dummy commit, get CVS off the branch.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
dfe01d39 28#include "objfiles.h"
c906108c
SS
29#include "target.h"
30#include "floatformat.h"
c0d1d883 31#include "symfile.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbcmd.h"
34#include "command.h"
b4a20239 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
d16aafd8 37#include "doublest.h"
fd0407d6 38#include "value.h"
3d261580
MK
39#include "gdb_assert.h"
40
d2a7c97a 41#include "i386-tdep.h"
61113f8b 42#include "i387-tdep.h"
d2a7c97a 43
fc633446
MK
44/* Names of the registers. The first 10 registers match the register
45 numbering scheme used by GCC for stabs and DWARF. */
46static char *i386_register_names[] =
47{
48 "eax", "ecx", "edx", "ebx",
49 "esp", "ebp", "esi", "edi",
50 "eip", "eflags", "cs", "ss",
51 "ds", "es", "fs", "gs",
52 "st0", "st1", "st2", "st3",
53 "st4", "st5", "st6", "st7",
54 "fctrl", "fstat", "ftag", "fiseg",
55 "fioff", "foseg", "fooff", "fop",
56 "xmm0", "xmm1", "xmm2", "xmm3",
57 "xmm4", "xmm5", "xmm6", "xmm7",
58 "mxcsr"
59};
60
28fc6740
AC
61/* MMX registers. */
62
63static char *i386_mmx_names[] =
64{
65 "mm0", "mm1", "mm2", "mm3",
66 "mm4", "mm5", "mm6", "mm7"
67};
68static const int mmx_num_regs = (sizeof (i386_mmx_names)
69 / sizeof (i386_mmx_names[0]));
70#define MM0_REGNUM (NUM_REGS)
71
72static int
73mmx_regnum_p (int reg)
74{
75 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
76}
77
fc633446
MK
78/* Return the name of register REG. */
79
fa88f677 80const char *
fc633446
MK
81i386_register_name (int reg)
82{
83 if (reg < 0)
84 return NULL;
28fc6740
AC
85 if (mmx_regnum_p (reg))
86 return i386_mmx_names[reg - MM0_REGNUM];
fc633446
MK
87 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
88 return NULL;
89
90 return i386_register_names[reg];
91}
92
85540d8c
MK
93/* Convert stabs register number REG to the appropriate register
94 number used by GDB. */
95
8201327c 96static int
85540d8c
MK
97i386_stab_reg_to_regnum (int reg)
98{
99 /* This implements what GCC calls the "default" register map. */
100 if (reg >= 0 && reg <= 7)
101 {
102 /* General registers. */
103 return reg;
104 }
105 else if (reg >= 12 && reg <= 19)
106 {
107 /* Floating-point registers. */
108 return reg - 12 + FP0_REGNUM;
109 }
110 else if (reg >= 21 && reg <= 28)
111 {
112 /* SSE registers. */
113 return reg - 21 + XMM0_REGNUM;
114 }
115 else if (reg >= 29 && reg <= 36)
116 {
117 /* MMX registers. */
7d12f766 118 return reg - 29 + MM0_REGNUM;
85540d8c
MK
119 }
120
121 /* This will hopefully provoke a warning. */
122 return NUM_REGS + NUM_PSEUDO_REGS;
123}
124
8201327c 125/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
126 number used by GDB. */
127
8201327c 128static int
85540d8c
MK
129i386_dwarf_reg_to_regnum (int reg)
130{
131 /* The DWARF register numbering includes %eip and %eflags, and
132 numbers the floating point registers differently. */
133 if (reg >= 0 && reg <= 9)
134 {
135 /* General registers. */
136 return reg;
137 }
138 else if (reg >= 11 && reg <= 18)
139 {
140 /* Floating-point registers. */
141 return reg - 11 + FP0_REGNUM;
142 }
143 else if (reg >= 21)
144 {
145 /* The SSE and MMX registers have identical numbers as in stabs. */
146 return i386_stab_reg_to_regnum (reg);
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151}
fc338970 152\f
917317f4 153
fc338970
MK
154/* This is the variable that is set with "set disassembly-flavor", and
155 its legitimate values. */
53904c9e
AC
156static const char att_flavor[] = "att";
157static const char intel_flavor[] = "intel";
158static const char *valid_flavors[] =
c5aa993b 159{
c906108c
SS
160 att_flavor,
161 intel_flavor,
162 NULL
163};
53904c9e 164static const char *disassembly_flavor = att_flavor;
c906108c 165
fc338970
MK
166/* Stdio style buffering was used to minimize calls to ptrace, but
167 this buffering did not take into account that the code section
168 being accessed may not be an even number of buffers long (even if
169 the buffer is only sizeof(int) long). In cases where the code
170 section size happened to be a non-integral number of buffers long,
171 attempting to read the last buffer would fail. Simply using
172 target_read_memory and ignoring errors, rather than read_memory, is
173 not the correct solution, since legitimate access errors would then
174 be totally ignored. To properly handle this situation and continue
175 to use buffering would require that this code be able to determine
176 the minimum code section size granularity (not the alignment of the
177 section itself, since the actual failing case that pointed out this
178 problem had a section alignment of 4 but was not a multiple of 4
179 bytes long), on a target by target basis, and then adjust it's
180 buffer size accordingly. This is messy, but potentially feasible.
