* i386-tdep.c (i386_frameless_signal_p): New function.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "floatformat.h"
30#include "symtab.h"
31#include "gdbcmd.h"
32#include "command.h"
b4a20239 33#include "arch-utils.h"
4e052eda 34#include "regcache.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
3d261580
MK
37#include "gdb_assert.h"
38
d2a7c97a
MK
39#include "i386-tdep.h"
40
fc633446
MK
41/* Names of the registers. The first 10 registers match the register
42 numbering scheme used by GCC for stabs and DWARF. */
43static char *i386_register_names[] =
44{
45 "eax", "ecx", "edx", "ebx",
46 "esp", "ebp", "esi", "edi",
47 "eip", "eflags", "cs", "ss",
48 "ds", "es", "fs", "gs",
49 "st0", "st1", "st2", "st3",
50 "st4", "st5", "st6", "st7",
51 "fctrl", "fstat", "ftag", "fiseg",
52 "fioff", "foseg", "fooff", "fop",
53 "xmm0", "xmm1", "xmm2", "xmm3",
54 "xmm4", "xmm5", "xmm6", "xmm7",
55 "mxcsr"
56};
57
1a11ba71 58/* i386_register_offset[i] is the offset into the register file of the
917317f4 59 start of register number i. We initialize this from
1a11ba71 60 i386_register_size. */
1cf88de5 61static int i386_register_offset[I386_SSE_NUM_REGS];
917317f4 62
1a11ba71
MK
63/* i386_register_size[i] is the number of bytes of storage in GDB's
64 register array occupied by register i. */
1cf88de5 65static int i386_register_size[I386_SSE_NUM_REGS] = {
917317f4
JM
66 4, 4, 4, 4,
67 4, 4, 4, 4,
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 10, 10, 10, 10,
71 10, 10, 10, 10,
72 4, 4, 4, 4,
73 4, 4, 4, 4,
74 16, 16, 16, 16,
75 16, 16, 16, 16,
76 4
77};
78
fc633446
MK
79/* Return the name of register REG. */
80
fa88f677 81const char *
fc633446
MK
82i386_register_name (int reg)
83{
84 if (reg < 0)
85 return NULL;
86 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
87 return NULL;
88
89 return i386_register_names[reg];
90}
91
1a11ba71
MK
92/* Return the offset into the register array of the start of register
93 number REG. */
94int
95i386_register_byte (int reg)
96{
97 return i386_register_offset[reg];
98}
99
100/* Return the number of bytes of storage in GDB's register array
101 occupied by register REG. */
102
103int
104i386_register_raw_size (int reg)
105{
106 return i386_register_size[reg];
107}
108
85540d8c
MK
109/* Convert stabs register number REG to the appropriate register
110 number used by GDB. */
111
8201327c 112static int
85540d8c
MK
113i386_stab_reg_to_regnum (int reg)
114{
115 /* This implements what GCC calls the "default" register map. */
116 if (reg >= 0 && reg <= 7)
117 {
118 /* General registers. */
119 return reg;
120 }
121 else if (reg >= 12 && reg <= 19)
122 {
123 /* Floating-point registers. */
124 return reg - 12 + FP0_REGNUM;
125 }
126 else if (reg >= 21 && reg <= 28)
127 {
128 /* SSE registers. */
129 return reg - 21 + XMM0_REGNUM;
130 }
131 else if (reg >= 29 && reg <= 36)
132 {
133 /* MMX registers. */
134 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
135 as pseudo-registers? */
136 return reg - 29 + FP0_REGNUM;
137 }
138
139 /* This will hopefully provoke a warning. */
140 return NUM_REGS + NUM_PSEUDO_REGS;
141}
142
8201327c 143/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
144 number used by GDB. */
145
8201327c 146static int
85540d8c
MK
147i386_dwarf_reg_to_regnum (int reg)
148{
149 /* The DWARF register numbering includes %eip and %eflags, and
150 numbers the floating point registers differently. */
151 if (reg >= 0 && reg <= 9)
152 {
153 /* General registers. */
154 return reg;
155 }
156 else if (reg >= 11 && reg <= 18)
157 {
158 /* Floating-point registers. */
159 return reg - 11 + FP0_REGNUM;
160 }
161 else if (reg >= 21)
162 {
163 /* The SSE and MMX registers have identical numbers as in stabs. */
164 return i386_stab_reg_to_regnum (reg);
165 }
166
167 /* This will hopefully provoke a warning. */
168 return NUM_REGS + NUM_PSEUDO_REGS;
169}
fc338970 170\f
917317f4 171
fc338970
MK
172/* This is the variable that is set with "set disassembly-flavor", and
173 its legitimate values. */
53904c9e
AC
174static const char att_flavor[] = "att";
175static const char intel_flavor[] = "intel";
176static const char *valid_flavors[] =
c5aa993b 177{
c906108c
SS
178 att_flavor,
179 intel_flavor,
180 NULL
181};
53904c9e 182static const char *disassembly_flavor = att_flavor;
c906108c 183
fc338970
MK
184/* Stdio style buffering was used to minimize calls to ptrace, but
185 this buffering did not take into account that the code section
186 being accessed may not be an even number of buffers long (even if
187 the buffer is only sizeof(int) long). In cases where the code
188 section size happened to be a non-integral number of buffers long,
189 attempting to read the last buffer would fail. Simply using
190 target_read_memory and ignoring errors, rather than read_memory, is
191 not the correct solution, since legitimate access errors would then
192 be totally ignored. To properly handle this situation and continue
193 to use buffering would require that this code be able to determine
194 the minimum code section size granularity (not the alignment of the
195 section itself, since the actual failing case that pointed out this
196 problem had a section alignment of 4 but was not a multiple of 4
197 bytes long), on a target by target basis, and then adjust it's
198 buffer size accordingly. This is messy, but potentially feasible.
