2b 8348
1dbcd68c
WT
8349 if (feature_mpx)
8350 {
df7e5265 8351 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8352
8353 if (tdep->bnd0r_regnum < 0)
8354 {
8355 tdep->mpx_register_names = i386_mpx_names;
8356 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8357 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8358 }
8359
8360 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8361 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8362 I387_BND0R_REGNUM (tdep) + i,
8363 tdep->mpx_register_names[i]);
8364 }
8365
51547df6
MS
8366 if (feature_pkeys)
8367 {
8368 tdep->xcr0 |= X86_XSTATE_PKRU;
8369 if (tdep->pkru_regnum < 0)
8370 {
8371 tdep->pkeys_register_names = i386_pkeys_names;
8372 tdep->pkru_regnum = I386_PKRU_REGNUM;
8373 tdep->num_pkeys_regs = 1;
8374 }
8375
8376 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8377 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8378 I387_PKRU_REGNUM (tdep) + i,
8379 tdep->pkeys_register_names[i]);
8380 }
8381
90884b2b
L
8382 return valid_p;
8383}
8384
7ad10968 8385\f
ad9eb1fd
DE
8386/* Note: This is called for both i386 and amd64. */
8387
7ad10968
HZ
8388static struct gdbarch *
8389i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8390{
8391 struct gdbarch_tdep *tdep;
8392 struct gdbarch *gdbarch;
90884b2b
L
8393 struct tdesc_arch_data *tdesc_data;
8394 const struct target_desc *tdesc;
1ba53b71 8395 int mm0_regnum;
c131fcee 8396 int ymm0_regnum;
1dbcd68c
WT
8397 int bnd0_regnum;
8398 int num_bnd_cooked;
7ad10968
HZ
8399
8400 /* If there is already a candidate, use it. */
8401 arches = gdbarch_list_lookup_by_info (arches, &info);
8402 if (arches != NULL)
8403 return arches->gdbarch;
8404
ad9eb1fd 8405 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8406 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8407 gdbarch = gdbarch_alloc (&info, tdep);
8408
8409 /* General-purpose registers. */
7ad10968
HZ
8410 tdep->gregset_reg_offset = NULL;
8411 tdep->gregset_num_regs = I386_NUM_GREGS;
8412 tdep->sizeof_gregset = 0;
8413
8414 /* Floating-point registers. */
7ad10968 8415 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8416 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8417
8418 /* The default settings include the FPU registers, the MMX registers
8419 and the SSE registers. This can be overridden for a specific ABI
8420 by adjusting the members `st0_regnum', `mm0_regnum' and
8421 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8422 will show up in the output of "info all-registers". */
7ad10968
HZ
8423
8424 tdep->st0_regnum = I386_ST0_REGNUM;
8425
7ad10968
HZ
8426 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8427 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8428
8429 tdep->jb_pc_offset = -1;
8430 tdep->struct_return = pcc_struct_return;
8431 tdep->sigtramp_start = 0;
8432 tdep->sigtramp_end = 0;
8433 tdep->sigtramp_p = i386_sigtramp_p;
8434 tdep->sigcontext_addr = NULL;
8435 tdep->sc_reg_offset = NULL;
8436 tdep->sc_pc_offset = -1;
8437 tdep->sc_sp_offset = -1;
8438
c131fcee
L
8439 tdep->xsave_xcr0_offset = -1;
8440
cf648174
HZ
8441 tdep->record_regmap = i386_record_regmap;
8442
205c306f
DM
8443 set_gdbarch_long_long_align_bit (gdbarch, 32);
8444
7ad10968
HZ
8445 /* The format used for `long double' on almost all i386 targets is
8446 the i387 extended floating-point format. In fact, of all targets
8447 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8448 on having a `long double' that's not `long' at all. */
8449 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8450
8451 /* Although the i387 extended floating-point has only 80 significant
8452 bits, a `long double' actually takes up 96, probably to enforce
8453 alignment. */
8454 set_gdbarch_long_double_bit (gdbarch, 96);
8455
00d5215e
UW
8456 /* Support for floating-point data type variants. */
8457 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8458
7ad10968
HZ
8459 /* Register numbers of various important registers. */
8460 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8461 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8462 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8463 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8464
8465 /* NOTE: kettenis/20040418: GCC does have two possible register
8466 numbering schemes on the i386: dbx and SVR4. These schemes
8467 differ in how they number %ebp, %esp, %eflags, and the
8468 floating-point registers, and are implemented by the arrays
8469 dbx_register_map[] and svr4_dbx_register_map in
8470 gcc/config/i386.c. GCC also defines a third numbering scheme in
8471 gcc/config/i386.c, which it designates as the "default" register
8472 map used in 64bit mode. This last register numbering scheme is
8473 implemented in dbx64_register_map, and is used for AMD64; see
8474 amd64-tdep.c.