181 It probably needs the bfd library's help and support. For now, the
182 buffer size is set to 1. (FIXME -fnf) */
183
184#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
185static CORE_ADDR codestream_next_addr;
186static CORE_ADDR codestream_addr;
187static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
188static int codestream_off;
189static int codestream_cnt;
190
191#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
192#define codestream_peek() \
193 (codestream_cnt == 0 ? \
194 codestream_fill(1) : codestream_buf[codestream_off])
195#define codestream_get() \
196 (codestream_cnt-- == 0 ? \
197 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 198
c5aa993b 199static unsigned char
fba45db2 200codestream_fill (int peek_flag)
c906108c
SS
201{
202 codestream_addr = codestream_next_addr;
203 codestream_next_addr += CODESTREAM_BUFSIZ;
204 codestream_off = 0;
205 codestream_cnt = CODESTREAM_BUFSIZ;
206 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 207
c906108c 208 if (peek_flag)
c5aa993b 209 return (codestream_peek ());
c906108c 210 else
c5aa993b 211 return (codestream_get ());
c906108c
SS
212}
213
214static void
fba45db2 215codestream_seek (CORE_ADDR place)
c906108c
SS
216{
217 codestream_next_addr = place / CODESTREAM_BUFSIZ;
218 codestream_next_addr *= CODESTREAM_BUFSIZ;
219 codestream_cnt = 0;
220 codestream_fill (1);
c5aa993b 221 while (codestream_tell () != place)
c906108c
SS
222 codestream_get ();
223}
224
225static void
fba45db2 226codestream_read (unsigned char *buf, int count)
c906108c
SS
227{
228 unsigned char *p;
229 int i;
230 p = buf;
231 for (i = 0; i < count; i++)
232 *p++ = codestream_get ();
233}
fc338970 234\f
c906108c 235
fc338970 236/* If the next instruction is a jump, move to its target. */
c906108c
SS
237
238static void
fba45db2 239i386_follow_jump (void)
c906108c
SS
240{
241 unsigned char buf[4];
242 long delta;
243
244 int data16;
245 CORE_ADDR pos;
246
247 pos = codestream_tell ();
248
249 data16 = 0;
250 if (codestream_peek () == 0x66)
251 {
252 codestream_get ();
253 data16 = 1;
254 }
255
256 switch (codestream_get ())
257 {
258 case 0xe9:
fc338970 259 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
260 if (data16)
261 {
262 codestream_read (buf, 2);
263 delta = extract_signed_integer (buf, 2);
264
fc338970
MK
265 /* Include the size of the jmp instruction (including the
266 0x66 prefix). */
c5aa993b 267 pos += delta + 4;
c906108c
SS
268 }
269 else
270 {
271 codestream_read (buf, 4);
272 delta = extract_signed_integer (buf, 4);
273
274 pos += delta + 5;
275 }
276 break;
277 case 0xeb:
fc338970 278 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
279 codestream_read (buf, 1);
280 /* Sign-extend it. */
281 delta = extract_signed_integer (buf, 1);
282
283 pos += delta + 2;
284 break;
285 }
286 codestream_seek (pos);
287}
288
fc338970
MK
289/* Find & return the amount a local space allocated, and advance the
290 codestream to the first register push (if any).
291
292 If the entry sequence doesn't make sense, return -1, and leave
293 codestream pointer at a random spot. */
c906108c
SS
294
295static long
fba45db2 296i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
297{
298 unsigned char op;
299
300 codestream_seek (pc);
301
302 i386_follow_jump ();
303
304 op = codestream_get ();
305
306 if (op == 0x58) /* popl %eax */
307 {
fc338970
MK
308 /* This function must start with
309
310 popl %eax 0x58
311 xchgl %eax, (%esp) 0x87 0x04 0x24
312 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
313
314 (the System V compiler puts out the second `xchg'
315 instruction, and the assembler doesn't try to optimize it, so
316 the 'sib' form gets generated). This sequence is used to get
317 the address of the return buffer for a function that returns
318 a structure. */
c906108c
SS
319 int pos;
320 unsigned char buf[4];
fc338970
MK
321 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
322 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
323
c906108c
SS
324 pos = codestream_tell ();
325 codestream_read (buf, 4);
326 if (memcmp (buf, proto1, 3) == 0)
327 pos += 3;
328 else if (memcmp (buf, proto2, 4) == 0)
329 pos += 4;
330
331 codestream_seek (pos);
fc338970 332 op = codestream_get (); /* Update next opcode. */
c906108c
SS
333 }
334
335 if (op == 0x68 || op == 0x6a)
336 {
fc338970
MK
337 /* This function may start with
338
339 pushl constant
340 call _probe
341 addl $4, %esp
342
343 followed by
344
345 pushl %ebp
346
347 etc. */
c906108c
SS
348 int pos;
349 unsigned char buf[8];
350
fc338970 351 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
352 or a four-byte operand, depending on the opcode. */
353 pos = codestream_tell ();
354 if (op == 0x68)
355 pos += 4;
356 else
357 pos += 1;
358 codestream_seek (pos);
359
fc338970
MK
360 /* Read the following 8 bytes, which should be "call _probe" (6
361 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
362 codestream_read (buf, sizeof (buf));
363 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
364 pos += sizeof (buf);
365 codestream_seek (pos);
fc338970 366 op = codestream_get (); /* Update next opcode. */
c906108c
SS
367 }
368
369 if (op == 0x55) /* pushl %ebp */
c5aa993b 370 {
fc338970 371 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
372 switch (codestream_get ())
373 {
374 case 0x8b:
375 if (codestream_get () != 0xec)
fc338970 376 return -1;
c906108c
SS
377 break;
378 case 0x89:
379 if (codestream_get () != 0xe5)
fc338970 380 return -1;
c906108c
SS
381 break;
382 default:
fc338970 383 return -1;
c906108c 384 }
fc338970
MK
385 /* Check for stack adjustment
386
387 subl $XXX, %esp
388
389 NOTE: You can't subtract a 16 bit immediate from a 32 bit
390 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
391 op = codestream_peek ();
392 if (op == 0x83)
393 {
fc338970 394 /* `subl' with 8 bit immediate. */
c906108c
SS
395 codestream_get ();
396 if (codestream_get () != 0xec)
fc338970 397 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
398 {
399 codestream_seek (codestream_tell () - 2);
400 return 0;
401 }
fc338970
MK
402 /* `subl' with signed byte immediate (though it wouldn't
403 make sense to be negative). */
c5aa993b 404 return (codestream_get ());
c906108c
SS
405 }
406 else if (op == 0x81)
407 {
408 char buf[4];
fc338970 409 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 410 codestream_get ();
c906108c 411 if (codestream_get () != 0xec)
fc338970 412 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
413 {
414 codestream_seek (codestream_tell () - 2);
415 return 0;
416 }
fc338970 417 /* It is `subl' with a 32 bit immediate. */
c5aa993b 418 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
419 return extract_signed_integer (buf, 4);
420 }
421 else
422 {
fc338970 423 return 0;
c906108c
SS
424 }
425 }
426 else if (op == 0xc8)
427 {
428 char buf[2];
fc338970 429 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 430 codestream_read ((unsigned char *) buf, 2);
fc338970 431 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
432 return extract_unsigned_integer (buf, 2);
433 }
434 return (-1);
435}
436
6bff26de
MK
437/* Signal trampolines don't have a meaningful frame. The frame
438 pointer value we use is actually the frame pointer of the calling
439 frame -- that is, the frame which was in progress when the signal
440 trampoline was entered. GDB mostly treats this frame pointer value
441 as a magic cookie. We detect the case of a signal trampoline by
442 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
443 PC_IN_SIGTRAMP.
444
445 When a signal trampoline is invoked from a frameless function, we
446 essentially have two frameless functions in a row. In this case,
447 we use the same magic cookie for three frames in a row. We detect
448 this case by seeing whether the next frame has
449 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
450 current frame is actually frameless. In this case, we need to get
451 the PC by looking at the SP register value stored in the signal
452 context.
