2003-01-07 Chris Demetriou <cgd@broadcom.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
dfe01d39 28#include "objfiles.h"
c906108c
SS
29#include "target.h"
30#include "floatformat.h"
c0d1d883 31#include "symfile.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbcmd.h"
34#include "command.h"
b4a20239 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
d16aafd8 37#include "doublest.h"
fd0407d6 38#include "value.h"
3d261580 39#include "gdb_assert.h"
38c968cf 40#include "reggroups.h"
5a4d6ff4 41#include "dummy-frame.h"
4be87837 42#include "osabi.h"
3d261580 43
d2a7c97a 44#include "i386-tdep.h"
61113f8b 45#include "i387-tdep.h"
d2a7c97a 46
fc633446
MK
47/* Names of the registers. The first 10 registers match the register
48 numbering scheme used by GCC for stabs and DWARF. */
49static char *i386_register_names[] =
50{
51 "eax", "ecx", "edx", "ebx",
52 "esp", "ebp", "esi", "edi",
53 "eip", "eflags", "cs", "ss",
54 "ds", "es", "fs", "gs",
55 "st0", "st1", "st2", "st3",
56 "st4", "st5", "st6", "st7",
57 "fctrl", "fstat", "ftag", "fiseg",
58 "fioff", "foseg", "fooff", "fop",
59 "xmm0", "xmm1", "xmm2", "xmm3",
60 "xmm4", "xmm5", "xmm6", "xmm7",
61 "mxcsr"
62};
63
28fc6740
AC
64/* MMX registers. */
65
66static char *i386_mmx_names[] =
67{
68 "mm0", "mm1", "mm2", "mm3",
69 "mm4", "mm5", "mm6", "mm7"
70};
71static const int mmx_num_regs = (sizeof (i386_mmx_names)
72 / sizeof (i386_mmx_names[0]));
73#define MM0_REGNUM (NUM_REGS)
74
75static int
23a34459 76i386_mmx_regnum_p (int reg)
28fc6740
AC
77{
78 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
79}
80
23a34459
AC
81/* FP register? */
82
83int
84i386_fp_regnum_p (int regnum)
85{
86 return (regnum < NUM_REGS
87 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
88}
89
90int
91i386_fpc_regnum_p (int regnum)
92{
93 return (regnum < NUM_REGS
94 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
95}
96
97/* SSE register? */
98
99int
100i386_sse_regnum_p (int regnum)
101{
102 return (regnum < NUM_REGS
103 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
104}
105
106int
107i386_mxcsr_regnum_p (int regnum)
108{
109 return (regnum < NUM_REGS
110 && (regnum == MXCSR_REGNUM));
111}
112
fc633446
MK
113/* Return the name of register REG. */
114
fa88f677 115const char *
fc633446
MK
116i386_register_name (int reg)
117{
118 if (reg < 0)
119 return NULL;
23a34459 120 if (i386_mmx_regnum_p (reg))
28fc6740 121 return i386_mmx_names[reg - MM0_REGNUM];
fc633446
MK
122 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
123 return NULL;
124
125 return i386_register_names[reg];
126}
127
85540d8c
MK
128/* Convert stabs register number REG to the appropriate register
129 number used by GDB. */
130
8201327c 131static int
85540d8c
MK
132i386_stab_reg_to_regnum (int reg)
133{
134 /* This implements what GCC calls the "default" register map. */
135 if (reg >= 0 && reg <= 7)
136 {
137 /* General registers. */
138 return reg;
139 }
140 else if (reg >= 12 && reg <= 19)
141 {
142 /* Floating-point registers. */
143 return reg - 12 + FP0_REGNUM;
144 }
145 else if (reg >= 21 && reg <= 28)
146 {
147 /* SSE registers. */
148 return reg - 21 + XMM0_REGNUM;
149 }
150 else if (reg >= 29 && reg <= 36)
151 {
152 /* MMX registers. */
7d12f766 153 return reg - 29 + MM0_REGNUM;
85540d8c
MK
154 }
155
156 /* This will hopefully provoke a warning. */
157 return NUM_REGS + NUM_PSEUDO_REGS;
158}
159
8201327c 160/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
161 number used by GDB. */
162
8201327c 163static int
85540d8c
MK
164i386_dwarf_reg_to_regnum (int reg)
165{
166 /* The DWARF register numbering includes %eip and %eflags, and
167 numbers the floating point registers differently. */
168 if (reg >= 0 && reg <= 9)
169 {
170 /* General registers. */
171 return reg;
172 }
173 else if (reg >= 11 && reg <= 18)
174 {
175 /* Floating-point registers. */
176 return reg - 11 + FP0_REGNUM;
177 }
178 else if (reg >= 21)
179 {
180 /* The SSE and MMX registers have identical numbers as in stabs. */
181 return i386_stab_reg_to_regnum (reg);
182 }
183
184 /* This will hopefully provoke a warning. */
185 return NUM_REGS + NUM_PSEUDO_REGS;
186}
fc338970 187\f
917317f4 188
fc338970
MK
189/* This is the variable that is set with "set disassembly-flavor", and
190 its legitimate values. */
53904c9e
AC
191static const char att_flavor[] = "att";
192static const char intel_flavor[] = "intel";
193static const char *valid_flavors[] =
c5aa993b 194{
c906108c
SS
195 att_flavor,
196 intel_flavor,
197 NULL
198};
53904c9e 199static const char *disassembly_flavor = att_flavor;
c906108c 200
fc338970
MK
201/* Stdio style buffering was used to minimize calls to ptrace, but
202 this buffering did not take into account that the code section
203 being accessed may not be an even number of buffers long (even if
204 the buffer is only sizeof(int) long). In cases where the code
205 section size happened to be a non-integral number of buffers long,
206 attempting to read the last buffer would fail. Simply using
207 target_read_memory and ignoring errors, rather than read_memory, is
208 not the correct solution, since legitimate access errors would then
209 be totally ignored. To properly handle this situation and continue
210 to use buffering would require that this code be able to determine
211 the minimum code section size granularity (not the alignment of the
212 section itself, since the actual failing case that pointed out this
213 problem had a section alignment of 4 but was not a multiple of 4
214 bytes long), on a target by target basis, and then adjust it's
215 buffer size accordingly. This is messy, but potentially feasible.