8475
8476 Currently, each GCC i386 target always uses the same register
8477 numbering scheme across all its supported debugging formats
8478 i.e. SDB (COFF), stabs and DWARF 2. This is because
8479 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8480 DBX_REGISTER_NUMBER macro which is defined by each target's
8481 respective config header in a manner independent of the requested
8482 output debugging format.
8483
8484 This does not match the arrangement below, which presumes that
8485 the SDB and stabs numbering schemes differ from the DWARF and
8486 DWARF 2 ones. The reason for this arrangement is that it is
8487 likely to get the numbering scheme for the target's
8488 default/native debug format right. For targets where GCC is the
8489 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8490 targets where the native toolchain uses a different numbering
8491 scheme for a particular debug format (stabs-in-ELF on Solaris)
8492 the defaults below will have to be overridden, like
8493 i386_elf_init_abi() does. */
8494
8495 /* Use the dbx register numbering scheme for stabs and COFF. */
8496 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8497 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8498
8499 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8500 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8501
8502 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8503 be in use on any of the supported i386 targets. */
8504
8505 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8506
8507 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8508
8509 /* Call dummy code. */
a9b8d892
JK
8510 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8511 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8512 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8513 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8514
8515 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8516 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8517 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8518
8519 set_gdbarch_return_value (gdbarch, i386_return_value);
8520
8521 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8522
8523 /* Stack grows downward. */
8524 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8525
04180708
YQ
8526 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8527 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8528
7ad10968
HZ
8529 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8530 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8531
8532 set_gdbarch_frame_args_skip (gdbarch, 8);
8533
7ad10968
HZ
8534 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8535
8536 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8537
8538 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8539
8540 /* Add the i386 register groups. */
8541 i386_add_reggroups (gdbarch);
90884b2b 8542 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8543
143985b7
AF
8544 /* Helper for function argument information. */
8545 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8546
06da04c6 8547 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8548 appended to the list first, so that it supercedes the DWARF
8549 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8550 currently fails). */
8551 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8552
8553 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8554 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8555 CFI info will be used if it is available. */
10458914 8556 dwarf2_append_unwinders (gdbarch);
6405b0a6 8557
acd5c798 8558 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8559
1ba53b71 8560 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8561 set_gdbarch_pseudo_register_read_value (gdbarch,
8562 i386_pseudo_register_read_value);
90884b2b 8563 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8564 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8565 i386_ax_pseudo_register_collect);
90884b2b
L
8566
8567 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8568 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8569
c131fcee
L
8570 /* Override the normal target description method to make the AVX
8571 upper halves anonymous. */
8572 set_gdbarch_register_name (gdbarch, i386_register_name);
8573
8574 /* Even though the default ABI only includes general-purpose registers,
8575 floating-point registers and the SSE registers, we have to leave a