453
454 This should work in most cases except in horrible situations where
455 a signal occurs just as we enter a function but before the frame
c0d1d883
MK
456 has been set up. Incidentally, that's just what happens when we
457 call a function from GDB with a signal pending (there's a test in
458 the testsuite that makes this happen). Therefore we pretend that
459 we have a frameless function if we're stopped at the start of a
460 function. */
6bff26de
MK
461
462/* Return non-zero if we're dealing with a frameless signal, that is,
463 a signal trampoline invoked from a frameless function. */
464
465static int
466i386_frameless_signal_p (struct frame_info *frame)
467{
c0d1d883
MK
468 return (frame->next && frame->next->signal_handler_caller
469 && (frameless_look_for_prologue (frame)
470 || frame->pc == get_pc_function_start (frame->pc)));
6bff26de
MK
471}
472
c833a37e
MK
473/* Return the chain-pointer for FRAME. In the case of the i386, the
474 frame's nominal address is the address of a 4-byte word containing
475 the calling frame's address. */
476
8201327c 477static CORE_ADDR
c833a37e
MK
478i386_frame_chain (struct frame_info *frame)
479{
c0d1d883
MK
480 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
481 return frame->frame;
482
6bff26de
MK
483 if (frame->signal_handler_caller
484 || i386_frameless_signal_p (frame))
c833a37e
MK
485 return frame->frame;
486
487 if (! inside_entry_file (frame->pc))
488 return read_memory_unsigned_integer (frame->frame, 4);
489
490 return 0;
491}
492
539ffe0b
MK
493/* Determine whether the function invocation represented by FRAME does
494 not have a from on the stack associated with it. If it does not,
495 return non-zero, otherwise return zero. */
496
3a1e71e3 497static int
539ffe0b
MK
498i386_frameless_function_invocation (struct frame_info *frame)
499{
500 if (frame->signal_handler_caller)
501 return 0;
502
503 return frameless_look_for_prologue (frame);
504}
505
21d0e8a4
MK
506/* Assuming FRAME is for a sigtramp routine, return the saved program
507 counter. */
508
509static CORE_ADDR
510i386_sigtramp_saved_pc (struct frame_info *frame)
511{
512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
513 CORE_ADDR addr;
514
515 addr = tdep->sigcontext_addr (frame);
516 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
517}
518
6bff26de
MK
519/* Assuming FRAME is for a sigtramp routine, return the saved stack
520 pointer. */
521
522static CORE_ADDR
523i386_sigtramp_saved_sp (struct frame_info *frame)
524{
525 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
526 CORE_ADDR addr;
527
528 addr = tdep->sigcontext_addr (frame);
529 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
530}
531
0d17c81d
MK
532/* Return the saved program counter for FRAME. */
533
8201327c 534static CORE_ADDR
0d17c81d
MK
535i386_frame_saved_pc (struct frame_info *frame)
536{
c0d1d883
MK
537 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
538 return generic_read_register_dummy (frame->pc, frame->frame,
539 PC_REGNUM);
540
0d17c81d 541 if (frame->signal_handler_caller)
21d0e8a4 542 return i386_sigtramp_saved_pc (frame);
0d17c81d 543
6bff26de
MK
544 if (i386_frameless_signal_p (frame))
545 {
546 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
547 return read_memory_unsigned_integer (sp, 4);
548 }
549
8201327c 550 return read_memory_unsigned_integer (frame->frame + 4, 4);
22797942
AC
551}
552
ed84f6c1
MK
553/* Immediately after a function call, return the saved pc. */
554
8201327c 555static CORE_ADDR
ed84f6c1
MK
556i386_saved_pc_after_call (struct frame_info *frame)
557{
6bff26de
MK
558 if (frame->signal_handler_caller)
559 return i386_sigtramp_saved_pc (frame);
560
ed84f6c1
MK
561 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
562}
563
c906108c
SS
564/* Return number of args passed to a frame.
565 Can return -1, meaning no way to tell. */
566
3a1e71e3 567static int
fba45db2 568i386_frame_num_args (struct frame_info *fi)
c906108c
SS
569{
570#if 1
571 return -1;
572#else
573 /* This loses because not only might the compiler not be popping the
fc338970
MK
574 args right after the function call, it might be popping args from
575 both this call and a previous one, and we would say there are
576 more args than there really are. */
c906108c 577
c5aa993b
JM
578 int retpc;
579 unsigned char op;
c906108c
SS
580 struct frame_info *pfi;
581
fc338970 582 /* On the i386, the instruction following the call could be:
c906108c
SS
583 popl %ecx - one arg
584 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 585 anything else - zero args. */
c906108c
SS
586
587 int frameless;
588
392a587b 589 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 590 if (frameless)
fc338970
MK
591 /* In the absence of a frame pointer, GDB doesn't get correct
592 values for nameless arguments. Return -1, so it doesn't print
593 any nameless arguments. */
c906108c
SS
594 return -1;
595
c5aa993b 596 pfi = get_prev_frame (fi);
c906108c
SS
597 if (pfi == 0)
598 {
fc338970
MK
599 /* NOTE: This can happen if we are looking at the frame for
600 main, because FRAME_CHAIN_VALID won't let us go into start.
601 If we have debugging symbols, that's not really a big deal;
602 it just means it will only show as many arguments to main as
603 are declared. */
c906108c
SS
604 return -1;
605 }
606 else
607 {
c5aa993b
JM
608 retpc = pfi->pc;
609 op = read_memory_integer (retpc, 1);
fc338970 610 if (op == 0x59) /* pop %ecx */
c5aa993b 611 return 1;
c906108c
SS
612 else if (op == 0x83)
613 {
c5aa993b
JM
614 op = read_memory_integer (retpc + 1, 1);
615 if (op == 0xc4)
616 /* addl $<signed imm 8 bits>, %esp */
617 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
618 else
619 return 0;
620 }
fc338970
MK
621 else if (op == 0x81) /* `add' with 32 bit immediate. */
622 {
c5aa993b
JM
623 op = read_memory_integer (retpc + 1, 1);
624 if (op == 0xc4)
625 /* addl $<imm 32>, %esp */
626 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
627 else
628 return 0;
629 }
630 else
631 {
632 return 0;
633 }
634 }
635#endif
636}
637
fc338970
MK
638/* Parse the first few instructions the function to see what registers
639 were stored.
640
641 We handle these cases:
642
643 The startup sequence can be at the start of the function, or the
644 function can start with a branch to startup code at the end.
