gas/
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4754a64e 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
931aecf5 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
227 }
228 else if (reg >= 21)
229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236}
5716833c
MK
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
fc338970 241\f
917317f4 242
fc338970
MK
243/* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
53904c9e
AC
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
c5aa993b 248{
c906108c
SS
249 att_flavor,
250 intel_flavor,
251 NULL
252};
53904c9e 253static const char *disassembly_flavor = att_flavor;
acd5c798 254\f
c906108c 255
acd5c798
MK
256/* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
c906108c 261
acd5c798
MK
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
c906108c 264
acd5c798 265 This function is 64-bit safe. */
63c0089f
MK
266
267static const gdb_byte *
acd5c798 268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 269{
63c0089f
MK
270 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
271
acd5c798
MK
272 *len = sizeof (break_insn);
273 return break_insn;
c906108c 274}
fc338970 275\f
acd5c798
MK
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
c906108c 279
acd5c798
MK
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
c906108c 283
acd5c798
MK
284/* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
a3386186 286#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
287
288struct i386_frame_cache
c906108c 289{
acd5c798
MK
290 /* Base address. */
291 CORE_ADDR base;
772562f8 292 LONGEST sp_offset;
acd5c798
MK
293 CORE_ADDR pc;
294
fd13a04a
AC
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302};
303
304/* Allocate and initialize a frame cache. */
305
306static struct i386_frame_cache *
fd13a04a 307i386_alloc_frame_cache (void)
acd5c798
MK
308{
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
fd13a04a
AC
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
acd5c798
MK
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330}
c906108c 331
acd5c798
MK
332/* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
c906108c 334
acd5c798
MK
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
63c0089f 338 gdb_byte op;
acd5c798
MK
339 long delta = 0;
340 int data16 = 0;
c906108c 341
acd5c798
MK
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
c906108c 344 {
c906108c 345 data16 = 1;
acd5c798 346 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
347 }
348
acd5c798 349 switch (op)
c906108c
SS
350 {
351 case 0xe9:
fc338970 352 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
353 if (data16)
354 {
acd5c798 355 delta = read_memory_integer (pc + 2, 2);
c906108c 356
fc338970
MK
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
acd5c798 359 delta += 4;
c906108c
SS
360 }
361 else
362 {
acd5c798 363 delta = read_memory_integer (pc + 1, 4);
c906108c 364
acd5c798
MK
365 /* Include the size of the jmp instruction. */
366 delta += 5;
c906108c
SS
367 }
368 break;
369 case 0xeb:
fc338970 370 /* Relative jump, disp8 (ignore data16). */
acd5c798 371 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 372
acd5c798 373 delta += data16 + 2;
c906108c
SS
374 break;
375 }
c906108c 376
acd5c798
MK
377 return pc + delta;
378}
fc338970 379
acd5c798
MK
380/* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
c906108c 385
acd5c798
MK
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
c906108c 389{
acd5c798
MK
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
63c0089f
MK
400 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
401 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 gdb_byte buf[4];
403 gdb_byte op;
c906108c 404
acd5c798
MK
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
c906108c 409
acd5c798
MK
410 if (op != 0x58) /* popl %eax */
411 return pc;
c906108c 412
acd5c798
MK
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
c906108c 416
acd5c798 417 if (current_pc == pc)
c906108c 418 {
acd5c798
MK
419 cache->sp_offset += 4;
420 return current_pc;
c906108c
SS
421 }
422
acd5c798 423 if (current_pc == pc + 1)
c906108c 424 {
acd5c798
MK
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438 /* A function may start with
fc338970 439
acd5c798
MK
440 pushl constant
441 call _probe
442 addl $4, %esp
fc338970 443
acd5c798
MK
444 followed by
445
446 pushl %ebp
fc338970 447
acd5c798 448 etc. */
63c0089f
MK
449 gdb_byte buf[8];
450 gdb_byte op;
fc338970 451
acd5c798
MK
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
c906108c 457
acd5c798
MK
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
c906108c 460 if (op == 0x68)
acd5c798 461 delta = 5;
c906108c 462 else
acd5c798 463 delta = 2;
c906108c 464
acd5c798
MK
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
c906108c 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 469 pc += delta + sizeof (buf);
c906108c
SS
470 }
471
acd5c798
MK
472 return pc;
473}
474
37bdc87e
MK
475/* Maximum instruction length we need to handle. */
476#define I386_MAX_INSN_LEN 6
477
478/* Instruction description. */
479struct i386_insn
480{
481 size_t len;
63c0089f
MK
482 gdb_byte insn[I386_MAX_INSN_LEN];
483 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
484};
485
486/* Search for the instruction at PC in the list SKIP_INSNS. Return
487 the first instruction description that matches. Otherwise, return
488 NULL. */
489
490static struct i386_insn *
491i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492{
493 struct i386_insn *insn;
63c0089f 494 gdb_byte op;
37bdc87e
MK
495
496 op = read_memory_unsigned_integer (pc, 1);
497
498 for (insn = skip_insns; insn->len > 0; insn++)
499 {
500 if ((op & insn->mask[0]) == insn->insn[0])
501 {
502 unsigned char buf[I386_MAX_INSN_LEN - 1];
503 size_t i;
504
505 gdb_assert (insn->len > 1);
506 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
507
508 read_memory (pc + 1, buf, insn->len - 1);
509 for (i = 1; i < insn->len; i++)
510 {
511 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
512 break;
513
514 return insn;
515 }
516 }
517 }
518
519 return NULL;
520}
521
522/* Some special instructions that might be migrated by GCC into the
523 part of the prologue that sets up the new stack frame. Because the
524 stack frame hasn't been setup yet, no registers have been saved
525 yet, and only the scratch registers %eax, %ecx and %edx can be
526 touched. */
527
528struct i386_insn i386_frame_setup_skip_insns[] =
529{
530 /* Check for `movb imm8, r' and `movl imm32, r'.
531
532 ??? Should we handle 16-bit operand-sizes here? */
533
534 /* `movb imm8, %al' and `movb imm8, %ah' */
535 /* `movb imm8, %cl' and `movb imm8, %ch' */
536 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
537 /* `movb imm8, %dl' and `movb imm8, %dh' */
538 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
539 /* `movl imm32, %eax' and `movl imm32, %ecx' */
540 { 5, { 0xb8 }, { 0xfe } },
541 /* `movl imm32, %edx' */
542 { 5, { 0xba }, { 0xff } },
543
544 /* Check for `mov imm32, r32'. Note that there is an alternative
545 encoding for `mov m32, %eax'.
546
547 ??? Should we handle SIB adressing here?
548 ??? Should we handle 16-bit operand-sizes here? */
549
550 /* `movl m32, %eax' */
551 { 5, { 0xa1 }, { 0xff } },
552 /* `movl m32, %eax' and `mov; m32, %ecx' */
553 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
554 /* `movl m32, %edx' */
555 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
556
557 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
558 Because of the symmetry, there are actually two ways to encode
559 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
560 opcode bytes 0x31 and 0x33 for `xorl'. */
561
562 /* `subl %eax, %eax' */
563 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
564 /* `subl %ecx, %ecx' */
565 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
566 /* `subl %edx, %edx' */
567 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
568 /* `xorl %eax, %eax' */
569 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
570 /* `xorl %ecx, %ecx' */
571 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
572 /* `xorl %edx, %edx' */
573 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
574 { 0 }
575};
576
acd5c798
MK
577/* Check whether PC points at a code that sets up a new stack frame.
