Update copyright year printed by gdb, gdbserver and gdbreplay.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
ecd75fc8 3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
7ad10968
HZ
53#include <stdint.h>
54
90884b2b 55#include "features/i386/i386.c"
c131fcee 56#include "features/i386/i386-avx.c"
1dbcd68c 57#include "features/i386/i386-mpx.c"
01f9f808 58#include "features/i386/i386-avx512.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
01f9f808
MS
88static const char *i386_zmm_names[] =
89{
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92};
93
94static const char *i386_zmmh_names[] =
95{
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98};
99
100static const char *i386_k_names[] =
101{
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104};
105
c131fcee
L
106static const char *i386_ymm_names[] =
107{
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110};
111
112static const char *i386_ymmh_names[] =
113{
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116};
117
1dbcd68c
WT
118static const char *i386_mpx_names[] =
119{
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121};
122
123/* Register names for MPX pseudo-registers. */
124
125static const char *i386_bnd_names[] =
126{
127 "bnd0", "bnd1", "bnd2", "bnd3"
128};
129
c4fc7f1b 130/* Register names for MMX pseudo-registers. */
28fc6740 131
90884b2b 132static const char *i386_mmx_names[] =
28fc6740
AC
133{
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136};
c40e1eab 137
1ba53b71
L
138/* Register names for byte pseudo-registers. */
139
140static const char *i386_byte_names[] =
141{
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144};
145
146/* Register names for word pseudo-registers. */
147
148static const char *i386_word_names[] =
149{
150 "ax", "cx", "dx", "bx",
9cad29ac 151 "", "bp", "si", "di"
1ba53b71
L
152};
153
01f9f808
MS
154/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158const int num_lower_zmm_regs = 16;
159
1ba53b71 160/* MMX register? */
c40e1eab 161
28fc6740 162static int
5716833c 163i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 164{
1ba53b71
L
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
167
168 if (mm0_regnum < 0)
169 return 0;
170
1ba53b71
L
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173}
174
175/* Byte register? */
176
177int
178i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179{
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184}
185
186/* Word register? */
187
188int
189i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190{
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195}
196
197/* Dword register? */
198
199int
200i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201{
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
210}
211
01f9f808
MS
212/* AVX512 register? */
213
214int
215i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216{
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225}
226
227int
228i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229{
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238}
239
240int
241i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242{
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251}
252
9191d390 253static int
c131fcee
L
254i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255{
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264}
265
266/* AVX register? */
267
268int
269i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270{
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279}
280
01f9f808
MS
281static int
282i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283{
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292}
293
294int
295i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305}
306
1dbcd68c
WT
307/* BND register? */
308
309int
310i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311{
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320}
321
5716833c 322/* SSE register? */
23a34459 323
c131fcee
L
324int
325i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 326{
5716833c 327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 329
c131fcee 330 if (num_xmm_regs == 0)
5716833c
MK
331 return 0;
332
c131fcee
L
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
335}
336
01f9f808
MS
337/* XMM_512 register? */
338
339int
340i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341{
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350}
351
5716833c
MK
352static int
353i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 354{
5716833c
MK
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
20a6ec49 357 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
358 return 0;
359
20a6ec49 360 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
361}
362
5716833c 363/* FP register? */
23a34459
AC
364
365int
20a6ec49 366i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 367{
20a6ec49
MD
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
371 return 0;
372
20a6ec49
MD
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
375}
376
377int
20a6ec49 378i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 379{
20a6ec49
MD
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
383 return 0;
384
20a6ec49
MD
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
387}
388
1dbcd68c
WT
389/* BNDr (raw) register? */
390
391static int
392i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393{
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401}
402
403/* BND control register? */
404
405static int
406i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407{
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415}
416
c131fcee
L
417/* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420static const char *
421i386_register_name (struct gdbarch *gdbarch, int regnum)
422{
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
01f9f808
MS
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
c131fcee
L
435 return tdesc_register_name (gdbarch, regnum);
436}
437
30b0e2d8 438/* Return the name of register REGNUM. */
fc633446 439
1ba53b71 440const char *
90884b2b 441i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 442{
1ba53b71 443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
458}
459
c4fc7f1b 460/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
461 number used by GDB. */
462
8201327c 463static int
d3f73121 464i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 465{
20a6ec49
MD
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
c4fc7f1b
MK
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
85540d8c
MK
471 if (reg >= 0 && reg <= 7)
472 {
9872ad24
JB
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
85540d8c
MK
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
20a6ec49 484 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
c131fcee
L
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
20a6ec49 500 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
501 }
502
503 /* This will hopefully provoke a warning. */
d3f73121 504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
505}
506
c4fc7f1b
MK
507/* Convert SVR4 register number REG to the appropriate register number
508 used by GDB. */
85540d8c 509
8201327c 510static int
d3f73121 511i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 512{
20a6ec49
MD
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
c4fc7f1b
MK
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
acd5c798 522 /* General-purpose registers. */
85540d8c
MK
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
20a6ec49 528 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 529 }
c6f4c129 530 else if (reg >= 21 && reg <= 36)
85540d8c 531 {
c4fc7f1b 532 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 533 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
534 }
535
c6f4c129
JB
536 switch (reg)
537 {
20a6ec49
MD
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
85540d8c 549 /* This will hopefully provoke a warning. */
d3f73121 550 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 551}
5716833c 552
fc338970 553\f
917317f4 554
fc338970
MK
555/* This is the variable that is set with "set disassembly-flavor", and
556 its legitimate values. */
53904c9e
AC
557static const char att_flavor[] = "att";
558static const char intel_flavor[] = "intel";
40478521 559static const char *const valid_flavors[] =
c5aa993b 560{
c906108c
SS
561 att_flavor,
562 intel_flavor,
563 NULL
564};
53904c9e 565static const char *disassembly_flavor = att_flavor;
acd5c798 566\f
c906108c 567
acd5c798
MK
568/* Use the program counter to determine the contents and size of a
569 breakpoint instruction. Return a pointer to a string of bytes that
570 encode a breakpoint instruction, store the length of the string in
571 *LEN and optionally adjust *PC to point to the correct memory
572 location for inserting the breakpoint.
c906108c 573
acd5c798
MK
574 On the i386 we have a single breakpoint that fits in a single byte
575 and can be inserted anywhere.
c906108c 576
acd5c798 577 This function is 64-bit safe. */
63c0089f
MK
578
579static const gdb_byte *
67d57894 580i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 581{
63c0089f
MK
582 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
583
acd5c798
MK
584 *len = sizeof (break_insn);
585 return break_insn;
c906108c 586}
237fc4c9
PA
587\f
588/* Displaced instruction handling. */
589
1903f0e6
DE
590/* Skip the legacy instruction prefixes in INSN.
591 Not all prefixes are valid for any particular insn
592 but we needn't care, the insn will fault if it's invalid.
593 The result is a pointer to the first opcode byte,
594 or NULL if we run off the end of the buffer. */
595
596static gdb_byte *
597i386_skip_prefixes (gdb_byte *insn, size_t max_len)
598{
599 gdb_byte *end = insn + max_len;
600
601 while (insn < end)
602 {
603 switch (*insn)
604 {
605 case DATA_PREFIX_OPCODE:
606 case ADDR_PREFIX_OPCODE:
607 case CS_PREFIX_OPCODE:
608 case DS_PREFIX_OPCODE:
609 case ES_PREFIX_OPCODE:
610 case FS_PREFIX_OPCODE:
611 case GS_PREFIX_OPCODE:
612 case SS_PREFIX_OPCODE:
613 case LOCK_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 case REPNE_PREFIX_OPCODE:
616 ++insn;
617 continue;
618 default:
619 return insn;
620 }
621 }
622
623 return NULL;
624}
237fc4c9
PA
625
626static int
1903f0e6 627i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 628{
1777feb0 629 /* jmp far (absolute address in operand). */
237fc4c9
PA
630 if (insn[0] == 0xea)
631 return 1;
632
633 if (insn[0] == 0xff)
634 {
1777feb0 635 /* jump near, absolute indirect (/4). */
237fc4c9
PA
636 if ((insn[1] & 0x38) == 0x20)
637 return 1;
638
1777feb0 639 /* jump far, absolute indirect (/5). */
237fc4c9
PA
640 if ((insn[1] & 0x38) == 0x28)
641 return 1;
642 }
643
644 return 0;
645}
646
c2170eef
MM
647/* Return non-zero if INSN is a jump, zero otherwise. */
648
649static int
650i386_jmp_p (const gdb_byte *insn)
651{
652 /* jump short, relative. */
653 if (insn[0] == 0xeb)
654 return 1;
655
656 /* jump near, relative. */
657 if (insn[0] == 0xe9)
658 return 1;
659
660 return i386_absolute_jmp_p (insn);
661}
662
237fc4c9 663static int
1903f0e6 664i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 665{
1777feb0 666 /* call far, absolute. */
237fc4c9
PA
667 if (insn[0] == 0x9a)
668 return 1;
669
670 if (insn[0] == 0xff)
671 {
1777feb0 672 /* Call near, absolute indirect (/2). */
237fc4c9
PA
673 if ((insn[1] & 0x38) == 0x10)
674 return 1;
675
1777feb0 676 /* Call far, absolute indirect (/3). */
237fc4c9
PA
677 if ((insn[1] & 0x38) == 0x18)
678 return 1;
679 }
680
681 return 0;
682}
683
684static int
1903f0e6 685i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
686{
687 switch (insn[0])
688 {
1777feb0 689 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 690 case 0xc3: /* ret near */
1777feb0 691 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
692 case 0xcb: /* ret far */
693 case 0xcf: /* iret */
694 return 1;
695
696 default:
697 return 0;
698 }
699}
700
701static int
1903f0e6 702i386_call_p (const gdb_byte *insn)
237fc4c9
PA
703{
704 if (i386_absolute_call_p (insn))
705 return 1;
706
1777feb0 707 /* call near, relative. */
237fc4c9
PA
708 if (insn[0] == 0xe8)
709 return 1;
710
711 return 0;
712}
713
237fc4c9
PA
714/* Return non-zero if INSN is a system call, and set *LENGTHP to its
715 length in bytes. Otherwise, return zero. */
1903f0e6 716
237fc4c9 717static int
b55078be 718i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 719{
9a7f938f
JK
720 /* Is it 'int $0x80'? */
721 if ((insn[0] == 0xcd && insn[1] == 0x80)
722 /* Or is it 'sysenter'? */
723 || (insn[0] == 0x0f && insn[1] == 0x34)
724 /* Or is it 'syscall'? */
725 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
726 {
727 *lengthp = 2;
728 return 1;
729 }
730
731 return 0;
732}
733
c2170eef
MM
734/* The gdbarch insn_is_call method. */
735
736static int
737i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
738{
739 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
740
741 read_code (addr, buf, I386_MAX_INSN_LEN);
742 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
743
744 return i386_call_p (insn);
745}
746
747/* The gdbarch insn_is_ret method. */
748
749static int
750i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
751{
752 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
753
754 read_code (addr, buf, I386_MAX_INSN_LEN);
755 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
756
757 return i386_ret_p (insn);
758}
759
760/* The gdbarch insn_is_jump method. */
761
762static int
763i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
764{
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_jmp_p (insn);
771}
772
b55078be
DE
773/* Some kernels may run one past a syscall insn, so we have to cope.
774 Otherwise this is just simple_displaced_step_copy_insn. */
775
776struct displaced_step_closure *
777i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
778 CORE_ADDR from, CORE_ADDR to,
779 struct regcache *regs)
780{
781 size_t len = gdbarch_max_insn_length (gdbarch);
782 gdb_byte *buf = xmalloc (len);
783
784 read_memory (from, buf, len);
785
786 /* GDB may get control back after the insn after the syscall.
787 Presumably this is a kernel bug.
788 If this is a syscall, make sure there's a nop afterwards. */
789 {
790 int syscall_length;
791 gdb_byte *insn;
792
793 insn = i386_skip_prefixes (buf, len);
794 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
795 insn[syscall_length] = NOP_OPCODE;
796 }
797
798 write_memory (to, buf, len);
799
800 if (debug_displaced)
801 {
802 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
803 paddress (gdbarch, from), paddress (gdbarch, to));
804 displaced_step_dump_bytes (gdb_stdlog, buf, len);
805 }
806
807 return (struct displaced_step_closure *) buf;
808}
809
237fc4c9
PA
810/* Fix up the state of registers and memory after having single-stepped
811 a displaced instruction. */
1903f0e6 812
237fc4c9
PA
813void
814i386_displaced_step_fixup (struct gdbarch *gdbarch,
815 struct displaced_step_closure *closure,
816 CORE_ADDR from, CORE_ADDR to,
817 struct regcache *regs)
818{
e17a4113
UW
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820
237fc4c9
PA
821 /* The offset we applied to the instruction's address.
822 This could well be negative (when viewed as a signed 32-bit
823 value), but ULONGEST won't reflect that, so take care when
824 applying it. */
825 ULONGEST insn_offset = to - from;
826
827 /* Since we use simple_displaced_step_copy_insn, our closure is a
828 copy of the instruction. */
829 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
830 /* The start of the insn, needed in case we see some prefixes. */
831 gdb_byte *insn_start = insn;
237fc4c9
PA
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
5af949e3 835 "displaced: fixup (%s, %s), "
237fc4c9 836 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
837 paddress (gdbarch, from), paddress (gdbarch, to),
838 insn[0], insn[1]);
237fc4c9
PA
839
840 /* The list of issues to contend with here is taken from
841 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
842 Yay for Free Software! */
843
844 /* Relocate the %eip, if necessary. */
845
1903f0e6
DE
846 /* The instruction recognizers we use assume any leading prefixes
847 have been skipped. */
848 {
849 /* This is the size of the buffer in closure. */
850 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
851 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
852 /* If there are too many prefixes, just ignore the insn.
853 It will fault when run. */
854 if (opcode != NULL)
855 insn = opcode;
856 }
857
237fc4c9
PA
858 /* Except in the case of absolute or indirect jump or call
859 instructions, or a return instruction, the new eip is relative to
860 the displaced instruction; make it relative. Well, signal
861 handler returns don't need relocation either, but we use the
862 value of %eip to recognize those; see below. */
863 if (! i386_absolute_jmp_p (insn)
864 && ! i386_absolute_call_p (insn)
865 && ! i386_ret_p (insn))
866 {
867 ULONGEST orig_eip;
b55078be 868 int insn_len;
237fc4c9
PA
869
870 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
871
872 /* A signal trampoline system call changes the %eip, resuming
873 execution of the main program after the signal handler has
874 returned. That makes them like 'return' instructions; we
875 shouldn't relocate %eip.
876
877 But most system calls don't, and we do need to relocate %eip.
878
879 Our heuristic for distinguishing these cases: if stepping
880 over the system call instruction left control directly after
881 the instruction, the we relocate --- control almost certainly
882 doesn't belong in the displaced copy. Otherwise, we assume
883 the instruction has put control where it belongs, and leave
884 it unrelocated. Goodness help us if there are PC-relative
885 system calls. */
886 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
887 && orig_eip != to + (insn - insn_start) + insn_len
888 /* GDB can get control back after the insn after the syscall.
889 Presumably this is a kernel bug.
890 i386_displaced_step_copy_insn ensures its a nop,
891 we add one to the length for it. */
892 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
893 {
894 if (debug_displaced)
895 fprintf_unfiltered (gdb_stdlog,
896 "displaced: syscall changed %%eip; "
897 "not relocating\n");
898 }
899 else
900 {
901 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
902
1903f0e6
DE
903 /* If we just stepped over a breakpoint insn, we don't backup
904 the pc on purpose; this is to match behaviour without
905 stepping. */
237fc4c9
PA
906
907 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
908
909 if (debug_displaced)
910 fprintf_unfiltered (gdb_stdlog,
911 "displaced: "
5af949e3
UW
912 "relocated %%eip from %s to %s\n",
913 paddress (gdbarch, orig_eip),
914 paddress (gdbarch, eip));
237fc4c9
PA
915 }
916 }
917
918 /* If the instruction was PUSHFL, then the TF bit will be set in the
919 pushed value, and should be cleared. We'll leave this for later,
920 since GDB already messes up the TF flag when stepping over a
921 pushfl. */
922
923 /* If the instruction was a call, the return address now atop the
924 stack is the address following the copied instruction. We need
925 to make it the address following the original instruction. */
926 if (i386_call_p (insn))
927 {
928 ULONGEST esp;
929 ULONGEST retaddr;
930 const ULONGEST retaddr_len = 4;
931
932 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 933 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 934 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 935 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
939 "displaced: relocated return addr at %s to %s\n",
940 paddress (gdbarch, esp),
941 paddress (gdbarch, retaddr));
237fc4c9
PA
942 }
943}
dde08ee1
PA
944
945static void
946append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
947{
948 target_write_memory (*to, buf, len);
949 *to += len;
950}
951
952static void
953i386_relocate_instruction (struct gdbarch *gdbarch,
954 CORE_ADDR *to, CORE_ADDR oldloc)
955{
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 gdb_byte buf[I386_MAX_INSN_LEN];
958 int offset = 0, rel32, newrel;
959 int insn_length;
960 gdb_byte *insn = buf;
961
962 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
963
964 insn_length = gdb_buffered_insn_length (gdbarch, insn,
965 I386_MAX_INSN_LEN, oldloc);
966
967 /* Get past the prefixes. */
968 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
969
970 /* Adjust calls with 32-bit relative addresses as push/jump, with
971 the address pushed being the location where the original call in
972 the user program would return to. */
973 if (insn[0] == 0xe8)
974 {
975 gdb_byte push_buf[16];
976 unsigned int ret_addr;
977
978 /* Where "ret" in the original code will return to. */
979 ret_addr = oldloc + insn_length;
1777feb0 980 push_buf[0] = 0x68; /* pushq $... */
144db827 981 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
982 /* Push the push. */
983 append_insns (to, 5, push_buf);
984
985 /* Convert the relative call to a relative jump. */
986 insn[0] = 0xe9;
987
988 /* Adjust the destination offset. */
989 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
990 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
991 store_signed_integer (insn + 1, 4, byte_order, newrel);
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog,
995 "Adjusted insn rel32=%s at %s to"
996 " rel32=%s at %s\n",
997 hex_string (rel32), paddress (gdbarch, oldloc),
998 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
999
1000 /* Write the adjusted jump into its displaced location. */
1001 append_insns (to, 5, insn);
1002 return;
1003 }
1004
1005 /* Adjust jumps with 32-bit relative addresses. Calls are already
1006 handled above. */
1007 if (insn[0] == 0xe9)
1008 offset = 1;
1009 /* Adjust conditional jumps. */
1010 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1011 offset = 2;
1012
1013 if (offset)
1014 {
1015 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
f4a1794a 1017 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
dde08ee1
PA
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024 }
1025
1026 /* Write the adjusted instructions into their displaced
1027 location. */
1028 append_insns (to, insn_length, buf);
1029}
1030
fc338970 1031\f
acd5c798
MK
1032#ifdef I386_REGNO_TO_SYMMETRY
1033#error "The Sequent Symmetry is no longer supported."
1034#endif
c906108c 1035
acd5c798
MK
1036/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1037 and %esp "belong" to the calling function. Therefore these
1038 registers should be saved if they're going to be modified. */
c906108c 1039
acd5c798
MK
1040/* The maximum number of saved registers. This should include all
1041 registers mentioned above, and %eip. */
a3386186 1042#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1043
1044struct i386_frame_cache
c906108c 1045{
acd5c798
MK
1046 /* Base address. */
1047 CORE_ADDR base;
8fbca658 1048 int base_p;
772562f8 1049 LONGEST sp_offset;
acd5c798
MK
1050 CORE_ADDR pc;
1051
fd13a04a
AC
1052 /* Saved registers. */
1053 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1054 CORE_ADDR saved_sp;
e0c62198 1055 int saved_sp_reg;
acd5c798
MK
1056 int pc_in_eax;
1057
1058 /* Stack space reserved for local variables. */
1059 long locals;
1060};
1061
1062/* Allocate and initialize a frame cache. */
1063
1064static struct i386_frame_cache *
fd13a04a 1065i386_alloc_frame_cache (void)
acd5c798
MK
1066{
1067 struct i386_frame_cache *cache;
1068 int i;
1069
1070 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1071
1072 /* Base address. */
8fbca658 1073 cache->base_p = 0;
acd5c798
MK
1074 cache->base = 0;
1075 cache->sp_offset = -4;
1076 cache->pc = 0;
1077
fd13a04a
AC
1078 /* Saved registers. We initialize these to -1 since zero is a valid
1079 offset (that's where %ebp is supposed to be stored). */
1080 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1081 cache->saved_regs[i] = -1;
acd5c798 1082 cache->saved_sp = 0;
e0c62198 1083 cache->saved_sp_reg = -1;
acd5c798
MK
1084 cache->pc_in_eax = 0;
1085
1086 /* Frameless until proven otherwise. */
1087 cache->locals = -1;
1088
1089 return cache;
1090}
c906108c 1091
acd5c798
MK
1092/* If the instruction at PC is a jump, return the address of its
1093 target. Otherwise, return PC. */
c906108c 1094
acd5c798 1095static CORE_ADDR
e17a4113 1096i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1097{
e17a4113 1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1099 gdb_byte op;
acd5c798
MK
1100 long delta = 0;
1101 int data16 = 0;
c906108c 1102
0865b04a 1103 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1104 return pc;
1105
acd5c798 1106 if (op == 0x66)
c906108c 1107 {
c906108c 1108 data16 = 1;
0865b04a
YQ
1109
1110 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1111 }
1112
acd5c798 1113 switch (op)
c906108c
SS
1114 {
1115 case 0xe9:
fc338970 1116 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1117 if (data16)
1118 {
e17a4113 1119 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1120
fc338970
MK
1121 /* Include the size of the jmp instruction (including the
1122 0x66 prefix). */
acd5c798 1123 delta += 4;
c906108c
SS
1124 }
1125 else
1126 {
e17a4113 1127 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1128
acd5c798
MK
1129 /* Include the size of the jmp instruction. */
1130 delta += 5;
c906108c
SS
1131 }
1132 break;
1133 case 0xeb:
fc338970 1134 /* Relative jump, disp8 (ignore data16). */
e17a4113 1135 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1136
acd5c798 1137 delta += data16 + 2;
c906108c
SS
1138 break;
1139 }
c906108c 1140
acd5c798
MK
1141 return pc + delta;
1142}
fc338970 1143
acd5c798
MK
1144/* Check whether PC points at a prologue for a function returning a
1145 structure or union. If so, it updates CACHE and returns the
1146 address of the first instruction after the code sequence that
1147 removes the "hidden" argument from the stack or CURRENT_PC,
1148 whichever is smaller. Otherwise, return PC. */
c906108c 1149
acd5c798
MK
1150static CORE_ADDR
1151i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1152 struct i386_frame_cache *cache)
c906108c 1153{
acd5c798
MK
1154 /* Functions that return a structure or union start with:
1155
1156 popl %eax 0x58
1157 xchgl %eax, (%esp) 0x87 0x04 0x24
1158 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1159
1160 (the System V compiler puts out the second `xchg' instruction,
1161 and the assembler doesn't try to optimize it, so the 'sib' form
1162 gets generated). This sequence is used to get the address of the
1163 return buffer for a function that returns a structure. */
63c0089f
MK
1164 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1165 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1166 gdb_byte buf[4];
1167 gdb_byte op;
c906108c 1168
acd5c798
MK
1169 if (current_pc <= pc)
1170 return pc;
1171
0865b04a 1172 if (target_read_code (pc, &op, 1))
3dcabaa8 1173 return pc;
c906108c 1174
acd5c798
MK
1175 if (op != 0x58) /* popl %eax */
1176 return pc;
c906108c 1177
0865b04a 1178 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1179 return pc;
1180
acd5c798
MK
1181 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1182 return pc;
c906108c 1183
acd5c798 1184 if (current_pc == pc)
c906108c 1185 {
acd5c798
MK
1186 cache->sp_offset += 4;
1187 return current_pc;
c906108c
SS
1188 }
1189
acd5c798 1190 if (current_pc == pc + 1)
c906108c 1191 {
acd5c798
MK
1192 cache->pc_in_eax = 1;
1193 return current_pc;
1194 }
1195
1196 if (buf[1] == proto1[1])
1197 return pc + 4;
1198 else
1199 return pc + 5;
1200}
1201
1202static CORE_ADDR
1203i386_skip_probe (CORE_ADDR pc)
1204{
1205 /* A function may start with
fc338970 1206
acd5c798
MK
1207 pushl constant
1208 call _probe
1209 addl $4, %esp
fc338970 1210
acd5c798
MK
1211 followed by
1212
1213 pushl %ebp
fc338970 1214
acd5c798 1215 etc. */
63c0089f
MK
1216 gdb_byte buf[8];
1217 gdb_byte op;
fc338970 1218
0865b04a 1219 if (target_read_code (pc, &op, 1))
3dcabaa8 1220 return pc;
acd5c798
MK
1221
1222 if (op == 0x68 || op == 0x6a)
1223 {
1224 int delta;
c906108c 1225
acd5c798
MK
1226 /* Skip past the `pushl' instruction; it has either a one-byte or a
1227 four-byte operand, depending on the opcode. */
c906108c 1228 if (op == 0x68)
acd5c798 1229 delta = 5;
c906108c 1230 else
acd5c798 1231 delta = 2;
c906108c 1232
acd5c798
MK
1233 /* Read the following 8 bytes, which should be `call _probe' (6
1234 bytes) followed by `addl $4,%esp' (2 bytes). */
1235 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1236 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1237 pc += delta + sizeof (buf);
c906108c
SS
1238 }
1239
acd5c798
MK
1240 return pc;
1241}
1242
92dd43fa
MK
1243/* GCC 4.1 and later, can put code in the prologue to realign the
1244 stack pointer. Check whether PC points to such code, and update
1245 CACHE accordingly. Return the first instruction after the code
1246 sequence or CURRENT_PC, whichever is smaller. If we don't
1247 recognize the code, return PC. */
1248
1249static CORE_ADDR
1250i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1251 struct i386_frame_cache *cache)
1252{
e0c62198
L
1253 /* There are 2 code sequences to re-align stack before the frame
1254 gets set up:
1255
1256 1. Use a caller-saved saved register:
1257
1258 leal 4(%esp), %reg
1259 andl $-XXX, %esp
1260 pushl -4(%reg)
1261
1262 2. Use a callee-saved saved register:
1263
1264 pushl %reg
1265 leal 8(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1270
1271 0x83 0xe4 0xf0 andl $-16, %esp
1272 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1273 */
1274
1275 gdb_byte buf[14];
1276 int reg;
1277 int offset, offset_and;
1278 static int regnums[8] = {
1279 I386_EAX_REGNUM, /* %eax */
1280 I386_ECX_REGNUM, /* %ecx */
1281 I386_EDX_REGNUM, /* %edx */
1282 I386_EBX_REGNUM, /* %ebx */
1283 I386_ESP_REGNUM, /* %esp */
1284 I386_EBP_REGNUM, /* %ebp */
1285 I386_ESI_REGNUM, /* %esi */
1286 I386_EDI_REGNUM /* %edi */
92dd43fa 1287 };
92dd43fa 1288
0865b04a 1289 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1290 return pc;
1291
1292 /* Check caller-saved saved register. The first instruction has
1293 to be "leal 4(%esp), %reg". */
1294 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1295 {
1296 /* MOD must be binary 10 and R/M must be binary 100. */
1297 if ((buf[1] & 0xc7) != 0x44)
1298 return pc;
1299
1300 /* REG has register number. */
1301 reg = (buf[1] >> 3) & 7;
1302 offset = 4;
1303 }
1304 else
1305 {
1306 /* Check callee-saved saved register. The first instruction
1307 has to be "pushl %reg". */
1308 if ((buf[0] & 0xf8) != 0x50)
1309 return pc;
1310
1311 /* Get register. */
1312 reg = buf[0] & 0x7;
1313
1314 /* The next instruction has to be "leal 8(%esp), %reg". */
1315 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1316 return pc;
1317
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[2] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. Registers in pushl and leal have to
1323 be the same. */
1324 if (reg != ((buf[2] >> 3) & 7))
1325 return pc;
1326
1327 offset = 5;
1328 }
1329
1330 /* Rigister can't be %esp nor %ebp. */
1331 if (reg == 4 || reg == 5)
1332 return pc;
1333
1334 /* The next instruction has to be "andl $-XXX, %esp". */
1335 if (buf[offset + 1] != 0xe4
1336 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1337 return pc;
1338
1339 offset_and = offset;
1340 offset += buf[offset] == 0x81 ? 6 : 3;
1341
1342 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1343 0xfc. REG must be binary 110 and MOD must be binary 01. */
1344 if (buf[offset] != 0xff
1345 || buf[offset + 2] != 0xfc
1346 || (buf[offset + 1] & 0xf8) != 0x70)
1347 return pc;
1348
1349 /* R/M has register. Registers in leal and pushl have to be the
1350 same. */
1351 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1352 return pc;
1353
e0c62198
L
1354 if (current_pc > pc + offset_and)
1355 cache->saved_sp_reg = regnums[reg];
92dd43fa 1356
e0c62198 1357 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1358}
1359
37bdc87e 1360/* Maximum instruction length we need to handle. */
237fc4c9 1361#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1362
1363/* Instruction description. */
1364struct i386_insn
1365{
1366 size_t len;
237fc4c9
PA
1367 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1368 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1369};
1370
a3fcb948 1371/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1372
a3fcb948
JG
1373static int
1374i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1375{
63c0089f 1376 gdb_byte op;
37bdc87e 1377
0865b04a 1378 if (target_read_code (pc, &op, 1))
a3fcb948 1379 return 0;
37bdc87e 1380
a3fcb948 1381 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1382 {
a3fcb948
JG
1383 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1384 int insn_matched = 1;
1385 size_t i;
37bdc87e 1386
a3fcb948
JG
1387 gdb_assert (pattern.len > 1);
1388 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1389
0865b04a 1390 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1391 return 0;
613e8135 1392
a3fcb948
JG
1393 for (i = 1; i < pattern.len; i++)
1394 {
1395 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1396 insn_matched = 0;
37bdc87e 1397 }
a3fcb948
JG
1398 return insn_matched;
1399 }
1400 return 0;
1401}
1402
1403/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1404 the first instruction description that matches. Otherwise, return
1405 NULL. */
1406
1407static struct i386_insn *
1408i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1409{
1410 struct i386_insn *pattern;
1411
1412 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1413 {
1414 if (i386_match_pattern (pc, *pattern))
1415 return pattern;
37bdc87e
MK
1416 }
1417
1418 return NULL;
1419}
1420
a3fcb948
JG
1421/* Return whether PC points inside a sequence of instructions that
1422 matches INSN_PATTERNS. */
1423
1424static int
1425i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1426{
1427 CORE_ADDR current_pc;
1428 int ix, i;
a3fcb948
JG
1429 struct i386_insn *insn;
1430
1431 insn = i386_match_insn (pc, insn_patterns);
1432 if (insn == NULL)
1433 return 0;
1434
8bbdd3f4 1435 current_pc = pc;
a3fcb948
JG
1436 ix = insn - insn_patterns;
1437 for (i = ix - 1; i >= 0; i--)
1438 {
8bbdd3f4
MK
1439 current_pc -= insn_patterns[i].len;
1440
a3fcb948
JG
1441 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1442 return 0;
a3fcb948
JG
1443 }
1444
1445 current_pc = pc + insn->len;
1446 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1447 {
1448 if (!i386_match_pattern (current_pc, *insn))
1449 return 0;
1450
1451 current_pc += insn->len;
1452 }
1453
1454 return 1;
1455}
1456
37bdc87e
MK
1457/* Some special instructions that might be migrated by GCC into the
1458 part of the prologue that sets up the new stack frame. Because the
1459 stack frame hasn't been setup yet, no registers have been saved
1460 yet, and only the scratch registers %eax, %ecx and %edx can be
1461 touched. */
1462
1463struct i386_insn i386_frame_setup_skip_insns[] =
1464{
1777feb0 1465 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1466
1467 ??? Should we handle 16-bit operand-sizes here? */
1468
1469 /* `movb imm8, %al' and `movb imm8, %ah' */
1470 /* `movb imm8, %cl' and `movb imm8, %ch' */
1471 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1472 /* `movb imm8, %dl' and `movb imm8, %dh' */
1473 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1474 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1475 { 5, { 0xb8 }, { 0xfe } },
1476 /* `movl imm32, %edx' */
1477 { 5, { 0xba }, { 0xff } },
1478
1479 /* Check for `mov imm32, r32'. Note that there is an alternative
1480 encoding for `mov m32, %eax'.