645
646 %ebp can be set up with either the 'enter' instruction, or "pushl
647 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
648 once used in the System V compiler).
649
650 Local space is allocated just below the saved %ebp by either the
651 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
652 bit unsigned argument for space to allocate, and the 'addl'
653 instruction could have either a signed byte, or 32 bit immediate.
654
655 Next, the registers used by this function are pushed. With the
656 System V compiler they will always be in the order: %edi, %esi,
657 %ebx (and sometimes a harmless bug causes it to also save but not
658 restore %eax); however, the code below is willing to see the pushes
659 in any order, and will handle up to 8 of them.
660
661 If the setup sequence is at the end of the function, then the next
662 instruction will be a branch back to the start. */
c906108c 663
3a1e71e3 664static void
fba45db2 665i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
666{
667 long locals = -1;
668 unsigned char op;
fc338970 669 CORE_ADDR addr;
c906108c
SS
670 CORE_ADDR pc;
671 int i;
c5aa993b 672
1211c4e4
AC
673 if (fip->saved_regs)
674 return;
675
676 frame_saved_regs_zalloc (fip);
c5aa993b 677
c906108c
SS
678 pc = get_pc_function_start (fip->pc);
679 if (pc != 0)
680 locals = i386_get_frame_setup (pc);
c5aa993b
JM
681
682 if (locals >= 0)
c906108c 683 {
fc338970 684 addr = fip->frame - 4 - locals;
c5aa993b 685 for (i = 0; i < 8; i++)
c906108c
SS
686 {
687 op = codestream_get ();
688 if (op < 0x50 || op > 0x57)
689 break;
690#ifdef I386_REGNO_TO_SYMMETRY
691 /* Dynix uses different internal numbering. Ick. */
fc338970 692 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 693#else
fc338970 694 fip->saved_regs[op - 0x50] = addr;
c906108c 695#endif
fc338970 696 addr -= 4;
c906108c
SS
697 }
698 }
c5aa993b 699
1211c4e4
AC
700 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
701 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
702}
703
fc338970 704/* Return PC of first real instruction. */
c906108c 705
3a1e71e3 706static CORE_ADDR
93924b6b 707i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
708{
709 unsigned char op;
710 int i;
c5aa993b 711 static unsigned char pic_pat[6] =
fc338970
MK
712 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
713 0x5b, /* popl %ebx */
c5aa993b 714 };
c906108c 715 CORE_ADDR pos;
c5aa993b 716
c906108c
SS
717 if (i386_get_frame_setup (pc) < 0)
718 return (pc);
c5aa993b 719
fc338970
MK
720 /* Found valid frame setup -- codestream now points to start of push
721 instructions for saving registers. */
c5aa993b 722
fc338970 723 /* Skip over register saves. */
c906108c
SS
724 for (i = 0; i < 8; i++)
725 {
726 op = codestream_peek ();
fc338970 727 /* Break if not `pushl' instrunction. */
c5aa993b 728 if (op < 0x50 || op > 0x57)
c906108c
SS
729 break;
730 codestream_get ();
731 }
732
fc338970
MK
733 /* The native cc on SVR4 in -K PIC mode inserts the following code
734 to get the address of the global offset table (GOT) into register
735 %ebx
736
737 call 0x0
738 popl %ebx
739 movl %ebx,x(%ebp) (optional)
740 addl y,%ebx
741
c906108c
SS
742 This code is with the rest of the prologue (at the end of the
743 function), so we have to skip it to get to the first real
744 instruction at the start of the function. */
c5aa993b 745
c906108c
SS
746 pos = codestream_tell ();
747 for (i = 0; i < 6; i++)
748 {
749 op = codestream_get ();
c5aa993b 750 if (pic_pat[i] != op)
c906108c
SS
751 break;
752 }
753 if (i == 6)
754 {
755 unsigned char buf[4];
756 long delta = 6;
757
758 op = codestream_get ();
c5aa993b 759 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
760 {
761 op = codestream_get ();
fc338970 762 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
763 {
764 delta += 3;
765 codestream_read (buf, 1);
766 }
fc338970 767 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
768 {
769 delta += 6;
770 codestream_read (buf, 4);
771 }
fc338970 772 else /* Unexpected instruction. */
c5aa993b
JM
773 delta = -1;
774 op = codestream_get ();
c906108c 775 }
c5aa993b
JM
776 /* addl y,%ebx */
777 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 778 {
c5aa993b 779 pos += delta + 6;
c906108c
SS
780 }
781 }
782 codestream_seek (pos);
c5aa993b 783
c906108c 784 i386_follow_jump ();
c5aa993b 785
c906108c
SS
786 return (codestream_tell ());
787}
788
93924b6b
MK
789/* Use the program counter to determine the contents and size of a
790 breakpoint instruction. Return a pointer to a string of bytes that
791 encode a breakpoint instruction, store the length of the string in
792 *LEN and optionally adjust *PC to point to the correct memory
793 location for inserting the breakpoint.
794
795 On the i386 we have a single breakpoint that fits in a single byte
796 and can be inserted anywhere. */
797
798static const unsigned char *
799i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
800{
801 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
802
803 *len = sizeof (break_insn);
804 return break_insn;
805}
806
c0d1d883
MK
807/* Push the return address (pointing to the call dummy) onto the stack
808 and return the new value for the stack pointer. */
c5aa993b 809
c0d1d883
MK
810static CORE_ADDR
811i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
a7769679 812{
c0d1d883 813 char buf[4];
a7769679 814
c0d1d883
MK
815 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
816 write_memory (sp - 4, buf, 4);
817 return sp - 4;
a7769679
MK
818}
819
3a1e71e3 820static void
c0d1d883 821i386_do_pop_frame (struct frame_info *frame)
c906108c 822{
c906108c
SS
823 CORE_ADDR fp;
824 int regnum;
00f8375e 825 char regbuf[I386_MAX_REGISTER_SIZE];
c5aa993b 826
c906108c 827 fp = FRAME_FP (frame);
1211c4e4
AC
828 i386_frame_init_saved_regs (frame);
829
c5aa993b 830 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 831 {
fc338970
MK
832 CORE_ADDR addr;
833 addr = frame->saved_regs[regnum];
834 if (addr)
c906108c 835 {
fc338970 836 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c2848c82 837 write_register_gen (regnum, regbuf);
c906108c
SS
838 }
839 }
840 write_register (FP_REGNUM, read_memory_integer (fp, 4));
841 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
842 write_register (SP_REGNUM, fp + 8);
843 flush_cached_frames ();
844}
c0d1d883
MK
845
846static void
847i386_pop_frame (void)
848{
849 generic_pop_current_frame (i386_do_pop_frame);
850}
fc338970 851\f
c906108c 852
fc338970
MK
853/* Figure out where the longjmp will land. Slurp the args out of the
854 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c
MK
855 structure from which we extract the address that we will land at.