216 It probably needs the bfd library's help and support. For now, the
217 buffer size is set to 1. (FIXME -fnf) */
218
219#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
220static CORE_ADDR codestream_next_addr;
221static CORE_ADDR codestream_addr;
222static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
223static int codestream_off;
224static int codestream_cnt;
225
226#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
227#define codestream_peek() \
228 (codestream_cnt == 0 ? \
229 codestream_fill(1) : codestream_buf[codestream_off])
230#define codestream_get() \
231 (codestream_cnt-- == 0 ? \
232 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 233
c5aa993b 234static unsigned char
fba45db2 235codestream_fill (int peek_flag)
c906108c
SS
236{
237 codestream_addr = codestream_next_addr;
238 codestream_next_addr += CODESTREAM_BUFSIZ;
239 codestream_off = 0;
240 codestream_cnt = CODESTREAM_BUFSIZ;
241 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 242
c906108c 243 if (peek_flag)
c5aa993b 244 return (codestream_peek ());
c906108c 245 else
c5aa993b 246 return (codestream_get ());
c906108c
SS
247}
248
249static void
fba45db2 250codestream_seek (CORE_ADDR place)
c906108c
SS
251{
252 codestream_next_addr = place / CODESTREAM_BUFSIZ;
253 codestream_next_addr *= CODESTREAM_BUFSIZ;
254 codestream_cnt = 0;
255 codestream_fill (1);
c5aa993b 256 while (codestream_tell () != place)
c906108c
SS
257 codestream_get ();
258}
259
260static void
fba45db2 261codestream_read (unsigned char *buf, int count)
c906108c
SS
262{
263 unsigned char *p;
264 int i;
265 p = buf;
266 for (i = 0; i < count; i++)
267 *p++ = codestream_get ();
268}
fc338970 269\f
c906108c 270
fc338970 271/* If the next instruction is a jump, move to its target. */
c906108c
SS
272
273static void
fba45db2 274i386_follow_jump (void)
c906108c
SS
275{
276 unsigned char buf[4];
277 long delta;
278
279 int data16;
280 CORE_ADDR pos;
281
282 pos = codestream_tell ();
283
284 data16 = 0;
285 if (codestream_peek () == 0x66)
286 {
287 codestream_get ();
288 data16 = 1;
289 }
290
291 switch (codestream_get ())
292 {
293 case 0xe9:
fc338970 294 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
295 if (data16)
296 {
297 codestream_read (buf, 2);
298 delta = extract_signed_integer (buf, 2);
299
fc338970
MK
300 /* Include the size of the jmp instruction (including the
301 0x66 prefix). */
c5aa993b 302 pos += delta + 4;
c906108c
SS
303 }
304 else
305 {
306 codestream_read (buf, 4);
307 delta = extract_signed_integer (buf, 4);
308
309 pos += delta + 5;
310 }
311 break;
312 case 0xeb:
fc338970 313 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
314 codestream_read (buf, 1);
315 /* Sign-extend it. */
316 delta = extract_signed_integer (buf, 1);
317
318 pos += delta + 2;
319 break;
320 }
321 codestream_seek (pos);
322}
323
fc338970
MK
324/* Find & return the amount a local space allocated, and advance the
325 codestream to the first register push (if any).
326
327 If the entry sequence doesn't make sense, return -1, and leave
328 codestream pointer at a random spot. */
c906108c
SS
329
330static long
fba45db2 331i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
332{
333 unsigned char op;
334
335 codestream_seek (pc);
336
337 i386_follow_jump ();
338
339 op = codestream_get ();
340
341 if (op == 0x58) /* popl %eax */
342 {
fc338970
MK
343 /* This function must start with
344
345 popl %eax 0x58
346 xchgl %eax, (%esp) 0x87 0x04 0x24
347 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
348
349 (the System V compiler puts out the second `xchg'
350 instruction, and the assembler doesn't try to optimize it, so
351 the 'sib' form gets generated). This sequence is used to get
352 the address of the return buffer for a function that returns
353 a structure. */
c906108c
SS
354 int pos;
355 unsigned char buf[4];
fc338970
MK
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358
c906108c
SS
359 pos = codestream_tell ();
360 codestream_read (buf, 4);
361 if (memcmp (buf, proto1, 3) == 0)
362 pos += 3;
363 else if (memcmp (buf, proto2, 4) == 0)
364 pos += 4;
365
366 codestream_seek (pos);
fc338970 367 op = codestream_get (); /* Update next opcode. */
c906108c
SS
368 }
369
370 if (op == 0x68 || op == 0x6a)
371 {
fc338970
MK
372 /* This function may start with
373
374 pushl constant
375 call _probe
376 addl $4, %esp
377
378 followed by
379
380 pushl %ebp
381
382 etc. */
c906108c
SS
383 int pos;
384 unsigned char buf[8];
385
fc338970 386 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
387 or a four-byte operand, depending on the opcode. */
388 pos = codestream_tell ();
389 if (op == 0x68)
390 pos += 4;
391 else
392 pos += 1;
393 codestream_seek (pos);
394
fc338970
MK
395 /* Read the following 8 bytes, which should be "call _probe" (6
396 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
397 codestream_read (buf, sizeof (buf));
398 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
399 pos += sizeof (buf);
400 codestream_seek (pos);
fc338970 401 op = codestream_get (); /* Update next opcode. */
c906108c
SS
402 }
403
404 if (op == 0x55) /* pushl %ebp */
c5aa993b 405 {
fc338970 406 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
407 switch (codestream_get ())
408 {
409 case 0x8b:
410 if (codestream_get () != 0xec)
fc338970 411 return -1;
c906108c
SS
412 break;
413 case 0x89:
414 if (codestream_get () != 0xe5)
fc338970 415 return -1;
c906108c
SS
416 break;
417 default:
fc338970 418 return -1;
c906108c 419 }
fc338970
MK
420 /* Check for stack adjustment
421
422 subl $XXX, %esp
423
424 NOTE: You can't subtract a 16 bit immediate from a 32 bit
425 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
426 op = codestream_peek ();
427 if (op == 0x83)
428 {
fc338970 429 /* `subl' with 8 bit immediate. */
c906108c
SS
430 codestream_get ();
431 if (codestream_get () != 0xec)
fc338970 432 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
433 {
434 codestream_seek (codestream_tell () - 2);
435 return 0;
436 }
fc338970
MK
437 /* `subl' with signed byte immediate (though it wouldn't
438 make sense to be negative). */
c5aa993b 439 return (codestream_get ());
c906108c
SS
440 }
441 else if (op == 0x81)
442 {
443 char buf[4];
fc338970 444 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 445 codestream_get ();
c906108c 446 if (codestream_get () != 0xec)
fc338970 447 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
448 {
449 codestream_seek (codestream_tell () - 2);
450 return 0;
451 }
fc338970 452 /* It is `subl' with a 32 bit immediate. */
c5aa993b 453 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
454 return extract_signed_integer (buf, 4);
455 }
456 else
457 {
fc338970 458 return 0;
c906108c
SS
459 }
460 }
461 else if (op == 0xc8)
462 {
463 char buf[2];
fc338970 464 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 465 codestream_read ((unsigned char *) buf, 2);
fc338970 466 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
467 return extract_unsigned_integer (buf, 2);
468 }
469 return (-1);
470}
471
6bff26de
MK
472/* Signal trampolines don't have a meaningful frame. The frame
473 pointer value we use is actually the frame pointer of the calling
474 frame -- that is, the frame which was in progress when the signal
475 trampoline was entered. GDB mostly treats this frame pointer value
476 as a magic cookie. We detect the case of a signal trampoline by
5a203e44
AC
477 testing for get_frame_type() == SIGTRAMP_FRAME, which is set based
478 on PC_IN_SIGTRAMP.