199 It probably needs the bfd library's help and support. For now, the
200 buffer size is set to 1. (FIXME -fnf) */
201
202#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
203static CORE_ADDR codestream_next_addr;
204static CORE_ADDR codestream_addr;
205static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
206static int codestream_off;
207static int codestream_cnt;
208
209#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
210#define codestream_peek() \
211 (codestream_cnt == 0 ? \
212 codestream_fill(1) : codestream_buf[codestream_off])
213#define codestream_get() \
214 (codestream_cnt-- == 0 ? \
215 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 216
c5aa993b 217static unsigned char
fba45db2 218codestream_fill (int peek_flag)
c906108c
SS
219{
220 codestream_addr = codestream_next_addr;
221 codestream_next_addr += CODESTREAM_BUFSIZ;
222 codestream_off = 0;
223 codestream_cnt = CODESTREAM_BUFSIZ;
224 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 225
c906108c 226 if (peek_flag)
c5aa993b 227 return (codestream_peek ());
c906108c 228 else
c5aa993b 229 return (codestream_get ());
c906108c
SS
230}
231
232static void
fba45db2 233codestream_seek (CORE_ADDR place)
c906108c
SS
234{
235 codestream_next_addr = place / CODESTREAM_BUFSIZ;
236 codestream_next_addr *= CODESTREAM_BUFSIZ;
237 codestream_cnt = 0;
238 codestream_fill (1);
c5aa993b 239 while (codestream_tell () != place)
c906108c
SS
240 codestream_get ();
241}
242
243static void
fba45db2 244codestream_read (unsigned char *buf, int count)
c906108c
SS
245{
246 unsigned char *p;
247 int i;
248 p = buf;
249 for (i = 0; i < count; i++)
250 *p++ = codestream_get ();
251}
fc338970 252\f
c906108c 253
fc338970 254/* If the next instruction is a jump, move to its target. */
c906108c
SS
255
256static void
fba45db2 257i386_follow_jump (void)
c906108c
SS
258{
259 unsigned char buf[4];
260 long delta;
261
262 int data16;
263 CORE_ADDR pos;
264
265 pos = codestream_tell ();
266
267 data16 = 0;
268 if (codestream_peek () == 0x66)
269 {
270 codestream_get ();
271 data16 = 1;
272 }
273
274 switch (codestream_get ())
275 {
276 case 0xe9:
fc338970 277 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
278 if (data16)
279 {
280 codestream_read (buf, 2);
281 delta = extract_signed_integer (buf, 2);
282
fc338970
MK
283 /* Include the size of the jmp instruction (including the
284 0x66 prefix). */
c5aa993b 285 pos += delta + 4;
c906108c
SS
286 }
287 else
288 {
289 codestream_read (buf, 4);
290 delta = extract_signed_integer (buf, 4);
291
292 pos += delta + 5;
293 }
294 break;
295 case 0xeb:
fc338970 296 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
297 codestream_read (buf, 1);
298 /* Sign-extend it. */
299 delta = extract_signed_integer (buf, 1);
300
301 pos += delta + 2;
302 break;
303 }
304 codestream_seek (pos);
305}
306
fc338970
MK
307/* Find & return the amount a local space allocated, and advance the
308 codestream to the first register push (if any).
309
310 If the entry sequence doesn't make sense, return -1, and leave
311 codestream pointer at a random spot. */
c906108c
SS
312
313static long
fba45db2 314i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
315{
316 unsigned char op;
317
318 codestream_seek (pc);
319
320 i386_follow_jump ();
321
322 op = codestream_get ();
323
324 if (op == 0x58) /* popl %eax */
325 {
fc338970
MK
326 /* This function must start with
327
328 popl %eax 0x58
329 xchgl %eax, (%esp) 0x87 0x04 0x24
330 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
331
332 (the System V compiler puts out the second `xchg'
333 instruction, and the assembler doesn't try to optimize it, so
334 the 'sib' form gets generated). This sequence is used to get
335 the address of the return buffer for a function that returns
336 a structure. */
c906108c
SS
337 int pos;
338 unsigned char buf[4];
fc338970
MK
339 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
340 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
341
c906108c
SS
342 pos = codestream_tell ();
343 codestream_read (buf, 4);
344 if (memcmp (buf, proto1, 3) == 0)
345 pos += 3;
346 else if (memcmp (buf, proto2, 4) == 0)
347 pos += 4;
348
349 codestream_seek (pos);
fc338970 350 op = codestream_get (); /* Update next opcode. */
c906108c
SS
351 }
352
353 if (op == 0x68 || op == 0x6a)
354 {
fc338970
MK
355 /* This function may start with
356
357 pushl constant
358 call _probe
359 addl $4, %esp
360
361 followed by
362
363 pushl %ebp
364
365 etc. */
c906108c
SS
366 int pos;
367 unsigned char buf[8];
368
fc338970 369 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
370 or a four-byte operand, depending on the opcode. */
371 pos = codestream_tell ();
372 if (op == 0x68)
373 pos += 4;
374 else
375 pos += 1;
376 codestream_seek (pos);
377
fc338970
MK
378 /* Read the following 8 bytes, which should be "call _probe" (6
379 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
380 codestream_read (buf, sizeof (buf));
381 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
382 pos += sizeof (buf);
383 codestream_seek (pos);
fc338970 384 op = codestream_get (); /* Update next opcode. */
c906108c
SS
385 }
386
387 if (op == 0x55) /* pushl %ebp */
c5aa993b 388 {
fc338970 389 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
390 switch (codestream_get ())
391 {
392 case 0x8b:
393 if (codestream_get () != 0xec)
fc338970 394 return -1;
c906108c
SS
395 break;
396 case 0x89:
397 if (codestream_get () != 0xe5)
fc338970 398 return -1;
c906108c
SS
399 break;
400 default:
fc338970 401 return -1;
c906108c 402 }
fc338970
MK
403 /* Check for stack adjustment
404
405 subl $XXX, %esp
406
407 NOTE: You can't subtract a 16 bit immediate from a 32 bit
408 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
409 op = codestream_peek ();
410 if (op == 0x83)
411 {
fc338970 412 /* `subl' with 8 bit immediate. */
c906108c
SS
413 codestream_get ();
414 if (codestream_get () != 0xec)
fc338970 415 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
416 {
417 codestream_seek (codestream_tell () - 2);
418 return 0;
419 }
fc338970
MK
420 /* `subl' with signed byte immediate (though it wouldn't
421 make sense to be negative). */
c5aa993b 422 return (codestream_get ());
c906108c
SS
423 }
424 else if (op == 0x81)
425 {
426 char buf[4];
fc338970 427 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 428 codestream_get ();
c906108c 429 if (codestream_get () != 0xec)
fc338970 430 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
431 {
432 codestream_seek (codestream_tell () - 2);
433 return 0;
434 }
fc338970 435 /* It is `subl' with a 32 bit immediate. */
c5aa993b 436 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
437 return extract_signed_integer (buf, 4);
438 }
439 else
440 {
fc338970 441 return 0;
c906108c
SS
442 }
443 }
444 else if (op == 0xc8)
445 {
446 char buf[2];
fc338970 447 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 448 codestream_read ((unsigned char *) buf, 2);
fc338970 449 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
450 return extract_unsigned_integer (buf, 2);
451 }
452 return (-1);
453}
454
6bff26de
MK
455/* Signal trampolines don't have a meaningful frame. The frame
456 pointer value we use is actually the frame pointer of the calling
457 frame -- that is, the frame which was in progress when the signal
458 trampoline was entered. GDB mostly treats this frame pointer value
459 as a magic cookie. We detect the case of a signal trampoline by
460 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
461 PC_IN_SIGTRAMP.
462
463 When a signal trampoline is invoked from a frameless function, we
464 essentially have two frameless functions in a row. In this case,
465 we use the same magic cookie for three frames in a row. We detect
466 this case by seeing whether the next frame has
467 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
468 current frame is actually frameless. In this case, we need to get
469 the PC by looking at the SP register value stored in the signal
470 context.