1481
1482 ??? Should we handle SIB adressing here?
1483 ??? Should we handle 16-bit operand-sizes here? */
1484
1485 /* `movl m32, %eax' */
1486 { 5, { 0xa1 }, { 0xff } },
1487 /* `movl m32, %eax' and `mov; m32, %ecx' */
1488 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1489 /* `movl m32, %edx' */
1490 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1491
1492 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1493 Because of the symmetry, there are actually two ways to encode
1494 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1495 opcode bytes 0x31 and 0x33 for `xorl'. */
1496
1497 /* `subl %eax, %eax' */
1498 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1499 /* `subl %ecx, %ecx' */
1500 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1501 /* `subl %edx, %edx' */
1502 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1503 /* `xorl %eax, %eax' */
1504 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1505 /* `xorl %ecx, %ecx' */
1506 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1507 /* `xorl %edx, %edx' */
1508 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1509 { 0 }
1510};
1511
e11481da
PM
1512
1513/* Check whether PC points to a no-op instruction. */
1514static CORE_ADDR
1515i386_skip_noop (CORE_ADDR pc)
1516{
1517 gdb_byte op;
1518 int check = 1;
1519
0865b04a 1520 if (target_read_code (pc, &op, 1))
3dcabaa8 1521 return pc;
e11481da
PM
1522
1523 while (check)
1524 {
1525 check = 0;
1526 /* Ignore `nop' instruction. */
1527 if (op == 0x90)
1528 {
1529 pc += 1;
0865b04a 1530 if (target_read_code (pc, &op, 1))
3dcabaa8 1531 return pc;
e11481da
PM
1532 check = 1;
1533 }
1534 /* Ignore no-op instruction `mov %edi, %edi'.
1535 Microsoft system dlls often start with
1536 a `mov %edi,%edi' instruction.
1537 The 5 bytes before the function start are
1538 filled with `nop' instructions.
1539 This pattern can be used for hot-patching:
1540 The `mov %edi, %edi' instruction can be replaced by a
1541 near jump to the location of the 5 `nop' instructions
1542 which can be replaced by a 32-bit jump to anywhere
1543 in the 32-bit address space. */
1544
1545 else if (op == 0x8b)
1546 {
0865b04a 1547 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1548 return pc;
1549
e11481da
PM
1550 if (op == 0xff)
1551 {
1552 pc += 2;
0865b04a 1553 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1554 return pc;
1555
e11481da
PM
1556 check = 1;
1557 }
1558 }
1559 }
1560 return pc;
1561}
1562
acd5c798
MK
1563/* Check whether PC points at a code that sets up a new stack frame.
1564 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1565 instruction after the sequence that sets up the frame or LIMIT,
1566 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1567
1568static CORE_ADDR
e17a4113
UW
1569i386_analyze_frame_setup (struct gdbarch *gdbarch,
1570 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1571 struct i386_frame_cache *cache)
1572{
e17a4113 1573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1574 struct i386_insn *insn;
63c0089f 1575 gdb_byte op;
26604a34 1576 int skip = 0;
acd5c798 1577
37bdc87e
MK
1578 if (limit <= pc)
1579 return limit;
acd5c798 1580
0865b04a 1581 if (target_read_code (pc, &op, 1))
3dcabaa8 1582 return pc;
acd5c798 1583
c906108c 1584 if (op == 0x55) /* pushl %ebp */
c5aa993b 1585 {
acd5c798
MK
1586 /* Take into account that we've executed the `pushl %ebp' that
1587 starts this instruction sequence. */
fd13a04a 1588 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1589 cache->sp_offset += 4;
37bdc87e 1590 pc++;
acd5c798
MK
1591
1592 /* If that's all, return now. */
37bdc87e
MK
1593 if (limit <= pc)
1594 return limit;
26604a34 1595
b4632131 1596 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1597 GCC into the prologue and skip them. At this point in the
1598 prologue, code should only touch the scratch registers %eax,
1599 %ecx and %edx, so while the number of posibilities is sheer,
1600 it is limited.
5daa5b4e 1601
26604a34
MK
1602 Make sure we only skip these instructions if we later see the
1603 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1604 while (pc + skip < limit)
26604a34 1605 {
37bdc87e
MK
1606 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1607 if (insn == NULL)
1608 break;
b4632131 1609
37bdc87e 1610 skip += insn->len;
26604a34
MK
1611 }
1612
37bdc87e
MK
1613 /* If that's all, return now. */
1614 if (limit <= pc + skip)
1615 return limit;
1616
0865b04a 1617 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1618 return pc + skip;
37bdc87e 1619
30f8135b
YQ
1620 /* The i386 prologue looks like
1621
1622 push %ebp
1623 mov %esp,%ebp
1624 sub $0x10,%esp
1625
1626 and a different prologue can be generated for atom.
1627
1628 push %ebp
1629 lea (%esp),%ebp
1630 lea -0x10(%esp),%esp
1631
1632 We handle both of them here. */
1633
acd5c798 1634 switch (op)
c906108c 1635 {
30f8135b 1636 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1637 case 0x8b:
0865b04a 1638 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1639 != 0xec)
37bdc87e 1640 return pc;
30f8135b 1641 pc += (skip + 2);
c906108c
SS
1642 break;
1643 case 0x89:
0865b04a 1644 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1645 != 0xe5)
37bdc87e 1646 return pc;
30f8135b
YQ
1647 pc += (skip + 2);
1648 break;
1649 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1650 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1651 != 0x242c)
1652 return pc;
1653 pc += (skip + 3);
c906108c
SS
1654 break;
1655 default:
37bdc87e 1656 return pc;
c906108c 1657 }
acd5c798 1658
26604a34
MK
1659 /* OK, we actually have a frame. We just don't know how large
1660 it is yet. Set its size to zero. We'll adjust it if
1661 necessary. We also now commit to skipping the special
1662 instructions mentioned before. */
acd5c798
MK
1663 cache->locals = 0;
1664
1665 /* If that's all, return now. */
37bdc87e
MK
1666 if (limit <= pc)
1667 return limit;
acd5c798 1668
fc338970
MK
1669 /* Check for stack adjustment
1670
acd5c798 1671 subl $XXX, %esp
30f8135b
YQ
1672 or
1673 lea -XXX(%esp),%esp
fc338970 1674
fd35795f 1675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1676 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1677 if (target_read_code (pc, &op, 1))
3dcabaa8 1678 return pc;
c906108c
SS
1679 if (op == 0x83)
1680 {
fd35795f 1681 /* `subl' with 8-bit immediate. */
0865b04a 1682 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1683 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1684 return pc;
acd5c798 1685
37bdc87e
MK
1686 /* `subl' with signed 8-bit immediate (though it wouldn't
1687 make sense to be negative). */
0865b04a 1688 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1689 return pc + 3;
c906108c
SS
1690 }
1691 else if (op == 0x81)
1692 {
fd35795f 1693 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1695 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1696 return pc;
acd5c798 1697
fd35795f 1698 /* It is `subl' with a 32-bit immediate. */
0865b04a 1699 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1700 return pc + 6;
c906108c 1701 }
30f8135b
YQ
1702 else if (op == 0x8d)
1703 {
1704 /* The ModR/M byte is 0x64. */
0865b04a 1705 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1706 return pc;
1707 /* 'lea' with 8-bit displacement. */
0865b04a 1708 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1709 return pc + 4;
1710 }
c906108c
SS
1711 else
1712 {
30f8135b 1713 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1714 return pc;
c906108c
SS
1715 }
1716 }
37bdc87e 1717 else if (op == 0xc8) /* enter */
c906108c 1718 {
0865b04a 1719 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1720 return pc + 4;
c906108c 1721 }
21d0e8a4 1722
acd5c798 1723 return pc;
21d0e8a4
MK
1724}
1725
acd5c798
MK
1726/* Check whether PC points at code that saves registers on the stack.
1727 If so, it updates CACHE and returns the address of the first
1728 instruction after the register saves or CURRENT_PC, whichever is
1729 smaller. Otherwise, return PC. */
6bff26de
MK
1730
1731static CORE_ADDR
acd5c798
MK
1732i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1733 struct i386_frame_cache *cache)
6bff26de 1734{
99ab4326 1735 CORE_ADDR offset = 0;
63c0089f 1736 gdb_byte op;
99ab4326 1737 int i;
c0d1d883 1738
99ab4326
MK
1739 if (cache->locals > 0)
1740 offset -= cache->locals;
1741 for (i = 0; i < 8 && pc < current_pc; i++)
1742 {
0865b04a 1743 if (target_read_code (pc, &op, 1))
3dcabaa8 1744 return pc;
99ab4326
MK
1745 if (op < 0x50 || op > 0x57)
1746 break;
0d17c81d 1747
99ab4326
MK
1748 offset -= 4;
1749 cache->saved_regs[op - 0x50] = offset;
1750 cache->sp_offset += 4;
1751 pc++;
6bff26de
MK
1752 }
1753
acd5c798 1754 return pc;
22797942
AC
1755}
1756
acd5c798
MK
1757/* Do a full analysis of the prologue at PC and update CACHE
1758 accordingly. Bail out early if CURRENT_PC is reached. Return the
1759 address where the analysis stopped.
ed84f6c1 1760
fc338970
MK
1761 We handle these cases:
1762
1763 The startup sequence can be at the start of the function, or the
1764 function can start with a branch to startup code at the end.
1765
1766 %ebp can be set up with either the 'enter' instruction, or "pushl
1767 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1768 once used in the System V compiler).
1769
1770 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1771 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1772 16-bit unsigned argument for space to allocate, and the 'addl'
1773 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1774
1775 Next, the registers used by this function are pushed. With the
1776 System V compiler they will always be in the order: %edi, %esi,
1777 %ebx (and sometimes a harmless bug causes it to also save but not
1778 restore %eax); however, the code below is willing to see the pushes
1779 in any order, and will handle up to 8 of them.
1780
1781 If the setup sequence is at the end of the function, then the next
1782 instruction will be a branch back to the start. */
c906108c 1783
acd5c798 1784static CORE_ADDR
e17a4113
UW
1785i386_analyze_prologue (struct gdbarch *gdbarch,
1786 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1787 struct i386_frame_cache *cache)
c906108c 1788{
e11481da 1789 pc = i386_skip_noop (pc);
e17a4113 1790 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1791 pc = i386_analyze_struct_return (pc, current_pc, cache);
1792 pc = i386_skip_probe (pc);
92dd43fa 1793 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1794 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1795 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1796}
1797
fc338970 1798/* Return PC of first real instruction. */
c906108c 1799
3a1e71e3 1800static CORE_ADDR
6093d2eb 1801i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1802{
e17a4113
UW
1803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1804
63c0089f 1805 static gdb_byte pic_pat[6] =
acd5c798
MK
1806 {
1807 0xe8, 0, 0, 0, 0, /* call 0x0 */
1808 0x5b, /* popl %ebx */
c5aa993b 1809 };
acd5c798
MK
1810 struct i386_frame_cache cache;
1811 CORE_ADDR pc;
63c0089f 1812 gdb_byte op;
acd5c798 1813 int i;
56bf0743 1814 CORE_ADDR func_addr;
4e879fc2 1815
56bf0743
KB
1816 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1817 {
1818 CORE_ADDR post_prologue_pc
1819 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1820 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1821
1822 /* Clang always emits a line note before the prologue and another
1823 one after. We trust clang to emit usable line notes. */
1824 if (post_prologue_pc
43f3e411
DE
1825 && (cust != NULL
1826 && COMPUNIT_PRODUCER (cust) != NULL
1827 && strncmp (COMPUNIT_PRODUCER (cust), "clang ",
1828 sizeof ("clang ") - 1) == 0))
56bf0743
KB
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
e0f33b1f 1832 cache.locals = -1;
e17a4113 1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1834 if (cache.locals < 0)
1835 return start_pc;
c5aa993b 1836
acd5c798 1837 /* Found valid frame setup. */
c906108c 1838
fc338970
MK
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
acd5c798
MK
1841 %ebx:
1842
fc338970
MK
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
c906108c
SS
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
c5aa993b 1851
c906108c
SS
1852 for (i = 0; i < 6; i++)
1853 {
0865b04a 1854 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1855 return pc;
1856
c5aa993b 1857 if (pic_pat[i] != op)
c906108c
SS
1858 break;
1859 }
1860 if (i == 6)
1861 {
acd5c798
MK
1862 int delta = 6;
1863
0865b04a 1864 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1865 return pc;
c906108c 1866
c5aa993b 1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1868 {
0865b04a 1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1870
fc338970 1871 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1872 delta += 3;
fc338970 1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1874 delta += 6;
fc338970 1875 else /* Unexpected instruction. */
acd5c798
MK
1876 delta = 0;
1877
0865b04a 1878 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1879 return pc;
c906108c 1880 }
acd5c798 1881
c5aa993b 1882 /* addl y,%ebx */
acd5c798 1883 if (delta > 0 && op == 0x81
0865b04a 1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1885 == 0xc3)
c906108c 1886 {
acd5c798 1887 pc += delta + 6;
c906108c
SS
1888 }
1889 }
c5aa993b 1890
e63bbc88
MK
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
e17a4113
UW
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1896
1897 return pc;
c906108c
SS
1898}
1899
4309257c
PM
1900/* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903CORE_ADDR
1904i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905{
e17a4113 1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1907 gdb_byte op;
1908
0865b04a 1909 if (target_read_code (pc, &op, 1))
3dcabaa8 1910 return pc;
4309257c
PM
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
0865b04a 1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1919 struct bound_minimal_symbol s;
e17a4113 1920 CORE_ADDR call_dest;
4309257c 1921
e17a4113 1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1925 if (s.minsym != NULL
efd66ac6
TT
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933}
1934
acd5c798 1935/* This function is 64-bit safe. */
93924b6b 1936
acd5c798
MK
1937static CORE_ADDR
1938i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1939{
63c0089f 1940 gdb_byte buf[8];
acd5c798 1941
875f8d0e 1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1944}
acd5c798 1945\f
93924b6b 1946
acd5c798 1947/* Normal frames. */
c5aa993b 1948
8fbca658
PA
1949static void
1950i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
a7769679 1952{
e17a4113
UW
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1955 gdb_byte buf[4];
acd5c798
MK
1956 int i;
1957
8fbca658 1958 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
10458914 1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1971 if (cache->base == 0)
620fa63a
PA
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
acd5c798
MK
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1979
acd5c798 1980 if (cache->pc != 0)
e17a4113
UW
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
acd5c798
MK
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
e0c62198 1994 if (cache->saved_sp_reg != -1)
92dd43fa 1995 {
8fbca658
PA
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
92dd43fa
MK
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
7618e12b 2007 else if (cache->pc != 0
0865b04a 2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2009 {
7618e12b
DJ
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
10458914 2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
92dd43fa 2018 }
7618e12b
DJ
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2025 }
2026
8fbca658
PA
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
ca9d61b9
JB
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
8fbca658
PA
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
acd5c798
MK
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
8fbca658 2038 else if (cache->saved_sp == 0)
92dd43fa 2039 cache->saved_sp = cache->base + 8;
a7769679 2040
acd5c798
MK
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
acd5c798 2046
8fbca658
PA
2047 cache->base_p = 1;
2048}
2049
2050static struct i386_frame_cache *
2051i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052{
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
acd5c798 2069 return cache;
a7769679
MK
2070}
2071
3a1e71e3 2072static void
10458914 2073i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2074 struct frame_id *this_id)
c906108c 2075{
10458914 2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2077
5ce0145d
PA
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
acd5c798
MK
2089}
2090
8fbca658
PA
2091static enum unwind_stop_reason
2092i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094{
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105}
2106
10458914
DJ
2107static struct value *
2108i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
acd5c798 2110{
10458914 2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
10458914 2136 ULONGEST val;
c5aa993b 2137
10458914
DJ
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2141 }
1211c4e4 2142
acd5c798 2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2145
fcf250e2
UW
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
fcf250e2 2152 if (cache->saved_sp == 0)
8fbca658
PA
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
acd5c798 2159
fd13a04a 2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
fd13a04a 2163
10458914 2164 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2165}
2166
2167static const struct frame_unwind i386_frame_unwind =
2168{
2169 NORMAL_FRAME,
8fbca658 2170 i386_frame_unwind_stop_reason,
acd5c798 2171 i386_frame_this_id,
10458914
DJ
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
acd5c798 2175};
06da04c6
MS
2176
2177/* Normal frames, but in a function epilogue. */
2178
2179/* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183static int
2184i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185{
2186 gdb_byte insn;
43f3e411 2187 struct compunit_symtab *cust;
e0d00bc7 2188
43f3e411
DE
2189 cust = find_pc_compunit_symtab (pc);
2190 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2191 return 0;
06da04c6
MS
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200}
2201
2202static int
2203i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206{
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212}
2213
2214static struct i386_frame_cache *
2215i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216{
8fbca658 2217 volatile struct gdb_exception ex;
06da04c6 2218 struct i386_frame_cache *cache;
0d6c2135 2219 CORE_ADDR sp;
06da04c6
MS
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
8fbca658
PA
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
0d6c2135 2229 cache->pc = get_frame_func (this_frame);
06da04c6 2230
0d6c2135
MK
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
8fbca658 2236 cache->saved_sp = cache->base + 8;
8fbca658 2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2238
8fbca658
PA
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
06da04c6
MS
2243
2244 return cache;
2245}
2246
8fbca658
PA
2247static enum unwind_stop_reason
2248i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250{
0d6c2135
MK
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258}
2259
06da04c6
MS
2260static void
2261i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264{
0d6c2135
MK
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2267
8fbca658 2268 if (!cache->base_p)
5ce0145d
PA
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2272}
2273
0d6c2135
MK
2274static struct value *
2275i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277{
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282}
2283
06da04c6
MS
2284static const struct frame_unwind i386_epilogue_frame_unwind =
2285{
2286 NORMAL_FRAME,
8fbca658 2287 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2288 i386_epilogue_frame_this_id,
0d6c2135 2289 i386_epilogue_frame_prev_register,
06da04c6
MS
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292};
acd5c798
MK
2293\f
2294
a3fcb948
JG
2295/* Stack-based trampolines. */
2296
2297/* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302/* Static chain passed in register. */
2303
2304struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305{
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313};
2314
2315/* Static chain passed on stack (when regparm=3). */
2316
2317struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318{
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326};
2327
2328/* Return whether PC points inside a stack trampoline. */
2329
2330static int
6df81a63 2331i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2332{
2333 gdb_byte insn;
2c02bd72 2334 const char *name;
a3fcb948
JG
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352}
2353
2354static int
2355i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2356 struct frame_info *this_frame,
2357 void **this_cache)
a3fcb948
JG
2358{
2359 if (frame_relative_level (this_frame) == 0)
6df81a63 2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2361 else
2362 return 0;
2363}
2364
2365static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366{
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
0d6c2135 2370 i386_epilogue_frame_prev_register,
a3fcb948
JG
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373};
2374\f
6710bf39
SS
2375/* Generate a bytecode expression to get the value of the saved PC. */
2376
2377static void
2378i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381{
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389}
2390\f
a3fcb948 2391
acd5c798
MK
2392/* Signal trampolines. */
2393
2394static struct i386_frame_cache *
10458914 2395i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2396{
e17a4113
UW
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2400 volatile struct gdb_exception ex;
acd5c798 2401 struct i386_frame_cache *cache;
acd5c798 2402 CORE_ADDR addr;
63c0089f 2403 gdb_byte buf[4];
acd5c798
MK
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
fd13a04a 2408 cache = i386_alloc_frame_cache ();
acd5c798 2409
8fbca658 2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2411 {
8fbca658
PA
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2414
8fbca658
PA
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
a3386186 2419
8fbca658
PA
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
a3386186 2433 }
8fbca658
PA
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
acd5c798
MK
2436
2437 *this_cache = cache;
2438 return cache;
2439}
2440
8fbca658
PA
2441static enum unwind_stop_reason
2442i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444{
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452}
2453
acd5c798 2454static void
10458914 2455i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2456 struct frame_id *this_id)
2457{
2458 struct i386_frame_cache *cache =
10458914 2459 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2460
8fbca658 2461 if (!cache->base_p)
5ce0145d
PA
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
acd5c798
MK
2468}
2469
10458914
DJ
2470static struct value *
2471i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
acd5c798
MK
2473{
2474 /* Make sure we've initialized the cache. */
10458914 2475 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2476
10458914 2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2478}
c0d1d883 2479
10458914
DJ
2480static int
2481i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
acd5c798 2484{
10458914 2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2486
911bc6ee
MK
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
10458914 2490 return 0;
1c3545ae 2491
911bc6ee
MK
2492 if (tdep->sigtramp_p != NULL)
2493 {
10458914
DJ
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
911bc6ee
MK
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
10458914 2500 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2504 return 1;
911bc6ee 2505 }
acd5c798 2506
10458914 2507 return 0;
acd5c798 2508}
10458914
DJ
2509
2510static const struct frame_unwind i386_sigtramp_frame_unwind =
2511{
2512 SIGTRAMP_FRAME,
8fbca658 2513 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518};
acd5c798
MK
2519\f
2520
2521static CORE_ADDR
10458914 2522i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2523{
10458914 2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2525
2526 return cache->base;
2527}
2528
2529static const struct frame_base i386_frame_base =
2530{
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535};
2536
acd5c798 2537static struct frame_id
10458914 2538i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2539{
acd5c798
MK
2540 CORE_ADDR fp;
2541
10458914 2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2543
3e210248 2544 /* See the end of i386_push_dummy_call. */
10458914 2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2546}
e04e5beb
JM
2547
2548/* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551static CORE_ADDR
2552i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553{
2554 return sp & -(CORE_ADDR)16;
2555}
fc338970 2556\f
c906108c 2557
fc338970
MK
2558/* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2560 structure from which we extract the address that we will land at.