6bff26de
MK
479
480 When a signal trampoline is invoked from a frameless function, we
481 essentially have two frameless functions in a row. In this case,
482 we use the same magic cookie for three frames in a row. We detect
5a203e44
AC
483 this case by seeing whether the next frame is a SIGTRAMP_FRAME,
484 and, if it does, checking whether the current frame is actually
485 frameless. In this case, we need to get the PC by looking at the
486 SP register value stored in the signal context.
6bff26de
MK
487
488 This should work in most cases except in horrible situations where
489 a signal occurs just as we enter a function but before the frame
c0d1d883
MK
490 has been set up. Incidentally, that's just what happens when we
491 call a function from GDB with a signal pending (there's a test in
492 the testsuite that makes this happen). Therefore we pretend that
493 we have a frameless function if we're stopped at the start of a
494 function. */
6bff26de
MK
495
496/* Return non-zero if we're dealing with a frameless signal, that is,
497 a signal trampoline invoked from a frameless function. */
498
5512c44a 499int
6bff26de
MK
500i386_frameless_signal_p (struct frame_info *frame)
501{
5a203e44 502 return (frame->next && get_frame_type (frame->next) == SIGTRAMP_FRAME
c0d1d883 503 && (frameless_look_for_prologue (frame)
50abf9e5 504 || get_frame_pc (frame) == get_pc_function_start (get_frame_pc (frame))));
6bff26de
MK
505}
506
c833a37e
MK
507/* Return the chain-pointer for FRAME. In the case of the i386, the
508 frame's nominal address is the address of a 4-byte word containing
509 the calling frame's address. */
510
8201327c 511static CORE_ADDR
c833a37e
MK
512i386_frame_chain (struct frame_info *frame)
513{
50abf9e5 514 if (pc_in_dummy_frame (get_frame_pc (frame)))
1e2330ba 515 return get_frame_base (frame);
c0d1d883 516
5a203e44 517 if (get_frame_type (frame) == SIGTRAMP_FRAME
6bff26de 518 || i386_frameless_signal_p (frame))
1e2330ba 519 return get_frame_base (frame);
c833a37e 520
50abf9e5 521 if (! inside_entry_file (get_frame_pc (frame)))
1e2330ba 522 return read_memory_unsigned_integer (get_frame_base (frame), 4);
c833a37e
MK
523
524 return 0;
525}
526
539ffe0b
MK
527/* Determine whether the function invocation represented by FRAME does
528 not have a from on the stack associated with it. If it does not,
529 return non-zero, otherwise return zero. */
530
3a1e71e3 531static int
539ffe0b
MK
532i386_frameless_function_invocation (struct frame_info *frame)
533{
5a203e44 534 if (get_frame_type (frame) == SIGTRAMP_FRAME)
539ffe0b
MK
535 return 0;
536
537 return frameless_look_for_prologue (frame);
538}
539
21d0e8a4
MK
540/* Assuming FRAME is for a sigtramp routine, return the saved program
541 counter. */
542
543static CORE_ADDR
544i386_sigtramp_saved_pc (struct frame_info *frame)
545{
546 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
547 CORE_ADDR addr;
548
549 addr = tdep->sigcontext_addr (frame);
550 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
551}
552
6bff26de
MK
553/* Assuming FRAME is for a sigtramp routine, return the saved stack
554 pointer. */
555
556static CORE_ADDR
557i386_sigtramp_saved_sp (struct frame_info *frame)
558{
559 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
560 CORE_ADDR addr;
561
562 addr = tdep->sigcontext_addr (frame);
563 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
564}
565
0d17c81d
MK
566/* Return the saved program counter for FRAME. */
567
8201327c 568static CORE_ADDR
0d17c81d
MK
569i386_frame_saved_pc (struct frame_info *frame)
570{
50abf9e5 571 if (pc_in_dummy_frame (get_frame_pc (frame)))
267bf4bb
MK
572 {
573 ULONGEST pc;
574
575 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
576 return pc;
577 }
c0d1d883 578
5a203e44 579 if (get_frame_type (frame) == SIGTRAMP_FRAME)
21d0e8a4 580 return i386_sigtramp_saved_pc (frame);
0d17c81d 581
6bff26de
MK
582 if (i386_frameless_signal_p (frame))
583 {
584 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
585 return read_memory_unsigned_integer (sp, 4);
586 }
587
1e2330ba 588 return read_memory_unsigned_integer (get_frame_base (frame) + 4, 4);
22797942
AC
589}
590
ed84f6c1
MK
591/* Immediately after a function call, return the saved pc. */
592
8201327c 593static CORE_ADDR
ed84f6c1
MK
594i386_saved_pc_after_call (struct frame_info *frame)
595{
5a203e44 596 if (get_frame_type (frame) == SIGTRAMP_FRAME)
6bff26de
MK
597 return i386_sigtramp_saved_pc (frame);
598
ed84f6c1
MK
599 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
600}
601
c906108c
SS
602/* Return number of args passed to a frame.
603 Can return -1, meaning no way to tell. */
604
3a1e71e3 605static int
fba45db2 606i386_frame_num_args (struct frame_info *fi)
c906108c
SS
607{
608#if 1
609 return -1;
610#else
611 /* This loses because not only might the compiler not be popping the
fc338970
MK
612 args right after the function call, it might be popping args from
613 both this call and a previous one, and we would say there are
614 more args than there really are. */
c906108c 615
c5aa993b
JM
616 int retpc;
617 unsigned char op;
c906108c
SS
618 struct frame_info *pfi;
619
fc338970 620 /* On the i386, the instruction following the call could be:
c906108c
SS
621 popl %ecx - one arg
622 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 623 anything else - zero args. */
c906108c
SS
624
625 int frameless;
626
392a587b 627 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 628 if (frameless)
fc338970
MK
629 /* In the absence of a frame pointer, GDB doesn't get correct
630 values for nameless arguments. Return -1, so it doesn't print
631 any nameless arguments. */
c906108c
SS
632 return -1;
633
c5aa993b 634 pfi = get_prev_frame (fi);
c906108c
SS
635 if (pfi == 0)
636 {
fc338970
MK
637 /* NOTE: This can happen if we are looking at the frame for
638 main, because FRAME_CHAIN_VALID won't let us go into start.