471
472 This should work in most cases except in horrible situations where
473 a signal occurs just as we enter a function but before the frame
474 has been set up. */
475
476/* Return non-zero if we're dealing with a frameless signal, that is,
477 a signal trampoline invoked from a frameless function. */
478
479static int
480i386_frameless_signal_p (struct frame_info *frame)
481{
482 return (frame->next
483 && frame->next->signal_handler_caller
484 && frameless_look_for_prologue);
485}
486
c833a37e
MK
487/* Return the chain-pointer for FRAME. In the case of the i386, the
488 frame's nominal address is the address of a 4-byte word containing
489 the calling frame's address. */
490
8201327c 491static CORE_ADDR
c833a37e
MK
492i386_frame_chain (struct frame_info *frame)
493{
6bff26de
MK
494 if (frame->signal_handler_caller
495 || i386_frameless_signal_p (frame))
c833a37e
MK
496 return frame->frame;
497
498 if (! inside_entry_file (frame->pc))
499 return read_memory_unsigned_integer (frame->frame, 4);
500
501 return 0;
502}
503
539ffe0b
MK
504/* Determine whether the function invocation represented by FRAME does
505 not have a from on the stack associated with it. If it does not,
506 return non-zero, otherwise return zero. */
507
3a1e71e3 508static int
539ffe0b
MK
509i386_frameless_function_invocation (struct frame_info *frame)
510{
511 if (frame->signal_handler_caller)
512 return 0;
513
514 return frameless_look_for_prologue (frame);
515}
516
21d0e8a4
MK
517/* Assuming FRAME is for a sigtramp routine, return the saved program
518 counter. */
519
520static CORE_ADDR
521i386_sigtramp_saved_pc (struct frame_info *frame)
522{
523 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
524 CORE_ADDR addr;
525
526 addr = tdep->sigcontext_addr (frame);
527 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
528}
529
6bff26de
MK
530/* Assuming FRAME is for a sigtramp routine, return the saved stack
531 pointer. */
532
533static CORE_ADDR
534i386_sigtramp_saved_sp (struct frame_info *frame)
535{
536 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
537 CORE_ADDR addr;
538
539 addr = tdep->sigcontext_addr (frame);
540 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
541}
542
0d17c81d
MK
543/* Return the saved program counter for FRAME. */
544
8201327c 545static CORE_ADDR
0d17c81d
MK
546i386_frame_saved_pc (struct frame_info *frame)
547{
0d17c81d 548 if (frame->signal_handler_caller)
21d0e8a4 549 return i386_sigtramp_saved_pc (frame);
0d17c81d 550
6bff26de
MK
551 if (i386_frameless_signal_p (frame))
552 {
553 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
554 return read_memory_unsigned_integer (sp, 4);
555 }
556
8201327c 557 return read_memory_unsigned_integer (frame->frame + 4, 4);
22797942
AC
558}
559
ed84f6c1
MK
560/* Immediately after a function call, return the saved pc. */
561
8201327c 562static CORE_ADDR
ed84f6c1
MK
563i386_saved_pc_after_call (struct frame_info *frame)
564{
6bff26de
MK
565 if (frame->signal_handler_caller)
566 return i386_sigtramp_saved_pc (frame);
567
ed84f6c1
MK
568 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
569}
570
c906108c
SS
571/* Return number of args passed to a frame.
572 Can return -1, meaning no way to tell. */
573
3a1e71e3 574static int
fba45db2 575i386_frame_num_args (struct frame_info *fi)
c906108c
SS
576{
577#if 1
578 return -1;
579#else
580 /* This loses because not only might the compiler not be popping the
fc338970
MK
581 args right after the function call, it might be popping args from
582 both this call and a previous one, and we would say there are
583 more args than there really are. */
c906108c 584
c5aa993b
JM
585 int retpc;
586 unsigned char op;
c906108c
SS
587 struct frame_info *pfi;
588
fc338970 589 /* On the i386, the instruction following the call could be:
c906108c
SS
590 popl %ecx - one arg
591 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 592 anything else - zero args. */
c906108c
SS
593
594 int frameless;
595
392a587b 596 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 597 if (frameless)
fc338970
MK
598 /* In the absence of a frame pointer, GDB doesn't get correct
599 values for nameless arguments. Return -1, so it doesn't print
600 any nameless arguments. */
c906108c
SS
601 return -1;
602
c5aa993b 603 pfi = get_prev_frame (fi);
c906108c
SS
604 if (pfi == 0)
605 {
fc338970
MK
606 /* NOTE: This can happen if we are looking at the frame for
607 main, because FRAME_CHAIN_VALID won't let us go into start.
608 If we have debugging symbols, that's not really a big deal;
609 it just means it will only show as many arguments to main as
610 are declared. */
c906108c
SS
611 return -1;
612 }
613 else
614 {
c5aa993b
JM
615 retpc = pfi->pc;
616 op = read_memory_integer (retpc, 1);
fc338970 617 if (op == 0x59) /* pop %ecx */
c5aa993b 618 return 1;
c906108c
SS
619 else if (op == 0x83)
620 {
c5aa993b
JM
621 op = read_memory_integer (retpc + 1, 1);
622 if (op == 0xc4)
623 /* addl $<signed imm 8 bits>, %esp */
624 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
625 else
626 return 0;
627 }
fc338970
MK
628 else if (op == 0x81) /* `add' with 32 bit immediate. */
629 {
c5aa993b
JM
630 op = read_memory_integer (retpc + 1, 1);
631 if (op == 0xc4)
632 /* addl $<imm 32>, %esp */
633 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
634 else
635 return 0;
636 }
637 else
638 {
639 return 0;
640 }
641 }
642#endif
643}
644
fc338970
MK
645/* Parse the first few instructions the function to see what registers
646 were stored.
647
648 We handle these cases:
649
650 The startup sequence can be at the start of the function, or the
651 function can start with a branch to startup code at the end.