01f9f808 8576 gap for the upper AVX, MPX and AVX512 registers. */
51547df6 8577 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
90884b2b 8578
ac04f72b
TT
8579 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8580
90884b2b
L
8581 /* Get the x86 target description from INFO. */
8582 tdesc = info.target_desc;
8583 if (! tdesc_has_registers (tdesc))
8584 tdesc = tdesc_i386;
8585 tdep->tdesc = tdesc;
8586
8587 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8588 tdep->register_names = i386_register_names;
8589
c131fcee
L
8590 /* No upper YMM registers. */
8591 tdep->ymmh_register_names = NULL;
8592 tdep->ymm0h_regnum = -1;
8593
01f9f808
MS
8594 /* No upper ZMM registers. */
8595 tdep->zmmh_register_names = NULL;
8596 tdep->zmm0h_regnum = -1;
8597
8598 /* No high XMM registers. */
8599 tdep->xmm_avx512_register_names = NULL;
8600 tdep->xmm16_regnum = -1;
8601
8602 /* No upper YMM16-31 registers. */
8603 tdep->ymm16h_register_names = NULL;
8604 tdep->ymm16h_regnum = -1;
8605
1ba53b71
L
8606 tdep->num_byte_regs = 8;
8607 tdep->num_word_regs = 8;
8608 tdep->num_dword_regs = 0;
8609 tdep->num_mmx_regs = 8;
c131fcee 8610 tdep->num_ymm_regs = 0;
1ba53b71 8611
1dbcd68c
WT
8612 /* No MPX registers. */
8613 tdep->bnd0r_regnum = -1;
8614 tdep->bndcfgu_regnum = -1;
8615
01f9f808
MS
8616 /* No AVX512 registers. */
8617 tdep->k0_regnum = -1;
8618 tdep->num_zmm_regs = 0;
8619 tdep->num_ymm_avx512_regs = 0;
8620 tdep->num_xmm_avx512_regs = 0;
8621
51547df6
MS
8622 /* No PKEYS registers */
8623 tdep->pkru_regnum = -1;
8624 tdep->num_pkeys_regs = 0;
8625
90884b2b
L
8626 tdesc_data = tdesc_data_alloc ();
8627
dde08ee1
PA
8628 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8629
6710bf39
SS
8630 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8631
c2170eef
MM
8632 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8633 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8634 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8635
ad9eb1fd
DE
8636 /* Hook in ABI-specific overrides, if they have been registered.
8637 Note: If INFO specifies a 64 bit arch, this is where we turn
8638 a 32-bit i386 into a 64-bit amd64. */
ede5f151 8639 info.tdep_info = tdesc_data;
4be87837 8640 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8641
c131fcee
L
8642 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8643 {
8644 tdesc_data_cleanup (tdesc_data);
8645 xfree (tdep);
8646 gdbarch_free (gdbarch);
8647 return NULL;
8648 }
8649
1dbcd68c
WT
8650 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8651
1ba53b71
L
8652 /* Wire in pseudo registers. Number of pseudo registers may be
8653 changed. */
8654 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8655 + tdep->num_word_regs
8656 + tdep->num_dword_regs
c131fcee 8657 + tdep->num_mmx_regs
1dbcd68c 8658 + tdep->num_ymm_regs
01f9f808
MS
8659 + num_bnd_cooked
8660 + tdep->num_ymm_avx512_regs
8661 + tdep->num_zmm_regs));
1ba53b71 8662
90884b2b
L
8663 /* Target description may be changed. */
8664 tdesc = tdep->tdesc;
8665
90884b2b
L
8666 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8667
8668 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8669 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8670
1ba53b71
L
8671 /* Make %al the first pseudo-register. */
8672 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8673 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8674
c131fcee 8675 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8676 if (tdep->num_dword_regs)
8677 {
1c6272a6 8678 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8679 tdep->eax_regnum = ymm0_regnum;
8680 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8681 }
8682 else
8683 tdep->eax_regnum = -1;
8684
c131fcee
L
8685 mm0_regnum = ymm0_regnum;
8686 if (tdep->num_ymm_regs)
8687 {
1c6272a6 8688 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8689 tdep->ymm0_regnum = ymm0_regnum;
8690 mm0_regnum += tdep->num_ymm_regs;
8691 }
8692 else
8693 tdep->ymm0_regnum = -1;
8694
01f9f808
MS
8695 if (tdep->num_ymm_avx512_regs)
8696 {
8697 /* Support YMM16-31 pseudo registers if available. */
8698 tdep->ymm16_regnum = mm0_regnum;
8699 mm0_regnum += tdep->num_ymm_avx512_regs;
8700 }
8701 else
8702 tdep->ymm16_regnum = -1;
8703
8704 if (tdep->num_zmm_regs)
8705 {
8706 /* Support ZMM pseudo-register if it is available. */
8707 tdep->zmm0_regnum = mm0_regnum;
8708 mm0_regnum += tdep->num_zmm_regs;
8709 }
8710 else
8711 tdep->zmm0_regnum = -1;
8712
1dbcd68c 8713 bnd0_regnum = mm0_regnum;