639 If we have debugging symbols, that's not really a big deal;
640 it just means it will only show as many arguments to main as
641 are declared. */
c906108c
SS
642 return -1;
643 }
644 else
645 {
c5aa993b
JM
646 retpc = pfi->pc;
647 op = read_memory_integer (retpc, 1);
fc338970 648 if (op == 0x59) /* pop %ecx */
c5aa993b 649 return 1;
c906108c
SS
650 else if (op == 0x83)
651 {
c5aa993b
JM
652 op = read_memory_integer (retpc + 1, 1);
653 if (op == 0xc4)
654 /* addl $<signed imm 8 bits>, %esp */
655 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
656 else
657 return 0;
658 }
fc338970
MK
659 else if (op == 0x81) /* `add' with 32 bit immediate. */
660 {
c5aa993b
JM
661 op = read_memory_integer (retpc + 1, 1);
662 if (op == 0xc4)
663 /* addl $<imm 32>, %esp */
664 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
665 else
666 return 0;
667 }
668 else
669 {
670 return 0;
671 }
672 }
673#endif
674}
675
fc338970
MK
676/* Parse the first few instructions the function to see what registers
677 were stored.
678
679 We handle these cases:
680
681 The startup sequence can be at the start of the function, or the
682 function can start with a branch to startup code at the end.
683
684 %ebp can be set up with either the 'enter' instruction, or "pushl
685 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
686 once used in the System V compiler).
687
688 Local space is allocated just below the saved %ebp by either the
689 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
690 bit unsigned argument for space to allocate, and the 'addl'
691 instruction could have either a signed byte, or 32 bit immediate.
692
693 Next, the registers used by this function are pushed. With the
694 System V compiler they will always be in the order: %edi, %esi,
695 %ebx (and sometimes a harmless bug causes it to also save but not
696 restore %eax); however, the code below is willing to see the pushes
697 in any order, and will handle up to 8 of them.
698
699 If the setup sequence is at the end of the function, then the next
700 instruction will be a branch back to the start. */
c906108c 701
3a1e71e3 702static void
fba45db2 703i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
704{
705 long locals = -1;
706 unsigned char op;
fc338970 707 CORE_ADDR addr;
c906108c
SS
708 CORE_ADDR pc;
709 int i;
c5aa993b 710
b2fb4676 711 if (get_frame_saved_regs (fip))
1211c4e4
AC
712 return;
713
714 frame_saved_regs_zalloc (fip);
c5aa993b 715
50abf9e5 716 pc = get_pc_function_start (get_frame_pc (fip));
c906108c
SS
717 if (pc != 0)
718 locals = i386_get_frame_setup (pc);
c5aa993b
JM
719
720 if (locals >= 0)
c906108c 721 {
1e2330ba 722 addr = get_frame_base (fip) - 4 - locals;
c5aa993b 723 for (i = 0; i < 8; i++)
c906108c
SS
724 {
725 op = codestream_get ();
726 if (op < 0x50 || op > 0x57)
727 break;
728#ifdef I386_REGNO_TO_SYMMETRY
729 /* Dynix uses different internal numbering. Ick. */
b2fb4676 730 get_frame_saved_regs (fip)[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 731#else
b2fb4676 732 get_frame_saved_regs (fip)[op - 0x50] = addr;
c906108c 733#endif
fc338970 734 addr -= 4;
c906108c
SS
735 }
736 }
c5aa993b 737
1e2330ba
AC
738 get_frame_saved_regs (fip)[PC_REGNUM] = get_frame_base (fip) + 4;
739 get_frame_saved_regs (fip)[FP_REGNUM] = get_frame_base (fip);
c906108c
SS
740}
741
fc338970 742/* Return PC of first real instruction. */
c906108c 743
3a1e71e3 744static CORE_ADDR
93924b6b 745i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
746{
747 unsigned char op;
748 int i;
c5aa993b 749 static unsigned char pic_pat[6] =
fc338970
MK
750 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
751 0x5b, /* popl %ebx */
c5aa993b 752 };
c906108c 753 CORE_ADDR pos;
c5aa993b 754
c906108c
SS
755 if (i386_get_frame_setup (pc) < 0)
756 return (pc);
c5aa993b 757
fc338970
MK
758 /* Found valid frame setup -- codestream now points to start of push
759 instructions for saving registers. */
c5aa993b 760
fc338970 761 /* Skip over register saves. */
c906108c
SS
762 for (i = 0; i < 8; i++)
763 {
764 op = codestream_peek ();
fc338970 765 /* Break if not `pushl' instrunction. */
c5aa993b 766 if (op < 0x50 || op > 0x57)
c906108c
SS
767 break;
768 codestream_get ();
769 }
770
fc338970
MK
771 /* The native cc on SVR4 in -K PIC mode inserts the following code
772 to get the address of the global offset table (GOT) into register
773 %ebx
774
775 call 0x0
776 popl %ebx
777 movl %ebx,x(%ebp) (optional)
778 addl y,%ebx
779
c906108c
SS
780 This code is with the rest of the prologue (at the end of the
781 function), so we have to skip it to get to the first real
782 instruction at the start of the function. */
c5aa993b 783
c906108c
SS
784 pos = codestream_tell ();
785 for (i = 0; i < 6; i++)
786 {
787 op = codestream_get ();
c5aa993b 788 if (pic_pat[i] != op)
c906108c
SS
789 break;
790 }
791 if (i == 6)
792 {
793 unsigned char buf[4];
794 long delta = 6;
795
796 op = codestream_get ();
c5aa993b 797 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
798 {
799 op = codestream_get ();
fc338970 800 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
801 {
802 delta += 3;
803 codestream_read (buf, 1);
804 }
fc338970 805 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
806 {
807 delta += 6;
808 codestream_read (buf, 4);
809 }
fc338970 810 else /* Unexpected instruction. */
c5aa993b
JM
811 delta = -1;
812 op = codestream_get ();
c906108c 813 }
c5aa993b
JM
814 /* addl y,%ebx */
815 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 816 {
c5aa993b 817 pos += delta + 6;
c906108c
SS
818 }
819 }
820 codestream_seek (pos);
c5aa993b 821
c906108c 822 i386_follow_jump ();
c5aa993b 823
c906108c
SS
824 return (codestream_tell ());
825}
826
93924b6b
MK
827/* Use the program counter to determine the contents and size of a
828 breakpoint instruction. Return a pointer to a string of bytes that
829 encode a breakpoint instruction, store the length of the string in
830 *LEN and optionally adjust *PC to point to the correct memory
831 location for inserting the breakpoint.