652
653 %ebp can be set up with either the 'enter' instruction, or "pushl
654 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
655 once used in the System V compiler).
656
657 Local space is allocated just below the saved %ebp by either the
658 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
659 bit unsigned argument for space to allocate, and the 'addl'
660 instruction could have either a signed byte, or 32 bit immediate.
661
662 Next, the registers used by this function are pushed. With the
663 System V compiler they will always be in the order: %edi, %esi,
664 %ebx (and sometimes a harmless bug causes it to also save but not
665 restore %eax); however, the code below is willing to see the pushes
666 in any order, and will handle up to 8 of them.
667
668 If the setup sequence is at the end of the function, then the next
669 instruction will be a branch back to the start. */
c906108c 670
3a1e71e3 671static void
fba45db2 672i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
673{
674 long locals = -1;
675 unsigned char op;
676 CORE_ADDR dummy_bottom;
fc338970 677 CORE_ADDR addr;
c906108c
SS
678 CORE_ADDR pc;
679 int i;
c5aa993b 680
1211c4e4
AC
681 if (fip->saved_regs)
682 return;
683
684 frame_saved_regs_zalloc (fip);
c5aa993b 685
fc338970
MK
686 /* If the frame is the end of a dummy, compute where the beginning
687 would be. */
c906108c 688 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
c5aa993b 689
fc338970 690 /* Check if the PC points in the stack, in a dummy frame. */
c5aa993b 691 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
c906108c 692 {
fc338970
MK
693 /* All registers were saved by push_call_dummy. */
694 addr = fip->frame;
c5aa993b 695 for (i = 0; i < NUM_REGS; i++)
c906108c 696 {
fc338970
MK
697 addr -= REGISTER_RAW_SIZE (i);
698 fip->saved_regs[i] = addr;
c906108c
SS
699 }
700 return;
701 }
c5aa993b 702
c906108c
SS
703 pc = get_pc_function_start (fip->pc);
704 if (pc != 0)
705 locals = i386_get_frame_setup (pc);
c5aa993b
JM
706
707 if (locals >= 0)
c906108c 708 {
fc338970 709 addr = fip->frame - 4 - locals;
c5aa993b 710 for (i = 0; i < 8; i++)
c906108c
SS
711 {
712 op = codestream_get ();
713 if (op < 0x50 || op > 0x57)
714 break;
715#ifdef I386_REGNO_TO_SYMMETRY
716 /* Dynix uses different internal numbering. Ick. */
fc338970 717 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 718#else
fc338970 719 fip->saved_regs[op - 0x50] = addr;
c906108c 720#endif
fc338970 721 addr -= 4;
c906108c
SS
722 }
723 }
c5aa993b 724
1211c4e4
AC
725 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
726 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
727}
728
fc338970 729/* Return PC of first real instruction. */
c906108c 730
3a1e71e3 731static CORE_ADDR
93924b6b 732i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
733{
734 unsigned char op;
735 int i;
c5aa993b 736 static unsigned char pic_pat[6] =
fc338970
MK
737 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
738 0x5b, /* popl %ebx */
c5aa993b 739 };
c906108c 740 CORE_ADDR pos;
c5aa993b 741
c906108c
SS
742 if (i386_get_frame_setup (pc) < 0)
743 return (pc);
c5aa993b 744
fc338970
MK
745 /* Found valid frame setup -- codestream now points to start of push
746 instructions for saving registers. */
c5aa993b 747
fc338970 748 /* Skip over register saves. */
c906108c
SS
749 for (i = 0; i < 8; i++)
750 {
751 op = codestream_peek ();
fc338970 752 /* Break if not `pushl' instrunction. */
c5aa993b 753 if (op < 0x50 || op > 0x57)
c906108c
SS
754 break;
755 codestream_get ();
756 }
757
fc338970
MK
758 /* The native cc on SVR4 in -K PIC mode inserts the following code
759 to get the address of the global offset table (GOT) into register
760 %ebx
761
762 call 0x0
763 popl %ebx
764 movl %ebx,x(%ebp) (optional)
765 addl y,%ebx
766
c906108c
SS
767 This code is with the rest of the prologue (at the end of the
768 function), so we have to skip it to get to the first real
769 instruction at the start of the function. */
c5aa993b 770
c906108c
SS
771 pos = codestream_tell ();
772 for (i = 0; i < 6; i++)
773 {
774 op = codestream_get ();
c5aa993b 775 if (pic_pat[i] != op)
c906108c
SS
776 break;
777 }
778 if (i == 6)
779 {
780 unsigned char buf[4];
781 long delta = 6;
782
783 op = codestream_get ();
c5aa993b 784 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
785 {
786 op = codestream_get ();
fc338970 787 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
788 {
789 delta += 3;
790 codestream_read (buf, 1);
791 }
fc338970 792 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
793 {
794 delta += 6;
795 codestream_read (buf, 4);
796 }
fc338970 797 else /* Unexpected instruction. */
c5aa993b
JM
798 delta = -1;
799 op = codestream_get ();
c906108c 800 }
c5aa993b
JM
801 /* addl y,%ebx */
802 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 803 {
c5aa993b 804 pos += delta + 6;
c906108c
SS
805 }
806 }
807 codestream_seek (pos);
c5aa993b 808
c906108c 809 i386_follow_jump ();
c5aa993b 810
c906108c
SS
811 return (codestream_tell ());
812}
813
93924b6b
MK
814/* Use the program counter to determine the contents and size of a
815 breakpoint instruction. Return a pointer to a string of bytes that
816 encode a breakpoint instruction, store the length of the string in
817 *LEN and optionally adjust *PC to point to the correct memory
818 location for inserting the breakpoint.