856 This address is copied into PC. This routine returns true on
fc338970 857 success. */
c906108c 858
8201327c
MK
859static int
860i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 861{
8201327c 862 char buf[4];
c906108c 863 CORE_ADDR sp, jb_addr;
8201327c 864 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
c906108c 865
8201327c
MK
866 /* If JB_PC_OFFSET is -1, we have no way to find out where the
867 longjmp will land. */
868 if (jb_pc_offset == -1)
c906108c
SS
869 return 0;
870
8201327c
MK
871 sp = read_register (SP_REGNUM);
872 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
873 return 0;
874
8201327c
MK
875 jb_addr = extract_address (buf, 4);
876 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
877 return 0;
c906108c 878
8201327c 879 *pc = extract_address (buf, 4);
c906108c
SS
880 return 1;
881}
fc338970 882\f
c906108c 883
3a1e71e3 884static CORE_ADDR
ea7c478f 885i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
886 int struct_return, CORE_ADDR struct_addr)
887{
888 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
889
890 if (struct_return)
891 {
892 char buf[4];
893
894 sp -= 4;
895 store_address (buf, 4, struct_addr);
896 write_memory (sp, buf, 4);
897 }
898
899 return sp;
900}
901
3a1e71e3 902static void
22f8ba57
MK
903i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
904{
905 /* Do nothing. Everything was already done by i386_push_arguments. */
906}
907
1a309862
MK
908/* These registers are used for returning integers (and on some
909 targets also for returning `struct' and `union' values when their
ef9dff19 910 size and alignment match an integer type). */
1a309862
MK
911#define LOW_RETURN_REGNUM 0 /* %eax */
912#define HIGH_RETURN_REGNUM 2 /* %edx */
913
914/* Extract from an array REGBUF containing the (raw) register state, a
915 function return value of TYPE, and copy that, in virtual format,
916 into VALBUF. */
917
3a1e71e3 918static void
00f8375e
MK
919i386_extract_return_value (struct type *type, struct regcache *regcache,
920 char *valbuf)
c906108c 921{
1a309862 922 int len = TYPE_LENGTH (type);
00f8375e 923 char buf[I386_MAX_REGISTER_SIZE];
1a309862 924
1e8d0a7b
MK
925 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
926 && TYPE_NFIELDS (type) == 1)
3df1b9b4 927 {
00f8375e 928 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
929 return;
930 }
1e8d0a7b
MK
931
932 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 933 {
356a6b3e 934 if (FP0_REGNUM == 0)
1a309862
MK
935 {
936 warning ("Cannot find floating-point return value.");
937 memset (valbuf, 0, len);
ef9dff19 938 return;
1a309862
MK
939 }
940
c6ba6f0d
MK
941 /* Floating-point return values can be found in %st(0). Convert
942 its contents to the desired type. This is probably not
943 exactly how it would happen on the target itself, but it is
944 the best we can do. */
0818c12a 945 regcache_raw_read (regcache, FP0_REGNUM, buf);
00f8375e 946 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
947 }
948 else
c5aa993b 949 {
d4f3574e
SS
950 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
951 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
952
953 if (len <= low_size)
00f8375e 954 {
0818c12a 955 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
956 memcpy (valbuf, buf, len);
957 }
d4f3574e
SS
958 else if (len <= (low_size + high_size))
959 {
0818c12a 960 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 961 memcpy (valbuf, buf, low_size);
0818c12a 962 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 963 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
964 }
965 else
8e65ff28
AC
966 internal_error (__FILE__, __LINE__,
967 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
968 }
969}
970
ef9dff19
MK
971/* Write into the appropriate registers a function return value stored
972 in VALBUF of type TYPE, given in virtual format. */
973
3a1e71e3 974static void
ef9dff19
MK
975i386_store_return_value (struct type *type, char *valbuf)
976{
977 int len = TYPE_LENGTH (type);
978
1e8d0a7b
MK
979 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
980 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
981 {
982 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
983 return;
984 }
1e8d0a7b
MK
985
986 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 987 {
ccb945b8 988 unsigned int fstat;
c6ba6f0d 989 char buf[FPU_REG_RAW_SIZE];
ccb945b8 990
356a6b3e 991 if (FP0_REGNUM == 0)
ef9dff19
MK
992 {
993 warning ("Cannot set floating-point return value.");
994 return;
995 }
996
635b0cc1
MK
997 /* Returning floating-point values is a bit tricky. Apart from
998 storing the return value in %st(0), we have to simulate the
999 state of the FPU at function return point. */
1000
c6ba6f0d
MK
1001 /* Convert the value found in VALBUF to the extended
1002 floating-point format used by the FPU. This is probably
1003 not exactly how it would happen on the target itself, but
1004 it is the best we can do. */
1005 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
c2848c82 1006 write_register_gen (FP0_REGNUM, buf);
ccb945b8 1007
635b0cc1
MK
1008 /* Set the top of the floating-point register stack to 7. The
1009 actual value doesn't really matter, but 7 is what a normal
1010 function return would end up with if the program started out
1011 with a freshly initialized FPU. */
ccb945b8
MK
1012 fstat = read_register (FSTAT_REGNUM);
1013 fstat |= (7 << 11);
1014 write_register (FSTAT_REGNUM, fstat);
1015
635b0cc1
MK
1016 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1017 the floating-point register stack to 7, the appropriate value
1018 for the tag word is 0x3fff. */
ccb945b8 1019 write_register (FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1020 }
1021 else
1022 {
1023 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1024 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1025
1026 if (len <= low_size)
1027 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1028 else if (len <= (low_size + high_size))
1029 {
1030 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1031 valbuf, low_size);
1032 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1033 valbuf + low_size, len - low_size);
1034 }
1035 else
8e65ff28
AC
1036 internal_error (__FILE__, __LINE__,
1037 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1038 }
1039}
f7af9647
MK
1040
1041/* Extract from an array REGBUF containing the (raw) register state
1042 the address in which a function should return its structure value,
1043 as a CORE_ADDR. */
1044
3a1e71e3 1045static CORE_ADDR
00f8375e 1046i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1047{
a378f419
AC
1048 /* NOTE: cagney/2002-08-12: Replaced a call to
1049 regcache_raw_read_as_address() with a call to
1050 regcache_cooked_read_unsigned(). The old, ...as_address function
1051 was eventually calling extract_unsigned_integer (via
1052 extract_address) to unpack the registers value. The below is
1053 doing an unsigned extract so that it is functionally equivalent.