578 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
579 instruction after the sequence that sets up the frame or LIMIT,
580 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
581
582static CORE_ADDR
37bdc87e 583i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
584 struct i386_frame_cache *cache)
585{
37bdc87e 586 struct i386_insn *insn;
63c0089f 587 gdb_byte op;
26604a34 588 int skip = 0;
acd5c798 589
37bdc87e
MK
590 if (limit <= pc)
591 return limit;
acd5c798
MK
592
593 op = read_memory_unsigned_integer (pc, 1);
594
c906108c 595 if (op == 0x55) /* pushl %ebp */
c5aa993b 596 {
acd5c798
MK
597 /* Take into account that we've executed the `pushl %ebp' that
598 starts this instruction sequence. */
fd13a04a 599 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 600 cache->sp_offset += 4;
37bdc87e 601 pc++;
acd5c798
MK
602
603 /* If that's all, return now. */
37bdc87e
MK
604 if (limit <= pc)
605 return limit;
26604a34 606
b4632131 607 /* Check for some special instructions that might be migrated by
37bdc87e
MK
608 GCC into the prologue and skip them. At this point in the
609 prologue, code should only touch the scratch registers %eax,
610 %ecx and %edx, so while the number of posibilities is sheer,
611 it is limited.
5daa5b4e 612
26604a34
MK
613 Make sure we only skip these instructions if we later see the
614 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 615 while (pc + skip < limit)
26604a34 616 {
37bdc87e
MK
617 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
618 if (insn == NULL)
619 break;
b4632131 620
37bdc87e 621 skip += insn->len;
26604a34
MK
622 }
623
37bdc87e
MK
624 /* If that's all, return now. */
625 if (limit <= pc + skip)
626 return limit;
627
628 op = read_memory_unsigned_integer (pc + skip, 1);
629
26604a34 630 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 631 switch (op)
c906108c
SS
632 {
633 case 0x8b:
37bdc87e
MK
634 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
635 return pc;
c906108c
SS
636 break;
637 case 0x89:
37bdc87e
MK
638 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
639 return pc;
c906108c
SS
640 break;
641 default:
37bdc87e 642 return pc;
c906108c 643 }
acd5c798 644
26604a34
MK
645 /* OK, we actually have a frame. We just don't know how large
646 it is yet. Set its size to zero. We'll adjust it if
647 necessary. We also now commit to skipping the special
648 instructions mentioned before. */
acd5c798 649 cache->locals = 0;
37bdc87e 650 pc += (skip + 2);
acd5c798
MK
651
652 /* If that's all, return now. */
37bdc87e
MK
653 if (limit <= pc)
654 return limit;
acd5c798 655
fc338970
MK
656 /* Check for stack adjustment
657
acd5c798 658 subl $XXX, %esp
fc338970 659
fd35795f 660 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 661 reg, so we don't have to worry about a data16 prefix. */
37bdc87e 662 op = read_memory_unsigned_integer (pc, 1);
c906108c
SS
663 if (op == 0x83)
664 {
fd35795f 665 /* `subl' with 8-bit immediate. */
37bdc87e 666 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 667 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 668 return pc;
acd5c798 669
37bdc87e
MK
670 /* `subl' with signed 8-bit immediate (though it wouldn't
671 make sense to be negative). */
672 cache->locals = read_memory_integer (pc + 2, 1);
673 return pc + 3;
c906108c
SS
674 }
675 else if (op == 0x81)
676 {
fd35795f 677 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 678 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 679 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 680 return pc;
acd5c798 681
fd35795f 682 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
683 cache->locals = read_memory_integer (pc + 2, 4);
684 return pc + 6;
c906108c
SS
685 }
686 else
687 {
acd5c798 688 /* Some instruction other than `subl'. */
37bdc87e 689 return pc;
c906108c
SS
690 }
691 }
37bdc87e 692 else if (op == 0xc8) /* enter */
c906108c 693 {
acd5c798
MK
694 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
695 return pc + 4;
c906108c 696 }
21d0e8a4 697
acd5c798 698 return pc;
21d0e8a4
MK
699}
700
acd5c798
MK
701/* Check whether PC points at code that saves registers on the stack.
702 If so, it updates CACHE and returns the address of the first
703 instruction after the register saves or CURRENT_PC, whichever is
704 smaller. Otherwise, return PC. */
6bff26de
MK
705
706static CORE_ADDR
acd5c798
MK
707i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
6bff26de 709{
99ab4326 710 CORE_ADDR offset = 0;
63c0089f 711 gdb_byte op;
99ab4326 712 int i;
c0d1d883 713
99ab4326
MK
714 if (cache->locals > 0)
715 offset -= cache->locals;
716 for (i = 0; i < 8 && pc < current_pc; i++)
717 {
718 op = read_memory_unsigned_integer (pc, 1);
719 if (op < 0x50 || op > 0x57)
720 break;
0d17c81d 721
99ab4326
MK
722 offset -= 4;
723 cache->saved_regs[op - 0x50] = offset;
724 cache->sp_offset += 4;
725 pc++;
6bff26de
MK
726 }
727
acd5c798 728 return pc;
22797942
AC
729}
730
acd5c798
MK
731/* Do a full analysis of the prologue at PC and update CACHE
732 accordingly. Bail out early if CURRENT_PC is reached. Return the
733 address where the analysis stopped.
ed84f6c1 734
fc338970
MK
735 We handle these cases:
736
737 The startup sequence can be at the start of the function, or the
738 function can start with a branch to startup code at the end.
739
740 %ebp can be set up with either the 'enter' instruction, or "pushl
741 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
742 once used in the System V compiler).
743
744 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
745 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
746 16-bit unsigned argument for space to allocate, and the 'addl'
747 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
748
749 Next, the registers used by this function are pushed. With the
750 System V compiler they will always be in the order: %edi, %esi,
751 %ebx (and sometimes a harmless bug causes it to also save but not
752 restore %eax); however, the code below is willing to see the pushes
753 in any order, and will handle up to 8 of them.
754
755 If the setup sequence is at the end of the function, then the next
756 instruction will be a branch back to the start. */
c906108c 757
acd5c798
MK
758static CORE_ADDR
759i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
760 struct i386_frame_cache *cache)
c906108c 761{
acd5c798
MK
762 pc = i386_follow_jump (pc);
763 pc = i386_analyze_struct_return (pc, current_pc, cache);
764 pc = i386_skip_probe (pc);
765 pc = i386_analyze_frame_setup (pc, current_pc, cache);
766 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
767}
768
fc338970 769/* Return PC of first real instruction. */
c906108c 770
3a1e71e3 771static CORE_ADDR
acd5c798 772i386_skip_prologue (CORE_ADDR start_pc)
c906108c 773{
63c0089f 774 static gdb_byte pic_pat[6] =
acd5c798
MK
775 {
776 0xe8, 0, 0, 0, 0, /* call 0x0 */
777 0x5b, /* popl %ebx */
c5aa993b 778 };
acd5c798
MK
779 struct i386_frame_cache cache;
780 CORE_ADDR pc;
63c0089f 781 gdb_byte op;
acd5c798 782 int i;
c5aa993b 783
acd5c798
MK
784 cache.locals = -1;
785 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
786 if (cache.locals < 0)
787 return start_pc;
c5aa993b 788
acd5c798 789 /* Found valid frame setup. */
c906108c 790
fc338970
MK
791 /* The native cc on SVR4 in -K PIC mode inserts the following code
792 to get the address of the global offset table (GOT) into register
acd5c798
MK
793 %ebx:
794
fc338970
MK
795 call 0x0
796 popl %ebx
797 movl %ebx,x(%ebp) (optional)
798 addl y,%ebx
799
c906108c
SS
800 This code is with the rest of the prologue (at the end of the
801 function), so we have to skip it to get to the first real
802 instruction at the start of the function. */
c5aa993b 803
c906108c
SS
804 for (i = 0; i < 6; i++)
805 {
acd5c798 806 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 807 if (pic_pat[i] != op)
c906108c
SS
808 break;
809 }
810 if (i == 6)
811 {
acd5c798
MK
812 int delta = 6;
813
814 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 815
c5aa993b 816 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 817 {
acd5c798
MK
818 op = read_memory_unsigned_integer (pc + delta + 1, 1);
819
fc338970 820 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 821 delta += 3;
fc338970 822 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 823 delta += 6;
fc338970 824 else /* Unexpected instruction. */
acd5c798
MK
825 delta = 0;
826
827 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 828 }
acd5c798 829
c5aa993b 830 /* addl y,%ebx */
acd5c798
MK
831 if (delta > 0 && op == 0x81
832 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 833 {
acd5c798 834 pc += delta + 6;
c906108c
SS
835 }
836 }
c5aa993b 837
e63bbc88
MK
838 /* If the function starts with a branch (to startup code at the end)
839 the last instruction should bring us back to the first
840 instruction of the real code. */
841 if (i386_follow_jump (start_pc) != start_pc)
842 pc = i386_follow_jump (pc);
843
844 return pc;
c906108c
SS
845}
846
acd5c798 847/* This function is 64-bit safe. */
93924b6b 848
acd5c798
MK
849static CORE_ADDR
850i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 851{
63c0089f 852 gdb_byte buf[8];
acd5c798
MK
853
854 frame_unwind_register (next_frame, PC_REGNUM, buf);
855 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 856}
acd5c798 857\f
93924b6b 858
acd5c798 859/* Normal frames. */
c5aa993b 860
acd5c798
MK
861static struct i386_frame_cache *
862i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 863{
acd5c798 864 struct i386_frame_cache *cache;
63c0089f 865 gdb_byte buf[4];
acd5c798
MK
866 int i;
867
868 if (*this_cache)
869 return *this_cache;
870
fd13a04a 871 cache = i386_alloc_frame_cache ();
acd5c798
MK
872 *this_cache = cache;
873
874 /* In principle, for normal frames, %ebp holds the frame pointer,
875 which holds the base address for the current stack frame.