819
820 On the i386 we have a single breakpoint that fits in a single byte
821 and can be inserted anywhere. */
822
823static const unsigned char *
824i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
825{
826 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
827
828 *len = sizeof (break_insn);
829 return break_insn;
830}
831
3a1e71e3 832static void
fba45db2 833i386_push_dummy_frame (void)
c906108c
SS
834{
835 CORE_ADDR sp = read_register (SP_REGNUM);
ec80a8ea 836 CORE_ADDR fp;
c906108c
SS
837 int regnum;
838 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 839
c906108c
SS
840 sp = push_word (sp, read_register (PC_REGNUM));
841 sp = push_word (sp, read_register (FP_REGNUM));
ec80a8ea 842 fp = sp;
c906108c
SS
843 for (regnum = 0; regnum < NUM_REGS; regnum++)
844 {
845 read_register_gen (regnum, regbuf);
846 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
847 }
848 write_register (SP_REGNUM, sp);
ec80a8ea 849 write_register (FP_REGNUM, fp);
c906108c
SS
850}
851
8758dec1
MK
852/* The i386 call dummy sequence:
853
854 call 11223344 (32-bit relative)
855 int 3
856
857 It is 8 bytes long. */
858
859static LONGEST i386_call_dummy_words[] =
860{
861 0x223344e8,
862 0xcc11
863};
864
a7769679
MK
865/* Insert the (relative) function address into the call sequence
866 stored at DYMMY. */
867
3a1e71e3 868static void
a7769679 869i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 870 struct value **args, struct type *type, int gcc_p)
a7769679
MK
871{
872 int from, to, delta, loc;
873
874 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
875 from = loc + 5;
876 to = (int)(fun);
877 delta = to - from;
878
879 *((char *)(dummy) + 1) = (delta & 0xff);
880 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
881 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
882 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
883}
884
3a1e71e3 885static void
fba45db2 886i386_pop_frame (void)
c906108c
SS
887{
888 struct frame_info *frame = get_current_frame ();
889 CORE_ADDR fp;
890 int regnum;
c906108c 891 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 892
c906108c 893 fp = FRAME_FP (frame);
1211c4e4
AC
894 i386_frame_init_saved_regs (frame);
895
c5aa993b 896 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 897 {
fc338970
MK
898 CORE_ADDR addr;
899 addr = frame->saved_regs[regnum];
900 if (addr)
c906108c 901 {
fc338970 902 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c906108c
SS
903 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
904 REGISTER_RAW_SIZE (regnum));
905 }
906 }
907 write_register (FP_REGNUM, read_memory_integer (fp, 4));
908 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
909 write_register (SP_REGNUM, fp + 8);
910 flush_cached_frames ();
911}
fc338970 912\f
c906108c 913
fc338970
MK
914/* Figure out where the longjmp will land. Slurp the args out of the
915 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c
MK
916 structure from which we extract the address that we will land at.
917 This address is copied into PC. This routine returns true on
fc338970 918 success. */
c906108c 919
8201327c
MK
920static int
921i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 922{
8201327c 923 char buf[4];
c906108c 924 CORE_ADDR sp, jb_addr;
8201327c 925 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
c906108c 926
8201327c
MK
927 /* If JB_PC_OFFSET is -1, we have no way to find out where the
928 longjmp will land. */
929 if (jb_pc_offset == -1)
c906108c
SS
930 return 0;
931
8201327c
MK
932 sp = read_register (SP_REGNUM);
933 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
934 return 0;
935
8201327c
MK
936 jb_addr = extract_address (buf, 4);
937 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
938 return 0;
c906108c 939
8201327c 940 *pc = extract_address (buf, 4);
c906108c
SS
941 return 1;
942}
fc338970 943\f
c906108c 944
3a1e71e3 945static CORE_ADDR
ea7c478f 946i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
947 int struct_return, CORE_ADDR struct_addr)
948{
949 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
950
951 if (struct_return)
952 {
953 char buf[4];
954
955 sp -= 4;
956 store_address (buf, 4, struct_addr);
957 write_memory (sp, buf, 4);
958 }
959
960 return sp;
961}
962
3a1e71e3 963static void
22f8ba57
MK
964i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
965{
966 /* Do nothing. Everything was already done by i386_push_arguments. */
967}
968
1a309862
MK
969/* These registers are used for returning integers (and on some
970 targets also for returning `struct' and `union' values when their
ef9dff19 971 size and alignment match an integer type). */
1a309862
MK
972#define LOW_RETURN_REGNUM 0 /* %eax */
973#define HIGH_RETURN_REGNUM 2 /* %edx */
974
975/* Extract from an array REGBUF containing the (raw) register state, a
976 function return value of TYPE, and copy that, in virtual format,
977 into VALBUF. */
978
3a1e71e3 979static void
1a309862 980i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c 981{
1a309862
MK
982 int len = TYPE_LENGTH (type);
983
1e8d0a7b
MK
984 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
985 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
986 {
987 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
988 return;
989 }
1e8d0a7b
MK
990
991 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 992 {
356a6b3e 993 if (FP0_REGNUM == 0)
1a309862
MK
994 {
995 warning ("Cannot find floating-point return value.");
996 memset (valbuf, 0, len);
ef9dff19 997 return;
1a309862
MK
998 }
999
c6ba6f0d
MK
1000 /* Floating-point return values can be found in %st(0). Convert
1001 its contents to the desired type. This is probably not
1002 exactly how it would happen on the target itself, but it is
1003 the best we can do. */
1004 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
1005 builtin_type_i387_ext, valbuf, type);
c906108c
SS
1006 }
1007 else
c5aa993b 1008 {
d4f3574e
SS
1009 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1010 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1011
1012 if (len <= low_size)
1a309862 1013 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
d4f3574e
SS
1014 else if (len <= (low_size + high_size))
1015 {
1016 memcpy (valbuf,
1a309862 1017 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
d4f3574e 1018 memcpy (valbuf + low_size,
1a309862 1019 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
d4f3574e
SS
1020 }
1021 else
8e65ff28
AC
1022 internal_error (__FILE__, __LINE__,
1023 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1024 }
1025}
1026
ef9dff19
MK
1027/* Write into the appropriate registers a function return value stored
1028 in VALBUF of type TYPE, given in virtual format. */
1029
3a1e71e3 1030static void
ef9dff19
MK
1031i386_store_return_value (struct type *type, char *valbuf)
1032{
1033 int len = TYPE_LENGTH (type);
1034
1e8d0a7b
MK
1035 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1036 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
1037 {
1038 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
1039 return;
1040 }
1e8d0a7b
MK
1041
1042 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1043 {
ccb945b8 1044 unsigned int fstat;
c6ba6f0d 1045 char buf[FPU_REG_RAW_SIZE];
ccb945b8 1046
356a6b3e 1047 if (FP0_REGNUM == 0)
ef9dff19
MK
1048 {
1049 warning ("Cannot set floating-point return value.");
1050 return;
1051 }
1052
635b0cc1
MK