1054 The read needs to be cooked as, otherwise, it will never
1055 correctly return the value of a register in the [NUM_REGS
1056 .. NUM_REGS+NUM_PSEUDO_REGS) range. */
1057 ULONGEST val;
1058 regcache_cooked_read_unsigned (regcache, LOW_RETURN_REGNUM, &val);
1059 return val;
f7af9647 1060}
fc338970 1061\f
ef9dff19 1062
8201327c
MK
1063/* This is the variable that is set with "set struct-convention", and
1064 its legitimate values. */
1065static const char default_struct_convention[] = "default";
1066static const char pcc_struct_convention[] = "pcc";
1067static const char reg_struct_convention[] = "reg";
1068static const char *valid_conventions[] =
1069{
1070 default_struct_convention,
1071 pcc_struct_convention,
1072 reg_struct_convention,
1073 NULL
1074};
1075static const char *struct_convention = default_struct_convention;
1076
1077static int
1078i386_use_struct_convention (int gcc_p, struct type *type)
1079{
1080 enum struct_return struct_return;
1081
1082 if (struct_convention == default_struct_convention)
1083 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1084 else if (struct_convention == pcc_struct_convention)
1085 struct_return = pcc_struct_return;
1086 else
1087 struct_return = reg_struct_return;
1088
1089 return generic_use_struct_convention (struct_return == reg_struct_return,
1090 type);
1091}
1092\f
1093
d7a0d72c
MK
1094/* Return the GDB type object for the "standard" data type of data in
1095 register REGNUM. Perhaps %esi and %edi should go here, but
1096 potentially they could be used for things other than address. */
1097
3a1e71e3 1098static struct type *
d7a0d72c
MK
1099i386_register_virtual_type (int regnum)
1100{
1101 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1102 return lookup_pointer_type (builtin_type_void);
1103
1104 if (IS_FP_REGNUM (regnum))
c6ba6f0d 1105 return builtin_type_i387_ext;
d7a0d72c
MK
1106
1107 if (IS_SSE_REGNUM (regnum))
3139facc 1108 return builtin_type_vec128i;
d7a0d72c 1109
28fc6740
AC
1110 if (mmx_regnum_p (regnum))
1111 return builtin_type_vec64i;
1112
d7a0d72c
MK
1113 return builtin_type_int;
1114}
1115
28fc6740
AC
1116/* Map a cooked register onto a raw register or memory. For the i386,
1117 the MMX registers need to be mapped onto floating point registers. */
1118
1119static int
1120mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1121{
1122 int mmxi;
1123 ULONGEST fstat;
1124 int tos;
1125 int fpi;
1126 mmxi = regnum - MM0_REGNUM;
1127 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1128 tos = (fstat >> 11) & 0x7;
1129 fpi = (mmxi + tos) % 8;
1130 return (FP0_REGNUM + fpi);
1131}
1132
1133static void
1134i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1135 int regnum, void *buf)
1136{
1137 if (mmx_regnum_p (regnum))
1138 {
1139 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1140 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1141 regcache_raw_read (regcache, fpnum, mmx_buf);
1142 /* Extract (always little endian). */
1143 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1144 }
1145 else
1146 regcache_raw_read (regcache, regnum, buf);
1147}
1148
1149static void
1150i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1151 int regnum, const void *buf)
1152{
1153 if (mmx_regnum_p (regnum))
1154 {
1155 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1156 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1157 /* Read ... */
1158 regcache_raw_read (regcache, fpnum, mmx_buf);
1159 /* ... Modify ... (always little endian). */
1160 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1161 /* ... Write. */
1162 regcache_raw_write (regcache, fpnum, mmx_buf);
1163 }
1164 else
1165 regcache_raw_write (regcache, regnum, buf);
1166}
1167
d7a0d72c
MK
1168/* Return true iff register REGNUM's virtual format is different from
1169 its raw format. Note that this definition assumes that the host
1170 supports IEEE 32-bit floats, since it doesn't say that SSE
1171 registers need conversion. Even if we can't find a counterexample,
1172 this is still sloppy. */
1173
3a1e71e3 1174static int
d7a0d72c
MK
1175i386_register_convertible (int regnum)
1176{
1177 return IS_FP_REGNUM (regnum);
1178}
1179
ac27f131 1180/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1181 virtual format with type TYPE in buffer TO. */
ac27f131 1182
3a1e71e3 1183static void
ac27f131
MK
1184i386_register_convert_to_virtual (int regnum, struct type *type,
1185 char *from, char *to)
1186{
c6ba6f0d 1187 gdb_assert (IS_FP_REGNUM (regnum));
3d261580
MK
1188
1189 /* We only support floating-point values. */
8d7f6b4a
MK
1190 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1191 {
1192 warning ("Cannot convert floating-point register value "
1193 "to non-floating-point type.");
1194 memset (to, 0, TYPE_LENGTH (type));
1195 return;
1196 }
3d261580 1197
c6ba6f0d
MK
1198 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1199 the extended floating-point format used by the FPU. */
1200 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1201}
1202
1203/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1204 raw format for register REGNUM in buffer TO. */
ac27f131 1205
3a1e71e3 1206static void
ac27f131
MK
1207i386_register_convert_to_raw (struct type *type, int regnum,
1208 char *from, char *to)
1209{
c6ba6f0d
MK
1210 gdb_assert (IS_FP_REGNUM (regnum));
1211
1212 /* We only support floating-point values. */
1213 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1214 {
1215 warning ("Cannot convert non-floating-point type "
1216 "to floating-point register value.");
1217 memset (to, 0, TYPE_LENGTH (type));
1218 return;
1219 }
3d261580 1220
c6ba6f0d
MK
1221 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1222 to the extended floating-point format used by the FPU. */
1223 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1224}
ac27f131 1225\f
fc338970 1226
c906108c 1227#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1228/* SunPRO encodes the static variables. This is not related to C++
1229 mangling, it is done for C too. */
c906108c
SS
1230
1231char *
fba45db2 1232sunpro_static_transform_name (char *name)
c906108c
SS
1233{
1234 char *p;
1235 if (IS_STATIC_TRANSFORM_NAME (name))
1236 {
fc338970
MK
1237 /* For file-local statics there will be a period, a bunch of
1238 junk (the contents of which match a string given in the
c5aa993b
JM
1239 N_OPT), a period and the name. For function-local statics
1240 there will be a bunch of junk (which seems to change the
1241 second character from 'A' to 'B'), a period, the name of the
1242 function, and the name. So just skip everything before the
1243 last period. */
c906108c
SS
1244 p = strrchr (name, '.');
1245 if (p != NULL)
1246 name = p + 1;
1247 }
1248 return name;
1249}
1250#endif /* STATIC_TRANSFORM_NAME */
fc338970 1251\f
c906108c 1252
fc338970 1253/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1254
1255CORE_ADDR
1cce71eb 1256i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1257{
fc338970 1258 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1259 {
c5aa993b 1260 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1261 struct minimal_symbol *indsym =
fc338970 1262 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1263 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1264
c5aa993b 1265 if (symname)
c906108c 1266 {
c5aa993b
JM
1267 if (strncmp (symname, "__imp_", 6) == 0