832
833 On the i386 we have a single breakpoint that fits in a single byte
834 and can be inserted anywhere. */
835
836static const unsigned char *
837i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
838{
839 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
840
841 *len = sizeof (break_insn);
842 return break_insn;
843}
844
c0d1d883
MK
845/* Push the return address (pointing to the call dummy) onto the stack
846 and return the new value for the stack pointer. */
c5aa993b 847
c0d1d883
MK
848static CORE_ADDR
849i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
a7769679 850{
c0d1d883 851 char buf[4];
a7769679 852
c0d1d883
MK
853 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
854 write_memory (sp - 4, buf, 4);
855 return sp - 4;
a7769679
MK
856}
857
3a1e71e3 858static void
c0d1d883 859i386_do_pop_frame (struct frame_info *frame)
c906108c 860{
c906108c
SS
861 CORE_ADDR fp;
862 int regnum;
00f8375e 863 char regbuf[I386_MAX_REGISTER_SIZE];
c5aa993b 864
c193f6ac 865 fp = get_frame_base (frame);
1211c4e4
AC
866 i386_frame_init_saved_regs (frame);
867
c5aa993b 868 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 869 {
fc338970 870 CORE_ADDR addr;
b2fb4676 871 addr = get_frame_saved_regs (frame)[regnum];
fc338970 872 if (addr)
c906108c 873 {
fc338970 874 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
4caf0990 875 deprecated_write_register_gen (regnum, regbuf);
c906108c
SS
876 }
877 }
878 write_register (FP_REGNUM, read_memory_integer (fp, 4));
879 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
880 write_register (SP_REGNUM, fp + 8);
881 flush_cached_frames ();
882}
c0d1d883
MK
883
884static void
885i386_pop_frame (void)
886{
887 generic_pop_current_frame (i386_do_pop_frame);
888}
fc338970 889\f
c906108c 890
fc338970
MK
891/* Figure out where the longjmp will land. Slurp the args out of the
892 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 893 structure from which we extract the address that we will land at.
28bcfd30 894 This address is copied into PC. This routine returns non-zero on
fc338970 895 success. */
c906108c 896
8201327c
MK
897static int
898i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 899{
28bcfd30 900 char buf[8];
c906108c 901 CORE_ADDR sp, jb_addr;
8201327c 902 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
28bcfd30 903 int len = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c 904
8201327c
MK
905 /* If JB_PC_OFFSET is -1, we have no way to find out where the
906 longjmp will land. */
907 if (jb_pc_offset == -1)
c906108c
SS
908 return 0;
909
8201327c 910 sp = read_register (SP_REGNUM);
28bcfd30 911 if (target_read_memory (sp + len, buf, len))
c906108c
SS
912 return 0;
913
28bcfd30
MK
914 jb_addr = extract_address (buf, len);
915 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 916 return 0;
c906108c 917
28bcfd30 918 *pc = extract_address (buf, len);
c906108c
SS
919 return 1;
920}
fc338970 921\f
c906108c 922
3a1e71e3 923static CORE_ADDR
ea7c478f 924i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
925 int struct_return, CORE_ADDR struct_addr)
926{
927 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
928
929 if (struct_return)
930 {
931 char buf[4];
932
933 sp -= 4;
934 store_address (buf, 4, struct_addr);
935 write_memory (sp, buf, 4);
936 }
937
938 return sp;
939}
940
3a1e71e3 941static void
22f8ba57
MK
942i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
943{
944 /* Do nothing. Everything was already done by i386_push_arguments. */
945}
946
1a309862
MK
947/* These registers are used for returning integers (and on some
948 targets also for returning `struct' and `union' values when their
ef9dff19 949 size and alignment match an integer type). */
1a309862
MK
950#define LOW_RETURN_REGNUM 0 /* %eax */
951#define HIGH_RETURN_REGNUM 2 /* %edx */
952
953/* Extract from an array REGBUF containing the (raw) register state, a
954 function return value of TYPE, and copy that, in virtual format,
955 into VALBUF. */
956
3a1e71e3 957static void
00f8375e 958i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 959 void *dst)
c906108c 960{
ebba8386 961 bfd_byte *valbuf = dst;
1a309862 962 int len = TYPE_LENGTH (type);
00f8375e 963 char buf[I386_MAX_REGISTER_SIZE];
1a309862 964
1e8d0a7b
MK
965 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
966 && TYPE_NFIELDS (type) == 1)
3df1b9b4 967 {
00f8375e 968 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
969 return;
970 }
1e8d0a7b
MK
971
972 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 973 {
356a6b3e 974 if (FP0_REGNUM == 0)
1a309862
MK
975 {
976 warning ("Cannot find floating-point return value.");
977 memset (valbuf, 0, len);
ef9dff19 978 return;
1a309862
MK
979 }
980
c6ba6f0d
MK
981 /* Floating-point return values can be found in %st(0). Convert
982 its contents to the desired type. This is probably not
983 exactly how it would happen on the target itself, but it is
984 the best we can do. */
0818c12a 985 regcache_raw_read (regcache, FP0_REGNUM, buf);
00f8375e 986 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
987 }
988 else
c5aa993b 989 {
d4f3574e
SS
990 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
991 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
992
993 if (len <= low_size)
00f8375e 994 {
0818c12a 995 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
996 memcpy (valbuf, buf, len);
997 }
d4f3574e
SS
998 else if (len <= (low_size + high_size))
999 {
0818c12a 1000 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1001 memcpy (valbuf, buf, low_size);
0818c12a 1002 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 1003 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1004 }
1005 else
8e65ff28
AC
1006 internal_error (__FILE__, __LINE__,
1007 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1008 }
1009}
1010
ef9dff19
MK
1011/* Write into the appropriate registers a function return value stored
1012 in VALBUF of type TYPE, given in virtual format. */
1013
3a1e71e3 1014static void
3d7f4f49
MK
1015i386_store_return_value (struct type *type, struct regcache *regcache,
1016 const void *valbuf)
ef9dff19
MK
1017{
1018 int len = TYPE_LENGTH (type);
1019
1e8d0a7b
MK
1020 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1021 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1022 {
3d7f4f49 1023 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1024 return;
1025 }
1e8d0a7b
MK
1026
1027 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1028 {
3d7f4f49 1029 ULONGEST fstat;
c6ba6f0d 1030 char buf[FPU_REG_RAW_SIZE];
ccb945b8 1031
356a6b3e 1032 if (FP0_REGNUM == 0)
ef9dff19
MK
1033 {
1034 warning ("Cannot set floating-point return value.");
1035 return;
1036 }
1037
635b0cc1
MK
1038 /* Returning floating-point values is a bit tricky. Apart from
1039 storing the return value in %st(0), we have to simulate the
1040 state of the FPU at function return point. */
1041
c6ba6f0d
MK
1042 /* Convert the value found in VALBUF to the extended
1043 floating-point format used by the FPU. This is probably
1044 not exactly how it would happen on the target itself, but
1045 it is the best we can do. */
1046 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
3d7f4f49 1047 regcache_raw_write (regcache, FP0_REGNUM, buf);
ccb945b8 1048
635b0cc1
MK
1049 /* Set the top of the floating-point register stack to 7. The
1050 actual value doesn't really matter, but 7 is what a normal
1051 function return would end up with if the program started out
1052 with a freshly initialized FPU. */
3d7f4f49 1053 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
ccb945b8 1054 fstat |= (7 << 11);
3d7f4f49 1055 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
ccb945b8 1056
635b0cc1
MK
1057 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1058 the floating-point register stack to 7, the appropriate value
1059 for the tag word is 0x3fff. */
3d7f4f49 1060 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1061 }
1062 else
1063 {