876 However, for functions that don't need it, the frame pointer is
877 optional. For these "frameless" functions the frame pointer is
878 actually the frame pointer of the calling frame. Signal
879 trampolines are just a special case of a "frameless" function.
880 They (usually) share their frame pointer with the frame that was
881 in progress when the signal occurred. */
882
883 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4);
885 if (cache->base == 0)
886 return cache;
887
888 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 889 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
890
891 cache->pc = frame_func_unwind (next_frame);
892 if (cache->pc != 0)
893 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
894
895 if (cache->locals < 0)
896 {
897 /* We didn't find a valid frame, which means that CACHE->base
898 currently holds the frame pointer for our calling frame. If
899 we're at the start of a function, or somewhere half-way its
900 prologue, the function's frame probably hasn't been fully
901 setup yet. Try to reconstruct the base address for the stack
902 frame by looking at the stack pointer. For truly "frameless"
903 functions this might work too. */
904
905 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
906 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
907 }
908
909 /* Now that we have the base address for the stack frame we can
910 calculate the value of %esp in the calling frame. */
911 cache->saved_sp = cache->base + 8;
a7769679 912
acd5c798
MK
913 /* Adjust all the saved registers such that they contain addresses
914 instead of offsets. */
915 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
916 if (cache->saved_regs[i] != -1)
917 cache->saved_regs[i] += cache->base;
acd5c798
MK
918
919 return cache;
a7769679
MK
920}
921
3a1e71e3 922static void
acd5c798
MK
923i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
924 struct frame_id *this_id)
c906108c 925{
acd5c798
MK
926 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
927
928 /* This marks the outermost frame. */
929 if (cache->base == 0)
930 return;
931
3e210248 932 /* See the end of i386_push_dummy_call. */
acd5c798
MK
933 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
934}
935
936static void
937i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938 int regnum, int *optimizedp,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 940 int *realnump, gdb_byte *valuep)
acd5c798
MK
941{
942 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
943
944 gdb_assert (regnum >= 0);
945
946 /* The System V ABI says that:
947
948 "The flags register contains the system flags, such as the
949 direction flag and the carry flag. The direction flag must be
950 set to the forward (that is, zero) direction before entry and
951 upon exit from a function. Other user flags have no specified
952 role in the standard calling sequence and are not preserved."
953
954 To guarantee the "upon exit" part of that statement we fake a
955 saved flags register that has its direction flag cleared.
956
957 Note that GCC doesn't seem to rely on the fact that the direction
958 flag is cleared after a function return; it always explicitly
959 clears the flag before operations where it matters.
960
961 FIXME: kettenis/20030316: I'm not quite sure whether this is the
962 right thing to do. The way we fake the flags register here makes
963 it impossible to change it. */
964
965 if (regnum == I386_EFLAGS_REGNUM)
966 {
967 *optimizedp = 0;
968 *lvalp = not_lval;
969 *addrp = 0;
970 *realnump = -1;
971 if (valuep)
972 {
973 ULONGEST val;
c5aa993b 974
acd5c798 975 /* Clear the direction flag. */
f837910f
MK
976 val = frame_unwind_register_unsigned (next_frame,
977 I386_EFLAGS_REGNUM);
acd5c798
MK
978 val &= ~(1 << 10);
979 store_unsigned_integer (valuep, 4, val);
980 }
981
982 return;
983 }
1211c4e4 984
acd5c798 985 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 986 {
00b25ff3
AC
987 *optimizedp = 0;
988 *lvalp = lval_register;
989 *addrp = 0;
990 *realnump = I386_EAX_REGNUM;
991 if (valuep)
992 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
993 return;
994 }
995
996 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
997 {
998 *optimizedp = 0;
999 *lvalp = not_lval;
1000 *addrp = 0;
1001 *realnump = -1;
1002 if (valuep)
c906108c 1003 {
acd5c798
MK
1004 /* Store the value. */
1005 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1006 }
acd5c798 1007 return;
c906108c 1008 }
acd5c798 1009
fd13a04a
AC
1010 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1011 {
1012 *optimizedp = 0;
1013 *lvalp = lval_memory;
1014 *addrp = cache->saved_regs[regnum];
1015 *realnump = -1;
1016 if (valuep)
1017 {
1018 /* Read the value in from memory. */
1019 read_memory (*addrp, valuep,
1020 register_size (current_gdbarch, regnum));
1021 }
1022 return;
1023 }
1024
00b25ff3
AC
1025 *optimizedp = 0;
1026 *lvalp = lval_register;
1027 *addrp = 0;
1028 *realnump = regnum;
1029 if (valuep)
1030 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1031}
1032
1033static const struct frame_unwind i386_frame_unwind =
1034{
1035 NORMAL_FRAME,
1036 i386_frame_this_id,
1037 i386_frame_prev_register
1038};
1039
1040static const struct frame_unwind *
336d1bba 1041i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1042{
1043 return &i386_frame_unwind;
1044}
1045\f
1046
1047/* Signal trampolines. */
1048
1049static struct i386_frame_cache *
1050i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1051{
1052 struct i386_frame_cache *cache;
1053 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1054 CORE_ADDR addr;
63c0089f 1055 gdb_byte buf[4];
acd5c798
MK
1056
1057 if (*this_cache)
1058 return *this_cache;
1059
fd13a04a 1060 cache = i386_alloc_frame_cache ();
acd5c798
MK
1061
1062 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1063 cache->base = extract_unsigned_integer (buf, 4) - 4;
1064
1065 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1066 if (tdep->sc_reg_offset)
1067 {
1068 int i;
1069
1070 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1071
1072 for (i = 0; i < tdep->sc_num_regs; i++)
1073 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1074 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1075 }
1076 else
1077 {
fd13a04a
AC
1078 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1079 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1080 }
acd5c798
MK
1081
1082 *this_cache = cache;
1083 return cache;
1084}
1085
1086static void
1087i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1088 struct frame_id *this_id)
1089{
1090 struct i386_frame_cache *cache =
1091 i386_sigtramp_frame_cache (next_frame, this_cache);
1092
3e210248 1093 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1094 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1095}
1096
1097static void
1098i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1099 void **this_cache,
1100 int regnum, int *optimizedp,
1101 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1102 int *realnump, gdb_byte *valuep)
acd5c798
MK
1103{
1104 /* Make sure we've initialized the cache. */
1105 i386_sigtramp_frame_cache (next_frame, this_cache);
1106
1107 i386_frame_prev_register (next_frame, this_cache, regnum,
1108 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1109}
c0d1d883 1110
acd5c798
MK
1111static const struct frame_unwind i386_sigtramp_frame_unwind =
1112{
1113 SIGTRAMP_FRAME,
1114 i386_sigtramp_frame_this_id,
1115 i386_sigtramp_frame_prev_register
1116};
1117
1118static const struct frame_unwind *
336d1bba 1119i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1120{
911bc6ee 1121 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1122
911bc6ee
MK
1123 /* We shouldn't even bother if we don't have a sigcontext_addr
1124 handler. */
1125 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1126 return NULL;
1127
911bc6ee
MK
1128 if (tdep->sigtramp_p != NULL)
1129 {
1130 if (tdep->sigtramp_p (next_frame))
1131 return &i386_sigtramp_frame_unwind;
1132 }
1133
1134 if (tdep->sigtramp_start != 0)
1135 {
1136 CORE_ADDR pc = frame_pc_unwind (next_frame);
1137
1138 gdb_assert (tdep->sigtramp_end != 0);
1139 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1140 return &i386_sigtramp_frame_unwind;
1141 }
acd5c798
MK
1142
1143 return NULL;
1144}
1145\f
1146
1147static CORE_ADDR
1148i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1149{
1150 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1151
1152 return cache->base;
1153}
1154
1155static const struct frame_base i386_frame_base =
1156{
1157 &i386_frame_unwind,
1158 i386_frame_base_address,
1159 i386_frame_base_address,
1160 i386_frame_base_address
1161};
1162
acd5c798
MK
1163static struct frame_id
1164i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1165{
63c0089f 1166 gdb_byte buf[4];
acd5c798
MK
1167 CORE_ADDR fp;
1168
1169 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1170 fp = extract_unsigned_integer (buf, 4);
1171
3e210248 1172 /* See the end of i386_push_dummy_call. */
acd5c798 1173 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1174}
fc338970 1175\f
c906108c 1176
fc338970
MK
1177/* Figure out where the longjmp will land. Slurp the args out of the
1178 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1179 structure from which we extract the address that we will land at.