1268 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1269 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1270 }
1271 }
fc338970 1272 return 0; /* Not a trampoline. */
c906108c 1273}
fc338970
MK
1274\f
1275
8201327c
MK
1276/* Return non-zero if PC and NAME show that we are in a signal
1277 trampoline. */
1278
1279static int
1280i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1281{
1282 return (name && strcmp ("_sigtramp", name) == 0);
1283}
1284\f
1285
fc338970
MK
1286/* We have two flavours of disassembly. The machinery on this page
1287 deals with switching between those. */
c906108c
SS
1288
1289static int
fba45db2 1290gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1291{
1292 if (disassembly_flavor == att_flavor)
1293 return print_insn_i386_att (memaddr, info);
1294 else if (disassembly_flavor == intel_flavor)
1295 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1296 /* Never reached -- disassembly_flavour is always either att_flavor
1297 or intel_flavor. */
e1e9e218 1298 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a 1299}
fc338970 1300\f
3ce1502b 1301
8201327c
MK
1302/* There are a few i386 architecture variants that differ only
1303 slightly from the generic i386 target. For now, we don't give them
1304 their own source file, but include them here. As a consequence,
1305 they'll always be included. */
3ce1502b 1306
8201327c 1307/* System V Release 4 (SVR4). */
3ce1502b 1308
8201327c
MK
1309static int
1310i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1311{
8201327c
MK
1312 return (name && (strcmp ("_sigreturn", name) == 0
1313 || strcmp ("_sigacthandler", name) == 0
1314 || strcmp ("sigvechandler", name) == 0));
1315}
d2a7c97a 1316
21d0e8a4
MK
1317/* Get address of the pushed ucontext (sigcontext) on the stack for
1318 all three variants of SVR4 sigtramps. */
3ce1502b 1319
3a1e71e3 1320static CORE_ADDR
21d0e8a4 1321i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1322{
21d0e8a4 1323 int sigcontext_offset = -1;
8201327c
MK
1324 char *name = NULL;
1325
1326 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1327 if (name)
d2a7c97a 1328 {
8201327c 1329 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1330 sigcontext_offset = 132;
8201327c 1331 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1332 sigcontext_offset = 80;
8201327c 1333 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1334 sigcontext_offset = 120;
8201327c 1335 }
3ce1502b 1336
21d0e8a4
MK
1337 gdb_assert (sigcontext_offset != -1);
1338
8201327c 1339 if (frame->next)
21d0e8a4
MK
1340 return frame->next->frame + sigcontext_offset;
1341 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1342}
1343\f
3ce1502b 1344
8201327c 1345/* DJGPP. */
d2a7c97a 1346
8201327c
MK
1347static int
1348i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1349{
1350 /* DJGPP doesn't have any special frames for signal handlers. */
1351 return 0;
1352}
1353\f
d2a7c97a 1354
8201327c 1355/* Generic ELF. */
d2a7c97a 1356
8201327c
MK
1357void
1358i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1359{
1360 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1361 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1362}
3ce1502b 1363
8201327c 1364/* System V Release 4 (SVR4). */
3ce1502b 1365
8201327c
MK
1366void
1367i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1368{
1369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1370
8201327c
MK
1371 /* System V Release 4 uses ELF. */
1372 i386_elf_init_abi (info, gdbarch);
3ce1502b 1373
dfe01d39
MK
1374 /* System V Release 4 has shared libraries. */
1375 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1376 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1377
8201327c 1378 /* FIXME: kettenis/20020511: Why do we override this function here? */
b4671f85 1379 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
3ce1502b 1380
8201327c 1381 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1382 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1383 tdep->sc_pc_offset = 14 * 4;
1384 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1385
8201327c 1386 tdep->jb_pc_offset = 20;
3ce1502b
MK
1387}
1388
8201327c 1389/* DJGPP. */
3ce1502b 1390
3a1e71e3 1391static void
8201327c 1392i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1393{
8201327c 1394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1395
8201327c 1396 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1397
8201327c 1398 tdep->jb_pc_offset = 36;
3ce1502b
MK
1399}
1400
8201327c 1401/* NetWare. */
3ce1502b 1402
3a1e71e3 1403static void
8201327c 1404i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1405{
8201327c 1406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1407
8201327c 1408 /* FIXME: kettenis/20020511: Why do we override this function here? */
b4671f85 1409 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
8201327c
MK
1410
1411 tdep->jb_pc_offset = 24;
d2a7c97a 1412}
8201327c 1413\f
2acceee2 1414
3a1e71e3 1415static struct gdbarch *
a62cc96e
AC
1416i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1417{
cd3c07fc 1418 struct gdbarch_tdep *tdep;
a62cc96e 1419 struct gdbarch *gdbarch;
8201327c 1420 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
a62cc96e 1421
8201327c 1422 /* Try to determine the OS ABI of the object we're loading. */
3ce1502b 1423 if (info.abfd != NULL)
8201327c 1424 osabi = gdbarch_lookup_osabi (info.abfd);
d2a7c97a 1425
3ce1502b 1426 /* Find a candidate among extant architectures. */
d2a7c97a
MK
1427 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1428 arches != NULL;
1429 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1430 {
8201327c 1431 /* Make sure the OS ABI selection matches. */
65d6d66a 1432 tdep = gdbarch_tdep (arches->gdbarch);
8201327c 1433 if (tdep && tdep->osabi == osabi)
65d6d66a 1434 return arches->gdbarch;
d2a7c97a 1435 }
a62cc96e
AC
1436
1437 /* Allocate space for the new architecture. */
1438 tdep = XMALLOC (struct gdbarch_tdep);
1439 gdbarch = gdbarch_alloc (&info, tdep);
1440
8201327c
MK
1441 tdep->osabi = osabi;
1442
1443 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1444 FIXME: kettenis/20020614: They do include the FPU registers for
1445 now, which probably is not quite right. */
8201327c 1446 tdep->num_xmm_regs = 0;
d2a7c97a 1447
8201327c
MK
1448 tdep->jb_pc_offset = -1;
1449 tdep->struct_return = pcc_struct_return;
8201327c
MK
1450 tdep->sigtramp_start = 0;
1451 tdep->sigtramp_end = 0;
21d0e8a4 1452 tdep->sigcontext_addr = NULL;
8201327c 1453 tdep->sc_pc_offset = -1;
21d0e8a4 1454 tdep->sc_sp_offset = -1;
8201327c 1455
896fb97d
MK
1456 /* The format used for `long double' on almost all i386 targets is
1457 the i387 extended floating-point format. In fact, of all targets
1458 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1459 on having a `long double' that's not `long' at all. */
1460 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1461
896fb97d
MK
1462 /* Although the i386 extended floating-point has only 80 significant
1463 bits, a `long double' actually takes up 96, probably to enforce
1464 alignment. */
1465 set_gdbarch_long_double_bit (gdbarch, 96);
1466
356a6b3e
MK
1467 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1468 tm-symmetry.h currently override this. Sigh. */
1469 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1470
356a6b3e
MK
1471 set_gdbarch_sp_regnum (gdbarch, 4);