1064 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1065 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1066
1067 if (len <= low_size)
3d7f4f49 1068 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1069 else if (len <= (low_size + high_size))
1070 {
3d7f4f49
MK
1071 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1072 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1073 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1074 }
1075 else
8e65ff28
AC
1076 internal_error (__FILE__, __LINE__,
1077 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1078 }
1079}
f7af9647 1080
751f1375
MK
1081/* Extract from REGCACHE, which contains the (raw) register state, the
1082 address in which a function should return its structure value, as a
1083 CORE_ADDR. */
f7af9647 1084
3a1e71e3 1085static CORE_ADDR
00f8375e 1086i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1087{
751f1375
MK
1088 ULONGEST addr;
1089
1090 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1091 return addr;
f7af9647 1092}
fc338970 1093\f
ef9dff19 1094
8201327c
MK
1095/* This is the variable that is set with "set struct-convention", and
1096 its legitimate values. */
1097static const char default_struct_convention[] = "default";
1098static const char pcc_struct_convention[] = "pcc";
1099static const char reg_struct_convention[] = "reg";
1100static const char *valid_conventions[] =
1101{
1102 default_struct_convention,
1103 pcc_struct_convention,
1104 reg_struct_convention,
1105 NULL
1106};
1107static const char *struct_convention = default_struct_convention;
1108
1109static int
1110i386_use_struct_convention (int gcc_p, struct type *type)
1111{
1112 enum struct_return struct_return;
1113
1114 if (struct_convention == default_struct_convention)
1115 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1116 else if (struct_convention == pcc_struct_convention)
1117 struct_return = pcc_struct_return;
1118 else
1119 struct_return = reg_struct_return;
1120
1121 return generic_use_struct_convention (struct_return == reg_struct_return,
1122 type);
1123}
1124\f
1125
d7a0d72c
MK
1126/* Return the GDB type object for the "standard" data type of data in
1127 register REGNUM. Perhaps %esi and %edi should go here, but
1128 potentially they could be used for things other than address. */
1129
3a1e71e3 1130static struct type *
d7a0d72c
MK
1131i386_register_virtual_type (int regnum)
1132{
1133 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1134 return lookup_pointer_type (builtin_type_void);
1135
23a34459 1136 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1137 return builtin_type_i387_ext;
d7a0d72c 1138
23a34459 1139 if (i386_sse_regnum_p (regnum))
3139facc 1140 return builtin_type_vec128i;
d7a0d72c 1141
23a34459 1142 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1143 return builtin_type_vec64i;
1144
d7a0d72c
MK
1145 return builtin_type_int;
1146}
1147
28fc6740
AC
1148/* Map a cooked register onto a raw register or memory. For the i386,
1149 the MMX registers need to be mapped onto floating point registers. */
1150
1151static int
1152mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1153{
1154 int mmxi;
1155 ULONGEST fstat;
1156 int tos;
1157 int fpi;
1158 mmxi = regnum - MM0_REGNUM;
1159 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1160 tos = (fstat >> 11) & 0x7;
1161 fpi = (mmxi + tos) % 8;
1162 return (FP0_REGNUM + fpi);
1163}
1164
1165static void
1166i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1167 int regnum, void *buf)
1168{
23a34459 1169 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1170 {
1171 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1172 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1173 regcache_raw_read (regcache, fpnum, mmx_buf);
1174 /* Extract (always little endian). */
1175 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1176 }
1177 else
1178 regcache_raw_read (regcache, regnum, buf);
1179}
1180
1181static void
1182i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1183 int regnum, const void *buf)
1184{
23a34459 1185 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1186 {
1187 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1188 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1189 /* Read ... */
1190 regcache_raw_read (regcache, fpnum, mmx_buf);
1191 /* ... Modify ... (always little endian). */
1192 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1193 /* ... Write. */
1194 regcache_raw_write (regcache, fpnum, mmx_buf);
1195 }
1196 else
1197 regcache_raw_write (regcache, regnum, buf);
1198}
1199
d7a0d72c
MK
1200/* Return true iff register REGNUM's virtual format is different from
1201 its raw format. Note that this definition assumes that the host
1202 supports IEEE 32-bit floats, since it doesn't say that SSE
1203 registers need conversion. Even if we can't find a counterexample,
1204 this is still sloppy. */
1205
3a1e71e3 1206static int
d7a0d72c
MK
1207i386_register_convertible (int regnum)
1208{
23a34459 1209 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1210}
1211
ac27f131 1212/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1213 virtual format with type TYPE in buffer TO. */
ac27f131 1214
3a1e71e3 1215static void
ac27f131
MK
1216i386_register_convert_to_virtual (int regnum, struct type *type,
1217 char *from, char *to)
1218{
23a34459 1219 gdb_assert (i386_fp_regnum_p (regnum));
3d261580
MK
1220
1221 /* We only support floating-point values. */
8d7f6b4a
MK
1222 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1223 {
1224 warning ("Cannot convert floating-point register value "
1225 "to non-floating-point type.");
1226 memset (to, 0, TYPE_LENGTH (type));
1227 return;
1228 }
3d261580 1229
c6ba6f0d
MK
1230 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1231 the extended floating-point format used by the FPU. */
1232 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1233}
1234
1235/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1236 raw format for register REGNUM in buffer TO. */
ac27f131 1237
3a1e71e3 1238static void
ac27f131
MK
1239i386_register_convert_to_raw (struct type *type, int regnum,
1240 char *from, char *to)
1241{
23a34459 1242 gdb_assert (i386_fp_regnum_p (regnum));
c6ba6f0d
MK
1243
1244 /* We only support floating-point values. */
1245 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1246 {
1247 warning ("Cannot convert non-floating-point type "
1248 "to floating-point register value.");
1249 memset (to, 0, TYPE_LENGTH (type));
1250 return;
1251 }
3d261580 1252
c6ba6f0d
MK
1253 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1254 to the extended floating-point format used by the FPU. */
1255 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1256}
ac27f131 1257\f
fc338970 1258
c906108c 1259#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1260/* SunPRO encodes the static variables. This is not related to C++
1261 mangling, it is done for C too. */
c906108c
SS
1262
1263char *
fba45db2 1264sunpro_static_transform_name (char *name)
c906108c
SS
1265{
1266 char *p;
1267 if (IS_STATIC_TRANSFORM_NAME (name))
1268 {
fc338970
MK
1269 /* For file-local statics there will be a period, a bunch of
1270 junk (the contents of which match a string given in the
c5aa993b
JM
1271 N_OPT), a period and the name. For function-local statics
1272 there will be a bunch of junk (which seems to change the
1273 second character from 'A' to 'B'), a period, the name of the
1274 function, and the name. So just skip everything before the
1275 last period. */
c906108c
SS
1276 p = strrchr (name, '.');
1277 if (p != NULL)
1278 name = p + 1;
1279 }
1280 return name;
1281}
1282#endif /* STATIC_TRANSFORM_NAME */
fc338970 1283\f
c906108c 1284
fc338970 1285/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1286
1287CORE_ADDR
1cce71eb 1288i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1289{
fc338970 1290 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1291 {