28bcfd30 1180 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1181 success.
1182
1183 This function is 64-bit safe. */
c906108c 1184
8201327c
MK
1185static int
1186i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1187{
63c0089f 1188 gdb_byte buf[8];
c906108c 1189 CORE_ADDR sp, jb_addr;
8201327c 1190 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1191 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1192
8201327c
MK
1193 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1194 longjmp will land. */
1195 if (jb_pc_offset == -1)
c906108c
SS
1196 return 0;
1197
f837910f
MK
1198 /* Don't use I386_ESP_REGNUM here, since this function is also used
1199 for AMD64. */
1200 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1201 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1202 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1203 return 0;
1204
f837910f 1205 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1206 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1207 return 0;
c906108c 1208
f9d3c2a8 1209 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1210 return 1;
1211}
fc338970 1212\f
c906108c 1213
3a1e71e3 1214static CORE_ADDR
7d9b040b 1215i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1216 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1217 struct value **args, CORE_ADDR sp, int struct_return,
1218 CORE_ADDR struct_addr)
22f8ba57 1219{
63c0089f 1220 gdb_byte buf[4];
acd5c798
MK
1221 int i;
1222
1223 /* Push arguments in reverse order. */
1224 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1225 {
4754a64e 1226 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1227
1228 /* The System V ABI says that:
1229
1230 "An argument's size is increased, if necessary, to make it a
1231 multiple of [32-bit] words. This may require tail padding,
1232 depending on the size of the argument."
1233
1234 This makes sure the stack says word-aligned. */
1235 sp -= (len + 3) & ~3;
46615f07 1236 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1237 }
22f8ba57 1238
acd5c798
MK
1239 /* Push value address. */
1240 if (struct_return)
1241 {
22f8ba57 1242 sp -= 4;
fbd9dcd3 1243 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1244 write_memory (sp, buf, 4);
1245 }
1246
acd5c798
MK
1247 /* Store return address. */
1248 sp -= 4;
6a65450a 1249 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1250 write_memory (sp, buf, 4);
1251
1252 /* Finally, update the stack pointer... */
1253 store_unsigned_integer (buf, 4, sp);
1254 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1255
1256 /* ...and fake a frame pointer. */
1257 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1258
3e210248
AC
1259 /* MarkK wrote: This "+ 8" is all over the place:
1260 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1261 i386_unwind_dummy_id). It's there, since all frame unwinders for
1262 a given target have to agree (within a certain margin) on the
fd35795f 1263 definition of the stack address of a frame. Otherwise
3e210248
AC
1264 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1265 stack address *before* the function call as a frame's CFA. On
1266 the i386, when %ebp is used as a frame pointer, the offset
1267 between the contents %ebp and the CFA as defined by GCC. */
1268 return sp + 8;
22f8ba57
MK
1269}
1270
1a309862
MK
1271/* These registers are used for returning integers (and on some
1272 targets also for returning `struct' and `union' values when their
ef9dff19 1273 size and alignment match an integer type). */
acd5c798
MK
1274#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1275#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1276
c5e656c1
MK
1277/* Read, for architecture GDBARCH, a function return value of TYPE
1278 from REGCACHE, and copy that into VALBUF. */
1a309862 1279
3a1e71e3 1280static void
c5e656c1 1281i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1282 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1283{
c5e656c1 1284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1285 int len = TYPE_LENGTH (type);
63c0089f 1286 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1287
1e8d0a7b 1288 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1289 {
5716833c 1290 if (tdep->st0_regnum < 0)
1a309862 1291 {
8a3fe4f8 1292 warning (_("Cannot find floating-point return value."));
1a309862 1293 memset (valbuf, 0, len);
ef9dff19 1294 return;
1a309862
MK
1295 }
1296
c6ba6f0d
MK
1297 /* Floating-point return values can be found in %st(0). Convert
1298 its contents to the desired type. This is probably not
1299 exactly how it would happen on the target itself, but it is
1300 the best we can do. */
acd5c798 1301 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1302 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1303 }
1304 else
c5aa993b 1305 {
f837910f
MK
1306 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1307 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1308
1309 if (len <= low_size)
00f8375e 1310 {
0818c12a 1311 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1312 memcpy (valbuf, buf, len);
1313 }
d4f3574e
SS
1314 else if (len <= (low_size + high_size))
1315 {
0818c12a 1316 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1317 memcpy (valbuf, buf, low_size);
0818c12a 1318 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1319 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1320 }
1321 else
8e65ff28 1322 internal_error (__FILE__, __LINE__,
e2e0b3e5 1323 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1324 }
1325}
1326
c5e656c1
MK
1327/* Write, for architecture GDBARCH, a function return value of TYPE
1328 from VALBUF into REGCACHE. */
ef9dff19 1329
3a1e71e3 1330static void
c5e656c1 1331i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1332 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1333{
c5e656c1 1334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1335 int len = TYPE_LENGTH (type);
1336
5716833c
MK
1337 /* Define I387_ST0_REGNUM such that we use the proper definitions
1338 for the architecture. */
1339#define I387_ST0_REGNUM I386_ST0_REGNUM
1340
1e8d0a7b 1341 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1342 {
3d7f4f49 1343 ULONGEST fstat;
63c0089f 1344 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1345
5716833c 1346 if (tdep->st0_regnum < 0)
ef9dff19 1347 {
8a3fe4f8 1348 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1349 return;
1350 }
1351
635b0cc1
MK
1352 /* Returning floating-point values is a bit tricky. Apart from
1353 storing the return value in %st(0), we have to simulate the
1354 state of the FPU at function return point. */
1355
c6ba6f0d
MK
1356 /* Convert the value found in VALBUF to the extended
1357 floating-point format used by the FPU. This is probably
1358 not exactly how it would happen on the target itself, but
1359 it is the best we can do. */
1360 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1361 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1362
635b0cc1
MK
1363 /* Set the top of the floating-point register stack to 7. The
1364 actual value doesn't really matter, but 7 is what a normal
1365 function return would end up with if the program started out
1366 with a freshly initialized FPU. */
5716833c 1367 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1368 fstat |= (7 << 11);
5716833c 1369 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1370
635b0cc1
MK
1371 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1372 the floating-point register stack to 7, the appropriate value
1373 for the tag word is 0x3fff. */
5716833c 1374 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1375 }
1376 else
1377 {
f837910f
MK
1378 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1379 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1380
1381 if (len <= low_size)
3d7f4f49 1382 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1383 else if (len <= (low_size + high_size))
1384 {
3d7f4f49
MK
1385 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1386 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1387 len - low_size, valbuf + low_size);
ef9dff19
MK
1388 }
1389 else
8e65ff28 1390 internal_error (__FILE__, __LINE__,
e2e0b3e5 1391 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1392 }
5716833c
MK
1393
1394#undef I387_ST0_REGNUM
ef9dff19 1395}
fc338970 1396\f
ef9dff19 1397
8201327c
MK
1398/* This is the variable that is set with "set struct-convention", and
1399 its legitimate values. */
1400static const char default_struct_convention[] = "default";
1401static const char pcc_struct_convention[] = "pcc";
1402static const char reg_struct_convention[] = "reg";
1403static const char *valid_conventions[] =