1472 set_gdbarch_fp_regnum (gdbarch, 5);
1473 set_gdbarch_pc_regnum (gdbarch, 8);
1474 set_gdbarch_ps_regnum (gdbarch, 9);
1475 set_gdbarch_fp0_regnum (gdbarch, 16);
1476
1477 /* Use the "default" register numbering scheme for stabs and COFF. */
1478 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1479 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1480
1481 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1482 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1483 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1484
1485 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1486 be in use on any of the supported i386 targets. */
1487
1488 set_gdbarch_register_name (gdbarch, i386_register_name);
1489 set_gdbarch_register_size (gdbarch, 4);
1490 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
00f8375e
MK
1491 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1492 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
b6197528 1493 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
356a6b3e 1494
61113f8b
MK
1495 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1496
8201327c 1497 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1498
c0d1d883 1499 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
a62cc96e
AC
1500
1501 /* Call dummy code. */
c0d1d883
MK
1502 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1503 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
8758dec1 1504 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
c0d1d883 1505 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
a62cc96e 1506 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
c0d1d883 1507 set_gdbarch_call_dummy_length (gdbarch, 0);
a62cc96e 1508 set_gdbarch_call_dummy_p (gdbarch, 1);
c0d1d883
MK
1509 set_gdbarch_call_dummy_words (gdbarch, NULL);
1510 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
a62cc96e 1511 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
c0d1d883 1512 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
a62cc96e 1513
b6197528
MK
1514 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1515 set_gdbarch_register_convert_to_virtual (gdbarch,
1516 i386_register_convert_to_virtual);
1517 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1518
7b4c2dce 1519 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
a62cc96e
AC
1520 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1521
c0d1d883 1522 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
a62cc96e 1523
8758dec1
MK
1524 /* "An argument's size is increased, if necessary, to make it a
1525 multiple of [32-bit] words. This may require tail padding,
1526 depending on the size of the argument" -- from the x86 ABI. */
1527 set_gdbarch_parm_boundary (gdbarch, 32);
1528
00f8375e 1529 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
fc08ec52 1530 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
c0d1d883
MK
1531 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1532 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
fc08ec52
MK
1533 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1534 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1535 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1536 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1537 i386_extract_struct_value_address);
8201327c
MK
1538 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1539
42fdc8df 1540 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1541 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1542
1543 /* Stack grows downward. */
1544 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1545
1546 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1547 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1548 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1549
8201327c
MK
1550 /* The following redefines make backtracing through sigtramp work.
1551 They manufacture a fake sigtramp frame and obtain the saved pc in
1552 sigtramp from the sigcontext structure which is pushed by the
1553 kernel on the user stack, along with a pointer to it. */
1554
42fdc8df
MK
1555 set_gdbarch_frame_args_skip (gdbarch, 8);
1556 set_gdbarch_frameless_function_invocation (gdbarch,
1557 i386_frameless_function_invocation);
8201327c 1558 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
c0d1d883 1559 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
8201327c 1560 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
42fdc8df
MK
1561 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1562 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
8201327c 1563 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1564 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1565 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1566
28fc6740
AC
1567 /* Wire in the MMX registers. */
1568 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1569 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1570 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1571
3ce1502b 1572 /* Hook in ABI-specific overrides, if they have been registered. */
8201327c 1573 gdbarch_init_osabi (info, gdbarch, osabi);
3ce1502b 1574
a62cc96e
AC
1575 return gdbarch;
1576}
1577
8201327c
MK
1578static enum gdb_osabi
1579i386_coff_osabi_sniffer (bfd *abfd)
1580{
762c5349
MK
1581 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1582 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1583 return GDB_OSABI_GO32;
1584
1585 return GDB_OSABI_UNKNOWN;
1586}
1587
1588static enum gdb_osabi
1589i386_nlm_osabi_sniffer (bfd *abfd)
1590{
1591 return GDB_OSABI_NETWARE;
1592}
1593\f
1594
28e9e0f0
MK
1595/* Provide a prototype to silence -Wmissing-prototypes. */
1596void _initialize_i386_tdep (void);
1597
c906108c 1598void
fba45db2 1599_initialize_i386_tdep (void)
c906108c 1600{
a62cc96e
AC
1601 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1602
c906108c
SS
1603 tm_print_insn = gdb_print_insn_i386;
1604 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1605
fc338970 1606 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1607 {
1608 struct cmd_list_element *new_cmd;
7a292a7a 1609
917317f4
JM
1610 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1611 valid_flavors,
1ed2a135 1612 &disassembly_flavor,
fc338970
MK
1613 "\
1614Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1615and the default value is \"att\".",
917317f4 1616 &setlist);
917317f4
JM
1617 add_show_from_set (new_cmd, &showlist);
1618 }
8201327c
MK
1619
1620 /* Add the variable that controls the convention for returning
1621 structs. */
1622 {
1623 struct cmd_list_element *new_cmd;
1624
1625 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1626 valid_conventions,
1627 &struct_convention, "\
1628Set the convention for returning small structs, valid values \
1629are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1630 &setlist);
1631 add_show_from_set (new_cmd, &showlist);
1632 }
1633
1634 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1635 i386_coff_osabi_sniffer);
1636 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1637 i386_nlm_osabi_sniffer);
1638
1639 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1640 i386_svr4_init_abi);
1641 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1642 i386_go32_init_abi);
1643 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1644 i386_nw_init_abi);
c906108c 1645}
This page took 0.331687 seconds and 4 git commands to generate.