28bcfd30 2561 This address is copied into PC. This routine returns non-zero on
436675d3 2562 success. */
c906108c 2563
8201327c 2564static int
60ade65d 2565i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2566{
436675d3 2567 gdb_byte buf[4];
c906108c 2568 CORE_ADDR sp, jb_addr;
20a6ec49 2569 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2572
8201327c
MK
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
c906108c
SS
2576 return 0;
2577
436675d3 2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2579 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2580 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2581 return 0;
2582
e17a4113 2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2585 return 0;
c906108c 2586
e17a4113 2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2588 return 1;
2589}
fc338970 2590\f
c906108c 2591
7ccc1c74
JM
2592/* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597static int
2598i386_16_byte_align_p (struct type *type)
2599{
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618}
2619
a9b8d892
JK
2620/* Implementation for set_gdbarch_push_dummy_code. */
2621
2622static CORE_ADDR
2623i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627{
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634}
2635
3a1e71e3 2636static CORE_ADDR
7d9b040b 2637i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
22f8ba57 2641{
e17a4113 2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2643 gdb_byte buf[4];
acd5c798 2644 int i;
7ccc1c74
JM
2645 int write_pass;
2646 int args_space = 0;
acd5c798 2647
7ccc1c74
JM
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2653 {
7ccc1c74 2654 int args_space_used = 0;
7ccc1c74
JM
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
e17a4113 2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2672
7ccc1c74
JM
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
acd5c798 2677
7ccc1c74
JM
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
acd5c798 2681
7ccc1c74
JM
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
22f8ba57 2685
7ccc1c74
JM
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2692 args_space = align_up (args_space, 16);
7ccc1c74
JM
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
7ccc1c74 2699 sp -= args_space;
284c5a60
MK
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
7ccc1c74 2706 }
22f8ba57
MK
2707 }
2708
acd5c798
MK
2709 /* Store return address. */
2710 sp -= 4;
e17a4113 2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
e17a4113 2715 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
3e210248
AC
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2723 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2724 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
22f8ba57
MK
2731}
2732
1a309862
MK
2733/* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
ef9dff19 2735 size and alignment match an integer type). */
acd5c798
MK
2736#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2738
c5e656c1
MK
2739/* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
1a309862 2741
3a1e71e3 2742static void
c5e656c1 2743i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2744 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2745{
c5e656c1 2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2747 int len = TYPE_LENGTH (type);
63c0089f 2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2749
1e8d0a7b 2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2751 {
5716833c 2752 if (tdep->st0_regnum < 0)
1a309862 2753 {
8a3fe4f8 2754 warning (_("Cannot find floating-point return value."));
1a309862 2755 memset (valbuf, 0, len);
ef9dff19 2756 return;
1a309862
MK
2757 }
2758
c6ba6f0d
MK
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
acd5c798 2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2765 }
2766 else
c5aa993b 2767 {
875f8d0e
UW
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2770
2771 if (len <= low_size)
00f8375e 2772 {
0818c12a 2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2774 memcpy (valbuf, buf, len);
2775 }
d4f3574e
SS
2776 else if (len <= (low_size + high_size))
2777 {
0818c12a 2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2779 memcpy (valbuf, buf, low_size);
0818c12a 2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2781 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2782 }
2783 else
8e65ff28 2784 internal_error (__FILE__, __LINE__,
1777feb0
MS
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
c906108c
SS
2787 }
2788}
2789
c5e656c1
MK
2790/* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
ef9dff19 2792
3a1e71e3 2793static void
c5e656c1 2794i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2795 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2796{
c5e656c1 2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2798 int len = TYPE_LENGTH (type);
2799
1e8d0a7b 2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2801 {
3d7f4f49 2802 ULONGEST fstat;
63c0089f 2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2804
5716833c 2805 if (tdep->st0_regnum < 0)
ef9dff19 2806 {
8a3fe4f8 2807 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2808 return;
2809 }
2810
635b0cc1
MK
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
c6ba6f0d
MK
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
27067745 2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2821
635b0cc1
MK
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
20a6ec49 2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2827 fstat |= (7 << 11);
20a6ec49 2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2829
635b0cc1
MK
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
20a6ec49 2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2834 }
2835 else
2836 {
875f8d0e
UW
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2839
2840 if (len <= low_size)
3d7f4f49 2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2842 else if (len <= (low_size + high_size))
2843 {
3d7f4f49
MK
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2846 len - low_size, valbuf + low_size);
ef9dff19
MK
2847 }
2848 else
8e65ff28 2849 internal_error (__FILE__, __LINE__,
e2e0b3e5 2850 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2851 }
2852}
fc338970 2853\f
ef9dff19 2854
8201327c
MK
2855/* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857static const char default_struct_convention[] = "default";
2858static const char pcc_struct_convention[] = "pcc";
2859static const char reg_struct_convention[] = "reg";
40478521 2860static const char *const valid_conventions[] =
8201327c
MK
2861{
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866};
2867static const char *struct_convention = default_struct_convention;
2868
0e4377e1
JB
2869/* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
c5e656c1 2872
8201327c 2873static int
c5e656c1 2874i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2875{
c5e656c1
MK
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
8201327c 2879
0e4377e1
JB
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
9edde48e
MK
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
c5e656c1
MK
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899}
2900
2901/* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907static enum return_value_convention
6a3a010b 2908i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2911{
2912 enum type_code code = TYPE_CODE (type);
2913
5daa78cc
TJB
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
0e4377e1
JB
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
31db7b6c
MK
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
c5e656c1
MK
2951
2952 /* This special case is for structures consisting of a single
9edde48e
MK
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
c5e656c1
MK
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2962 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2963 readbuf, writebuf);
c5e656c1
MK
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2970
c5e656c1 2971 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2972}
2973\f
2974
27067745
UW
2975struct type *
2976i387_ext_type (struct gdbarch *gdbarch)
2977{
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
90884b2b
L
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
27067745
UW
2985
2986 return tdep->i387_ext_type;
2987}
2988
1dbcd68c
WT
2989/* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993static struct type *
2994i386_bnd_type (struct gdbarch *gdbarch)
2995{
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005#if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011#endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024}
3025
01f9f808
MS
3026/* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029static struct type *
3030i386_zmm_type (struct gdbarch *gdbarch)
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039#if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050#endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077}
3078
c131fcee
L
3079/* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082static struct type *
3083i386_ymm_type (struct gdbarch *gdbarch)
3084{
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092#if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103#endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
0c5acf93 3125 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130}
3131
794ac428 3132/* Construct vector type for MMX registers. */
90884b2b 3133static struct type *
794ac428
UW
3134i386_mmx_type (struct gdbarch *gdbarch)
3135{
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
df4df182
UW
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
794ac428
UW
3142 /* The type we're building is this: */
3143#if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151#endif
3152
3153 struct type *t;
3154
e9bb382b
UW
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3159 append_composite_type_field (t, "v2_int32",
df4df182 3160 init_vector_type (bt->builtin_int32, 2));
794ac428 3161 append_composite_type_field (t, "v4_int16",
df4df182 3162 init_vector_type (bt->builtin_int16, 4));
794ac428 3163 append_composite_type_field (t, "v8_int8",
df4df182 3164 init_vector_type (bt->builtin_int8, 8));
794ac428 3165
876cecd0 3166 TYPE_VECTOR (t) = 1;
794ac428
UW
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172}
3173
d7a0d72c 3174/* Return the GDB type object for the "standard" data type of data in
1777feb0 3175 register REGNUM. */
d7a0d72c 3176
fff4548b 3177struct type *
90884b2b 3178i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3179{
1dbcd68c
WT
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
1ba53b71
L
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
c131fcee
L
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
01f9f808
MS
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
1ba53b71
L
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
01f9f808
MS
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
1ba53b71
L
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3204}
3205
28fc6740 3206/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3207 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3208
3209static int
c86c27af 3210i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3211{
5716833c
MK
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
28fc6740
AC
3214 ULONGEST fstat;
3215 int tos;
c86c27af 3216
5716833c 3217 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3219 tos = (fstat >> 11) & 0x7;
5716833c
MK
3220 fpreg = (mmxreg + tos) % 8;
3221
20a6ec49 3222 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3223}
3224
3543a589
TT
3225/* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229void
3230i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
28fc6740 3234{
1ba53b71 3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3236 enum register_status status;
3543a589 3237 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3238
5716833c 3239 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3240 {
c86c27af
MK
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
28fc6740 3243 /* Extract (always little endian). */
05d1431c
PA
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3543a589
TT
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3250 }
3251 else
1ba53b71
L
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
1ba53b71 3257
1dbcd68c
WT
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
01f9f808
MS
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
1dbcd68c 3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
1777feb0 3351 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3543a589
TT
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
c131fcee 3359 /* Read upper 128bits. */
05d1431c
PA
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3543a589
TT
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
c131fcee 3367 }
01f9f808
MS
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
c131fcee 3388 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
05d1431c
PA
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3543a589
TT
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
1ba53b71
L
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
05d1431c
PA
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3543a589
TT
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
1ba53b71
L
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3543a589
TT
3421}
3422
3423static struct value *
3424i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427{
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3435
3543a589 3436 return result;
28fc6740
AC
3437}
3438
1ba53b71 3439void
28fc6740 3440i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3441 int regnum, const gdb_byte *buf)
28fc6740 3442{
1ba53b71
L
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
5716833c 3445 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3446 {
c86c27af
MK
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
28fc6740 3449 /* Read ... */
1ba53b71 3450 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3451 /* ... Modify ... (always little endian). */
1ba53b71 3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3453 /* ... Write. */
1ba53b71 3454 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3455 }
3456 else
1ba53b71
L
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
1dbcd68c
WT
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
01f9f808
MS
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
1dbcd68c 3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
01f9f808
MS
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
c131fcee 3554 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
28fc6740 3585}
ff2e87ac
AC
3586\f
3587
ff2e87ac
AC
3588/* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591static int
3592i386_next_regnum (int regnum)
3593{
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
de5b9bb9 3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3612 return next_regnum[regnum];
28fc6740 3613
ff2e87ac
AC
3614 return -1;
3615}
3616
3617/* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
d7a0d72c 3619
3a1e71e3 3620static int
1777feb0
MS
3621i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
d7a0d72c 3623{
de5b9bb9
MK
3624 int len = TYPE_LENGTH (type);
3625
ff2e87ac
AC
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
ff2e87ac 3644
0abe36f5 3645 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3646}
3647
ff2e87ac
AC
3648/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
ac27f131 3650
8dccd430 3651static int
ff2e87ac 3652i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
ac27f131 3655{
20a6ec49 3656 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3657 int len = TYPE_LENGTH (type);
de5b9bb9 3658
20a6ec49 3659 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
ff2e87ac 3662
fd35795f 3663 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3666
de5b9bb9
MK
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
20a6ec49 3670 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3671
8dccd430
PA
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
de5b9bb9
MK
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
42835c2b 3679 to += 4;
de5b9bb9 3680 }
8dccd430
PA
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
ac27f131
MK
3684}
3685
ff2e87ac
AC
3686/* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
ac27f131 3688
3a1e71e3 3689static void
ff2e87ac 3690i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3691 struct type *type, const gdb_byte *from)
ac27f131 3692{
de5b9bb9 3693 int len = TYPE_LENGTH (type);
de5b9bb9 3694
20a6ec49 3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3696 {
d532c08f
MK
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3d261580 3700
fd35795f 3701 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3704
de5b9bb9
MK
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
875f8d0e 3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3709
42835c2b 3710 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
42835c2b 3713 from += 4;
de5b9bb9 3714 }
ac27f131 3715}
ff2e87ac 3716\f
7fdafb5a
MK
3717/* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3720
20187ed5 3721void
473f17b0
MK
3722i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724{
09424cff
AA
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3727 const gdb_byte *regs = gregs;
473f17b0
MK
3728 int i;
3729
3730 gdb_assert (len == tdep->sizeof_gregset);
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738}
3739
7fdafb5a
MK
3740/* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
ecc37a5a 3745static void
7fdafb5a
MK
3746i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749{
09424cff
AA
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3752 gdb_byte *regs = gregs;
7fdafb5a
MK
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763}
3764
3765/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3768
3769static void
3770i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772{
09424cff
AA
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3775
66a72d25
MK
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
473f17b0
MK
3782 gdb_assert (len == tdep->sizeof_fpregset);
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784}
8446b36a 3785
2f305df1
MK
3786/* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
7fdafb5a
MK
3790
3791static void
3792i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795{
09424cff
AA
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
3805 gdb_assert (len == tdep->sizeof_fpregset);
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807}
3808
ecc37a5a
AA
3809/* Register set definitions. */
3810
3811const struct regset i386_gregset =
3812 {
3813 NULL, i386_supply_gregset, i386_collect_gregset
3814 };
3815
8f0435f7 3816const struct regset i386_fpregset =
ecc37a5a
AA
3817 {
3818 NULL, i386_supply_fpregset, i386_collect_fpregset
3819 };
3820
490496c3 3821/* Default iterator over core file register note sections. */
8446b36a 3822
490496c3
AA
3823void
3824i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3825 iterate_over_regset_sections_cb *cb,
3826 void *cb_data,
3827 const struct regcache *regcache)
8446b36a
MK
3828{
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3830
490496c3
AA
3831 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3832 if (tdep->sizeof_fpregset)
3833 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3834}
473f17b0 3835\f
fc338970 3836
fc338970 3837/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3838
3839CORE_ADDR
e17a4113
UW
3840i386_pe_skip_trampoline_code (struct frame_info *frame,
3841 CORE_ADDR pc, char *name)
c906108c 3842{
e17a4113
UW
3843 struct gdbarch *gdbarch = get_frame_arch (frame);
3844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3845
3846 /* jmp *(dest) */
3847 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3848 {
e17a4113
UW
3849 unsigned long indirect =
3850 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3851 struct minimal_symbol *indsym =
7cbd4a93 3852 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3853 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3854
c5aa993b 3855 if (symname)
c906108c 3856 {
c5aa993b
JM
3857 if (strncmp (symname, "__imp_", 6) == 0
3858 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3859 return name ? 1 :
3860 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3861 }
3862 }
fc338970 3863 return 0; /* Not a trampoline. */
c906108c 3864}
fc338970
MK
3865\f
3866
10458914
DJ
3867/* Return whether the THIS_FRAME corresponds to a sigtramp
3868 routine. */
8201327c 3869
4bd207ef 3870int
10458914 3871i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3872{
10458914 3873 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3874 const char *name;
911bc6ee
MK
3875
3876 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3877 return (name && strcmp ("_sigtramp", name) == 0);
3878}
3879\f
3880
fc338970
MK
3881/* We have two flavours of disassembly. The machinery on this page
3882 deals with switching between those. */
c906108c
SS
3883
3884static int
a89aa300 3885i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3886{
5e3397bb
MK
3887 gdb_assert (disassembly_flavor == att_flavor
3888 || disassembly_flavor == intel_flavor);
3889
3890 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3891 constified, cast to prevent a compiler warning. */
3892 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3893
3894 return print_insn_i386 (pc, info);
7a292a7a 3895}
fc338970 3896\f
3ce1502b 3897
8201327c
MK
3898/* There are a few i386 architecture variants that differ only
3899 slightly from the generic i386 target. For now, we don't give them
3900 their own source file, but include them here. As a consequence,
3901 they'll always be included. */
3ce1502b 3902
8201327c 3903/* System V Release 4 (SVR4). */
3ce1502b 3904
10458914
DJ
3905/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3906 routine. */
911bc6ee 3907
8201327c 3908static int
10458914 3909i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3910{
10458914 3911 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3912 const char *name;
911bc6ee 3913
05b4bd79 3914 /* The origin of these symbols is currently unknown. */
911bc6ee 3915 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3916 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3917 || strcmp ("sigvechandler", name) == 0));
3918}
d2a7c97a 3919
10458914
DJ
3920/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3921 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3922
3a1e71e3 3923static CORE_ADDR
10458914 3924i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3925{
e17a4113
UW
3926 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3928 gdb_byte buf[4];
acd5c798 3929 CORE_ADDR sp;
3ce1502b 3930
10458914 3931 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3932 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3933
e17a4113 3934 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3935}
55aa24fb
SDJ
3936
3937\f
3938
3939/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3940 gdbarch.h. */
3941
3942int
3943i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3944{
3945 return (*s == '$' /* Literal number. */
3946 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3947 || (*s == '(' && s[1] == '%') /* Register indirection. */
3948 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3949}
3950
5acfdbae
SDJ
3951/* Helper function for i386_stap_parse_special_token.
3952
3953 This function parses operands of the form `-8+3+1(%rbp)', which
3954 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3955
3956 Return 1 if the operand was parsed successfully, zero
3957 otherwise. */
3958
3959static int
3960i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3961 struct stap_parse_info *p)
3962{
3963 const char *s = p->arg;
3964
3965 if (isdigit (*s) || *s == '-' || *s == '+')
3966 {
3967 int got_minus[3];
3968 int i;
3969 long displacements[3];
3970 const char *start;
3971 char *regname;
3972 int len;
3973 struct stoken str;
3974 char *endp;
3975
3976 got_minus[0] = 0;
3977 if (*s == '+')
3978 ++s;
3979 else if (*s == '-')
3980 {
3981 ++s;
3982 got_minus[0] = 1;
3983 }
3984
d7b30f67
SDJ
3985 if (!isdigit ((unsigned char) *s))
3986 return 0;
3987
5acfdbae
SDJ
3988 displacements[0] = strtol (s, &endp, 10);
3989 s = endp;
3990
3991 if (*s != '+' && *s != '-')
3992 {
3993 /* We are not dealing with a triplet. */
3994 return 0;
3995 }
3996
3997 got_minus[1] = 0;
3998 if (*s == '+')
3999 ++s;
4000 else
4001 {
4002 ++s;
4003 got_minus[1] = 1;
4004 }
4005
d7b30f67
SDJ
4006 if (!isdigit ((unsigned char) *s))
4007 return 0;
4008
5acfdbae
SDJ
4009 displacements[1] = strtol (s, &endp, 10);
4010 s = endp;
4011
4012 if (*s != '+' && *s != '-')
4013 {
4014 /* We are not dealing with a triplet. */
4015 return 0;
4016 }
4017
4018 got_minus[2] = 0;
4019 if (*s == '+')
4020 ++s;
4021 else
4022 {
4023 ++s;
4024 got_minus[2] = 1;
4025 }
4026
d7b30f67
SDJ
4027 if (!isdigit ((unsigned char) *s))
4028 return 0;
4029
5acfdbae
SDJ
4030 displacements[2] = strtol (s, &endp, 10);
4031 s = endp;
4032
4033 if (*s != '(' || s[1] != '%')
4034 return 0;
4035
4036 s += 2;
4037 start = s;
4038
4039 while (isalnum (*s))
4040 ++s;
4041
4042 if (*s++ != ')')
4043 return 0;
4044
d7b30f67 4045 len = s - start - 1;
5acfdbae
SDJ
4046 regname = alloca (len + 1);
4047
4048 strncpy (regname, start, len);
4049 regname[len] = '\0';
4050
4051 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4052 error (_("Invalid register name `%s' on expression `%s'."),
4053 regname, p->saved_arg);
4054
4055 for (i = 0; i < 3; i++)
4056 {
410a0ff2
SDJ
4057 write_exp_elt_opcode (&p->pstate, OP_LONG);
4058 write_exp_elt_type
4059 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4060 write_exp_elt_longcst (&p->pstate, displacements[i]);
4061 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4062 if (got_minus[i])
410a0ff2 4063 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4064 }
4065
410a0ff2 4066 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4067 str.ptr = regname;
4068 str.length = len;
410a0ff2
SDJ
4069 write_exp_string (&p->pstate, str);
4070 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4071
410a0ff2
SDJ
4072 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4073 write_exp_elt_type (&p->pstate,
4074 builtin_type (gdbarch)->builtin_data_ptr);
4075 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4076
410a0ff2
SDJ
4077 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4078 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4079 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4080
410a0ff2
SDJ
4081 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4082 write_exp_elt_type (&p->pstate,
4083 lookup_pointer_type (p->arg_type));
4084 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4085
410a0ff2 4086 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4087
4088 p->arg = s;
4089
4090 return 1;
4091 }
4092
4093 return 0;
4094}
4095
4096/* Helper function for i386_stap_parse_special_token.