1ba53b71
L
8714 if (tdep->num_mmx_regs != 0)
8715 {
1c6272a6 8716 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8717 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8718 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8719 }
8720 else
8721 tdep->mm0_regnum = -1;
8722
1dbcd68c
WT
8723 if (tdep->bnd0r_regnum > 0)
8724 tdep->bnd0_regnum = bnd0_regnum;
8725 else
8726 tdep-> bnd0_regnum = -1;
8727
06da04c6 8728 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8729 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8730 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8731 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8732
8446b36a
MK
8733 /* If we have a register mapping, enable the generic core file
8734 support, unless it has already been enabled. */
8735 if (tdep->gregset_reg_offset
8f0435f7 8736 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8737 set_gdbarch_iterate_over_regset_sections
8738 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8739
7a697b8d
SS
8740 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8741 i386_fast_tracepoint_valid_at);
8742
a62cc96e
AC
8743 return gdbarch;
8744}
8745
8201327c
MK
8746static enum gdb_osabi
8747i386_coff_osabi_sniffer (bfd *abfd)
8748{
762c5349
MK
8749 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8750 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8751 return GDB_OSABI_GO32;
8752
8753 return GDB_OSABI_UNKNOWN;
8754}
8201327c
MK
8755\f
8756
97de3545
JB
8757/* Return the target description for a specified XSAVE feature mask. */
8758
8759const struct target_desc *
8760i386_target_description (uint64_t xcr0)
8761{
8762 switch (xcr0 & X86_XSTATE_ALL_MASK)
8763 {
51547df6
MS
8764 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8765 return tdesc_i386_avx_mpx_avx512_pku;
a1fa17ee
MS
8766 case X86_XSTATE_AVX_AVX512_MASK:
8767 return tdesc_i386_avx_avx512;
2b863f51
WT
8768 case X86_XSTATE_AVX_MPX_MASK:
8769 return tdesc_i386_avx_mpx;
97de3545
JB
8770 case X86_XSTATE_MPX_MASK:
8771 return tdesc_i386_mpx;
8772 case X86_XSTATE_AVX_MASK:
8773 return tdesc_i386_avx;
8774 default:
8775 return tdesc_i386;
8776 }
8777}
8778
29c1c244
WT
8779#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8780
8781/* Find the bound directory base address. */
8782
8783static unsigned long
8784i386_mpx_bd_base (void)
8785{
8786 struct regcache *rcache;
8787 struct gdbarch_tdep *tdep;
8788 ULONGEST ret;
8789 enum register_status regstatus;
29c1c244
WT
8790
8791 rcache = get_current_regcache ();
8792 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8793
8794 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8795
8796 if (regstatus != REG_VALID)
8797 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8798
8799 return ret & MPX_BASE_MASK;
8800}
8801
012b3a21 8802int
29c1c244
WT
8803i386_mpx_enabled (void)
8804{
8805 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8806 const struct target_desc *tdesc = tdep->tdesc;
8807
8808 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8809}
8810
8811#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8812#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8813#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8814#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8815
8816/* Find the bound table entry given the pointer location and the base
8817 address of the table. */
8818
8819static CORE_ADDR
8820i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8821{
8822 CORE_ADDR offset1;
8823 CORE_ADDR offset2;
8824 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8825 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8826 CORE_ADDR bd_entry_addr;
8827 CORE_ADDR bt_addr;
8828 CORE_ADDR bd_entry;
8829 struct gdbarch *gdbarch = get_current_arch ();
8830 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8831
8832
8833 if (gdbarch_ptr_bit (gdbarch) == 64)
8834 {
966f0aef 8835 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8836 bd_ptr_r_shift = 20;
8837 bd_ptr_l_shift = 3;
8838 bt_select_r_shift = 3;
8839 bt_select_l_shift = 5;
966f0aef
WT
8840 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8841
8842 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8843 error (_("bound table examination not supported\
8844 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8845 }
8846 else
8847 {
8848 mpx_bd_mask = MPX_BD_MASK_32;
8849 bd_ptr_r_shift = 12;
8850 bd_ptr_l_shift = 2;
8851 bt_select_r_shift = 2;
8852 bt_select_l_shift = 4;