1404{
1405 default_struct_convention,
1406 pcc_struct_convention,
1407 reg_struct_convention,
1408 NULL
1409};
1410static const char *struct_convention = default_struct_convention;
1411
c5e656c1
MK
1412/* Return non-zero if TYPE, which is assumed to be a structure or
1413 union type, should be returned in registers for architecture
1414 GDBARCH. */
1415
8201327c 1416static int
c5e656c1 1417i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1418{
c5e656c1
MK
1419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1420 enum type_code code = TYPE_CODE (type);
1421 int len = TYPE_LENGTH (type);
8201327c 1422
c5e656c1
MK
1423 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1424
1425 if (struct_convention == pcc_struct_convention
1426 || (struct_convention == default_struct_convention
1427 && tdep->struct_return == pcc_struct_return))
1428 return 0;
1429
9edde48e
MK
1430 /* Structures consisting of a single `float', `double' or 'long
1431 double' member are returned in %st(0). */
1432 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1433 {
1434 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1435 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1436 return (len == 4 || len == 8 || len == 12);
1437 }
1438
c5e656c1
MK
1439 return (len == 1 || len == 2 || len == 4 || len == 8);
1440}
1441
1442/* Determine, for architecture GDBARCH, how a return value of TYPE
1443 should be returned. If it is supposed to be returned in registers,
1444 and READBUF is non-zero, read the appropriate value from REGCACHE,
1445 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1446 from WRITEBUF into REGCACHE. */
1447
1448static enum return_value_convention
1449i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1450 struct regcache *regcache, gdb_byte *readbuf,
1451 const gdb_byte *writebuf)
c5e656c1
MK
1452{
1453 enum type_code code = TYPE_CODE (type);
1454
1455 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1456 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1457 {
1458 /* The System V ABI says that:
1459
1460 "A function that returns a structure or union also sets %eax
1461 to the value of the original address of the caller's area
1462 before it returns. Thus when the caller receives control
1463 again, the address of the returned object resides in register
1464 %eax and can be used to access the object."
1465
1466 So the ABI guarantees that we can always find the return
1467 value just after the function has returned. */
1468
1469 if (readbuf)
1470 {
1471 ULONGEST addr;
1472
1473 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1474 read_memory (addr, readbuf, TYPE_LENGTH (type));
1475 }
1476
1477 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1478 }
c5e656c1
MK
1479
1480 /* This special case is for structures consisting of a single
9edde48e
MK
1481 `float', `double' or 'long double' member. These structures are
1482 returned in %st(0). For these structures, we call ourselves
1483 recursively, changing TYPE into the type of the first member of
1484 the structure. Since that should work for all structures that
1485 have only one member, we don't bother to check the member's type
1486 here. */
c5e656c1
MK
1487 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1488 {
1489 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1490 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1491 }
1492
1493 if (readbuf)
1494 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1495 if (writebuf)
1496 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1497
c5e656c1 1498 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1499}
1500\f
1501
21b4b2f2
JB
1502/* Types for the MMX and SSE registers. */
1503static struct type *i386_mmx_type;
1504static struct type *i386_sse_type;
1505
1506/* Construct the type for MMX registers. */
1507static struct type *
1508i386_build_mmx_type (void)
1509{
1510 /* The type we're building is this: */
1511#if 0
1512 union __gdb_builtin_type_vec64i
1513 {
1514 int64_t uint64;
1515 int32_t v2_int32[2];
1516 int16_t v4_int16[4];
1517 int8_t v8_int8[8];
1518 };
1519#endif
1520
1521 if (! i386_mmx_type)
1522 {
1523 struct type *t;
1524
1525 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1526 append_composite_type_field (t, "uint64", builtin_type_int64);
1527 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
1528 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
1529 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
1530
1531 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1532 TYPE_NAME (t) = "builtin_type_vec64i";
1533
1534 i386_mmx_type = t;
1535 }
1536
1537 return i386_mmx_type;
1538}
1539
1540/* Construct the type for SSE registers. */
1541static struct type *
1542i386_build_sse_type (void)
1543{
1544 if (! i386_sse_type)
1545 {
1546 struct type *t;
1547
1548 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1549 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
1550 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
1551 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
1552 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
1553 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
1554 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
1555 append_composite_type_field (t, "uint128", builtin_type_int128);
1556
1557 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1558 TYPE_NAME (t) = "builtin_type_vec128i";
1559
1560 i386_sse_type = t;
1561 }
1562
1563 return i386_sse_type;
1564}
1565
d7a0d72c
MK
1566/* Return the GDB type object for the "standard" data type of data in
1567 register REGNUM. Perhaps %esi and %edi should go here, but
1568 potentially they could be used for things other than address. */
1569
3a1e71e3 1570static struct type *
4e259f09 1571i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1572{
ab533587
MK
1573 if (regnum == I386_EIP_REGNUM)
1574 return builtin_type_void_func_ptr;
1575
1576 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1577 return builtin_type_void_data_ptr;
d7a0d72c 1578
23a34459 1579 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1580 return builtin_type_i387_ext;
d7a0d72c 1581
5716833c 1582 if (i386_sse_regnum_p (gdbarch, regnum))
21b4b2f2 1583 return i386_build_sse_type ();
d7a0d72c 1584
5716833c 1585 if (i386_mmx_regnum_p (gdbarch, regnum))
21b4b2f2 1586 return i386_build_mmx_type ();
28fc6740 1587
d7a0d72c
MK
1588 return builtin_type_int;
1589}
1590
28fc6740 1591/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1592 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1593
1594static int
c86c27af 1595i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1596{
5716833c
MK
1597 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1598 int mmxreg, fpreg;
28fc6740
AC
1599 ULONGEST fstat;
1600 int tos;
c86c27af 1601
5716833c
MK
1602 /* Define I387_ST0_REGNUM such that we use the proper definitions
1603 for REGCACHE's architecture. */
1604#define I387_ST0_REGNUM tdep->st0_regnum
1605
1606 mmxreg = regnum - tdep->mm0_regnum;
1607 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1608 tos = (fstat >> 11) & 0x7;
5716833c
MK
1609 fpreg = (mmxreg + tos) % 8;
1610
1611 return (I387_ST0_REGNUM + fpreg);
c86c27af 1612
5716833c 1613#undef I387_ST0_REGNUM
28fc6740
AC
1614}
1615
1616static void
1617i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1618 int regnum, gdb_byte *buf)
28fc6740 1619{
5716833c 1620 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1621 {
63c0089f 1622 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1623 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1624
28fc6740 1625 /* Extract (always little endian). */
c86c27af 1626 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1627 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1628 }
1629 else
1630 regcache_raw_read (regcache, regnum, buf);
1631}
1632
1633static void
1634i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1635 int regnum, const gdb_byte *buf)
28fc6740 1636{
5716833c 1637 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1638 {
63c0089f 1639 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1640 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1641
28fc6740
AC
1642 /* Read ... */
1643 regcache_raw_read (regcache, fpnum, mmx_buf);
1644 /* ... Modify ... (always little endian). */
f837910f 1645 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1646 /* ... Write. */
1647 regcache_raw_write (regcache, fpnum, mmx_buf);
1648 }
1649 else
1650 regcache_raw_write (regcache, regnum, buf);
1651}
ff2e87ac
AC
1652\f
1653
ff2e87ac
AC
1654/* Return the register number of the register allocated by GCC after