4097
4098 This function parses operands of the form `register base +
4099 (register index * size) + offset', as represented in
4100 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4101
4102 Return 1 if the operand was parsed successfully, zero
4103 otherwise. */
4104
4105static int
4106i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4107 struct stap_parse_info *p)
4108{
4109 const char *s = p->arg;
4110
4111 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4112 {
4113 int offset_minus = 0;
4114 long offset = 0;
4115 int size_minus = 0;
4116 long size = 0;
4117 const char *start;
4118 char *base;
4119 int len_base;
4120 char *index;
4121 int len_index;
4122 struct stoken base_token, index_token;
4123
4124 if (*s == '+')
4125 ++s;
4126 else if (*s == '-')
4127 {
4128 ++s;
4129 offset_minus = 1;
4130 }
4131
4132 if (offset_minus && !isdigit (*s))
4133 return 0;
4134
4135 if (isdigit (*s))
4136 {
4137 char *endp;
4138
4139 offset = strtol (s, &endp, 10);
4140 s = endp;
4141 }
4142
4143 if (*s != '(' || s[1] != '%')
4144 return 0;
4145
4146 s += 2;
4147 start = s;
4148
4149 while (isalnum (*s))
4150 ++s;
4151
4152 if (*s != ',' || s[1] != '%')
4153 return 0;
4154
4155 len_base = s - start;
4156 base = alloca (len_base + 1);
4157 strncpy (base, start, len_base);
4158 base[len_base] = '\0';
4159
4160 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 base, p->saved_arg);
4163
4164 s += 2;
4165 start = s;
4166
4167 while (isalnum (*s))
4168 ++s;
4169
4170 len_index = s - start;
4171 index = alloca (len_index + 1);
4172 strncpy (index, start, len_index);
4173 index[len_index] = '\0';
4174
4175 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4176 error (_("Invalid register name `%s' on expression `%s'."),
4177 index, p->saved_arg);
4178
4179 if (*s != ',' && *s != ')')
4180 return 0;
4181
4182 if (*s == ',')
4183 {
4184 char *endp;
4185
4186 ++s;
4187 if (*s == '+')
4188 ++s;
4189 else if (*s == '-')
4190 {
4191 ++s;
4192 size_minus = 1;
4193 }
4194
4195 size = strtol (s, &endp, 10);
4196 s = endp;
4197
4198 if (*s != ')')
4199 return 0;
4200 }
4201
4202 ++s;
4203
4204 if (offset)
4205 {
410a0ff2
SDJ
4206 write_exp_elt_opcode (&p->pstate, OP_LONG);
4207 write_exp_elt_type (&p->pstate,
4208 builtin_type (gdbarch)->builtin_long);
4209 write_exp_elt_longcst (&p->pstate, offset);
4210 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4211 if (offset_minus)
410a0ff2 4212 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4213 }
4214
410a0ff2 4215 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4216 base_token.ptr = base;
4217 base_token.length = len_base;
410a0ff2
SDJ
4218 write_exp_string (&p->pstate, base_token);
4219 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4220
4221 if (offset)
410a0ff2 4222 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4223
410a0ff2 4224 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4225 index_token.ptr = index;
4226 index_token.length = len_index;
410a0ff2
SDJ
4227 write_exp_string (&p->pstate, index_token);
4228 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4229
4230 if (size)
4231 {
410a0ff2
SDJ
4232 write_exp_elt_opcode (&p->pstate, OP_LONG);
4233 write_exp_elt_type (&p->pstate,
4234 builtin_type (gdbarch)->builtin_long);
4235 write_exp_elt_longcst (&p->pstate, size);
4236 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4237 if (size_minus)
410a0ff2
SDJ
4238 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4239 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4240 }
4241
410a0ff2 4242 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4243
410a0ff2
SDJ
4244 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4245 write_exp_elt_type (&p->pstate,
4246 lookup_pointer_type (p->arg_type));
4247 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4248
410a0ff2 4249 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4250
4251 p->arg = s;
4252
4253 return 1;
4254 }
4255
4256 return 0;
4257}
4258
55aa24fb
SDJ
4259/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4260 gdbarch.h. */
4261
4262int
4263i386_stap_parse_special_token (struct gdbarch *gdbarch,
4264 struct stap_parse_info *p)
4265{
55aa24fb
SDJ
4266 /* In order to parse special tokens, we use a state-machine that go
4267 through every known token and try to get a match. */
4268 enum
4269 {
4270 TRIPLET,
4271 THREE_ARG_DISPLACEMENT,
4272 DONE
4273 } current_state;
4274
4275 current_state = TRIPLET;
4276
4277 /* The special tokens to be parsed here are:
4278
4279 - `register base + (register index * size) + offset', as represented
4280 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4281
4282 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4283 `*(-8 + 3 - 1 + (void *) $eax)'. */
4284
4285 while (current_state != DONE)
4286 {
55aa24fb
SDJ
4287 switch (current_state)
4288 {
4289 case TRIPLET:
5acfdbae
SDJ
4290 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4291 return 1;
4292 break;
4293
55aa24fb 4294 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4295 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4296 return 1;
4297 break;
55aa24fb
SDJ
4298 }
4299
4300 /* Advancing to the next state. */
4301 ++current_state;
4302 }
4303
4304 return 0;
4305}
4306
8201327c 4307\f
3ce1502b 4308
ac04f72b
TT
4309/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4310 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4311
4312static const char *
4313i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4314{
4315 return "(x86_64|i.86)";
4316}
4317
4318\f
4319
8201327c 4320/* Generic ELF. */
d2a7c97a 4321
8201327c
MK
4322void
4323i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4324{
05c0465e
SDJ
4325 static const char *const stap_integer_prefixes[] = { "$", NULL };
4326 static const char *const stap_register_prefixes[] = { "%", NULL };
4327 static const char *const stap_register_indirection_prefixes[] = { "(",
4328 NULL };
4329 static const char *const stap_register_indirection_suffixes[] = { ")",
4330 NULL };
4331
c4fc7f1b
MK
4332 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4333 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4334
4335 /* Registering SystemTap handlers. */
05c0465e
SDJ
4336 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4337 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4338 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4339 stap_register_indirection_prefixes);
4340 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4341 stap_register_indirection_suffixes);
55aa24fb
SDJ
4342 set_gdbarch_stap_is_single_operand (gdbarch,
4343 i386_stap_is_single_operand);
4344 set_gdbarch_stap_parse_special_token (gdbarch,
4345 i386_stap_parse_special_token);
ac04f72b
TT
4346
4347 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8201327c 4348}
3ce1502b 4349
8201327c 4350/* System V Release 4 (SVR4). */
3ce1502b 4351
8201327c
MK
4352void
4353i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4354{
4355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4356
8201327c
MK
4357 /* System V Release 4 uses ELF. */
4358 i386_elf_init_abi (info, gdbarch);
3ce1502b 4359
dfe01d39 4360 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4361 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4362
911bc6ee 4363 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4364 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4365 tdep->sc_pc_offset = 36 + 14 * 4;
4366 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4367
8201327c 4368 tdep->jb_pc_offset = 20;
3ce1502b
MK
4369}
4370
8201327c 4371/* DJGPP. */
3ce1502b 4372
3a1e71e3 4373static void
8201327c 4374i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4375{
8201327c 4376 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4377
911bc6ee
MK
4378 /* DJGPP doesn't have any special frames for signal handlers. */
4379 tdep->sigtramp_p = NULL;
3ce1502b 4380
8201327c 4381 tdep->jb_pc_offset = 36;
15430fc0
EZ
4382
4383 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4384 if (! tdesc_has_registers (info.target_desc))
4385 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4386
4387 /* Native compiler is GCC, which uses the SVR4 register numbering
4388 even in COFF and STABS. See the comment in i386_gdbarch_init,
4389 before the calls to set_gdbarch_stab_reg_to_regnum and
4390 set_gdbarch_sdb_reg_to_regnum. */
4391 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4392 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4393
4394 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
ac04f72b
TT
4395
4396 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
3ce1502b 4397}
8201327c 4398\f
2acceee2 4399
38c968cf
AC
4400/* i386 register groups. In addition to the normal groups, add "mmx"
4401 and "sse". */
4402
4403static struct reggroup *i386_sse_reggroup;
4404static struct reggroup *i386_mmx_reggroup;
4405
4406static void
4407i386_init_reggroups (void)
4408{
4409 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4410 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4411}
4412
4413static void
4414i386_add_reggroups (struct gdbarch *gdbarch)
4415{
4416 reggroup_add (gdbarch, i386_sse_reggroup);
4417 reggroup_add (gdbarch, i386_mmx_reggroup);
4418 reggroup_add (gdbarch, general_reggroup);
4419 reggroup_add (gdbarch, float_reggroup);
4420 reggroup_add (gdbarch, all_reggroup);
4421 reggroup_add (gdbarch, save_reggroup);
4422 reggroup_add (gdbarch, restore_reggroup);
4423 reggroup_add (gdbarch, vector_reggroup);
4424 reggroup_add (gdbarch, system_reggroup);
4425}
4426
4427int
4428i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4429 struct reggroup *group)
4430{
c131fcee
L
4431 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4432 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4433 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4434 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4435 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4436 avx512_p, avx_p, sse_p;
acd5c798 4437
1ba53b71
L
4438 /* Don't include pseudo registers, except for MMX, in any register
4439 groups. */
c131fcee 4440 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4441 return 0;
4442
c131fcee 4443 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4444 return 0;
4445
c131fcee 4446 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4447 return 0;
4448
4449 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4450 if (group == i386_mmx_reggroup)
4451 return mmx_regnum_p;
1ba53b71 4452
c131fcee 4453 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4454 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4455 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4456 if (group == i386_sse_reggroup)
01f9f808 4457 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4458
4459 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4460 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4461 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4462
df7e5265
GB
4463 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4464 == X86_XSTATE_AVX512_MASK);
4465 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4466 == X86_XSTATE_AVX_MASK) && !avx512_p;
4467 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4468 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4469
38c968cf 4470 if (group == vector_reggroup)
c131fcee 4471 return (mmx_regnum_p
01f9f808
MS
4472 || (zmm_regnum_p && avx512_p)
4473 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4474 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4475 || mxcsr_regnum_p);
1ba53b71
L
4476
4477 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4478 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4479 if (group == float_reggroup)
4480 return fp_regnum_p;
1ba53b71 4481
c131fcee
L
4482 /* For "info reg all", don't include upper YMM registers nor XMM
4483 registers when AVX is supported. */
4484 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4485 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4486 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4487 if (group == all_reggroup
01f9f808
MS
4488 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4489 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4490 || ymmh_regnum_p
4491 || ymmh_avx512_regnum_p
4492 || zmmh_regnum_p))
c131fcee
L
4493 return 0;
4494
1dbcd68c
WT
4495 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4496 if (group == all_reggroup
df7e5265 4497 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4498 return bnd_regnum_p;
4499
4500 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4501 if (group == all_reggroup
df7e5265 4502 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4503 return 0;
4504
4505 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4506 if (group == all_reggroup
df7e5265 4507 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4508 return mpx_ctrl_regnum_p;
4509
38c968cf 4510 if (group == general_reggroup)
1ba53b71
L
4511 return (!fp_regnum_p
4512 && !mmx_regnum_p
c131fcee
L
4513 && !mxcsr_regnum_p
4514 && !xmm_regnum_p
01f9f808 4515 && !xmm_avx512_regnum_p
c131fcee 4516 && !ymm_regnum_p
1dbcd68c 4517 && !ymmh_regnum_p
01f9f808
MS
4518 && !ymm_avx512_regnum_p
4519 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4520 && !bndr_regnum_p
4521 && !bnd_regnum_p
01f9f808
MS
4522 && !mpx_ctrl_regnum_p
4523 && !zmm_regnum_p
4524 && !zmmh_regnum_p);
acd5c798 4525
38c968cf
AC
4526 return default_register_reggroup_p (gdbarch, regnum, group);
4527}
38c968cf 4528\f
acd5c798 4529
f837910f
MK
4530/* Get the ARGIth function argument for the current function. */
4531
42c466d7 4532static CORE_ADDR
143985b7
AF
4533i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4534 struct type *type)
4535{
e17a4113
UW
4536 struct gdbarch *gdbarch = get_frame_arch (frame);
4537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4538 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4539 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4540}
4541
7ad10968
HZ
4542#define PREFIX_REPZ 0x01
4543#define PREFIX_REPNZ 0x02
4544#define PREFIX_LOCK 0x04
4545#define PREFIX_DATA 0x08
4546#define PREFIX_ADDR 0x10
473f17b0 4547
7ad10968
HZ
4548/* operand size */
4549enum
4550{
4551 OT_BYTE = 0,
4552 OT_WORD,
4553 OT_LONG,
cf648174 4554 OT_QUAD,
a3c4230a 4555 OT_DQUAD,
7ad10968 4556};
473f17b0 4557
7ad10968
HZ
4558/* i386 arith/logic operations */
4559enum
4560{
4561 OP_ADDL,
4562 OP_ORL,
4563 OP_ADCL,
4564 OP_SBBL,
4565 OP_ANDL,
4566 OP_SUBL,
4567 OP_XORL,
4568 OP_CMPL,
4569};
5716833c 4570
7ad10968
HZ
4571struct i386_record_s
4572{
cf648174 4573 struct gdbarch *gdbarch;
7ad10968 4574 struct regcache *regcache;
df61f520 4575 CORE_ADDR orig_addr;
7ad10968
HZ
4576 CORE_ADDR addr;
4577 int aflag;
4578 int dflag;
4579 int override;
4580 uint8_t modrm;
4581 uint8_t mod, reg, rm;
4582 int ot;
cf648174
HZ
4583 uint8_t rex_x;
4584 uint8_t rex_b;
4585 int rip_offset;
4586 int popl_esp_hack;
4587 const int *regmap;
7ad10968 4588};
5716833c 4589
99c1624c
PA
4590/* Parse the "modrm" part of the memory address irp->addr points at.
4591 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4592
7ad10968
HZ
4593static int
4594i386_record_modrm (struct i386_record_s *irp)
4595{
cf648174 4596 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4597
4ffa4fc7
PA
4598 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4599 return -1;
4600
7ad10968
HZ
4601 irp->addr++;
4602 irp->mod = (irp->modrm >> 6) & 3;
4603 irp->reg = (irp->modrm >> 3) & 7;
4604 irp->rm = irp->modrm & 7;
5716833c 4605
7ad10968
HZ
4606 return 0;
4607}
d2a7c97a 4608
99c1624c
PA
4609/* Extract the memory address that the current instruction writes to,
4610 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4611
7ad10968 4612static int
cf648174 4613i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4614{
cf648174 4615 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4617 gdb_byte buf[4];
4618 ULONGEST offset64;
21d0e8a4 4619
7ad10968 4620 *addr = 0;
1e87984a 4621 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4622 {
1e87984a 4623 /* 32/64 bits */
7ad10968
HZ
4624 int havesib = 0;
4625 uint8_t scale = 0;
648d0c8b 4626 uint8_t byte;
7ad10968
HZ
4627 uint8_t index = 0;
4628 uint8_t base = irp->rm;
896fb97d 4629
7ad10968
HZ
4630 if (base == 4)
4631 {
4632 havesib = 1;
4ffa4fc7
PA
4633 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4634 return -1;
7ad10968 4635 irp->addr++;
648d0c8b
MS
4636 scale = (byte >> 6) & 3;
4637 index = ((byte >> 3) & 7) | irp->rex_x;
4638 base = (byte & 7);
7ad10968 4639 }
cf648174 4640 base |= irp->rex_b;
21d0e8a4 4641
7ad10968
HZ
4642 switch (irp->mod)
4643 {
4644 case 0:
4645 if ((base & 7) == 5)
4646 {
4647 base = 0xff;
4ffa4fc7
PA
4648 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4649 return -1;
7ad10968 4650 irp->addr += 4;
60a1502a 4651 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4652 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4653 *addr += irp->addr + irp->rip_offset;
7ad10968 4654 }
7ad10968
HZ
4655 break;
4656 case 1:
4ffa4fc7
PA
4657 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4658 return -1;
7ad10968 4659 irp->addr++;
60a1502a 4660 *addr = (int8_t) buf[0];
7ad10968
HZ
4661 break;
4662 case 2:
4ffa4fc7
PA
4663 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4664 return -1;
60a1502a 4665 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4666 irp->addr += 4;
4667 break;
4668 }
356a6b3e 4669
60a1502a 4670 offset64 = 0;
7ad10968 4671 if (base != 0xff)
cf648174
HZ
4672 {
4673 if (base == 4 && irp->popl_esp_hack)
4674 *addr += irp->popl_esp_hack;
4675 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4676 &offset64);
7ad10968 4677 }
cf648174
HZ
4678 if (irp->aflag == 2)
4679 {
60a1502a 4680 *addr += offset64;
cf648174
HZ
4681 }
4682 else
60a1502a 4683 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4684
7ad10968
HZ
4685 if (havesib && (index != 4 || scale != 0))
4686 {
cf648174 4687 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4688 &offset64);
cf648174 4689 if (irp->aflag == 2)
60a1502a 4690 *addr += offset64 << scale;
cf648174 4691 else
60a1502a 4692 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4693 }
e85596e0
L
4694
4695 if (!irp->aflag)
4696 {
4697 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4698 address from 32-bit to 64-bit. */
4699 *addr = (uint32_t) *addr;
4700 }
7ad10968
HZ
4701 }
4702 else
4703 {
4704 /* 16 bits */
4705 switch (irp->mod)
4706 {
4707 case 0:
4708 if (irp->rm == 6)
4709 {
4ffa4fc7
PA
4710 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4711 return -1;
7ad10968 4712 irp->addr += 2;
60a1502a 4713 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4714 irp->rm = 0;
4715 goto no_rm;
4716 }
7ad10968
HZ
4717 break;
4718 case 1:
4ffa4fc7
PA
4719 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4720 return -1;
7ad10968 4721 irp->addr++;
60a1502a 4722 *addr = (int8_t) buf[0];
7ad10968
HZ
4723 break;
4724 case 2:
4ffa4fc7
PA
4725 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4726 return -1;
7ad10968 4727 irp->addr += 2;
60a1502a 4728 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4729 break;
4730 }
c4fc7f1b 4731
7ad10968
HZ
4732 switch (irp->rm)
4733 {
4734 case 0:
cf648174
HZ
4735 regcache_raw_read_unsigned (irp->regcache,
4736 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4737 &offset64);
4738 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4739 regcache_raw_read_unsigned (irp->regcache,
4740 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4741 &offset64);
4742 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4743 break;
4744 case 1:
cf648174
HZ
4745 regcache_raw_read_unsigned (irp->regcache,
4746 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4747 &offset64);
4748 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4749 regcache_raw_read_unsigned (irp->regcache,
4750 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4751 &offset64);
4752 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4753 break;
4754 case 2:
cf648174
HZ
4755 regcache_raw_read_unsigned (irp->regcache,
4756 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4757 &offset64);
4758 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4759 regcache_raw_read_unsigned (irp->regcache,
4760 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4761 &offset64);
4762 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4763 break;
4764 case 3:
cf648174
HZ
4765 regcache_raw_read_unsigned (irp->regcache,
4766 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4767 &offset64);
4768 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4769 regcache_raw_read_unsigned (irp->regcache,
4770 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4771 &offset64);
4772 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4773 break;
4774 case 4:
cf648174
HZ
4775 regcache_raw_read_unsigned (irp->regcache,
4776 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4777 &offset64);
4778 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4779 break;
4780 case 5:
cf648174
HZ
4781 regcache_raw_read_unsigned (irp->regcache,
4782 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4783 &offset64);
4784 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4785 break;
4786 case 6:
cf648174
HZ
4787 regcache_raw_read_unsigned (irp->regcache,
4788 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4789 &offset64);
4790 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4791 break;
4792 case 7:
cf648174
HZ
4793 regcache_raw_read_unsigned (irp->regcache,
4794 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4795 &offset64);
4796 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4797 break;
4798 }
4799 *addr &= 0xffff;
4800 }
c4fc7f1b 4801
01fe1b41 4802 no_rm:
7ad10968
HZ
4803 return 0;
4804}
c4fc7f1b 4805
99c1624c
PA
4806/* Record the address and contents of the memory that will be changed
4807 by the current instruction. Return -1 if something goes wrong, 0
4808 otherwise. */
356a6b3e 4809
7ad10968
HZ
4810static int
4811i386_record_lea_modrm (struct i386_record_s *irp)
4812{
cf648174
HZ
4813 struct gdbarch *gdbarch = irp->gdbarch;
4814 uint64_t addr;
356a6b3e 4815
d7877f7e 4816 if (irp->override >= 0)
7ad10968 4817 {
25ea693b 4818 if (record_full_memory_query)
bb08c432
HZ
4819 {
4820 int q;
4821
4822 target_terminal_ours ();
4823 q = yquery (_("\
4824Process record ignores the memory change of instruction at address %s\n\
4825because it can't get the value of the segment register.\n\
4826Do you want to stop the program?"),
4827 paddress (gdbarch, irp->orig_addr));
4828 target_terminal_inferior ();
4829 if (q)
4830 return -1;
4831 }
4832
7ad10968
HZ
4833 return 0;
4834 }
61113f8b 4835
7ad10968
HZ
4836 if (i386_record_lea_modrm_addr (irp, &addr))
4837 return -1;
96297dab 4838
25ea693b 4839 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4840 return -1;
a62cc96e 4841
7ad10968
HZ
4842 return 0;
4843}
b6197528 4844
99c1624c
PA
4845/* Record the effects of a push operation. Return -1 if something
4846 goes wrong, 0 otherwise. */
cf648174
HZ
4847
4848static int
4849i386_record_push (struct i386_record_s *irp, int size)
4850{
648d0c8b 4851 ULONGEST addr;
cf648174 4852
25ea693b
MM
4853 if (record_full_arch_list_add_reg (irp->regcache,
4854 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4855 return -1;
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4858 &addr);
25ea693b 4859 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4860 return -1;
4861
4862 return 0;
4863}
4864
0289bdd7
MS
4865
4866/* Defines contents to record. */
4867#define I386_SAVE_FPU_REGS 0xfffd
4868#define I386_SAVE_FPU_ENV 0xfffe
4869#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4870
99c1624c
PA
4871/* Record the values of the floating point registers which will be
4872 changed by the current instruction. Returns -1 if something is
4873 wrong, 0 otherwise. */
0289bdd7
MS
4874
4875static int i386_record_floats (struct gdbarch *gdbarch,
4876 struct i386_record_s *ir,
4877 uint32_t iregnum)
4878{
4879 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4880 int i;
4881
4882 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4883 happen. Currently we store st0-st7 registers, but we need not store all
4884 registers all the time, in future we use ftag register and record only
4885 those who are not marked as an empty. */
4886
4887 if (I386_SAVE_FPU_REGS == iregnum)
4888 {
4889 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4890 {
25ea693b 4891 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4892 return -1;
4893 }
4894 }
4895 else if (I386_SAVE_FPU_ENV == iregnum)
4896 {
4897 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4898 {
25ea693b 4899 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4900 return -1;
4901 }
4902 }
4903 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4904 {
4905 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4906 {
25ea693b 4907 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4908 return -1;
4909 }
4910 }
4911 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4912 (iregnum <= I387_FOP_REGNUM (tdep)))
4913 {
25ea693b 4914 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4915 return -1;
4916 }
4917 else
4918 {
4919 /* Parameter error. */
4920 return -1;
4921 }
4922 if(I386_SAVE_FPU_ENV != iregnum)
4923 {
4924 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4925 {
25ea693b 4926 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4927 return -1;
4928 }
4929 }
4930 return 0;
4931}
4932
99c1624c
PA
4933/* Parse the current instruction, and record the values of the
4934 registers and memory that will be changed by the current
4935 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4936
25ea693b
MM
4937#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4938 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4939
a6b808b4 4940int
7ad10968 4941i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4942 CORE_ADDR input_addr)
7ad10968 4943{