c5aa993b 1292 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1293 struct minimal_symbol *indsym =
fc338970 1294 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1295 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1296
c5aa993b 1297 if (symname)
c906108c 1298 {
c5aa993b
JM
1299 if (strncmp (symname, "__imp_", 6) == 0
1300 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1301 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1302 }
1303 }
fc338970 1304 return 0; /* Not a trampoline. */
c906108c 1305}
fc338970
MK
1306\f
1307
8201327c
MK
1308/* Return non-zero if PC and NAME show that we are in a signal
1309 trampoline. */
1310
1311static int
1312i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1313{
1314 return (name && strcmp ("_sigtramp", name) == 0);
1315}
1316\f
1317
fc338970
MK
1318/* We have two flavours of disassembly. The machinery on this page
1319 deals with switching between those. */
c906108c
SS
1320
1321static int
5e3397bb 1322i386_print_insn (bfd_vma pc, disassemble_info *info)
c906108c 1323{
5e3397bb
MK
1324 gdb_assert (disassembly_flavor == att_flavor
1325 || disassembly_flavor == intel_flavor);
1326
1327 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1328 constified, cast to prevent a compiler warning. */
1329 info->disassembler_options = (char *) disassembly_flavor;
1330 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1331
1332 return print_insn_i386 (pc, info);
7a292a7a 1333}
fc338970 1334\f
3ce1502b 1335
8201327c
MK
1336/* There are a few i386 architecture variants that differ only
1337 slightly from the generic i386 target. For now, we don't give them
1338 their own source file, but include them here. As a consequence,
1339 they'll always be included. */
3ce1502b 1340
8201327c 1341/* System V Release 4 (SVR4). */
3ce1502b 1342
8201327c
MK
1343static int
1344i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1345{
8201327c
MK
1346 return (name && (strcmp ("_sigreturn", name) == 0
1347 || strcmp ("_sigacthandler", name) == 0
1348 || strcmp ("sigvechandler", name) == 0));
1349}
d2a7c97a 1350
21d0e8a4
MK
1351/* Get address of the pushed ucontext (sigcontext) on the stack for
1352 all three variants of SVR4 sigtramps. */
3ce1502b 1353
3a1e71e3 1354static CORE_ADDR
21d0e8a4 1355i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1356{
21d0e8a4 1357 int sigcontext_offset = -1;
8201327c
MK
1358 char *name = NULL;
1359
50abf9e5 1360 find_pc_partial_function (get_frame_pc (frame), &name, NULL, NULL);
8201327c 1361 if (name)
d2a7c97a 1362 {
8201327c 1363 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1364 sigcontext_offset = 132;
8201327c 1365 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1366 sigcontext_offset = 80;
8201327c 1367 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1368 sigcontext_offset = 120;
8201327c 1369 }
3ce1502b 1370
21d0e8a4
MK
1371 gdb_assert (sigcontext_offset != -1);
1372
8201327c 1373 if (frame->next)
1e2330ba 1374 return get_frame_base (frame->next) + sigcontext_offset;
21d0e8a4 1375 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1376}
1377\f
3ce1502b 1378
8201327c 1379/* DJGPP. */
d2a7c97a 1380
8201327c
MK
1381static int
1382i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1383{
1384 /* DJGPP doesn't have any special frames for signal handlers. */
1385 return 0;
1386}
1387\f
d2a7c97a 1388
8201327c 1389/* Generic ELF. */
d2a7c97a 1390
8201327c
MK
1391void
1392i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1393{
1394 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1395 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1396}
3ce1502b 1397
8201327c 1398/* System V Release 4 (SVR4). */
3ce1502b 1399
8201327c
MK
1400void
1401i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1402{
1403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1404
8201327c
MK
1405 /* System V Release 4 uses ELF. */
1406 i386_elf_init_abi (info, gdbarch);
3ce1502b 1407
dfe01d39
MK
1408 /* System V Release 4 has shared libraries. */
1409 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1410 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1411
8201327c 1412 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1413 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1414 tdep->sc_pc_offset = 14 * 4;
1415 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1416
8201327c 1417 tdep->jb_pc_offset = 20;
3ce1502b
MK
1418}
1419
8201327c 1420/* DJGPP. */
3ce1502b 1421
3a1e71e3 1422static void
8201327c 1423i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1424{
8201327c 1425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1426
8201327c 1427 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1428
8201327c 1429 tdep->jb_pc_offset = 36;
3ce1502b
MK
1430}
1431
8201327c 1432/* NetWare. */
3ce1502b 1433
3a1e71e3 1434static void
8201327c 1435i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1436{
8201327c 1437 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1438
8201327c 1439 tdep->jb_pc_offset = 24;
d2a7c97a 1440}
8201327c 1441\f
2acceee2 1442
38c968cf
AC
1443/* i386 register groups. In addition to the normal groups, add "mmx"
1444 and "sse". */
1445
1446static struct reggroup *i386_sse_reggroup;
1447static struct reggroup *i386_mmx_reggroup;
1448
1449static void
1450i386_init_reggroups (void)
1451{
1452 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1453 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1454}
1455
1456static void
1457i386_add_reggroups (struct gdbarch *gdbarch)
1458{
1459 reggroup_add (gdbarch, i386_sse_reggroup);
1460 reggroup_add (gdbarch, i386_mmx_reggroup);
1461 reggroup_add (gdbarch, general_reggroup);
1462 reggroup_add (gdbarch, float_reggroup);
1463 reggroup_add (gdbarch, all_reggroup);
1464 reggroup_add (gdbarch, save_reggroup);
1465 reggroup_add (gdbarch, restore_reggroup);
1466 reggroup_add (gdbarch, vector_reggroup);
1467 reggroup_add (gdbarch, system_reggroup);
1468}
1469
1470int
1471i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1472 struct reggroup *group)
1473{
1474 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1475 || i386_mxcsr_regnum_p (regnum));
1476 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1477 || i386_fpc_regnum_p (regnum));
1478 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1479 if (group == i386_mmx_reggroup)
1480 return mmx_regnum_p;
1481 if (group == i386_sse_reggroup)
1482 return sse_regnum_p;
1483 if (group == vector_reggroup)
1484 return (mmx_regnum_p || sse_regnum_p);
1485 if (group == float_reggroup)
1486 return fp_regnum_p;
1487 if (group == general_reggroup)
1488 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1489 return default_register_reggroup_p (gdbarch, regnum, group);
1490}
1491
1492\f
3a1e71e3 1493static struct gdbarch *
a62cc96e
AC
1494i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1495{
cd3c07fc 1496 struct gdbarch_tdep *tdep;
a62cc96e
AC
1497 struct gdbarch *gdbarch;
1498
4be87837
DJ
1499 /* If there is already a candidate, use it. */
1500 arches = gdbarch_list_lookup_by_info (arches, &info);
1501 if (arches != NULL)
1502 return arches->gdbarch;
a62cc96e
AC
1503
1504 /* Allocate space for the new architecture. */
1505 tdep = XMALLOC (struct gdbarch_tdep);
1506 gdbarch = gdbarch_alloc (&info, tdep);
1507
a5afb99f
AC
1508 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1509 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1510 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1511
8201327c 1512 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1513 FIXME: kettenis/20020614: They do include the FPU registers for
1514 now, which probably is not quite right. */
8201327c 1515 tdep->num_xmm_regs = 0;
d2a7c97a 1516
8201327c
MK
1517 tdep->jb_pc_offset = -1;
1518 tdep->struct_return = pcc_struct_return;
8201327c
MK
1519 tdep->sigtramp_start = 0;
1520 tdep->sigtramp_end = 0;
21d0e8a4 1521 tdep->sigcontext_addr = NULL;
8201327c 1522 tdep->sc_pc_offset = -1;
21d0e8a4 1523 tdep->sc_sp_offset = -1;