8853 bt_mask = MPX_BT_MASK_32;
8854 }
8855
8856 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8857 bd_entry_addr = bd_base + offset1;
8858 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8859
8860 if ((bd_entry & 0x1) == 0)
8861 error (_("Invalid bounds directory entry at %s."),
8862 paddress (get_current_arch (), bd_entry_addr));
8863
8864 /* Clearing status bit. */
8865 bd_entry--;
8866 bt_addr = bd_entry & ~bt_select_r_shift;
8867 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8868
8869 return bt_addr + offset2;
8870}
8871
8872/* Print routine for the mpx bounds. */
8873
8874static void
8875i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8876{
8877 struct ui_out *uiout = current_uiout;
34f8ac9f 8878 LONGEST size;
29c1c244
WT
8879 struct gdbarch *gdbarch = get_current_arch ();
8880 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8881 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8882
8883 if (bounds_in_map == 1)
8884 {
112e8700
SM
8885 uiout->text ("Null bounds on map:");
8886 uiout->text (" pointer value = ");
8887 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8888 uiout->text (".");
8889 uiout->text ("\n");
29c1c244
WT
8890 }
8891 else
8892 {
112e8700
SM
8893 uiout->text ("{lbound = ");
8894 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8895 uiout->text (", ubound = ");
29c1c244
WT
8896
8897 /* The upper bound is stored in 1's complement. */
112e8700
SM
8898 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8899 uiout->text ("}: pointer value = ");
8900 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8901
8902 if (gdbarch_ptr_bit (gdbarch) == 64)
8903 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8904 else
8905 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8906
8907 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8908 -1 represents in this sense full memory access, and there is no need
8909 one to the size. */
8910
8911 size = (size > -1 ? size + 1 : size);
112e8700
SM
8912 uiout->text (", size = ");
8913 uiout->field_fmt ("size", "%s", plongest (size));
29c1c244 8914
112e8700
SM
8915 uiout->text (", metadata = ");
8916 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8917 uiout->text ("\n");
29c1c244
WT
8918 }
8919}
8920
8921/* Implement the command "show mpx bound". */
8922
8923static void
8924i386_mpx_info_bounds (char *args, int from_tty)
8925{
8926 CORE_ADDR bd_base = 0;
8927 CORE_ADDR addr;
8928 CORE_ADDR bt_entry_addr = 0;
8929 CORE_ADDR bt_entry[4];
8930 int i;
8931 struct gdbarch *gdbarch = get_current_arch ();
8932 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8933
ae71e7b5
MR
8934 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8935 || !i386_mpx_enabled ())
118ca224 8936 {
bc504a31 8937 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8938 "supported on this target.\n"));
8939 return;
8940 }
29c1c244
WT
8941
8942 if (args == NULL)
118ca224
PP
8943 {
8944 printf_unfiltered (_("Address of pointer variable expected.\n"));
8945 return;
8946 }
29c1c244
WT
8947
8948 addr = parse_and_eval_address (args);
8949
8950 bd_base = i386_mpx_bd_base ();
8951 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8952
8953 memset (bt_entry, 0, sizeof (bt_entry));
8954
8955 for (i = 0; i < 4; i++)
8956 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8957 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8958 data_ptr_type);
8959
8960 i386_mpx_print_bounds (bt_entry);
8961}
8962
8963/* Implement the command "set mpx bound". */
8964
8965static void
8966i386_mpx_set_bounds (char *args, int from_tty)
8967{
8968 CORE_ADDR bd_base = 0;
8969 CORE_ADDR addr, lower, upper;
8970 CORE_ADDR bt_entry_addr = 0;
8971 CORE_ADDR bt_entry[2];
8972 const char *input = args;
8973 int i;
8974 struct gdbarch *gdbarch = get_current_arch ();
8975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8976 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8977
ae71e7b5
MR
8978 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8979 || !i386_mpx_enabled ())
bc504a31 8980 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
8981 on this target."));
8982
8983 if (args == NULL)
8984 error (_("Pointer value expected."));
8985
8986 addr = value_as_address (parse_to_comma_and_eval (&input));
8987
8988 if (input[0] == ',')
8989 ++input;
8990 if (input[0] == '\0')
8991 error (_("wrong number of arguments: missing lower and upper bound."));
8992 lower = value_as_address (parse_to_comma_and_eval (&input));