60a1502a 4944 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4945 int prefixes = 0;
580879fc 4946 int regnum = 0;
425b824a 4947 uint32_t opcode;
f4644a3f 4948 uint8_t opcode8;
648d0c8b 4949 ULONGEST addr;
60a1502a 4950 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4951 struct i386_record_s ir;
0289bdd7 4952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4953 uint8_t rex_w = -1;
4954 uint8_t rex_r = 0;
7ad10968 4955
8408d274 4956 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4957 ir.regcache = regcache;
648d0c8b
MS
4958 ir.addr = input_addr;
4959 ir.orig_addr = input_addr;
7ad10968
HZ
4960 ir.aflag = 1;
4961 ir.dflag = 1;
cf648174
HZ
4962 ir.override = -1;
4963 ir.popl_esp_hack = 0;
a3c4230a 4964 ir.regmap = tdep->record_regmap;
cf648174 4965 ir.gdbarch = gdbarch;
7ad10968
HZ
4966
4967 if (record_debug > 1)
4968 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4969 "addr = %s\n",
4970 paddress (gdbarch, ir.addr));
7ad10968
HZ
4971
4972 /* prefixes */
4973 while (1)
4974 {
4ffa4fc7
PA
4975 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4976 return -1;
7ad10968 4977 ir.addr++;
425b824a 4978 switch (opcode8) /* Instruction prefixes */
7ad10968 4979 {
01fe1b41 4980 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4981 prefixes |= PREFIX_REPZ;
4982 break;
01fe1b41 4983 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4984 prefixes |= PREFIX_REPNZ;
4985 break;
01fe1b41 4986 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4987 prefixes |= PREFIX_LOCK;
4988 break;
01fe1b41 4989 case CS_PREFIX_OPCODE:
cf648174 4990 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4991 break;
01fe1b41 4992 case SS_PREFIX_OPCODE:
cf648174 4993 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4994 break;
01fe1b41 4995 case DS_PREFIX_OPCODE:
cf648174 4996 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4997 break;
01fe1b41 4998 case ES_PREFIX_OPCODE:
cf648174 4999 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5000 break;
01fe1b41 5001 case FS_PREFIX_OPCODE:
cf648174 5002 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5003 break;
01fe1b41 5004 case GS_PREFIX_OPCODE:
cf648174 5005 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5006 break;
01fe1b41 5007 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5008 prefixes |= PREFIX_DATA;
5009 break;
01fe1b41 5010 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5011 prefixes |= PREFIX_ADDR;
5012 break;
d691bec7
MS
5013 case 0x40: /* i386 inc %eax */
5014 case 0x41: /* i386 inc %ecx */
5015 case 0x42: /* i386 inc %edx */
5016 case 0x43: /* i386 inc %ebx */
5017 case 0x44: /* i386 inc %esp */
5018 case 0x45: /* i386 inc %ebp */
5019 case 0x46: /* i386 inc %esi */
5020 case 0x47: /* i386 inc %edi */
5021 case 0x48: /* i386 dec %eax */
5022 case 0x49: /* i386 dec %ecx */
5023 case 0x4a: /* i386 dec %edx */
5024 case 0x4b: /* i386 dec %ebx */
5025 case 0x4c: /* i386 dec %esp */
5026 case 0x4d: /* i386 dec %ebp */
5027 case 0x4e: /* i386 dec %esi */
5028 case 0x4f: /* i386 dec %edi */
5029 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5030 {
5031 /* REX */
425b824a
MS
5032 rex_w = (opcode8 >> 3) & 1;
5033 rex_r = (opcode8 & 0x4) << 1;
5034 ir.rex_x = (opcode8 & 0x2) << 2;
5035 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5036 }
d691bec7
MS
5037 else /* 32 bit target */
5038 goto out_prefixes;
cf648174 5039 break;
7ad10968
HZ
5040 default:
5041 goto out_prefixes;
5042 break;
5043 }
5044 }
01fe1b41 5045 out_prefixes:
cf648174
HZ
5046 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5047 {
5048 ir.dflag = 2;
5049 }
5050 else
5051 {
5052 if (prefixes & PREFIX_DATA)
5053 ir.dflag ^= 1;
5054 }
7ad10968
HZ
5055 if (prefixes & PREFIX_ADDR)
5056 ir.aflag ^= 1;
cf648174
HZ
5057 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5058 ir.aflag = 2;
7ad10968 5059
1777feb0 5060 /* Now check op code. */
425b824a 5061 opcode = (uint32_t) opcode8;
01fe1b41 5062 reswitch:
7ad10968
HZ
5063 switch (opcode)
5064 {
5065 case 0x0f:
4ffa4fc7
PA
5066 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5067 return -1;
7ad10968 5068 ir.addr++;
a3c4230a 5069 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5070 goto reswitch;
5071 break;
93924b6b 5072
a38bba38 5073 case 0x00: /* arith & logic */
7ad10968
HZ
5074 case 0x01:
5075 case 0x02:
5076 case 0x03:
5077 case 0x04:
5078 case 0x05:
5079 case 0x08:
5080 case 0x09:
5081 case 0x0a:
5082 case 0x0b:
5083 case 0x0c:
5084 case 0x0d:
5085 case 0x10:
5086 case 0x11:
5087 case 0x12:
5088 case 0x13:
5089 case 0x14:
5090 case 0x15:
5091 case 0x18:
5092 case 0x19:
5093 case 0x1a:
5094 case 0x1b:
5095 case 0x1c:
5096 case 0x1d:
5097 case 0x20:
5098 case 0x21:
5099 case 0x22:
5100 case 0x23:
5101 case 0x24:
5102 case 0x25:
5103 case 0x28:
5104 case 0x29:
5105 case 0x2a:
5106 case 0x2b:
5107 case 0x2c:
5108 case 0x2d:
5109 case 0x30:
5110 case 0x31:
5111 case 0x32:
5112 case 0x33:
5113 case 0x34:
5114 case 0x35:
5115 case 0x38:
5116 case 0x39:
5117 case 0x3a:
5118 case 0x3b:
5119 case 0x3c:
5120 case 0x3d:
5121 if (((opcode >> 3) & 7) != OP_CMPL)
5122 {
5123 if ((opcode & 1) == 0)
5124 ir.ot = OT_BYTE;
5125 else
5126 ir.ot = ir.dflag + OT_WORD;
93924b6b 5127
7ad10968
HZ
5128 switch ((opcode >> 1) & 3)
5129 {
a38bba38 5130 case 0: /* OP Ev, Gv */
7ad10968
HZ
5131 if (i386_record_modrm (&ir))
5132 return -1;
5133 if (ir.mod != 3)
5134 {
5135 if (i386_record_lea_modrm (&ir))
5136 return -1;
5137 }
5138 else
5139 {
cf648174
HZ
5140 ir.rm |= ir.rex_b;
5141 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5142 ir.rm &= 0x3;
25ea693b 5143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5144 }
5145 break;
a38bba38 5146 case 1: /* OP Gv, Ev */
7ad10968
HZ
5147 if (i386_record_modrm (&ir))
5148 return -1;
cf648174
HZ
5149 ir.reg |= rex_r;
5150 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5151 ir.reg &= 0x3;
25ea693b 5152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5153 break;
a38bba38 5154 case 2: /* OP A, Iv */
25ea693b 5155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5156 break;
5157 }
5158 }
25ea693b 5159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5160 break;
42fdc8df 5161
a38bba38 5162 case 0x80: /* GRP1 */
7ad10968
HZ
5163 case 0x81:
5164 case 0x82:
5165 case 0x83:
5166 if (i386_record_modrm (&ir))
5167 return -1;
8201327c 5168
7ad10968
HZ
5169 if (ir.reg != OP_CMPL)
5170 {
5171 if ((opcode & 1) == 0)
5172 ir.ot = OT_BYTE;
5173 else
5174 ir.ot = ir.dflag + OT_WORD;
28fc6740 5175
7ad10968
HZ
5176 if (ir.mod != 3)
5177 {
cf648174
HZ
5178 if (opcode == 0x83)
5179 ir.rip_offset = 1;
5180 else
5181 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5182 if (i386_record_lea_modrm (&ir))
5183 return -1;
5184 }
5185 else
25ea693b 5186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5187 }
25ea693b 5188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5189 break;
5e3397bb 5190
a38bba38 5191 case 0x40: /* inc */
7ad10968
HZ
5192 case 0x41:
5193 case 0x42:
5194 case 0x43:
5195 case 0x44:
5196 case 0x45:
5197 case 0x46:
5198 case 0x47:
a38bba38
MS
5199
5200 case 0x48: /* dec */
7ad10968
HZ
5201 case 0x49:
5202 case 0x4a:
5203 case 0x4b:
5204 case 0x4c:
5205 case 0x4d:
5206 case 0x4e:
5207 case 0x4f:
a38bba38 5208
25ea693b
MM
5209 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5211 break;
acd5c798 5212
a38bba38 5213 case 0xf6: /* GRP3 */
7ad10968
HZ
5214 case 0xf7:
5215 if ((opcode & 1) == 0)
5216 ir.ot = OT_BYTE;
5217 else
5218 ir.ot = ir.dflag + OT_WORD;
5219 if (i386_record_modrm (&ir))
5220 return -1;
acd5c798 5221
cf648174
HZ
5222 if (ir.mod != 3 && ir.reg == 0)
5223 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5224
7ad10968
HZ
5225 switch (ir.reg)
5226 {
a38bba38 5227 case 0: /* test */
25ea693b 5228 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5229 break;
a38bba38
MS
5230 case 2: /* not */
5231 case 3: /* neg */
7ad10968
HZ
5232 if (ir.mod != 3)
5233 {
5234 if (i386_record_lea_modrm (&ir))
5235 return -1;
5236 }
5237 else
5238 {
cf648174
HZ
5239 ir.rm |= ir.rex_b;
5240 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5241 ir.rm &= 0x3;
25ea693b 5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5243 }
a38bba38 5244 if (ir.reg == 3) /* neg */
25ea693b 5245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5246 break;
a38bba38
MS
5247 case 4: /* mul */
5248 case 5: /* imul */
5249 case 6: /* div */
5250 case 7: /* idiv */
25ea693b 5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5252 if (ir.ot != OT_BYTE)
25ea693b
MM
5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5255 break;
5256 default:
5257 ir.addr -= 2;
5258 opcode = opcode << 8 | ir.modrm;
5259 goto no_support;
5260 break;
5261 }
5262 break;
5263
a38bba38
MS
5264 case 0xfe: /* GRP4 */
5265 case 0xff: /* GRP5 */
7ad10968
HZ
5266 if (i386_record_modrm (&ir))
5267 return -1;
5268 if (ir.reg >= 2 && opcode == 0xfe)
5269 {
5270 ir.addr -= 2;
5271 opcode = opcode << 8 | ir.modrm;
5272 goto no_support;
5273 }
7ad10968
HZ
5274 switch (ir.reg)
5275 {
a38bba38
MS
5276 case 0: /* inc */
5277 case 1: /* dec */
cf648174
HZ
5278 if ((opcode & 1) == 0)
5279 ir.ot = OT_BYTE;
5280 else
5281 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5282 if (ir.mod != 3)
5283 {
5284 if (i386_record_lea_modrm (&ir))
5285 return -1;
5286 }
5287 else
5288 {
cf648174
HZ
5289 ir.rm |= ir.rex_b;
5290 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5291 ir.rm &= 0x3;
25ea693b 5292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5293 }
25ea693b 5294 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5295 break;
a38bba38 5296 case 2: /* call */
cf648174
HZ
5297 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5298 ir.dflag = 2;
5299 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5300 return -1;
25ea693b 5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5302 break;
a38bba38 5303 case 3: /* lcall */
25ea693b 5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5305 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5306 return -1;
25ea693b 5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5308 break;
a38bba38
MS
5309 case 4: /* jmp */
5310 case 5: /* ljmp */
25ea693b 5311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5312 break;
a38bba38 5313 case 6: /* push */
cf648174
HZ
5314 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5315 ir.dflag = 2;
5316 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5317 return -1;
7ad10968
HZ
5318 break;
5319 default:
5320 ir.addr -= 2;
5321 opcode = opcode << 8 | ir.modrm;
5322 goto no_support;
5323 break;
5324 }
5325 break;
5326
a38bba38 5327 case 0x84: /* test */
7ad10968
HZ
5328 case 0x85:
5329 case 0xa8:
5330 case 0xa9:
25ea693b 5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5332 break;
5333
a38bba38 5334 case 0x98: /* CWDE/CBW */
25ea693b 5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5336 break;
5337
a38bba38 5338 case 0x99: /* CDQ/CWD */
25ea693b
MM
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5341 break;
5342
a38bba38 5343 case 0x0faf: /* imul */
7ad10968
HZ
5344 case 0x69:
5345 case 0x6b:
5346 ir.ot = ir.dflag + OT_WORD;
5347 if (i386_record_modrm (&ir))
5348 return -1;
cf648174
HZ
5349 if (opcode == 0x69)
5350 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5351 else if (opcode == 0x6b)
5352 ir.rip_offset = 1;
5353 ir.reg |= rex_r;
5354 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5355 ir.reg &= 0x3;
25ea693b
MM
5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5358 break;
5359
a38bba38 5360 case 0x0fc0: /* xadd */
7ad10968
HZ
5361 case 0x0fc1:
5362 if ((opcode & 1) == 0)
5363 ir.ot = OT_BYTE;
5364 else
5365 ir.ot = ir.dflag + OT_WORD;
5366 if (i386_record_modrm (&ir))
5367 return -1;
cf648174 5368 ir.reg |= rex_r;
7ad10968
HZ
5369 if (ir.mod == 3)
5370 {
cf648174 5371 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5372 ir.reg &= 0x3;
25ea693b 5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5374 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5375 ir.rm &= 0x3;
25ea693b 5376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5377 }
5378 else
5379 {
5380 if (i386_record_lea_modrm (&ir))
5381 return -1;
cf648174 5382 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5383 ir.reg &= 0x3;
25ea693b 5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5385 }
25ea693b 5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5387 break;
5388
a38bba38 5389 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5390 case 0x0fb1:
5391 if ((opcode & 1) == 0)
5392 ir.ot = OT_BYTE;
5393 else
5394 ir.ot = ir.dflag + OT_WORD;
5395 if (i386_record_modrm (&ir))
5396 return -1;
5397 if (ir.mod == 3)
5398 {
cf648174 5399 ir.reg |= rex_r;
25ea693b 5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5401 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5402 ir.reg &= 0x3;
25ea693b 5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5404 }
5405 else
5406 {
25ea693b 5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5408 if (i386_record_lea_modrm (&ir))
5409 return -1;
5410 }
25ea693b 5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5412 break;
5413
a38bba38 5414 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5415 if (i386_record_modrm (&ir))
5416 return -1;
5417 if (ir.mod == 3)
5418 {
5419 ir.addr -= 2;
5420 opcode = opcode << 8 | ir.modrm;
5421 goto no_support;
5422 }
25ea693b
MM
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5425 if (i386_record_lea_modrm (&ir))
5426 return -1;
25ea693b 5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5428 break;
5429
a38bba38 5430 case 0x50: /* push */
7ad10968
HZ
5431 case 0x51:
5432 case 0x52:
5433 case 0x53:
5434 case 0x54:
5435 case 0x55:
5436 case 0x56:
5437 case 0x57:
5438 case 0x68:
5439 case 0x6a:
cf648174
HZ
5440 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5441 ir.dflag = 2;
5442 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5443 return -1;
5444 break;
5445
a38bba38
MS
5446 case 0x06: /* push es */
5447 case 0x0e: /* push cs */
5448 case 0x16: /* push ss */
5449 case 0x1e: /* push ds */
cf648174
HZ
5450 if (ir.regmap[X86_RECORD_R8_REGNUM])
5451 {
5452 ir.addr -= 1;
5453 goto no_support;
5454 }
5455 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5456 return -1;
5457 break;
5458
a38bba38
MS
5459 case 0x0fa0: /* push fs */
5460 case 0x0fa8: /* push gs */
cf648174
HZ
5461 if (ir.regmap[X86_RECORD_R8_REGNUM])
5462 {
5463 ir.addr -= 2;
5464 goto no_support;
5465 }
5466 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5467 return -1;
cf648174
HZ
5468 break;
5469
a38bba38 5470 case 0x60: /* pusha */
cf648174
HZ
5471 if (ir.regmap[X86_RECORD_R8_REGNUM])
5472 {
5473 ir.addr -= 1;
5474 goto no_support;
5475 }
5476 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5477 return -1;
5478 break;
5479
a38bba38 5480 case 0x58: /* pop */
7ad10968
HZ
5481 case 0x59:
5482 case 0x5a:
5483 case 0x5b:
5484 case 0x5c:
5485 case 0x5d:
5486 case 0x5e:
5487 case 0x5f:
25ea693b
MM
5488 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5490 break;
5491
a38bba38 5492 case 0x61: /* popa */
cf648174
HZ
5493 if (ir.regmap[X86_RECORD_R8_REGNUM])
5494 {
5495 ir.addr -= 1;
5496 goto no_support;
7ad10968 5497 }
425b824a
MS
5498 for (regnum = X86_RECORD_REAX_REGNUM;
5499 regnum <= X86_RECORD_REDI_REGNUM;
5500 regnum++)
25ea693b 5501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5502 break;
5503
a38bba38 5504 case 0x8f: /* pop */
cf648174
HZ
5505 if (ir.regmap[X86_RECORD_R8_REGNUM])
5506 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5507 else
5508 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5509 if (i386_record_modrm (&ir))
5510 return -1;
5511 if (ir.mod == 3)
25ea693b 5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5513 else
5514 {
cf648174 5515 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5516 if (i386_record_lea_modrm (&ir))
5517 return -1;
5518 }
25ea693b 5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5520 break;
5521
a38bba38 5522 case 0xc8: /* enter */
25ea693b 5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5524 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5525 ir.dflag = 2;
5526 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5527 return -1;
5528 break;
5529
a38bba38 5530 case 0xc9: /* leave */
25ea693b
MM
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5533 break;
5534
a38bba38 5535 case 0x07: /* pop es */
cf648174
HZ
5536 if (ir.regmap[X86_RECORD_R8_REGNUM])
5537 {
5538 ir.addr -= 1;
5539 goto no_support;
5540 }
25ea693b
MM
5541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5544 break;
5545
a38bba38 5546 case 0x17: /* pop ss */
cf648174
HZ
5547 if (ir.regmap[X86_RECORD_R8_REGNUM])
5548 {
5549 ir.addr -= 1;
5550 goto no_support;
5551 }
25ea693b
MM
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5555 break;
5556
a38bba38 5557 case 0x1f: /* pop ds */
cf648174
HZ
5558 if (ir.regmap[X86_RECORD_R8_REGNUM])
5559 {
5560 ir.addr -= 1;
5561 goto no_support;
5562 }
25ea693b
MM
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5566 break;
5567
a38bba38 5568 case 0x0fa1: /* pop fs */
25ea693b
MM
5569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5572 break;
5573
a38bba38 5574 case 0x0fa9: /* pop gs */
25ea693b
MM
5575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5578 break;
5579
a38bba38 5580 case 0x88: /* mov */
7ad10968
HZ
5581 case 0x89:
5582 case 0xc6:
5583 case 0xc7:
5584 if ((opcode & 1) == 0)
5585 ir.ot = OT_BYTE;
5586 else
5587 ir.ot = ir.dflag + OT_WORD;
5588
5589 if (i386_record_modrm (&ir))
5590 return -1;
5591
5592 if (ir.mod != 3)
5593 {
cf648174
HZ
5594 if (opcode == 0xc6 || opcode == 0xc7)
5595 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5596 if (i386_record_lea_modrm (&ir))
5597 return -1;
5598 }
5599 else
5600 {
cf648174
HZ
5601 if (opcode == 0xc6 || opcode == 0xc7)
5602 ir.rm |= ir.rex_b;
5603 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5604 ir.rm &= 0x3;
25ea693b 5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5606 }
7ad10968 5607 break;
cf648174 5608
a38bba38 5609 case 0x8a: /* mov */
7ad10968
HZ
5610 case 0x8b:
5611 if ((opcode & 1) == 0)
5612 ir.ot = OT_BYTE;
5613 else
5614 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5615 if (i386_record_modrm (&ir))
5616 return -1;
cf648174
HZ
5617 ir.reg |= rex_r;
5618 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5619 ir.reg &= 0x3;
25ea693b 5620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5621 break;
7ad10968 5622
a38bba38 5623 case 0x8c: /* mov seg */
cf648174 5624 if (i386_record_modrm (&ir))
7ad10968 5625 return -1;
cf648174
HZ
5626 if (ir.reg > 5)
5627 {
5628 ir.addr -= 2;
5629 opcode = opcode << 8 | ir.modrm;
5630 goto no_support;
5631 }
5632
5633 if (ir.mod == 3)
25ea693b 5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5635 else
5636 {
5637 ir.ot = OT_WORD;
5638 if (i386_record_lea_modrm (&ir))
5639 return -1;
5640 }
7ad10968
HZ
5641 break;
5642
a38bba38 5643 case 0x8e: /* mov seg */
7ad10968
HZ
5644 if (i386_record_modrm (&ir))
5645 return -1;
7ad10968
HZ
5646 switch (ir.reg)
5647 {
5648 case 0:
425b824a 5649 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5650 break;
5651 case 2:
425b824a 5652 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5653 break;
5654 case 3:
425b824a 5655 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5656 break;
5657 case 4:
425b824a 5658 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5659 break;
5660 case 5:
425b824a 5661 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5662 break;
5663 default:
5664 ir.addr -= 2;
5665 opcode = opcode << 8 | ir.modrm;
5666 goto no_support;
5667 break;
5668 }
25ea693b
MM
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5671 break;
5672
a38bba38
MS
5673 case 0x0fb6: /* movzbS */
5674 case 0x0fb7: /* movzwS */
5675 case 0x0fbe: /* movsbS */
5676 case 0x0fbf: /* movswS */
7ad10968
HZ
5677 if (i386_record_modrm (&ir))
5678 return -1;
25ea693b 5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5680 break;
5681
a38bba38 5682 case 0x8d: /* lea */
7ad10968
HZ
5683 if (i386_record_modrm (&ir))
5684 return -1;
5685 if (ir.mod == 3)
5686 {
5687 ir.addr -= 2;
5688 opcode = opcode << 8 | ir.modrm;
5689 goto no_support;
5690 }
7ad10968 5691 ir.ot = ir.dflag;
cf648174
HZ
5692 ir.reg |= rex_r;
5693 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5694 ir.reg &= 0x3;
25ea693b 5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5696 break;
5697
a38bba38 5698 case 0xa0: /* mov EAX */
7ad10968 5699 case 0xa1:
a38bba38
MS
5700
5701 case 0xd7: /* xlat */
25ea693b 5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5703 break;
5704
a38bba38 5705 case 0xa2: /* mov EAX */
7ad10968 5706 case 0xa3:
d7877f7e 5707 if (ir.override >= 0)
cf648174 5708 {
25ea693b 5709 if (record_full_memory_query)
bb08c432
HZ
5710 {
5711 int q;
5712
5713 target_terminal_ours ();
5714 q = yquery (_("\
5715Process record ignores the memory change of instruction at address %s\n\
5716because it can't get the value of the segment register.\n\
5717Do you want to stop the program?"),
5718 paddress (gdbarch, ir.orig_addr));
5719 target_terminal_inferior ();
5720 if (q)
5721 return -1;
5722 }
cf648174
HZ
5723 }
5724 else
5725 {
5726 if ((opcode & 1) == 0)
5727 ir.ot = OT_BYTE;
5728 else
5729 ir.ot = ir.dflag + OT_WORD;
5730 if (ir.aflag == 2)
5731 {
4ffa4fc7
PA
5732 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5733 return -1;
cf648174 5734 ir.addr += 8;
60a1502a 5735 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5736 }
5737 else if (ir.aflag)
5738 {
4ffa4fc7
PA
5739 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5740 return -1;
cf648174 5741 ir.addr += 4;
60a1502a 5742 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5743 }
5744 else
5745 {
4ffa4fc7
PA
5746 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5747 return -1;
cf648174 5748 ir.addr += 2;
60a1502a 5749 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5750 }
25ea693b 5751 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5752 return -1;
5753 }
7ad10968
HZ
5754 break;
5755
a38bba38 5756 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5757 case 0xb1:
5758 case 0xb2:
5759 case 0xb3:
5760 case 0xb4:
5761 case 0xb5:
5762 case 0xb6:
5763 case 0xb7:
25ea693b
MM
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5765 ? ((opcode & 0x7) | ir.rex_b)
5766 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5767 break;
5768
a38bba38 5769 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5770 case 0xb9:
5771 case 0xba:
5772 case 0xbb:
5773 case 0xbc:
5774 case 0xbd:
5775 case 0xbe:
5776 case 0xbf:
25ea693b 5777 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5778 break;
5779
a38bba38 5780 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5781 case 0x92:
5782 case 0x93:
5783 case 0x94:
5784 case 0x95:
5785 case 0x96:
5786 case 0x97:
25ea693b
MM
5787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5789 break;
5790
a38bba38 5791 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5792 case 0x87:
5793 if ((opcode & 1) == 0)
5794 ir.ot = OT_BYTE;
5795 else
5796 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5797 if (i386_record_modrm (&ir))
5798 return -1;
7ad10968
HZ
5799 if (ir.mod == 3)
5800 {
86839d38 5801 ir.rm |= ir.rex_b;
cf648174
HZ
5802 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5803 ir.rm &= 0x3;
25ea693b 5804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5805 }
5806 else
5807 {
5808 if (i386_record_lea_modrm (&ir))
5809 return -1;
5810 }
cf648174
HZ
5811 ir.reg |= rex_r;
5812 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5813 ir.reg &= 0x3;
25ea693b 5814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5815 break;
5816
a38bba38
MS
5817 case 0xc4: /* les Gv */
5818 case 0xc5: /* lds Gv */
cf648174
HZ
5819 if (ir.regmap[X86_RECORD_R8_REGNUM])
5820 {
5821 ir.addr -= 1;
5822 goto no_support;
5823 }
d3f323f3 5824 /* FALLTHROUGH */
a38bba38
MS
5825 case 0x0fb2: /* lss Gv */
5826 case 0x0fb4: /* lfs Gv */
5827 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5828 if (i386_record_modrm (&ir))
5829 return -1;
5830 if (ir.mod == 3)
5831 {
5832 if (opcode > 0xff)
5833 ir.addr -= 3;
5834 else
5835 ir.addr -= 2;
5836 opcode = opcode << 8 | ir.modrm;
5837 goto no_support;
5838 }
7ad10968
HZ
5839 switch (opcode)
5840 {
a38bba38 5841 case 0xc4: /* les Gv */
425b824a 5842 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5843 break;
a38bba38 5844 case 0xc5: /* lds Gv */
425b824a 5845 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5846 break;
a38bba38 5847 case 0x0fb2: /* lss Gv */
425b824a 5848 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5849 break;
a38bba38 5850 case 0x0fb4: /* lfs Gv */
425b824a 5851 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5852 break;
a38bba38 5853 case 0x0fb5: /* lgs Gv */
425b824a 5854 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5855 break;
5856 }
25ea693b
MM
5857 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5858 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5859 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5860 break;
5861
a38bba38 5862 case 0xc0: /* shifts */
7ad10968
HZ
5863 case 0xc1:
5864 case 0xd0:
5865 case 0xd1:
5866 case 0xd2:
5867 case 0xd3:
5868 if ((opcode & 1) == 0)
5869 ir.ot = OT_BYTE;
5870 else
5871 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5872 if (i386_record_modrm (&ir))
5873 return -1;
7ad10968
HZ
5874 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5875 {
5876 if (i386_record_lea_modrm (&ir))
5877 return -1;
5878 }
5879 else
5880 {
cf648174
HZ
5881 ir.rm |= ir.rex_b;
5882 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5883 ir.rm &= 0x3;
25ea693b 5884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5885 }
25ea693b 5886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5887 break;
5888
5889 case 0x0fa4:
5890 case 0x0fa5:
5891 case 0x0fac:
5892 case 0x0fad:
5893 if (i386_record_modrm (&ir))
5894 return -1;
5895 if (ir.mod == 3)
5896 {
25ea693b 5897 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5898 return -1;