1053 /* Returning floating-point values is a bit tricky. Apart from
1054 storing the return value in %st(0), we have to simulate the
1055 state of the FPU at function return point. */
1056
c6ba6f0d
MK
1057 /* Convert the value found in VALBUF to the extended
1058 floating-point format used by the FPU. This is probably
1059 not exactly how it would happen on the target itself, but
1060 it is the best we can do. */
1061 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1062 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
1063 FPU_REG_RAW_SIZE);
ccb945b8 1064
635b0cc1
MK
1065 /* Set the top of the floating-point register stack to 7. The
1066 actual value doesn't really matter, but 7 is what a normal
1067 function return would end up with if the program started out
1068 with a freshly initialized FPU. */
ccb945b8
MK
1069 fstat = read_register (FSTAT_REGNUM);
1070 fstat |= (7 << 11);
1071 write_register (FSTAT_REGNUM, fstat);
1072
635b0cc1
MK
1073 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1074 the floating-point register stack to 7, the appropriate value
1075 for the tag word is 0x3fff. */
ccb945b8 1076 write_register (FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1077 }
1078 else
1079 {
1080 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1081 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1082
1083 if (len <= low_size)
1084 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1085 else if (len <= (low_size + high_size))
1086 {
1087 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1088 valbuf, low_size);
1089 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1090 valbuf + low_size, len - low_size);
1091 }
1092 else
8e65ff28
AC
1093 internal_error (__FILE__, __LINE__,
1094 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1095 }
1096}
f7af9647
MK
1097
1098/* Extract from an array REGBUF containing the (raw) register state
1099 the address in which a function should return its structure value,
1100 as a CORE_ADDR. */
1101
3a1e71e3 1102static CORE_ADDR
f7af9647
MK
1103i386_extract_struct_value_address (char *regbuf)
1104{
1105 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1106 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1107}
fc338970 1108\f
ef9dff19 1109
8201327c
MK
1110/* This is the variable that is set with "set struct-convention", and
1111 its legitimate values. */
1112static const char default_struct_convention[] = "default";
1113static const char pcc_struct_convention[] = "pcc";
1114static const char reg_struct_convention[] = "reg";
1115static const char *valid_conventions[] =
1116{
1117 default_struct_convention,
1118 pcc_struct_convention,
1119 reg_struct_convention,
1120 NULL
1121};
1122static const char *struct_convention = default_struct_convention;
1123
1124static int
1125i386_use_struct_convention (int gcc_p, struct type *type)
1126{
1127 enum struct_return struct_return;
1128
1129 if (struct_convention == default_struct_convention)
1130 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1131 else if (struct_convention == pcc_struct_convention)
1132 struct_return = pcc_struct_return;
1133 else
1134 struct_return = reg_struct_return;
1135
1136 return generic_use_struct_convention (struct_return == reg_struct_return,
1137 type);
1138}
1139\f
1140
d7a0d72c
MK
1141/* Return the GDB type object for the "standard" data type of data in
1142 register REGNUM. Perhaps %esi and %edi should go here, but
1143 potentially they could be used for things other than address. */
1144
3a1e71e3 1145static struct type *
d7a0d72c
MK
1146i386_register_virtual_type (int regnum)
1147{
1148 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1149 return lookup_pointer_type (builtin_type_void);
1150
1151 if (IS_FP_REGNUM (regnum))
c6ba6f0d 1152 return builtin_type_i387_ext;
d7a0d72c
MK
1153
1154 if (IS_SSE_REGNUM (regnum))
3139facc 1155 return builtin_type_vec128i;
d7a0d72c
MK
1156
1157 return builtin_type_int;
1158}
1159
1160/* Return true iff register REGNUM's virtual format is different from
1161 its raw format. Note that this definition assumes that the host
1162 supports IEEE 32-bit floats, since it doesn't say that SSE
1163 registers need conversion. Even if we can't find a counterexample,
1164 this is still sloppy. */
1165
3a1e71e3 1166static int
d7a0d72c
MK
1167i386_register_convertible (int regnum)
1168{
1169 return IS_FP_REGNUM (regnum);
1170}
1171
ac27f131 1172/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1173 virtual format with type TYPE in buffer TO. */
ac27f131 1174
3a1e71e3 1175static void
ac27f131
MK
1176i386_register_convert_to_virtual (int regnum, struct type *type,
1177 char *from, char *to)
1178{
c6ba6f0d 1179 gdb_assert (IS_FP_REGNUM (regnum));
3d261580
MK
1180
1181 /* We only support floating-point values. */
8d7f6b4a
MK
1182 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1183 {
1184 warning ("Cannot convert floating-point register value "
1185 "to non-floating-point type.");
1186 memset (to, 0, TYPE_LENGTH (type));
1187 return;
1188 }
3d261580 1189
c6ba6f0d
MK
1190 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1191 the extended floating-point format used by the FPU. */
1192 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1193}
1194
1195/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1196 raw format for register REGNUM in buffer TO. */
ac27f131 1197
3a1e71e3 1198static void
ac27f131
MK
1199i386_register_convert_to_raw (struct type *type, int regnum,
1200 char *from, char *to)
1201{
c6ba6f0d
MK
1202 gdb_assert (IS_FP_REGNUM (regnum));
1203
1204 /* We only support floating-point values. */
1205 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1206 {
1207 warning ("Cannot convert non-floating-point type "
1208 "to floating-point register value.");
1209 memset (to, 0, TYPE_LENGTH (type));
1210 return;
1211 }
3d261580 1212
c6ba6f0d
MK
1213 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1214 to the extended floating-point format used by the FPU. */
1215 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1216}
ac27f131 1217\f
fc338970 1218
c906108c 1219#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1220/* SunPRO encodes the static variables. This is not related to C++
1221 mangling, it is done for C too. */
c906108c
SS
1222
1223char *
fba45db2 1224sunpro_static_transform_name (char *name)
c906108c
SS
1225{
1226 char *p;
1227 if (IS_STATIC_TRANSFORM_NAME (name))
1228 {
fc338970
MK
1229 /* For file-local statics there will be a period, a bunch of
1230 junk (the contents of which match a string given in the
c5aa993b
JM
1231 N_OPT), a period and the name. For function-local statics
1232 there will be a bunch of junk (which seems to change the
1233 second character from 'A' to 'B'), a period, the name of the
1234 function, and the name. So just skip everything before the
1235 last period. */
c906108c
SS
1236 p = strrchr (name, '.');
1237 if (p != NULL)
1238 name = p + 1;
1239 }
1240 return name;
1241}
1242#endif /* STATIC_TRANSFORM_NAME */
fc338970 1243\f
c906108c 1244
fc338970 1245/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1246
1247CORE_ADDR
fba45db2 1248skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1249{
fc338970 1250 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1251 {
c5aa993b 1252 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1253 struct minimal_symbol *indsym =