1655 REGNUM, or -1 if there is no such register. */
1656
1657static int
1658i386_next_regnum (int regnum)
1659{
1660 /* GCC allocates the registers in the order:
1661
1662 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1663
1664 Since storing a variable in %esp doesn't make any sense we return
1665 -1 for %ebp and for %esp itself. */
1666 static int next_regnum[] =
1667 {
1668 I386_EDX_REGNUM, /* Slot for %eax. */
1669 I386_EBX_REGNUM, /* Slot for %ecx. */
1670 I386_ECX_REGNUM, /* Slot for %edx. */
1671 I386_ESI_REGNUM, /* Slot for %ebx. */
1672 -1, -1, /* Slots for %esp and %ebp. */
1673 I386_EDI_REGNUM, /* Slot for %esi. */
1674 I386_EBP_REGNUM /* Slot for %edi. */
1675 };
1676
de5b9bb9 1677 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1678 return next_regnum[regnum];
28fc6740 1679
ff2e87ac
AC
1680 return -1;
1681}
1682
1683/* Return nonzero if a value of type TYPE stored in register REGNUM
1684 needs any special handling. */
d7a0d72c 1685
3a1e71e3 1686static int
ff2e87ac 1687i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1688{
de5b9bb9
MK
1689 int len = TYPE_LENGTH (type);
1690
ff2e87ac
AC
1691 /* Values may be spread across multiple registers. Most debugging
1692 formats aren't expressive enough to specify the locations, so
1693 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1694 have a length that is a multiple of the word size, since GCC
1695 doesn't seem to put any other types into registers. */
1696 if (len > 4 && len % 4 == 0)
1697 {
1698 int last_regnum = regnum;
1699
1700 while (len > 4)
1701 {
1702 last_regnum = i386_next_regnum (last_regnum);
1703 len -= 4;
1704 }
1705
1706 if (last_regnum != -1)
1707 return 1;
1708 }
ff2e87ac 1709
23a34459 1710 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1711}
1712
ff2e87ac
AC
1713/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1714 return its contents in TO. */
ac27f131 1715
3a1e71e3 1716static void
ff2e87ac 1717i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1718 struct type *type, gdb_byte *to)
ac27f131 1719{
de5b9bb9 1720 int len = TYPE_LENGTH (type);
de5b9bb9 1721
ff2e87ac
AC
1722 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1723 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1724
ff2e87ac 1725 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1726 {
d532c08f
MK
1727 i387_register_to_value (frame, regnum, type, to);
1728 return;
8d7f6b4a 1729 }
ff2e87ac 1730
fd35795f 1731 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1732
1733 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1734
de5b9bb9
MK
1735 while (len > 0)
1736 {
1737 gdb_assert (regnum != -1);
1738 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1739
42835c2b 1740 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1741 regnum = i386_next_regnum (regnum);
1742 len -= 4;
42835c2b 1743 to += 4;
de5b9bb9 1744 }
ac27f131
MK
1745}
1746
ff2e87ac
AC
1747/* Write the contents FROM of a value of type TYPE into register
1748 REGNUM in frame FRAME. */
ac27f131 1749
3a1e71e3 1750static void
ff2e87ac 1751i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1752 struct type *type, const gdb_byte *from)
ac27f131 1753{
de5b9bb9 1754 int len = TYPE_LENGTH (type);
de5b9bb9 1755
ff2e87ac 1756 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1757 {
d532c08f
MK
1758 i387_value_to_register (frame, regnum, type, from);
1759 return;
1760 }
3d261580 1761
fd35795f 1762 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1763
1764 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1765
de5b9bb9
MK
1766 while (len > 0)
1767 {
1768 gdb_assert (regnum != -1);
1769 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1770
42835c2b 1771 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1772 regnum = i386_next_regnum (regnum);
1773 len -= 4;
42835c2b 1774 from += 4;
de5b9bb9 1775 }
ac27f131 1776}
ff2e87ac 1777\f
7fdafb5a
MK
1778/* Supply register REGNUM from the buffer specified by GREGS and LEN
1779 in the general-purpose register set REGSET to register cache
1780 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1781
20187ed5 1782void
473f17b0
MK
1783i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1784 int regnum, const void *gregs, size_t len)
1785{
9ea75c57 1786 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1787 const gdb_byte *regs = gregs;
473f17b0
MK
1788 int i;
1789
1790 gdb_assert (len == tdep->sizeof_gregset);
1791
1792 for (i = 0; i < tdep->gregset_num_regs; i++)
1793 {
1794 if ((regnum == i || regnum == -1)
1795 && tdep->gregset_reg_offset[i] != -1)
1796 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1797 }
1798}
1799
7fdafb5a
MK
1800/* Collect register REGNUM from the register cache REGCACHE and store
1801 it in the buffer specified by GREGS and LEN as described by the
1802 general-purpose register set REGSET. If REGNUM is -1, do this for
1803 all registers in REGSET. */
1804
1805void
1806i386_collect_gregset (const struct regset *regset,
1807 const struct regcache *regcache,
1808 int regnum, void *gregs, size_t len)
1809{
1810 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1811 gdb_byte *regs = gregs;
7fdafb5a
MK
1812 int i;
1813
1814 gdb_assert (len == tdep->sizeof_gregset);
1815
1816 for (i = 0; i < tdep->gregset_num_regs; i++)
1817 {
1818 if ((regnum == i || regnum == -1)
1819 && tdep->gregset_reg_offset[i] != -1)
1820 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1821 }
1822}
1823
1824/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1825 in the floating-point register set REGSET to register cache
1826 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1827
1828static void
1829i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1830 int regnum, const void *fpregs, size_t len)
1831{
9ea75c57 1832 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1833
66a72d25
MK
1834 if (len == I387_SIZEOF_FXSAVE)
1835 {
1836 i387_supply_fxsave (regcache, regnum, fpregs);
1837 return;
1838 }
1839
473f17b0
MK
1840 gdb_assert (len == tdep->sizeof_fpregset);
1841 i387_supply_fsave (regcache, regnum, fpregs);
1842}
8446b36a 1843
2f305df1
MK
1844/* Collect register REGNUM from the register cache REGCACHE and store
1845 it in the buffer specified by FPREGS and LEN as described by the
1846 floating-point register set REGSET. If REGNUM is -1, do this for
1847 all registers in REGSET. */
7fdafb5a
MK
1848
1849static void
1850i386_collect_fpregset (const struct regset *regset,
1851 const struct regcache *regcache,
1852 int regnum, void *fpregs, size_t len)
1853{
1854 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1855
1856 if (len == I387_SIZEOF_FXSAVE)
1857 {
1858 i387_collect_fxsave (regcache, regnum, fpregs);
1859 return;
1860 }
1861
1862 gdb_assert (len == tdep->sizeof_fpregset);
1863 i387_collect_fsave (regcache, regnum, fpregs);
1864}
1865
8446b36a
MK
1866/* Return the appropriate register set for the core section identified
1867 by SECT_NAME and SECT_SIZE. */
1868
1869const struct regset *
1870i386_regset_from_core_section (struct gdbarch *gdbarch,
1871 const char *sect_name, size_t sect_size)
1872{
1873 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1874
1875 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1876 {
1877 if (tdep->gregset == NULL)
7fdafb5a
MK
1878 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1879 i386_collect_gregset);
8446b36a
MK
1880 return tdep->gregset;
1881 }
1882
66a72d25
MK
1883 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1884 || (strcmp (sect_name, ".reg-xfp") == 0
1885 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1886 {
1887 if (tdep->fpregset == NULL)
7fdafb5a
MK
1888 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1889 i386_collect_fpregset);
8446b36a
MK
1890 return tdep->fpregset;
1891 }
1892
1893 return NULL;
1894}
473f17b0 1895\f
fc338970 1896
c906108c 1897#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1898/* SunPRO encodes the static variables. This is not related to C++
1899 mangling, it is done for C too. */
c906108c
SS
1900
1901char *
fba45db2 1902sunpro_static_transform_name (char *name)
c906108c
SS
1903{
1904 char *p;
1905 if (IS_STATIC_TRANSFORM_NAME (name))
1906 {
fc338970
MK
1907 /* For file-local statics there will be a period, a bunch of
1908 junk (the contents of which match a string given in the
c5aa993b
JM
1909 N_OPT), a period and the name. For function-local statics
1910 there will be a bunch of junk (which seems to change the
1911 second character from 'A' to 'B'), a period, the name of the
1912 function, and the name. So just skip everything before the
1913 last period. */
c906108c
SS
1914 p = strrchr (name, '.');
1915 if (p != NULL)
1916 name = p + 1;
1917 }
1918 return name;
1919}