8201327c 1524
896fb97d
MK
1525 /* The format used for `long double' on almost all i386 targets is
1526 the i387 extended floating-point format. In fact, of all targets
1527 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1528 on having a `long double' that's not `long' at all. */
1529 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1530
66da5fd8 1531 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1532 bits, a `long double' actually takes up 96, probably to enforce
1533 alignment. */
1534 set_gdbarch_long_double_bit (gdbarch, 96);
1535
356a6b3e
MK
1536 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1537 tm-symmetry.h currently override this. Sigh. */
1538 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1539
66da5fd8
MK
1540 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1541 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1542 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1543 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1544 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
356a6b3e
MK
1545
1546 /* Use the "default" register numbering scheme for stabs and COFF. */
1547 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1548 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1549
1550 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1551 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1552 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1553
1554 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1555 be in use on any of the supported i386 targets. */
1556
1557 set_gdbarch_register_name (gdbarch, i386_register_name);
1558 set_gdbarch_register_size (gdbarch, 4);
1559 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
00f8375e
MK
1560 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1561 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
b6197528 1562 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
356a6b3e 1563
61113f8b
MK
1564 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1565
8201327c 1566 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1567
a62cc96e 1568 /* Call dummy code. */
c0d1d883 1569 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
8758dec1 1570 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
c0d1d883 1571 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
a62cc96e 1572 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
c0d1d883 1573 set_gdbarch_call_dummy_length (gdbarch, 0);
a62cc96e 1574 set_gdbarch_call_dummy_p (gdbarch, 1);
c0d1d883
MK
1575 set_gdbarch_call_dummy_words (gdbarch, NULL);
1576 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
a62cc96e 1577 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
c0d1d883 1578 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
a62cc96e 1579
b6197528
MK
1580 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1581 set_gdbarch_register_convert_to_virtual (gdbarch,
1582 i386_register_convert_to_virtual);
1583 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1584
8758dec1
MK
1585 /* "An argument's size is increased, if necessary, to make it a
1586 multiple of [32-bit] words. This may require tail padding,
1587 depending on the size of the argument" -- from the x86 ABI. */
1588 set_gdbarch_parm_boundary (gdbarch, 32);
1589
00f8375e 1590 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
fc08ec52 1591 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
c0d1d883
MK
1592 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1593 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
fc08ec52
MK
1594 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1595 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
3d7f4f49 1596 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1597 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1598 i386_extract_struct_value_address);
8201327c
MK
1599 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1600
42fdc8df 1601 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1602 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1603
1604 /* Stack grows downward. */
1605 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1606
1607 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1608 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1609 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1610
8201327c
MK
1611 /* The following redefines make backtracing through sigtramp work.
1612 They manufacture a fake sigtramp frame and obtain the saved pc in
1613 sigtramp from the sigcontext structure which is pushed by the
1614 kernel on the user stack, along with a pointer to it. */
1615
42fdc8df
MK
1616 set_gdbarch_frame_args_skip (gdbarch, 8);
1617 set_gdbarch_frameless_function_invocation (gdbarch,
1618 i386_frameless_function_invocation);
8201327c 1619 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
8201327c
MK
1620 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1621 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1622 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1623 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1624
28fc6740
AC
1625 /* Wire in the MMX registers. */
1626 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1627 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1628 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1629
5e3397bb
MK
1630 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1631
38c968cf
AC
1632 /* Add the i386 register groups. */
1633 i386_add_reggroups (gdbarch);
1634 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1635
3ce1502b 1636 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1637 gdbarch_init_osabi (info, gdbarch);
3ce1502b 1638
a62cc96e
AC
1639 return gdbarch;
1640}
1641
8201327c
MK
1642static enum gdb_osabi
1643i386_coff_osabi_sniffer (bfd *abfd)
1644{
762c5349
MK
1645 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1646 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1647 return GDB_OSABI_GO32;
1648
1649 return GDB_OSABI_UNKNOWN;
1650}
1651
1652static enum gdb_osabi
1653i386_nlm_osabi_sniffer (bfd *abfd)
1654{
1655 return GDB_OSABI_NETWARE;
1656}
1657\f
1658
28e9e0f0
MK
1659/* Provide a prototype to silence -Wmissing-prototypes. */
1660void _initialize_i386_tdep (void);
1661
c906108c 1662void
fba45db2 1663_initialize_i386_tdep (void)
c906108c 1664{
a62cc96e
AC
1665 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1666
fc338970 1667 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1668 {
1669 struct cmd_list_element *new_cmd;
7a292a7a 1670
917317f4
JM
1671 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1672 valid_flavors,
1ed2a135 1673 &disassembly_flavor,
fc338970
MK
1674 "\
1675Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1676and the default value is \"att\".",
917317f4 1677 &setlist);
917317f4
JM
1678 add_show_from_set (new_cmd, &showlist);
1679 }
8201327c
MK
1680
1681 /* Add the variable that controls the convention for returning
1682 structs. */
1683 {
1684 struct cmd_list_element *new_cmd;
1685
1686 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 1687 valid_conventions,
8201327c
MK
1688 &struct_convention, "\
1689Set the convention for returning small structs, valid values \
1690are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1691 &setlist);
1692 add_show_from_set (new_cmd, &showlist);
1693 }
1694
1695 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1696 i386_coff_osabi_sniffer);
1697 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1698 i386_nlm_osabi_sniffer);
1699
05816f70 1700 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 1701 i386_svr4_init_abi);
05816f70 1702 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 1703 i386_go32_init_abi);
05816f70 1704 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 1705 i386_nw_init_abi);
38c968cf
AC
1706
1707 /* Initialize the i386 specific register groups. */
1708 i386_init_reggroups ();
c906108c 1709}
This page took 0.413722 seconds and 4 git commands to generate.