fc338970 1254 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1255 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1256
c5aa993b 1257 if (symname)
c906108c 1258 {
c5aa993b
JM
1259 if (strncmp (symname, "__imp_", 6) == 0
1260 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1261 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1262 }
1263 }
fc338970 1264 return 0; /* Not a trampoline. */
c906108c 1265}
fc338970
MK
1266\f
1267
8201327c
MK
1268/* Return non-zero if PC and NAME show that we are in a signal
1269 trampoline. */
1270
1271static int
1272i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1273{
1274 return (name && strcmp ("_sigtramp", name) == 0);
1275}
1276\f
1277
fc338970
MK
1278/* We have two flavours of disassembly. The machinery on this page
1279 deals with switching between those. */
c906108c
SS
1280
1281static int
fba45db2 1282gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1283{
1284 if (disassembly_flavor == att_flavor)
1285 return print_insn_i386_att (memaddr, info);
1286 else if (disassembly_flavor == intel_flavor)
1287 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1288 /* Never reached -- disassembly_flavour is always either att_flavor
1289 or intel_flavor. */
e1e9e218 1290 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a 1291}
fc338970 1292\f
3ce1502b 1293
8201327c
MK
1294/* There are a few i386 architecture variants that differ only
1295 slightly from the generic i386 target. For now, we don't give them
1296 their own source file, but include them here. As a consequence,
1297 they'll always be included. */
3ce1502b 1298
8201327c 1299/* System V Release 4 (SVR4). */
3ce1502b 1300
8201327c
MK
1301static int
1302i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1303{
8201327c
MK
1304 return (name && (strcmp ("_sigreturn", name) == 0
1305 || strcmp ("_sigacthandler", name) == 0
1306 || strcmp ("sigvechandler", name) == 0));
1307}
d2a7c97a 1308
21d0e8a4
MK
1309/* Get address of the pushed ucontext (sigcontext) on the stack for
1310 all three variants of SVR4 sigtramps. */
3ce1502b 1311
3a1e71e3 1312static CORE_ADDR
21d0e8a4 1313i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1314{
21d0e8a4 1315 int sigcontext_offset = -1;
8201327c
MK
1316 char *name = NULL;
1317
1318 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1319 if (name)
d2a7c97a 1320 {
8201327c 1321 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1322 sigcontext_offset = 132;
8201327c 1323 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1324 sigcontext_offset = 80;
8201327c 1325 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1326 sigcontext_offset = 120;
8201327c 1327 }
3ce1502b 1328
21d0e8a4
MK
1329 gdb_assert (sigcontext_offset != -1);
1330
8201327c 1331 if (frame->next)
21d0e8a4
MK
1332 return frame->next->frame + sigcontext_offset;
1333 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1334}
1335\f
3ce1502b 1336
8201327c 1337/* DJGPP. */
d2a7c97a 1338
8201327c
MK
1339static int
1340i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1341{
1342 /* DJGPP doesn't have any special frames for signal handlers. */
1343 return 0;
1344}
1345\f
d2a7c97a 1346
8201327c 1347/* Generic ELF. */
d2a7c97a 1348
8201327c
MK
1349void
1350i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1351{
1352 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1353 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1354}
3ce1502b 1355
8201327c 1356/* System V Release 4 (SVR4). */
3ce1502b 1357
8201327c
MK
1358void
1359i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1360{
1361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1362
8201327c
MK
1363 /* System V Release 4 uses ELF. */
1364 i386_elf_init_abi (info, gdbarch);
3ce1502b 1365
8201327c
MK
1366 /* FIXME: kettenis/20020511: Why do we override this function here? */
1367 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
3ce1502b 1368
8201327c 1369 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1370 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1371 tdep->sc_pc_offset = 14 * 4;
1372 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1373
8201327c 1374 tdep->jb_pc_offset = 20;
3ce1502b
MK
1375}
1376
8201327c 1377/* DJGPP. */
3ce1502b 1378
3a1e71e3 1379static void
8201327c 1380i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1381{
8201327c 1382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1383
8201327c 1384 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1385
8201327c 1386 tdep->jb_pc_offset = 36;
3ce1502b
MK
1387}
1388
8201327c 1389/* NetWare. */
3ce1502b 1390
3a1e71e3 1391static void
8201327c 1392i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1393{
8201327c 1394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1395
8201327c
MK
1396 /* FIXME: kettenis/20020511: Why do we override this function here? */
1397 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1398
1399 tdep->jb_pc_offset = 24;
d2a7c97a 1400}
8201327c 1401\f
2acceee2 1402
3a1e71e3 1403static struct gdbarch *
a62cc96e
AC
1404i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1405{
cd3c07fc 1406 struct gdbarch_tdep *tdep;
a62cc96e 1407 struct gdbarch *gdbarch;
8201327c 1408 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
a62cc96e 1409
8201327c 1410 /* Try to determine the OS ABI of the object we're loading. */
3ce1502b 1411 if (info.abfd != NULL)
8201327c 1412 osabi = gdbarch_lookup_osabi (info.abfd);
d2a7c97a 1413
3ce1502b 1414 /* Find a candidate among extant architectures. */
d2a7c97a
MK
1415 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1416 arches != NULL;
1417 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1418 {
8201327c 1419 /* Make sure the OS ABI selection matches. */
65d6d66a 1420 tdep = gdbarch_tdep (arches->gdbarch);
8201327c 1421 if (tdep && tdep->osabi == osabi)
65d6d66a 1422 return arches->gdbarch;
d2a7c97a 1423 }
a62cc96e
AC
1424
1425 /* Allocate space for the new architecture. */
1426 tdep = XMALLOC (struct gdbarch_tdep);
1427 gdbarch = gdbarch_alloc (&info, tdep);
1428
8201327c
MK
1429 tdep->osabi = osabi;
1430
1431 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1432 FIXME: kettenis/20020614: They do include the FPU registers for
1433 now, which probably is not quite right. */
8201327c 1434 tdep->num_xmm_regs = 0;
d2a7c97a 1435
8201327c
MK
1436 tdep->jb_pc_offset = -1;
1437 tdep->struct_return = pcc_struct_return;
8201327c
MK
1438 tdep->sigtramp_start = 0;
1439 tdep->sigtramp_end = 0;
21d0e8a4 1440 tdep->sigcontext_addr = NULL;
8201327c 1441 tdep->sc_pc_offset = -1;
21d0e8a4 1442 tdep->sc_sp_offset = -1;
8201327c 1443
896fb97d
MK
1444 /* The format used for `long double' on almost all i386 targets is
1445 the i387 extended floating-point format. In fact, of all targets
1446 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1447 on having a `long double' that's not `long' at all. */
1448 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1449
896fb97d
MK
1450 /* Although the i386 extended floating-point has only 80 significant
1451 bits, a `long double' actually takes up 96, probably to enforce
1452 alignment. */
1453 set_gdbarch_long_double_bit (gdbarch, 96);
1454
356a6b3e
MK
1455 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1456 tm-symmetry.h currently override this. Sigh. */
1457 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1458
356a6b3e
MK
1459 set_gdbarch_sp_regnum (gdbarch, 4);
1460 set_gdbarch_fp_regnum (gdbarch, 5);