1920#endif /* STATIC_TRANSFORM_NAME */
fc338970 1921\f
c906108c 1922
fc338970 1923/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1924
1925CORE_ADDR
1cce71eb 1926i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1927{
fc338970 1928 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1929 {
c5aa993b 1930 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1931 struct minimal_symbol *indsym =
fc338970 1932 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1933 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1934
c5aa993b 1935 if (symname)
c906108c 1936 {
c5aa993b
JM
1937 if (strncmp (symname, "__imp_", 6) == 0
1938 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1939 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1940 }
1941 }
fc338970 1942 return 0; /* Not a trampoline. */
c906108c 1943}
fc338970
MK
1944\f
1945
377d9ebd 1946/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1947 sigtramp routine. */
8201327c
MK
1948
1949static int
911bc6ee 1950i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1951{
911bc6ee
MK
1952 CORE_ADDR pc = frame_pc_unwind (next_frame);
1953 char *name;
1954
1955 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1956 return (name && strcmp ("_sigtramp", name) == 0);
1957}
1958\f
1959
fc338970
MK
1960/* We have two flavours of disassembly. The machinery on this page
1961 deals with switching between those. */
c906108c
SS
1962
1963static int
a89aa300 1964i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1965{
5e3397bb
MK
1966 gdb_assert (disassembly_flavor == att_flavor
1967 || disassembly_flavor == intel_flavor);
1968
1969 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1970 constified, cast to prevent a compiler warning. */
1971 info->disassembler_options = (char *) disassembly_flavor;
1972 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1973
1974 return print_insn_i386 (pc, info);
7a292a7a 1975}
fc338970 1976\f
3ce1502b 1977
8201327c
MK
1978/* There are a few i386 architecture variants that differ only
1979 slightly from the generic i386 target. For now, we don't give them
1980 their own source file, but include them here. As a consequence,
1981 they'll always be included. */
3ce1502b 1982
8201327c 1983/* System V Release 4 (SVR4). */
3ce1502b 1984
377d9ebd 1985/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
1986 sigtramp routine. */
1987
8201327c 1988static int
911bc6ee 1989i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 1990{
911bc6ee
MK
1991 CORE_ADDR pc = frame_pc_unwind (next_frame);
1992 char *name;
1993
acd5c798
MK
1994 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1995 currently unknown. */
911bc6ee 1996 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1997 return (name && (strcmp ("_sigreturn", name) == 0
1998 || strcmp ("_sigacthandler", name) == 0
1999 || strcmp ("sigvechandler", name) == 0));
2000}
d2a7c97a 2001
acd5c798
MK
2002/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2003 routine, return the address of the associated sigcontext (ucontext)
2004 structure. */
3ce1502b 2005
3a1e71e3 2006static CORE_ADDR
acd5c798 2007i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2008{
63c0089f 2009 gdb_byte buf[4];
acd5c798 2010 CORE_ADDR sp;
3ce1502b 2011
acd5c798
MK
2012 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2013 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2014
acd5c798 2015 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2016}
2017\f
3ce1502b 2018
8201327c 2019/* Generic ELF. */
d2a7c97a 2020
8201327c
MK
2021void
2022i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2023{
c4fc7f1b
MK
2024 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2025 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2026}
3ce1502b 2027
8201327c 2028/* System V Release 4 (SVR4). */
3ce1502b 2029
8201327c
MK
2030void
2031i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2032{
2033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2034
8201327c
MK
2035 /* System V Release 4 uses ELF. */
2036 i386_elf_init_abi (info, gdbarch);
3ce1502b 2037
dfe01d39 2038 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2039 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2040
911bc6ee 2041 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2042 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2043 tdep->sc_pc_offset = 36 + 14 * 4;
2044 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2045
8201327c 2046 tdep->jb_pc_offset = 20;
3ce1502b
MK
2047}
2048
8201327c 2049/* DJGPP. */
3ce1502b 2050
3a1e71e3 2051static void
8201327c 2052i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2053{
8201327c 2054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2055
911bc6ee
MK
2056 /* DJGPP doesn't have any special frames for signal handlers. */
2057 tdep->sigtramp_p = NULL;
3ce1502b 2058
8201327c 2059 tdep->jb_pc_offset = 36;
3ce1502b
MK
2060}
2061
8201327c 2062/* NetWare. */
3ce1502b 2063
3a1e71e3 2064static void
8201327c 2065i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2066{
8201327c 2067 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2068
8201327c 2069 tdep->jb_pc_offset = 24;
d2a7c97a 2070}
8201327c 2071\f
2acceee2 2072
38c968cf
AC
2073/* i386 register groups. In addition to the normal groups, add "mmx"
2074 and "sse". */
2075
2076static struct reggroup *i386_sse_reggroup;
2077static struct reggroup *i386_mmx_reggroup;
2078
2079static void
2080i386_init_reggroups (void)
2081{
2082 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2083 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2084}
2085
2086static void
2087i386_add_reggroups (struct gdbarch *gdbarch)
2088{
2089 reggroup_add (gdbarch, i386_sse_reggroup);
2090 reggroup_add (gdbarch, i386_mmx_reggroup);
2091 reggroup_add (gdbarch, general_reggroup);
2092 reggroup_add (gdbarch, float_reggroup);
2093 reggroup_add (gdbarch, all_reggroup);
2094 reggroup_add (gdbarch, save_reggroup);
2095 reggroup_add (gdbarch, restore_reggroup);
2096 reggroup_add (gdbarch, vector_reggroup);
2097 reggroup_add (gdbarch, system_reggroup);
2098}
2099
2100int
2101i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2102 struct reggroup *group)
2103{
5716833c
MK
2104 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2105 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2106 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2107 || i386_fpc_regnum_p (regnum));
5716833c 2108 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2109
38c968cf
AC
2110 if (group == i386_mmx_reggroup)
2111 return mmx_regnum_p;
2112 if (group == i386_sse_reggroup)
2113 return sse_regnum_p;
2114 if (group == vector_reggroup)
2115 return (mmx_regnum_p || sse_regnum_p);
2116 if (group == float_reggroup)
2117 return fp_regnum_p;
2118 if (group == general_reggroup)
2119 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2120
38c968cf
AC
2121 return default_register_reggroup_p (gdbarch, regnum, group);
2122}
38c968cf 2123\f
acd5c798 2124
f837910f
MK
2125/* Get the ARGIth function argument for the current function. */
2126
42c466d7 2127static CORE_ADDR
143985b7
AF
2128i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2129 struct type *type)
2130{
f837910f
MK
2131 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2132 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2133}
2134
2135\f
3a1e71e3 2136static struct gdbarch *
a62cc96e
AC
2137i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2138{
cd3c07fc 2139 struct gdbarch_tdep *tdep;
a62cc96e
AC
2140 struct gdbarch *gdbarch;
2141
4be87837
DJ
2142 /* If there is already a candidate, use it. */
2143 arches = gdbarch_list_lookup_by_info (arches, &info);
2144 if (arches != NULL)
2145 return arches->gdbarch;
a62cc96e
AC
2146
2147 /* Allocate space for the new architecture. */
2148 tdep = XMALLOC (struct gdbarch_tdep);
2149 gdbarch = gdbarch_alloc (&info, tdep);
2150
473f17b0
MK
2151 /* General-purpose registers. */
2152 tdep->gregset = NULL;
2153 tdep->gregset_reg_offset = NULL;
2154 tdep->gregset_num_regs = I386_NUM_GREGS;
2155 tdep->sizeof_gregset = 0;
2156
2157 /* Floating-point registers. */
2158 tdep->fpregset = NULL;
2159 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2160
5716833c 2161 /* The default settings include the FPU registers, the MMX registers
fd35795f 2162 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2163 by adjusting the members `st0_regnum', `mm0_regnum' and
2164 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2165 will show up in the output of "info all-registers". Ideally we
2166 should try to autodetect whether they are available, such that we
2167 can prevent "info all-registers" from displaying registers that
2168 aren't available.