5899 }
5900 else
5901 {
5902 if (i386_record_lea_modrm (&ir))
5903 return -1;
5904 }
5905 break;
5906
a38bba38 5907 case 0xd8: /* Floats. */
7ad10968
HZ
5908 case 0xd9:
5909 case 0xda:
5910 case 0xdb:
5911 case 0xdc:
5912 case 0xdd:
5913 case 0xde:
5914 case 0xdf:
5915 if (i386_record_modrm (&ir))
5916 return -1;
5917 ir.reg |= ((opcode & 7) << 3);
5918 if (ir.mod != 3)
5919 {
1777feb0 5920 /* Memory. */
955db0c0 5921 uint64_t addr64;
7ad10968 5922
955db0c0 5923 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5924 return -1;
5925 switch (ir.reg)
5926 {
7ad10968 5927 case 0x02:
0289bdd7
MS
5928 case 0x12:
5929 case 0x22:
5930 case 0x32:
5931 /* For fcom, ficom nothing to do. */
5932 break;
7ad10968 5933 case 0x03:
0289bdd7
MS
5934 case 0x13:
5935 case 0x23:
5936 case 0x33:
5937 /* For fcomp, ficomp pop FPU stack, store all. */
5938 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5939 return -1;
5940 break;
5941 case 0x00:
5942 case 0x01:
7ad10968
HZ
5943 case 0x04:
5944 case 0x05:
5945 case 0x06:
5946 case 0x07:
5947 case 0x10:
5948 case 0x11:
7ad10968
HZ
5949 case 0x14:
5950 case 0x15:
5951 case 0x16:
5952 case 0x17:
5953 case 0x20:
5954 case 0x21:
7ad10968
HZ
5955 case 0x24:
5956 case 0x25:
5957 case 0x26:
5958 case 0x27:
5959 case 0x30:
5960 case 0x31:
7ad10968
HZ
5961 case 0x34:
5962 case 0x35:
5963 case 0x36:
5964 case 0x37:
0289bdd7
MS
5965 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5966 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5967 of code, always affects st(0) register. */
5968 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5969 return -1;
7ad10968
HZ
5970 break;
5971 case 0x08:
5972 case 0x0a:
5973 case 0x0b:
5974 case 0x18:
5975 case 0x19:
5976 case 0x1a:
5977 case 0x1b:
0289bdd7 5978 case 0x1d:
7ad10968
HZ
5979 case 0x28:
5980 case 0x29:
5981 case 0x2a:
5982 case 0x2b:
5983 case 0x38:
5984 case 0x39:
5985 case 0x3a:
5986 case 0x3b:
0289bdd7
MS
5987 case 0x3c:
5988 case 0x3d:
7ad10968
HZ
5989 switch (ir.reg & 7)
5990 {
5991 case 0:
0289bdd7
MS
5992 /* Handling fld, fild. */
5993 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5994 return -1;
7ad10968
HZ
5995 break;
5996 case 1:
5997 switch (ir.reg >> 4)
5998 {
5999 case 0:
25ea693b 6000 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6001 return -1;
6002 break;
6003 case 2:
25ea693b 6004 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6005 return -1;
6006 break;
6007 case 3:
0289bdd7 6008 break;
7ad10968 6009 default:
25ea693b 6010 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6011 return -1;
6012 break;
6013 }
6014 break;
6015 default:
6016 switch (ir.reg >> 4)
6017 {
6018 case 0:
25ea693b 6019 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6020 return -1;
6021 if (3 == (ir.reg & 7))
6022 {
6023 /* For fstp m32fp. */
6024 if (i386_record_floats (gdbarch, &ir,
6025 I386_SAVE_FPU_REGS))
6026 return -1;
6027 }
6028 break;
7ad10968 6029 case 1:
25ea693b 6030 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6031 return -1;
0289bdd7
MS
6032 if ((3 == (ir.reg & 7))
6033 || (5 == (ir.reg & 7))
6034 || (7 == (ir.reg & 7)))
6035 {
6036 /* For fstp insn. */
6037 if (i386_record_floats (gdbarch, &ir,
6038 I386_SAVE_FPU_REGS))
6039 return -1;
6040 }
7ad10968
HZ
6041 break;
6042 case 2:
25ea693b 6043 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6044 return -1;
0289bdd7
MS
6045 if (3 == (ir.reg & 7))
6046 {
6047 /* For fstp m64fp. */
6048 if (i386_record_floats (gdbarch, &ir,
6049 I386_SAVE_FPU_REGS))
6050 return -1;
6051 }
7ad10968
HZ
6052 break;
6053 case 3:
0289bdd7
MS
6054 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6055 {
6056 /* For fistp, fbld, fild, fbstp. */
6057 if (i386_record_floats (gdbarch, &ir,
6058 I386_SAVE_FPU_REGS))
6059 return -1;
6060 }
6061 /* Fall through */
7ad10968 6062 default:
25ea693b 6063 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6064 return -1;
6065 break;
6066 }
6067 break;
6068 }
6069 break;
6070 case 0x0c:
0289bdd7
MS
6071 /* Insn fldenv. */
6072 if (i386_record_floats (gdbarch, &ir,
6073 I386_SAVE_FPU_ENV_REG_STACK))
6074 return -1;
6075 break;
7ad10968 6076 case 0x0d:
0289bdd7
MS
6077 /* Insn fldcw. */
6078 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6079 return -1;
6080 break;
7ad10968 6081 case 0x2c:
0289bdd7
MS
6082 /* Insn frstor. */
6083 if (i386_record_floats (gdbarch, &ir,
6084 I386_SAVE_FPU_ENV_REG_STACK))
6085 return -1;
7ad10968
HZ
6086 break;
6087 case 0x0e:
6088 if (ir.dflag)
6089 {
25ea693b 6090 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6091 return -1;
6092 }
6093 else
6094 {
25ea693b 6095 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6096 return -1;
6097 }
6098 break;
6099 case 0x0f:
6100 case 0x2f:
25ea693b 6101 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6102 return -1;
0289bdd7
MS
6103 /* Insn fstp, fbstp. */
6104 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6105 return -1;
7ad10968
HZ
6106 break;
6107 case 0x1f:
6108 case 0x3e:
25ea693b 6109 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6110 return -1;
6111 break;
6112 case 0x2e:
6113 if (ir.dflag)
6114 {
25ea693b 6115 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6116 return -1;
955db0c0 6117 addr64 += 28;
7ad10968
HZ
6118 }
6119 else
6120 {
25ea693b 6121 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6122 return -1;
955db0c0 6123 addr64 += 14;
7ad10968 6124 }
25ea693b 6125 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6126 return -1;
0289bdd7
MS
6127 /* Insn fsave. */
6128 if (i386_record_floats (gdbarch, &ir,
6129 I386_SAVE_FPU_ENV_REG_STACK))
6130 return -1;
7ad10968
HZ
6131 break;
6132 case 0x3f:
25ea693b 6133 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6134 return -1;
0289bdd7
MS
6135 /* Insn fistp. */
6136 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6137 return -1;
7ad10968
HZ
6138 break;
6139 default:
6140 ir.addr -= 2;
6141 opcode = opcode << 8 | ir.modrm;
6142 goto no_support;
6143 break;
6144 }
6145 }
0289bdd7
MS
6146 /* Opcode is an extension of modR/M byte. */
6147 else
6148 {
6149 switch (opcode)
6150 {
6151 case 0xd8:
6152 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6153 return -1;
6154 break;
6155 case 0xd9:
6156 if (0x0c == (ir.modrm >> 4))
6157 {
6158 if ((ir.modrm & 0x0f) <= 7)
6159 {
6160 if (i386_record_floats (gdbarch, &ir,
6161 I386_SAVE_FPU_REGS))
6162 return -1;
6163 }
6164 else
6165 {
6166 if (i386_record_floats (gdbarch, &ir,
6167 I387_ST0_REGNUM (tdep)))
6168 return -1;
6169 /* If only st(0) is changing, then we have already
6170 recorded. */
6171 if ((ir.modrm & 0x0f) - 0x08)
6172 {
6173 if (i386_record_floats (gdbarch, &ir,
6174 I387_ST0_REGNUM (tdep) +
6175 ((ir.modrm & 0x0f) - 0x08)))
6176 return -1;
6177 }
6178 }
6179 }
6180 else
6181 {
6182 switch (ir.modrm)
6183 {
6184 case 0xe0:
6185 case 0xe1:
6186 case 0xf0:
6187 case 0xf5:
6188 case 0xf8:
6189 case 0xfa:
6190 case 0xfc:
6191 case 0xfe:
6192 case 0xff:
6193 if (i386_record_floats (gdbarch, &ir,
6194 I387_ST0_REGNUM (tdep)))
6195 return -1;
6196 break;
6197 case 0xf1:
6198 case 0xf2:
6199 case 0xf3:
6200 case 0xf4:
6201 case 0xf6:
6202 case 0xf7:
6203 case 0xe8:
6204 case 0xe9:
6205 case 0xea:
6206 case 0xeb:
6207 case 0xec:
6208 case 0xed:
6209 case 0xee:
6210 case 0xf9:
6211 case 0xfb:
6212 if (i386_record_floats (gdbarch, &ir,
6213 I386_SAVE_FPU_REGS))
6214 return -1;
6215 break;
6216 case 0xfd:
6217 if (i386_record_floats (gdbarch, &ir,
6218 I387_ST0_REGNUM (tdep)))
6219 return -1;
6220 if (i386_record_floats (gdbarch, &ir,
6221 I387_ST0_REGNUM (tdep) + 1))
6222 return -1;
6223 break;
6224 }
6225 }
6226 break;
6227 case 0xda:
6228 if (0xe9 == ir.modrm)
6229 {
6230 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6231 return -1;
6232 }
6233 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6234 {
6235 if (i386_record_floats (gdbarch, &ir,
6236 I387_ST0_REGNUM (tdep)))
6237 return -1;
6238 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6239 {
6240 if (i386_record_floats (gdbarch, &ir,
6241 I387_ST0_REGNUM (tdep) +
6242 (ir.modrm & 0x0f)))
6243 return -1;
6244 }
6245 else if ((ir.modrm & 0x0f) - 0x08)
6246 {
6247 if (i386_record_floats (gdbarch, &ir,
6248 I387_ST0_REGNUM (tdep) +
6249 ((ir.modrm & 0x0f) - 0x08)))
6250 return -1;
6251 }
6252 }
6253 break;
6254 case 0xdb:
6255 if (0xe3 == ir.modrm)
6256 {
6257 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6258 return -1;
6259 }
6260 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6261 {
6262 if (i386_record_floats (gdbarch, &ir,
6263 I387_ST0_REGNUM (tdep)))
6264 return -1;
6265 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6266 {
6267 if (i386_record_floats (gdbarch, &ir,
6268 I387_ST0_REGNUM (tdep) +
6269 (ir.modrm & 0x0f)))
6270 return -1;
6271 }
6272 else if ((ir.modrm & 0x0f) - 0x08)
6273 {
6274 if (i386_record_floats (gdbarch, &ir,
6275 I387_ST0_REGNUM (tdep) +
6276 ((ir.modrm & 0x0f) - 0x08)))
6277 return -1;
6278 }
6279 }
6280 break;
6281 case 0xdc:
6282 if ((0x0c == ir.modrm >> 4)
6283 || (0x0d == ir.modrm >> 4)
6284 || (0x0f == ir.modrm >> 4))
6285 {
6286 if ((ir.modrm & 0x0f) <= 7)
6287 {
6288 if (i386_record_floats (gdbarch, &ir,
6289 I387_ST0_REGNUM (tdep) +
6290 (ir.modrm & 0x0f)))
6291 return -1;
6292 }
6293 else
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep) +
6297 ((ir.modrm & 0x0f) - 0x08)))
6298 return -1;
6299 }
6300 }
6301 break;
6302 case 0xdd:
6303 if (0x0c == ir.modrm >> 4)
6304 {
6305 if (i386_record_floats (gdbarch, &ir,
6306 I387_FTAG_REGNUM (tdep)))
6307 return -1;
6308 }
6309 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6310 {
6311 if ((ir.modrm & 0x0f) <= 7)
6312 {
6313 if (i386_record_floats (gdbarch, &ir,
6314 I387_ST0_REGNUM (tdep) +
6315 (ir.modrm & 0x0f)))
6316 return -1;
6317 }
6318 else
6319 {
6320 if (i386_record_floats (gdbarch, &ir,
6321 I386_SAVE_FPU_REGS))
6322 return -1;
6323 }
6324 }
6325 break;
6326 case 0xde:
6327 if ((0x0c == ir.modrm >> 4)
6328 || (0x0e == ir.modrm >> 4)
6329 || (0x0f == ir.modrm >> 4)
6330 || (0xd9 == ir.modrm))
6331 {
6332 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6333 return -1;
6334 }
6335 break;
6336 case 0xdf:
6337 if (0xe0 == ir.modrm)
6338 {
25ea693b
MM
6339 if (record_full_arch_list_add_reg (ir.regcache,
6340 I386_EAX_REGNUM))
0289bdd7
MS
6341 return -1;
6342 }
6343 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6344 {
6345 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6346 return -1;
6347 }
6348 break;
6349 }
6350 }
7ad10968 6351 break;
7ad10968 6352 /* string ops */
a38bba38 6353 case 0xa4: /* movsS */
7ad10968 6354 case 0xa5:
a38bba38 6355 case 0xaa: /* stosS */
7ad10968 6356 case 0xab:
a38bba38 6357 case 0x6c: /* insS */
7ad10968 6358 case 0x6d:
cf648174 6359 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6360 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6361 &addr);
6362 if (addr)
cf648174 6363 {
77d7dc92
HZ
6364 ULONGEST es, ds;
6365
6366 if ((opcode & 1) == 0)
6367 ir.ot = OT_BYTE;
6368 else
6369 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6370 regcache_raw_read_unsigned (ir.regcache,
6371 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6372 &addr);
77d7dc92 6373
d7877f7e
HZ
6374 regcache_raw_read_unsigned (ir.regcache,
6375 ir.regmap[X86_RECORD_ES_REGNUM],
6376 &es);
6377 regcache_raw_read_unsigned (ir.regcache,
6378 ir.regmap[X86_RECORD_DS_REGNUM],
6379 &ds);
6380 if (ir.aflag && (es != ds))
77d7dc92
HZ
6381 {
6382 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6383 if (record_full_memory_query)
bb08c432
HZ
6384 {
6385 int q;
6386
6387 target_terminal_ours ();
6388 q = yquery (_("\
6389Process record ignores the memory change of instruction at address %s\n\
6390because it can't get the value of the segment register.\n\
6391Do you want to stop the program?"),
6392 paddress (gdbarch, ir.orig_addr));
6393 target_terminal_inferior ();
6394 if (q)
6395 return -1;
6396 }
df61f520
HZ
6397 }
6398 else
6399 {
25ea693b 6400 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6401 return -1;
77d7dc92
HZ
6402 }
6403
6404 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6406 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6410 }
cf648174 6411 break;
7ad10968 6412
a38bba38 6413 case 0xa6: /* cmpsS */
cf648174 6414 case 0xa7:
25ea693b
MM
6415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6417 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6420 break;
6421
a38bba38 6422 case 0xac: /* lodsS */
7ad10968 6423 case 0xad:
25ea693b
MM
6424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6426 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6429 break;
6430
a38bba38 6431 case 0xae: /* scasS */
7ad10968 6432 case 0xaf:
25ea693b 6433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6434 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6437 break;
6438
a38bba38 6439 case 0x6e: /* outsS */
cf648174 6440 case 0x6f:
25ea693b 6441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6442 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6445 break;
6446
a38bba38 6447 case 0xe4: /* port I/O */
7ad10968
HZ
6448 case 0xe5:
6449 case 0xec:
6450 case 0xed:
25ea693b
MM
6451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6453 break;
6454
6455 case 0xe6:
6456 case 0xe7:
6457 case 0xee:
6458 case 0xef:
6459 break;
6460
6461 /* control */
a38bba38
MS
6462 case 0xc2: /* ret im */
6463 case 0xc3: /* ret */
25ea693b
MM
6464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6466 break;
6467
a38bba38
MS
6468 case 0xca: /* lret im */
6469 case 0xcb: /* lret */
6470 case 0xcf: /* iret */
25ea693b
MM
6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6474 break;
6475
a38bba38 6476 case 0xe8: /* call im */
cf648174
HZ
6477 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6478 ir.dflag = 2;
6479 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6480 return -1;
7ad10968
HZ
6481 break;
6482
a38bba38 6483 case 0x9a: /* lcall im */
cf648174
HZ
6484 if (ir.regmap[X86_RECORD_R8_REGNUM])
6485 {
6486 ir.addr -= 1;
6487 goto no_support;
6488 }
25ea693b 6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6490 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6491 return -1;
7ad10968
HZ
6492 break;
6493
a38bba38
MS
6494 case 0xe9: /* jmp im */
6495 case 0xea: /* ljmp im */
6496 case 0xeb: /* jmp Jb */
6497 case 0x70: /* jcc Jb */
7ad10968
HZ
6498 case 0x71:
6499 case 0x72:
6500 case 0x73:
6501 case 0x74:
6502 case 0x75:
6503 case 0x76:
6504 case 0x77:
6505 case 0x78:
6506 case 0x79:
6507 case 0x7a:
6508 case 0x7b:
6509 case 0x7c:
6510 case 0x7d:
6511 case 0x7e:
6512 case 0x7f:
a38bba38 6513 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6514 case 0x0f81:
6515 case 0x0f82:
6516 case 0x0f83:
6517 case 0x0f84:
6518 case 0x0f85:
6519 case 0x0f86:
6520 case 0x0f87:
6521 case 0x0f88:
6522 case 0x0f89:
6523 case 0x0f8a:
6524 case 0x0f8b:
6525 case 0x0f8c:
6526 case 0x0f8d:
6527 case 0x0f8e:
6528 case 0x0f8f:
6529 break;
6530
a38bba38 6531 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6532 case 0x0f91:
6533 case 0x0f92:
6534 case 0x0f93:
6535 case 0x0f94:
6536 case 0x0f95:
6537 case 0x0f96:
6538 case 0x0f97:
6539 case 0x0f98:
6540 case 0x0f99:
6541 case 0x0f9a:
6542 case 0x0f9b:
6543 case 0x0f9c:
6544 case 0x0f9d:
6545 case 0x0f9e:
6546 case 0x0f9f:
25ea693b 6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6548 ir.ot = OT_BYTE;
6549 if (i386_record_modrm (&ir))
6550 return -1;
6551 if (ir.mod == 3)
25ea693b
MM
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6553 : (ir.rm & 0x3));
7ad10968
HZ
6554 else
6555 {
6556 if (i386_record_lea_modrm (&ir))
6557 return -1;
6558 }
6559 break;
6560
a38bba38 6561 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6562 case 0x0f41:
6563 case 0x0f42:
6564 case 0x0f43:
6565 case 0x0f44:
6566 case 0x0f45:
6567 case 0x0f46:
6568 case 0x0f47:
6569 case 0x0f48:
6570 case 0x0f49:
6571 case 0x0f4a:
6572 case 0x0f4b:
6573 case 0x0f4c:
6574 case 0x0f4d:
6575 case 0x0f4e:
6576 case 0x0f4f:
6577 if (i386_record_modrm (&ir))
6578 return -1;
cf648174 6579 ir.reg |= rex_r;
7ad10968
HZ
6580 if (ir.dflag == OT_BYTE)
6581 ir.reg &= 0x3;
25ea693b 6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6583 break;
6584
6585 /* flags */
a38bba38 6586 case 0x9c: /* pushf */
25ea693b 6587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6588 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6589 ir.dflag = 2;
6590 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6591 return -1;
7ad10968
HZ
6592 break;
6593
a38bba38 6594 case 0x9d: /* popf */
25ea693b
MM
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6597 break;
6598
a38bba38 6599 case 0x9e: /* sahf */
cf648174
HZ
6600 if (ir.regmap[X86_RECORD_R8_REGNUM])
6601 {
6602 ir.addr -= 1;
6603 goto no_support;
6604 }
d3f323f3 6605 /* FALLTHROUGH */
a38bba38
MS
6606 case 0xf5: /* cmc */
6607 case 0xf8: /* clc */
6608 case 0xf9: /* stc */
6609 case 0xfc: /* cld */
6610 case 0xfd: /* std */
25ea693b 6611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6612 break;
6613
a38bba38 6614 case 0x9f: /* lahf */
cf648174
HZ
6615 if (ir.regmap[X86_RECORD_R8_REGNUM])
6616 {
6617 ir.addr -= 1;
6618 goto no_support;
6619 }
25ea693b
MM
6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6622 break;
6623
6624 /* bit operations */
a38bba38 6625 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6626 ir.ot = ir.dflag + OT_WORD;
6627 if (i386_record_modrm (&ir))
6628 return -1;
6629 if (ir.reg < 4)
6630 {
cf648174 6631 ir.addr -= 2;
7ad10968
HZ
6632 opcode = opcode << 8 | ir.modrm;
6633 goto no_support;
6634 }
cf648174 6635 if (ir.reg != 4)
7ad10968 6636 {
cf648174 6637 if (ir.mod == 3)
25ea693b 6638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6639 else
6640 {
cf648174 6641 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6642 return -1;
6643 }
6644 }
25ea693b 6645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6646 break;
6647
a38bba38 6648 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6650 break;
6651
a38bba38
MS
6652 case 0x0fab: /* bts */
6653 case 0x0fb3: /* btr */
6654 case 0x0fbb: /* btc */
cf648174
HZ
6655 ir.ot = ir.dflag + OT_WORD;
6656 if (i386_record_modrm (&ir))
6657 return -1;
6658 if (ir.mod == 3)
25ea693b 6659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6660 else
6661 {
955db0c0
MS
6662 uint64_t addr64;
6663 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6664 return -1;
6665 regcache_raw_read_unsigned (ir.regcache,
6666 ir.regmap[ir.reg | rex_r],
648d0c8b 6667 &addr);
cf648174
HZ
6668 switch (ir.dflag)
6669 {
6670 case 0:
648d0c8b 6671 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6672 break;
6673 case 1:
648d0c8b 6674 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6675 break;
6676 case 2:
648d0c8b 6677 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6678 break;
6679 }
25ea693b 6680 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6681 return -1;
6682 if (i386_record_lea_modrm (&ir))
6683 return -1;
6684 }
25ea693b 6685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6686 break;
6687
a38bba38
MS
6688 case 0x0fbc: /* bsf */
6689 case 0x0fbd: /* bsr */
25ea693b
MM
6690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6692 break;
6693
6694 /* bcd */
a38bba38
MS
6695 case 0x27: /* daa */
6696 case 0x2f: /* das */
6697 case 0x37: /* aaa */
6698 case 0x3f: /* aas */
6699 case 0xd4: /* aam */
6700 case 0xd5: /* aad */
cf648174
HZ
6701 if (ir.regmap[X86_RECORD_R8_REGNUM])
6702 {
6703 ir.addr -= 1;
6704 goto no_support;
6705 }
25ea693b
MM
6706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6708 break;
6709
6710 /* misc */
a38bba38 6711 case 0x90: /* nop */
7ad10968
HZ
6712 if (prefixes & PREFIX_LOCK)
6713 {
6714 ir.addr -= 1;
6715 goto no_support;
6716 }
6717 break;
6718
a38bba38 6719 case 0x9b: /* fwait */
4ffa4fc7
PA
6720 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6721 return -1;
425b824a 6722 opcode = (uint32_t) opcode8;
0289bdd7
MS
6723 ir.addr++;
6724 goto reswitch;
7ad10968
HZ
6725 break;
6726
7ad10968 6727 /* XXX */
a38bba38 6728 case 0xcc: /* int3 */
a3c4230a 6729 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6730 "int3.\n"));
6731 ir.addr -= 1;
6732 goto no_support;
6733 break;
6734
7ad10968 6735 /* XXX */
a38bba38 6736 case 0xcd: /* int */
7ad10968
HZ
6737 {
6738 int ret;
425b824a 6739 uint8_t interrupt;
4ffa4fc7
PA
6740 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6741 return -1;
7ad10968 6742 ir.addr++;
425b824a 6743 if (interrupt != 0x80
a3c4230a 6744 || tdep->i386_intx80_record == NULL)
7ad10968 6745 {
a3c4230a 6746 printf_unfiltered (_("Process record does not support "
7ad10968 6747 "instruction int 0x%02x.\n"),
425b824a 6748 interrupt);
7ad10968
HZ
6749 ir.addr -= 2;
6750 goto no_support;
6751 }
a3c4230a 6752 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6753 if (ret)
6754 return ret;
6755 }
6756 break;
6757
7ad10968 6758 /* XXX */
a38bba38 6759 case 0xce: /* into */
a3c4230a 6760 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6761 "instruction into.\n"));
6762 ir.addr -= 1;
6763 goto no_support;
6764 break;
6765
a38bba38
MS
6766 case 0xfa: /* cli */
6767 case 0xfb: /* sti */
7ad10968
HZ
6768 break;
6769
a38bba38 6770 case 0x62: /* bound */
a3c4230a 6771 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6772 "instruction bound.\n"));
6773 ir.addr -= 1;
6774 goto no_support;
6775 break;
6776
a38bba38 6777 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6778 case 0x0fc9:
6779 case 0x0fca:
6780 case 0x0fcb:
6781 case 0x0fcc:
6782 case 0x0fcd:
6783 case 0x0fce:
6784 case 0x0fcf:
25ea693b 6785 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6786 break;
6787
a38bba38 6788 case 0xd6: /* salc */
cf648174
HZ
6789 if (ir.regmap[X86_RECORD_R8_REGNUM])
6790 {
6791 ir.addr -= 1;
6792 goto no_support;
6793 }
25ea693b
MM
6794 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6795 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6796 break;
6797
a38bba38
MS
6798 case 0xe0: /* loopnz */
6799 case 0xe1: /* loopz */
6800 case 0xe2: /* loop */
6801 case 0xe3: /* jecxz */
25ea693b
MM
6802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6804 break;
6805
a38bba38 6806 case 0x0f30: /* wrmsr */
a3c4230a 6807 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6808 "instruction wrmsr.\n"));
6809 ir.addr -= 2;
6810 goto no_support;
6811 break;
6812
a38bba38 6813 case 0x0f32: /* rdmsr */
a3c4230a 6814 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6815 "instruction rdmsr.\n"));
6816 ir.addr -= 2;
6817 goto no_support;
6818 break;
6819
a38bba38 6820 case 0x0f31: /* rdtsc */
25ea693b
MM
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6823 break;
6824
a38bba38 6825 case 0x0f34: /* sysenter */
7ad10968
HZ
6826 {
6827 int ret;
cf648174
HZ
6828 if (ir.regmap[X86_RECORD_R8_REGNUM])
6829 {
6830 ir.addr -= 2;
6831 goto no_support;
6832 }
a3c4230a 6833 if (tdep->i386_sysenter_record == NULL)
7ad10968 6834 {
a3c4230a 6835 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6836 "instruction sysenter.\n"));
6837 ir.addr -= 2;
6838 goto no_support;
6839 }
a3c4230a 6840 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6841 if (ret)
6842 return ret;
6843 }
6844 break;
6845
a38bba38 6846 case 0x0f35: /* sysexit */
a3c4230a 6847 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6848 "instruction sysexit.\n"));
6849 ir.addr -= 2;
6850 goto no_support;
6851 break;
6852
a38bba38 6853 case 0x0f05: /* syscall */
cf648174
HZ
6854 {
6855 int ret;
a3c4230a 6856 if (tdep->i386_syscall_record == NULL)
cf648174 6857 {
a3c4230a 6858 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6859 "instruction syscall.\n"));
6860 ir.addr -= 2;
6861 goto no_support;
6862 }
a3c4230a 6863 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6864 if (ret)
6865 return ret;
6866 }
6867 break;
6868
a38bba38 6869 case 0x0f07: /* sysret */
a3c4230a 6870 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6871 "instruction sysret.\n"));
6872 ir.addr -= 2;
6873 goto no_support;
6874 break;
6875
a38bba38 6876 case 0x0fa2: /* cpuid */
25ea693b
MM
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6880 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6881 break;
6882
a38bba38 6883 case 0xf4: /* hlt */
a3c4230a 6884 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6885 "instruction hlt.\n"));
6886 ir.addr -= 1;
6887 goto no_support;
6888 break;
6889
6890 case 0x0f00:
6891 if (i386_record_modrm (&ir))
6892 return -1;
6893 switch (ir.reg)
6894 {
a38bba38
MS
6895 case 0: /* sldt */
6896 case 1: /* str */
7ad10968 6897 if (ir.mod == 3)
25ea693b 6898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6899 else
6900 {
6901 ir.ot = OT_WORD;
6902 if (i386_record_lea_modrm (&ir))
6903 return -1;
6904 }
6905 break;
a38bba38
MS
6906 case 2: /* lldt */
6907 case 3: /* ltr */
7ad10968 6908 break;
a38bba38
MS
6909 case 4: /* verr */
6910 case 5: /* verw */
25ea693b 6911 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6912 break;
6913 default:
6914 ir.addr -= 3;
6915 opcode = opcode << 8 | ir.modrm;
6916 goto no_support;
6917 break;
6918 }
6919 break;
6920
6921 case 0x0f01:
6922 if (i386_record_modrm (&ir))
6923 return -1;
6924 switch (ir.reg)
6925 {
a38bba38 6926 case 0: /* sgdt */
7ad10968 6927 {
955db0c0 6928 uint64_t addr64;
7ad10968
HZ
6929
6930 if (ir.mod == 3)
6931 {
6932 ir.addr -= 3;
6933 opcode = opcode << 8 | ir.modrm;
6934 goto no_support;
6935 }
d7877f7e 6936 if (ir.override >= 0)
7ad10968 6937 {
25ea693b 6938 if (record_full_memory_query)
bb08c432
HZ
6939 {
6940 int q;
6941
6942 target_terminal_ours ();
6943 q = yquery (_("\
6944Process record ignores the memory change of instruction at address %s\n\
6945because it can't get the value of the segment register.\n\
6946Do you want to stop the program?"),
6947 paddress (gdbarch, ir.orig_addr));
6948 target_terminal_inferior ();
6949 if (q)
6950 return -1;
6951 }
7ad10968
HZ
6952 }
6953 else
6954 {
955db0c0 6955 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6956 return -1;