1461 set_gdbarch_pc_regnum (gdbarch, 8);
1462 set_gdbarch_ps_regnum (gdbarch, 9);
1463 set_gdbarch_fp0_regnum (gdbarch, 16);
1464
1465 /* Use the "default" register numbering scheme for stabs and COFF. */
1466 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1467 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1468
1469 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1470 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1471 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1472
1473 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1474 be in use on any of the supported i386 targets. */
1475
1476 set_gdbarch_register_name (gdbarch, i386_register_name);
1477 set_gdbarch_register_size (gdbarch, 4);
1478 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1479 set_gdbarch_register_byte (gdbarch, i386_register_byte);
1480 set_gdbarch_register_raw_size (gdbarch, i386_register_raw_size);
1481 set_gdbarch_max_register_raw_size (gdbarch, 16);
1482 set_gdbarch_max_register_virtual_size (gdbarch, 16);
b6197528 1483 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
356a6b3e 1484
8201327c 1485 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1486
a62cc96e
AC
1487 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1488
1489 /* Call dummy code. */
1490 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8758dec1 1491 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
a62cc96e
AC
1492 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1493 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
8758dec1 1494 set_gdbarch_call_dummy_length (gdbarch, 8);
a62cc96e 1495 set_gdbarch_call_dummy_p (gdbarch, 1);
8758dec1
MK
1496 set_gdbarch_call_dummy_words (gdbarch, i386_call_dummy_words);
1497 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1498 sizeof (i386_call_dummy_words));
a62cc96e 1499 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
8758dec1 1500 set_gdbarch_fix_call_dummy (gdbarch, i386_fix_call_dummy);
a62cc96e 1501
b6197528
MK
1502 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1503 set_gdbarch_register_convert_to_virtual (gdbarch,
1504 i386_register_convert_to_virtual);
1505 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1506
a62cc96e
AC
1507 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1508 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1509
1510 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1511
8758dec1
MK
1512 /* "An argument's size is increased, if necessary, to make it a
1513 multiple of [32-bit] words. This may require tail padding,
1514 depending on the size of the argument" -- from the x86 ABI. */
1515 set_gdbarch_parm_boundary (gdbarch, 32);
1516
fc08ec52
MK
1517 set_gdbarch_deprecated_extract_return_value (gdbarch,
1518 i386_extract_return_value);
1519 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1520 set_gdbarch_push_dummy_frame (gdbarch, i386_push_dummy_frame);
1521 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1522 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1523 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1524 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1525 i386_extract_struct_value_address);
8201327c
MK
1526 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1527
42fdc8df 1528 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1529 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1530
1531 /* Stack grows downward. */
1532 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1533
1534 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1535 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1536 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1537
8201327c
MK
1538 /* The following redefines make backtracing through sigtramp work.
1539 They manufacture a fake sigtramp frame and obtain the saved pc in
1540 sigtramp from the sigcontext structure which is pushed by the
1541 kernel on the user stack, along with a pointer to it. */
1542
42fdc8df
MK
1543 set_gdbarch_frame_args_skip (gdbarch, 8);
1544 set_gdbarch_frameless_function_invocation (gdbarch,
1545 i386_frameless_function_invocation);
8201327c 1546 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
a62cc96e 1547 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
8201327c 1548 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
42fdc8df
MK
1549 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1550 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
8201327c 1551 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1552 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1553 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1554
3ce1502b 1555 /* Hook in ABI-specific overrides, if they have been registered. */
8201327c 1556 gdbarch_init_osabi (info, gdbarch, osabi);
3ce1502b 1557
a62cc96e
AC
1558 return gdbarch;
1559}
1560
8201327c
MK
1561static enum gdb_osabi
1562i386_coff_osabi_sniffer (bfd *abfd)
1563{
762c5349
MK
1564 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1565 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1566 return GDB_OSABI_GO32;
1567
1568 return GDB_OSABI_UNKNOWN;
1569}
1570
1571static enum gdb_osabi
1572i386_nlm_osabi_sniffer (bfd *abfd)
1573{
1574 return GDB_OSABI_NETWARE;
1575}
1576\f
1577
28e9e0f0
MK
1578/* Provide a prototype to silence -Wmissing-prototypes. */
1579void _initialize_i386_tdep (void);
1580
c906108c 1581void
fba45db2 1582_initialize_i386_tdep (void)
c906108c 1583{
a62cc96e
AC
1584 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1585
917317f4
JM
1586 /* Initialize the table saying where each register starts in the
1587 register file. */
1588 {
1589 int i, offset;
1590
1591 offset = 0;
1cf88de5 1592 for (i = 0; i < I386_SSE_NUM_REGS; i++)
917317f4 1593 {
1a11ba71
MK
1594 i386_register_offset[i] = offset;
1595 offset += i386_register_size[i];
917317f4
JM
1596 }
1597 }
1598
c906108c
SS
1599 tm_print_insn = gdb_print_insn_i386;
1600 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1601
fc338970 1602 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1603 {
1604 struct cmd_list_element *new_cmd;
7a292a7a 1605
917317f4
JM
1606 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1607 valid_flavors,
1ed2a135 1608 &disassembly_flavor,
fc338970
MK
1609 "\
1610Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1611and the default value is \"att\".",
917317f4 1612 &setlist);
917317f4
JM
1613 add_show_from_set (new_cmd, &showlist);
1614 }
8201327c
MK
1615
1616 /* Add the variable that controls the convention for returning
1617 structs. */
1618 {
1619 struct cmd_list_element *new_cmd;
1620
1621 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1622 valid_conventions,
1623 &struct_convention, "\
1624Set the convention for returning small structs, valid values \
1625are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1626 &setlist);
1627 add_show_from_set (new_cmd, &showlist);
1628 }
1629
1630 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1631 i386_coff_osabi_sniffer);
1632 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1633 i386_nlm_osabi_sniffer);
1634
1635 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1636 i386_svr4_init_abi);
1637 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1638 i386_go32_init_abi);
1639 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1640 i386_nw_init_abi);
c906108c 1641}
This page took 0.298046 seconds and 4 git commands to generate.