2169
2170 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2171 [the SSE registers] always (even when they don't exist) or never
2172 showing them to the user (even when they do exist), I prefer the
2173 former over the latter. */
2174
2175 tdep->st0_regnum = I386_ST0_REGNUM;
2176
2177 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2178 calculating the register number for %mm0 until we know the number
5716833c
MK
2179 of raw registers. */
2180 tdep->mm0_regnum = 0;
2181
2182 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2183 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2184
8201327c
MK
2185 tdep->jb_pc_offset = -1;
2186 tdep->struct_return = pcc_struct_return;
8201327c
MK
2187 tdep->sigtramp_start = 0;
2188 tdep->sigtramp_end = 0;
911bc6ee 2189 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2190 tdep->sigcontext_addr = NULL;
a3386186 2191 tdep->sc_reg_offset = NULL;
8201327c 2192 tdep->sc_pc_offset = -1;
21d0e8a4 2193 tdep->sc_sp_offset = -1;
8201327c 2194
896fb97d
MK
2195 /* The format used for `long double' on almost all i386 targets is
2196 the i387 extended floating-point format. In fact, of all targets
2197 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2198 on having a `long double' that's not `long' at all. */
2199 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2200
66da5fd8 2201 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2202 bits, a `long double' actually takes up 96, probably to enforce
2203 alignment. */
2204 set_gdbarch_long_double_bit (gdbarch, 96);
2205
49ed40de
KB
2206 /* The default ABI includes general-purpose registers,
2207 floating-point registers, and the SSE registers. */
2208 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2209 set_gdbarch_register_name (gdbarch, i386_register_name);
2210 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2211
acd5c798
MK
2212 /* Register numbers of various important registers. */
2213 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2214 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2215 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2216 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2217
c4fc7f1b
MK
2218 /* NOTE: kettenis/20040418: GCC does have two possible register
2219 numbering schemes on the i386: dbx and SVR4. These schemes
2220 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2221 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2222 dbx_register_map[] and svr4_dbx_register_map in
2223 gcc/config/i386.c. GCC also defines a third numbering scheme in
2224 gcc/config/i386.c, which it designates as the "default" register
2225 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2226 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2227 amd64-tdep.c.
2228
2229 Currently, each GCC i386 target always uses the same register
2230 numbering scheme across all its supported debugging formats
2231 i.e. SDB (COFF), stabs and DWARF 2. This is because
2232 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2233 DBX_REGISTER_NUMBER macro which is defined by each target's
2234 respective config header in a manner independent of the requested
2235 output debugging format.
2236
2237 This does not match the arrangement below, which presumes that
2238 the SDB and stabs numbering schemes differ from the DWARF and
2239 DWARF 2 ones. The reason for this arrangement is that it is
2240 likely to get the numbering scheme for the target's
2241 default/native debug format right. For targets where GCC is the
2242 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2243 targets where the native toolchain uses a different numbering
2244 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2245 the defaults below will have to be overridden, like
2246 i386_elf_init_abi() does. */
c4fc7f1b
MK
2247
2248 /* Use the dbx register numbering scheme for stabs and COFF. */
2249 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2250 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2251
2252 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2253 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2254 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2255
2256 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2257 be in use on any of the supported i386 targets. */
2258
61113f8b
MK
2259 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2260
8201327c 2261 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2262
a62cc96e 2263 /* Call dummy code. */
acd5c798 2264 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2265
ff2e87ac
AC
2266 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2267 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2268 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2269
c5e656c1 2270 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2271
93924b6b
MK
2272 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2273
2274 /* Stack grows downward. */
2275 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2276
2277 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2278 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2279
42fdc8df 2280 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2281
28fc6740 2282 /* Wire in the MMX registers. */
0f751ff2 2283 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2284 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2285 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2286
5e3397bb
MK
2287 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2288
acd5c798 2289 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2290
2291 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2292
38c968cf
AC
2293 /* Add the i386 register groups. */
2294 i386_add_reggroups (gdbarch);
2295 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2296
143985b7
AF
2297 /* Helper for function argument information. */
2298 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2299
6405b0a6 2300 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2301 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2302
acd5c798 2303 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2304
3ce1502b 2305 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2306 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2307
336d1bba
AC
2308 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2309 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2310
8446b36a
MK
2311 /* If we have a register mapping, enable the generic core file
2312 support, unless it has already been enabled. */
2313 if (tdep->gregset_reg_offset
2314 && !gdbarch_regset_from_core_section_p (gdbarch))
2315 set_gdbarch_regset_from_core_section (gdbarch,
2316 i386_regset_from_core_section);
2317
5716833c
MK
2318 /* Unless support for MMX has been disabled, make %mm0 the first
2319 pseudo-register. */
2320 if (tdep->mm0_regnum == 0)
2321 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2322
a62cc96e
AC
2323 return gdbarch;
2324}
2325
8201327c
MK
2326static enum gdb_osabi
2327i386_coff_osabi_sniffer (bfd *abfd)
2328{
762c5349
MK
2329 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2330 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2331 return GDB_OSABI_GO32;
2332
2333 return GDB_OSABI_UNKNOWN;
2334}
2335
2336static enum gdb_osabi
2337i386_nlm_osabi_sniffer (bfd *abfd)
2338{
2339 return GDB_OSABI_NETWARE;
2340}
2341\f
2342
28e9e0f0
MK
2343/* Provide a prototype to silence -Wmissing-prototypes. */
2344void _initialize_i386_tdep (void);
2345
c906108c 2346void
fba45db2 2347_initialize_i386_tdep (void)
c906108c 2348{
a62cc96e
AC
2349 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2350
fc338970 2351 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2352 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2353 &disassembly_flavor, _("\
2354Set the disassembly flavor."), _("\
2355Show the disassembly flavor."), _("\
2356The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2357 NULL,
2358 NULL, /* FIXME: i18n: */
2359 &setlist, &showlist);
8201327c
MK
2360
2361 /* Add the variable that controls the convention for returning
2362 structs. */
7ab04401
AC
2363 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2364 &struct_convention, _("\
2365Set the convention for returning small structs."), _("\
2366Show the convention for returning small structs."), _("\
2367Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2368is \"default\"."),
2369 NULL,
2370 NULL, /* FIXME: i18n: */
2371 &setlist, &showlist);
8201327c
MK
2372
2373 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2374 i386_coff_osabi_sniffer);
2375 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2376 i386_nlm_osabi_sniffer);
2377
05816f70 2378 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2379 i386_svr4_init_abi);
05816f70 2380 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2381 i386_go32_init_abi);
05816f70 2382 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2383 i386_nw_init_abi);
38c968cf
AC
2384
2385 /* Initialize the i386 specific register groups. */
2386 i386_init_reggroups ();
c906108c 2387}
This page took 0.624128 seconds and 4 git commands to generate.