8993
8994 if (input[0] == ',')
8995 ++input;
8996 if (input[0] == '\0')
8997 error (_("Wrong number of arguments; Missing upper bound."));
8998 upper = value_as_address (parse_to_comma_and_eval (&input));
8999
9000 bd_base = i386_mpx_bd_base ();
9001 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9002 for (i = 0; i < 2; i++)
9003 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 9004 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
9005 data_ptr_type);
9006 bt_entry[0] = (uint64_t) lower;
9007 bt_entry[1] = ~(uint64_t) upper;
9008
9009 for (i = 0; i < 2; i++)
132874d7
AB
9010 write_memory_unsigned_integer (bt_entry_addr
9011 + i * TYPE_LENGTH (data_ptr_type),
9012 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
9013 bt_entry[i]);
9014}
9015
9016static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9017
9018/* Helper function for the CLI commands. */
9019
9020static void
9021set_mpx_cmd (char *args, int from_tty)
9022{
118ca224 9023 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
29c1c244
WT
9024}
9025
9026/* Helper function for the CLI commands. */
9027
9028static void
9029show_mpx_cmd (char *args, int from_tty)
9030{
9031 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9032}
9033
28e9e0f0
MK
9034/* Provide a prototype to silence -Wmissing-prototypes. */
9035void _initialize_i386_tdep (void);
9036
c906108c 9037void
fba45db2 9038_initialize_i386_tdep (void)
c906108c 9039{
a62cc96e
AC
9040 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9041
fc338970 9042 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9043 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9044 &disassembly_flavor, _("\
9045Set the disassembly flavor."), _("\
9046Show the disassembly flavor."), _("\
9047The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9048 NULL,
9049 NULL, /* FIXME: i18n: */
9050 &setlist, &showlist);
8201327c
MK
9051
9052 /* Add the variable that controls the convention for returning
9053 structs. */
7ab04401
AC
9054 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9055 &struct_convention, _("\
9056Set the convention for returning small structs."), _("\
9057Show the convention for returning small structs."), _("\
9058Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9059is \"default\"."),
9060 NULL,
9061 NULL, /* FIXME: i18n: */
9062 &setlist, &showlist);
8201327c 9063
29c1c244
WT
9064 /* Add "mpx" prefix for the set commands. */
9065
9066 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
bc504a31 9067Set Intel Memory Protection Extensions specific variables."),
118ca224 9068 &mpx_set_cmdlist, "set mpx ",
29c1c244
WT
9069 0 /* allow-unknown */, &setlist);
9070
9071 /* Add "mpx" prefix for the show commands. */
9072
9073 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
bc504a31 9074Show Intel Memory Protection Extensions specific variables."),
29c1c244
WT
9075 &mpx_show_cmdlist, "show mpx ",
9076 0 /* allow-unknown */, &showlist);
9077
9078 /* Add "bound" command for the show mpx commands list. */
9079
9080 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9081 "Show the memory bounds for a given array/pointer storage\
9082 in the bound table.",
9083 &mpx_show_cmdlist);
9084
9085 /* Add "bound" command for the set mpx commands list. */
9086
9087 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9088 "Set the memory bounds for a given array/pointer storage\
9089 in the bound table.",
9090 &mpx_set_cmdlist);
9091
8201327c
MK
9092 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9093 i386_coff_osabi_sniffer);
8201327c 9094
05816f70 9095 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9096 i386_svr4_init_abi);
05816f70 9097 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 9098 i386_go32_init_abi);
38c968cf 9099
209bd28e 9100 /* Initialize the i386-specific register groups. */
38c968cf 9101 i386_init_reggroups ();
90884b2b
L
9102
9103 /* Initialize the standard target descriptions. */
9104 initialize_tdesc_i386 ();
3a13a53b 9105 initialize_tdesc_i386_mmx ();
c131fcee 9106 initialize_tdesc_i386_avx ();
1dbcd68c 9107 initialize_tdesc_i386_mpx ();
2b863f51 9108 initialize_tdesc_i386_avx_mpx ();
a1fa17ee 9109 initialize_tdesc_i386_avx_avx512 ();
51547df6 9110 initialize_tdesc_i386_avx_mpx_avx512_pku ();
c8d5aac9
L
9111
9112 /* Tell remote stub that we support XML target description. */
9113 register_remote_support_xml ("i386");
c906108c 9114}
This page took 2.126901 seconds and 4 git commands to generate.