25ea693b 6957 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6958 return -1;
955db0c0 6959 addr64 += 2;
cf648174
HZ
6960 if (ir.regmap[X86_RECORD_R8_REGNUM])
6961 {
25ea693b 6962 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6963 return -1;
6964 }
6965 else
6966 {
25ea693b 6967 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6968 return -1;
6969 }
7ad10968
HZ
6970 }
6971 }
6972 break;
6973 case 1:
6974 if (ir.mod == 3)
6975 {
6976 switch (ir.rm)
6977 {
a38bba38 6978 case 0: /* monitor */
7ad10968 6979 break;
a38bba38 6980 case 1: /* mwait */
25ea693b 6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6982 break;
6983 default:
6984 ir.addr -= 3;
6985 opcode = opcode << 8 | ir.modrm;
6986 goto no_support;
6987 break;
6988 }
6989 }
6990 else
6991 {
6992 /* sidt */
d7877f7e 6993 if (ir.override >= 0)
7ad10968 6994 {
25ea693b 6995 if (record_full_memory_query)
bb08c432
HZ
6996 {
6997 int q;
6998
6999 target_terminal_ours ();
7000 q = yquery (_("\
7001Process record ignores the memory change of instruction at address %s\n\
7002because it can't get the value of the segment register.\n\
7003Do you want to stop the program?"),
7004 paddress (gdbarch, ir.orig_addr));
7005 target_terminal_inferior ();
7006 if (q)
7007 return -1;
7008 }
7ad10968
HZ
7009 }
7010 else
7011 {
955db0c0 7012 uint64_t addr64;
7ad10968 7013
955db0c0 7014 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7015 return -1;
25ea693b 7016 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7017 return -1;
955db0c0 7018 addr64 += 2;
cf648174
HZ
7019 if (ir.regmap[X86_RECORD_R8_REGNUM])
7020 {
25ea693b 7021 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7022 return -1;
7023 }
7024 else
7025 {
25ea693b 7026 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7027 return -1;
7028 }
7ad10968
HZ
7029 }
7030 }
7031 break;
a38bba38 7032 case 2: /* lgdt */
3800e645
MS
7033 if (ir.mod == 3)
7034 {
7035 /* xgetbv */
7036 if (ir.rm == 0)
7037 {
25ea693b
MM
7038 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7040 break;
7041 }
7042 /* xsetbv */
7043 else if (ir.rm == 1)
7044 break;
7045 }
a38bba38 7046 case 3: /* lidt */
7ad10968
HZ
7047 if (ir.mod == 3)
7048 {
7049 ir.addr -= 3;
7050 opcode = opcode << 8 | ir.modrm;
7051 goto no_support;
7052 }
7053 break;
a38bba38 7054 case 4: /* smsw */
7ad10968
HZ
7055 if (ir.mod == 3)
7056 {
25ea693b 7057 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7058 return -1;
7059 }
7060 else
7061 {
7062 ir.ot = OT_WORD;
7063 if (i386_record_lea_modrm (&ir))
7064 return -1;
7065 }
25ea693b 7066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7067 break;
a38bba38 7068 case 6: /* lmsw */
25ea693b 7069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7070 break;
a38bba38 7071 case 7: /* invlpg */
cf648174
HZ
7072 if (ir.mod == 3)
7073 {
7074 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7076 else
7077 {
7078 ir.addr -= 3;
7079 opcode = opcode << 8 | ir.modrm;
7080 goto no_support;
7081 }
7082 }
7083 else
25ea693b 7084 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7085 break;
7086 default:
7087 ir.addr -= 3;
7088 opcode = opcode << 8 | ir.modrm;
7089 goto no_support;
7ad10968
HZ
7090 break;
7091 }
7092 break;
7093
a38bba38
MS
7094 case 0x0f08: /* invd */
7095 case 0x0f09: /* wbinvd */
7ad10968
HZ
7096 break;
7097
a38bba38 7098 case 0x63: /* arpl */
7ad10968
HZ
7099 if (i386_record_modrm (&ir))
7100 return -1;
cf648174
HZ
7101 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7102 {
25ea693b
MM
7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7104 ? (ir.reg | rex_r) : ir.rm);
cf648174 7105 }
7ad10968 7106 else
cf648174
HZ
7107 {
7108 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7109 if (i386_record_lea_modrm (&ir))
7110 return -1;
7111 }
7112 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7113 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7114 break;
7115
a38bba38
MS
7116 case 0x0f02: /* lar */
7117 case 0x0f03: /* lsl */
7ad10968
HZ
7118 if (i386_record_modrm (&ir))
7119 return -1;
25ea693b
MM
7120 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7121 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7122 break;
7123
7124 case 0x0f18:
cf648174
HZ
7125 if (i386_record_modrm (&ir))
7126 return -1;
7127 if (ir.mod == 3 && ir.reg == 3)
7128 {
7129 ir.addr -= 3;
7130 opcode = opcode << 8 | ir.modrm;
7131 goto no_support;
7132 }
7ad10968
HZ
7133 break;
7134
7ad10968
HZ
7135 case 0x0f19:
7136 case 0x0f1a:
7137 case 0x0f1b:
7138 case 0x0f1c:
7139 case 0x0f1d:
7140 case 0x0f1e:
7141 case 0x0f1f:
a38bba38 7142 /* nop (multi byte) */
7ad10968
HZ
7143 break;
7144
a38bba38
MS
7145 case 0x0f20: /* mov reg, crN */
7146 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7147 if (i386_record_modrm (&ir))
7148 return -1;
7149 if ((ir.modrm & 0xc0) != 0xc0)
7150 {
cf648174 7151 ir.addr -= 3;
7ad10968
HZ
7152 opcode = opcode << 8 | ir.modrm;
7153 goto no_support;
7154 }
7155 switch (ir.reg)
7156 {
7157 case 0:
7158 case 2:
7159 case 3:
7160 case 4:
7161 case 8:
7162 if (opcode & 2)
25ea693b 7163 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7164 else
25ea693b 7165 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7166 break;
7167 default:
cf648174 7168 ir.addr -= 3;
7ad10968
HZ
7169 opcode = opcode << 8 | ir.modrm;
7170 goto no_support;
7171 break;
7172 }
7173 break;
7174
a38bba38
MS
7175 case 0x0f21: /* mov reg, drN */
7176 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7177 if (i386_record_modrm (&ir))
7178 return -1;
7179 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7180 || ir.reg == 5 || ir.reg >= 8)
7181 {
cf648174 7182 ir.addr -= 3;
7ad10968
HZ
7183 opcode = opcode << 8 | ir.modrm;
7184 goto no_support;
7185 }
7186 if (opcode & 2)
25ea693b 7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7188 else
25ea693b 7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7190 break;
7191
a38bba38 7192 case 0x0f06: /* clts */
25ea693b 7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7194 break;
7195
a3c4230a
HZ
7196 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7197
7198 case 0x0f0d: /* 3DNow! prefetch */
7199 break;
7200
7201 case 0x0f0e: /* 3DNow! femms */
7202 case 0x0f77: /* emms */
7203 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7204 goto no_support;
25ea693b 7205 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7206 break;
7207
7208 case 0x0f0f: /* 3DNow! data */
7209 if (i386_record_modrm (&ir))
7210 return -1;
4ffa4fc7
PA
7211 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7212 return -1;
a3c4230a
HZ
7213 ir.addr++;
7214 switch (opcode8)
7215 {
7216 case 0x0c: /* 3DNow! pi2fw */
7217 case 0x0d: /* 3DNow! pi2fd */
7218 case 0x1c: /* 3DNow! pf2iw */
7219 case 0x1d: /* 3DNow! pf2id */
7220 case 0x8a: /* 3DNow! pfnacc */
7221 case 0x8e: /* 3DNow! pfpnacc */
7222 case 0x90: /* 3DNow! pfcmpge */
7223 case 0x94: /* 3DNow! pfmin */
7224 case 0x96: /* 3DNow! pfrcp */
7225 case 0x97: /* 3DNow! pfrsqrt */
7226 case 0x9a: /* 3DNow! pfsub */
7227 case 0x9e: /* 3DNow! pfadd */
7228 case 0xa0: /* 3DNow! pfcmpgt */
7229 case 0xa4: /* 3DNow! pfmax */
7230 case 0xa6: /* 3DNow! pfrcpit1 */
7231 case 0xa7: /* 3DNow! pfrsqit1 */
7232 case 0xaa: /* 3DNow! pfsubr */
7233 case 0xae: /* 3DNow! pfacc */
7234 case 0xb0: /* 3DNow! pfcmpeq */
7235 case 0xb4: /* 3DNow! pfmul */
7236 case 0xb6: /* 3DNow! pfrcpit2 */
7237 case 0xb7: /* 3DNow! pmulhrw */
7238 case 0xbb: /* 3DNow! pswapd */
7239 case 0xbf: /* 3DNow! pavgusb */
7240 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7241 goto no_support_3dnow_data;
25ea693b 7242 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7243 break;
7244
7245 default:
7246no_support_3dnow_data:
7247 opcode = (opcode << 8) | opcode8;
7248 goto no_support;
7249 break;
7250 }
7251 break;
7252
7253 case 0x0faa: /* rsm */
25ea693b
MM
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7263 break;
7264
7265 case 0x0fae:
7266 if (i386_record_modrm (&ir))
7267 return -1;
7268 switch(ir.reg)
7269 {
7270 case 0: /* fxsave */
7271 {
7272 uint64_t tmpu64;
7273
25ea693b 7274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7275 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7276 return -1;
25ea693b 7277 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7278 return -1;
7279 }
7280 break;
7281
7282 case 1: /* fxrstor */
7283 {
7284 int i;
7285
25ea693b 7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7287
7288 for (i = I387_MM0_REGNUM (tdep);
7289 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7290 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7291
7292 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7293 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7294 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7295
7296 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7297 record_full_arch_list_add_reg (ir.regcache,
7298 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7299
7300 for (i = I387_ST0_REGNUM (tdep);
7301 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7302 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7303
7304 for (i = I387_FCTRL_REGNUM (tdep);
7305 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7306 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7307 }
7308 break;
7309
7310 case 2: /* ldmxcsr */
7311 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7312 goto no_support;
25ea693b 7313 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7314 break;
7315
7316 case 3: /* stmxcsr */
7317 ir.ot = OT_LONG;
7318 if (i386_record_lea_modrm (&ir))
7319 return -1;
7320 break;
7321
7322 case 5: /* lfence */
7323 case 6: /* mfence */
7324 case 7: /* sfence clflush */
7325 break;
7326
7327 default:
7328 opcode = (opcode << 8) | ir.modrm;
7329 goto no_support;
7330 break;
7331 }
7332 break;
7333
7334 case 0x0fc3: /* movnti */
7335 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7336 if (i386_record_modrm (&ir))
7337 return -1;
7338 if (ir.mod == 3)
7339 goto no_support;
7340 ir.reg |= rex_r;
7341 if (i386_record_lea_modrm (&ir))
7342 return -1;
7343 break;
7344
7345 /* Add prefix to opcode. */
7346 case 0x0f10:
7347 case 0x0f11:
7348 case 0x0f12:
7349 case 0x0f13:
7350 case 0x0f14:
7351 case 0x0f15:
7352 case 0x0f16:
7353 case 0x0f17:
7354 case 0x0f28:
7355 case 0x0f29:
7356 case 0x0f2a:
7357 case 0x0f2b:
7358 case 0x0f2c:
7359 case 0x0f2d:
7360 case 0x0f2e:
7361 case 0x0f2f:
7362 case 0x0f38:
7363 case 0x0f39:
7364 case 0x0f3a:
7365 case 0x0f50:
7366 case 0x0f51:
7367 case 0x0f52:
7368 case 0x0f53:
7369 case 0x0f54:
7370 case 0x0f55:
7371 case 0x0f56:
7372 case 0x0f57:
7373 case 0x0f58:
7374 case 0x0f59:
7375 case 0x0f5a:
7376 case 0x0f5b:
7377 case 0x0f5c:
7378 case 0x0f5d:
7379 case 0x0f5e:
7380 case 0x0f5f:
7381 case 0x0f60:
7382 case 0x0f61:
7383 case 0x0f62:
7384 case 0x0f63:
7385 case 0x0f64:
7386 case 0x0f65:
7387 case 0x0f66:
7388 case 0x0f67:
7389 case 0x0f68:
7390 case 0x0f69:
7391 case 0x0f6a:
7392 case 0x0f6b:
7393 case 0x0f6c:
7394 case 0x0f6d:
7395 case 0x0f6e:
7396 case 0x0f6f:
7397 case 0x0f70:
7398 case 0x0f71:
7399 case 0x0f72:
7400 case 0x0f73:
7401 case 0x0f74:
7402 case 0x0f75:
7403 case 0x0f76:
7404 case 0x0f7c:
7405 case 0x0f7d:
7406 case 0x0f7e:
7407 case 0x0f7f:
7408 case 0x0fb8:
7409 case 0x0fc2:
7410 case 0x0fc4:
7411 case 0x0fc5:
7412 case 0x0fc6:
7413 case 0x0fd0:
7414 case 0x0fd1:
7415 case 0x0fd2:
7416 case 0x0fd3:
7417 case 0x0fd4:
7418 case 0x0fd5:
7419 case 0x0fd6:
7420 case 0x0fd7:
7421 case 0x0fd8:
7422 case 0x0fd9:
7423 case 0x0fda:
7424 case 0x0fdb:
7425 case 0x0fdc:
7426 case 0x0fdd:
7427 case 0x0fde:
7428 case 0x0fdf:
7429 case 0x0fe0:
7430 case 0x0fe1:
7431 case 0x0fe2:
7432 case 0x0fe3:
7433 case 0x0fe4:
7434 case 0x0fe5:
7435 case 0x0fe6:
7436 case 0x0fe7:
7437 case 0x0fe8:
7438 case 0x0fe9:
7439 case 0x0fea:
7440 case 0x0feb:
7441 case 0x0fec:
7442 case 0x0fed:
7443 case 0x0fee:
7444 case 0x0fef:
7445 case 0x0ff0:
7446 case 0x0ff1:
7447 case 0x0ff2:
7448 case 0x0ff3:
7449 case 0x0ff4:
7450 case 0x0ff5:
7451 case 0x0ff6:
7452 case 0x0ff7:
7453 case 0x0ff8:
7454 case 0x0ff9:
7455 case 0x0ffa:
7456 case 0x0ffb:
7457 case 0x0ffc:
7458 case 0x0ffd:
7459 case 0x0ffe:
f9fda3f5
L
7460 /* Mask out PREFIX_ADDR. */
7461 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7462 {
7463 case PREFIX_REPNZ:
7464 opcode |= 0xf20000;
7465 break;
7466 case PREFIX_DATA:
7467 opcode |= 0x660000;
7468 break;
7469 case PREFIX_REPZ:
7470 opcode |= 0xf30000;
7471 break;
7472 }
7473reswitch_prefix_add:
7474 switch (opcode)
7475 {
7476 case 0x0f38:
7477 case 0x660f38:
7478 case 0xf20f38:
7479 case 0x0f3a:
7480 case 0x660f3a:
4ffa4fc7
PA
7481 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7482 return -1;
a3c4230a
HZ
7483 ir.addr++;
7484 opcode = (uint32_t) opcode8 | opcode << 8;
7485 goto reswitch_prefix_add;
7486 break;
7487
7488 case 0x0f10: /* movups */
7489 case 0x660f10: /* movupd */
7490 case 0xf30f10: /* movss */
7491 case 0xf20f10: /* movsd */
7492 case 0x0f12: /* movlps */
7493 case 0x660f12: /* movlpd */
7494 case 0xf30f12: /* movsldup */
7495 case 0xf20f12: /* movddup */
7496 case 0x0f14: /* unpcklps */
7497 case 0x660f14: /* unpcklpd */
7498 case 0x0f15: /* unpckhps */
7499 case 0x660f15: /* unpckhpd */
7500 case 0x0f16: /* movhps */
7501 case 0x660f16: /* movhpd */
7502 case 0xf30f16: /* movshdup */
7503 case 0x0f28: /* movaps */
7504 case 0x660f28: /* movapd */
7505 case 0x0f2a: /* cvtpi2ps */
7506 case 0x660f2a: /* cvtpi2pd */
7507 case 0xf30f2a: /* cvtsi2ss */
7508 case 0xf20f2a: /* cvtsi2sd */
7509 case 0x0f2c: /* cvttps2pi */
7510 case 0x660f2c: /* cvttpd2pi */
7511 case 0x0f2d: /* cvtps2pi */
7512 case 0x660f2d: /* cvtpd2pi */
7513 case 0x660f3800: /* pshufb */
7514 case 0x660f3801: /* phaddw */
7515 case 0x660f3802: /* phaddd */
7516 case 0x660f3803: /* phaddsw */
7517 case 0x660f3804: /* pmaddubsw */
7518 case 0x660f3805: /* phsubw */
7519 case 0x660f3806: /* phsubd */
4f7d61a8 7520 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7521 case 0x660f3808: /* psignb */
7522 case 0x660f3809: /* psignw */
7523 case 0x660f380a: /* psignd */
7524 case 0x660f380b: /* pmulhrsw */
7525 case 0x660f3810: /* pblendvb */
7526 case 0x660f3814: /* blendvps */
7527 case 0x660f3815: /* blendvpd */
7528 case 0x660f381c: /* pabsb */
7529 case 0x660f381d: /* pabsw */
7530 case 0x660f381e: /* pabsd */
7531 case 0x660f3820: /* pmovsxbw */
7532 case 0x660f3821: /* pmovsxbd */
7533 case 0x660f3822: /* pmovsxbq */
7534 case 0x660f3823: /* pmovsxwd */
7535 case 0x660f3824: /* pmovsxwq */
7536 case 0x660f3825: /* pmovsxdq */
7537 case 0x660f3828: /* pmuldq */
7538 case 0x660f3829: /* pcmpeqq */
7539 case 0x660f382a: /* movntdqa */
7540 case 0x660f3a08: /* roundps */
7541 case 0x660f3a09: /* roundpd */
7542 case 0x660f3a0a: /* roundss */
7543 case 0x660f3a0b: /* roundsd */
7544 case 0x660f3a0c: /* blendps */
7545 case 0x660f3a0d: /* blendpd */
7546 case 0x660f3a0e: /* pblendw */
7547 case 0x660f3a0f: /* palignr */
7548 case 0x660f3a20: /* pinsrb */
7549 case 0x660f3a21: /* insertps */
7550 case 0x660f3a22: /* pinsrd pinsrq */
7551 case 0x660f3a40: /* dpps */
7552 case 0x660f3a41: /* dppd */
7553 case 0x660f3a42: /* mpsadbw */
7554 case 0x660f3a60: /* pcmpestrm */
7555 case 0x660f3a61: /* pcmpestri */
7556 case 0x660f3a62: /* pcmpistrm */
7557 case 0x660f3a63: /* pcmpistri */
7558 case 0x0f51: /* sqrtps */
7559 case 0x660f51: /* sqrtpd */
7560 case 0xf20f51: /* sqrtsd */
7561 case 0xf30f51: /* sqrtss */
7562 case 0x0f52: /* rsqrtps */
7563 case 0xf30f52: /* rsqrtss */
7564 case 0x0f53: /* rcpps */
7565 case 0xf30f53: /* rcpss */
7566 case 0x0f54: /* andps */
7567 case 0x660f54: /* andpd */
7568 case 0x0f55: /* andnps */
7569 case 0x660f55: /* andnpd */
7570 case 0x0f56: /* orps */
7571 case 0x660f56: /* orpd */
7572 case 0x0f57: /* xorps */
7573 case 0x660f57: /* xorpd */
7574 case 0x0f58: /* addps */
7575 case 0x660f58: /* addpd */
7576 case 0xf20f58: /* addsd */
7577 case 0xf30f58: /* addss */
7578 case 0x0f59: /* mulps */
7579 case 0x660f59: /* mulpd */
7580 case 0xf20f59: /* mulsd */
7581 case 0xf30f59: /* mulss */
7582 case 0x0f5a: /* cvtps2pd */
7583 case 0x660f5a: /* cvtpd2ps */
7584 case 0xf20f5a: /* cvtsd2ss */
7585 case 0xf30f5a: /* cvtss2sd */
7586 case 0x0f5b: /* cvtdq2ps */
7587 case 0x660f5b: /* cvtps2dq */
7588 case 0xf30f5b: /* cvttps2dq */
7589 case 0x0f5c: /* subps */
7590 case 0x660f5c: /* subpd */
7591 case 0xf20f5c: /* subsd */
7592 case 0xf30f5c: /* subss */
7593 case 0x0f5d: /* minps */
7594 case 0x660f5d: /* minpd */
7595 case 0xf20f5d: /* minsd */
7596 case 0xf30f5d: /* minss */
7597 case 0x0f5e: /* divps */
7598 case 0x660f5e: /* divpd */
7599 case 0xf20f5e: /* divsd */
7600 case 0xf30f5e: /* divss */
7601 case 0x0f5f: /* maxps */
7602 case 0x660f5f: /* maxpd */
7603 case 0xf20f5f: /* maxsd */
7604 case 0xf30f5f: /* maxss */
7605 case 0x660f60: /* punpcklbw */
7606 case 0x660f61: /* punpcklwd */
7607 case 0x660f62: /* punpckldq */
7608 case 0x660f63: /* packsswb */
7609 case 0x660f64: /* pcmpgtb */
7610 case 0x660f65: /* pcmpgtw */
56d2815c 7611 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7612 case 0x660f67: /* packuswb */
7613 case 0x660f68: /* punpckhbw */
7614 case 0x660f69: /* punpckhwd */
7615 case 0x660f6a: /* punpckhdq */
7616 case 0x660f6b: /* packssdw */
7617 case 0x660f6c: /* punpcklqdq */
7618 case 0x660f6d: /* punpckhqdq */
7619 case 0x660f6e: /* movd */
7620 case 0x660f6f: /* movdqa */
7621 case 0xf30f6f: /* movdqu */
7622 case 0x660f70: /* pshufd */
7623 case 0xf20f70: /* pshuflw */
7624 case 0xf30f70: /* pshufhw */
7625 case 0x660f74: /* pcmpeqb */
7626 case 0x660f75: /* pcmpeqw */
56d2815c 7627 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7628 case 0x660f7c: /* haddpd */
7629 case 0xf20f7c: /* haddps */
7630 case 0x660f7d: /* hsubpd */
7631 case 0xf20f7d: /* hsubps */
7632 case 0xf30f7e: /* movq */
7633 case 0x0fc2: /* cmpps */
7634 case 0x660fc2: /* cmppd */
7635 case 0xf20fc2: /* cmpsd */
7636 case 0xf30fc2: /* cmpss */
7637 case 0x660fc4: /* pinsrw */
7638 case 0x0fc6: /* shufps */
7639 case 0x660fc6: /* shufpd */
7640 case 0x660fd0: /* addsubpd */
7641 case 0xf20fd0: /* addsubps */
7642 case 0x660fd1: /* psrlw */
7643 case 0x660fd2: /* psrld */
7644 case 0x660fd3: /* psrlq */
7645 case 0x660fd4: /* paddq */
7646 case 0x660fd5: /* pmullw */
7647 case 0xf30fd6: /* movq2dq */
7648 case 0x660fd8: /* psubusb */
7649 case 0x660fd9: /* psubusw */
7650 case 0x660fda: /* pminub */
7651 case 0x660fdb: /* pand */
7652 case 0x660fdc: /* paddusb */
7653 case 0x660fdd: /* paddusw */
7654 case 0x660fde: /* pmaxub */
7655 case 0x660fdf: /* pandn */
7656 case 0x660fe0: /* pavgb */
7657 case 0x660fe1: /* psraw */
7658 case 0x660fe2: /* psrad */
7659 case 0x660fe3: /* pavgw */
7660 case 0x660fe4: /* pmulhuw */
7661 case 0x660fe5: /* pmulhw */
7662 case 0x660fe6: /* cvttpd2dq */
7663 case 0xf20fe6: /* cvtpd2dq */
7664 case 0xf30fe6: /* cvtdq2pd */
7665 case 0x660fe8: /* psubsb */
7666 case 0x660fe9: /* psubsw */
7667 case 0x660fea: /* pminsw */
7668 case 0x660feb: /* por */
7669 case 0x660fec: /* paddsb */
7670 case 0x660fed: /* paddsw */
7671 case 0x660fee: /* pmaxsw */
7672 case 0x660fef: /* pxor */
4f7d61a8 7673 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7674 case 0x660ff1: /* psllw */
7675 case 0x660ff2: /* pslld */
7676 case 0x660ff3: /* psllq */
7677 case 0x660ff4: /* pmuludq */
7678 case 0x660ff5: /* pmaddwd */
7679 case 0x660ff6: /* psadbw */
7680 case 0x660ff8: /* psubb */
7681 case 0x660ff9: /* psubw */
56d2815c 7682 case 0x660ffa: /* psubd */
a3c4230a
HZ
7683 case 0x660ffb: /* psubq */
7684 case 0x660ffc: /* paddb */
7685 case 0x660ffd: /* paddw */
56d2815c 7686 case 0x660ffe: /* paddd */
a3c4230a
HZ
7687 if (i386_record_modrm (&ir))
7688 return -1;
7689 ir.reg |= rex_r;
c131fcee 7690 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7691 goto no_support;
25ea693b
MM
7692 record_full_arch_list_add_reg (ir.regcache,
7693 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7694 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7696 break;
7697
7698 case 0x0f11: /* movups */
7699 case 0x660f11: /* movupd */
7700 case 0xf30f11: /* movss */
7701 case 0xf20f11: /* movsd */
7702 case 0x0f13: /* movlps */
7703 case 0x660f13: /* movlpd */
7704 case 0x0f17: /* movhps */
7705 case 0x660f17: /* movhpd */
7706 case 0x0f29: /* movaps */
7707 case 0x660f29: /* movapd */
7708 case 0x660f3a14: /* pextrb */
7709 case 0x660f3a15: /* pextrw */
7710 case 0x660f3a16: /* pextrd pextrq */
7711 case 0x660f3a17: /* extractps */
7712 case 0x660f7f: /* movdqa */
7713 case 0xf30f7f: /* movdqu */
7714 if (i386_record_modrm (&ir))
7715 return -1;
7716 if (ir.mod == 3)
7717 {
7718 if (opcode == 0x0f13 || opcode == 0x660f13
7719 || opcode == 0x0f17 || opcode == 0x660f17)
7720 goto no_support;
7721 ir.rm |= ir.rex_b;
1777feb0
MS
7722 if (!i386_xmm_regnum_p (gdbarch,
7723 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7724 goto no_support;
25ea693b
MM
7725 record_full_arch_list_add_reg (ir.regcache,
7726 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7727 }
7728 else
7729 {
7730 switch (opcode)
7731 {
7732 case 0x660f3a14:
7733 ir.ot = OT_BYTE;
7734 break;
7735 case 0x660f3a15:
7736 ir.ot = OT_WORD;
7737 break;
7738 case 0x660f3a16:
7739 ir.ot = OT_LONG;
7740 break;
7741 case 0x660f3a17:
7742 ir.ot = OT_QUAD;
7743 break;
7744 default:
7745 ir.ot = OT_DQUAD;
7746 break;
7747 }
7748 if (i386_record_lea_modrm (&ir))
7749 return -1;
7750 }
7751 break;
7752
7753 case 0x0f2b: /* movntps */
7754 case 0x660f2b: /* movntpd */
7755 case 0x0fe7: /* movntq */
7756 case 0x660fe7: /* movntdq */
7757 if (ir.mod == 3)
7758 goto no_support;
7759 if (opcode == 0x0fe7)
7760 ir.ot = OT_QUAD;
7761 else
7762 ir.ot = OT_DQUAD;
7763 if (i386_record_lea_modrm (&ir))
7764 return -1;
7765 break;
7766
7767 case 0xf30f2c: /* cvttss2si */
7768 case 0xf20f2c: /* cvttsd2si */
7769 case 0xf30f2d: /* cvtss2si */
7770 case 0xf20f2d: /* cvtsd2si */
7771 case 0xf20f38f0: /* crc32 */
7772 case 0xf20f38f1: /* crc32 */
7773 case 0x0f50: /* movmskps */
7774 case 0x660f50: /* movmskpd */
7775 case 0x0fc5: /* pextrw */
7776 case 0x660fc5: /* pextrw */
7777 case 0x0fd7: /* pmovmskb */
7778 case 0x660fd7: /* pmovmskb */
25ea693b 7779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7780 break;
7781
7782 case 0x0f3800: /* pshufb */
7783 case 0x0f3801: /* phaddw */
7784 case 0x0f3802: /* phaddd */
7785 case 0x0f3803: /* phaddsw */
7786 case 0x0f3804: /* pmaddubsw */
7787 case 0x0f3805: /* phsubw */
7788 case 0x0f3806: /* phsubd */
4f7d61a8 7789 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7790 case 0x0f3808: /* psignb */
7791 case 0x0f3809: /* psignw */
7792 case 0x0f380a: /* psignd */
7793 case 0x0f380b: /* pmulhrsw */
7794 case 0x0f381c: /* pabsb */
7795 case 0x0f381d: /* pabsw */
7796 case 0x0f381e: /* pabsd */
7797 case 0x0f382b: /* packusdw */
7798 case 0x0f3830: /* pmovzxbw */
7799 case 0x0f3831: /* pmovzxbd */
7800 case 0x0f3832: /* pmovzxbq */
7801 case 0x0f3833: /* pmovzxwd */
7802 case 0x0f3834: /* pmovzxwq */
7803 case 0x0f3835: /* pmovzxdq */
7804 case 0x0f3837: /* pcmpgtq */
7805 case 0x0f3838: /* pminsb */
7806 case 0x0f3839: /* pminsd */
7807 case 0x0f383a: /* pminuw */
7808 case 0x0f383b: /* pminud */
7809 case 0x0f383c: /* pmaxsb */
7810 case 0x0f383d: /* pmaxsd */
7811 case 0x0f383e: /* pmaxuw */
7812 case 0x0f383f: /* pmaxud */
7813 case 0x0f3840: /* pmulld */
7814 case 0x0f3841: /* phminposuw */
7815 case 0x0f3a0f: /* palignr */
7816 case 0x0f60: /* punpcklbw */
7817 case 0x0f61: /* punpcklwd */
7818 case 0x0f62: /* punpckldq */
7819 case 0x0f63: /* packsswb */
7820 case 0x0f64: /* pcmpgtb */
7821 case 0x0f65: /* pcmpgtw */
56d2815c 7822 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7823 case 0x0f67: /* packuswb */
7824 case 0x0f68: /* punpckhbw */
7825 case 0x0f69: /* punpckhwd */
7826 case 0x0f6a: /* punpckhdq */
7827 case 0x0f6b: /* packssdw */
7828 case 0x0f6e: /* movd */
7829 case 0x0f6f: /* movq */
7830 case 0x0f70: /* pshufw */
7831 case 0x0f74: /* pcmpeqb */
7832 case 0x0f75: /* pcmpeqw */
56d2815c 7833 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7834 case 0x0fc4: /* pinsrw */
7835 case 0x0fd1: /* psrlw */
7836 case 0x0fd2: /* psrld */
7837 case 0x0fd3: /* psrlq */
7838 case 0x0fd4: /* paddq */
7839 case 0x0fd5: /* pmullw */
7840 case 0xf20fd6: /* movdq2q */
7841 case 0x0fd8: /* psubusb */
7842 case 0x0fd9: /* psubusw */
7843 case 0x0fda: /* pminub */
7844 case 0x0fdb: /* pand */
7845 case 0x0fdc: /* paddusb */
7846 case 0x0fdd: /* paddusw */
7847 case 0x0fde: /* pmaxub */
7848 case 0x0fdf: /* pandn */
7849 case 0x0fe0: /* pavgb */
7850 case 0x0fe1: /* psraw */
7851 case 0x0fe2: /* psrad */
7852 case 0x0fe3: /* pavgw */
7853 case 0x0fe4: /* pmulhuw */
7854 case 0x0fe5: /* pmulhw */
7855 case 0x0fe8: /* psubsb */
7856 case 0x0fe9: /* psubsw */
7857 case 0x0fea: /* pminsw */
7858 case 0x0feb: /* por */
7859 case 0x0fec: /* paddsb */
7860 case 0x0fed: /* paddsw */
7861 case 0x0fee: /* pmaxsw */
7862 case 0x0fef: /* pxor */
7863 case 0x0ff1: /* psllw */
7864 case 0x0ff2: /* pslld */
7865 case 0x0ff3: /* psllq */
7866 case 0x0ff4: /* pmuludq */
7867 case 0x0ff5: /* pmaddwd */
7868 case 0x0ff6: /* psadbw */
7869 case 0x0ff8: /* psubb */
7870 case 0x0ff9: /* psubw */
56d2815c 7871 case 0x0ffa: /* psubd */
a3c4230a
HZ
7872 case 0x0ffb: /* psubq */
7873 case 0x0ffc: /* paddb */
7874 case 0x0ffd: /* paddw */
56d2815c 7875 case 0x0ffe: /* paddd */
a3c4230a
HZ
7876 if (i386_record_modrm (&ir))
7877 return -1;
7878 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7879 goto no_support;
25ea693b
MM
7880 record_full_arch_list_add_reg (ir.regcache,
7881 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7882 break;
7883
7884 case 0x0f71: /* psllw */
7885 case 0x0f72: /* pslld */
7886 case 0x0f73: /* psllq */
7887 if (i386_record_modrm (&ir))
7888 return -1;
7889 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7890 goto no_support;
25ea693b
MM
7891 record_full_arch_list_add_reg (ir.regcache,
7892 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7893 break;
7894
7895 case 0x660f71: /* psllw */
7896 case 0x660f72: /* pslld */
7897 case 0x660f73: /* psllq */
7898 if (i386_record_modrm (&ir))
7899 return -1;
7900 ir.rm |= ir.rex_b;
c131fcee 7901 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7902 goto no_support;
25ea693b
MM
7903 record_full_arch_list_add_reg (ir.regcache,
7904 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7905 break;
7906
7907 case 0x0f7e: /* movd */
7908 case 0x660f7e: /* movd */
7909 if (i386_record_modrm (&ir))
7910 return -1;
7911 if (ir.mod == 3)
25ea693b 7912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7913 else
7914 {
7915 if (ir.dflag == 2)
7916 ir.ot = OT_QUAD;
7917 else
7918 ir.ot = OT_LONG;
7919 if (i386_record_lea_modrm (&ir))
7920 return -1;
7921 }
7922 break;
7923
7924 case 0x0f7f: /* movq */
7925 if (i386_record_modrm (&ir))
7926 return -1;
7927 if (ir.mod == 3)
7928 {
7929 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7930 goto no_support;
25ea693b
MM
7931 record_full_arch_list_add_reg (ir.regcache,
7932 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7933 }
7934 else
7935 {
7936 ir.ot = OT_QUAD;
7937 if (i386_record_lea_modrm (&ir))
7938 return -1;
7939 }
7940 break;
7941
7942 case 0xf30fb8: /* popcnt */
7943 if (i386_record_modrm (&ir))
7944 return -1;
25ea693b
MM
7945 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7947 break;
7948
7949 case 0x660fd6: /* movq */
7950 if (i386_record_modrm (&ir))
7951 return -1;
7952 if (ir.mod == 3)
7953 {
7954 ir.rm |= ir.rex_b;
1777feb0
MS
7955 if (!i386_xmm_regnum_p (gdbarch,
7956 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7957 goto no_support;
25ea693b
MM
7958 record_full_arch_list_add_reg (ir.regcache,
7959 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7960 }
7961 else
7962 {
7963 ir.ot = OT_QUAD;
7964 if (i386_record_lea_modrm (&ir))
7965 return -1;
7966 }
7967 break;
7968
7969 case 0x660f3817: /* ptest */
7970 case 0x0f2e: /* ucomiss */
7971 case 0x660f2e: /* ucomisd */
7972 case 0x0f2f: /* comiss */
7973 case 0x660f2f: /* comisd */
25ea693b 7974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7975 break;
7976
7977 case 0x0ff7: /* maskmovq */
7978 regcache_raw_read_unsigned (ir.regcache,
7979 ir.regmap[X86_RECORD_REDI_REGNUM],
7980 &addr);
25ea693b 7981 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
7982 return -1;
7983 break;
7984
7985 case 0x660ff7: /* maskmovdqu */
7986 regcache_raw_read_unsigned (ir.regcache,
7987 ir.regmap[X86_RECORD_REDI_REGNUM],
7988 &addr);
25ea693b 7989 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
7990 return -1;
7991 break;
7992
7993 default:
7994 goto no_support;
7995 break;
7996 }
7997 break;
7ad10968
HZ
7998
7999 default:
7ad10968
HZ
8000 goto no_support;
8001 break;
8002 }
8003
cf648174 8004 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8006 if (record_full_arch_list_add_end ())
7ad10968
HZ
8007 return -1;
8008
8009 return 0;
8010
01fe1b41 8011 no_support:
a3c4230a
HZ
8012 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8013 "at address %s.\n"),
8014 (unsigned int) (opcode),
8015 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8016 return -1;
8017}
8018
cf648174
HZ
8019static const int i386_record_regmap[] =
8020{
8021 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8022 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8023 0, 0, 0, 0, 0, 0, 0, 0,
8024 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8025 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8026};
8027
7a697b8d 8028/* Check that the given address appears suitable for a fast
405f8e94 8029 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8030 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8031 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8032 middle of the tracepoint jump. On x86, it may be possible to use
8033 4-byte jumps with a 2-byte offset to a trampoline located in the
8034 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8035 of instruction to replace, and 0 if not, plus an explanatory
8036 string. */
8037
8038static int
8039i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8040 CORE_ADDR addr, int *isize, char **msg)
8041{
8042 int len, jumplen;
8043 static struct ui_file *gdb_null = NULL;
8044
405f8e94
SS
8045 /* Ask the target for the minimum instruction length supported. */
8046 jumplen = target_get_min_fast_tracepoint_insn_len ();
8047
8048 if (jumplen < 0)
8049 {
8050 /* If the target does not support the get_min_fast_tracepoint_insn_len
8051 operation, assume that fast tracepoints will always be implemented
8052 using 4-byte relative jumps on both x86 and x86-64. */
8053 jumplen = 5;
8054 }
8055 else if (jumplen == 0)
8056 {
8057 /* If the target does support get_min_fast_tracepoint_insn_len but
8058 returns zero, then the IPA has not loaded yet. In this case,
8059 we optimistically assume that truncated 2-byte relative jumps
8060 will be available on x86, and compensate later if this assumption
8061 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8062 jumps will always be used. */
8063 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8064 }
7a697b8d
SS
8065
8066 /* Dummy file descriptor for the disassembler. */
8067 if (!gdb_null)
8068 gdb_null = ui_file_new ();
8069
8070 /* Check for fit. */
8071 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
8072 if (isize)
8073 *isize = len;
8074
7a697b8d
SS
8075 if (len < jumplen)
8076 {
8077 /* Return a bit of target-specific detail to add to the caller's
8078 generic failure message. */
8079 if (msg)
1777feb0
MS
8080 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8081 "need at least %d bytes for the jump"),
7a697b8d
SS
8082 len, jumplen);
8083 return 0;
8084 }
405f8e94
SS
8085 else
8086 {
8087 if (msg)
8088 *msg = NULL;
8089 return 1;
8090 }
7a697b8d
SS
8091}
8092
90884b2b
L
8093static int
8094i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8095 struct tdesc_arch_data *tdesc_data)
8096{
8097 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8098 const struct tdesc_feature *feature_core;
01f9f808
MS
8099
8100 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8101 *feature_avx512;
90884b2b
L
8102 int i, num_regs, valid_p;
8103
8104 if (! tdesc_has_registers (tdesc))
8105 return 0;
8106
8107 /* Get core registers. */
8108 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8109 if (feature_core == NULL)
8110 return 0;
90884b2b
L
8111
8112 /* Get SSE registers. */
c131fcee 8113 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8114
c131fcee
L
8115 /* Try AVX registers. */
8116 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8117
1dbcd68c
WT
8118 /* Try MPX registers. */
8119 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8120
01f9f808
MS
8121 /* Try AVX512 registers. */
8122 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8123
90884b2b
L
8124 valid_p = 1;
8125
c131fcee 8126 /* The XCR0 bits. */
01f9f808
MS
8127 if (feature_avx512)
8128 {
8129 /* AVX512 register description requires AVX register description. */
8130 if (!feature_avx)
8131 return 0;
8132
df7e5265 8133 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
01f9f808
MS
8134
8135 /* It may have been set by OSABI initialization function. */
8136 if (tdep->k0_regnum < 0)
8137 {
8138 tdep->k_register_names = i386_k_names;
8139 tdep->k0_regnum = I386_K0_REGNUM;
8140 }
8141
8142 for (i = 0; i < I387_NUM_K_REGS; i++)
8143 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8144 tdep->k0_regnum + i,
8145 i386_k_names[i]);
8146
8147 if (tdep->num_zmm_regs == 0)
8148 {
8149 tdep->zmmh_register_names = i386_zmmh_names;
8150 tdep->num_zmm_regs = 8;
8151 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8152 }
8153
8154 for (i = 0; i < tdep->num_zmm_regs; i++)
8155 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8156 tdep->zmm0h_regnum + i,
8157 tdep->zmmh_register_names[i]);
8158
8159 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8160 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8161 tdep->xmm16_regnum + i,
8162 tdep->xmm_avx512_register_names[i]);
8163
8164 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8165 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8166 tdep->ymm16h_regnum + i,
8167 tdep->ymm16h_register_names[i]);
8168 }
c131fcee
L
8169 if (feature_avx)
8170 {
3a13a53b
L
8171 /* AVX register description requires SSE register description. */
8172 if (!feature_sse)
8173 return 0;
8174
01f9f808 8175 if (!feature_avx512)
df7e5265 8176 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8177
8178 /* It may have been set by OSABI initialization function. */
8179 if (tdep->num_ymm_regs == 0)
8180 {
8181 tdep->ymmh_register_names = i386_ymmh_names;
8182 tdep->num_ymm_regs = 8;
8183 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8184 }
8185
8186 for (i = 0; i < tdep->num_ymm_regs; i++)
8187 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8188 tdep->ymm0h_regnum + i,
8189 tdep->ymmh_register_names[i]);
8190 }
3a13a53b 8191 else if (feature_sse)
df7e5265 8192 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8193 else
8194 {
df7e5265 8195 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8196 tdep->num_xmm_regs = 0;
8197 }
c131fcee 8198
90884b2b
L
8199 num_regs = tdep->num_core_regs;
8200 for (i = 0; i < num_regs; i++)
8201 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8202 tdep->register_names[i]);
8203
3a13a53b
L
8204 if (feature_sse)
8205 {
8206 /* Need to include %mxcsr, so add one. */
8207 num_regs += tdep->num_xmm_regs + 1;
8208 for (; i < num_regs; i++)
8209 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8210 tdep->register_names[i]);
8211 }
90884b2b 8212
1dbcd68c
WT
8213 if (feature_mpx)
8214 {
df7e5265 8215 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8216
8217 if (tdep->bnd0r_regnum < 0)
8218 {
8219 tdep->mpx_register_names = i386_mpx_names;
8220 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8221 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8222 }
8223
8224 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8225 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8226 I387_BND0R_REGNUM (tdep) + i,
8227 tdep->mpx_register_names[i]);
8228 }
8229
90884b2b
L
8230 return valid_p;
8231}
8232
7ad10968
HZ
8233\f
8234static struct gdbarch *
8235i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8236{
8237 struct gdbarch_tdep *tdep;
8238 struct gdbarch *gdbarch;
90884b2b
L
8239 struct tdesc_arch_data *tdesc_data;
8240 const struct target_desc *tdesc;
1ba53b71 8241 int mm0_regnum;
c131fcee 8242 int ymm0_regnum;
1dbcd68c
WT
8243 int bnd0_regnum;
8244 int num_bnd_cooked;
01f9f808
MS
8245 int k0_regnum;
8246 int zmm0_regnum;
7ad10968
HZ
8247
8248 /* If there is already a candidate, use it. */
8249 arches = gdbarch_list_lookup_by_info (arches, &info);
8250 if (arches != NULL)
8251 return arches->gdbarch;
8252
8253 /* Allocate space for the new architecture. */
fc270c35 8254 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8255 gdbarch = gdbarch_alloc (&info, tdep);
8256
8257 /* General-purpose registers. */
7ad10968
HZ
8258 tdep->gregset_reg_offset = NULL;
8259 tdep->gregset_num_regs = I386_NUM_GREGS;
8260 tdep->sizeof_gregset = 0;
8261
8262 /* Floating-point registers. */
7ad10968 8263 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8264 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8265
8266 /* The default settings include the FPU registers, the MMX registers
8267 and the SSE registers. This can be overridden for a specific ABI
8268 by adjusting the members `st0_regnum', `mm0_regnum' and
8269 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8270 will show up in the output of "info all-registers". */
7ad10968
HZ
8271
8272 tdep->st0_regnum = I386_ST0_REGNUM;
8273
7ad10968
HZ
8274 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8275 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8276
8277 tdep->jb_pc_offset = -1;
8278 tdep->struct_return = pcc_struct_return;
8279 tdep->sigtramp_start = 0;
8280 tdep->sigtramp_end = 0;
8281 tdep->sigtramp_p = i386_sigtramp_p;
8282 tdep->sigcontext_addr = NULL;
8283 tdep->sc_reg_offset = NULL;
8284 tdep->sc_pc_offset = -1;
8285 tdep->sc_sp_offset = -1;
8286
c131fcee
L
8287 tdep->xsave_xcr0_offset = -1;
8288
cf648174
HZ
8289 tdep->record_regmap = i386_record_regmap;
8290
205c306f
DM
8291 set_gdbarch_long_long_align_bit (gdbarch, 32);
8292
7ad10968
HZ
8293 /* The format used for `long double' on almost all i386 targets is
8294 the i387 extended floating-point format. In fact, of all targets
8295 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8296 on having a `long double' that's not `long' at all. */
8297 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8298
8299 /* Although the i387 extended floating-point has only 80 significant
8300 bits, a `long double' actually takes up 96, probably to enforce
8301 alignment. */
8302 set_gdbarch_long_double_bit (gdbarch, 96);
8303
7ad10968
HZ
8304 /* Register numbers of various important registers. */
8305 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8306 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8307 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8308 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8309
8310 /* NOTE: kettenis/20040418: GCC does have two possible register
8311 numbering schemes on the i386: dbx and SVR4. These schemes
8312 differ in how they number %ebp, %esp, %eflags, and the
8313 floating-point registers, and are implemented by the arrays
8314 dbx_register_map[] and svr4_dbx_register_map in
8315 gcc/config/i386.c. GCC also defines a third numbering scheme in
8316 gcc/config/i386.c, which it designates as the "default" register
8317 map used in 64bit mode. This last register numbering scheme is
8318 implemented in dbx64_register_map, and is used for AMD64; see
8319 amd64-tdep.c.
8320
8321 Currently, each GCC i386 target always uses the same register
8322 numbering scheme across all its supported debugging formats
8323 i.e. SDB (COFF), stabs and DWARF 2. This is because
8324 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8325 DBX_REGISTER_NUMBER macro which is defined by each target's
8326 respective config header in a manner independent of the requested
8327 output debugging format.
8328
8329 This does not match the arrangement below, which presumes that
8330 the SDB and stabs numbering schemes differ from the DWARF and
8331 DWARF 2 ones. The reason for this arrangement is that it is
8332 likely to get the numbering scheme for the target's
8333 default/native debug format right. For targets where GCC is the
8334 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8335 targets where the native toolchain uses a different numbering
8336 scheme for a particular debug format (stabs-in-ELF on Solaris)
8337 the defaults below will have to be overridden, like
8338 i386_elf_init_abi() does. */
8339
8340 /* Use the dbx register numbering scheme for stabs and COFF. */
8341 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8342 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8343
8344 /* Use the SVR4 register numbering scheme for DWARF 2. */
8345 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8346
8347 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8348 be in use on any of the supported i386 targets. */
8349
8350 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8351
8352 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8353
8354 /* Call dummy code. */
a9b8d892
JK
8355 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8356 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8357 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8358 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8359
8360 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8361 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8362 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8363
8364 set_gdbarch_return_value (gdbarch, i386_return_value);
8365
8366 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8367
8368 /* Stack grows downward. */
8369 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8370
8371 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8372 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8373 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8374
8375 set_gdbarch_frame_args_skip (gdbarch, 8);
8376
7ad10968
HZ
8377 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8378
8379 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8380
8381 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8382
8383 /* Add the i386 register groups. */
8384 i386_add_reggroups (gdbarch);
90884b2b 8385 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8386
143985b7
AF
8387 /* Helper for function argument information. */
8388 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8389
06da04c6 8390 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8391 appended to the list first, so that it supercedes the DWARF
8392 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8393 currently fails). */
8394 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8395
8396 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8397 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8398 CFI info will be used if it is available. */
10458914 8399 dwarf2_append_unwinders (gdbarch);
6405b0a6 8400
acd5c798 8401 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8402
1ba53b71 8403 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8404 set_gdbarch_pseudo_register_read_value (gdbarch,
8405 i386_pseudo_register_read_value);
90884b2b
L
8406 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8407
8408 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8409 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8410
c131fcee
L
8411 /* Override the normal target description method to make the AVX
8412 upper halves anonymous. */
8413 set_gdbarch_register_name (gdbarch, i386_register_name);
8414
8415 /* Even though the default ABI only includes general-purpose registers,
8416 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8417 gap for the upper AVX, MPX and AVX512 registers. */
8418 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b 8419
ac04f72b
TT
8420 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8421
90884b2b
L
8422 /* Get the x86 target description from INFO. */
8423 tdesc = info.target_desc;
8424 if (! tdesc_has_registers (tdesc))
8425 tdesc = tdesc_i386;
8426 tdep->tdesc = tdesc;
8427
8428 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8429 tdep->register_names = i386_register_names;
8430
c131fcee
L
8431 /* No upper YMM registers. */
8432 tdep->ymmh_register_names = NULL;
8433 tdep->ymm0h_regnum = -1;
8434
01f9f808
MS
8435 /* No upper ZMM registers. */
8436 tdep->zmmh_register_names = NULL;
8437 tdep->zmm0h_regnum = -1;
8438
8439 /* No high XMM registers. */
8440 tdep->xmm_avx512_register_names = NULL;
8441 tdep->xmm16_regnum = -1;
8442
8443 /* No upper YMM16-31 registers. */
8444 tdep->ymm16h_register_names = NULL;
8445 tdep->ymm16h_regnum = -1;
8446
1ba53b71
L
8447 tdep->num_byte_regs = 8;
8448 tdep->num_word_regs = 8;
8449 tdep->num_dword_regs = 0;
8450 tdep->num_mmx_regs = 8;
c131fcee 8451 tdep->num_ymm_regs = 0;
1ba53b71 8452
1dbcd68c
WT
8453 /* No MPX registers. */
8454 tdep->bnd0r_regnum = -1;
8455 tdep->bndcfgu_regnum = -1;
8456
01f9f808
MS
8457 /* No AVX512 registers. */
8458 tdep->k0_regnum = -1;
8459 tdep->num_zmm_regs = 0;
8460 tdep->num_ymm_avx512_regs = 0;
8461 tdep->num_xmm_avx512_regs = 0;
8462
90884b2b
L
8463 tdesc_data = tdesc_data_alloc ();
8464
dde08ee1
PA
8465 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8466
6710bf39
SS
8467 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8468
c2170eef
MM
8469 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8470 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8471 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8472
3ce1502b 8473 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8474 info.tdep_info = (void *) tdesc_data;
4be87837 8475 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8476
c131fcee
L
8477 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8478 {
8479 tdesc_data_cleanup (tdesc_data);
8480 xfree (tdep);
8481 gdbarch_free (gdbarch);
8482 return NULL;
8483 }
8484
1dbcd68c
WT
8485 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8486
1ba53b71
L
8487 /* Wire in pseudo registers. Number of pseudo registers may be
8488 changed. */
8489 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8490 + tdep->num_word_regs
8491 + tdep->num_dword_regs
c131fcee 8492 + tdep->num_mmx_regs
1dbcd68c 8493 + tdep->num_ymm_regs
01f9f808
MS
8494 + num_bnd_cooked
8495 + tdep->num_ymm_avx512_regs
8496 + tdep->num_zmm_regs));
1ba53b71 8497
90884b2b
L
8498 /* Target description may be changed. */
8499 tdesc = tdep->tdesc;
8500
90884b2b
L
8501 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8502
8503 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8504 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8505
1ba53b71
L
8506 /* Make %al the first pseudo-register. */
8507 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8508 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8509
c131fcee 8510 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8511 if (tdep->num_dword_regs)
8512 {
1c6272a6 8513 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8514 tdep->eax_regnum = ymm0_regnum;
8515 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8516 }
8517 else
8518 tdep->eax_regnum = -1;
8519
c131fcee
L
8520 mm0_regnum = ymm0_regnum;
8521 if (tdep->num_ymm_regs)
8522 {
1c6272a6 8523 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8524 tdep->ymm0_regnum = ymm0_regnum;
8525 mm0_regnum += tdep->num_ymm_regs;
8526 }
8527 else
8528 tdep->ymm0_regnum = -1;
8529
01f9f808
MS
8530 if (tdep->num_ymm_avx512_regs)
8531 {
8532 /* Support YMM16-31 pseudo registers if available. */
8533 tdep->ymm16_regnum = mm0_regnum;
8534 mm0_regnum += tdep->num_ymm_avx512_regs;
8535 }
8536 else
8537 tdep->ymm16_regnum = -1;
8538
8539 if (tdep->num_zmm_regs)
8540 {
8541 /* Support ZMM pseudo-register if it is available. */
8542 tdep->zmm0_regnum = mm0_regnum;
8543 mm0_regnum += tdep->num_zmm_regs;
8544 }
8545 else
8546 tdep->zmm0_regnum = -1;
8547
1dbcd68c 8548 bnd0_regnum = mm0_regnum;
1ba53b71
L
8549 if (tdep->num_mmx_regs != 0)
8550 {
1c6272a6 8551 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8552 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8553 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8554 }
8555 else
8556 tdep->mm0_regnum = -1;
8557
1dbcd68c
WT
8558 if (tdep->bnd0r_regnum > 0)
8559 tdep->bnd0_regnum = bnd0_regnum;
8560 else
8561 tdep-> bnd0_regnum = -1;
8562
06da04c6 8563 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8564 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8565 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8566 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8567
8446b36a
MK
8568 /* If we have a register mapping, enable the generic core file
8569 support, unless it has already been enabled. */
8570 if (tdep->gregset_reg_offset
8f0435f7 8571 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8572 set_gdbarch_iterate_over_regset_sections
8573 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8574
7a697b8d
SS
8575 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8576 i386_fast_tracepoint_valid_at);
8577
a62cc96e
AC
8578 return gdbarch;
8579}
8580
8201327c
MK
8581static enum gdb_osabi
8582i386_coff_osabi_sniffer (bfd *abfd)
8583{
762c5349
MK
8584 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8585 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8586 return GDB_OSABI_GO32;
8587
8588 return GDB_OSABI_UNKNOWN;
8589}
8201327c
MK
8590\f
8591
28e9e0f0
MK
8592/* Provide a prototype to silence -Wmissing-prototypes. */
8593void _initialize_i386_tdep (void);
8594
c906108c 8595void
fba45db2 8596_initialize_i386_tdep (void)
c906108c 8597{
a62cc96e
AC
8598 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8599
fc338970 8600 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8601 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8602 &disassembly_flavor, _("\
8603Set the disassembly flavor."), _("\
8604Show the disassembly flavor."), _("\
8605The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8606 NULL,
8607 NULL, /* FIXME: i18n: */
8608 &setlist, &showlist);
8201327c
MK
8609
8610 /* Add the variable that controls the convention for returning
8611 structs. */
7ab04401
AC
8612 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8613 &struct_convention, _("\
8614Set the convention for returning small structs."), _("\
8615Show the convention for returning small structs."), _("\
8616Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8617is \"default\"."),
8618 NULL,
8619 NULL, /* FIXME: i18n: */
8620 &setlist, &showlist);
8201327c
MK
8621
8622 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8623 i386_coff_osabi_sniffer);
8201327c 8624
05816f70 8625 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8626 i386_svr4_init_abi);
05816f70 8627 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8628 i386_go32_init_abi);
38c968cf 8629
209bd28e 8630 /* Initialize the i386-specific register groups. */
38c968cf 8631 i386_init_reggroups ();
90884b2b
L
8632
8633 /* Initialize the standard target descriptions. */
8634 initialize_tdesc_i386 ();
3a13a53b 8635 initialize_tdesc_i386_mmx ();
c131fcee 8636 initialize_tdesc_i386_avx ();
1dbcd68c 8637 initialize_tdesc_i386_mpx ();
01f9f808 8638 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8639
8640 /* Tell remote stub that we support XML target description. */
8641 register_remote_support_xml ("i386");
c906108c 8642}
This page took 1.702802 seconds and 4 git commands to generate.